
STRUCTURE FROM MOTION USING OMNI-DIRECTIONAL

VISION AND CERTAINTY GRIDS

A Thesis

by

STEVEN REY ORTIZ

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2004

Major Subject: Computer Science



STRUCTURE FROM MOTION USING OMNI-DIRECTIONAL

VISION AND CERTAINTY GRIDS

A Thesis

by

STEVEN REY ORTIZ

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Ricardo Gutierrez-Osuna
(Chair of Committee)

Nancy Amato
(Member)

Reza Langari
(Member)

Valerie Taylor
(Head of Department)

August 2004

Major Subject: Computer Science



iii

ABSTRACT

Structure From Motion Using Omni-directional

Vision and Certainty Grids. (August 2004)

Steven Rey Ortiz, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ricardo Gutierrez-Osuna

This thesis describes a method to create local maps from an omni-directional vi-

sion system (ODVS) mounted on a mobile robot. Range finding is performed by a

structure-from-motion method, which recovers the three-dimensional position of ob-

jects in the environment from omni-directional images. This leads to map-making,

which is accomplished using certainty grids to fuse information from multiple readings

into a two-dimensional world model. The system is demonstrated both on noise-free

data from a custom-built simulator and on real data from an omni-directional vision

system on-board a mobile robot. Finally, to account for the particular error charac-

teristics of a real omni-directional vision sensor, a new sensor model for the certainty

grid framework is also created and compared to the traditional sonar sensor model.
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CHAPTER I

INTRODUCTION

Navigation is a critical ability for any robot that claims to be mobile [5]. Unfortu-

nately, navigation is also one of the most difficult functions for a robot to perform,

as recently demonstrated during the DARPA Grand Challenge, a race where teams

competed to develop the first autonomous vehicle to navigate the rugged 142 mile

course across the Mojave desert in fewer than 10 hours, using only on-board sensors

and maps. This was the first year of the competition which was designed to push

unmanned vehicle technology forward, and the difficulties of navigation were under-

scored when none of the 14 autonomous vehicles completed more than 7 miles of the

course [6]. Navigation is also the primary reason for map making. Although it is

possible for robots to navigate without maps, using a reactive control paradigm [7, 8]

or topological path planning [9, 10], many mobile robots rely upon maps for localiza-

tion and path planning. Therefore, map making is still an important component in

mobile robotics research.

This research centers on a novel method of map-making that combines omni-

directional vision, structure from motion, and certainty grids [11, 4]. Each of these

topics are covered in separate chapters of this thesis, but first the reader is presented

with background material on other range finding methods, the distinction between

stereo vision versus structure from motion, a review of related research, and a brief

description of the remaining chapters.

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Specular reflection problem

A. Range Finding

To create a map, a robot must be able to determine the distance between itself and

an obstacle. This is known as range finding. Generally, range finders are based on

either ultrasonics or electromagnetic irradiation [12]. Ultrasonic transducers (sonar)

have traditionally been used as an inexpensive and simple means of range finding.

Most operate by measuring the time-of-flight for a pulse of high-frequency ultrasound

to travel from an emitter to an obstacle and back to its receiver. However, there

are several drawbacks to sonar. Its detection cone is usually too wide to achieve

high-resolution maps. Sonar is also susceptible to specular reflections, a problem that

occurs when the ultrasound returns via an indirect path. Oftentimes, when at shallow

angles of incidence, a pulse will reflect away from the receiver and either never return,

or return after contacting a more distant obstacle, as shown in Fig. 1 [13]. In either

case, the sensor incorrectly reports a clear path where there is actually an obstacle.

Lastly, since sonar is an active sensor, it interferes with other sonar (crosstalk), which

can become a problem in multi-robot scenarios [14].

Similar to sonar, some light-based range finders measure time-of-flight of a laser

beam [15]. However, the speed of light is roughly 3.0 × 108 m/s, so the time mea-

surements must be extremely accurate to recover useful distance measurements. This
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Fig. 2. Active triangulation method

accuracy is possible using the same time spectroscopy technique often used in nuclear

physics [16]. However, the specialized equipment to measure time disparity causes the

sensor to be significantly more expensive [17]. Despite the high price tag, the better

accuracy and finer resolution of time-of-flight laser rangefinders have made them the

de-facto standard for high-end mobile robot platforms [18].

Rather than measuring time-of-flight, light can also be used to recover distance

by active triangulation [19]. In this method, a light stripe is produced from one

position and a camera views the stripe from a separate position, as shown in Fig.

2. The distance to obstacles can be calculated based on the position of the stripe

in the camera image. This is one of the earliest light-based techniques and achieves

good results, the accuracy of which depends mostly upon the disparity between the

camera and the light source. Unfortunately, this is also an active sensor, and will

cause interference in a multi-robot scenario.
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CAMERA 1

CAMERA 2

OBJECT BEING

TRACKED

(a) camera views are side-by-

side, in a typical stereo vision ar-
rangement

CAMERA 1 CAMERA 2

OBJECT BEING

TRACKED

(b) camera views are collinear, which is only

possible using a structure-from-motion method

Fig. 3. Passive triangulation method: shows the triangle geometry formed by the ob-

ject being tracked and two camera positions

B. Stereo Vision vs. Structure From Motion

Light can also be used to recover distance by passive triangulation. There are two vi-

sion based methods for recovering three-dimensional data: stereo vision and structure

from motion [20], both of which lead to the same geometrical relationships. However,

stereo vision relies upon spatial information between two cameras, while structure

from motion uses temporal information within a monocular sequence of images. Both

methods result in two images from different camera positions. Correspondence is es-

tablished between these images, and the distance to objects is calculated at each

point of correspondence using triangulation [21]. Fig. 3 shows the geometrical rela-

tionships typical of stereo vision and structure-from-motion scenarios. Most stereo

vision methods are configured within the binocular arrangement shown in Fig. 3(a),

while structure-from-motion methods can use any arrangement of camera positions.

The configuration shown on Fig. 3(b) would be typical of a time-to-impact sensor,

where the optical flow field produced by the camera is directly used to estimate the
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time until impact with an obstacle [22]. To better understand structure from motion,

imagine driving down a highway while looking out the side window. Objects closer

to the car, such as traffic signs, appear to pass by quickly, while objects further away,

like mountains or buildings, appear to move more slowly within the image plane. This

phenomenon, where the perceived motion of objects across the field of view provides

depth cues, is called motion parallax [23]. Structure from motion has some benefits

over stereo vision. Since structure from motion requires only one camera, it can be

less expensive to implement. Also, it is possible to compare multiple images from

many positions and report the average distance, which may produce more robust

results. However, there are also some drawbacks to using structure from motion.

The implicit assumption that the scene does not change from one image to the next

may not be valid, producing erroneous distance measurements for objects in motion.

Furthermore, the distance to points near the line connecting one viewpoint to the

next cannot be measured well because there is little change in that region as the

camera moves. Therefore, a mobile robot relying upon structure from motion has

poor information about obstacles along the line of travel, which is usually the area of

highest concern to perform obstacle avoidance. For these reasons, there is a trend in

computer vision to combine methods, using both structure from motion and stereo

vision [24].

C. Literature Review

Omni-directional vision is a popular research area, with many different groups having

completed a variety of studies in this field [25]. A number of studies have used indi-

vidual omni-directional images to extract useful structure. Clérentin et al. [26] used

a method of active triangulation to find the distance to objects using a laser striper
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and an ODVS. In their study, they found the omni-directional active triangulation

method to produce excellent results that were better suited to segmentation than

sonar data. Sekimori et al. [27] used an ODVS to distinguish between floor regions

and other objects. By focusing solely on open floor space, the distance to objects

was directly proportional to the amount of floor region visible in that direction. This

made obstacle avoidance fast and reliable.

Yagi et al. [28] developed an omni-directional image sensor called COPIS (conic

projection image sensor), and used it on a mobile robot for collision avoidance with

either static or moving objects. COPIS determines the direction of the relative ve-

locity between the robot and an object rather than determining the object’s location

relative to the robot. Since the conic mirror does not have a single viewpoint (refer

to chapter II for further details) it is rarely used for triangulation or map-making,

but knowing the relative direction of nearby obstacles provides sufficient information

for collision avoidance, as demonstrated.

Winters et al. [29] used a spherical ODVS mounted high atop a Labmate mobile

robot. This provided a “bird’s eye view,” which was used for topological navigation

and visual path planning. In order to perform topological navigation, nodes of the

topological map were constructed using Principal Components Analysis [30]. The

robot traveled between nodes using a corridor-following behavior. To accomplish

visual path planning, the robot used a closed-loop control to travel a specified course

relative to known landmarks whose relative position and orientation were visible from

the camera.

