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Abstract

Development of Machine Learning based approach to predict fuel consumption and
maintenance cost of Heavy-Duty Vehicles using diesel and alternative fuels

Sasanka Katreddi

One of the major contributors of human-made greenhouse gases (GHG) namely carbon dioxide
(CO2), methane (CH4), and nitrous oxide (NOX) in the transportation sector and heavy-duty
vehicles (HDV) contributing to about 27% of the overall fraction. In addition to the rapid increase
in global temperature, airborne pollutants from diesel vehicles also present a risk to human health.
Even a small improvement that could potentially drive energy savings to the century-old mature
diesel technology could yield a significant impact on minimizing greenhouse gas emissions. With
the increasing focus on reducing emissions and operating costs, there is a need for efficient and
effective methods to predict fuel consumption, maintenance costs, and total cost of ownership for
heavy-duty vehicles. Every improvement so achieved in this direction is a direct contributor to
driving the reduction in the total cost of ownership for a fleet owner, thereby bringing economic
prosperity and reducing oil imports for the economy. Motivated by these crucial goals, the present
research considers integrating data-driven techniques using machine learning algorithms on the
historical data collected from medium- and heavy-duty vehicles.

The primary motivation for this research is to address the challenges faced by the medium- and
heavy-duty transportation industry in reducing emissions and operating costs. The development
of a machine learning-based approach can provide a more accurate and reliable prediction of fuel
consumption and maintenance costs for medium- and heavy-duty vehicles. This, in turn, can help
fleet owners and operators to make informed decisions related to fuel type, route planning, and
vehicle maintenance, leading to reduced emissions and lower operating costs.

Artificial Intelligence (AI) in the automotive industry has witnessed massive growth in the
last few years. Heavy-duty transportation research and commercial fleets are adopting machine
learning (ML) techniques for applications such as autonomous driving, fuel economy/emissions,
predictive maintenance, etc. However, to perform well, modern AI methods require a large amount
of high-quality, diverse, and well-balanced data, something which is still not widely available in the
automotive industry, especially in the division of medium- and heavy-duty trucks. The research
methodology involves the collection of data at the West Virginia University (WVU) Center for
Alternative Fuels, Engines, and Emissions (CAFEE) lab in collaboration with fleet management
companies operating medium- and heavy-duty vehicles on diesel and alternative fuels, including
compressed natural gas, liquefied propane gas, hydrogen fuel cells, and electric vehicles. The data
collected is used to develop machine learning models that can accurately predict fuel consumption
and maintenance costs based on various parameters such as vehicle weight, speed, route, fuel type,
and engine type.

The expected outcomes of this research include 1) the development of a neural network model
that can accurately predict the fuel consumed by a vehicle per trip given the parameters such as
vehicle speed, engine speed, and engine load, and 2) the development of machine learning models for
estimating the average cost-per-mile based on the historical maintenance data of goods movement
trucks, delivery trucks, school buses, transit buses, refuse trucks, and vocational trucks using fuels
such as diesel, natural gas, and propane. Due to large variations in maintenance data for vehicles
performing various activities and using different fuel types, the regular machine learning or ensemble



models do not generalize well. Hence, a mixed-effect random forest (MERF) is developed to capture
the fixed and random effects that occur due to varying duty-cycle of vocational heavy-duty trucks
that perform different tasks. The developed model helps in predicting the average maintenance cost
given the vocation, fuel type, and region of operation, making it easy for fleet companies to make
procurement decisions based on their requirement and total cost of ownership. Both the models
can provide insights into the impact of various parameters and route planning on the total cost of
ownership affected by the fuel cost and the maintenance and repairs cost.

In conclusion, the development of a machine learning-based approach can provide a reliable and
efficient solution to predict fuel consumption and maintenance costs impacting the total cost of own-
ership for heavy-duty vehicles. This, in turn, can help the transportation industry reduce emissions
and operating costs, contributing to a more sustainable and efficient transportation system. These
models can be optimized with more training data and deployed in a real-time environment such as
cloud service or an onboard vehicle system as per the requirement of companies.
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1

Chapter 1

Introduction

1.1 Motivation

The transportation sector is one of the major contributors to greenhouse gas emissions con-

tributing about 27% (shown in Figure 1.1) of overall emissions in the United States. Among

the transportation sector emissions, medium- and heavy-duty vehicles produce 26% as per 2020

reports even though they only contribute 4% of vehicles on road [1]. The increasing greenhouse

gas emissions result in global warming adversely impacting human health, the environment, and

the economy.

Figure 1.1: Sources of United States Greenhouse Gas Emissions in 2020 [1]

However, despite these effects road transportation of goods is increasing every day resulting in



S. Katreddi Chapter 1. Introduction 2

high energy consumption. The transportation sector alone consumes 28% of the energy consumed

in the United States (as shown in Figure 1.2) [2]. Improving the fuel efficiency of vehicles reduces

greenhouse gas emissions and increases energy security due to decreased fuel consumption. Consid-

ering the adverse effects on climate and the high energy usage, the U.S. environmental protection

agency (EPA) and national highway traffic safety administration (NHTSA) proposed fuel efficiency

and greenhouse gas emission standards for commercial vehicles. Under the phase 1 regulation,

vocational vehicles including goods movement, delivery trucks, school buses, and refuse trucks are

required to reduce fuel consumption and greenhouse gas (GHG) emissions by 10% by 2018. Hence,

US EPA introduced corporate average fuel economy (CAFÉ) standards for manufacturers to be

compliant with standards to reduce fuel consumption and minimize exhaust pollution.

Figure 1.2: Total U.S. energy used for Transportation in 2021 [2]

Not only the higher emissions but the higher energy consumption also increases the total cost

of ownership (TCO) for fleet management companies. About 24% of cost-per-mile for a commercial

truck is spent on fuel and 7% on maintenance and repairs. Thus studying the factors that influence

the fuel consumption in heavy-duty vehicles and seeking low-carbon alternative fuel vehicles that use

natural gas, propane, hydrogen fuel cells, or electric vehicles could help in taming the emissions in

the long term. Reducing fuel consumption and emissions from existing internal combustion engine

vehicles is the short-term goal [10] for a sustainable future. This in turn reduces the cost-per-mile

for a commercial truck.
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1.2 Objectives

The objective of this work is to study fuel consumption and maintenance and repairs which

are the two factors that influence the total cost of ownership in heavy-duty vehicles using machine

learning. Machine learning coined under artificial intelligence uses algorithms and neural network

models to progressively improve performance. These models apply historical data to understand the

patterns in heavy-duty vehicles (HDVs) to be able to predict new data for which the classification

or the output is unknown without using on-road testing or heavy equipment. The main concepts

covered in this dissertation are developing/using machine learning algorithms to model real-world

on-road heavy-duty vehicle data. The objectives are listed below:

1. To develop a data-based machine learning model for estimating the fuel consumption of a

trip in conventional diesel heavy-duty trucks using very few engine parameters that can be

easily obtained.

2. To investigate the patterns of maintenance cost in medium- and heavy-duty vehicles using

machine learning algorithms and develop a model for estimating the average cost-per-mile for

diesel, natural gas, and propane heavy-duty vehicles.

3. To develop a single generalized model for estimating the maintenance cost of diesel and

alternative fuel (natural gas and propane) medium- and heavy-duty trucks performing various

activities such as goods movement, delivery trucks, school buses, transit buses, refuse trucks,

and vocational trucks.

1.3 Significance

Machine learning uses historical data and statistical analysis to capture the patterns in data

automating the decision-making process. But the collection of real-world road data from vehicles

meeting all standards and requirements is challenging. Due to the lack of availability of data most

of the existing studies are limited because they are confined to using synthetic data or data collected

in a lab under certain circumstances. The work presented in this dissertation is significant in

1. developing a neural network model by identifying and using very few vehicle parameters that

affect fuel consumption most and can be easily obtained from vehicle trip data;
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2. collecting real-time medium- and heavy-duty vehicle maintenance data in collaboration with

fleet management companies;

3. modeling maintenance data for predicting maintenance cost of diesel, natural gas, and propane-

fueled heavy- and medium-duty vehicles that include goods movement, delivery trucks, school

buses, transit buses, refuse trucks, and vocational trucks that enable companies to make pro-

curement decisions.

The developed machine learning models are optimized using real-time data collected regularly

improving the prediction accuracy. The models can be deployed in a real-time environment such

as a cloud service or an onboard vehicle system. This involves integrating the model with the rest

of the system into a framework that gives real-time insights.

