16,105 research outputs found

    Controls and Interfaces

    Full text link
    Reliable powering of accelerator magnets requires reliable power converters and controls, able to meet the powering specifications in the long term. In this paper, some of the issues that will challenge a power converter controls engineer are discussed.Comment: 16 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Design and implementation of 30kW 200/900V LCL modular multilevel based DC/DC converter for high power applications

    Get PDF
    This paper presents the design, development and testing of a 30kW, 200V/900V modular multilevel converter (MMC) based DC/DC converter prototype. An internal LCL circuit is used to provide voltage stepping and fault tolerance property. The converter comprises two five level MMC based on insulated gate bipolar transistors (IGBTs) and metal oxide semiconductor field effect transistor (MOSFET). Due to low number of levels, selective harmonic elimination modulation (SHE) is used, which determines the switching angles in such a way that third harmonic is minimized whereas the fundamental component is a linear function of the modulation index. In addition, instead of using an expensive control board, three commercial control boards are embedded. This is required to implement the sophisticated DC/DC converter control algorithm. Simulation and experimental results are presented to demonstrate the converter performance in step up and down modes

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    Predictive voltage control of phase-controlled series-parallel resonant converter

    Get PDF

    Local control of multiple module converters with ratings-based load sharing

    Get PDF
    Multiple module dc-dc converters show promise in meeting the increasing demands on ef- ficiency and performance of energy conversion systems. In order to increase reliability, maintainability, and expandability, a modular approach in converter design is often desired. This thesis proposes local control of multiple module converters as an alternative to using a central controller or master controller. A power ratings-based load sharing scheme that allows for uniform and non-uniform sharing is introduced. Focus is given to an input series, output parallel (ISOP) configuration and modules with a push-pull topology. Sensorless current mode (SCM) control is digitally implemented on separate controllers for each of the modules. The benefits of interleaving the switching signals of the distributed modules is presented. Simulation and experimental results demonstrate stable, ratings-based sharing in an ISOP converter with a high conversion ratio for both uniform and non-uniform load sharing cases

    Polynomial Curve Slope Compensation for Peak-Current-Mode-Controlled Power Converters

    Get PDF
    Linear ramp slope compensation (LRC) and quadratic slope compensation (QSC) are commonly implemented in peak-current-mode-controlled dc-dc converters in order to minimize subharmonic and chaotic oscillations. Both compensating schemes rely on the linearized state-space averaged model (LSSA) of the converter. The LSSA ignores the impact that switching actions have on the stability of converters. In order to include switching events, the nonlinear analysis method based on the Monodromy matrix was introduced to describe a complete-cycle stability. Analyses on analog-controlled dc-dc converters applying this method show that system stability is strongly dependent on the change of the derivative of the slope at the time of switching instant. However, in a mixed-signal-controlled system, the digitalization effect contributes differently to system stability. This paper shows a full complete-cycle stability analysis using this nonlinear analysis method, which is applied to a mixed-signal-controlled converter. Through this analysis, a generalized equation is derived that reveals for the first time the real boundary stability limits for LRC and QSC. Furthermore, this generalized equation allows the design of a new compensating scheme, which is able to increase system stability. The proposed scheme is called polynomial curve slope compensation (PCSC) and it is demonstrated that PCSC increases the stable margin by 30% compared to LRC and 20% to QSC. This outcome is proved experimentally by using an interleaved dc-dc converter that is built for this work

    Development and implementation of a LabVIEW based SCADA system for a meshed multi-terminal VSC-HVDC grid scaled platform

    Get PDF
    This project is oriented to the development of a Supervisory, Control and Data Acquisition (SCADA) software to control and supervise electrical variables from a scaled platform that represents a meshed HVDC grid employing National Instruments hardware and LabVIEW logic environment. The objective is to obtain real time visualization of DC and AC electrical variables and a lossless data stream acquisition. The acquisition system hardware elements have been configured, tested and installed on the grid platform. The system is composed of three chassis, each inside of a VSC terminal cabinet, with integrated Field-Programmable Gate Arrays (FPGAs), one of them connected via PCI bus to a local processor and the rest too via Ethernet through a switch. Analogical acquisition modules were A/D conversion takes place are inserted into the chassis. A personal computer is used as host, screen terminal and storing space. There are two main access modes to the FPGAs through the real time system. It has been implemented a Scan mode VI to monitor all the grid DC signals and a faster FPGA access mode VI to monitor one converter AC and DC values. The FPGA application consists of two tasks running at different rates and a FIFO has been implemented to communicate between them without data loss. Multiple structures have been tested on the grid platform and evaluated, ensuring the compliance of previously established specifications, such as sampling and scanning rate, screen refreshment or possible data loss. Additionally a turbine emulator was implemented and tested in Labview for further testing

    Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

    Get PDF
    Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach
    • …
    corecore