Stratmann [31] compared four methods of calculating optical flow on omni-

directional images taken on a mobile robot: Anandan [32], Horn and Schunck [33],

Lucas and Kanade [34], and Fleet and Jepson [35]. Stratmann compared the opti-

cal flow field produced by each method and qualitatively concluded that the Fleet
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FOCFOE

(a) (b)

Fig. 4. Motion fields projected onto a sphere for (a) translation and (b) rotation (from

[1]). Although the planar flow fields are nearly identical, the spherical flow

fields are completely different, which illustrates why omni-directional cameras

are more useful for extracting egomotion. Note the translational motion (a)

results in a focus of expansion (FOE) and a focus of contraction (FOC) while

purely rotational motion (b) has neither.

and Jepson method [35] produced the most accurate results, followed closely by the

Lucas-Kanade method, and then the Horn-Schunck method. The Anandan method

performed too poorly to produce a useful optical flow field. Although the Fleet and

Jepson method performed the best, this method required large amounts of computa-

tion time and is not suited for real-time robotic applications. Stratmann’s research

did not employ any feature selection process, which could have improved the results

of the Lucas-Kanade method in particular.

Fig. 4 illustrates why omni-directional vision systems are more capable of cal-

culating ego-motion than conventional cameras. This is primarily due to their 360-

degree horizontal field of view, which usually contains both the focus of expansion

(FOE) and the focus of contraction (FOC) inside a single image. The FOE is the

point from which the image appears to flow outward, and similarly, the FOC is the

point into which the image appears to flow. Gluckman and Nayar [1], as well as Vas-
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sallo, Santos-Victor and Schneebeli [36], used omni-directional cameras to calculate

ego-motion from the position of the FOE and FOC. The first step was to find the

optical flow field, for which both studies employed the Lucas-Kanade method [34].

The motion field was then mapped to a unit sphere. Finally, the rotation and the

direction of translation was calculated by one of several methods: Bruss and Horn

[37], Zhuang et. al. [38], or Jepson and Heeger [39]. From Gluckman and Nayar’s

comparison of these three methods, it appears that the iterative non-linear minimiza-

tion method by Bruss-Horn is the most accurate and stable method. An interesting

parallel between their research and the one presented in this thesis is that the Bruss-

Horn method actually removes the depth dependence of the motion field, while the

aim of this work was to recover depth.

Zhang and Blum [40] studied a system of two stationary omni-directional cameras

in a surveillance application. Specifically, they registered portions of the images and

used triangulation to extract the 3-D coordinates of the registered object. They

observed that this technique suffered from large estimation errors when the registered

object was nearly aligned with the two cameras, and when the registered object was

far away. Their result supports the findings of this research, as well as the proposed

sensor model for the certainty grid method, which will be presented in chapter V,

section B.

Kawasaki et al. [2] mounted an omni-directional video camera onto a vehicle, and

recorded video as the vehicle traveled in a straight line and at a constant speed. They

repeated this experiment with both a parabaloidal and hyperboloidal mirror, and

created a spatio-temporal volume by stacking the omni-directional images together

as shown in Fig. 5. To greatly improve the three-dimensional information recovery,

they combined the structure-from-motion method with a two-dimensional map of

the city. Although their results are impressive, this technique is, unfortunately, not
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Fig. 5. Radial cross section of spatio-temporal volume (from [2])

suitable for a real-time mobile robot navigating in an unknown environment.

Chang and Hebert [41] used a single omni-directional camera to extract structure

from motion, and compared their results to that of a conventional camera extracting

structure from motion. Their results indicate that the wide field of view provided by

the omni-directional camera generally leads to superior results. Their experimental

setup and goals are the most similar to those of this thesis, but their findings left much

room for exploration. The research in this thesis also differs significantly because it

automatically finds and registers good features, then uses that information to build

a local map that accounts for problems particular to this sensor.

This concludes the survey of research relevant to work that was done for this

thesis. The best knowledge indicates that no other research in the field has explored

the combination of omni-directional vision, structure from motion and certainty grids.

Certainly, the work of all those mentioned above, as well as the work of many others,
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has made this exploration possible, and this research owes much to their contributions.

D. Thesis Organization

Having covered range finding, stereo vision versus structure from motion, and related

research, this now concludes the introduction. The next three chapters of the thesis

are focused on the specific components upon which this research builds, namely omni-

directional vision, structure from motion, and certainty grids. Chapter V describes the

specific method used by this research of combining omni-directional vision, structure

from motion, and certainty grids. Chapter VI presents the experimental results, and

finally chapter VII provides a discussion of conclusions and future work.
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CHAPTER II

OMNI-DIRECTIONAL VISION

Since a conventional camera has a limited field of view, the designer must carefully

consider to which direction the camera should point point. The most useful informa-

tion for obstacle avoidance is directly ahead, but the sensor performs best when facing

to the side. To overcome this difficulty, an omni-directional vision system is used to

provide a complete 360-degree hemispheric view, allowing both directions perpendic-

ular to the motion, as well as the forward and backward views, to be captured on a

single image [42].

Although truly omni-directional vision systems provide a spherical 360-degree

field of view, the term omni-directional vision is also used in reference to cylindrical,

wide-angle and hemispheric imaging [43]. An omni-directional view field can be ob-

tained with several techniques, which include (1) mosaicing from multiple cameras,

(2) mosaicing from a single rotating camera, (3) using a wide-angle fish-eye lens,

and (4) imaging the scene through a combination of mirrors and lenses, a technique

known as catadioptrics [44]. Of these four techniques, the catadioptric system using

a single camera is most commonly used in omni-directional vision research because of

its large hemispherical viewing area and relatively straightforward implementation.

Several examples of such systems are shown in Fig. 6.

A. Catadioptric Vision Systems

In a catadioptric vision system, light is emitted from objects in the world, reflected by

a mirror, refracted by one or more lenses, and finally measured by an imaging device.

The refraction and measurement is performed by the camera system. Specifically, the

lens of the camera gathers light from particular directions, and the imaging sensor
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As discussed here, the ODVS which can take ODIs has

several advantages against the previous vision sensors, but it has also

two major demerits, the low resolution and the requirement of a wide
dynamic range. With current CCD sensors, it is difficult to obtain

high resolution ODIs and its dynamic range is not so wide. We need

to improve the CCD itself.

2.2 Omnidirectional images

The history
The origin of the methods to acquire the ODIs was a panoramic

camera which takes omnidirectional photographs though a slit filter

attached in the front of the camera lens while swiveling the camera.

Zheng and Tsuji [14] used this idea with a CCD camera. The image
obtained by arranging image data along a vertical line on the image

center is called Panoramic Image. They analyzed the features of the

panoramic images and proposed applications for mobile robot

navigation. When the camera moves along a circular path in the

method for acquiring panoramic images, an ODI is obtained. The
ODIs is a cylindrical projection and it can contains precise angular

information if the camera precisely moves.

Early studies on the ODIs were mainly done by Nelson,

Zheng and Ishiguro. Zheng and others [14] proposed a Circular

Dynamic Programming for identifying features between two ODIs.
The circular dynamic programming robustly finds correspondences

by iterating a conventional dynamic programming method based on

the periodicity of the ODIs. Ishiguro and others [3] proposed two

types of Omnidirectional Stereo. By rotating a camera along a

circular path, motion pallarax is observed by tracking feature points
on the image plane and omnidirectional range information can be

obtained. This stereo method does not have any blind spots outside

the circular path. Another stereo is realized with two ODIs taken at

different locations. Although the method using two ODIs has a
problem of feature identification, it can obtain more precise

omnidirectional range information.

The optical flow field
The flow field of ODIs is also interesting properties. Nelson and

others [8] analyzed the flow field of the Gauss sphere retina and
proposed methods to estimate camera motion parameters. On the

other hand, Ishiguro and others focused upon just the FOEs and

proposed methods to precisely navigate mobile robots [3] and to

estimate robot motion parameters [4] based on the important feature

of the ODIs that two FOEs, FOE and FOC, are observed in the flow
field and the angle between them is 180 degrees.

The periodicity
An ODI is a periodical signal around the rotation axis. That is,

Fourier transform of the ODI does not require window functions.