1.4 Thesis Organization

The document includes seven chapters. The first chapter contains the introduction, objective,

and significance of the thesis. The second chapter details the background of Artificial Intelligence,

Machine Learning, Deep Learning, and applications. Chapters 3, 4, 5, and 6 are expanded versions

of published or submitted manuscripts. Chapter 3 discusses the application of artificial intelligence

in heavy-duty trucks describing existing studies and identifying the research gaps. Chapter 4 focuses

on identifying the vehicle features that impact fuel consumption most and the estimation of fuel

consumption in heavy-duty vehicles using real data collected at the West Virginia University Center

for Alternative Fuels Engines and Emissions (WVU CAFEE). Chapter 5 presents machine learning

algorithms for estimating maintenance and repair costs in delivery trucks. Chapter 6 describes

the estimation of maintenance cost in vocational trucks with alternative fuels using an ensemble

machine learning model and showcases the importance of this study. Chapter 7 summarizes the

contributions of this work and gives a brief outline of future work.
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Chapter 2

Background

The Fourth Industrial Revolution or Industry 4.0 [11] has emerged with the goal of intelligent,

inter connective, and automation technologies. Artificial Intelligence (AI) is one of the technologies

emerging as part of Industry 4.0 technologies including smart manufacturing, big data analytic,

cloud, Internet of Things (IoT), block chain, and simulation. AI is creating intelligent and smart

machines that can exhibit natural intelligence like humans. AI makes it possible for machines to

learn like humans from experience and change behavior based on inputs. A typical AI analyzes

its environment and takes actions that maximize its chance of success. In recent years elevated

interest in AI and the latest advances in computer technologies led to the rapid growth of Machine

Learning (ML) providing us with algorithmic means for the intelligent processing and analysis of

large sets of data. Machine Learning (ML) and Deep Learning (DL) as a subset of AI and the rise

of AI is shown in Figure 2.1.

Figure 2.1: Machine Learning and Deep Learning as part of Artificial Intelligence [3]
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2.1 Machine Learning

In 1959, Arthur Samuel defined Machine Learning as “The field of study that gives computers

the ability to learn without being explicitly programmed” [12]. Machine Learning evolved as a

subset of Artificial Intelligence where machine learning feeds on computer data and uses a statistical

technique to help it learn how to progressively get better without having been programmed. By

learning from data, the algorithms can build predictive models by identifying patterns in data. The

goal of Machine Learning is to achieve good predictions enough to be useful but not to achieve

perfect predictions. However, the performance of the machine learning algorithm depends on the

characteristics and complexity of the data [5]. The typical workflow for machine learning is shown

in Figure 2.2.

Figure 2.2: Machine Learning Workflow [4]

The subsets of machine learning such as supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning are based on the type of data. The algorithms

can be fed with labeled or unlabeled data based on which type of learning is determined. Thus, the

key to machine learning is data, the amount of training is based on the amount of data, and the

amount of training the system should undergo is determined by the type of algorithm. Machine-

Learning implementations are classified into four major categories as shown in Figure 2.3 which

are discussed in Section 2.1.1 depending on the nature of the signal and response.
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Figure 2.3: Machine Learning Types [5]

2.1.1 Types of Machine Learning Techniques

1. Supervised Learning: In supervised learning, the machine learning algorithms learn from

mapping input data and its associated ground truth by developing a model. This model later

predicts the response for new data samples. This is more like training humans by showing

examples. Hence this method of learning uses labeled data. The most common supervised

tasks are classification and regression.

2. Unsupervised Learning: In unsupervised learning, the algorithm learns from input data but

without any ground truth information. The algorithm learns from the patterns within data

leading to new features that represent the class for each sample. This technique is used

for identifying trends in data, data exploration, and extracting generative features. The

most common unsupervised learning tasks are clustering, dimensionality reduction, feature

extraction, anomaly detection, etc.

3. Semi-Supervised Learning: As the term, Semi indicates this is a hybridization of supervised

and unsupervised techniques. The learning process for this type of algorithm is not closely

supervised and does not allow it to do things on its reducing burden. The dataset is designed

in such a way that it has more unlabeled data and a small, labeled dataset. The availability of
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labeled data in most scenarios could be limited, where semi-supervised learning is beneficial.

Semi-supervised learning is used in fraud detection, text classification, labeling data, and

machine translation.

4. Reinforcement Learning: Reinforcement learning is mostly a trial-and-error-based approach

as algorithms do not take labels for learning but take positive and negative feedback which

reinforces the algorithm. It is an environment-driven approach based on reward and penalty

using insights from environmental activists to take action to increase the reward and minimize

the risk. This technique is used to train models that can help increase automation or optimize

performance such as autonomous driving, robotics, manufacturing, and supply chain.

Machine Learning algorithms are designed to learn an unknown function (target function, f) from

possibly available training data. This target function maps features (input, x) to an output variable

(y) resulting in y=f(x)+e relation, where e is the error. Once f(x) is designed, it is applied to testing

data to evaluate the performance of the designed function.

2.1.2 Benefits of Machine Learning

1. Easily adaptable to data changes.

2. The decision-making process is given priority resulting in fast decision making

3. Data patterns can be analyzed easily, and action can be taken based on them.

Since the time of its introduction, ML grew in a large scope populated with methods, algorithms,

and techniques. However, there is always room for more. Due to the latest breakthrough in

computer technology yielding parallel data processing, ML techniques increased their demand for

memory leading to the introduction of Deep Learning.

2.2 Deep Learning

Deep Learning is a Machine Learning technique that runs inputs through several layers con-

nected by neurons like structures making it capable of learning from data. Neural Networks can

learn from raw data with minimal preprocessing and the accuracy of prediction increases due to
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flexible architectures. The number of hidden layers determines how deep the machine can learn by

making connections. The best results can be achieved by minimizing loss through adjusting weights

and biases. The history of Deep Learning dates to 1943 when Walter Pitts and Warren McCulloch

created a computer model based on the human brain. 1985-the 90s is the second AI winter, which

affected research for neural networks and deep learning. In 1999, when a computer with GPUs was

developed the neural networks started to compete with Support Vector Machines (SVM). With

the increased computational power, neural networks have gained popularity recently [13]. Deep

Learning mainly handles complex mappings from input to output and requires large datasets and

high computational power.

2.2.1 Types of Neural Networks

1. Perceptron Model: The simplest and oldest Neural Network with a single neuron [?].

2. Multi-Layer Perceptron or MLP: A Neural Network like perceptron but with multiple hidden

layers adding complexity. Most of the neurons are present in the hidden layers making it the

key for data manipulation to achieve the required output. The output layer also contains

neurons that determine the object. They work on the principle of feed-forward, hence they

are also called feed-forward networks. These networks are mostly used in Computer Vision

and Speech Recognition applications [14].

3. Convolutional Neural Network (CNN): An MLP with convolutional blocks for analyzing im-

ages and videos. A convolutional filter of size NxM is moved across the images to pick hidden

features of signals or objects that may be of interest to us. The most important features are

identified using pooling layers. Convolutional Networks are widely used in Image Classifica-

tion, Computer Vision, and Pattern Recognition [15,16].

4. Recurrent Neural Network (RNN): RNN analyzes other states of data like the data in past

and predicts the future. The state matrices of RNN stores the last output. RNN uses the

concepts of both MLP and previous outputs. These networks are used in Stock Market

Predictions, Time Series Data Predictions [17].

5. Autoencoders (AE): Rather than taking decisions these network works to maintain quality
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even though the data are compressed. The hidden layer in autoencoders is called a bottleneck

which is a smaller layer than the input and output making the network compress data but

maintain quality.

There are many more neural networks like Long Short-Term Memory (LSTM), Gated Recurrent

Unit (GRU), Sparse AE (SAE), Variational AE (VAE), Denoising AE (DAE), etc as shown in Figure

2.4 (adapted from [16]). They are tuned to work with various tasks and applications.

Backpropagation Algorithm: Backpropagation is a training algorithm that propagates the er-

ror back for training weights in a Multi-Layer Perceptron. The backpropagation calculates error

by comparing the output with ground truth values and adjusting the weights. The back-error

propagation takes place layer by layer by adjusting the weights.

2.2.2 Benefits of Deep Learning

1. No need to extract features from raw data i.e. DL extracts the best features for us. Deep

Learning scans for features that correlate and combine them to enable faster learning.

2. Maximum utilization of unstructured data.

3. High-quality results can be achieved.

4. Eliminates the need for data labeling and unnecessary costs.

2.3 Applications of AI

AI is proving its ability in solving daily complex problems in many industries efficiently. With

recent advancements in big data and the computational power of computers, AI is advancing its

ability in reasoning, planning, knowledge, communication, etc. From voice assistants like Siri to

Self-driving vehicles, AI has revolutionized technology with its advancements. The voice assistants

like Siri and Alexa use machine learning algorithms to become smarter and understand natural

speech. Autonomous vehicles are becoming smarter and smarter day by day with specialized fea-

tures like auto braking systems, self-parking, etc. [18]. Searching for anything online has become

much easier as companies like Amazon, Netflix, Pandora, etc. are using AI to provide the best sug-

gestions for their customers based on previous data [19]. AI is being used in the healthcare sector
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Figure 2.4: Types of Neural Networks [6]
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for fast diagnosis than doctors. It is being possible to predict the chances of diseases ahead [20].

