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Abstract— With the advent of high performance digital con-
trollers, the time and effort to implement new control algorithms
for the control of power electronic converters have decreased
drastically. Nevertheless, the design and the practical implemen-
tation of power electronic converters, intended for testing new
control algorithms, are still complicated and time consuming
activities. Therefore, a fully equipped half bridge test platform
was designed ready to use as a fundamental building block
for various converter types. The test platform incorporates
fault protection, measurements of well-selected voltages and
currents, and is directly interfacable with most digital and analog
controllers. Due to these features and the flexibility of the board,
this half bridge converter can be used for research as well as for
educational purposes in applications ranging from a simple100
W buck converter up to 10 kW inverters for motor control. The
platform is demonstrated in this paper by means of some basic
converter topologies, the half bridge boost converter and the full
bridge buck converter.

I. I NTRODUCTION

With the advent of high performance digital controllers,
the time and effort to implement new control algorithms for
the control of power electronic converters have decreased
drastically. This is demonstrated by the large amount of papers
concerning digital control of power electronic converters in
a wide range of applications, inverters and motor control
applications [1], [2], [11], active filters [3], [4], and power
factor correction converters [5]–[7]. Nevertheless, the design
and the practical implementation of power electronic con-
verters, intended for testing new control algorithms, are still
complicated and time consuming activities.

Therefore, a fully equipped half bridge test platform was de-
signed ready to use as a fundamental building block for various
converter types. It offers great flexibility to implement several
topologies, one-phase or three-phase rectifiers, inverters, a
large number of basic DC-DC converters, by building one or
more of these modules together with some passive components
and a controller. The platform provides the measurement
of some well-selected voltages and currents, and offers an
easy interface with analog or digital controllers. Moreover,
it incorporates a complete fault protection system, including
overvoltage, overcurrent and high temperature detection and
allows interaction between the fault protection system of all
connected modules and the controller. Due to these features
and the flexibility of the board, this half bridge converter is

Fig. 1. Power stage of the half bridge test platform

very suitable to be used in laboratory environments as well as
for educational purposes in applications ranging from a simple
100 W buck converter up to10 kW inverters for motor control.

This paper offers a detailed description of the entire board,
including the power stage, the measurement equipment, the
fault protection system and the interface with other modules
and with the controller. In order to demonstrate the use of this
platform in a practical realization, two experimental setups
using this building block are demonstrated: a half bridge boost
converter, based upon one platform, and a full bridge buck
converter using two interconnected platforms.

II. D ESCRIPTION OF THEPOWER STAGE

The power stage consists of a half bridge topology contain-
ing two switches, as depicted in Fig. 1. It can be connected
with other modules or passive components through three
connectors which will be referred to asvbus for the bus
voltage,vsw for the interconnection pin of the two switches,
and0V for the ground connection. The platform provides a bus
capacitor betweenvbus and0V, while a snubber betweenvsw

and0V terminals is used to prevent high frequent oscillations
which may appear on the switch voltage [8].

The maximum bus voltage is limited by the design to1
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Fig. 2. Integrating circuit, used for measurement of the switch voltagevsw

Fig. 3. Key waveforms of the integrating circuit for typical switch voltage
waveform input

kV, but is in most cases determined by the choice of the
switches and the bus capacitor. Depending on the requirements
of switching frequencyfs and current rating, most discrete-
packagedMOSFETs, IGBTs or even diodes may be employed
for the switches. This makes the platform suitable for a broad
range of applications.

III. M EASUREMENTEQUIPMENT

A. Averaging circuit for the switch voltage

For applications such as Inductor Voltage Control (IVC)
for active rectifiers [9], or control of the output voltage for
inverters and motor drives [10]–[12], it is useful to sense the
average switch voltage〈vsw 〉. This can be accomplished by

integrating the switch voltagevsw during one PWM cycle.
Therefore, the integrating circuit of Fig. 2 is applied. This
circuit consists of two parallel integrator circuits, connected
alternately to the input and the output amplifier of the entire
averaging circuit. When an integrator is connected to the input
amplifier, it will integrate the signal−R2

