514 research outputs found

    A Wide Area Bipolar Cascade Resonant Cavity Light Emitting Diode for a Hybrid Range-Intensity

    Get PDF
    This dissertation focused on the development of an illuminator for the HRIS. This illuminator enables faster image rendering and reduces the potential of errors in return signal data, that could be generated from extremely rough terrain. Four major achievements resulted from this work, which advance the field of 3-D image acquisition. The first is that the TJ is an effective current spreading layer for LEDs with mesa width up to 140 micrometers and current densities of approximately 1 x 106 Amp/square centimeter. The TJ allows fabrication of an efficient illuminator, with required geometry for the HRIS to operate as a real-time 3-D imaging system. Secondly, a design for a Bipolar Cascade-Resonant Cavity Light Emitting Diode (BC-RCLED) has been accomplished, that will illuminate the FOV of the hybrid-ranged intensity system with a single sweep of the beam. This device is capable of producing approximately 330 milliWatts of output power. Additionally, from this work, key parameters for HRIS design were identified. Using a collection optic with a 15 centimeters diameter, an HRIS mounting height of 1.5 meters, and a detector integration time of 330 milliseconds, a SNR of 20 decibels was achieved. Lastly, we demonstrated that the BC-RCLED designed for the HRIS can deliver sufficient energy to produce the required SNR. Also, through parametric analysis, we determined that a system trade-off, between the collection optic diameter, and the integration time, results in an increase in the SNR from 20 to nearly 50, or extending the operational range from 50 to nearly 130 meters

    Multimodal Range Image Segmentation

    Get PDF

    3D Modelling from Real Data

    Get PDF
    The genesis of a 3D model has basically two definitely different paths. Firstly we can consider the CAD generated models, where the shape is defined according to a user drawing action, operating with different mathematical “bricks” like B-Splines, NURBS or subdivision surfaces (mathematical CAD modelling), or directly drawing small polygonal planar facets in space, approximating with them complex free form shapes (polygonal CAD modelling). This approach can be used for both ideal elements (a project, a fantasy shape in the mind of a designer, a 3D cartoon, etc.) or for real objects. In the latter case the object has to be first surveyed in order to generate a drawing coherent with the real stuff. If the surveying process is not only a rough acquisition of simple distances with a substantial amount of manual drawing, a scene can be modelled in 3D by capturing with a digital instrument many points of its geometrical features and connecting them by polygons to produce a 3D result similar to a polygonal CAD model, with the difference that the shape generated is in this case an accurate 3D acquisition of a real object (reality-based polygonal modelling). Considering only device operating on the ground, 3D capturing techniques for the generation of reality-based 3D models may span from passive sensors and image data (Remondino and El-Hakim, 2006), optical active sensors and range data (Blais, 2004; Shan & Toth, 2008; Vosselman and Maas, 2010), classical surveying (e.g. total stations or Global Navigation Satellite System - GNSS), 2D maps (Yin et al., 2009) or an integration of the aforementioned methods (Stumpfel et al., 2003; Guidi et al., 2003; Beraldin, 2004; Stamos et al., 2008; Guidi et al., 2009a; Remondino et al., 2009; Callieri et al., 2011). The choice depends on the required resolution and accuracy, object dimensions, location constraints, instrument’s portability and usability, surface characteristics, working team experience, project’s budget, final goal, etc. Although aware of the potentialities of the image-based approach and its recent developments in automated and dense image matching for non-expert the easy usability and reliability of optical active sensors in acquiring 3D data is generally a good motivation to decline image-based approaches. Moreover the great advantage of active sensors is the fact that they deliver immediately dense and detailed 3D point clouds, whose coordinate are metrically defined. On the other hand image data require some processing and a mathematical formulation to transform the two-dimensional image measurements into metric three-dimensional coordinates. Image-based modelling techniques (mainly photogrammetry and computer vision) are generally preferred in cases of monuments or architectures with regular geometric shapes, low budget projects, good experience of the working team, time or location constraints for the data acquisition and processing. This chapter is intended as an updated review of reality-based 3D modelling in terrestrial applications, with the different categories of 3D sensing devices and the related data processing pipelines

    Material Recognition Meets 3D Reconstruction : Novel Tools for Efficient, Automatic Acquisition Systems

    Get PDF
    For decades, the accurate acquisition of geometry and reflectance properties has represented one of the major objectives in computer vision and computer graphics with many applications in industry, entertainment and cultural heritage. Reproducing even the finest details of surface geometry and surface reflectance has become a ubiquitous prerequisite in visual prototyping, advertisement or digital preservation of objects. However, today's acquisition methods are typically designed for only a rather small range of material types. Furthermore, there is still a lack of accurate reconstruction methods for objects with a more complex surface reflectance behavior beyond diffuse reflectance. In addition to accurate acquisition techniques, the demand for creating large quantities of digital contents also pushes the focus towards fully automatic and highly efficient solutions that allow for masses of objects to be acquired as fast as possible. This thesis is dedicated to the investigation of basic components that allow an efficient, automatic acquisition process. We argue that such an efficient, automatic acquisition can be realized when material recognition "meets" 3D reconstruction and we will demonstrate that reliably recognizing the materials of the considered object allows a more efficient geometry acquisition. Therefore, the main objectives of this thesis are given by the development of novel, robust geometry acquisition techniques for surface materials beyond diffuse surface reflectance, and the development of novel, robust techniques for material recognition. In the context of 3D geometry acquisition, we introduce an improvement of structured light systems, which are capable of robustly acquiring objects ranging from diffuse surface reflectance to even specular surface reflectance with a sufficient diffuse component. We demonstrate that the resolution of the reconstruction can be increased significantly for multi-camera, multi-projector structured light systems by using overlappings of patterns that have been projected under different projector poses. As the reconstructions obtained by applying such triangulation-based techniques still contain high-frequency noise due to inaccurately localized correspondences established for images acquired under different viewpoints, we furthermore introduce a novel geometry acquisition technique that complements the structured light system with additional photometric normals and results in significantly more accurate reconstructions. In addition, we also present a novel method to acquire the 3D shape of mirroring objects with complex surface geometry. The aforementioned investigations on 3D reconstruction are accompanied by the development of novel tools for reliable material recognition which can be used in an initial step to recognize the present surface materials and, hence, to efficiently select the subsequently applied appropriate acquisition techniques based on these classified materials. In the scope of this thesis, we therefore focus on material recognition for scenarios with controlled illumination as given in lab environments as well as scenarios with natural illumination that are given in photographs of typical daily life scenes. Finally, based on the techniques developed in this thesis, we provide novel concepts towards efficient, automatic acquisition systems

    Structure from motion using omni-directional vision and certainty grids

    Get PDF
    This thesis describes a method to create local maps from an omni-directional vision system (ODVS) mounted on a mobile robot. Range finding is performed by a structure-from-motion method, which recovers the three-dimensional position of objects in the environment from omni-directional images. This leads to map-making, which is accomplished using certainty grids to fuse information from multiple readings into a two-dimensional world model. The system is demonstrated both on noise-free data from a custom-built simulator and on real data from an omni-directional vision system on-board a mobile robot. Finally, to account for the particular error characteristics of a real omni-directional vision sensor, a new sensor model for the certainty grid framework is also created and compared to the traditional sonar sensor model
    • …
    corecore