Natural Language Processing has made it possible for humans to talk with computers, and smart-

phones [21]. Social Media which has become a part of daily life for everyone is curated by AI

from notifications to feeds [22, 23]. Many more applications have powerful AI applications shown

in Figure 2.5.

Figure 2.5: Applications of AI in some sectors [7]

In this proposal, several ML techniques are applied to one-dimensional tabular data collected

from Heavy-Duty Vehicles (HDVs). The success of deep learning on tabular data is not yet clear

even though it has seen tremendous success on images, videos, and text datasets [24]. With the

increasing number of vehicles on road, there is also an increase in natural resource consumption,

increased emissions, and reduced safety due to more accidents. AI has already proven its success

in automobiles through self-driving cars and many other applications. However, there is a gap

in extending this application to heavy-duty vehicles. With the increased e-commerce, there have

been more trucks on highways these days transporting goods. Heavy-duty vehicles using fuel are
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predominantly in use which in turn increases fuel consumption and emissions. Many internal,

external, and environmental factors affect the fuel consumption, emissions, and maintenance of

vehicles. It is difficult for the human brain to understand the trends in huge volumes of data

collected from vehicles. Hence machine learning algorithms can make the analysis easier. Deep

learning, a class of machine learning algorithms has gained success on data containing images,

videos, text, audio, etc. However, on tabular data, neural network performance is still unclear

and machine learning ensemble models remain the promising tool as they don’t need differentiable

functions, and creating inductive biases required for neural networks on tabular data made of

heterogeneous features and the small sample size is difficult. Neural networks on tabular data

require a lot of data pre-processing and exploratory data analysis as data containing irrelevant

features makes the neural network performance worse especially with irregular patterns in the

target. Most importantly, Machine learning algorithms are easy to train and have low tuning

costs. In this work, various machine learning algorithms for predicting continuous variables are

investigated.
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Chapter 3

A Review on Application of Artificial
Intelligence in Heavy Duty Trucks

Artificial Intelligence (AI) has seen success in industries such as banking, healthcare, manufac-

turing, agriculture, transportation, automobile/automotive, and many more. Automotive Indistry

ecosystem is being highly impacted and changed by the potential of AI. The customer’s preference

for advanced and new features, driver’s assistance, self-driving, etc. are propelled the usage of AI in

the automotive industry. AI is being used in every phase of automotive, from autonomous driving

to manufacturing to supply chain to production to driver safety. As per the United States Environ-

mental Protection Agency (U.S. EPA) [25], about 32% of on-road NOX (nitrous oxide) emissions

and 23% of GHG emissions are produced by heavy-duty trucks impacting the climate and people’s

health. As per National Highway Traffic Safety Administration (NHTSA) reports in 2020, 76% of

fatal crashes involved large trucks. Heavy-duty vehicles constitute about 18% of energy use and

17% of petroleum use in the United States [26]. As per reports [27], predictive maintenance can save

about 8-12%. A small change in transportation emissions and fuel economy, lowering maintenance

time and safety of drivers can have outsized effects and significant global impact on climate and

natural resources. Due to advanced technologies, there is a wealth of data collected from vehicles

these days. Analyzing this data using emerging technologies like Artificial Intelligence helps draw

key insights into heavy-duty transportation without on-road testing of vehicles.

Hence an effort has been made to bring together the existing studies on the application of AI

in heavy-duty trucks and identify gaps in current research in this paper. Various studies from the
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literature on fuel consumption/efficiency, emissions, self-driving, truck platooning, and predictive

maintenance have been presented. The studies presented use various AI techniques that help in

identifying the pattern and making predictions/decisions. However, the feasibility and versatility

of using data-driven methods and artificial neural networks are unclear in some applications such

as turbo machines and electrical submersible pumps [28]. Similarly, due to the challenges involved

in implementing Artificial Intelligence in the trucking industry and the lack of surveys on stud-

ies related to AI in heavy-duty trucks, this paper focuses especially on the applications of AI in

heavy-duty trucks. Truck Platooning which is considered partially autonomous is the next big

thing in truck transportation that can be achieved through AI techniques. The increased traffic

congestion and accidents, stringent regulations for emissions and fuel consumption, and lack of

truck drivers and safety have accelerated the application of AI in the trucking industry. Fleet man-

agement companies are already adopting AI technologies such as machine learning, deep learning,

computer vision, and natural language processing discussed in the following sections to observe the

performance of trucks which can help in cost management, reducing downtime, analyzing truck

performance, etc. AI helps fleet owners to make a prediction based on the patterns in the previous

data, can enable vehicle 2 vehicle (V2V) communication, identify drivers’ behavior, and select the

route with low fuel consumption.

3.1 Fuel Consumption/Economy

Fuel consumption is one of the important aspects of vehicles, especially Fleet/Heavy-duty vehi-

cles. The Corporate Average Fuel Economy (CAFÉ) standards by National Highway Traffic Safety

Administration regulate the fuel economy standards for vehicles. Fuel economy contributes to the

key factor in the overall operational cost of vehicles, especially heavy-duty trucks. Increasing fuel

efficiency and reducing fuel consumption can save a lot for transportation companies. Several

studies have been made for modeling fuel consumption/fuel efficiency using statistical and other

approaches. Predicting fuel efficiency can help in managing the fleet and for diagnostic purposes

in case of high fuel consumption. The physics-based and statistical approaches to modeling are

time-consuming and less accurate compared to machine learning methods. Several studies have

been performed to predict fuel consumption in vehicles using machine learning and deep learning
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techniques [29–35]. Perrotta et. al. [36] applied three machine learning techniques namely Sup-

port Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN) for the

estimation of fuel consumption in trucks based on telematics and Highways Agency Pavement Man-

agement System (HAPMS) data. The parameters used in their modeling are gross vehicle weight,

road gradient, vehicle speed, average acceleration, % start torque, % end torque, the engine revs at

the start of the record, used gear, cruise control, the radius of curvature of the road, road roughness

as Longitudinal Profile Variance (LPV) at 3, 10, and 30 m wavelengths, road surface macrotexture

and achieved root mean square error of 5.12, 4.64, 4.88 (liters/100km i.e., liters of fuel consumption

per 100 km) for SVM, RF, and ANN respectively. The comparison of results indicates the best per-

formance achieved with random forest having RMSE of 4.64/100km and R2 of 0.87 but SVM and

ANN had better accuracy at prediction. The work is limited to features related to engine, vehicle,

and road whereas considering other parameters such as climate, and drivers’ behavior can improve

the results. Katreddi et. al. [37] predicted the fuel consumption based on the input parameters of

engine load (%), engine speed (rpm), and vehicle speed (km/h) of heavy-duty trucks using a feed-

forward neural network with backpropagation. The model predicts the average fuel consumption by

the truck given the input parameters. The predicted fuel consumption with distance is compared

with other machine learning techniques linear regression and random forest. It was shown that the

MLP achieved the best performance with an RMSE of 0.0025L (fuel consumed in liters) compared

to machine learning techniques such as linear regression and random forest. The data used in this

study were collected at WVU CAFEE using a portable emissions measurement system (PEMS) de-

vice. The study is limited to understanding the effect of the very few features that can be obtained

easily unlike other studies where a collection of sensor data that might contain noise is not required.

The shortcoming of this study is not considering external factors such as climate, and GPS infor-

mation. The work has been confined to a single truck which could impact the fuel consumption

significantly in some cases but considering the entire trip covered various stages of engine opera-

tions. The authors should have considered other parameters and compared the results of the neural

network with a different number of hidden layers. A similar study to predict the fuel consumed in

mining dump trucks based on payload, loading time, idled while loaded, loaded travel time, empty

travel time, and idled while empty using ANN was performed [38]. The study involved analyzing

data from 5001 cycles of haulage operations using a feed-forward neural network (6-9-9-1) with
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backpropagation. The results revealed that the idle time of dumping trucks significantly impacts

fuel consumption. The gap in addressing unnecessary fuel consumption and reducing emissions

during idle speed has been addressed. The consideration of idle energy consumption and emissions

is important in vocational trucks such as school buses and dumping trucks that make frequent

stops. Another study involving mining trucks was done by Soofastaei et. al. [39]. The haulage

vehicles are designed to perform well with heavy loads and with greater road grade and resistance.

An ANN was used to find the correlation between fuel consumption and the input parameters:

truckload, truck speed, and total haul road resistance. A Genetic Algorithm (GA) is then applied

to optimize the fuel consumption based on the input parameters and fitness function created by

ANN. The study has used a large dataset that generalizes the model well that could give a good

prediction on unseen data. Identifying the range of values for the Gross Vehicle Weight and Truck

Speed can help in managing the fuel efficiently. Bodell et. al. [40] compared the performance of

machine learning algorithms linear regression (LR), K-Nearest Neighbor (KNN), ANN (MLP) with

Adam, and ANN (MLP) with SGD (Stochastic Gradient Descent) using simulated and operational

data considering road slopes and driver profiles. For the simulated data scenario, ANN with Adam

performed better than other methods with a mean square error of 0.026 liters/100km whereas for

operational data both the ANN algorithms (MLP with SGD and MLP with Adam) performed with

a mean square error of 2.939 liters/100km. This work has been limited to machine learning models

and due to challenges in computational power has not been extended to deep learning methods.