This means the transform is precise and efficient data compression is
enable for the ODIs. By Fourier transform, an ODI is divided into

magnitude components and phase components. The magnitude and

phase components depend on location of the ODVS and the direction

of the reference axis of the ODVS, respectively.
Based on the magnitude and phase components, mobile robot

navigation that does not refer to the internal sensor data can be

realized [5]. First, the robot moves randomly in the environment and

takes ODIs at various locations. Then, it executes Fourier transform

for the ODIs and divides them into magnitude and phase components.
By comparing the magnitude components of the ODIs, positions

where the ODIs are taken can be estimated. The positions cannot be

precisely estimated but it is topologically correct. The map that

represents the topological positions of the observation points can be
used for the robot navigation. Here, in order to use the map, the robot

needs to know the its direction against the environment. The

direction can be estimated from the phase components of the ODIs.

That is, the robot can memorize locations as a map and navigate

itself by using it only with the ODVS.
 

3 Designs of ODVSs

An ODVS is consists of two major components, a mirror which is

symmetrical on rotation and an apparatus which supports the mirror.

This section discusses merits and demerits on various designs of the

two major components of previously developed ODVSs

3.1 Designs of mirrors

There are four types of the previously developed mirrors as shown in

Figs. 1. Merits and demerits of the mirrors can be discussed from the

following aspects:

Whether the mirror can generate an ODI which has a single

center of projection (The ODI can be transformed to normal

perspective images).
• How small the astigmatism of the optical system consisting of

the mirror and a camera is.

• Whether the optical system uses a standard lens and camera.

• How large the vertical viewing angle is.

Spherical mirror
Generally, mirrors are made by depositing aluminum film onto a

shaped glass. An important issue in the machining is how easy it is to

process the glass. A normal lens is a part of a spherical glass,

therefore it is easy to make spherical mirrors with the conventional
lens process.

In addition to the merit in the machining, another important

merit of the spherical mirror is the astigmatism. Comparing with

other mirrors as shown in Figs. 1, the astigmatism is rather small

since it can be considered as a flat surface near the optical axis of the
camera (of course, it is not small in the peripheral). Further, as

discussed in the next section, the spherical mirror does not require a

long focal depth for acquiring a focused image. That is, the spherical

mirror is superior to making low cost ODVSs which can acquire

(a) Conic mirror

(b) Spherical  mirror (c) Hyperboloidal mirror (d) Parabol la mirr or

Telecentric 

lens

Focal point

Focal  point

(a2) (a3)

Telecentric 

lens

Figure 1: Omnidirectional mirrors

Fig. 6. Sample omni-directional mirrors (from [3]): (a) conic (b) spherical (c) hyper-

boloidal (d) paraboloidal
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Fig. 7. Comparison of perspective and orthographic projection models
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Fig. 8. The Law of Reflection, showing the incident angle θi equal to the reflecting
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measures the amount of light energy on each part of of the imaging device which

defines the imaging plane. The manner in which this light is gathered defines the

projection model1. The most familiar projection model is the perspective projection

shown in Fig. 7(a), where every measured ray of light travels through the single

viewpoint, also known as the center of projection. Although most camera systems

have a perspective projection, some cameras use a telecentric lens, which provides an

orthographic projection, as shown in Fig. 7(b). The orthographic projection captures

only those light rays traveling parallel to the centerline of the camera.

Another important consideration is the angle at which incident light rays reflect

from the mirror’s surface. This is defined by the Law of Reflection, which states that

the bisector of the incident ray and the reflecting ray shall be normal to the surface,

as shown in Fig. 8.

From this Law of Reflection, Baker and Nayar [44] showed that only two types

of mirror shapes will result in a practical omni-direcitonal vision system with a sin-

gle viewpoint: a hyperboloidal mirror with a perspective camera and a paraboloidal

mirror with an orthographic camera. These mirror shapes are shown in Fig. 9, along

1The term projection model refers to the projection of light onto the imaging
device.
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single viewpoint

orthographic camera
paraboloidal mirror

perspective camera
hyperboloidal mirror

Fig. 9. Example solutions of the single-viewpoint constraint

with several examples of incident and reflected rays. This single viewpoint simplifies

the structure-from-motion problem since every visible object can be traced back to

this single effective viewpoint, and it is required for the creation of proper perspec-

tive images from an omni-directional image [45]. For this reason, hyperboloidal and

paraboloidal are the most popular shapes, but paraboloidal mirrors have a number

of advantages over hyperboloidal mirrors. The calibration of a paraboloidal mirror

requires just one parameter instead of two; and since it uses an orthographic pro-

jection rather than perspective, the axis of the mirror can be translated arbitrarily,

provided its centerline remains parallel to the orthographic projection. This makes

the calibration and setup of the paraboloidal mirror more straightforward, and so it

was chosen for this research. The tradeoff in selecting a paraboloidal mirror is that

the orthographic projection requires a telecentric lens attachment, which is usually

large and expensive.
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Fig. 10. Conversion from image coordinates to a real-world direction. Note that θ is

the same in both image space and the real-world

B. Equations for a Paraboloidal Mirror

The ODVS integrated for this thesis combines a paraboloidal mirror and lenses to pro-

vide a hemispheric view around the robot and a single viewpoint. For the paraboloidal

mirror, the following equations can be used to convert from any position within the

image to a direction in the real world, as shown in Fig. 10. Note that a different but

equivalent set of equations could be used for a hyperboloidal mirror.

r2 = x2 + y2 (2.1)

θ = tan−1(y/x) (2.2)

z = (h2 − r2)/2h (2.3)

φ = tan−1(r/z) (2.4)
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where x and y are the image-plane coordinates of the pixel, r is the Euclidean distance

of the pixel to the origin, which lies on the central axis of the mirror, z traces the

surface of the paraboloidal mirror, and θ and φ define the direction of the ray in

spherical coordinates. θ is the orientation, ranging from 0 to 360 degrees, and φ is

the pitch, where φ = 0 points straight down and φ = 90 points out to the horizon.

Finally, h is a calibration parameter of the vision system.
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CHAPTER III

STRUCTURE FROM MOTION

For a structure-from-motion technique to work, it must be possible to determine

the perceived motion of objects as the camera moves. This motion is vital to many

computer vision applications, and is commonly referred to as optical flow. In turn, the

problem of calculating optical flow leads to the problem of image registration. Since

optical flow is central to calculating structure from motion, it is carefully examined in

the next section. Then the details of the Lucas and Kanade method [34] are derived

in detail before considering the Kanade-Lucas-Tomasi (KLT) feature tracker [46] that

was used in this research. Finally, the depth by triangulation method is examined to

complete the overview of the structure-from-motion process.

A. Optical Flow

The increased availability of powerful desktop computers has encouraged research in

3D computer vision. As a result, there are now a number of methods for calculating

optical flow, six of which were compared in an authoritative study by Barron et al.

[47]. These six optical flow methods can be grouped into four categories: differential

methods, region-based matching methods, energy-based methods, and phase-based

methods. They will be summarized here with special attention given to differential

methods, to which the Lucas and Kanade method [34] used in this research belongs.

Differential techniques calculate optical flow from the spatiotemporal derivatives

of image intensity. Examples of such techniques include the Horn and Schunck method

[33], the Lucas-Kanade method [34], and the Uras et al. method [48]. These differ-

ential techniques assume that there is a conservation of intensity. In other words, as

the image translates, the pixels remain at the same intensity. This is generally, but
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Fig. 11. Example of image translation, showing the image intensity before and after

a translation of v∆t units, where ∆t is the duration of time between images

and x is a position of the image

not always, a valid assumption. As a counter-example, consider the task of tracking

an object that moved from behind a shadow into direct light. While the shape of

this object is the same, its intensity is brighter in the direct light and so the constant

intensity assumption is not valid in this particular case. Nevertheless, the changes in

position and time are typically small enough so that the constant-intensity constraint

is valid. Fig. 11 illustrates the constant intensity constraint, which is formulated on:

I(x− v∆t, t) = I(x, t + ∆t) (3.1)

where v is the optical flow vector, and I(x, t) is the intensity of the image at position x

and time t. To isolate the optical flow vector v, the first-order Taylor series expansion

of equation (3.1) can be computed:

I(x, t) + (#I(x, t))T (−v∆t) = I(x, t) +
δ

δt
I(x, t)∆t (3.2)

where δ
δtI(x, t) is the derivative of intensity w.r.t. t, and #I(x, t) is the gradient of
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intensity w.r.t. x. After simplification and rearrangement equation (3.2) becomes:

(#I(x, t))T v +
δ

δt
I(x, t) = 0 (3.3)

from which the optimal flow vecton v can be computed.

