8,709 research outputs found

    Progress and summary of reinforcement learning on energy management of MPS-EV

    Full text link
    The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS

    Data-Driven Transferred Energy Management Strategy for Hybrid Electric Vehicles via Deep Reinforcement Learning

    Full text link
    Real-time applications of energy management strategies (EMSs) in hybrid electric vehicles (HEVs) are the harshest requirements for researchers and engineers. Inspired by the excellent problem-solving capabilities of deep reinforcement learning (DRL), this paper proposes a real-time EMS via incorporating the DRL method and transfer learning (TL). The related EMSs are derived from and evaluated on the real-world collected driving cycle dataset from Transportation Secure Data Center (TSDC). The concrete DRL algorithm is proximal policy optimization (PPO) belonging to the policy gradient (PG) techniques. For specification, many source driving cycles are utilized for training the parameters of deep network based on PPO. The learned parameters are transformed into the target driving cycles under the TL framework. The EMSs related to the target driving cycles are estimated and compared in different training conditions. Simulation results indicate that the presented transfer DRL-based EMS could effectively reduce time consumption and guarantee control performance.Comment: 25 pages, 12 figure

    Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning

    Get PDF
    In this paper, a stochastic model predictive control (MPC) method based on reinforcement learning is proposed for energy management of plug-in hybrid electric vehicles (PHEVs). Firstly, the power transfer of each component in a power-split PHEV is described in detail. Then an effective and convergent reinforcement learning controller is trained by the Q-learning algorithm according to the driving power distribution under multiple driving cycles. By constructing a multi-step Markov velocity prediction model, the reinforcement learning controller is embedded into the stochastic MPC controller to determine the optimal battery power in predicted time domain. Numerical simulation results verify that the proposed method achieves superior fuel economy that is close to that by stochastic dynamic programming method. In addition, the effective state of charge tracking in terms of different reference trajectories highlight that the proposed method is effective for online application requiring a fast calculation speed

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm

    Full text link
    The implementation of a multi-microgrid (MMG) system with multiple renewable energy sources enables the facilitation of electricity trading. To tackle the energy management problem of a MMG system, which consists of multiple renewable energy microgrids belonging to different operating entities, this paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework. To enhance the generalization ability of dealing with various uncertainties, we also propose an improved multi-agent soft actor-critic (MASAC) algorithm, which facilitates en-ergy transactions between multi-agents in MMG, and employs automated machine learning (AutoML) to optimize the MASAC hyperparameters to further improve the generalization of deep reinforcement learning (DRL). The test results demonstrate that the proposed method successfully achieves power complementarity between different entities, and reduces the MMG system operating cost. Additionally, the proposal significantly outperforms other state-of-the-art reinforcement learning algorithms with better economy and higher calculation efficiency.Comment: Accepted by Energie

    Development of Machine Learning based approach to predict fuel consumption and maintenance cost of Heavy-Duty Vehicles using diesel and alternative fuels

    Get PDF
    One of the major contributors of human-made greenhouse gases (GHG) namely carbon dioxide (CO2), methane (CH4), and nitrous oxide (NOX) in the transportation sector and heavy-duty vehicles (HDV) contributing to about 27% of the overall fraction. In addition to the rapid increase in global temperature, airborne pollutants from diesel vehicles also present a risk to human health. Even a small improvement that could potentially drive energy savings to the century-old mature diesel technology could yield a significant impact on minimizing greenhouse gas emissions. With the increasing focus on reducing emissions and operating costs, there is a need for efficient and effective methods to predict fuel consumption, maintenance costs, and total cost of ownership for heavy-duty vehicles. Every improvement so achieved in this direction is a direct contributor to driving the reduction in the total cost of ownership for a fleet owner, thereby bringing economic prosperity and reducing oil imports for the economy. Motivated by these crucial goals, the present research considers integrating data-driven techniques using machine learning algorithms on the historical data collected from medium- and heavy-duty vehicles. The primary motivation for this research is to address the challenges faced by the medium- and heavy-duty transportation industry in reducing emissions and operating costs. The development of a machine learning-based approach can provide a more accurate and reliable prediction of fuel consumption and maintenance costs for medium- and heavy-duty vehicles. This, in turn, can help fleet owners and operators to make informed decisions related to fuel type, route planning, and vehicle maintenance, leading to reduced emissions and lower operating costs. Artificial Intelligence (AI) in the automotive industry has witnessed massive growth in the last few years. Heavy-duty transportation research and commercial fleets are adopting machine learning (ML) techniques for applications such as autonomous driving, fuel economy/emissions, predictive maintenance, etc. However, to perform well, modern AI methods require a large amount of high-quality, diverse, and well-balanced data, something which is still not widely available in the automotive industry, especially in the division of medium- and heavy-duty trucks. The research methodology involves the collection of data at the West Virginia University (WVU) Center for Alternative Fuels, Engines, and Emissions (CAFEE) lab in collaboration with fleet management companies operating medium- and heavy-duty vehicles on diesel and alternative fuels, including compressed natural gas, liquefied propane gas, hydrogen fuel cells, and electric vehicles. The data collected is used to develop machine learning models that can accurately predict fuel consumption and maintenance costs based on various parameters such as vehicle weight, speed, route, fuel type, and engine type. The expected outcomes of this research include 1) the development of a neural network model 3 that can accurately predict the fuel consumed by a vehicle per trip given the parameters such as vehicle speed, engine speed, and engine load, and 2) the development of machine learning models for estimating the average cost-per-mile based on the historical maintenance data of goods movement trucks, delivery trucks, school buses, transit buses, refuse trucks, and vocational trucks using fuels such as diesel, natural gas, and propane. Due to large variations in maintenance data for vehicles performing various activities and using different fuel types, the regular machine learning or ensemble models do not generalize well. Hence, a mixed-effect random forest (MERF) is developed to capture the fixed and random effects that occur due to varying duty-cycle of vocational heavy-duty trucks that perform different tasks. The developed model helps in predicting the average maintenance cost given the vocation, fuel type, and region of operation, making it easy for fleet companies to make procurement decisions based on their requirement and total cost of ownership. Both the models can provide insights into the impact of various parameters and route planning on the total cost of ownership affected by the fuel cost and the maintenance and repairs cost. In conclusion, the development of a machine learning-based approach can provide a reliable and efficient solution to predict fuel consumption and maintenance costs impacting the total cost of ownership for heavy-duty vehicles. This, in turn, can help the transportation industry reduce emissions and operating costs, contributing to a more sustainable and efficient transportation system. These models can be optimized with more training data and deployed in a real-time environment such as cloud service or an onboard vehicle system as per the requirement of companies
    corecore