The fuel consumption in heavy-duty trucks with a combustion engine is affected by the operating

points. Hence, the fuel consumption modeling using engine parameters: engine speed, torque, and

fuel consumption at different operating points were performed by Wysocki et. al. [41]. Their work

evaluated the performance of polynomial regression, K-Nearest Neighbor (KNN), and Artificial

Neural Network (ANN) on the exploitation data collected and observed that ANN trained on the

8 input variables (engine speed and torque at initial, 500, 1000, and 1500th millisecond) performed

best with less amount of training data. The sensitivity of training data size has been evaluated for

various models which is helpful as the machine learning models are dependent on the amount and

variation in data but are limited to combustion engines. A neural network model based on distance

windows rather than for predicting the average fuel consumption in heavy vehicles was presented

by Schoen et. al. [42]. The model used is a Feed-Forward Neural Network trained using input
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parameters: the number of stops, time stopped, average moving speed, characteristic acceleration,

aerodynamic speed squared, change in kinetic energy, and change in potential energy. The model

was evaluated with different time windows of 1km, 2km, and 5km, and the 1km window has the

highest accuracy with an accuracy of 0.91 and RMSE (liters/100km) of 0.0132 for fuel consumption

prediction. The window size is dependent on the data and application-specific which is considered

a limitation of work. In [43], an Explainable Boosting Machine was used to measure the impact

of actionable factors on fuel consumption with the data collected from different vehicles (cars to

trucks). An algorithm to generate explanations related to the relationship between fuel consump-

tion to fuel factors in the trained models was proposed. The data used in this work is independent

of the fuel type and driving behavior which might be considered a limitation and the analysis of

hybrid vehicle fuel consumption is considered a future scope. All the previous studies help manu-

facturers and fleet companies identify various factors affecting fuel consumption/fuel efficiency for

diagnostic purposes and cost management.

3.2 Emission Estimation

As emissions regulations for transportation are being imposed, automotive industries especially

heavy-duty trucks are focusing on reducing emissions. Emission estimation helps in developing

emission inventories and set standards for environmental protection. Due to challenges in physics-

based models, companies are using data-driven approaches for estimating emissions and taking

necessary actions to reduce the emissions. Previous studies for analysis and estimation of emissions

like carbon monoxide (CO), carbon dioxide (CO2) [44] nitrogen oxides (NOX) [45], hydrocarbon

(HC), and particulate matter (PM) [46, 47] from vehicles using machine learning have proved the

ability of AI in emissions data study [48–55]. These studies have motivated the use of Artificial

Intelligence techniques in analyzing and estimating emissions in heavy-duty trucks [56].

Pillai et. al. [57] modeled and predicted engine-out nitrogen oxide (NOX) and tailpipe nitrogen

oxide (NOX) in heavy-duty vehicles using deep neural networks (DNN). Four DNNs to perform

supervised regression tasks for estimating Engine-out NOX and Tailpipe NOX were developed

using data collected from engine dynamometer and chassis dynamometer testing as input. It has

been determined that high-accuracy models can be developed with minimal significant engine and
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after-treatment input parameters such as SCR inlet and outlet temperature, engine-out NOX ,

and exhaust mass flow rate. It has been observed that engine-out NOX has good prediction

accuracy with R2 = 0.99 whereas the tailpipe NOX has a prediction accuracy of R2 = 0.92. The

results of actual and predicted Engine Out NOX and Tailpipe NOX using randomly selected input

data. Extending this work on the on-road testing data might be more accurate as it considers

the telemetric data. An ANN with Levenberg-Marquardt (LM) training algorithm is used by

Mohammadhassani et. al. [58] for NOX emission prediction of heavy-duty diesel engines. The

model takes engine speed, air intake temperature, and mass fuel as inputs and achieved an R2 of

0.89 for the test data. Considering just the engine operating parameters of specific engine types

in heavy-duty vehicles limits the study as the emissions are dependent on other factors such as

vocation type, fuel type, age, road conditions, etc. Super Learner [59] model based on Random

Forest, XGBoost, Light GBM, and CatBoost was proposed by Wei et.al. [9] for predicting CO2 and

NOX emissions. One-level (Level 1 Super Learner Regressions) model prediction was employed

for CO2 and two-level (Level 1 Super Learner Regression, Level 2 Super Learner Classification)

prediction for NOX prediction. The super learner achieved an R2 value of 0.94 and 0.84 for CO2

and NOX emissions respectively with the comparison of actual and predicted emissions with other

methods. This study focused on onboard test data and was able to predict well for significantly

different emissions. A single model that predicts CO2 and NOX could be considered. Prediction

of emissions from diesel engines which are mainly used in heavy-duty vehicles was studied by Yu

et. al. [60] using CEEMDAN-LSTM. The CEEMDAN algorithm is used to extract subseries of

NOX emission data at different frequencies. An LSTM neural network is then trained on the

subseries data. The performance of CEEMDAN-LSTM was compared with other machine learning

models random forest, support vector regression, XGBoost, LSTM, CEEMDAN-RF, CEEMDA-

SVR, and CEEMDAN-XGBoost. Including CEEMDAN algorithm data decomposition on data

has reduced the sudden changes in data and improved the accuracy of the LSTM neural network.

The CEEMDAN-LSTM approach has a better performance compared to others mentioned in the

paper with RMSE of 46.11/ppm, and R2 of 0.98. However, this work did not consider the effect

of GIS parameters in emission estimation. The sensor data collected every second contains a lot of

noise and is smoothed before feeding into the LSTM neural network helps in stabilizing the model

performance which has not been done in most of the studies. Prediction of emissions from HDVs



S. Katreddi Chapter 3. A Review on Application of Artificial Intelligence in Heavy Duty Trucks 20

based on various scenarios using AI has been well studied and many fleet management companies

are adopting the methods to identify the faults in sensors, quality planning, and identifying the

adaption of emissions with the age of the vehicle.

3.3 Self Driving and Truck Platooning

Industry 4.0 technologies such as Deep Neural Networks have led to the development of autonomous/self-

driving vehicles. As the level of autonomous driving depends on the level of capability of vehicle

without human intervention. Level 0 constitutes human-directed vehicles. Level 1 and Level 2

autonomous vehicles provide driver assistance such as lane assistance, and cruise control. Level

3 autonomous vehicles have the environmental detection capability to make informed decisions

with human override. Level 4 has a high capability of autonomous driving where human interac-

tion is not required in most scenarios but still requires human intervention. Level 5 autonomous

vehicles are fully automated cars that don’t require human interaction. Previous works on lane

assistance [61–65], pedestrian detection [66–71], vehicle detection [72–74], object detection [75],

traffic sign recognition [76–78], self-driving [79–81], determination of turning radius and lateral

acceleration in cargo [82] has shown the great success of autonomous cars. Platooning-based video

information sharing Internet of Things framework has been proposed to enhance the safety and

stability of autonomous vehicles [83]. However autonomous trucks are still a challenge, with the

success of autonomous vehicles many companies are focusing on autonomous trucks. Autonomous

vehicles are safer than human-controlled vehicles enhancing safety and avoiding human errors es-

pecially in preventing collisions during inclement weather and driver behaviors.

The underlying technology for autonomous cars and trucks is similar however trucks need to

be able to sense conditions in advance. The current level of autonomy in trucks is within the

range of Truck Platooning and is expected to achieve Level 4 by 2024 [84]. Truck Platooning is

where tucks travel together connected by a computer and automated driving system. The trailing

vehicles adapt and react based on the lead vehicle’s action resulting in the semi-autonomous truck.

There are three areas of Truck Platooning studies: fuel consumption in truck platoons [85, 86],

energy efficiency [87], speed control and control design, communication methods, and interaction

for autonomous driving. Various studies have been performed on vehicle platooning such as the
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prediction of drag force [88], and the effect of surrounding traffic behavior using machine learning.

A neural network structure for deep deterministic policy gradient (DDPG)-based proportional

integral derivative (PID) has been developed for vehicular platoon control [89]. This method

uses reinforcement learning to find an optimal strategy for deciding based on collision, maintaining

relative position, and host responses. The DDPG network consists of an actor network with 1

input layer, 2 hidden layers with 150 and 100 neurons, and an output layer with ReLU activation

function, and a critic network with 2 input layers, 3 hidden layers with 150, 200, and 100 neurons

and 1 output layer. This method has high interpretability and stability compared to the traditional

DRL method achieving a maximum speed error of 0.02-0.08m/s lower than the conventional PID

controller and a maximum distance error of 0.77m less than the PID controller.

