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Abstract

In 5G and beyond, the application of distributed MU-MIMO has garnered considerable
interest due to its potential in resolving challenges associated with utilizing the mm-wave
band, such as radio link blockage. To address the computational complexity issues posed by
large-scale distributed MU-MIMO systems, a cluster-wise distributed MU-MIMO approach
has been devised. Nonetheless, the adoption of cluster-wise distributed MU-MIMO in cellular
system brings about an unintended consequence of introducing additional intracell and intercell
interference, which significantly impacts system capacity. Consequently, this study aims to
explore interference coordination (IC) within the cellular system with cluster-wise distributed
MU-MIMO, with the goal of enhancing overall system capacity.

Taking inspiration from recent advancements in utilizing graph coloring algorithms (GCA)
for interference coordination (IC), this study explores the application of GCA-based IC in
cellular systems with cluster-wise distributed MU-MIMO. However, within the context of the
O-RAN architecture, the conventional framework for implementing GCA-based IC exhibits
certain limitations. Employing GCA-based IC based on the fully centralized (FC) framework
effectively mitigates both intracell and intercell interference, but its computational complexity
surpasses practical constraints. Conversely, employing GCA-based IC based on the fully
decentralized (FD) framework offers computational flexibility, yet it only addresses intracell
interference, leaving intercell interference stemming from color collisions unresolved. Hence,
there is a need of an enhanced GCA-based IC and also an improved framework to enable the
simultaneous mitigation of both the intracell interfernce and intercell interference.

In this study, based on the O-RAN architecture, a 2-layer IC framework is proposed and two
upgraded GCA-based ICs that can be used under this 2-layer IC framework are also proposed.
The application of these two methods under the 2-layer IC framework has been verified to
successfully mitigate both intercell interference and intracell interference, while maintaining a
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computational complexity similar to that of the FD framework.

One of the proposed approaches is to integrate GCA with FFR (Frequency and Fractional
Reuse) scheme, thereby combining the intracell IC advantages of GCA with the intercell IC
advantages of FFR. Based on this idea, in Chapter 3, a modified GCA-based IC is proposed.
All the clusters in each cell are categorized into two types: cell-edge clusters and inner-cell
clusters. Each type is colored separately using distinct color options. In order to realize
the above-mentioned idea, the following task has been done. Firstly, based on computational
geometry (CG), a method to abstract the IC problem as a graph is first proposed, which is able to
circumvent the threshold optimization problem of traditional graph construction methods, while
at the same time, automatically distinguish the clusters that locates near the cell boundaries.
Then, with the constructed graph, a new GCA, named as the restricted conditional GCA (RC-
GCA) is also proposed in this chapter, in which it enables the separate coloring of the cell-edge
clusters and the inner-cell clusters. Based on RC-GCA, the cell-edge clusters can be colored
with restrictions of color options so as to minimize the occurrence of color collisions, while the
inner-cell clusters can be colored under conditions so as to self-adapt to the existing cell-edge
colors. Finally, based on the O-RAN architecture, a 2-layer IC framework, which relies on the
cooperation of non-real-time (non-RT) radio access network intelligent controller (RIC) and
near-RT RICs, is also proposed in this chapter. The proposed 2-layer IC framework combines
the strengths of the FC framework and the FD framework. It preserves the global perspective
of the FC framework while ensuring that the specific IC execution process resembles the FD
framework, taking place at each near-RT RIC. When the proposed modified GCA-based IC is
appllied under this 2-layer IC framework, a reasonable allocation of cell-edge color options to
each cell ie enabled. The effectiveness of the proposed 2-layer IC framework based on modified
GCA is verified by the fact that it can further mitigate the intercell interference, building on the
successful mitigation of intracell interference, thus enhancing the system capacity even further.
It is also demonstrated that our proposed 2-layer IC framework based on GCA outperforms the
well-known fractional frequency reuse (FFR) scheme, the fully decentralized (FD) framework
and no IC case, and is able to achieve performance comparable to the fully centralized (FC)
framework.

The other proposed approach is to combine the GCA-based IC with the rapidly advancing
field of artificial intelligence (AI), particularly Deep Reinforcement Learning (DRL). In Chapter
4, considering the dynamics of the environment, a new joint IC method is proposed. The

2



3

proposed joint IC includes a GCA-based intracell IC and a DRL-based intercell IC. Based on
online training, our proposed joint IC can follow the time-varying environment and thus achieve
dynamic IC control based on the real-time feedback from the environment. Considering of the
training overhead in practical application, a strategy to apply the proposed joint IC under the 2-
layer IC framework is also proposed. By selectively activating the DRL-based intercell IC only
in non-adjacent cells, not only the capacity enhancement can be guaranteed but also the training
overhead can be controlled. The validation of the computer simulation reveals that our proposed
2-layer IC framework based on joint IC can dramatically increase the capacity and obtain a
performance close to the FC framework. At the same time, the analysis of its convergence
proves that the DQN can converge within a dozen of time instants and thus our proposed joint
IC can adapt to the fast-changing environment with strong environmental adaptability.
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Chapter 1

Introduction

1.1 Background of Research

Due to the continuous growth of mobile data traffic, commercial deployments of 5G have
commenced in numerous countries [1]. The exponential rise in the number of users and
devices has led to the densification of the radio access network (RAN) [2]. One approach
to RAN densification is the deployment of a large number of small-cell base stations (BSs)
within the macro-cell area. However, frequent handoffs resulting from user mobility can lead
to increased control signaling traffic, thereby reducing the system capacity for data services [3].
To address this issue, RAN densification based on massive multi-user multi-input multi-output
(MU-MIMO) technology has been a promissing subject of study [4].

There are two main approaches in massive MU-MIMO: co-located MU-MIMO and dis-
tributed MU-MIMO [5]. As shown in Figure 1.1, in co-located MU-MIMO, a base station (BS)
is equipped with an array antenna that consists of a large number of antenna elements. Narrow
beams are formed to serve users within the coverage area of the base station (cell). On the other
hand, in distributed MU-MIMO, a massive number of distributed antennas (DAs), each with
its own radio unit, are spatially deployed throughout the cell. These antennas are connected to
the BS through optical fronthaul.

In the context of using mm-wave bands in 5G and beyond, which is becoming necessary due
to the increasing utilization of the sub-6GHz band [6], distributed MU-MIMO offers a distinct
advantage over co-located MU-MIMO. With a spatial deployment of multiple distributed an-
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: Co-located MU-MIMO and the distributed MU-MIMO.

tennas (DAs) across the cell, distributed MU-MIMO can effectively address the issue of radio
link blockage caused by rectilinear propagation characteristics [7]. As a result, distributed
MU-MIMO has captured great attention for further investigation.

The main drawback of large-scale massive MU-MIMO, no matter it is co-located or dis-
tributed, lies in the extremely high computational complexity associated with multi-user signal
processing. One possible way to alleviate this computational complexity challenge is to form
user-centric virtual small-cell known as user-clusters (referred to as clusters hereafter) [8].
Clusters are created by grouping nearby users that generate significant interference to one an-
other. By dividing a large-scale cell-based MU-MIMO into several smaller-scale cluster-based
MU-MIMOs operating in parallel, the computational complexity can be effectively reduced.
This system is named as the cellular system with cluster-wise distributed MU-MIMO as shown
in Figure 1.2.

However, the introduction of clusters brings a new kind of interference to the system,
known as the inter-cluster interference. The inter-cluster interference can be categorized into
two types: intracell interference and intercell interference [9]. Intracell interference occurs
between clusters within the same cell, while intercell interference occurs between clusters from
different cells that face each other along a cell boundary. The intracell and intercell interference
are coupled with each other, rendering interference coordination (IC) in cluster-wise distributed
MU-MIMO a complex task.

Therefore, the aim of this study is to propose an inter-cluster IC that can effectively handle
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Figure 1.2: Cellular system with cluster-wise distributed MU-MIMO under O-RAN architec-
ture.

both the intracell interference and the intercell interference at the same time, thereby enhance
the system capacity.

1.2 Introduction of Cellular System with Cluster-wise Dis-
tributed MU-MIMO in O-RAN Architecture

The cellular system with cluster-wise distributed MU-MIMO is designed to be applied under
the Open RAN (O-RAN) architecture [10] as shown in Figure 1.2. The O-RAN, through its
disaggregated, hierarchical, adaptive network function processing architecture, aims to build a
radio network that is intelligent, multi-vendor, software-driven, flexible, and dynamic, so as to
fulfill the needs of the next generation mobile networks [11]. The key functional components
introduced by O-RAN architecture is the non-RT RIC and the near-RT RIC [12].

The non-RT RIC, with a control loop on the order of seconds or minutes, is responsible for
global monitoring and optimization, as well as providing policy-based guidance to support the
operation of near-RT RICs. While the near-RT RICs, whose control loop is between 10ms to
1s, is the specific executor, and is responsible to perform tasks such as policy enforcement or
radio resource management for one or several cells [13] - [18].



8 CHALLENGE OF THIS STUDY

Figure 1.3: The comparison of non-RT RIC and near-RT RIC in O-RAN.

In cellular system with cluster-wise distributed MU-MIMO, The wide communication
service area, which comprises a large number of DAs, is divided into a prescribed number of
cells. The non-RT RIC, with its broaden perspective on the network, is used to perform cellular
construction based on the location of DAs. The near-RT RIC, which is connected with the
O-DU, O-CU-CP/Up via the E2 interface, is responsible for forming user-clusters inside a cell,
and cluster-wise MU-MIMO is carried out in parallel. In such a cellular system, there are two
types of interferences: intercell interference and intracell interference. Both these interferences
are essentially inter-cluster interferences, but because some clusters belong to the same cell and
other clusters belong to neighboring cells, the problem of IC becomes very complicated.

1.3 Challenge of Applying Inter-cluster IC in Cellular Sys-
tem with Cluster-wise Distributed MU-MIMO

In real communication scenarios, the users ’locations will change frequently, leading to
periodic updates of user-clusters. Therefore the required inter-cluster IC should be dynamic
and can self-adapt to the ever-changing clusters ’topology. In recent years, the successful
application of graph coloring algorithm (GCA)-based IC has showed promising potentials. In
a small-cell network, H. Zhang, et al.[19] and L. Chen, et al. [20] applied GCA to mitigate
the co-tier interference. D. Qu, et al. [21] applied GCA to control the intercell interference so
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as to enhance the spectrum efficiency and user experience for an ultra-dense cellular network.
Additionally, J. Mu, et al. [22] applied GCA to solve for IC in fast-changing wireless body
area networks (WBANs) of the topology to enhance frequency resource utilization and system
stability. In [23] , B. Wang, et al. applied GCA to realize co-channel interference management
in unmanned aerial vehicle (UAV)-assisted disaster relief networks.

GCA is an algorithm that can assign different colors to neighboring vertices. When GCA
is applied for IC, it can serve as a resource scheduling method. In this study, the GCA-based
IC is applied in frequency-domain. When GCA-based IC is applied, the available bandwidth is
divided into several sub-bands, each of which represents a corresponding color. Thus, applying
GCA ensures that the different sub-bands are assigned to neighboring clusters, which as a result,
mitigating the inter-cluster interference.

However, the use of GCA pre-assumes the construction of a graph, which requires centralized
information gathering. This centralized approach is feasible inside each cell, but considering
the system scalability and flexibility for deployment, also the limitations of computational
complexity in practical, it is hard to be deployed in the entire system-level. As a result, a
practical solution is to utilize GCA-based IC in a parallel manner as a localized intracell IC
solution inside each cell.

By applying GCA independently in each cell as an intracell IC solution, the interference
among clusters within the same cell can be effectively mitigated. However, a challenge arises
when considering the interference between clusters belonging to different cells, particularly in
the vicinity of cell boundaries. Since the coloring results are not shared among BSs, there is
a possibility of color collision occurring among clusters from different cells. As a result, the
issue of intercell interference persists in these areas. Hence, the main challenge of this study
is to modify the existing GCA-based IC approach to address both intracell interference and
intercell interference simultaneously, while at the same time, make sure the IC is applied in
each cell with only the locally observed information and no information exchange among the
neighboring cells.

1.4 Proposal of this Studies

In this study, two upgraded GCA-based IC is proposed to solve the above-mentioned
challenges. The first method is to modify the coloring process to avoid the occurrence of color
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collision during the coloring process, which has been named as the modified GCA-based IC.
The second method is to eliminate the occurred color collision after the coloring process, which
has been named as the joint IC.

1.4.1 Modified GCA-based IC

The first idea comes up with a well-known radio resource allocation-based IC, namely the
fractional frequency reuse (FFR) scheme [24]. In cellular systems, the FFR and its variations,
such as soft frequency reuse (SFR) [25] and adaptive soft frequency reuse (ASFR) [26], are well-
known intercell ICs. The key idea of FFR is to divide users in each cell into two groups, known
as inner-cell users and cell-edge users. A frequency reuse factor of 𝑛 is then applied to cell-edge
users, while a reuse factor of one is applied to the inner-cell users. In this way, a different
frequency band is allocated to cell-edge users of a different neighboring cell. Therefore, the
FFR scheme can realize the intercell IC. However, it should be noted that the use of a reuse
factor of 𝑛 reduces the transmission bandwidth to one part in 𝑛 accordingly. Therefore, the
application of FFR needs to be carefully considered.

Until now, there have been many reports on the successful application of FFR. For example,
L. Yang, et al. [27] applied FFR-based IC to enhance the coverage and capacity of a wireless
heterogeneous network (HetNet). Furthermore, L. Eslami, et al. [28] proposed a new FFR
architecture for IC in a single-cell HetNet containing macro cellular users, D2D users and
femto-cell users. A.D. Firouzabadi, et al. [29] demonstrated that FFR techniques significantly
improve downlink coverage probability in hybrid full/half duplex (FD/HD) small cell networks.
To mitigate the additional intercell interference due to the flexibility of traffic configuration, M.
Song, et al. [30] proposed an FFR-based IC for dynamic time-division duplex (D-TDD) small
cell networks. In addition, M. Nafees, et al. [31] adopted the FFR scheme in UAV networks to
improve the signal-to-interference plus noise ratio (SINR) level of cell-edge users.