The Horn and Schunck method and the Lucas and Kanade method both aim to

satisfy the gradient constraint equation (3.3) by best-fitting a uniform optical flow

over a fixed window, in the least-squares case v = argmin[#I(x, t))T v+ δ
δtI(x, t)]2, as

derived in the following section. However, the Horn and Schunck method calculates

optical flow over a time span, and includes an optical flow smoothing term in the

best-fit calculation. Instead, the Lucas and Kanade method is used between just two

frames, but also uses a windowing function to give more influence to the center of

the window. The Uras et al. method is a second-order method, assuming conserva-

tion of #I(x, t), which yields two additional equations. With three equations, the

two unknown components of the optical flow vector can be calculated at any single

point, rather than assuming a uniform optical flow over a window to produce a suffi-

cient number equation. However, second-order derivatives cannot be measured very

accurately and often lead to sparse and less accurate results than first-order methods.

There are several additional techniques for calculating optical flow. The most

intuitive method is the region-based matching technique. This approach simply takes

a window on the first frame and tries to shift it until it best matches the second

frame. One example of a region-based method is the Anandan method [32], which

uses a coarse-to-fine pyramid matching strategy to allow for large shifts but still

converges on the best match without testing every possible shift. There are also

energy-based methods, sometimes referred to as frequency-based methods. Among

those, the method of Heeger [49] determines optical flow using the energy output of

velocity-tuned filters in the Fourier domain. Lastly, there are phase-based methods,
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such as that of Fleet and Jepson [35], where velocity is determined by the phase

behavior of band-pass filter outputs.

In Barron’s study [47], all six of the methods mentioned above were systematically

tested and compared to each other. The most accurate methods were the Lucas-

Kanade method and the Fleet-Jepson method. However, the Fleet-Jepson method is

very computationally demanding because it requires a large number of filters, while

the Lucas-Kanade method is computationally very simple. Due to its simplicity and

accuracy, the Lucas-Kanade method is often the best and most popular method for

calculating optical flow.

B. Lucas and Kanade Method Revisited

For over 20 years, the Lucas-Kanade algorithm has been used to solve the image

registration problem. Image registration can include rotations and deformations in

the image, but in the simplest case, the image registration problem is applied to

matching part of one image onto the corresponding part of another image, where

some small translation has occurred between the two images. Other methods of

solving this problem were discussed in the previous section, but the Lucas-Kanade

method was chosen because of its speed and accuracy.

The reason this algorithm is relatively fast is because it uses an iterative gradient-

based technique similar to a Newton-Raphson root-locating method. The following

example may clarify the rationale behind this method. Imagine being on the side of

a long, tall hill with a reliable Swiss Army Knife Altimeter Plus that displays the

current elevation of 500 feet. The final destination is 600 feet and the hill has a

steady 10% incline, as shown in Fig. 12. The necessary calculation would indicate

an additional 100-foot climb over a distance of 1,000 feet, thus successfully using the
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1,000 ft.

100 ft.

You are here
Elevation 500 ft.

Your goal is here
Elevation 600 ft.

10% incline

Fig. 12. Sample calculation, using a gradient technique to determine the necessary

translation from your current position with an elevation of 500 feet to a desired

location with elevation of 600 feet, along a steady 10% incline

gradient-based technique. Essentially, that is what the Lucas-Kanade method does

at each pixel of the image that it is trying to match. At each pixel, the algorithm

considers the image gradient, the current pixel intensity, and the desired intensity.

It then uses the method of least squares to find a translation in both the x and y

direction that will bring most of the pixels to the desired intensity. Since the gradient

of most images is not constant, the method will have errors, so the process is repeated

at the new position until it converges on a matching location.

In practice, a windowing function is often used in the least-squares calculation to

give more influence to the center of the window. The algorithm will terminate after a

fixed number of attempts. Additionally, there is often some preprocessing to provide

smoother gradients throughout the image, typically a Gaussian smoothing.

Note that this method does not take into account any deformations in the image

that occur due to the mirror’s shape. One way to reduce errors caused by deformation

is to first unwarp the image and then perform image registration, a process that

is very fast. However, relatively small translations produce only slightly different

deformations. In the author’s experience, a small window (7x7 pixels) appears to

work very well on the original omni-directional image. For this reason, there was no
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Fig. 13. Sample image registration: h is the optimal displacement such that F (x + h)

matches G(x). Although this is not a perfect match, the dissimilarity ε from

equation (3.4) is minimized.

need to add an unwarping step to the process used in this research.

The following is a formal derivation of the Lucas-Kanade method, which aims to

minimize the dissimilarity between two images, as shown in Fig. 13. The dissimilarity

ε is the sum of square errors:

ε =
∑
W

(F (x + h)−G(x))2 (3.4)

where h is the displacement from point x in image G to image F , and W is the

tracking window. Using a first-order approximation for F (x + h) produces:

ε =
∑
W

(F (x) + hT #−G(x))2 (3.5)

where # denotes the gradient of F (x). From equation (3.5), the optimal image

translation (or optical flow) h is determined by taking the derivative of ε w.r.t. h

and setting it to zero. In the original paper by Lucas and Kanade, a minor error was
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discovered, so a complete derivation is presented here.

dε

dh
=

∑
W

2(F (x) + hT #−G(x))# = 0 (3.6)

# is distributed, and the terms of the summation are rearranged:

∑
W

hT ## =
∑

(G(x)− F (x))# (3.7)

The left-hand-side is rearranged to isolate h:

∑
W

(##T )h =
∑

(G(x)− F (x))# (3.8)

and, finally, h is determined by premultiplying each side by (
∑##T )−1:

h = (
∑
W

##T )−1
∑
W

(G(x)− F (x))# (3.9)

C. Good Feature Selection

One difficulty with any method used for calculating optical flow is choosing the correct

points at which to calculate the optical flow. Imagine a camera aimed at a solid white

wall and translated some distance along the wall, as shown in Fig. 14(a). The second

viewpoint will be a translated version of the first one, but both images will appear

identical. Thus, the uniform intensity provides no useful matching information, and

the calculation of optical flow is ill posed. Similarly, imagine a wall with a smooth

horizontal gradient, as shown in Fig. 14(b). The camera again translates along the

wall. Now it is simple to calculate the horizontal translation by shifting and matching

the two images, but still there will not be enough information to tell how the camera

moved in the vertical direction. Any striped pattern provides only a unidirectional

component of optical flow, which may be misleading. For an image, or window of

an image, to provide adequate tracking information, it must have structure in two
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Image 1 Image 2

 

(a) no structure

Image 1 Image 2

translate

(b) horizontal structure

Image 1 Image 2

translate

(c) vertical structure

Image 1 Image 2

translate

(d) bidirectional structure

Fig. 14. (a) Without adequate structure in two non-collinear directions, it is not pos-

sible to determine optical flow. Images (b) and (c) have unidirectional struc-

ture and can determine part of the optical flow, but there could be additional

optical flow that is not visible from this structure. Only (d) has enough in-

formation to calculate optical flow in both directions.
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non-collinear directions (both horizontal and vertical structure), as shown in Fig.

14(d).

Although the Lucas and Kanade algorithm solution converges quickly and works

very well for tracking good features, it does not behave well at every place in the

image because not all parts of the image contain enough information to be accurately

positioned. To address this issue, Shi and Tomasi [46] proposed a feature selector

specifically for the Lucas-Kanade method that is ideal by construction. This good

feature selection is crucial to calculating a useful optical flow field. Without good

feature selection, the alternative is to calculate optical flow at regularly spaced posi-

tions, and the calculated optical flow will likely be misleading at positions which lack

adequate structure.

This feature tracker, commonly referred to as the Kanade-Lucas-Tomasi (KLT)

[46] method, selects features that are best suited for the Lucas-Kanade tracking algo-

rithm by finding windows where the
∑##T matrix of equation (3.9) is well condi-

tioned, meaning both of its eigenvalues are sufficiently large and of similar magnitude.

Two small eigenvalues occur when all the pixels in the window are of constant inten-

sity; one large and one small eigenvalue indicate a unidirectional pattern.

By tracking only the good features, the overall quality of the optical flow mea-

surements is greatly improved, leading to a much more accurate recovery of three-

dimensional structure. The early stages in this research used a custom-built imple-

mentation of the Lucas-Kanade algorithm, which appeared qualitatively to produce

a reasonable optical flow field. However, the custom-built implementation calcu-

lated optical flow at evenly spaced intervals, and many of those windows would not

contain enough information to calculate optical flow. Although there was code to

recognize a complete lack of gradient and to ignore those windows, the unidirectional

patterns would often cause erroneous results. After replacing this custom implemen-
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Fig. 15. Two-dimensional triangulation problem

tation with the freely available and popular Kanade-Lucas-Tomasi tracker developed

by Stan Birchfield at Stanford University [50], the overall quality of the results im-

proved, resulting in fewer errors and a more dependable optical flow field.