An CNN and LiDAR-based obstacle detection model with the bird-eye view (BEV) map gener-

ation was proposed in [90]. The traditional LiDAR point clouds were used by merging continuous

frames and eliminating the ground. Different CNN models namely YOLOv3-tiny, YOLOv3-tiny,

XNor, HetConv, and Stride-YOLO are trained on three different LiDAR projection maps (BEV

maps of LiDAR point clouds): 1) c1f3g1: H-Map (1 channel) with a combination of three succes-

sive frames and elimination of the ground, 2) c3f3g0: HDD-Map (3 channel) with the combination

of three successive frames and without elimination of the ground, 3) c3f3g1: H-Map (1 channel)

with the combination of three successive frames and elimination of the ground. An Intelligent self-

driving truck system consisting of 1) real-world traffic simulation, 2) high fidelity truck that mimics

real truck responses, and 3) an intelligent planning module and multi-mode trajectory planner was

introduced by Wang et. al [91]. The realistic traffic simulator contains a mapped network, the

traffic controller, and the vehicle meta-information. The high-fidelity truck model is implemented

using a real truck’s kinematics and powertrain system trained with machine learning approaches.

The reinforcement learning technique is used for decision-making and trajectory planning. How-

ever, this work is mainly focused on highway performance and is a long way to Level 4 autonomy.

Self-Driving provides safety in case of reckless driving making quick decisions than humans. How-

ever, with higher technology also comes risks such as technical errors and software attacks, and

sensor failure issues due to inclement weather. There is a lot of scope for improvement in this area

of research as autonomous trucks are still in the initial phase of hitting the roads, using machine

learning/computer vision techniques. Autonomous trucks would require more sensors (LIDAR/
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RADAR) and more computational power compared to autonomous cars.

3.4 Predictive Maintenance and Onbard Diagnostics

Maintenance is important in fleet management to improve the reliability and uptime of vehi-

cles. The evolution of Maintenance 4.0 has enabled industries to adopt data-driven approaches for

maintenance shifting the paradigm from Reactive Maintenance (RM) to Preventive Maintenance

(PM) to Predictive Maintenance (PdM) [92]. Predictive Maintenance uses continuous monitoring

to determine when maintenance is required. PdM allows the use of historical data, statistical in-

ference methods, and machine learning techniques for the early detection of failures [93]. Several

studies have been made in past for predictive maintenance of automobiles using machine learning

[94–96]

Predictive Maintenance in the fleet is of high importance to prevent the downtime of a vehicle

which could lead to huge losses, especially for delivery trucks and trucks carrying goods. Prytz et.

al. [97] used data mining techniques on the logged vehicle data from trucks to perform predictive

maintenance of compressor faults. The dataset used was constructed from Volvo’s logged vehicle

data (LVD), vehicle data administration (VDA), and vehicle service records (VSR) data. The su-

pervised machine learning algorithms KNN, C5.0, and Random Forest were evaluated on the data,

and concluded that using logged vehicle data as a solution for predictive maintenance is feasible.

However, this study is only concentrated on Volvo’s data, but different manufacturers adopt dif-

ferent engines or systems which affect the maintenance of vehicles. The imbalanced datasets pose

a big challenge for training machine learning models. The importance of independency for train

and test datasets is evaluated by using the Synthetic Minority Over-Sampling Technique (SMOTE)

to balance the data. The effect of the prediction horizon (PH) which is defined as the period of

interest for the maintenance of classification was evaluated. The author focused on data mining

and machine learning techniques. Artificial Neural Networks would be another choice as the data

processing required a lot of knowledge regarding the data and data preprocessing. In [98], a

parallel stacked autoencoder was used to obtain low dimensional representations from the mas-

sive amount of high dimensional logged vehicle data collected from Volvo’s heavy-duty trucks, and

the embeddings are passed to an autoencoder to predict the Remaining Useful Life (RUL). This
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study is very useful in deploying less computationally expensive model on the vehicles. The use of

stacked autoencoders improves the performance by 6.31% with 99.7% data reduction and 23.03%

with 86.99% data reduction. Scheduling maintenance becomes easy and reduces the downtime if

the time between failures (TBF) can be estimated based on historical data. Chen et. al. [99]

modeled the maintenance data collected from a fleet company using DCNN to predict the TBF.

The maintenance data included parameters such as times of engine experience maintenance, age

of the vehicle, cumulative miles when the failure occurred, model of the vehicle, model year, the

registration date of the vehicle, type of vehicle, workstation of vehicle, and area of the vehicle.

DNN model is trained on the input features and compared the performance with Bayesian regres-

sion, k-nearest neighbors, and decision tree algorithms and found that the DNN model has the

lowest root mean square error of 366.73 days using historical maintenance data and 363.07 days

using historical maintenance data with GIS data that includes rainfall, days of rainfall ¿1mm, max

temperature, min temperature, and days of air frost during December and February. This work

included processing nominal maintenance data using an autoencoder to obtain low-dimensional and

robust data. The low-dimensional data is concatenated with the remaining features of historical

data and GIS data is passed to DNN for training. The weights of the neural network are then

analyzed to determine the effect of GIS parameters on the output. This is interesting work, but the

knowledge of maintenance followed by the company is required. Considering the type of vehicle, fuel

type can improve the results as diesel engines require more maintenance compared to alternative

fuel engines. Sun et. al. [100] proposed onboard predictive maintenance with machine learning

and deep learning models for malfunction prediction and root cause analysis. Their work involved

multiple steps where the first step is to identify the data with a high probability of failure collected

using the majority voting method and the Diagnostic Trouble Code (DTC) which are compared

with multiple machine learning algorithms such as Näıve Bayes classifier, Decision Trees, Support

Vector Machines (SVM) and nearest centroid. When an abnormality is detected, the time-series

data is recorded, and the final step is to perform sensor data level analysis assuming the sensor data

are dependent. A convolutional neural network is trained to reconstruct the expected behavior of

the sensor so that the deviation in prediction can be identified as a malfunction. The abnormal

sensor combinations are then mapped to root causes. CNN performed well in learning information

from time-series data compared to ML algorithms. This technique is less expensive as the data
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is recorded only in case of abnormality, but the sensor signal selection was based on the domain

knowledge of individuals and is assumed to be not independent. Also, a small deviation in recorded

values may not show an impact immediately in the histograms. Rengaswamy et. al. [101] stud-

ied the effect of dynamically weighted loss and focal loss in a neural network for prognostic and

health management analysis of gas turbine engines and air pressure systems in heavy-duty trucks.

Multiple models such as Feed-Forward Neural Network, 1D Convolutional Neural Network, Bidi-

rectional Gated Recurrent Unit, and Long Short-Term Memory were evaluated using the Scania

truck dataset and obtained an improved classification using a dynamically weighted loss function.

The proposed weighted loss function in this work uses the weight variable (D) given by

D(f(x), y) =


|f(x)−y|

2 , if |f(x) − y| < C.

|f(x) − y|, otherwise.
(3.1)

The weighted loss function has statistically significant improvement in all models for remaining

useful life (RUL) prediction of gas turbines and anomaly detection in air pressure system of heavy-

duty trucks. The learning process using weighted loss function depends on the weight of learning

error giving more weightage to focus on the larger error data samples preventing the neural network

from biasing the prediction. The freight companies are benefiting from Predictive Maintenance

based on historical data. Predictive maintenance helps reduce the downtime of the vehicle, lowers

the maintenance cost, ensures safety preventing sudden failures. The existing studies however are

limited to predicting remaining useful life (RUL), time between maintenances (TBM), failure in

individual components, abnormalities in sensor functioning etc. There are very limited studies on

estimating the maintenance cost or identifying the parameters in estimating the maintenance cost.

This could give customers an idea to choose a vehicle based on the requirement and maintenance

cost.

3.5 Conclusion

The high level of digitization has changed every industry drastically over the past few years.

Artificial Intelligence is a cutting-edge technology that decides human intelligence. The potential

of AI in the automotive industry mimics human action driving the development of AI in auto-

motive. IoT and cloud technology have enabled the capability to process large volumes of data
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paving way for intelligent vehicles. The need for AI in the automotive industry is fueled by the

increasing demands for new features, and incorporating new technologies, and the lack of truck

drivers has made modest progress since 2017. This resulted in a drastic change in evolution in the

past decade. Newer cars come with driverless, intelligent decision-making systems, safety, driver

assistance, fuel-efficient, and lower emissions. AI is becoming an essential part of automotive man-

ufacturing, supply chain, and automobiles themselves for self-driving expanding the automotive

industry. Companies adopting AI-based technologies and solutions can gain a significant advan-

tage in the coming years. AI, IoT, and Machine Learning are changing the way people think about

vehicles extending the features to heavy-duty vehicles. In this literature review, applications of AI

in heavy-duty vehicles were introduced by discussing the data analysis/machine learning techniques

that can improve fuel efficiency/predict fuel consumption, predict emissions, identify abnormalities

in vehicle performance, predictive maintenance, calculate Remaining Useful Life (RUL) and Time

Between Maintenances (TBM), truck platooning for self-driving. A review of insightful research

efforts has been presented in each of these areas. Industries adopt these technologies based on

the research available. There are many research papers and review papers available in the field of

automotive, AI in autonomous vehicles, AI in passenger vehicles, AI in predictive maintenance, etc.