In [32], X. Li, et al. proposed an FFR scheme for multi-cell full-dimension MIMO (FD-
MIMO) systems, and confirmed that the FFR-based IC scheme can significantly improve the
cell-edge performance while maintaining a relatively high total throughput. In [33], T. Saito,
et al. applied the FFR scheme to distributed MU-MIMO to enhance the capacity of cell-edge
users.

Inspired by the core idea of FFR, In this study, I try to combine the advantage of GCA-based
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IC in intracell IC and the advantage of FFR in intercell IC together to modified the existing
GCA-based IC, thereby to make it possible to mitigate the intracell interference and the intercell
interference at the same time.

1.4.2 Joint IC (GCA-based Intracell IC + DRL-based Intercell IC)

The second idea draws inspiration from the recent surge in artificial intelligence (AI),
particularly in the field of reinforcement learning (RL). Some new progresses for intercell IC
in cellular system based on RL have emerged. As early as in 2015, M. Simsek, et al. [34] have
tried to apply the Q-learning algorithm to solve the intercell IC among macrocells and picocells
in a Heterogeneous network (HetNet). In order to overcome the memory and computational
limitation problems that come with tabular-based Q-learning algorithm, the authors proposed
to store the probability distribution over all actions instead of the state-action combination in Q
table.

In more recent years, with the development of deep learning technology, deep reinforcement
learning (DRL) embedded with updatable neural networks has been able to solve large-scale
problems more efficiently than tabular-based RL. In 2020, in order to solve the intercell IC
problem in an ultra-dense network with small-cell BSs deployed in a residential area, Y. Wang,
et al. [35] applied the actor-critic (AC) algorithm to minimize each BS ’s transmit power so
as to reduce the intercell interference to the user equipments (UEs) of the surrounding BSs.
In order to realize a fully decentralized scheme without information exchange between BSs,
the Mean Field Theory is employed together with AC algorithm. Similarly, in 2021, in order
to solve the intercell IC problem in HetNets, M. Yan, et al. [36] applied the Double DQN to
schedule sub-channels to individual users. In order to improve the robustness of Double DQN,
Wasserstein Generative Adversarial Networks (W-GANs) is incorporated together.

Inspired by the above-mentioned contributions, I also want to explore the application of
DRL for intercell IC in the cellular system with cluster-wise distributed MU-MIMO. In this
study, I strive to combine the strengths of GCA-based IC in intracell IC with the potential of
DRL for intercell IC, proposing a joint IC approach. This joint IC approach aims to further
mitigate intercell interference while building upon the promising achievements in intracell IC.
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1.5 Construction of Dissertation

This dissertation is divided into 6 chapters.
In Chapter 2, the conventional heuristic GCA and the application of GCA-based IC is

firstly introduced. Then, the performance of GCA-based IC is evaluated under two commonly
used frameworks: fully centralized (FC) and fully decentralized (FD). Finally, the problem
statement is established: under the condition that each cell operates in a decentralized manner,
there is a pressing need for a novel GCA-based IC that can mitigate intracell interference while
considering intercell interference as well.

In order to realize this motivation, two GCA-based method is proposed, which is explained
in Chapter 3 and Chapter 4.

In Chapter 3, the concept of Fractional Frequency Reuse (FFR) is incorporated into the
GCA algorithm, resulting in a modified GCA-based IC approach. The clusters are categorized
into two types: cell-edge clusters and inner-cell clusters. Each type is colored separately
using distinct color options. In order to realize the above-mentioned idea, the following task
has been done. Firstly, based on computational geometry (CG), a method to abstract the IC
problem as a graph is first proposed. Then, a new GCA, named as the restricted conditional
GCA (RC-GCA) is also proposed in this chapter. Finally, based on the O-RAN architecture, a
2-layer IC framework, which relies on the cooperation of non-real-time (non-RT) radio access
network intelligent controller (RIC) and near-RT RICs, is also proposed in this chapter. The
effectiveness of our proposed 2-layer IC framework based on GCA is verified by the fact that it
can further mitigate the intercell interference, building on the successful mitigation of intracell
interference, thus enhancing the system capacity even further.

In Chapter 4, the possibility of combining GCA with DRL is explored in depth in this
chapter, and a new joint IC method is proposed. The proposed joint IC includes a GCA-based
intracell IC and a DRL-based intercell IC. Based on online training, our proposed joint IC
can follow the time-varying environment and thus achieve dynamic IC control based on the
real-time feedback from the environment. Also, a strategy to apply the proposed joint IC under
the 2-layer IC framework is proposed. The validation of the computer simulation reveals that
our proposed 2-layer IC framework based on joint IC can dramatically increase the capacity
and obtain a performance close to the FC framework. At the same time, the analysis of its
convergence proves that the DQN can converge within a dozen of time instants and thus our
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Figure 1.4: Construction of dissertation.

proposed joint IC can quickly adapt to the changing environment.
Chapter 5 concludes this dissertation, and highlights the remaining work to be done in the

future research.
The construction of this dissertation is given in Figure 1.4.





Chapter 2

Introduction of GCA-based IC and
Problem Statement

In this chapter, the fundamental knowledge required to implement IC using GCA, as well
as common approaches to use GCA-based IC in cellular systems with cluster-wise distributed
MU-MIMO, are presented. In Section 2.1, the conventional heuristic GCA and how to apply
the GCA for IC in cellular system is introduced. Then in Section 2.2, the performance of GCA-
based IC is evaluated under two commonly-used frameworks， known as the fully centralized
(FC) and the fully decentralized (FD), to verified the performance and better clarity the research
problem.

2.1 Conventional GCA-based IC

The graph coloring problem is a classical combinatorial optimization problem, which
usually relies on heuristic algorithms to obtain sub-optimal solutions developed for engineering
applications. To facilitate understanding, the pseudo code for the conventional heuristic GCA
is shown in Algorithm-1, and Figure 2.1 illustrates the working diagram of the heuristic GCA.

Because the graph coloring problem is derived from graph theory. Therefore, the application
of GCA pre-assume the construction of a graph G = (V ,E), where 𝑉 and 𝐸 denote the set of
vertices and edges, respectively.

Then, based on graph 𝐺, the coloring process of heuristic GCA follows a specific order

15
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Algorithm 1: Heuristic graph coloring algorithm
Input: A, c

1: Initialize 𝛿

2: Sort all vertices by decending order of 𝛿, and set the obtained vertex set asV.
3: for 𝑣𝑖 = 𝑣1 : 𝑣𝑁 do
4: 𝑚 = 1
5: if 𝑚 ∉ c ⊙ A(𝑣𝑖 , :) then
6: 𝑐𝑣𝑖 ← 𝑚

7: else
8: 𝑚 = 𝑚 + 1
9: end if

10: Reset the vertex setV.
11: end for

(Note that ⊙ marks the Hadamard product; X(y,:) indicates the 𝑦𝑡ℎ row vectors of the
matrix X.)

of processing the vertices, which is known as the coloring sequence as shown in Figure 2.1.
Therefore, the most important step in heuristic GCA is to determine the coloring sequence. The
difference between different heuristic GCA lies in how to determine the coloring sequence of all
the vertices in the graph. For example, the Large Degree Order (LDO) sorts the vertices based
on their degrees, while the DSATUR algorithm sorts them based on the degree of saturation.
[37]

After that, during coloring process, all the vertex is colored one by one according to the
coloring sequence, and at the same time, all the colors are assigned a fixed label, which are
represented by numbers 0, 1, 2, and so on. For each vertex, the color with the smallest label
that is not already used by any of its neighboring vertices will be assigned

When GCA is used for IC, similarly at first, the IC problem we faced need to be abstracted
as a graph. Because the interference in a wireless communication system is bidirectional,
therefore, it can be simplified as an undirected graph G = (V ,E), where V and E denote the set
of vertices and edges, respectively. The vertex (V), represent clusters, which in actually consist
of multiple users and therefore has a certain shape. However, for the sake of simplicity, in this
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Figure 2.1: The introduction of the heuristic GCA.

Figure 2.2: The application of GCA for interference coordination.
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study, we use the cluster centroid’s location to represent the corresponding vertex. Edges(E), on
the other hand, represent the interrelation between clusters. Since the most severe interference
occurs between neighboring clusters, the edges are further simplified to represent the adjacent
relationships between clusters, as illustrated in Figure 2.2.

Besides graph 𝐺, the colors also need to be prepared. in this study, we apply the frequency
domain scheduling, so the entire available bandwidth will be divided into several sub-bands,
and each sub-band will correspond to a specific color.

Therefore, when applying GCA on the graph 𝐺, the different sub-band can be assigned to
the neighboring clusters, so that since any two neighboring clusters will not share the same
sub-band, the severe inter-cluster interference can be mitigated.

2.2 Problem Statement

The performance of the conventional GCA-based IC under existing framework in the cellular
system with cluster-wise distributed MU-MIMO will firstly be verified. Therefore, in Section
2.2.1 of this chapter, the construction of a cellular structure will be described first. Then, two
typical framework for the application of GCA-based IC, known as the fully centralized (FC)
framework and the fully decentralized (FD) framework, will be verified to better illustrate the
challenges faced when applying GCA-based IC in cellular system with cluster-wise distributed
MU-MIMO.

2.2.1 Generation of Cellular Structure

In this study, we consider a normalized area of 5 × 5 over which 3,200 DAs are randomly
located and a cellular structure of 25 cells is constructed. First, K-means algorithm is applied to
obtain the cell centroids using the location information of DAs. Based on the cell centroids, the
cellular structure is constructed by using the centroidal Voronoi tessellations (CVT) [38]. An
example of cellular structure is shown in Figure 2.3. To accurately estimate the link capacity
under the intercell interference environment, the centermost cell which experience the intercell
interference from every direction is chosen as the cell of interest in this study.

Inside each cell, user-clusters are formed by K-means algorithm [39]. In this study, we
assume 8 clusters are formed in each cell. The clustering result is also shown in Figure
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Figure 2.3: Cellular structure with user-clusters in each cell.

2.3, where the users in the same cluster are connected to the cluster centroid by solid lines.
The serving DAs are then assigned to each user-cluster based on the principle of proximity
for conducting cluster-wise distributed MU-MIMO. The DA assignment results are shown as
dashed lines in Figure 2.3. Finally, because ZF precoding [40] is going to be applied, the
number of DAs in each cluster must not be less than the number of users, and the assignment
of DAs is further optimized based on the previously proposed trading algorithm [41].

2.2.2 Verification of Fully Centralized (FC) Framework Under the O-
RAN Architecture

As explained in the Chapter 1, in order to apply GCA-based IC to mitigate both the intracell
interference and the intercell interference thoroughly, the GCA-based IC should be applied
in a centralized manner with all the information been collected by one single control point.
We named this application scenario as the fully centralized (FC) framework. To apply FC
framework under the O-RAN architecture, the non-RT RIC should be used to directly control
all the clusters in every cells as shown in Figure 2.4.

After the user-clustering is conducted by each near-RT RICs, the non-RT RIC collects
the information of all the clusters via A1 interface, and then, is responsible for conducting
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Figure 2.4: Apply GCA-based IC based on the fully centralized (FC) framework under the
O-RAN architecture.

GCA-based IC for all clusters inside the entire service area. One example of coloring results
under the FC framework is shown in Figure 2.5. From the results in Figure 2.5, it is clearly
illustrated that applying GCA-based IC under FC framework is able to assign different colors
to the neighboring clusters no matter in the cell-edge or the inner-cell, therefore the intercell
interference and the intracell interference can be both considered at the same time.

However, it is also obvious that applying GCA-based IC under the FC framework has a
very high computational complexity. The computational complexity of GCA is 𝑂 (𝑛2), when
GCA-based IC is applied under the FC framework, 𝑛 equals the number of clusters in the
entire multicell system. Meanwhile, for the users with high mobility, it is difficult to apply
GCA-based IC by the non-RT RIC. Another major drawback is that this centralized manner
is not recommended in O-RAN architecture. According to the original designer of RIC in
O-RAN, the non-RT RIC provides a broader system perspective but has a larger control loop.
It is specifically designed to support the operation of the non-RT RIC. While the near-RT RIC
is desinged as the real executor. By letting each near-RT RIC to be the real executor, it is able
to guarantee the system ’s scalability and flexibility for deployment.

Therefore, the results of FC framework can only be regarded as an ideal benchmark, and is
difficult to be utilized in practical applications. The GCA-based IC is better to be applied by
each near-RT RICs in a decentralized manner.
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Figure 2.5: Coloring results for GCA-based IC based on the fully centralized (FC) framework.

2.2.3 Verification of Fully Decentralized (FD) Framework Under the O-
RAN Architecture

As mentioned above, the FC framework is not suitable for real applications, while a practical
alternative is the fully decentralized (FD) framework. In FD framework, after the user-clustering
is conducted by each near-RT RICs independently, the GCA-based IC is then directly been
conducted by each near-RT RIC, and the non-RT RIC does not need to participate (as shown in
Figure 2.6).

The FD framework distributes the computational load from the non-RT RIC to each near-RT
RICs, however, because the cells are considered isolated from each other, the coloring results
will not shared among the neighboring cells, so the intercell interference cannot be taken into
account, and thus it remains. The coloring results of the FD framework is shown in Figure 2.7.
Compared with the FC framework shown in Figure 2.5, a lot of color collision can be found
near the cell-edge area, indicating that the intercell interference cannot be mitigated thoroughly.
Therefore, applying GCA-based IC under the FD framework cannot achieve a similar good
interference mitigation as the FC framework, and accordingly, the link capacity obtained by the
FC framework is higher than that by the FD framework.
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Figure 2.6: Apply GCA-based IC based on the fully decentralized (FD) framework under the
O-RAN architecture.

Figure 2.7: Coloring results for GCA-based IC based on the fully decentralized (FD) framework.
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Figure 2.8: CDF of sum capacity achievable by the FC and FD framework.