R1
x(t), supplied at its

input, yielding

vC(T ) =
R2

R1

T

R3C
〈x(t)〉 (1)

at the end of a switching periodT . During the next switching
cycle, the output voltage of this integrator remains constant
as no signal is connected to its input. This allows to provide
a constant signal, proportional to the average of the switch
voltage, at the output of the averaging circuit. At the end of
this second switching cycle, the integrator is reset by closing
switch S3 (or switch S4). Since the capacitor voltage will
decrease exponentially

vC(t) = vC(0)exp(− t

R4C
), (2)

the resetting switch should be closed during a time

Tres ≥ 4R4C (3)

in order to allow the capacitor voltage to fall below2% of its
value. This time can be programmed by changing the length
of the pulses applied on thePWMSYNC-input of the platform.
Since this reset takes place during the interval where the
corresponding integrator is connected to the output amplifier,
the reset of the signal will be visible in the output of the
averaging circuit. However, since the averaging interval lasts
exactly one switching cycle, the averaged value is not affected
by the reset.

The switching signals for all switchesS1 to S4 are all
derived from the PWMSYNC-signal by on-board logic. In
order to yield correct averaging of the switch voltage, the
PWMSYNC-signal must be synchronized with the switching of
the power module, while the length of the pulses must meet
(3). Most digital signal processors provide a signal that can
be used for this purpose.
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Fig. 4. Circuit of the differential voltage measurement

B. Switch current and bus voltage measurement

The electronic circuit required for the measurement and
the amplification of the bus voltagevbus and the currentisw
both use standard opamp circuits. The bus voltage is sensed
by a high voltage, high ohmic voltage divider, using a very
high voltage cermet plate resistor of10 MΩ. this voltage
divider is followed by two inverting opamp-based amplifiers.
Additionally, some circuitry is provided to quickly change the
gain and the offset of these amplifiers, so that an accurate
measurement in a narrow band around an adjustable setpoint
can be achieved.

For the sensing of the currentisw , a LEM LTS-15NP current
transducer is employed. The output of this current transducer
contains a2.5 V offset, which is compensated in a first opamp
circuit, after which a second amplifier provides the required
voltage range for the output signal.

C. Differential amplifier

Since the control of converters may require sensing of
voltages outside the test platform, this platform is equipped
with a differential amplifier. This amplifier, presented in [13],
is capable of sensing high-frequency, high-voltage signals,
with a high bandwidth (2 MHz) and very good common-mode
rejection (−60 dB at 1000 V/µs). The circuit is displayed
in Fig. 4. The inputs (+ for the non-inverting input, and−
for the inverting input) are first scaled down by a resistive-
capacitive voltage divider. Both the input resistor network and
the input capacitor network are trimmable, in order to allow
fine tuning of the low-frequency and high-frequency gain. A
high bandwidth of the amplifier with a constant gain up to
high frequencies is only achieved when the time constants of
the resistor-capacitor networks match

R2 · C1 = (R3 + R4) · (C2 + C3) . (4)

In that case the pole and the zero of the input voltage divider
are cancelled, and the bandwidth of the amplifier is limited by
the time constant ofR1 with C1.

In order to obtain a high common mode rejection, both
networks{R1−R4/C1−C3} and {R1′ −R4′/C1′ −C3′}

must have the same characteristics, which can be achieved
by adjusting the trimmable resistorR3′ and the trimmable
capacitorC3′.

After the first division of the inverting and the non-inverting
input, the differential signal is send towards an output ampli-
fier, which determinates the gain of the total amplifier by the
choice of the ratioR7

R8 = R7′

R8′ .

IV. FAULT PROTECTIONCIRCUIT

As the platform is intended to be used for educational
purposes or for experimental verification of new control strate-
gies in research environments, some important overloads or
short circuits can be expected to occur during the use of this
platform. These errors could be caused by unintentional short
circuits, errors in the implemented control algorithm, or wrong
connections in the setup of the converter. Therefore, to guaran-
tee safe operation of the platform under these conditions, a full
fault protection system was elaborated. This system will shut
down the converter when one of the protected quantities, the
currentisw through thevsw -connector, the currentig through
the 0V-connector, the bus voltagevbus, and the temperature
of the switches, exceeds its threshold. Except for the switch
temperature, all thresholds are programmable. The excess of
one threshold will clear the protection signalEXTPROT (the
output of a flip-flop), thus inhibiting further switching of the
converter, see Fig. 5. When all quantities have returned into
their safe operation ranges, the platform can be restarted by
means of a push button or remotely by an external trigger
signal (EXTRESET).

