20 research outputs found

    Efficient Continuous-Time Sigma-Delta Converters for High Frequency Applications

    Full text link
    Over the years Continuous-Time (CT) Sigma-Delta (ΣΔ) modulators have received a lot of attention due to their ability to efficiently digitize a variety of signals, and suitability for many different applications. Because of their tolerance to component mismatch, the easy to drive input structure, as well as intrinsic anti-aliasing filtering and noise shaping abilities, CTΣΔ modulators have become one of the most popular data-converter type for high dynamic range and moderate/wide bandwidth. This trend is the result of faster CMOS technologies along with design innovations such as better architectures and faster amplifiers. In other words, CTΣΔ modulators are starting to offer the best of both worlds, with high resolution and high bandwidth. This dissertation focuses on the bandwidth and resolution of CTΣΔ modulators. The goal of this research is to use the noise shaping benefits of CTΣΔ modulators for different wireless applications, while achieving high resolution and/or wide bandwidth. For this purpose, this research focuses on two different application areas that demand speed and resolution. These are a low-noise high-resolution time-to-digital converter (TDC), ideal for digital phase lock loops (PLL), and a very high-speed, wide-bandwidth CTΣΔ modulator for wireless communication. The first part of this dissertation presents a new noise shaping time-to-digital converter, based on a CTΣΔ modulator. This is intended to reduce the in-band phase noise of a high frequency digital phase lock loop (PLL) without reducing its loop bandwidth. To prove the effectiveness of the proposed TDC, 30GHz and a 40GHz fractional-N digital PLL are designed as a signal sources for a 240GHz FMCW radar system. Both prototypes are fabricated in a 65nm CMOS process. The standalone TDC achieves 81dB dynamic range and 13.2 equivalent number of bits (ENOB) with 176fs integrated-rms noise from 1MHz bandwidth. The in-band phase noise of the 30GHz digital fractional-N PLL is measured as -87dBc/Hz at a 100kHz offset which is equivalent to -212.6dBc/Hz2 normalized in-band phase noise. The second part of this dissertation focuses on high-speed (GS/s) CTΣΔ modulators for wireless communication, and introduces a new time-interleaved reference data weighted averaging (TI-RDWA) architecture suitable for GS/s CTΣΔ modulators. This new architecture shapes the digital-to-analog converter (DAC) mismatch effects in a CTΣΔ modulator at GS/s operating speeds. It allows us to use smaller DAC unit sizes to reduce area and power consumption for the same bandwidth. The prototype 5GS/s CTΣΔ modulator with TI-RDWA is fabricated in 40nm CMOS and it achieves 156MHz bandwidth, 70dB dynamic range, 84dB SFDR and a Schreier FoM of 158.3dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138763/1/bdayanik_1.pd

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Design of a Digital Temperature Sensor based on Thermal Diffusivity in a Nanoscale CMOS Technology

    Get PDF
    Temperature sensors are widely used in microprocessors to monitor on-chip temperature gradients and hot-spots, which are known to negatively impact reliability. Such sensors should be small to facilitate floor planning, fast to track millisecond thermal transients, and easy to trim to reduce the associated costs. Recently, it has been shown that thermal diffusivity (TD) sensors can meet these requirements. These sensors operate by digitalizing the temperature-dependent delay associated with the diffusion of heat pulses through an electro-thermal filter (ETF), which, in standard CMOS, can be readily implemented as a resistive heater surrounded by a thermopile. Unlike BJT-based temperature sensors, their accuracy actually improves with CMOS scaling, since it is mainly limited by the accuracy of the heather/thermopile spacing. In this work is presented the electrical design of an highly digital TD sensor in 0.13 µm CMOS with an accuracy better than 1 ºC resolution at with 1 kS/s sampling rate, and which compares favourably to state-of-the-art sensors with similar accuracy and sampling rates [1][2][3][4]. This advance is mainly enabled by the adoption of a highly digital CCO-based phasedomain ΔΣ ADC. The TD sensor presented consists of an ETF, a transconductance stage, a current-controlled oscillator (CCO) and a 6 bit digital counter. In order to be easily ported to nanoscale CMOS technologies, it is proposed to use a sigmadelta modulator based on a CCO as an alternative to traditional modulators. And since 70% of the sensor’s area is occupied by digital circuitry, porting the sensor to latest CMOS technologies process should reduce substantially the occupied die area, and thus reduce significantly the total sensor area

    Current-mode processing based Temperature-to-Digital Converters for MEMS applications

    Get PDF
    This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results.This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results
    corecore