In order to understand the influence of color collision on system capacity, in Figure 2.8,
the cumulative distribution function (CDF) of sum capacity achievable by the FC and FD
frameworks is verified. (Note that the detailed simulation setting is explained in Chapter 3.)
From the results in Figure 2.8, it is clearly illustrated that the FC framework is able to improve
the system capacity by 50% compared with the 1-color case (no interference coordination case).
While the FC framework can only achieve 32% due to the existence of the color collision in the
cell-edge area. Therefore the aim of this study is to to fill this performance gap caused by color
collision while maintaining the computational complexity at a low level, or in other words, to
solve the contradiction between the FC and FD framework.

In this study, a novel 2-layer IC framework is proposed, which allows the two kinds of RICs
to cooperate with each other to fully exploit their respective advantages. Besides that, two
GCA-based method is also proposed to be applied under this 2-layer IC framework, and the
detailed explanation is provided in Chapter 3 and Chapter 4.
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2.3 Summary

In this chapter, we presented the fundamental knowledge required to implement IC using
GCA, as well as common approaches to using GCA-based IC in cellular systems with cluster-
wise distributed MU-MIMO. Through computer simulations, we demonstrated the limitations
of the existing approaches, providing a clearer understanding of the research challenges we aim
to address.

Firstly, the conventional heuristic GCA and how to apply the GCA for IC in cellular system
was introduced.

Then, the performance of GCA-based IC was evaluated under two commonly used frame-
works: fully centralized (FC) and fully decentralized (FD). The verification leads to the fact
that the GCA-based IC under FC framework can mitigate both the intracell interference and the
intracell interference, but its computational complexity exceeds practical limits. On the other
hand, the GCA-based IC under FD framework is computational flexible, but it can only mitigate
the intracell interference, leaving intercell interference caused by color collision unresolved.

Furthermore, the future requirements for scalability and flexibility for deployment in cellular
systems were highlighted. It is highly desirable for cells to operate independently without
information exchange between them.

Therefore, the problem statement was established: under the condition that each cell operates
in a decentralized manner, there is a pressing need for a novel GCA-based IC that can mitigate
intracell interference while considering intercell interference as well.



Chapter 3

2-layer IC Framework based on Modified
GCA

3.1 Introduction

The core idea of the first method is to combine the advantage of intercell IC in FFR and the
advantage of intracell IC in GCA-based IC together to modify the existing GCA-based IC, so
as to minimize the occurrence of color collision during the coloring process. Therefore in the
first method of the modified GCA-based IC, the idea of cell-edge classification from FFR will
be integrated into GCA-based IC, thereby taking intercell IC into consideration while ensuring
the effect of intracell IC.

1. Firstly, as shown in Figure 3.1, all the clusters needs to be divided into two categories,
known as the cell-edge clusters and the inner-cell clusters. Therefore, to enable effective
cell-edge/inner-cell classification, a graph construction method is proposed in Section
3.3 with help of the computational geometry (CG).

2. Secondly, the cell-edge clusters and the inner-cell clusters need to be colored separately.
The cell-edge clusters experienced both the intracell interference and the intercell inter-
ference, therefore needs to be colored first. Similar as the FFR scheme, when coloring
the cell-edge clusters, only part of the color options can be used, therefore the restrictions
of the color options should be introduced to the original GCA-based IC. Also, when

25
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Figure 3.1: The overal concept of the modified GCA-based IC.

coloring the inner-cell clusters, the inner-cell clusters should self-adapt to the existing
cell-edge colors, therefore, the idea of conditional GCA is also introduced to the original
GCA-based IC. As a result, a new restricted conditional GCA (RC-GCA) is also proposed
in Section 3.4 to enable the cell-edge coloring and the inner-cell coloring.

3. Finally, to enable the practical application of this modified GCA-based IC, the number of
colors been restricted for the cell-edge clusters should be decided. Therefore, based on
O-RAN architecture, a 2-layer IC framework is also proposed in Section 3.5 to provide
hierarchical support for the application of modified GCA-based IC.

Therefore in this chapter, we firstly provide the brief introduction of the FFR scheme, and
then the proposed graph construction method, the RC-GCA, and the 2-layer IC framework will
be explained one by one in the following sections in details.

3.2 Understanding of FFR Scheme

The Fractional Frequency Reuse (FFR) scheme is a well-known technique employed in
cellular networks to mitigate intercell interference and improve overall system performance. It
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Figure 3.2: The introduction of FFR scehme.

divides the available frequency spectrum into multiple sub-bands and allocates them to different
areas within a cell based on their interference characteristics. FFR aims to strike a balance
between cell-edge user performance and system capacity by dynamically allocating frequency
resources. In FFR, the cell is partitioned into two or more regions, typically an inner-cell region
and an cell-edge region, each with different frequency reuse factors as shown in Figure 3.2.

FFR enhances system capacity by effectively managing intercell interference in cellular
networks. It allows for better utilization of available frequency resources by adapting the
frequency reuse pattern according to the varying user density and traffic distribution within the
cell. By assigning different frequency resources to different regions of the cell, FFR enables
improved signal quality, reduced interference, and enhanced user experience, especially at cell
edges where interference is typically more pronounced. Additionally, FFR can be implemented
in a flexible manner, allowing operators to adjust the frequency allocation based on the specific
network conditions and user demands. Overall, the FFR scheme is an important tool in
optimizing the performance of cellular networks and maximizing their capacity.
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Figure 3.3: Graph construction based on delaunay triangulation.

3.3 Proposed Graph Construction Method

As mentioned in the chapter 2, the application of GCA-based IC pre-assume the construction
of a graph G = (V ,E), where 𝑉 and 𝐸 denote the set of vertices and edges, respectively. In
this study, it is assumed that the non-RT RIC form cells and each near-RT RICs form user-
clusters based on the K-means algorithm [39]. Each cell and cluster can be represented by
their corresponding centroids in geometric position. Therefore, 𝑉 denotes the centroids of
clusters or cells. 𝐸 denotes the mutual adjacency relationship among the vertices, as the most
severe interference exists between neighboring vertices. 𝑉 is easily obtained because once each
near-RT RICs apply the K-means algorithm, the location information of the centroids is known;
however, 𝐸 cannot be obtained directly. To define 𝐸 , we need to derive the relative adjacency
relationship from the position information of the centroids.

A commonly used method is to use the threshold [19][20][21]. However, the optimum
threshold value is usually obtained via optimization algorithm, which is not applicable in
the case of dynamically changing user locations and cluster topology. Therefore, in this
study, we propose to apply the Delaunay Triangulation [42] from CG to help decide the
adjacency relationship and thus circumvent the threshold optimization problem. The Delaunay
Triangulation is a classic triangulation method with linearithmic time complexity. For the
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Figure 3.4: The characteristic of delaunay triangulation.

given three vertices in 𝑉 , if the circle circumscribing them does not contain any other vertex,
the Delaunay Triangulation is satisfied and the result of such triangulation is denoted as DT(𝑉).
We apply Delaunay Triangulation on the centroids. If there is a triangle edge connecting two
vertices, these two vertices are regarded as neighbors. In this way, the adjacency relationship,
or 𝐸 of graph, can be determined without using the threshold as shown in Figure 3.3.

The reason why DT(𝑉) can be used to define the adjacency relationship is explained below.
There are several characteristics of DT(𝑉), among which the most important one is that it can
maximize the minimum angle and avoid sliver triangles (triangles with extremely acute angles)
[42]. This characteristic enables allocating the same color to more distant vertices, therefore,
fits well in IC. We take vertices with index 1–4 in Figure 3.4 for illustrating this point. In
Figure 3.4, we provide two triangulation results for the vertices 1–4. DT(𝑉), which is the left
one, defines the vertices 1 and 3 as neighbors, while non-DT(𝑉) defines 2 and 4 as neighbors.
Thus, using DT(𝑉) can assign the same color to more distant vertices, which fits well in the
application scenario of IC.

Furthermore, other characteristics of DT(𝑉) are also worth mentioning. Firstly, the nearest
neighbor graph (NNG) has been demonstrated to be a subgraph of DT(𝑉) [42], and because the
nearest neighbors usually provide the strongest interference, it can be ensured that the strongest
interference will be mitigated. Another characteristic of DT(𝑉) is that the change of any one
vertex will only affect its nearby triangles, while the far located vertex ’s triangulation results
remain unchanged. Because of this characteristic, adding or removing several vertices has no
effect on the far away vertices, thereby maintaining the system scalability [42].

Applying DT(𝑉) as a graph construction method also has another irreplaceable advantage.
In our proposed modified GCA-based IC, the clusters needs to be classified into cell-edge
clusters and inner-cell clusters, and then, colored separately. For the cell-edge classification
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Figure 3.5: The classification of cell-edge clusters based on the construction of convex hull.

method, the construction of convex hull [42] is a very promising way. The convex hull has
been proved to have good performance in the similar scenarios such as boundary detection
in wireless sensor networks [43]. Because the convex hull is a subgraph of DT(𝑉) [44] as
shown in Figure 3.5, if the graph is constructed based on the DT(𝑉), the convex hull is directly
obtained with no further computational complexity, and the problem of cell-edge/ inner-cell
clusters classification can be solved directly.

In addition, in the proposed idea of the modified GCA-based IC, the number of the color
options is decided in advance. Because of the structural advantage of triangles, the graph
constructed by DT(𝑉) can cope well with the case when the number of color options is greater
than or equal to three, However, when the number of color options is restricted to two, the
structural advantage of Delaunay triangulation no longer exists. Therefore, we need to extend
further on the basis of the adjacency relationship determined by DT(𝑉) to construct the bipartite
graph.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets such that
all edges connect vertices from different sets. In the graph coloring problem, the case when
the number of color options equals two is known as the 2-colorable problem, and the bipartite
graph is proven to be 2-colorable [45].

The construction of bipartite graph on the basis of DT(𝑉) is illustrated in Figure 3.6. Firstly,
based on the undirected unweighted graph 𝐺, the weights are introduced to further construct the
undirected weighted graph G′ = (V′,E′,W′), where V′, E′, and W′ denote the set of vertices,
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Figure 3.6: Construction of MST on the basis of delaunay triangulation.
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edges, and weights, respectively. The weights are determined based on the distance between
the centroids in this study.

Based on graph G′, minimum spanning tree (MST) [42] is applied to construct the bipartite
graph, note that the Prim ’s algorithm or Kruskal ’s algorithm [46] can be used as faster
approaches to solve MST on the basis of DT(𝑉). MST is a spanning tree with minimum sum of
weights. Because the weights are defined as distance and the pathloss is inversely proportional
to distance, MST actually connects the paths where the vertices interfere the most with each
other.

The application of MST has been considered mainly in adhoc networks to improve the
connectivity while solving the tradeoff of power conservation [47][48][49]. It should be noted
that to the best of the authors ’knowledge, this is the first time to apply MST to solve
graph coloring-based ICs. In adhoc networks, MST is used to determine the strongest link of
connection. Whereas, in our case, MST is used to determine the strongest link of interference
between vertices, and interference mitigation is achieved by breaking these links when different
colors are offered.

According to our previous study [50], using CG-based graph construction can achieve
the same good result in defining 𝐸 as using the optimized threshold. Therefore, in the case
of dynamically changing user locations and cluster topology, using our proposed method is
considered more feasible compared to using the threshold method. Based on the results of
DT(𝑉) and MST or convex hull, the adjacency matrix A = (𝑎𝑖 𝑗 ) ∈ R𝑁×𝑁 can be defined as in
(3.1). The adjacency matrix records the information of 𝑉 and 𝐸 in graph, and is the basis of
GCA-based IC.

𝑎𝑖 𝑗 =

{
1, vertex 𝑖 and 𝑗 are connected by DT(𝑉)

0, vertex 𝑖 and 𝑗 are not connected by DT(𝑉)
(3.1)

3.4 Proposed Restricted Conditional GCA (RC-GCA)

After the graph 𝐺 is constructed, the GCA can be carried out based on the graph 𝐺. In order
to realize the proposed idea of modified GCA-based IC, the cell-edge clusters and the inner-cell
clusters need to be colored separately. For the cell-edge coloring, according to the requirement
of FFR, only part of the bandwidth can be used so as to mitigate the intercell interference. In this
way, when coloring the cell-edge clusters, we can only use part of the color options. Therefore,
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the restrictions of the color options must be introduced into the conventional heuristic GCA.
While for the inner-cell coloring, because the inner-cell clusters need to be colored to adapt
to the existing cell-edge clusters, the conditions of the pre-coloring results also need to be
introduced to the conventional heuristic GCA. Therefore in this section, a new heristic GCA
named as the restricted conditional GCA (RC-GCA) is proposed, which is designed for both
the cell-edge coloring and the inner-cell coloring.

The proposed RC-GCA is shown in Algorithm 2, in which the famous DSATUR [37] is used
as an example to explain how to add restriction and conditions to heuristic GCA. We assume that
all vertices that are allocated the same color belong to one color group. Representing the total
number of vertices by 𝑁 , 𝜅𝑚 denotes a set of vertices in the𝑚𝑡ℎ color group, 𝑚 ∈ {1, 2, . . . , 𝑀, },
where 𝑀 is the restricted maximum number of colors. The prior coloring result obtained after
the 1st layer IC is expressed by the vector c = [𝑐1 · · · 𝑐𝑁 ] with 𝑐𝑖 ∈ {0, 1, 2, · · · , 𝑀} where
𝑐𝑖 = 0 indicates that vertex 𝑖 has not been colored. The proposed RC-GCA is modified based on
DSATUR, and all the vertices are first arranged as 𝑣1, 𝑣2, . . . , 𝑣𝑁 in descending order of degree
𝛿 in steps 1–2, then reset based on the degree of saturation 𝛿

′ [37] in step 14 after been colored
sequentially in steps 3–13.

During the coloring process in steps 3–13, the conditional GCA with restricted color labels
from 𝑀

′ to 𝑀 is first conducted in steps 5–9. For a vertex 𝑣𝑖, the setting of the restriction
𝑀
′ to 𝑀 clarifies the available color pool, while the prior coloring results c and adjacency

matrix A together decide the pre-colored conditions, that is, they decide which colors have been
pre-colored by neighbors and thus cannot be used. The remaining colors with smallest label
will then be assigned to 𝑣𝑖.