D. Depth from Triangulation

The previous sections have described how to select good features from an image, track

these features from one frame to the next, and transform the image space coordinates

to spherical coordinates. The next step is to use the spherical coordinates from each

of the known positions to calculate the relative position of the object being tracked.

This is done by forming a triangle between the object being tracked, the position of

the robot at the time of the first image and the position of the robot at the time of

the second image. First consider the two-dimensional case shown in Fig. 15. Given

the distance the robot traveled by, and the angle from the robot to the object at each

position, the triangle is completely defined by two of its angles θ1 and θ2 and the

length of one side. In this case, the distances from the robot to the object L1 and L2
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are determined by solving the following linear equations:cos θ1 − cos θ2

sin θ1 − sin θ2


L1

L2

 =

∆x

∆y

 (3.10)

The three-dimensional case is more difficult to visualize, but leads to similar

equations. Note that the three-dimensional case results in an over-constrained system

because there are now three equations (one for each dimension of the world) and only

two unknowns (one for each dimension of the image). If the rays extending from the

viewpoint to the object actually intersect, there is one solution for L1 and L2 that will

completely satisfy all three equations. However, the rays do not necessarily intersect,

so the solution is determined using the pseudo-inverse to find the best fit from the

following system of linear equations:
sin φ1 cos θ1 − sin φ2 cos θ2

sin φ1 sin θ1 − sin φ2 sin θ2

cos φ1 − cos φ2


L1

L2

 =


∆x

∆y

∆z

 (3.11)

Note that the above equations assume a fixed orientation of the robot between frames.

If the orientation changes, the rotation should be accounted for by adding it to θ1,

essentially changing the coordinate system of the first frame to match the second.
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CHAPTER IV

CERTAINTY GRIDS

Certainty grids, also known as evidence or occupancy grids, are a method for fusing

a large number of noisy depth estimates into a usable map. The certainty grid itself

is a two (or sometimes three) dimensional division of the world space into cells. Each

cell is associated with a probability of being occupied, p[o]. Since a cell can only

have one of two states, either occupied or empty, the probability that a cell is empty

is p[e] = p[¬o] = 1 − p[o]. Therefore, the probability for either state is completely

defined by one number, p[o].

Each reading from a range sensor is used to update two areas of the certainty

grid, as shown in Fig. 16. The area near the reported reading has its occupancy

probability increased because the reading indicates there is probably an obstacle in

this region. The area between the sensor and reported reading has its occupancy

probability decreased because an obstacle in this area would have produced a shorter

range reading, and therefore the likelihood of these cells being occupied is lower. For

a computer to calculate the new occupancy probabilities, it must have a numerically

defined sensor model whose shape matches either empirical observations, or a physics-

based model.

To actually combine a new sensor reading with the sensor model and certainty

grid probabilities requires an update rule. There are three methods for updating

cell probabilities: Bayesian [51, 4], Dempster-Shafer [52], and Histogrammic in Mo-

tion Mapping (HIMM) [53]. The Bayesian method for combining probabilities was

developed by Elfes and Moravec at Carnegie Mellon University [54, 11]. This is an

attractive method for research due to its solid foundation in traditional probability

theory and its flexible sensor model. The details of its implementation will be fully
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sensor occupied

clear

range
reading

Fig. 16. Certainty grid profile for a two-dimensional Gaussian-error sensor model (from

[4]). The area between the sensor and the reported range is probably clear,

while the area near the reported range is more likely to be occupied.

explained in the following chapter.

A. Dempster-Shafer and HIMM Update Methods

The Dempster-Shafer method is based on belief mass instead of probabilities. One

distinguishing feature of the Dempster-Shafer method is a third state to represent

ambiguity. Each cell can have a portion of its belief mass in the occupied, empty or

“don’t know” state. To combine belief functions, this method uses the Dempster’s

rule of combination [55]. This rule also produces a metric called the weight of conflict,

which measures disagreement between readings. Although the rules of combination

are different from the Bayesian method, the results are similar and the extra infor-

mation provided by the “don’t know” state and the conflict metric can be used to

determine when and where more sensing is required to reconcile sensor readings [56].

HIMM is an ad hoc method of fusing new measurements designed for compu-

tational efficiency. It was developed by Borenstein and Koren at the University of
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Fig. 17. Example of the HIMM update rule

Michigan and first implemented on their Cybermotion robot CARMEL (Computer-

Aided Robotics for Maintenance, Emergency, and Life support). The certainty of

a cell being occupied is represented as an 8-bit unsigned integer and, therefore, the

range of values is integers from 0 to 15. An example of the HIMM update rule is

shown in Fig. 17. Only those cells along the line of sight from the sensor to the new

sensor reading at cell Ci are updated. The value of Ci is increased by 3 (up to a

maximum of 15) and all the cell values between the sensor and Ci are reduced by 1

(down to a minimum of 0). Although this method lacks the theoretical underpinnings

of the other methods, its flawless performance on its third and final attempt of the

1992 AAAI Mobile Robot Competition captured much attention and won the final

day’s main event [57].

B. Bayesian Update Method

The original method of Moravec and Elfes [11, 54] updates the probabilistic map using

Bayes theorem and a probabilistic sensor model. The goal is to increase the occupancy

probability of grid cells near a reported object, and to decrease the probability for
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those cells between the sensor and the object. Everything begins with Bayes’ theorem

to find the conditional probability that the state of a cell is occupied, given a set of

reported sensor readings [54]:

p[o|{r}t+1] =
p[rt+1|o ∧ {r}t]× p[o|{r}t]

p[rt+1|o ∧ {r}t]× p[o|{r}t] + p[rt+1|¬o ∧ {r}t]× p[¬o|{r}t]
(4.1)

where o means the cell is in an occupied state, and {r}t+1 is a history of every

range reading, including the latest range reading rt+1. This formula can be simplified

by assuming that the range readings are strongly independent (p[rt+1|o ∧ {r}t] =

p[rt+1|o]). Thus:

p[o|{r}t+1] =
p[rt+1|o]× p[o|{r}t]

p[rt+1|o]× p[o|{r}t] + p[rt+1|¬o]× p[¬o|{r}t]
(4.2)

Recalling that p[o|{r}t] is the last occupancy probability for the cell being updated

and p[¬o|{r}t] = 1−p[o|{r}t], the only unknown is p[o|{r}t]. The simplest solution is

to define the sensor model by a function p[o|{r}t]. However, it is often more convenient

to define the sensor model by p[r|z], where z is the true distance to the obstacle. In

this case,

p[o|r] =
p[r|o]× p[o]

p[r|o]× p[o] + p[r|¬o]× p[¬o]
(4.3)

To find p[o|r], it is necessary to make assumptions about the world. p[o] is the

probability that an arbitrary cell is occupied. In a closed and cluttered environment

p[o] should be relatively high compared to an open environment with few obstacles.

If no prior information is known p[o] = p[¬o] = 1
2 is often used, meaning a cell is just

as likely to be occupied as it is to be empty.

To relate the sensor model p[r|zi] with the conditional distribution of cells, con-

sider an arbitrary configuration of cell states. The first occupied cell Ci in front of
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the sensor will define the true distance zi to an obstacle. Therefore,

p[r|Ci=o ∧ Ck=¬o,∀k < i] = p[r|zi] (4.4)

Since it is now necessary to consider every cell, the p[o] notation has been replaced by

p[Ci=o] to denote the probability that cell i is occupied. The final piece of information

in equation (4.3) p[r|o] can now be found from equation (4.4).

p[r|Ci=o] =
∑
{Gi}

p[Ci=o ∧Gi]× p[Gi|Ci=o] (4.5)

where Gi is a specific configuration of all the cells except for cell i, and {Gi} is the set of

all possible configurations. Rather than considering each possible configuration of cell

states individually, many configurations are grouped together based on the position

of the nearest occupied cell for those configurations. This significantly reduces the

number of computations required to obtain p[r|Ci=o]. Lastly, equation (4.5) is further

simplified by assuming that the probability of a cell being occupied is independent of

other cells being occupied:

p[Gi|Ci=o] = p[Gi] =
∏

∀k,k #=i

p[Ck=sk] (4.6)

where sk is the state of cell k in this configuration. Using equations (4.3), (4.4) and

(4.6), p[o|r] can be determined from p[r|z]. Hans Moravec’s certainty grid implemen-

tation, which was used in this research, has a built-in two-dimensional sensor model

defined by p[r|z, θ] where θ is the angle between the sensor reading and the obstacle

(shown in Fig. 16). This is the sensor model originally used in this research, and

later modified (see section V.B) to account for difficulty measuring optical flow near

the line of travel.

p[r|z, θ] =
1

2πσrσθ
exp

[
−1

2

(
(r − z)2

σ2
r

+
θ2

σ2
θ

)]
(4.7)
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CHAPTER V

METHOD

The previous chapters have presented the details necessary to extract depth from

motion using an omni-directional camera and to fuse these readings into a local map

using certainty grids. This chapter will explain the camera calibration process, and

then describe a proposed improvement to the certainty grid sensor model originally

developed by Elfes and Moravec for sonar.