This comprehensive literature review is focused mainly on applying modern Artificial Intelligence

technologies to heavy-duty vehicles as freight transportation is one of the major contributors to

climate change, health impacts, pollution, and the country’s economy. Even a small improvement

in fuel efficiency and lower emissions, preventing downtime will help freight companies save a lot

of money and reduce environmental impact. Although electric vehicles, hybrid vehicles, and au-

tonomous vehicles are major trends using computer vision and decision making there is a long

way for heavy-duty trucks to reach that point. Availability of data is the major requirement for

machine learning/deep learning techniques. The collection of data from different vehicles using

different fuel types such as diesel, natural gas, and propane vehicles could help new studies using

machine learning in comparing the performance such as fuel consumption, emissions, and mainte-

nance of alternate fuel, diesel vehicles. Reinforcement learning could be the future of automotive

that can improve performance by interacting with the environment. More focus is needed on im-

proving the performance of machine learning models as a false positive prediction can cost a lot,

especially in the scenarios such as predictive maintenance. One of the major challenges in using
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machine learning is the limitation in publicly available datasets which could help in studies related

to fuel consumption, emissions, and predictive maintenance of heavy-duty trucks and comparing

the performance of different fuel types based on the activity of trucks, especially for vocational

trucks.
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Chapter 4

Trip-Based Modeling of Fuel
Consumption in Heavy-Duty Vehicles
Using Artificial Intelligence

Heavy-Duty Trucks contribute about 20% of fuel consumption in the US. The fuel economy

in Heavy-Duty Vehicles is affected by several real-world parameters like road parameters, driver

behavior, weather conditions, vehicle parameters, etc. Although modern vehicle complies with

emission regulations, potential malfunction of the engine, regular wear, and tear or other factors

could affect the vehicle’s performance. Predicting fuel consumption per trip based on dynamic on-

road data can help the automotive industry to reduce the cost and time for on-road testing. Data

modeling can easily help in diagnosing the reason behind fuel consumption with the knowledge of

input parameters. In this paper, an Artificial Neural Network (ANN) is implemented to model

fuel consumption in modern heavy-duty trucks for predicting the total and instantaneous fuel

consumption of a trip based on a very few key parameters such as Engine Load (%), Engine

Speed (rpm), and Vehicle Speed(km/h). The instantaneous fuel consumption can help predict the

pattern in fuel consumption for optimized fleet operations. In this work, the data used for modeling

is collected at a frequency of 1Hz during on-road testing of modern Heavy-Duty Vehicles at WVU

CAFEE using the Portable Emissions Monitoring System (PEMS). The performance of the Neural

Network is evaluated using Mean Absolute Error and Root Mean Square Error. The model is

further evaluated on data collected from a vehicle on-road trip. The study shows that Artificial
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Neural Networks performed slightly better than other machine learning techniques such as Linear

Regression, and Random Forest with high R2 and lower Root Mean Square Error.

4.1 Introduction

The fuel efficiency of heavy-duty trucks can be beneficial not only for the automotive and

transportation industry but also for the country’s economy and global environment [102, 103].

The cost of fuel consumed contributes about 30% of heavy-duty truck life cycle cost. Reduction

in fuel consumption by just a few percent can save a lot of costs for the transportation industry

[104, 105]. Effective and accurate estimation of fuel consumption (fuel consumed in L/km) can

help analyze emissions as well as prevent fuel-related fraud. As per EPA reports, 28% of total

greenhouse gas emissions come from transportation (heavy-duty vehicles and passenger cars) [106].

The United States Environmental Protection Agency (US EPA) has introduced Corporate Average

Fuel Economy (CAFÉ) standards enforcing automotive manufacturers to be compliant with the

standards to regulate fuel consumption [107,108].

Several studies have been presented in the past for evaluating the fuel efficiency of vehicles

using simulation-based models, and data-driven models. A simulation model was developed based

on engine capacity, fuel injection, fuel specification, aerodynamic drag, grade resistance, rolling

resistance, and atmospheric conditions with simulated dynamic driving conditions to predict fuel

consumption [109]. A statistical model which is fast and simple compared to the physical load-based

approach was developed to predict vehicle emissions and fuel consumption [110]. The impact of

road infrastructure and traffic conditions [111–113], driver’s behavior [114,115], weather conditions

[116, 117], and the ambient temperature on fuel consumption were studied and learned that fuel

consumption can be reduced by 10% with eco-driving influences. The era of big data and artificial

intelligence has enabled the modeling of huge volumes of data for companies to reduce emissions

and fuel consumption. Machine learning techniques such as Support Vector Machine (SVM) [118],

Random Forest (RF) [119], and Artificial Neural Networks (ANN) [120, 121] are widely applied

to turn data into meaningful insights and solve complex problems. These techniques have been

applied to estimate emissions and fuel consumption in motor vehicles [29], trucks [36], ships [122],

and aircraft [123]. The comparison of previous studies has been shown in Table 4.1
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Table 4.1: Previous studies related to Fuel Consumption

Predicted Input Parameters Method Result Reference
Variable

Fuel Cubic Capacity, ANN (22-10-3) R2 ≥ 0.98; [29]
consumption in Quantity of RMSE = 5-8;
passenger cars cylinders, R2 ≥ 0.98;

Quantity of ANN (20-10-3) RMSE = 6-10
valves,

Maximum Power,
Maximum Torque,
Compression Rate,

Kerb Weight of
Vehicle,

Type of Engine,
Fuel Injection,
Type of charge,

Gearbox,
Drivetrain

Fuel Road Gradient, SVM R2 = 0.83; [36]
consumption in Torque % at the start, RMSE = 5.12;

trucks Torque % at the end, MAE = 3.56
Average Acceleration RF R2 = 0.87;
Gross Vehicle Weight, RMSE = 4.64;
Road curvature radius, MAE = 3.21
Longitudinal Profile , ANN R2 = 0.85;

Variance at 3m, RMSE = 4.88;
Longitudinal Profile MAE = 3.46

Variance at 10m,
Longitudinal Profile

Variance at 30m,
Vehicle Speed,
Cruise control,

Used Gear
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Predicted Input Parameters Method Result Reference
Variable

Fuel Driver Gender, ANN(9-4-1) MSE = 0.00032692 [33]
consumption Driver Age, ANN(9-6-1) MSE = 0.00037202

based on Transmission Type, ANN(9-8-1) MSE = 0.00019523
floating Fuel Type, ANN(9-10-1) MSE = 0.00009996
vehicle Weight, ANN(9-12-1) MSE = 0.00025849
data Mileage,

Speed,
Time,

Location
Brake specific Engine Speed, ANN(3-7-2) Mean Relative [34]

fuel Brake Mean Effective Error for
consumption Pressure, BSFC=1.93%
and exhaust Injection Time, Mean Relative

temperature in Error for Exhaust
diesel engine Temperature = 2.36

Fuel Engine Size, RBFNN(5-15-1) Maximum Error [124]
Consumption Distance, Percentage = 0.024

Fuel Type, Absolute Avg.
Speed, Error = 0.022071
Weight.
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While the current approaches determine the fuel consumption of the vehicle, combining these

techniques with data help in identifying the parameters that cause the anomaly as the malfunction

can be due to wear and tear of the engine, improper maintenance, engine failure, exhaust after-

treatment system, external factors like climate, traffic, road conditions, etc. Most of the studies in

the literature were limited to passenger cars, light-duty vehicles, and heavy-duty vehicles, or based

on a huge number of parameters or limited dynamic data collected during on-road trips. However,

modeling modern heavy-duty trucks with very few parameters is much more complicated. This

current study models fuel consumption in modern heavy-duty trucks based on Portable Emissions

Monitoring System (PEMS) data collected during on-road testing. An artificial neural network is

developed to predict the total fuel consumed by a vehicle in a trip based on very few key parameters

such as engine load (%), engine speed (rpm), and vehicle speed(km/h). The model also gives the

trend in fuel consumption for the trip which give insights into the diagnostic performance of truck

affected by the input parameters. The model can predict the total fuel consumed more accurately

with a mean absolute error of 0.0014 and root mean square error of 0.0025 compared to other

techniques such as linear regression [125] and random forest [119].

4.2 Methodology

Regression analysis is performed using Machine Learning techniques to estimate the fuel con-

sumption of modern heavy-duty trucks using PEMS data. The preprocessed dataset related to a

single vehicle containing 672658 rows of actual torque (ft-lb), vehicle speed (km/h), and engine

speed (rpm) is used as input for models. Figure 4.1 shows the overall workflow for this work.