After performing steps 5–9, because the adding of restrictions will decrease the degree of
freedom, a few vertices may remain uncolored. Steps 10–12 are designed to recolor these
uncolored vertices. During the recoloring process, color collision with one or more neighbors
is inevitable. To minimize the interference among the inevitable color collision, it is better to
assign the same color to the vertices with the least interference between them. As mentioned
before, the interference becomes weaker on average if the distance is longer, and therefore, the
most distant neighbors should be chosen. Assuming that the location information of cluster
centroids is known to each near-RT RICs, it is better to assign the same color to the most distant
neighbors.

To find the most distant neighbors, we define a relative distance matrix D̃ = (𝑑𝑖 𝑗 ) ∈ R𝑁×𝑁 ),
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Algorithm 2: Restricted conditional graph coloring algorithm (RC-GCA)
Input: A,D, c, 𝑀 ′

, 𝑀

Output: 𝜅𝑚,∀𝑚 ∈ 𝑀

1: Initialize 𝛿

2: Sort all vertices in decending order of 𝛿, and set the obtained vertex set asV.
3: for 𝑣𝑖 = 𝑣1 : 𝑣𝑁 do
4: while 𝑐𝑣𝑖 = 0 do
5: for 𝑚 = 𝑀

′ : 𝑀 do
6: if 𝑚 ∉ c ⊙ A(𝑣𝑖 , :) then
7: 𝑐𝑣𝑖 ← 𝑚

8: end if
9: end for

10: if 𝑐𝑣𝑖 = 0 then
11: 𝑐𝑣𝑖 ← 𝑐arg max(D̃⊙A(𝑣𝑖 ,:) )
12: end if
13: end while
14: Reset the vertex setV based on the degree of Saturation 𝛿′.
15: 𝜅𝑐𝑣𝑖 = 𝜅𝑐𝑣𝑖

⋃
𝑣𝑖 % Assigning the vertex to color group.

16: end for
(Note that ⊙ denotes the Hadamard product; X(y,:) indicates the 𝑦𝑡ℎ row vectors of the
matrix X.)

where

𝑑𝑖 𝑗 =
𝑑𝑖 𝑗∑𝑁

𝑗=1, 𝑗≠𝑖 𝑑𝑖 𝑗
, 𝑖, 𝑗 = 1 ∼ 𝑁 (3.2)

with 𝑑𝑖 𝑗 denoting the distance from the centroid of cluster 𝑗 to that of cluster 𝑖. Based on D̃,
the recoloring process (steps 10–12) is performed. The recoloring process allows the existence
of color collision, but minimizes its impact on interference by ensuring that the color collision
happens only between the most distant neighbors.
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3.5 Proposed 2-layer IC Framework

Based on the graph construction method proposed in Section 3.3, the newly proposed RC-
GCA is able to realize the separate coloring of the cell-edge clusters and the inner-cell clusters,
as required by the idea of modified GCA-based IC. However in real application, how to decide
the restricted color options for cell-edge clusters remains unsolved. Therefore, a novel 2-layer
IC framework based on O-RAN architecture is further proposed to provide hierarchical support
for the application of the modified GCA-based IC.

The proposed 2-layer IC framework is illustrated in Figure 3.7. In the 1st layer of IC, the
location information of DAs is gathered by the O1 interface to the non-RT RIC, and the so-called
non-RT RIC applications (rApps) are responsible for constructing cells based on the location of
DAs, and coordinating the intercell interference with the help of cell centroid information. The
results of intercell IC will be passed via A1 interface to the near-RT RICs. Because the DAs ’
locations are stable in general, the 1st layer IC is only carried out when cellular reconfiguration
is updated, therefore this kind of large-timescale operation task fits well with the control loop
of non-RT RIC.

In the 2nd layer of IC, each near-RT RIC, which is connected with the O-CU-CP/UP and
O-DU via the high-speed E2 interface, is responsible to obtain the information of users ’
location. Then the near-RT RIC applications (xApps) are responsible for forming clusters and
coordinating the intracell interference under the conditions of the result of the 1st layer IC.

For the application of the modified GCA-based IC, the proposed RC-GCA will be used as
both the rApp and the xApp, and the details are illustrated in Figure 3.8. In the 1st layer IC, the
available frequency band will be divided into several sub-bands (named as total color pool),
and the motivation of 1st layer IC is to specify the sub-color pool that can be used by cell-edge
clusters of each cell. We assume that the number of total color pool is 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 . Additionally, we
assume that the total color pool is divided into 𝑁𝑠𝑢𝑏 sub-color pools, and each sub-color pool
has the same number 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟 of colors. Therefore, 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑐𝑜𝑙𝑜𝑟 = 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟 × 𝑁𝑠𝑢𝑏.
In the 1st layer of intercell IC, the non-RT RIC applies RC-GCA-based rAPP for global

intercell IC by assigning one of the sub-color pools to each cell. The results of the sub-color
pool assignment are passed to the corresponding near-RT RICs as a guidance information to
support the operation of near-RT RICs in the 2nd layer IC. Thus, when applying RC-GCA-based
rAPP in the 1st layer IC, 𝑀 is set to 𝑁𝑠𝑢𝑏. Because the cell structure is stable in general if the
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Figure 3.7: 2-layer IC framework based under O-RAN architecture.
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Figure 3.8: 2-layer IC framework based on RC-GCA.

cellular reconfiguration is not considered, the 1st layer IC is carried out only once.
In the 2nd layer of intracell IC, each near-RT RICs, as the specific IC executors, applies

RC-GCA-based xAPP to realize the idea of modified GCA-based IC, that is to perform intracell
IC independently under the conditions of the results of intercell IC in 1st layer.

The 2-layer IC framework can be classified as a semi-decentralized framework that adds
an additional centralized layer on top of the decentralized layer. Compared with the FC
framework, the 2-layer IC framework is feasible in practical because the non-RT RIC only needs
to coordinate the relationship among cells rather than coordinating all the clusters, and the task
of coordinating the clusters is delegated to each corresponding near-RT RICs. Compared with
the FD framework, the 2-layer IC framework is able to consider intercell interference without
information sharing among the cells.

The ”openness” of O-RAN enables substantial flexibility of its deployment, and each near-
RT RIC can be flexibly configured with one or several cells [51]. Our proposed 2-layer IC
framework works the same way regardless of the number of cells. For the sake of simplicity
and without loss of generality, in the following sections of this paper, in order to enable easy
illustration of how our proposed 2-layer IC framework works based on RC-GCA, we assume
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Figure 3.9: The comparison between the modified GCA-based IC and the conventional GCA-
based IC.

each near-RT RIC controls one cell independently.

3.6 Comparison between Modified GCA-based IC and Con-
ventional GCA-based IC

In this section, we will illustrate the difference between the proposed modified GCA-based
IC and the original GCA-based IC. As shown in Figure 3.9, compared with the original GCA-
based IC, the coloring sequence of all the clusters are firstly modified. The original GCA-based
IC typically relies on the degree or degree-related values to determine the coloring sequence,
thus the coloring process are usually starts from the inner-cell clusters. In contrast, the modified
GCA-based IC prioritizes coloring the cell-edge clusters.

Also, in the original GCA, all clusters use the same set of color options. However, after
modification, different clusters will have different sets of color options, as shown in Figure 3.9.

However, the computational complexity of the proposed modified GCA-based IC has not
been increased compared to the original GCA-based IC. This is because none of these modifica-
tions altered the loop structure within the algorithm or increased the number of loop iterations.
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3.7 Simulation Results Analysis

In this section, we will demonstrate the performance evaluation of our proposed 2-layer IC
framework based on RC-GCA. First, the downlink capacity formula will be explained. Then,
the optimized parameter setting (𝑁𝑠𝑢𝑏 and 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟) for applying RC-GCA under the 2-layer IC
framework will be discussed. Finally, computer simulations are conducted using optimized
parameter settings to evaluate the performance of the proposed 2-layer IC framework based on
RC-GCA. The simulation results of the proposed method is compared with the dynamic FFR,
no IC case, FC framework based on GCA, and FD framework based on GCA to validate its
effectiveness.

3.7.1 Link Capacity Formula

In this section, we evaluate the downlink sum capacity and user capacity. As described in
Section 3.4, after applying GCA-based IC, each cluster is assigned one color from the total
color pool of 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 colors, and all clusters that are assigned the same color belong to one color
group. Because a different color corresponds to a different frequency sub-band, the interference
exists only inside the color group. Assuming that the number of clusters in each cell is 𝑁𝑐𝑒𝑙𝑙

𝐶 ,
and each cell has the same number of clusters, the total number of clusters in the service area
can be obtained as 𝑁 𝑡𝑜𝑡𝑎𝑙

𝐶 = 𝑁𝑐𝑒𝑙𝑙
𝐶 × 𝑁𝑐𝑒𝑙𝑙 . Similarly, the total number of users and DAs in

the service area can be denoted as 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑈 and 𝑁 𝑡𝑜𝑡𝑎𝑙

𝐴 , respectively. In the 𝑚𝑡ℎ color group,
𝑚 ∈

{
1, 2, · · · , 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟

}
, the numbers of clusters, users, and DAs are denoted by 𝑁𝐶 , 𝑁𝑈 , and

𝑁𝐴, respectively. Furthermore, the 𝑖𝑡ℎ user and 𝑗 𝑡ℎ DA in the 𝑘 𝑡ℎ cluster are denoted by 𝑈𝑘
𝑖 and

𝐴𝑘
𝑗 , respectively. 𝑁𝑈𝑘 and 𝑁𝐴𝑘 are the number of users and DAs in the 𝑘 𝑡ℎ cluster, respectively.

In a cellular system with cluster-wise distributed MU-MIMO, the received signal is the su-
perposition of the desired signal, interference, and noise. The interference comprises multi-user
interference within each cluster and inter-cluster interference from other clusters (irrespective
of being in the same cell or in neighbor cells) that are assigned the same color. Because ZF
precoding is used for cluster-wise MU-MIMO, only the inter-cluster interference is considered
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in this study. The downlink received signal of user 𝑈𝑘
𝑖 can be expressed as

𝑦𝑈𝑘
𝑖
=H(𝑖,:)𝑘 W(:,𝑖)

𝑘

√
𝑃𝑘𝑥𝑈𝑘

𝑖
+

𝑁𝐶∑
𝑙=1,𝑙≠𝑘

𝑁𝑈𝑙∑
𝑗=1

H( 𝑗 ,:)𝑘,𝑙 W(:, 𝑗)
𝑙

√
𝑃𝑙𝑥𝑈𝑙

𝑗
+ 𝑛𝑈𝑘

𝑖

(3.3)

where the first, second, and third terms are the desired signal, inter-cluster interference, and
noise, respectively. Note that the matrices are represented as bold upper case letters and the
superscripts (𝑖, :) and (:, 𝑖) represent the 𝑖𝑡ℎ row and column vectors of the matrix, respectively.

In (3.3), 𝑥𝑈𝑘
𝑖

and 𝑛𝑈𝑘
𝑖

are the transmit signal and noise, respectively. 𝑃𝑘 and 𝑃𝑙 are the power
allocated to the 𝑘 𝑡ℎ and 𝑙𝑡ℎ clusters, respectively, and can be expressed as

𝑃𝑘 or 𝑙 =
𝑁𝑈𝑘 or 𝑙𝑃

∥W𝑘 or 𝑙 ∥2𝐹
(3.4)

where ∥·∥𝐹 stands for the Frobenius norm. 𝑃 is the normalized transmit signal power-to-noise
ratio equal to all 𝑁𝑈 users. 𝑃 is set to 0 dB, indicating that the received signal-to-noise ratio
becomes 0 dB when the distance between the transmitter and receiver is equal to unit length of
a cell. Furthermore, W𝑘 and W𝑙 are the ZF precoder matrices, which can be expressed as

W𝑘 or 𝑙 = (H𝑘 or 𝑙)† = HH
𝑘 or 𝑙

(
H𝑘 or 𝑙HH

𝑘 or 𝑙

)−1
(3.5)

where (·)H denotes the conjugate transposition of a matrix.
In (3.5), H𝑘 ∈ C𝑁𝑈𝑘×𝑁𝐴𝑘 is the channel matrix and H𝑘,𝑙 ∈ C𝑁𝑈𝑘×𝑁𝐴𝑙 is the interference

channel matrix between 𝑁𝑈𝑘 users of the 𝑘 𝑡ℎ cluster and 𝑁𝐴𝑙 DAs of the 𝑙𝑡ℎ cluster. H𝑘 and
H𝑘,𝑙 can be expressed as

H𝑘 =
©«

ℎ11 · · · ℎ1𝑁𝐴𝑘

...
...

ℎ𝑁𝑈𝑘 1 · · · ℎ𝑁𝑈𝑘𝑁𝐴𝑘

ª®®®¬ (3.6)

H𝑘,𝑙 =
©«

ℎ11 · · · ℎ1𝑁𝐴𝑙

...
...

ℎ𝑁𝑈𝑘 1 · · · ℎ𝑁𝑈𝑘𝑁𝐴𝑙

ª®®®¬ (3.7)
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In (3.6) and (3.7), ℎ𝑎,𝑏 is given as

ℎ𝑎,𝑏 =
√
𝑑𝑎,𝑏

−𝛼
√

10−
𝜑𝑑𝐵
10 𝑧 (3.8)

where 𝑑𝑎,𝑏 is the distance between the 𝑎𝑡ℎ user and 𝑏𝑡ℎ DA, 𝛼 is the pathloss exponent, 𝜑𝑑𝐵

is the shadowing loss, which is characterized by a real-valued zero-mean Gaussian random
variable with standard deviation of 𝜎, and z is the Rayleigh fading gain, which is characterized
by a complex-valued zero-mean Gaussian random variable with unit variance. In this study, we
assume that H𝑘 and H𝑘,𝑙 are perfectly known.