For applications where several modules are interconnected,
the platform offers the option to connect the protection signal
(EXTPROT) to the protection system of other modules. Hence,
each block will stop switching when an error occurs in one
of the interconnected blocks. Nevertheless, in order to allow
startup of the entire system, the external protection system
cannot trigger the protection signal of the block.
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Fig. 5. Schematic representation of the fault protection circuit of the test
platform

V. SUPPLY OF THEPERIPHERAL EQUIPMENT

For the sensing, amplification and protection systems, and
for the supply of the gate drive circuits, the platform requires
a dual±15 V supply voltage. From this main supply voltage,
several voltage levels are derived on-board:

±15 V: is used for the supply of all operational amplifiers
on the platform and for the comparators used for
the fault protection

15 V: is decoupled from the first15 V to supply the low
side gate drive.

12 V: is required to supply the high side gate drive with
an isolated NME1215 DC-DC converter.

5 V: is required for the supply of the current transducer.
±5 V: (or ±3.3 V): supplies all logic components required

for the fault protection circuit, and for the control
signals of the analog switches of the integrating
circuit.

The choice between±5 V and ±3.3 V depends on the
operating voltages of the controller. Since a lot of new digital
signal processors (DSPs), such as ADSP2199X of Analog
Devices or TMS320C2XX of Texas Instruments, use a3.3 V
interface, instead of5 V for older DSPs such as the ADMC401
of Analog Devices, all logic components interfacing with
the DSP should be supplied either with3.3 V or with 5
V. Therefore, an on-board, adjustable voltage regulator is
provided, allowing to choose the voltages according to the
requirements of the controller.

VI. EXPERIMENTAL RESULTS

A. Example topology: boost converter based upon one plat-
form

The platform was tested using a boost topology, see Fig. 6,
with following parameters

inductance L = 1mH, input voltage Vin = 200V,

capacitance C = 470µF, load R = 720Ω,

switching
frequency

fs = 50kHz, duty-ratio D = 0.5.

(5)
The key converter waveforms are shown in Fig. 7. The upper
trace shows the switch voltage measured by the differential

Fig. 6. Topology of a boost converter based upon the test platform

5us/divCH3=200mV CH4=500mV

Fig. 7. Waveforms of the test platform employed as boost converter, upper
trace: switch voltage sensed by the differential amplifier, lower trace: inductor
current measurement

amplifier provided on the platform, while the lower trace
depicts the inductor current, sensed by the current transducer
of the platform.

B. Testing of the peripheral equipment

In Fig. 7, some experimental waveforms of the measurement
equipment, the differential amplifier and the switch current
measurement, were already shown. The operation of the dif-
ferential amplifier and the integration of the switch voltage
are demonstrated in Fig. 8. The two upper curves show the
response of the differential amplifier to a typical switching
waveform of a converter, a square wave with an amplitude of
390 V and a switching frequency of50 kHz. The choices for
the passive components (Fig. 4) are

R1 = 2.7 kΩ R2 = 10 MΩ R3 + R4 = 50 kΩ

C1 = 5 pF R5 = 1 kΩ C2 + C3 = 1 nF

R7 = 2 kΩ R8 = 1 kΩ C4 = 10 pF

(6)

thus leading to a total attenuation by a factor200, which
can be observed on the upper trace of Fig. 8, where the
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Fig. 8. black traces: output of the differential amplifier with a differential
and with a common mode input voltage, gray trace: output of the integrating
circuit

Fig. 9. Topology of the full-bridge buck converter, based upon two platforms

switching voltage was applied as a differential voltage between
the inverting and the non-inverting input of the amplifier. In
order to obtain the center trace, the same square wave was
applied as a common mode voltage to both inputs, yielding
an output signal which can hardly be distinguished from zero,
as a result of the good common mode rejection. The inset
of Fig. 8 shows the same curve, zoomed in to50 mV/div.
The common mode rejection ratio (CMRR) achieved can be
estimated from these curves, yielding−40 dB for a slope of
the applied voltage steps about4000 V/µs.