4.2.1 Data Collection and Pre-Processing

Data collection methods such as onboard emission measurement [126], laboratory measurement

and tunnel study [127] have been used in the past. An on-road data collection method using PEMS

is increasing nowadays making it possible to collect real-world fuel consumption and emission data

[128] and proved to be reliable [129]. A PEMS device is mounted on a vehicle to collect data at 1Hz

frequency during on-road testing. PEMS software outputs the data second by second into a CSV

file for each trip. Over 100 parameters such as fuel rate (L/h), engine speed (rpm), speed (km/h),
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Figure 4.1: Workflow for fuel consumption modeling

gas temperature, CO2, NOx, GPS altitude, GPS longitude, GPS latitude, etc. were collected for

each trip based on data logger settings. Data is collected from two heavy-duty trucks with the

same make/model of the engine by Detroit diesel manufactured in 2016. The vehicles are tested

on multiple days with different routes, drivers, and conditions. However, modeling with too many

parameters can cause the neural network model to overfit resulting in poor performance. Hence, a

subset of features is selected based on data pre-processing, previous studies, and domain knowledge

which are shown in Table 4.2.

Feature Engineering

For better modeling, the data collected must be representative. The raw dataset contains

noise/missing values, redundant values, and outliers due to failure in the sensor or sensor not enabled

for recording. With feature engineering, the raw data is transformed into features that better

represent the relation between features to the predictive model, resulting in better performance
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Table 4.2: A subset of features selected for fuel consumption modeling

Variable Name Description (unit)
Trip Number Index for each trip file

Engine Speed (rpm) Speed of engine (rpm)
Trip Distance (km) Distance traveled for a trip (km)

Vehicle Speed (km/h) Speed of vehicle at the current instance (km/h)
Fuel Temperature (degC) The temperature of the fuel (oC)

Fuel Rate (L/sec) Amount of fuel consumed by a vehicle at that point (L/sec)
Accelerator Pedal Position (%) Position of the accelerator pedal (%)

Actual Torque (ft-lb) Torque of engine (%)
Power (bhp) Rated power of the engine (bhp)

Engine Load (%) Load on the engine (%)

accuracy. Since the data is collected from multiple sensors, noise or unwanted values can cause a

problem in modeling with machine learning as the model tries to interpret noise as a pattern in

data. This work makes a few assumptions to eliminate noise and missed values.

1. The first 5 minutes (300 seconds) of the data have been removed as the cold start of the

engine records default values for most of the sensors.

2. A failed/disabled sensor logs no data, hence columns of data with 80% of missing values are

eliminated.

3. An intermittent missed value is imputed with the most recent value logged or a zero.

Once the missing values are dealt with, the handling of outliers that skew the distribution of data

based on domain knowledge is implemented. In this study, the outliers are identified by calculating

the Z-Score, and a statistical approach of the interquartile range is used to plot the outliers (Figure

4.2). Not all the values identified with the statistical approach may be outliers, hence it is important

to analyze the outliers before removing them. In some cases, the outliers might indicate essential

conditions that need to be considered for analysis. For example, a failure in the sensor might log a

default value for the feature. Such edge conditions are analyzed carefully before removing the data

point from modeling.
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Figure 4.2: Boxplot for Outlier Detection
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Figure 4.3: Feature Correlation Matrix



S. Katreddi Chapter 4. Trip-Based Modeling of Fuel Consumption ... 36

4.2.2 Feature Association

The interpretation of the regression model is complex when the independent variables are multi-

collinear. Highly correlated independent variables overfit the model as the change in one variable

causes significant change to another. Hence to identify the multi-collinear variables, a correlation

matrix that determines the correlation coefficient of each variable with every other variable in the

data is shown in Figure 4.3.

The last four rows and columns of the correlation matrix indicate that independent features

accelerator pedal position (%), actual torque (ft-lb), power (bhp), and engine load (%) are highly

correlated to each other with a correlation coefficient of 0.85 and higher. Hence, to prevent over-

fitting of the model only engine load (%) of the four parameters is used in modeling. Feature

dimension can further be reduced by identifying the highly correlated features with the target vari-

able fuel rate (L/sec). The recursive Feature Elimination (RFE) and Ridge Regression methods are

used to identify and plot the feature importance scores. Feature importance of remaining features

engine load (%), accelerator pedal position (%), fuel temperature (deg C), vehicle speed (km/h),

trip distance (km), and engine speed (rpm) concerning fuel rate (L/sec) was determined with RFE

(Figure 4.4) and Ridge Regression (Figure 4.5) technique and the top 3 features with the highest

score are selected for modeling. Based on the feature analysis, three independent features namely

engine load (%), vehicle speed (km/h), and engine speed (rpm) with high importance are selected

for modeling the dependent feature fuel rate (L/sec) and to identify the pattern in fuel consumption.

4.2.3 Artificial Neural Network

Artificial Neural Network (ANN) is a machine learning technique inspired by biological neurons.

ANN consists of multiple neurons which are computational and the connections between neurons

determine the functionality of the network [130]. The building block for a neural network is a

neuron that represents the weighted sum of inputs passed through a non-linear activation function.

Multi-Layer Perceptron (MLP) network is a type of neural network that consists of the input layer,

one or more hidden layers, and an output layer. ANN has gained popularity due to its adaptive

learning ability and approximating non-linear functions to make predictions [131]. In this study,

a feed-forward neural network [132] with a backpropagation algorithm and ReLU [133] activation
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Figure 4.4: Feature Importance using Recursive Feature Elimination

Figure 4.5: Feature Importance using Ridge Regression
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is used. The backpropagation algorithm is a learning method to train neurons in a neural network

by repeatedly adjusting the weights to minimize the error of prediction. The network used for

this work has three inputs to the input layers, two hidden layers with six and eight neurons in the

respective layers, and an output layer with a single neuron as shown in Figure 4.6.

Figure 4.6: Artificial Neural Network Structure

The available dataset of vehicle 1 is divided into train and test sets with 70% to train the

network and 30% to test the generalization of the network. The trained model weights are then

used to make predictions on unseen test data (a single trip from Vehicle 2). The performance

of a neural network depends on many hyper-parameters like the learning rate, number of epochs

for training, initial weights, number of hidden layers, and number of neurons in hidden layers.

Multiple experiments are performed with different hyper-parameters and the best results for the

optimal network are presented in the results section.
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4.2.4 Multiple Linear Regression

Multiple Linear Regression (MLR) [125] is the most well-known regression technique where

the data is fitted to a straight line to predict output by minimizing a cost function or error. In

this study, a multi-variable linear equation given by equation 4.1 is used due to multiple input

parameters.

y = θ0 + θ1x1 + θ2x2 + θ3x3 (4.1)

Where, y is the output and x1, x2, x3 are the input variables with θ0, θ1, θ2, θ3 being parameters to

learn.

4.2.5 Random Forest

Random Forest (RF) [119] is an ensemble machine learning method for regression and classi-

fication tasks. This method uses many decision trees, and the outcome is based on predictions of

these decision trees. Thus, the accuracy of the model can be improved by increasing the number of

trees making it robust to outliers. In this study, the random forest is trained with 100 trees as the

performance with more than 100 trees did not improve much and is computationally expensive.

4.3 Performance Measures

The performance of the machine learning model for the regression problem is evaluated using

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination

(R2).

4.3.1 Mean Absolute Error

Mean Absolute Error (MAE) is the measure of error between the predicted value and the actual

value given by equation 4.2.

MAE = 1
N

N∑
i=1

|xi − x̂i|, (4.2)

where xi is the measured fuel consumption and x̂i is the measured fuel consumption at the same

instant of time, and N is the number of data points.
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4.3.2 Root Mean Square Error

Root Mean Squared Error (RMSE) is the square root of the average squared difference between

the predicted value and the actual value given by equation 4.3. The smaller the value, the closer

the predicted values are to actual values.

RMSE =

√√√√ 1
N

N∑
i=1

(xi − x̂i)2, (4.3)

where xi is the measured fuel consumption and x̂i is the predicted value at the same instant of

time, and N is the number of data points.

4.3.3 R-Squared

R-Squared or coefficient of determination (R2) is the statistical measure of variance for the

dependent variable explained by the regression model given by equation 4.4.

R2 = 1 −
∑N

i=1 (xi − x̂i)2∑N
i=1 (xi − x)2 , (4.4)

where xi is the actual measured fuel consumption at time i, x̂i is the predicted value at time i, x

is the mean of data given by
∑N

i=1 xi

N , N is the number of data points.

4.4 Results and Discussion

This study presents the fuel consumption modeling in modern heavy-duty vehicles using PEMS

data under various driving conditions, different routes, and external factors. Engine Load (%),

Engine Speed (rpm), and Vehicle Speed (km/h) are used as input for the ANN. The neural network

is trained with hyper-parameters such as a batch size of 1024, and a learning rate of 0.0001 based

on hyper-parameter tuning results for 100 iterations. During each epoch, the loss for each data

item/batch in the training dataset and validation dataset is calculated. The loss plots shown in

Figure 4.7 indicate the mean absolute error (MAE) and mean square error (MSE) on both training

data and validation data.