The received signal-to-interference-plus-noise-ratio (𝑆𝐼𝑁𝑅𝑈𝑘
𝑖
) of the 𝑖𝑡ℎ user in the 𝑘 𝑡ℎ

cluster is computed by approximating the sum of inter-cluster interference and noise as a
complex Gaussian process, and is given as

𝑆𝐼𝑁𝑅𝑈𝑘
𝑖
=

H(𝑖,:)𝑘 W(:,𝑖)
𝑘

2
𝑃𝑘∑𝑁𝐶

𝑙=1,𝑙≠𝑘
∑𝑁𝑈𝑙

𝑗=1

H( 𝑗 ,:)𝑘.𝑙 W(:, 𝑗)
𝑙

2
𝑃𝑙 + 1

(3.9)

The 𝑈k th
𝑖 user capacity 𝐶𝑚

𝑈𝑘
𝑖

[bps/Hz], 𝑚𝑡ℎ color group ’s sum capacity 𝐶𝑚
𝑠𝑢𝑚[bps/Hz], and

system sum capacity 𝐶 [bps/Hz] are obtained as
𝐶𝑚
𝑈𝑘
𝑖

= 1
𝑁 𝑡𝑜𝑡𝑎𝑙
𝑐𝑜𝑙𝑜𝑟

log2

(
1 + 𝑆𝐼𝑁𝑅𝑈𝑘

𝑖

)
𝐶𝑚
𝑠𝑢𝑚 =

∑𝑁𝐶

𝑘=1
∑𝑁𝑈𝑘

𝑖=1 𝐶𝑚
𝑢𝑘𝑖

𝐶 =
∑𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟

𝑚=1 𝐶𝑚
𝑠𝑢𝑚

(3.10)

The parameter setting for computer simulation is shown in Table 3.1. Because the user
movement in a small range will not affect the clustering results, in this studies, we adopted the
quasi-static simulation. For simulation, a quasi-static environment is considered, implying that
user locations remain the same during their communication duration. The quasi-static channel
is realized by generating shadowing loss and Rayleigh fading gain for each user location. The
user locations are generated randomly for 100 times. For each generation of user locations,
the shadowing loss of each user is generated 10 times, and for each generation of shadowing
loss, the Rayleigh fading gain for each user is generated 10 times. As a consequence, the total
number of channel realizations is 10,000. For each generation of user locations, clustering and
modified GCA-based IC are carried out and the user capacity, sum capacity per color group,
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Table 3.1: Simulation Setting
Total number of DAs in service area, 𝑁 𝑡𝑜𝑡𝑎𝑙

𝐴 3200
Total number of users in service area, 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑈 2400
Number of clusters in each cell, 𝑁𝑐𝑒𝑙𝑙

𝐶 5-11
Pathloss exponent,𝛼 3.5

Shadowing standard deviation, 𝜎[dB] 8
Fading type Rayleigh fading

Number of user location patterns 100
Number of shadowing generation per user location pattern 10

Number of fading generation per shadowing generation 10

and system sum capacity are then computed using (3.10) for obtaining their CDF. 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑐𝑜𝑙𝑜𝑟 , 𝑁𝑠𝑢𝑏,

and the corresponding 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑐𝑜𝑙𝑜𝑟 will be determined after optimization, as shown in the following

subsection.

3.7.2 Parameter Optimization

When applying the proposed modified GCA-based IC under the 2-layer IC framework, the
number of colors 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟 in each sub-color pool and the number of sub-color pools 𝑁𝑠𝑢𝑏 need to
be determined. In Table 3.2, six possible cases obtained from different combinations of 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟

and 𝑁𝑠𝑢𝑏 are listed. The 50% sum capacity (which is the sum capacity at CDF of 50%) obtained
for each case when eight clusters are formed in each cell is plotted in Figure 3.10. It can be
seen clearly that the highest capacity is obtained when 𝑁𝑠𝑢𝑏 = 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟 = 2. Accordingly, the
restricted maximum number of colors 𝑀 should be set to 𝑀 = 𝑁𝑠𝑢𝑏 = 2 for the 1st layer IC,
and 𝑀 = 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 = 𝑁 𝑠𝑢𝑏
𝑐𝑜𝑙𝑜𝑟 × 𝑁𝑠𝑢𝑏 = 4 for the 2nd layer IC.

More colors usually means that the interference can be mitigated more thoroughly, so why
the capacity obtained by the restricted color options overwhelm the non-restriction case?

Actually, there is a tradeoff between interference mitigation and capacity improvement.
Although increasing the total number of colors 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 can achieve better interference mitiga-
tion, the transmission bandwidth is made narrower, and therefore, increasing 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 does not
necessarily result in a higher capacity. To restrict the value of 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑜𝑟 , 𝑁𝑠𝑢𝑏 needs to be restricted
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Table 3.2: Parameter Setting

𝑁 𝑠𝑢𝑏
𝑐𝑜𝑙𝑜𝑟

𝑁𝑠𝑢𝑏 2 3 4

2 case #1 case #2 case #3
3 case #4 case #5 case #6

Figure 3.10: 50% sum capacity comparison for different settings of 𝑁𝑠𝑢𝑏 and 𝑁 𝑠𝑢𝑏
𝑐𝑜𝑙𝑜𝑟 .
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Figure 3.11: Coloring results for 2-layer IC framework based on modified GCA-based IC.

first in the 1st layer IC. Therefore, 𝑁𝑠𝑢𝑏 = 2 is considered to be a good compromise between
interference mitigation and bandwidth reduction. In the 2nd layer IC, because the cell-edge
clusters are along the cell boundary, most of the intracell interference among them can be
mitigated by assigning two colors in the sub-color pool in turn. Therefore, 𝑁 𝑠𝑢𝑏

𝑐𝑜𝑙𝑜𝑟 = 2 can be
used for cell-edge coloring. For coloring the inner-cell clusters, the total available color pool
𝑁 𝑡𝑜𝑡𝑎𝑙
𝑐𝑜𝑙𝑜𝑟 = 4 can be used.

The coloring results with eight clusters is illustrated in Figure 3.11. From the results,
Compared with the coloring results of applying GCA-based IC under the fully decentralized
(FD) framework in Figure 2.7, it can be seen that a lot of the color collision can be mitigated
at the cell boundary. Therefore, better intercell IC performance and the higher capacity can be
expected.

3.7.3 Sum Capacity Analysis

In this section, we focus on comparing the sum of user capacities in the cell of interest. From
the results of CDF in sum capacity in Figure 3.12, it can be observed that the proposed 2-layer
IC framework based on modified GCA (marked as the blue curve) can achieve higher capacity
than the fully decentralized (FD) framework (marked as the red curve), while maintaining a
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Figure 3.12: The CDF comparison of the proposed 2-layer IC framework based on modified
GCA.

similar computational complexity.
As for the capacity at CDF=50 %, we can see that the proposed 2-layer IC framework based

on modified GCA improves by 6.5% compared to the FD framework and achieves 94% of the
FC framework. Therefore, the conclusion can be draw that the proposed 2-layer IC framework
based on modified GCA can significantly reduce the color collision, thereby further improve
system sum capacity.

3.8 Summary

In this chapter, in order to mitigate both the intracell interference and the intercell interfer-
ence, the first method named the 2-layer IC framework based on modified GCA was proposed.
The overall idea of this method is to minimize the occurrence of color collision during the
coloring process, thereby enhancing the performance of intracell IC and intercell IC at the same
time.
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To facilitate this idea, a 2-layer IC framework based on the O-RAN architecture, a modified
heuristic GCA and a graph construction method were proposed.

1. The proposed 2-layer IC framework, based on the O-RAN architecture, aims to provide
hierarchical support for the decentralized application of the modified GCA-based IC in
a cellular system with cluster-wise distributed MU-MIMO. This framework relies on
the cooperation between the non-RT RIC and the near-RT RICs, enabling it to achieve
performance comparable to the fully centralized (FC) framework while maintaining
computational complexity similar to the fully decentralized (FD) framework. In the 1st

layer, the near-RT RICs are ensured to operate under the overall control of the non-RT
RIC, thereby creating the conditions for achieving intercell IC. While in the 2nd layer,
each near-RT RIC are ensured to apply IC in a decentralized manner with no information
exchange with each other.

2. The newly proposed heuristic GCA is called the Restricted Conditional GCA (RC-GCA).
Compared with the conventional GCA, the idea of the color options restriction and also
the idea of conditional coloring on a pre-colored graph is introduced. The introduced
restrictions on color options ensure that the coloring of cell-edge clusters effectively
reduces the occurrence of color collisions, thereby enhancing intercell IC performance.
Meanwhile, the introduced idea of conditional coloring ensures that the coloring of
inner-cell clusters self-adapts to the coloring results of cell-edge clusters, guaranteeing
the effectiveness of intracell IC. As a result, the proposed RC-GCA enables both cell-edge
coloring and inner-cell coloring, realizing the concept of the modified GCA-based IC.

3. The proposed graph construction method, based on computational geometry (CG), pro-
vides significant support to the application of the 2-layer IC framework based on modified
GCA. It effectively addresses the threshold optimization problem during graph construc-
tion and enables the classification of cell-edge clusters and inner-cell clusters.



Chapter 4

2-layer IC Framework based on Joint IC

4.1 Introduction

In the first proposed method of the 2-layer IC framework based on modified GCA in Chapter
3, the motivation is to try to modify the coloring process so that to avoid the occurrence of
color collision during the coloring process. Recognizing the recent advancements in artificial
intelligence (AI), I was inspired to explore how this emerging technology could be utilized to
address the traditional issue of IC.

Initially, the first endeavor was to continue with the approach of the first method in Chapter
3, which involved utilizing AI technology, particularly deep reinforcement learning (DRL), to
improve the coloring process of GCA so as to avoid color collisions during coloring [C1].
However, during my research, I encountered some problems of using DRL-aided GCA. In
particular, the artificial neural networks required for this DRL-aided GCA often needed a
specific architecture where the number of neurons in the input and output layers corresponded
to the number of clusters in each cell. I believe this design has certain limitations in practical
applications.

Firstly, when the number of clusters in a cell is large, it results in a significant increase in the
number of neurons in the input and output layers of the neural network, making it difficult to
reduce its overall scale. A large neural network would require higher computational complexity
and substantial training overhead, which are all impractical. Secondly, considering our system
design, the number of clusters in each cell may vary continuously based on requirements.

47
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Therefore, using a neural network with fixed input layer cannot align with our existing system
design.

Consequently, in this chapter, the idea of the modified GCA proposed in Chapter 3 has been
abandoned and an alternative approach is proposed.

Firstly, the conventional GCA-based IC is applied within each cell in a decentralised manner,
solely focusing on intracell IC. During this approach, the occurrence of color collision in the
cell-edge area is allowed. Subsequently, efforts are made to eliminate the occurred color
collisions as soon as possible after the coloring process.

To address the issue of color collisions, in Section 4.2, I firstly proposed a color-adaptation
scheme that is able to slightly adjust the existing coloring results, which make it possible to
eliminate the color collision with the neighboring cell.

To effectively utilize the color-adaptation scheme, the proposed color-adaptation scheme is
further integrated into a DRL model and formed a DRL-based intercell IC in Section 4.4. The
proposed DRL-based intercell IC allows each cell to dynamically and autonomously select the
optimal color-adaptation scheme in each color collision situation.

The proposed DRL-based intercell IC and the GCA-based intercell IC are combined together
to formed the joint IC in the cellular system with cluster-wise distributed MU-MIMO, which
will be presented in Section 4.5.

In Section 4.6, considering the real-time dynamic changes in the environment, the online
training strategy have been adopted creatively to enable the proposed joint IC to adapt au-
tonomously to the dynamically changing environment. This online training strategy allows
the neural network in joint IC to continually update and adjust its parameters, enabling it to
effectively follow the ever-changing environment.

In Section 4.7, in order to control the training overhead required for the online training of
the DRL-based intercell IC in the system, I also proposed a strategy to apply the joint IC in the
2-layer IC framework. Through observation, I realized that while the GCA-based intracell IC is
necessary for each cell, the DRL-based intercell IC does not need to be activated in every cell.
By using non-RT RIC in the first layer to control which cells activate the DRL-based intercell
IC, the utilization of the joint IC can be optimized.

In the subsequent sections of this chapter, the aforementioned topics will be sequentially
discussed and presented.
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4.2 Proposed Color Adaptation Scheme

The proposed color adaptation scheme aims to slightly modify the existing GCA results, so
as to make it possible to avoid the color collision with the neighboring cells. Let the coloring
result for the 𝑘 𝑡ℎ cluster after GCA be 𝑔𝑘 ∈ {0, 1, · · · , 𝑀 − 1}. The proposed set of all the
possible color-adaptation actions is defined as 𝐴 = {0, 1, 2, · · · , 𝑀 − 1}.

In each time instant 𝑡, each near-RT RIC selects a specific color-adaptation action 𝑎 (𝑡) , after
the action 𝑎 (𝑡) is chosen, the coloring result of each cluster is adjusted based on the modulo
operation in time instant 𝑡 + 1,

𝑔(𝑡+1)𝑘 =
(
𝑔(𝑡)𝑘 + 𝑎

(𝑡)
)

mod 𝑀 (4.1)

One example of the application of the color-adaptation scheme is presented in Figure 4.1.
In the cell of interest, the cluster with index of 𝐸 has color collision with the neighboring
cluster in yellow color. Under this scenario, if the color-adaptation action of 3 is adopted, the
coloring results will be changed accordingly， resulting in the successful elimination of the
color collision.

However, it should be noted that the color-adaptation scheme requires careful selection.
Sometimes, reducing color collisions in one area may introduce new color collisions elsewhere.
As shown in Figure 4.2, when the color-adaptation action of 1 is chosen, although the color
collision near cluster with index 𝐸 is eliminated, a new color collision near cluster with index 𝐴

is created. Therefore, while the proposed color-adaptation scheme has the potential to eliminate
color collisions, it needs to be applied wisely.

So, how to find the optimal solution? Since the user locations are constantly changing,
the user-clusters based on these user locations will be periodically updated. Therefore, a
method that can observe the current status of color collisions in real-time and have decision-
making capabilities to select the best color-adaptation action based on the observed real-time
information is needed.

Under this scenario, the deep reinforcement learning (DRL) which springs up recently
overwhelms the traditional optimization methods in both the flexibility and adaptability in
dynamic environment. By interacting with the unknown environment, the DRL is able to figure
out the solution on its own with limited number of trial and errors. In this study, we try to
apply the Deep Q network (DQN) from DRL to dynamically select the color-adaptation action
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Figure 4.1: One example of an successful application of color-adaptation scheme.

