89,927 research outputs found

    A study to trial the use of inertial non-optical motion capture for ergonomic analysis of manufacturing work

    Get PDF
    It is going to be increasingly important for manufacturing system designers to incorporate human activity data and ergonomic analysis with other performance data in digital design modelling and system monitoring. However, traditional methods of capturing human activity data are not sufficiently accurate to meet the needs of digitised data analysis; qualitative data are subject to bias and imprecision, and optically derived data are hindered by occlusions caused by structures or other people in a working environment. Therefore, to meet contemporary needs for more accurate and objective data, inertial non-optical methods of measurement appear to offer a solution. This article describes a case study conducted within the aerospace manufacturing industry, where data on the human activities involved in aircraft wing system installations was first collected via traditional ethnographic methods and found to have limited accuracy and suitability for digital modelling, but similar human activity data subsequently collected using an automatic non-optical motion capture system in a more controlled environment showed better suitability. Results demonstrate the potential benefits of applying not only the inertial non-optical method in future digital modelling and performance monitoring but also the value of continuing to include qualitative analysis for richer interpretation of important explanatory factors

    A new method for interacting with multi-window applications on large, high resolution displays

    Get PDF
    Physically large display walls can now be constructed using off-the-shelf computer hardware. The high resolution of these displays (e.g., 50 million pixels) means that a large quantity of data can be presented to users, so the displays are well suited to visualization applications. However, current methods of interacting with display walls are somewhat time consuming. We have analyzed how users solve real visualization problems using three desktop applications (XmdvTool, Iris Explorer and Arc View), and used a new taxonomy to classify users’ actions and illustrate the deficiencies of current display wall interaction methods. Following this we designed a novel methodfor interacting with display walls, which aims to let users interact as quickly as when a visualization application is used on a desktop system. Informal feedback gathered from our working prototype shows that interaction is both fast and fluid

    Miniaturized modular manipulator design for high precision assembly and manipulation tasks

    Get PDF
    In this paper, design and control issues for the development of miniaturized manipulators which are aimed to be used in high precision assembly and manipulation tasks are presented. The developed manipulators are size adapted devices, miniaturized versions of conventional robots based on well-known kinematic structures. 3 degrees of freedom (DOF) delta robot and a 2 DOF pantograph mechanism enhanced with a rotational axis at the tip and a Z axis actuating the whole mechanism are given as examples of study. These parallel mechanisms are designed and developed to be used in modular assembly systems for the realization of high precision assembly and manipulation tasks. In that sense, modularity is addressed as an important design consideration. The design procedures are given in details in order to provide solutions for miniaturization and experimental results are given to show the achieved performances

    Real-time simulation of three-dimensional shoulder girdle and arm dynamics

    Get PDF
    Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate the performance and mechanical behavior of a real-time, dynamic model of the arm and shoulder girdle. The model comprises seven segments linked by eleven degrees of freedom and actuated by 138 muscle elements. Polynomials were generated to describe the muscle lines of action to reduce computation time, and an implicit, first-order Rosenbrock formulation of the equations of motion was used to increase simulation step-size. The model simulated flexion of the arm faster than real time, simulation time being 92% of actual movement time on standard desktop hardware. Modeled maximum isometric torque values agreed well with values from the literature, showing that the model simulates the moment-generating behavior of a real human arm. The speed of the model enables experiments where the user controls the virtual arm and receives visual feedback in real time. The ability to optimize potential solutions in simulation greatly reduces the burden on the user during development

    Composite video and graphics display for camera viewing systems in robotics and teleoperation

    Get PDF
    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera

    Planning and Real Time Control of a Minimally Invasive Robotic Surgery System

    Get PDF
    This paper introduces the planning and control software of a teleoperating robotic system for minimally invasive surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom including robot setup planning, force feedback control and nullspace handling with three robotic arms. The planning software is separated into sequentially executed planning and registration procedures. An optimal setup is first planned in virtual reality and then adapted to variations in the operating room. The real time control system is composed of hierarchical layers. The design is flexible and expandable without losing performance. Structure, functionality and implementation of planning and control are described. The robotic system provides the surgeon with an intuitive hand-eye-coordination and force feedback in teleoperation for both hands
    corecore