A. Camera Calibration

To calibrate the experimental vision system, fiduciary markers were placed at ground

level around the robot at one foot increments in each direction, as shown in Fig. 18.

Note that the camera’s sensor and the mirror did not line up directly and although the

mirror profile in real-life makes a perfect circle, its image is not one. To compensate

for these differences, image coordinates were normalized so that r = 1 would outline

the outer edge of the mirror. This normalization requires knowledge of the aspect

ratio of the camera, the mirror radius, and the position of the mirror’s centerline.

The aspect ratio was determined to be the ratio of pixels between the horizontal and

vertical markers. The radius of the mirror is taken to be half the number of pixels

from the top to the bottom of the bounding circle. The centerline was the midpoint

between each pair of markers in opposite directions.

Calculation of the h parameter was more involved. First, consider the optical

flow that occurs when the robot moves one foot along a line of fiduciary markers, as

shown in Fig. 19. Since the markers are already spaced one foot apart, their new

image coordinates would be that of the neighboring marker. Using this hypothetical

optical flow field, the three-dimensional structure of the scene can be recovered for a



34

center

radius

fiduciary markers

height

width aspect ratio = width / height

x

y

Fig. 18. Two calibration images with AmigoBotTM facing two perpendicular directions
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1 2 3 4

1 2 3 4

ROBOT

THE ROBOT MOVES FORWARD 1 FT.

FIDUCIARY MARKERS SPACED EVERY 1 FT.

CAMERA VIEW

BEFORE

CAMERA VIEW

AFTER

Fig. 19. Creating a hypothetical optical flow field from the calibration test images

by pretending the robot traveled one foot forward. Note that only the initial

image coordinates are known, but the image coordinates after the hypothetical

move should be the same as those of the fiduciary markers, one foot closer.

specified h parameter. Since h was not known, an initial guess was made and then

refined by adjusting its value until the recovered points best fit a horizontal line. This

produced not only the h parameter, but also the vertical distance from the floor to the

single viewpoint. Table I contains the previously mentioned calibration parameters

from the real system, later described in section VI.B.

Table I. Calibration parameters

image resolution 400 x 300 pixels

center (x, y) (180, 124) from top-left

radius 122 pixels

aspect ratio (x/y) 0.986

h 0.82

height 1.48 ft.

From equation (2.4), h = 0.82 and r = 1, the vertical field of view of the system
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Fig. 20. Three-dimensional view of the separating angle θs

can be computed to be 101 degrees, which is close to the manufacturer’s specification

of 106 degrees.

B. Omni-directional Sensor Model

The default sensor model provided by Moravec and Elfes’s certainty grid framework

assumes that all sensor readings have the same uncertainty, regardless of their direc-

tion relative to the robot’s heading. However, for an omni-directional vision sensor,

measurements perpendicular to the direction of travel are inherently more accurate

than those measurements in the direction of travel. The primary cause for this dif-

ference is the inability to measure the very small changes in optical flow near the

direction of travel. As the angle separating the line of travel from the direction of

the obstacle becomes smaller, so does the resulting optical flow for a fixed change in

position. This separating angle θs is shown in Fig. 20. There are other contributing

factors to the error in range, particularly from the triangulation process; however, the

relationship between the separating angle and the range uncertainty is the cornerstone

of the omni-directional sensor model presented in this research.

From Fig. 20, the separating angle θs is found to be

θs = tan−1(

√
y2 + z2

x
) (5.1)
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More importantly, the sensitivity of this angle w.r.t. x is1

dθs

dx
= −

√
y2 + z2

x2 + y2 + z2
(5.2)

To approximate this sensitivity without actually knowing (x, y, z), assume (x, y, z)

lies on a unit sphere, so x2 + y2 + z2 = 1, then(
dθs

dx

)
apx

= −
√

y2 + z2 = − sin(θs) (5.3)

This assumption neglects the role of distance in the sensitivity, but captures the

characteristic that objects near the direction of travel do not move as quickly across

the field of view as objects to the side.

Finally, equation 5.3 leads to the fundamental form of the sensor model. The

range uncertainty is inversely proportional to the magnitude of the optical flow, which

is proportional to the sensitivity of the separating angle. To find the true sensitivity

of the separating angle requires the exact position of the object, which is not known;

however, the magnitude of the sensitivity can be approximated by sin(θs).

Implementation of this concept in Moravec and Elfes’s certainty grid framework

was relatively straightforward. Rather than creating one sensor model to use with

every range reading, the possible separating angles θs were evenly partitioned, and a

separate sensor model was created for each range of separating angles. Moravec’s im-

plementation has two adjustable parameters for the sensor model: width and height.

The width corresponds to the uncertainty of the distance, and so a large width af-

fects a larger area of the map. The height relates to the confidence that an obstacle

is present in this area; a taller height leads to a larger certainty. This implementation

allows the parameters to change independently; however an increase in the range’s

1 d
dx tan−1(u) = 1

1+u2
du
dx
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uncertainty (width), should also decrease its confidence (height). At one extreme,

this uncertainty should approach a width of infinity and a height of 0.5, which in-

dicates a complete lack of information. The other extreme has a width approaching

zero and a height approaching one, which indicates an extremely precise and confi-

dent sensor reading. In practice, there is no well documented method for choosing

the sensor model paramaters. For this reason, the values were chosen qualitatively

for the minimum width / maximum height and maximum width / minimum height,

corresponding to the best and worst performance, respectively. Once the extremes

were chosen, the interpolation of these values is proportional to sin(θs), in accordance

with the model’s characteristic shape. The minimum height (worst case) is typically

chosen to be a height of 0.5, which indicates complete uncertainty along the line of

travel.

Fig. 21 shows two plots of the resulting certainty grid produced by a ring of

measurements surrounding the robot. The height of the profile indicates certainty that

those grids are occupied. Notice the certainty of occupation is highest towards the

sides and unknown in the direction of travel; the profile also widens, as it lowers. This

form matches the desired characteristics very well. Also note the ring of measurements

used to create this profile were taken entirely along the x-y plane, so the separating

angle spanned 0 to 2π. Objects in front of the object can still be detected when they

form a separating angle in the vertical rather than horizontal direction (i.e. they are

above or below the path of the omni-directional viewpoint).

Other improvements to the sensor model were also considered, but ultimately

rejected. The most promising of these ideas was to adjust the angle of detection for

the sensor model, as shown in Fig. 22. The actual implementation used a small

fixed detection angle according to the typical 7x7-pixel windows that were tracked.

However, not all tracking windows fit perfectly within the constant detection angle.
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DIRECTION

OF TRAVEL

(a) height corresponds to the probability of cells being occupied

DIRECTION

OF TRAVEL

(b) height corresponds to the probability of cells being occu-

pied

Fig. 21. Certainty grid profile of proposed sensor model, for a ring of range measure-

ments around the robot
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DETECTION
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Fig. 22. Varying detection angles shown for two different tracking windows of the same

size

As Fig. 22 illustrates, objects further away from the center of the image benefit from

a smaller detection angle than objects closer to the center. In particular, objects near

the center of the image must also be close to the robot. Widening their detection angle

would help them to appear more clearly on the certainty grid, which is important for

obstacle avoidance. However, it seemed to be a relatively minor improvement since

very few objects would be that close, and instead, a small constant angle was chosen

to be consistent with the window size of the matching algorithm and typical tracking

window positions.

Another potential improvement would have been to vary the range uncertainty

based upon the distance to the object. This factor was lost during simplification by

assuming objects were all a unit distance away. In reality, objects further away do not

move across the image as quickly and should, therefore, be more susceptible to errors

in the optical flow. In fact, a similar capability was already built into the standard

model, but the main problem with this idea appeared when trying to select meaningful

parameters by which to vary the range. In practice, the most significant improvements

occurred when range uncertainty changed as a function of the separating angle, rather

than as a function of the distance to the obstacle.
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CHAPTER VI

RESULTS

Results of the proposed computational sensor are shown from experiments on a com-

puter graphics simulation, a simplified real-world test and, lastly, two real-world

scenes. In each experiment, the omni-directional structure-from-motion technique

described previously was used to create a local map and was also compared to the

ground truth. Additionally, the local maps were constructed using different sensor

models to compare the results of the proposed sensor model and the traditional sonar

model described in section IV.B.