Figure 4.2: One example of an unsuccessful application of the color-adaptation scheme.
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by self-learning with only locally observed information, so as to eliminate the color collision,
and the corresponding intercell interference.

In Section 4.2, the DQN will first be briefly introduced, and then in Section 4.3, the
application of the proposed color-adaptation scheme under the DQN model will be explained
in detail.

4.3 Introduction of Deep Reinforcement Learning (DRL)

Reinforcement Learning（RL）is a machine learning approach that aims to enable an agent,
or agents, to learn the optimal policy by interacting with the environment in order to maximize
cumulative rewards. In RL, the agent observes the state of the environment, takes actions, and
receives rewards, gradually learning how to make optimal decisions.

When applying IC in the cellular system with cluster-wise distributed MU-MIMO, we
let each near-RT RIC works in a decentralized manner, therefore we adopt the single-agent
architecture while each ”agent” corresponds to each near-RT RIC. The goal of each single
agent is to optimize its behavior policy through interactions with the environment, aiming to
maximize its own expected rewards.

In this study, we adopt the Q-learning algorithm which relies on value functions. It learns
the optimal policy by maintaining a table known as the Q-table, which estimates the expected
return for each state-action pair as shown in Figure 4.3.

The key idea of Q-learning is to update the Q-value inside the Q-table using the Bellman
equation. According to the Bellman equation, the agent updates the Q-value of the current state
based on the observed rewards and the Q-value of the next state. Through iterative experience
accumulation and Q-value updates, the agent gradually learns the optimal policy to maximize
cumulative rewards.

While Deep Reinforcement Learning (DRL) is a combination of the deep learning techniques
with RL algorithms. When applying Q learning algorithm in DRL, a deep neural networks,
called deep Q network (DQN), is applied to replace the application of Q-table to approximate
the Q-value function as shown in Figure 4.4.

A DQN consists of interconnected layers of artificial neurons, organized in input, hidden,
and output layers. Each neuron applies a non-linear activation function to its weighted inputs,
transforming the information flow throughout the network. The parameters of the neural
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Figure 4.3: The single agent RL architecture based on Q-learning algorithm.

network, including weights and biases, are learned through a process called backpropagation,
which adjusts them to minimize the discrepancy between the network’s predictions and the
desired outputs.

In traditional tabular-based Q-learning, the Q-values are stored and updated in a table
structure, which can become impractical or infeasible when dealing with large state spaces.
However, in the case of DQN, a deep neural network is used, therefore eliminating the need
to store all the data in computer memory. Instead, the data is used to train the DQN model,
and once the model is trained, the data can be discarded or deleted. Therefore, compared with
tabular-based Q-learning, the DQN can reduce the computer memory usage and access times,
making it possible for large-scale problem;

Besides that, the DQN takes the state as input and calculate the outputs of Q-values for each
action, therefore once the DQN is well-trained by finite state-action pairs, its generalization
ability makes it able to capture patterns and generalize its knowledge to estimate Q-values for
unseen states and actions. Therefore, DQN is also applicable to handle continuous and infinite
problems.

As a result, the DQN of DRL is more suitable for wireless communication.
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Figure 4.4: The single agent RL architecture based on deep Q network.

4.4 Proposed DRL-based Intercell IC

In this section, how to apply the proposed color-adaptation scheme based on the DRL model
is explained, and a DRL-based intercell IC is proposed.

Since we assume each near-RT RIC applies IC in a decentralized framework, we suppose
each near-RT RIC is a single agent, and the IC problem in each cell can be modeled as a Markov
decision process (MDP), which can be expressed as a triplet {𝑆, 𝐴, 𝑅}, where 𝑆 represents the
state space, 𝐴 represents the action space, and 𝑅 is the reward function. They are described
below.

• State space: At time instant 𝑡, we define the states for each BS agent as the instantaneous
sum capacities of the clusters those belong to 𝜅𝑚 in each cell based on the current coloring
result, which is noted as 𝑠(𝑡) = [𝐶 (𝑡)0 , 𝐶 (𝑡)1 , · · · , 𝐶 (𝑡)𝑀−1].

• Action space : The action space 𝐴 is defined as the proposed color-adaptation scheme
as shown in Section 4.2.

As for the action selection policy (𝜋), we modified the well-known 𝜀-greedy policy [52]
to encourage the exploration in the early stage, while focus more on the exploitation in
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the later stage. The original 𝜀-greedy policy is noted as

𝑎 (𝑡) =

{
arg max

𝑎∈𝐴
𝑄(𝑠(𝑡) , 𝑎), with probability 𝜀

Choose a random action, with probability 1−𝜀
(4.2)

The modified 𝜀-greedy policy is noted as

𝑎 (𝑡) =


Choose a random action, 0 < 𝑡 < 𝑡∗

arg max
𝑎∈𝐴

𝑄(𝑠(𝑡) , 𝑎), 𝑡∗ < 𝑡 < 𝑇 and with probability 𝜀

Choose a random action, , 𝑡∗ < 𝑡 < 𝑇 and with probability 1−𝜀
(4.3)

where the 𝜀 is designed to be changeable as

𝜀(𝑡) = 𝜀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜀𝑟𝑎𝑡𝑒 × 𝑡 (4.4)

The setting of 𝑡∗, 𝜀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜀𝑟𝑎𝑡𝑒 is listed in Table 4.1

• Reward function : The reward function is defined as the difference in the change of sum
capacity after taking 𝑎 (𝑡) to change the coloring result and is given as

𝑟 (𝑡+1) =
𝑀−1∑
𝑚=0

𝐶 (𝑡+1)𝑚 −
𝑀−1∑
𝑚=0

𝐶 (𝑡)𝑚 (4.5)

The implementation process of the proposed DRL-based intercell IC is illustrated in Figure
4.5. Each near-RT RIC first estimates the current state 𝑠(𝑡) in the time instant t, which is used
as the input to the DQN to derive the estimated Q-value of each color-adaptation actions. The
color-adaptation action 𝑎 (𝑡) with the highest value will be selected, which as a consequence,
will change the existing coloring results to minimize the occurrence of color collision near
cell boundary. The selected 𝑎 (𝑡) actually serves the next time instant t + 1, therefore 𝑠(𝑡+1) is
estimated again and the reward 𝑟 (𝑡+1) is defined by the near-RT RIC to evaluate the merit of the
selected 𝑎 (𝑡) by comparing the change in 𝑠(𝑡) and 𝑠(𝑡+1) .
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Figure 4.5: The proposed DRL-based intercell IC.
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Figure 4.6: The proposed joint IC.

The computational complexity of DQN during implementation process only depends on the

complexity of matrix multiplication, therefore it is O(
𝐿∑
𝑙=1

𝑛𝑙𝑛𝑙−1)[52], in which ℒ = {0, · · · , 𝐿}
represent the set of layers, 𝑙 = 0 and 𝑙 = 𝐿 denote the input layer and output layer respectively,
𝑛𝑙 denote the number of neurons of each layer 𝑙 ∈ ℒ.

4.5 Proposed Joint IC

Building upon the newly proposed DRL-based intercell IC, a joint IC strategy that combines
the GCA-based intracell IC and the DRL-based intercell IC is further proposed as an upgraded
version of the existing conventional GCA-based IC.The proposed joint IC strategy, aiming at
maximizing the capacity of a cellular system with cluster-wise distributed MU-MIMO in a
decentralized manner by combining the GCA and the DRL.

The application of the proposed joint IC is shown in Figure 4.6. Because we suppose each
near-RT RIC works in a decentralized manner, so the application of user-clustering and joint
IC can only use the locally observed information. The random movement of users leads to
periodic updates of user-clusters, which in turn requires the corresponding joint IC to mitigate
both intercell interference and intracell interference. The GCA-based intracell IC is applied first
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in each cell independently to allocate different sub-bands to the neighboring clusters, therefore
successfully mitigate the intracell interference. Then, under the constraint of the existing
GCA results, part of cells are selected to turn on the DRL-based intercell IC to dynamically
choose one color-adaptation action to adjust the existing coloring result in order to minimize the
occurrence of the intercell interference from surrounding cells. In this way, both the intracell
interference and the intercell interference can be mitigated.

4.6 Proposed Joint IC Based on Online Training

The proposed joint IC strategy incorporates DRL, allowing it to interact with the environ-
ment and gain an understanding of the current color collision status, enabling the selection
of appropriate color-adaptation actions to prevent further color collisions. However, as men-
tioned, the environment is constantly changing. The unpredictable movement of users results
in the continual updating of user-clusters, leading to unpredictable changes in the occurrence
of color collisions and the colors involved. For example, at this moment, cluster with index 𝐴

may experience a color collision in red with a neighboring cell, while at the next moment, a
green color collision may occur between cluster with index 𝐵 and another cell. The proposed
joint IC with DQN can learn and search for the optimal color adaptation action in a specific
environment. However, when facing a continuously changing environment, a fixed DQN will
struggle to adapt.

Therefore, the joint IC strategy alone is insufficient to address the interference issues in
cellular systems with cluster-wise distributed MU-MIMO. It is crucial to ensure that this newly
proposed joint IC strategy can self-adapt to the dynamically changing environment.

In this study, we also proposed a online training strategy to be applied to the proposed joint
IC that relies on the real-time data obtained during the implementation process. In the following
sections of this section, we will first introduce what is online training and then explain why
adopting online training enables environmental adaptability. Furthermore, we will discuss how
the online training strategy can be applied in the proposed joint IC.
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Figure 4.7: The introduction of online training and offline training.

4.6.1 Introduction of Online Training and Offline Training

Online training and offline training are two different training methods. Offline training
refers to the training process where all the training data is collected before the training begins,
and this collected data is used for training. This method has been widely used in various fields
and has established mature techniques and algorithms. In recent years, offline training has also
dominated in the applications of communication systems [54][55].

However, a major limitation of offline training is its inability to adapt to dynamically
changing environments as it lacks real-time feedback from the environment. In contrast, online
training involves training the model in a real-time environment and continuously adjusting its
behavior and strategies through interactions with the environment. The advantage of online
training lies in its ability to adapt to environmental changes and make timely adjustments, thus
providing better adaptability and flexibility.

As shown in Figure 4.7, if the offline training is adopted for joint IC, A large number of
datasets need to be prepared in advance, which cannot be satisfied in a dynamic changing
environment. While if the online training is adopted, the continuously generated real-time data
from real communication processes can be used to train the DQN in the Joint IC. Through
constant online training, the parameters of the DQN are updated continuously, enabling it to
follow the changing environment and provide real-time solutions. Moreover, online training
allows for controlling the data volume to be sufficiently small, thereby effectively managing the



4.6. PROPOSED JOINT IC BASED ON ONLINE TRAINING 59

size of the neural network and the training time.
Therefore, DQN is trained online instead of offline in this letter, which guarantees that our

proposed joint IC has the ability to adapt to the dynamic environment and react in real time.
Then, how to apply online training for joint IC will be explained in detail.

4.6.2 Application of Joint IC Based on Online Training

In order to achieve online training, I have adopted the following strategies.

1. The application of memory replay and batch selection

To ensure that the DQN can adapt quickly to the changing environment, the DQN
needs to be trained with the real-time data obtained from interaction with the dynamic
environment. Therefore, a feedback loop between the DQN and the environment which
allows the DQN to receive continuous feedback and adjust its actions accordingly is
needed.

In this study, we assume that each cell is equipped with a fixed size of memory pool, in
which the state transition sequence Δ(𝑡) = (𝑠(𝑡) , 𝑎 (𝑡) , 𝑠(𝑡+1) , 𝑟 (𝑡+1)) that happened in latest
time instants are stored. Also, the memory pool will be resetted once after the clustering
results are updated to weaken the effect of the outdated data. In this way, all the training
data can be ensured to be up to date. Because the online training strategy is adopted in
this letter, we assume that the wireless environment at 𝑠(𝑡) and 𝑠(𝑡+1) are different, with
future information completely unknown.

Additionally, a data control mechanism should also be implemented to ensure that during
each time of online training only a sufficiently small amount of data is used. This helps
in controlling the size of the neural network and reduces the training time, making it
feasible for real-time applications.

Therefore during the online training process, a batch of data 𝐷 is randomly selected from
the memory pool to train the DQN. The application of memory replay and batch selection
[52] can effectively eliminate the correlation between training data and improve the data
utilization. Meanwhile, it ensures that the training dataset for online training is up-to-date
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Figure 4.8: The application of memory replay and batch selection for online training.
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Figure 4.9: The semi-fixed training method in online training.

and also, it greatly reduces the size of dataset during each training episode so as to reduce
the training overhead.

2. The application of semi-fixed target Q network

Another challenge that must be addressed in online training is the fluctuation of data.
During online training, the data obtained are only from a very small period of time, so
the regularity in the data is poor and usually have significant fluctuations, which can
introduce instability and divergence in the learning process. This is particularly relevant
in dynamic environments where the data distribution may change over time.

The fluctuating nature of online training data can lead to large variations in the observed
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states, actions, and rewards. As a result, the Q-values estimated by the network based
on this data may be highly volatile and subject to frequent changes. Without proper
mechanisms to mitigate the impact of these fluctuations, the learning process can become
unstable and diverge, hindering the convergence towards an optimal solution.

To address this issue, the fixed target Q technique[52] is commonly used. By using
a separate target network with fixed parameters, the fluctuations in the training data
are decoupled from the estimation of target Q-values. The target network provides a
more stable and consistent set of Q-values for updating the online network. This helps
to mitigate the negative effects of data fluctuations and promotes a smoother learning
process.

In this study, we adopted a semi-target Q network, in which the target network is instead
fixed but periodically copied from the main DQN. The semi-fixed target Q network is able
to better mitigate the issue of overestimation and enhances the learning stability while
follow the dynamics of environment.