The lower curve of Fig. 8 displays the output of the
integrating amplifier for the same input voltage:390 V and
50 kHz switching. It reveals a good correspondence with the
theoretical waveforms of Fig. 3: a constant output voltage,
corresponding with the averaged value of the switch voltage.
At the end of each switching period, a sharp peak in this
voltage is observed, which is due to the reset of one of the
capacitors of the integrating circuit.

In order to test the fault protection system of the platform
under the worst fault conditions, the platform is supplied by
a DC-voltage of450 V at its bus capacitor. During the test

200ns/divCH3=80A CH4=5V

Fig. 10. Test of the fault protection circuit. Upper trace: short circuit current,
Lower trace: reaction of theEXTPROT-signal

Fig. 11. The switching commands for the four switches and the theoretical
waveforms of the full-bridge buck converter

both switches are commanded to close simultaneously, thus
causing a short circuit of the bus capacitor and the power
supply. In Fig. 10 the resulting current through the switches
is shown in the upper trace. The current increases rapidly
to reach110 A in 100 ns, after which a constant saturation
current of 70 A is obtained. The reaction of theEXTPROT-
signal is displayed in the lower curve of Fig. 10. This signal
is cleared after a propagation delay of250 ns, causing the
switches to interrupt the short circuit current another300 ns
later. As a result, the short circuit condition will exist for only
600 ns. Under some conditions the slew rate of the measuring
opamps may cause an extra delay in the fault protection
path, and the total short circuit time may be prolonged to
1 µs. Since most commercially available switches,MOSFETs or
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Fig. 12. Photograph of the full-bridge converter, based upon two platforms

5us/divCH1=200V CH4=200mV

Fig. 13. Experimental waveforms of the full-bridge buck converter. Upper
trace: output voltage. Lower trace: output current measurement

IGBTs, withstand a short circuit duration of10 µs, the switches
are protected in time and the platform will not be damaged.
Similar experiments have been performed to test the other fault
protections, all leading to safe operation of the platform under
fault conditions.

C. Example topology: full-bridge buck converter

As second example topology, two platforms were build to-
gether to implement a full-bridge buck converter. The topology
is depicted in Fig. 9, while a photograph of the setup is shown
in Fig. 12. The switching commands for the four switches
of the converter are displayed in Fig. 11 together with the
theoretical waveforms of the converter, the voltage between
the two switching terminals of the platforms and the inductor
current of the converter.

The parameters of this experimental converter are
inductance L = 11mH, input voltage Vin = 300V,

capacitance C = 470µF, load R = 32Ω,

switching
frequency

fs = 50kHz, duty-ratio
D1 = 0.7
D3 = 0.3

(7)
The experimental waveforms are depicted in Fig. 13. The
upper trace shows the output voltage of the buck converter,
which is the voltage between thevsw -terminals of both plat-
forms. The switching patterns of Fig. 11 causes the output
voltage to switch between±300 V. The resulting output
current, measured by the current transducer of one platform, is
represented by the lower trace of Fig. 13. The average output
current is3.75 A, corresponding to640 mV at the output of
the amplifiers.

VII. C ONCLUSION

With the advent of high performance digital controllers, the
time and effort to implement new control algorithms for the
control of power electronic converters have decreased drasti-
cally. Nevertheless, the design and the practical implementa-
tion of power electronic converters, intended for testing new
control algorithms, are still complicated and time consuming
activities. Therefore, a fully equipped half bridge test platform
was designed ready to use as a fundamental building block
for various converter types. The test platform incorporates
fault protection, measurements of well-selected voltages and
currents, and is directly interfacable with most digital and
analog controllers. Due to these features and the flexibility of
the board, this half bridge converter can be used for research
as well as for educational purposes in applications ranging
from a simple100 W buck converter up to10 kW inverters
for motor control.

After a detailed description of the several peripheral equip-
ment which is integrated in the platform, this platform is
demonstrated in this paper by means of some basic converter
topologies, the half bridge boost converter and the full bridge
buck converter.
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