A. Simulation Results

An omni-directional vision simulator was created for testing purposes. The simulator

is a simple ray-caster that determines the ray directions using the equations of Baker

and Nayar [44]. The parameters of the simulated imaging system were designed to

match those of the real-world system, as described in section VI.B. The simulated

world and the robot path are shown in Fig. 23(a), where the robot traveled in a

straight line, taking a total of 24 images, one every 2 inches, and tracked 100 feature

points, using the KLT method. The resulting scatter plot of range readings is shown

in Fig. 23(b). Most of these measurements are reasonably close to the known position

of the objects, which indicates that the structure-from-motion method worked well.

However, notice the much larger errors in the direction of travel, a trend that agrees

with the findings of Zhang and Blum [40]. A point nearly in the direction of travel will

be nearly collinear with the two viewpoints, and so the triangle used to calculate depth

collapses into a line. As a result, small errors in optical flow are greatly magnified.

This phenomenon is the very reason for developing the specialized sensor model in
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ROBOT

WALL

WALL

OBSTACLE

(a) Ideal world layout as robot moves

along the path

(b) Recovered structure from motion

Fig. 23. Results from the simulated block world

section V.B.

There was only one source of errors in this simulation: miscalculations of optical

flow. Fig. 24(a) shows the simulated camera view and the features that were tracked

halfway through the simulation. Good features have structure in two non-collinear

directions, which makes them easier to track. As expected, corners are the favorite

types of feature. However, the KLT algorithm is programmed to select the 100 best

features1, and so it also chooses some less attractive features, such as the unidirec-

tional feature identified in Fig. 24(a). Fig. 24(b) shows that the KLT method was

able to track only 70 of the features, which means 30 features were lost and were

not available for the structure-from-motion calculations between these two frames.

Nonetheless, most of those features with good 2D structure were tracked well. This is

clear by looking for their counterpart in Fig. 24(a). Unfortunately, the unidirectional

1Note that the optimal number of features is dependent on the environment.
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unidirectional feature

good features

(a) 100 features selected

tracking edge of mirror

moved the wrong direction

successfully tracked

lost feature

(b) only 70 features are matched on

the next image

Fig. 24. Features tracked halfway through the simulation
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feature mentioned before was actually marked as moving in the opposite direction.

This happened because the shape of the mirror bent the location of the correct image

while it straightened the piece just behind it. Since the optical flow algorithm was

designed to choose the best match, it chose the newly straightened location. This

deformation problem could have been solved before calculating optical flow, by un-

warping omni-directional image into a panoramic image. However, the optical flow

algorithm would have still failed to match the correct image because the feature was

unidirectional. In general, when the feature contained adequate structure, it was ei-

ther tracked correctly, or the point was lost. Points were often lost when the point

traveled far and the deformation was large. When points such as these were lost,

they were replaced with new features, selected from the subsequent image using the

Kanade-Lucas-Tomasi method. Also notice the features being tracked at the mirror’s

edge. These features are an artifact of the catadioptric system, and must not be

considered in the structure-from-motion process since they do not correspond to real

features present in the environment. To ensure that these false features were not

included in the structure-from-motion calculation, all features within seven pixels of

the mirror’s edge were discarded. Finally, after careful examination of the feature

tracking, it was determined that the process worked well in most cases.

1. Selection of Sensor Model Parameters

The standard sonar model requires the selection of a fixed range uncertainty and

intensity. The choice of these parameters is discussed next. Results with a low range

uncertainty are shown in Fig. 25(a). Notice that obstacle-free areas are cleared, but

the wall directly ahead of the robot is mostly grey rather than black, so it appears

to be unknown rather than occupied. Yet from the range readings in Fig. 23(b), an

obstacle was clearly detected by the computational sensor.
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(a) standard model with small uncer-

tainty

(b) standard model with large uncer-

tainty

(c) results with proposed sensor model

Fig. 25. Certainty grid of the simulated world using different sensor models
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The obstacle did appear in the certainty grid when the range uncertainty of the

model was increased. Fig. 25(b) shows the same certainty grid using a sensor model

with larger range uncertainty and lower confidence. The portion of the wall directly

ahead of the robot appears as two blobs, but the walls perpendicular to the direction

of travel also become much wider, indicating less certainty in their position. Overall,

this situation is preferable to the previous problem, but still not ideal.

Lastly, Fig. 25(c) shows the proposed sensor model, which combines the best of

both worlds. Notice that the wall in front of the robot is clearly identified, yet the walls

on the sides appear as thin lines. None of these three sensor models performed poorly,

however, the results from this new sensor model appear to be a slight improvement

over the alternatives because objects ahead of the robot appear dark, while objects

to the sides of the robot remain clearly and precisely defined in the certainty grid.

Note also that the path along which the robot traveled was not completely cleared

by the sensor model. This is an artifact of the small angled sensors. Grey shades

do not indicate an obstacle in the path; rather it means that the area is unexplored.

Although the robot had many readings that pierced this area, the line of travel was

always nearest the vertex of the sensor. Since the cleared area is most thin near the

vertex, it leaves thin lines of unexplored area in-between the thin lines of cleared area.

This could be compensated for by marking certain areas as unoccupied whenever the

robot passes through. For illustration purposes, however, this trail was not cleared

in this implementation.

B. Real Robot in Structured World

The robot platform employed in this research was an AmigoBotTM from ActivMedia.

The robot had an onboard microcontroller, and a wireless communication system to
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Fig. 26. Major components of the omni-directional AmigoBotTM
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transmit video, sonar and other information while receiving simple motion commands.

The robot was controlled by an Apple r© PowerBook r© computer, which processed

video and performed the more demanding computations that were necessary.

Since there were no complete omni-directional vision systems available at the time

that this research was started, one had to be constructed. Fortunately, a paraboloidal

mirror, the OneShot360TM from Remote Reality, was commercially available and

highly recommended by Dr. Shree Nayar, professor of Computer Science at Columbia

University, co-director of the Columbia Vision and Graphics Center, head of the

Columbia Automated Vision Environment (CAVE), and author of several papers cited

in this thesis [44, 1, 43, 45, 30]. Following his recommendation, the AmigoBotTM was

outfitted with a custom built ODVS, constructed from a CCTV camera, a wireless

video transmitter, and the OneShot360TM. The complete system is shown in Fig. 26,

and described in Appendix A.

Up to this time, all optical flow computations were performed off-line using pre-

recorded video from the robot’s ODVS. However, the calculations are not too de-

manding, and the author is confident that these calculations could be performed in

real-time.

For testing purposes, a simple box-world with checkered walls was constructed.

Its design was very close to that of the simulation, which made it easier to compare

simulated and real results. Fig. 27 shows the real camera view, the selected features

(Fig. 27(a)), and the tracked features in the following frame (Fig. 27(b)). Again, 70

features were successfully tracked from an initial selection of 100 features. However,

a portion of these features was along the mirror boundary and had to be discounted.

Several points from the distant background were also tracked. However, these points

were too far away to produce significant optical flow and accurate range measure-

ments. There did not appear to be any unidirectional features selected from this
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(a) 100 features selected (b) 70 features matched on the next im-
age

Fig. 27. Features tracked halfway through simplified real world
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image, and all the features that were not lost were also correctly tracked. Overall,

the image was of slightly lower resolution (244 pixel radius versus 300) and there

were more uncertainties due to possible errors in position / orientation of the robot,

calibrated parameters not matching true values, and background objects. Therefore,

it was expected that there would be more errors in the structure calculation.

Fig. 28(a) indeed shows the same structure as that in Fig. 23(b), only it has

larger errors. Nonetheless, the results clearly show the outline of the walls, with

concentrated areas along the checker boundaries. The resulting certainty grids are

also shown in Fig. 28. In general, they are similar to their counterparts in Fig. 25.

The adaptive model also performed better than the fixed-uncertainty sensor models.

The problems from each of the fixed uncertainty models were more pronounced with

real-world data for two reasons: (1) the optical flow errors became larger and (2) the

real environment was invariably more complex than a simulation. Note that the lower

wall of these experiments is much less clearly defined, due to the difficulty measuring

optical flow near the line of travel. This issue is one of the major drawbacks to using

structure from motion.