Next, I will explain the process of DQN training after incorporating the semi-target Q
network. Since DQN is an extension of the basic Q-learning algorithm [52], which
applies the Bellman equation to update the Q value with the learning rate 𝛼 as

𝑄(𝑠(𝑡) , 𝑎 (𝑡)) ←𝑄(𝑠(𝑡) , 𝑎 (𝑡)) + 𝛼[𝑟 (𝑡+1)+
𝛾max

𝑎∈𝐴
𝑄
′ (𝑠(𝑡+1) , 𝑎) −𝑄(𝑠(𝑡) , 𝑎 (𝑡))] . (4.6)

When the semi-fixed target network method is applied, in which one local DQN and one
semi-fixed DQN coexist. The local DQN updates its weight 𝜃 during the online training
and calculates the estimated Q value 𝑄(𝑠(𝑡) , 𝑎 (𝑡) , 𝜃) (denoted by Q-estimated). While
the semi-fixed DQN, with weight 𝜃 ′ been copied from 𝜃 every 𝑇∗ time instants, is to
calculate the target Q value𝑄(𝑠(𝑡+1) , 𝑎 (𝑡+1) , 𝜃 ′) (denoted by Q-target). The cooperation of
semi-fixed DQN and local DQN can improve the convergence during the DQN training.
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In DQN, the Q-target and Q-estimated can be obtained by local DQN and semi-fixed
DQN as follows

Q-target = 𝑟 (𝑡+1) + 𝛾max
𝑎∈𝐴

𝑄(𝑠(𝑡+1) , 𝑎, 𝜃 ′) (4.7)

Q-estimated = 𝑄(𝑠(𝑡) , 𝑎 (𝑡) , 𝜃) (4.8)

Therefore, the loss is defined as

loss(𝜃) =
∑
𝐷

(Q-target − Q-estimated)
2

(4.9)

The DQN training process is to minimize the loss by updating the value of 𝜃.

In conclusion, to train the DQN, an experience replay buffer is introduced to store the
agent’s experiences, including the state, action, reward, and next state. During training, the
agent samples mini-batches from the replay buffer to update the neural network weights,
utilizing a loss function that minimizes the difference between the predicted Q-values and the
target Q-values.

As a result, our proposed joint IC based on online training can naturally explore the unknown
environment and find solutions with well adaptability to dynamic environment.

4.7 Proposed Joint IC under 2-layer IC Framework

The design of the joint IC involves activating GCA-based intracell IC in every cell, while
selectively activating DRL-based intercell IC in a subset of cells. This is partly due to consid-
erations of computational resources within the system. The proposed joint IC strategy relies on
neural networks, and although a trained neural network has relatively low computational com-
plexity during the implementation process, the adoption of online training to adapt to complex
and dynamic environments introduces additional training overhead. Therefore, controlling the
number of cells that activate DRL-based intercell IC helps manage the training overhead within
acceptable limits in the system.

The next question is how to select which cells to activate DRL-based intercell IC. In this
study, we propose a strategy to activate DRL-based intercell IC only in non-adjacent cells.
There are several reasons for this choice.
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Figure 4.10: The explanation of activating the DRL-based intercell IC only in non-adjacent
cells.

1. Color collision is the result of the co-action of two neighboring cells and can be resolved
by the color change in either one of them.

2. When adjacent cells are turned on simultaneously, the convergence speed of the DQN
will be affected in each cell.

As shown in Figure 4.10, in order to eliminate the color collision,there is no need to let both
neighboring cell to change the colors. Moreover, if both adjacent cells activate DRL-based
intercell IC simultaneously, they will be in a competitive state, which will inevitably affect the
convergence speed of both cells. As a result, selectively activating non-adjacent cells can serve
as a viable choice to strike a balance between training overhead and performance.

The next challenge is how to make sure the activation of DRL-based intercell IC in non-
adjacent cells while maintaining that each cell are independent to each other. In this study, we
applied the 2-layer IC framework proposed in the previous chapter to achieve this goal. Then,
a detailed explanation of the joint IC based on the 2-layer IC framework and how it operates
under the O-RAN architecture will be explained.

The framework of our proposed joint IC is illustrated in Figure 4.11. The clustering, together
with the joint IC (including the GCA-based intracell IC and the DRL-based intercell IC) are
designed to be applied on each near-RT RICs in the 2nd layer. During the communication, each
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Figure 4.11: The application of joint IC based on 2-layer IC framework.

near-RT RIC updates the clustering results based on the users ’movement and associate the
DAs according to the principle of proximity. The updating of the clustering results will trigger
the GCA-based intracell IC to allocate the different sub-bands to the neighboring clusters to
mitigate the intracell interference. After that, the non-RT RIC with its broader system-level view
will send guidance information from the 1st layer to the near-RT RICs to turn on some of the
non-adjacent cells ’DRL-based intercell IC. Then, the selected cells will work independently
to mitigate the intercell interference with only the locally observed information.

Figure 4.12 illustrated how the proposed 2-layer IC framework based on joint IC can be
applied under O-RAN architecture. In the 1st layer, the RC-GCA proposed in Chapter 3 will
still be used as the rApp to divide all the cells into different color groups, and the activation
signals will only be sent to cells in one color group via the A1 interface, in this way only the
non-adjacent cells will turn on the DRL-based intercell IC. While in the 2nd layer, both the
GCA-based intracell IC and the DRL-based intercell IC is applied as the xAPPs.
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Figure 4.12: The application of joint IC under the O-RAN architecture.
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4.8 Simulation Results Analysis

4.8.1 Problem Formulation

In our proposed joint IC, the entire bandwidth is divided into 𝑀 sub-bands and one of the
sub-bands is assigned to each cluster. The set of entire clusters and the set of clusters which
are assigned to the 𝑚𝑡ℎ sub-band in the service area are denoted by 𝜅 and 𝜅𝑚, 𝑚 ∈ {1, · · · , 𝑀},
respectively. In this letter, the numbers of users, DAs, and clusters in 𝜅 are denoted by 𝑁𝑈 , 𝑁𝐴,
and 𝑁𝐶 , respectively. While those in the 𝜅𝑚 are denoted by 𝑁𝑚

𝑈 , 𝑁𝑚
𝐴 , and 𝑁𝑚

𝐶 , respectively. The
𝑖𝑡ℎ user in the 𝑘 𝑡ℎ cluster in 𝜅𝑚 is denoted by 𝑢𝑚𝑖,𝑘 . Below, the matrices are represented as bold
upper-case letters and the superscripts (𝑖, :) and (:, 𝑖) represent the 𝑖𝑡ℎ row and column vectors
of the matrix, respectively. Assuming the zero-forcing (ZF) based cluster-wise MU-MIMO to
eliminate the multi-user interference within each cluster and by approximating the sum of inter-
cluster interference and noise as a complex Gaussian process, the received signal-to-interference
plus noise ratio (SINR) of user 𝑢𝑚𝑖,𝑘 is given as

𝑆𝐼𝑁𝑅𝑢𝑚
𝑖,𝑘

=
𝑃𝑘

H(𝑖,:)𝑘 W(:,𝑖)
𝑘

2

𝑁𝑚
𝐶∑

𝑙=1,𝑙≠𝑘
𝑃𝑙

𝑁𝑚
𝑈,𝑙∑
𝑗=1

H( 𝑗 ,:)𝑘,𝑙 W(:, 𝑗)
𝑙

2

+ 1

, (4.10)

where W𝑘 and W𝑙 are the ZF precoder matrices, H𝑘 and H𝑘,𝑙 are respectively the channel
matrix of 𝑘 𝑡ℎ cluster and the interference channel matrix between users in the 𝑘 𝑡ℎ cluster and
DAs in the 𝑙𝑡ℎ cluster in 𝜅𝑚. 𝑁𝑚

𝑈,𝑘 𝑜𝑟 𝑙 denotes the number of users in the 𝑘 𝑡ℎ or 𝑙𝑡ℎ cluster in
𝜅𝑚. 𝑃𝑘 and 𝑃𝑙 are the transmit powers allocated to the 𝑘 𝑡ℎ and 𝑙𝑡ℎ clusters, respectively and can
be expressed as

𝑃𝑘 or 𝑙 =
𝑁𝑚
𝑈,𝑘 𝑜𝑟 𝑙𝑃

∥W𝑘 or 𝑙 ∥2𝐹
, (4.11)

where 𝑃 is the transmit power-to-noise ratio equal to all 𝑁𝑈 users. Using the SINR expression
in Eq. (4.10), the user capacity of user 𝑢𝑚𝑖,𝑘 can be expressed as

𝐶𝑢𝑚
𝑖,𝑘

=
1
𝑀

log2(1 + 𝑆𝐼𝑁𝑅𝑢𝑚
𝑖,𝑘
). (4.12)
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Assigning different sub-bands to different clusters is equivalent to dividing the clusters into
different cluster subsets {𝜅𝑚;𝑚 ∈ {1, · · · , 𝑀}}. Therefore, our goal is to select optimal cluster
subset 𝜅𝑚 ⊆ 𝜅 which maximizes the sum capacity. We set our optimization objective as follows:

max
𝜅𝑚⊆𝜅

𝑀∑
𝑚=1

𝐶𝑚,

s.t. ∀𝑚 ∈ 𝑀,⋃
𝑚∈𝑀

𝜅𝑚 = 𝜅, and 𝜅𝑛 ∩ 𝜅𝑚 = Ø,∀𝑛 ≠ 𝑚,

(4.13)

where

𝐶𝑚 =

𝑁𝑚
𝐶∑

𝑘=1

𝑁𝑚
𝑈,𝑘∑
𝑖=1

𝐶𝑢𝑚
𝑖,𝑘

(4.14)

Other detailed parameters are shown in Table 4.1.

4.8.2 Comparison of Coloring Results

Figure 4.13 illustrate the coloring results based on the proposed joint IC. Suppose at the
beginning (𝑡=0), the clustering results are updated and the GCA-based intracell IC is applied,
therefore all the neighboring clusters inside each cell have been allocated different sub-bands,
so that the intracell interference can be mitigated. But a lot of color collisions are seen along
the cell boundary, thereby causing the intercell interference. While when 𝑡=100, due to the
implementation of DRL-based intercell IC, the coloring result can be adjusted successfully and
thus, minimize the intercell interference.

4.8.3 Sum Capacity Analysis of Activate Cells

In the application of the 2-layer IC framework based on joint IC, the evaluation of capacity
improvement is conducted separately due to the presence of some cells activating DRL-based
intercell IC while others do not. In this section, we will first analyze the capacity performance
and convergence behavior of the cells that activate DRL-based intercell IC.
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Table 4.1: PARAMETER SETTINGS
Total number of DAs, 𝑁𝐴 3200
Total number of users, 𝑁𝑈 2400

Total number of clusters, 𝑁𝐶 200
The number of sub-bands, 𝑀 4

Pathloss exponent 3.5
Shadowing loss standard deviation in dB 8

P in Eqs. (4.9) 0dB
𝛾 in Eqs. (4.5) 1

𝜀𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.8
𝜀𝑟𝑎𝑡𝑒 0.002
𝑡∗ 10

Memory size 50
Batch size 10

𝑇∗ 50
DQN 3-layer fully connected artificial neural network

Number of neurons in each layer [256,256,32]
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Figure 4.13: Coloring results of joint IC.

Figure 4.14: Convergence analysis of the activate cells.
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In the case shown in Figure 4.14, the cell of interest will be chosen as the activate cell to
turn on the DRL-based intercel IC, Therefore, in this scenario, its performance can be regarded
as a typical representation of the activated cells.

In Figure 4.14, the sum capacity variation during the beginning 100 time instants for a new
updating of clusters when DRL-based intercell IC is applied is illustrated as the blue curve. For
comparison, we also provide the case of fully decentralized (FD) framework in red curve. From
the results, a clear learning process can be seen when the DRL-based intercell IC is activated,
which indicates that the DQN can adapt to the environment, thus providing a promising solution
which has higher capacity than the case of FD framework. As for why we choose to divide the
entire clustering period into 100 time instants, it is related to the speed of user movement. If
the user moves at a faster pace, more time instants are needed. However, if the user consistently
moves at a slower speed, fewer time instants are required.

Besides that, to achieve the adaptability of the DRL-based intercell IC to the dynamic
environment via online training, the convergence speed of DQN is of vital importance.It is
clearly seen from Figure 4.14 that the training only cost a dozen of time instants. This kind of
convergence speed of DQN can accommodate the requirements of online training, therefore,
convinced that our proposed joint IC based on online training can quickly keep up with the
changes in the dynamic environment.

In Figure 4.15, we also plot the cumulative distribution function (CDF) of the sum capacity
to evaluate our proposed joint IC when 8 clusters are formed in each cell. It can be clearly
observed that the performance of the activated cell in the proposed 2-layer IC framework based
on joint IC closely approaches the performance of the fully centralized (FC) framework, where
no color collision exists. Therefore，when both the GCA-based intracell IC and the DRL-based
intercell IC are activated, the intercell interference and the intracell interference can both be
mitigated.

4.8.4 Sum Capacity Analysis of Deactivate Cells

In the case shown in Figure 4.16, the cell of interest will be chosen as the deactivate cell
that will not turn on the DRL-based intercel IC, Therefore, in this scenario, its performance can
be regarded as a typical representation of the deactivated cells.

By comparing the results in Figure 4.16 and Figure 4.14, it can be observed that there is no
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Figure 4.15: CDF of sum capacity achieved by joint IC (activate cell).

Figure 4.16: Convergence analysis of the deactivate cells.
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Figure 4.17: CDF of sum capacity achieved by joint IC (deactivate cell).

apparent learning process in the deactivate cell since the coloring results remain unchanged.
However, it can be seen that the blue line representing the deactivate cell does show some
improvement in capacity compared to the fully centralized (FD) framework represented by the
red line. This improvement is attributed to the neighboring cells activating the DRL-based
intercell IC, which passively mitigates color collision of the cell of interest.

From the CDF in Figure 4.17, it can be observed that due to the lack of active learning
process, the deactivate cell is unable to actively search for its optimal state, which is reflected
in the CDF by the deactivate cell’s inability to achieve the same level of performance as the
activate cell. However, it can also be seen that the results of the deactivate cell have surpassed
the performance of the FD framework.