C. Real Robot in Unstructured World

The system was finally tested on two unstructured office environments. Both tests

clearly illustrated the weakness of this sensor when there was no optical flow to

track, small optical flow in the direction of travel, or visually complex background

objects. The tests also proved that the sensor was able to track some features of the

environment very well.
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(a) Recovered structure from motion (b) Certainty grid using small uncer-

tainty

(c) Certainty grid using large uncer-

tainty

(d) Certainty grid using proposed sensor

model

Fig. 28. Results from the simplified real world experiment
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(b) 73 features matched on the next im-
age

Fig. 29. Features tracked halfway through first office test. Feature 1 is actually com-

posed of two separate objects and cannot be tracked. Features labeled 2 are

desk corners that were tracked well. Feature 3 is tracked well, but is so far

away that its motion is too small to be useful.
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Fig. 30. Results from the first office test, showing the scene and resulting map with

corresponding points labeled

1. First Office Test

In the first office, shown in Fig. 29, the challenges of real-world complexity appeared.

In this complex environment, often one object was in front of another. If the back-

ground had a solid intensity (i.e. a wall or desk), optical flow could be computed

reliably. However, problems arose when the background object was visually complex.

In these cases, each object moved across the view field at different speeds, and the

boundary of the foreground object, which was normally an excellent location to track,

did not produce meaningful optical flow because the background also changed unex-

pectedly. This was evident in feature 1 of Fig. 29. As expected, the corners of objects

against the floor made excellent features for tracking, as generally shown in Fig. 29.

Fig. 30(a) shows the camera view as the robot was just starting its path of 4.0
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(a) 100 features selected (b) 59 features were matched on the

next image

Fig. 31. Features tracked halfway through the second office test

feet, recording an image every 2 inches. In this test, the robot traveled through an

opening between desks of the office environment (downward in Fig. 30(b)). The

results clearly displayed this method’s shortcomings. Areas of solid intensity did not

produce optical flow and, therefore, remain grey, signifying an unknown state. An

opening to the left of the image appears clearly, and certain objects also appear to be

well defined. The obstacles at the bottom of the image were too far away to produce

any significant optical flow, but could be expected to become detectable as the robot

approached them more closely.
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(b) Certainty grid using proposed sensor
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Fig. 32. Results from the second office test, showing the scene and resulting map with

corresponding points labeled

2. Second Office Test

In the second office, shown in Fig. 31, there were many visually complex objects

(chairs and desks) on the right and lower portions of the image, however, the left side

had a plain white wall, and its only distinguishing feature was an Ethernet port. Plain

white walls such as this one were challenging, but if a feature was present, the tracking

process became easy because of the lack of confounding structures surrounding it.

Overall, fewer features were successfully tracked in this office test than any other

test. This could have been a byproduct of the scene’s visual complexity.

Fig. 32(a) shows the camera view as the robot was just starting a 4.0 feet path,

recording an image every 2 inches, the same as before. In this test, the robot traveled

parallel to the wall and a line of chairs (to the right of the image) while approaching
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more chairs straight ahead (downward in Fig. 32(b)). The lower and right portions

of the image contained many features to track and both appear clearly in Fig. 32(b)

(as does the Ethernet port on the white wall!) The grey areas to the left of the

robot’s path (to the right from the robot’s perspective) are a consequence of the lack

of contrast on the white wall, illustrating once more the main shortcoming of the

computational sensor.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Conclusions

This research described and successfully demonstrated a method of combining omni-

directional vision, structure from motion, and certainty grids to extract depth from

camera images and to create a local map. The proof of concept was shown to work

well in both simulation and an engineered real-world experiment. Tests in two un-

structured office environments showed the ability of the method to create maps from

real-world omni-directional images, but also showed its weakness (1) when faced with

obstacles of solid intensity, and (2) when tracking obstacles along the direction of

travel.

To account for the large uncertainty of range readings along the line of travel,

a new sensor model was proposed and tested. Its design was based on the obser-

vation that objects in the line of travel are difficult to accurately track. From this

observation, a model was formed to relate the range uncertainty with the direction

of travel. Although this model made simplifying assumptions, it accurately captured

the sensor’s problem areas, and qualitatively worked better than the standard sensor

model by properly distinguishing between high and low uncertainty range readings.

Overall, the research objective was achieved by designing, testing, and improving

upon a new method of map-making, that combines omni-directional vision, structure

from motion, and certainty grids.
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B. Future Work

This is part of an ongoing effort, with several possibilities for future work. Currently,

all calculations are performed offline, but performing this method in real-time on a

high-end desktop computer is a realistic goal; and for this method to be useful in the

field of robotics, this is a necessary goal. Along these lines, a future system should

be designed with on-board video and processing to eliminate noise from the wireless

video signal. A larger, more stable robot platform would be required, which would

have the added benefit of a more stable base, thus reducing vibrations in the video

and possibly providing better dead-reckoning. This system could also take advantage

of the latest CS-mount omni-directional vision system from RemoteReality, the D40,

which became available during the writing of this manuscript.

There is also some room for improvement in the probability model of the sensor

by adapting the angle of detection to account for a higher angular-resolution near the

edge of the mirror. Furthermore, the sensor model could be improved by using the

obstacle’s range as part of the sensor model. These changes were discussed in section

V.B.

In addition to modifying the sensor model, the structure-from-motion method

could also be improved. Currently, the method uses only the last two frames for

matching purposes in the optical flow calculation. Instead, if it performed the calcu-

lation multiple times, using the last frame and several previous frames, then it could

detect smaller optical flow measurements that are only visible after several frames.

This improvement would help to significantly improve the structure-from-motion cal-

culation near the line of travel. The redundancy might also reduce the potential for

error caused by vibrations, changes in lighting, and other real-world factors.

Lastly, the method could be improved by using two omni-directional vision sys-
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tems in stereo. The stereo vision would provide excellent depth recovery in the direc-

tion of travel, while the wide field of view would permit the structure-from-motion

method to accurately calculate depth to the sides. Furthermore, the relative posi-

tion of the two viewpoints could be used to automate the calibration process and

accurately calculate ego-motion.
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APPENDIX A

EXPERIMENTAL SETUP

The following parts were used in construction of the omni-directional vision sys-

tem:

• OneShot360TM from RemoteReality

• Computar varifocal lens 2.7-8mm, DC auto iris, F1.0, for 1/3” format cameras,

CS-Mount, part TG3Z2710FCS

• COP 15-CC25NV day/night C/CS color mini sized camera

• AmigoBotTM E-Presence from ActivMedia

• CLOVER’S Wireless transmitter PCB, part CW3800 (included with AmigoBotTM)

• Step-up ring 35.5mm–37mm and 37mm–46mm

• Whip antenna to replace directional antenna that comes with AmigoBot

The original AmigoBotTM E-Presence from ActivMedia came with a wireless

video system, which included the onboard camera and transmitter, a four-channel

receiver, and a PC video capture card. However, the camera it was shipped with, the

Marshall V-X0097-SE-P, had no threads nor replaceable lens, so it was not suitable for

attachments such as the OneShot360TM. The Computar lens reportedly had threads

and it met the focal length requirements specified by RemoteReality (5.8mm for 1/3”

CCD or 3.8mm for 1/4” CCD). Its auto iris lens also allowed it to automatically

adjust to various lighting conditions. To accommodate this replacement lens, the
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ActivMedia

CLOVER
CW3800

ActivMedia's
interface from video

to wireless transmitter

ground
audio

9V power
video

12 V power
ground

connected to camera

connected from AmigoBotTM

Fig. 33. ActivMedia’s camera board interface, reverse engineered to replace original

camera

COP 15-CC25NV camera was chosen because it was a good match for the lens being

C/CS mount and having DC auto iris capability. It also produced similar output to

the Marshal camera (NTSC 310 TV lines).

To connect this replacement camera, the existing camera connections were reverse

engineered, as shown in Fig. 33. Since the COP 15-CC25NV camera used a 12-Volt

power supply, only the 12 V, ground and video pins were used once the Marshal

camera was replaced. The onboard components of the original video system were

also moved inside the AmigoBotTM and the directional antenna, which originally

pointed upwards, was replaced with an omni-directional whip. This freed space on

top of the AmigoBot to mount the camera and mirror. Replacing the antenna also

made the video signal less sensitive to the robot’s position.

The final system worked, but could be improved. The threads of the lens were
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not designed for a large attachment such as the OneShot360TM; they were designed

to support small lightweight filters. Hence, the lens did not mate well with the step-

up ring and appeared susceptible to wear. Also, the centerline of the camera’s lens

did not match the center of the CCD, so the full zoom capability was not utilized,

as visible in the calibration images (Fig. 18). Had the camera zoomed in closer to

increase the resolution of the omni-directional image, the top part of the mirror’s

image would have been lost. Lastly, the wireless video signal conflicted with the

wireless serial modem controlling the AmigoBot. Turning on the robot’s controller

produced static in the video. This was overcome by separating the channels of both

the controller and the video. However, it is the author’s recommendation that future

systems use onboard video and processing to completely eliminate the potential for

noise caused by wireless interference.
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