4.8.5 Parameter Study on Impact of Neural Network Size

In this section, the parameter studies on the size of DQN is conducted. The aforementioned
simulations were conducted using a fully connected neural network with three hidden layers.
The number of neurons in each layer was set to 256, 256, and 32, respectively. In this section,
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Figure 4.18: CDF of sum capacity achieved by DQN with reduced neurons and layers.

we first compared the impact of the number of neurons. We reduced the number of neurons in
each layer of the three hidden layers to 128, 128, and 32, respectively. The simulation results
are shown in the Figure 4.18 (left). Compared with the results in Figure 4.15, it can be observed
that there is no significant difference, indicating that our previous configuration may have been
overly large.

Then the impact of the number of hidden layers is also verified. The original 3-layer hidden
layers were reduced to 1 layer, retaining only the last layer with 32 neurons connected to the
output layer. From the results in Figure 4.18 (right), it is evident that the capacity at CDF=50%
has decreased a lot. This indicates that during the learning process, there were more cases
where the optimal solution was not found. It suggests that the current size of DQN may not be
sufficient to meet the requirements of the problem scale.

4.8.6 Parameter Study on Impact of Real-time Availability of Training
Dataset

In the realm of deep learning, data is often regarded as the essence that breathes“ life”
into the models. Hence, compared to discussing the size of neural networks, it is more crucial
to focus on the impact brought by data collection and acquisition. Therefore, in this section, we
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will also analyze the importance of real-time data acquisition during online training.
We assume a rapidly changing environment where, at a certain moment, a subset of antennas

suddenly becomes inactive due to factors like disasters. We assume that initially each cell has
128 DAs and 64 users, but starting from time instant=101, only 96 antennas are available
to serve the 64 users. In addition, for the purpose of better observation, we have chosen
a specific scenario that before the environment change, the DQN was trained to choose the
color-adaptation action that will maintain the existing coloring results. This choice allows
us to observe more clearly the impact of the previously trained DQN when facing a sudden
environmental change.

In Section 4.4, we proposed the modified 𝜖− greedy approach to significantly increase
the exploration ratio during the early stages of training. This approach aims to ensure the
broader collection of real-time data at the moment when facing a sudden updates in clustering
results. Additionally, in Section 4.6.2, we discussed the memory replay strategy adopted for
online training, which involves fixing memory size and resetting the memory pool after each
clustering update. All these measures are used to ensure the timely removal of outdated data,
thereby guaranteeing that the data fed into the DQN training process remains up-to-date.

In Figure 4.19, we compare the convergence results with and without the use of the afore-
mentioned memory replay strategy and modified 𝜖− greedy action selection strategy. It can be
observed that for the original clustering results (time instant from 1 to 100), after a dozen of
time instants of learning, the DQN has learned that the best choice is to maintain the existing
coloring scheme, as indicated by the convergence of the red and blue lines in the subsequent
time slots. While from time instant=101, where there is a sudden reduction in the number of
antennas from 128 to 96 (by randomly removing 32 antennas), necessitating an update in the
clustering results. However, the DQN continues to exhibit a preference for the ”no change in
coloring results” approach, therefore the online training is needed to update the parameters in
DQN tp adapt to the new environment.

Figure 4.19 (left) illustrates the scenario where the memory pool has not been reset, and the
𝜖− greedy action selection strategy has not been modified. From the results, it can be observed
that the effectiveness of online training is not satisfactory. Throughout the entire 100 time
instants, there is a persistent influence from the previous preference of ”not changing colors.”
This situation arises due to two main factors. Firstly, it is because the action selection strategy
heavily relies on the pre-trained DQN, resulting in a delay in generating effective training data.
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Figure 4.19: The importance of the real-time availability of training dataset.

Secondly, the persistent presence of data from the previous clustering results in the memory
pool hampers the immediate impact of newly generated real-time data. This delay prevents the
timely selection of newly generated effective data into the training dataset, thereby hindering
the overall effectiveness of the online training process.

In contrast, as shown in the Figure 4.19(right), after applying the proposed memory replay
strategy and modified 𝜖− greedy action selection strategy, it can be observed that the DQN
quickly adapts and successfully learns to select the optimal color adaptation action (which is
no longer to maintain the existing coloring results this time) after a short learning period. This
leads to a significant improvement in capacity.

The aforementioned memory replay strategy and modified 𝜖− greedy action selection strat-
egy are specifically designed to address the sudden environmental changes during online train-
ing. It can be observed that online training and offline training have different requirements in
terms of data acquisition. For online training, the quantity of data is not the primary concern,
but rather the real-time availability of data is crucial.

4.8.7 Validation of Necessity of Joint IC under the 2-Layer IC Framework

In the previous discussions, we mentioned that our proposed joint IC can work under a fully
distributed (FD) manner. However, considering the physical characteristics of color collision
and the practical requirements to control the training overhead in the online training, we propose
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Figure 4.20: Convergence analysis of neighboring cells learning simultaneously.

to apply the joint IC under the 2-layer IC framework. Therefore, in this section, in order to
demonstrate the necessity of applying under the the 2-layer IC framework, we further explore
the results of applying joint IC based on the FD framework.

From the results in Figure 4.20, it can be observed that if neighboring cells simultaneously
activate the DRL-based intercell IC, due to the assumption that each cell works independently
as an single agent, there will be a competition among cells during their individual learning
process, which leads to a slower convergence rate for each cell.

In online training, the convergence speed directly affects the performance of the system’s
capacity. If the DQN fails to quickly find the optimal color-adaptation action to mitigate color
collision during online training, the results will be as shown in the Figure 4.21. Even if all
cells activate the DRL-based intercell interference coordination, the results cannot surpass
the performance of activated cells under the 2-layer IC framework. Therefore, both from the
perspective of improving capacity and controlling training overhead, applying joint IC based on
the 2-layer IC framework to control the number of cells that activate the DRL-based intercell
interference coordination have certain advantages. As a preliminary research, this study only
provides a simple strategy of applying joint IC under the 2-layer IC framework. More flexible
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Figure 4.21: CDF of sum capacity achieved by joint IC (all neighboring cells learning together).

and intelligent approaches for applying joint IC based on the 2-layer IC framework require
further investigation.

4.9 Summary

In this chapter, in order to incorporate the latest advancements in artificial intelligence (AI)
into the traditional application of IC and further enhance the performance of color collision
mitigation, the second method called the 2-layer IC framework based on joint IC was proposed.
The overall idea of this method is to eliminate the color collision without modifying the coloring
process itself. Instead, the existing coloring results are dynamically modified after the coloring
process to eliminate color collision, thereby achieving the simultaneous elimination of intracell
interference and intercell interference.

To facilitate this idea, the following contributions are made

1. Firstly, a color-adaptation scheme which make it possible to adjust the existing coloring
results was proposed. Based on this color-adaptation scheme and the model of DRL,
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a DRL-based intercell IC was also proposed to observe the environment in real time
and dynamically change the existing coloring results to avoid the color collision. The
proposed DRL-based IC was applied together with the original GCA-based intracell IC,
thereby together form a joint IC.

2. Secondly, considering the fact that the color collision is dynamically changing according
to the movement of users, the DQN applied in the DRL-based intercell IC should be
updated accordingly to adapt to the ever-changing environment. Therefore in this study,
we also proposed a online training strategy. The proposed joint IC based on online
training is able to follow the dynamics of environment in a high mobility environment.

3. Finally, to ensure the convergence speed of DQN and control the training overhead within
the system, we have also proposed a strategy to apply joint IC based on the 2-layer IC
framework. By effectively selecting the cells to activate DRL-based intercell IC using
non-RT RIC in the 1st layer, we can ensure good results in both the activate cell and
deactivate cell. Additionally, reducing the usage of DRL-based intercell IC enables the
possibility of controlling training overhead.





Chapter 5

Conclusions

In 5G and beyond, the application of distributed MU-MIMO has been of great interest for
its ability to solve the problem of radio link blockage caused by the utilization of mm-wave
band. In order to solve the prohibitively high computational complexity problem faced by the
large-scale distributed MU-MIMO, a cluster-wise distributed MU-MIMO has been developed.
However, the application of cluster-wise distributed MU-MIMO has a side effect of introducing
additional intracell interference and intercell interference, and the existence of these two types
of interference has greatly affected the system capacity. Therefore, this study focused on the
interference coordination (IC) in the cellular system with cluster-wise distributed MU-MIMO
to increase the system capacity.

In this study, based on the O-RAN architecture, a 2-layer IC framework was proposed
and two upgraded GCA-based ICs that can be used under this 2-layer IC framework were
also proposed. It was verified that when the two methods been applied under the 2-layer IC
framework, both the intercell interference and the intracell interference can be successfully
mitigated, and the system capacity can be significantly increased.

This dissertation was divided into 6 chapters.
The Chapter 1 was the introduction, which introduced the background and motivation of

this study in detail.
In Chapter 2, the conventional heuristic GCA and the application of GCA-based IC was

firstly introduced. Then, the performance of GCA-based IC was evaluated under two commonly
used frameworks: fully centralized (FC) and fully decentralized (FD). The verification has
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leaded to the fact that the GCA-based IC under FC framework can mitigate both the intracell
interference and the intracell interference, but its computational complexity exceeds practical
limits. On the other hand, the GCA-based IC under FD framework is computational flexible,
but it can only mitigate the intracell interference, leaving intercell interference caused by color
collision unresolved. Furthermore, the future requirements for scalability and flexibility for
deployment in cellular systems were highlighted. It is highly desirable for cells to operate
independently without information exchange between them. Therefore, the problem statement
was established: under the condition that each cell operates in a decentralized manner, there has
been a pressing need for a novel GCA-based IC that can mitigate intracell interference while
considering intercell interference as well.

In Chapter 3, the concept of Fractional Frequency Reuse (FFR) was incorporated into the
GCA algorithm, resulting in a modified GCA-based IC approach. The clusters have been
categorized into two types: cell-edge clusters and inner-cell clusters. Each type has been
colored separately using distinct color options. In order to realize the above-mentioned idea,
the following task has been done. Firstly, based on computational geometry (CG), a method
to abstract the IC problem as a graph was first proposed, which is able to circumvent the
threshold optimization problem of traditional graph construction methods, while at the same
time, automatically distinguish the clusters that locates near the cell boundaries. Then, with
the constructed graph, a new GCA, named as the restricted conditional GCA (RC-GCA) was
also proposed in this chapter, in which it enables the separate coloring of the cell-edge clusters
and the inner-cell clusters. Based on RC-GCA, the cell-edge clusters can be colored with
restrictions of color options so as to minimize the occurrence of color collisions, while the
inner-cell clusters can be colored under conditions so as to self-adapt to the existing cell-edge
colors. Finally, based on the O-RAN architecture, a 2-layer IC framework, which relies on the
cooperation of non-real-time (non-RT) radio access network intelligent controller (RIC) and
near-RT RICs, was also proposed in this chapter. The 2-layer IC framework enables a reasonable
allocation of cell-edge color options to each cell. The effectiveness of our proposed 2-layer
IC framework based on GCA was verified by the fact that it can further mitigate the intercell
interference, building on the successful mitigation of intracell interference, thus enhancing the
system capacity even further. It was also demonstrated that the proposed method outperforms
the well-known fractional frequency reuse (FFR) scheme, the FD framework and no IC case,
and is able to achieve performance comparable to the FC framework.
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In Chapter 4, considering the dynamics of the environment and the current progress of AI
technologies based on deep learning, the possibility of combining GCA with DRL was explored
in depth in this chapter, and a new joint IC method was proposed. The proposed joint IC includes
a GCA-based intracell IC and a DRL-based intercell IC. Based on online training, the proposed
joint IC can follow the time-varying environment and thus achieve dynamic IC control based on
the real-time feedback from the environment. Considering of the training overhead in practical
application, a strategy to apply the proposed joint IC under the 2-layer IC framework was also
proposed. By selectively activating the DRL-based intercell IC only in non-adjacent cells,
not only the capacity enhancement can be guaranteed but also the training overhead can be
controlled. The validation of the computer simulation has revealed that our proposed 2-layer IC
framework based on joint IC can dramatically increase the capacity and obtain a performance
close to the FC framework. At the same time, the analysis of its convergence has proved that
the DQN can converge within a dozen of time instants and thus our proposed joint IC can adapt
to the fast-changing environment with strong environmental adaptability.

In summary, challenges related to inter-cluster IC in cellular systems with cluster-wise
distributed MU-MIMO have been analyzed and addressed. Two GCA-based methods under the
2-layer IC framework were proposed, which effectively meet the requirement for decentralized
system operation while significantly enhance system capacity. This research has provided strong
support for the application of cluster-wise distributed MU-MIMO in next-generation mobile
communication system.





Future Research

In the second method of the 2-layer IC framework based on joint IC, the overall idea is
to classify cells into several color groups in the 1st layer. This way, in the 2nd layer, all cells
activate GCA-based intracell IC, but only cells belonging to one color group activate DRL-
based intercell IC. Therefore, there is still an unresolved question in this study regarding how
to select which color group of cells should activate DRL-based intercell IC.

As emphasized in this dissertation, the occurrence of color collisions is highly uncertain.
Therefore, the initial intention of this study is to also build a DQN in the non-RT RIC in the 1st

layer as well, aiming to dynamically select a certain color group in real time and activate the
DRL-based intercell IC only for the cells in the selected cell group.

However, considering that the non-RT RIC can only handle time-insensitive tasks, it is not
feasible to upload all training data through the A1 interface to the non-RT RIC to realize the
above-mentioned idea. Therefore, a possible way is to adopt the federated learning, which
means keeping the training data in each local near-RT RICs and only downloading the model
of DQN and a few relevant parameters from the non-RT RIC to each near-RT RICs. Training
will then take place within each near-RT RIC. After training is completed, only the updated
parameters are uploaded to the non-RT RIC, so that the non-RT RIC only performs a simple
parameter assembly process, while a significant amount of computation is still distributed
among each local near-RT RIC.

Briefly, the idea of the 2-layer IC framework based on joint IC consists of using a large DQN
in a non-RT RIC to control small DQNs in each near-RT RICs, thus enabling full dynamic
control of the application of the DRL-based intercell IC to optimize the performance.

Considering the limited time available, this idea could not be implemented during the
doctoral period. All the results in this dissertation are based on a fixed color group, that is
assuming during the simulation, the selected color group that activate the DRL-based intercell
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IC remains unchanged. I believe this idea is promising and deserves further ongoing research
in the future.
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