The minimum generalization gap of training and validation data loss plots indicates a good fit.

The generalization of the neural network is tested on test data collected from a single trip of another

vehicle. From Figure 4.8, the data points close to the line indicate the neural network model can
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Figure 4.7: Neural Network Performance plots. Mean Absolute Error (Left Panel) and Mean Square
Error (Right Panel) plots during ANN training for training and validation data.

Figure 4.8: Scatter plot for the predicted data and the actual measured data
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Table 4.3: Comparison of performance on the test dataset

Model MAE RMSE R2 Fuel (L) Fuel (L) % Error
Actual Predicted

Artificial Neural Network 0.0014 0.0025 0.7806 10.0589 10.0558 0.03%
Linear Regression 0.0018 0.0029 0.7340 10.0589 10.05720 -5.09%
Random Forest 0.0018 0.0030 0.7210 10.0589 9.5589 4.96%

accurately predict fuel consumption with few errors. The points far away from the regression line

indicate outliers in data due to sudden transitions in vehicle speed and engine speed which the

neural network could not capture.

To determine the total fuel consumed by a vehicle, the cumulative fuel consumption is calculated

by adding the instantaneous fuel rate values every second. The performance measures described in

section 3 are used to evaluate the model and the values obtained are MAE: 0.0009L, and RMSE:

0.0021L for the training data. The R2 value of 0.7806 on the test data and 0.7762 on the train data

indicate that the neural network model is generalized well for unseen data.

Figure 4.9: Comparison of predicted total fuel consumed per trip using different machine learning
algorithms
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Table 4.4: Comparison of performance on the test dataset

Vehicle Engine MAE RMSE R2 Actual Fuel Predicted Fuel
Make/Model Year Consumed (L) Consumed (L)

Cummins X15 450 2017 0.0010 0.0015 0.8823 10.67 9.98
Navistar A26 A400MT 2017 0.0012 0.0015 0.7877 5.51 5.57

Paccar MX-13 2016 0.0005 0.0008 0.8005 2.00 2.09

Table 4.5: Performance on the test dataset using the fine-tuned model

Model MAE RMSE R2 MAE RMSE R2 Actual Predicted
(train) (train) (train) (test) (test) (test) Fuel (L) Fuel (L)

ANN 0.0006 0.0009 0.9723 0.0006 0.0010 0.9443 10.77 10.44

4.4.1 Comparison of results

The cumulative fuel consumption with distance is plotted against the actual data to determine

how well the neural network has predicted the total fuel consumption. To evaluate the performance,

the neural network predictions are compared with predictions of linear regression, and random

forest. The performance metrics MAE, RMSE, and R2 are compared in Table 4.3. Figure 4.9

shows the plots for comparison of cumulative fuel consumed for distance traveled for all models.

Neural Network prediction is closer to the actual measured data compared to the linear regression

model overestimated and the random forest underestimating the cumulative fuel consumed.

Based on the input features that were modeled it is easy to determine the parameter affecting

the fuel consumption in case of anomaly. This study presents an efficient and practical method of

estimating fuel consumption per trip based on very few parameters for which data is easily available.

The cost incurred in modeling the data is very low compared with other simulation methods which

also consume more time.

The test results for different vehicles with the neural network model trained on Detroit Diesel,

DD13 manufactured in 2016 are presented in Table 4.4

The model is further evaluated on test data from different make and model vehicles and the

performance is shown in Figures 4.10, 4.11, and 4.12

The model is later fine-tuned with new data from goods movement trucks with Cummins engine

model ZX15 450 manufactured in 2018. During fine-tuning, the model with the pre-trained weights
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Figure 4.10: Comparison of actual measured values and predicted values for Cummins X15 450 test
vehicle (Left Panel). Total fuel consumed vs Distance (Right Panel)

Figure 4.11: Comparison of actual measured values and predicted values for Navistar A26 A400MT
test vehicle (Left Panel). Total fuel consumed vs Distance (Right Panel)

Figure 4.12: Comparison of actual measured values and predicted values for Paccar MX-13 test
vehicle (Left Panel). Total fuel consumed vs Distance (Right Panel)
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Figure 4.13: Neural Network Performance Plots for fine-tuning. Mean Absolute Error (Left Panel)
and Mean Square Error (Right Panel) on training and validation data

Figure 4.14: Comparison of actual measured values and predicted values for Cummins ZX15 450
test vehicle (Left Panel). Total fuel consumed vs Distance (Right Panel)
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is fine-tuned to capture the variation in new data. The fine-tuned model is tested on the same make

and model truck manufactured in 2017 and the results are shown in Figure 4.13, Figure 4.14,

and Table 4.5. The difference in the trend of fuel rate for different trips indicates how vehicles are

operated or driven.

4.5 Conclusion

In conclusion, the study demonstrates the modeling of fuel consumption in modern heavy-duty

vehicles using an artificial neural network. An attempt was made to develop a model using very few

parameters collected under different conditions. Data from modern heavy-duty trucks with the same

make and model, driven by different persons on various routes under different external conditions

were used for training the artificial neural network. The model relies on very few parameters that

could be obtained easily from a vehicle during the trip. The performance measures MAE, RMSE,

and R2 indicate that accurate prediction can be obtained with the model. The data modeling

can help to identify the trend in instantaneous fuel consumption and to calculate the total fuel

consumed by the vehicle in each trip which can further help in diagnosing vehicle performance in

case of abnormalities. Models that are accurate and fast to predict in real-time will enable the

optimization of fuel consumption. The deviation in the predicted values helps identify cases where

fuel consumption is affected due to conditions such as tire pressure, driving behavior, etc. This work

can further be extended to include other factors such as time, traffic information, road information,

GPS data, etc., affecting fuel consumption. As shown in the results sections, the model can be

easily fine-tuned to vehicles using different fuel types or vehicles with different make and models.

The model can be further integrated into a framework where it can be used to suggest the estimated

fuel consumption the parameters such as vehicle speed, engine speed, and engine load.
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Chapter 5

Machine Learning for Modeling
Maintenance and Repair Costs in
Delivery Trucks Using Diesel and
Natural Gas Fuels

Fleet management and production companies are constantly trying to avoid maintenance down-

time and reduce maintenance costs [134] by scheduling maintenance needs ahead of failure. Since

the maintenance costs can represent about 15-60% of the cost of produced goods depending on a

specific industry, Fleet Management Systems are adopting better maintenance planning to improve

the reliability of transportation that require less unplanned maintenance due to the demand for

more uptime.

Heavy- and medium-duty trucks contribute about 26% of greenhouse gas emissions [135] re-

sulting in the emission standards to be set forth. To comply with the standards diesel engines

are equipped with a complex after-treatment system, and this requires more frequent and more

intense maintenance. In recent years the automotive industry turned to alternative fuels such as

natural gas and propane fostering the development of natural gas and propane powertrain systems

for heavy- and medium-duty vehicles offering soot-free combustion. It also supported the develop-

ment of electric powertrain systems known for their zero emissions. Despite the efforts and need for

reducing greenhouse emissions, alternative fuel vehicles (AFVs) haven’t increased significantly in

global transportation [136]. One of the main reasons for fleet companies not adopting AFVs even
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though they are better suitable for the task is the lack of knowledge on vehicle maintenance/repairs

and its associated cost. Moreover, the region of operation, the type of vehicle operation (delivery

trucks, refuse trucks, school buses, goods movement, etc.), and seasonal temperature changes also

affect the duty cycle which impacts the maintenance and repair costs.

To fill the gap, we leverage the data collected by WVU CAFEE and a partnership from an

ongoing study that has collected vast quantities of vocation-specific vehicle activity data. The

partnership with fleet companies allows for additional information related to maintenance costs

and fleet-specific maintenance practices of alternative fuel vehicles. In this work, a detailed analysis

of the maintenance for delivery trucks using diesel and natural gas fuels is performed. Machine

learning techniques are used for predicting the maintenance cost (MC) per mile. The research

conducted here helps fleet management companies to understand the advantages and disadvantages

of alternative fuel vehicles over heavy and medium-duty vehicles and make informed procurement

decisions.

5.1 Introduction

Heavy-duty vehicles primarily operated by diesel fuel are used worldwide for various activities

such as good transportation, delivery, refuse trucks, etc, and have a significant impact on the

environment due to high emissions [137]. Hence a significant push for switching to cleaner fossil

fuels such as natural gas with relatively low emissions [138] and comparison with diesel fuel has

been studied [139]. Natural gas/alternative fuel vehicles are, however, not prominent due to their

high price, less infrastructure availability, and unknown total cost of ownership. Understanding

the maintenance requirements and cost involved in maintenance and repairs (MR) for natural gas

engines and the comparison with diesel vehicles is important in promoting alternative fuel vehicles.

In recent years, the high computational power, big data, and data storage enabled companies

to derive meaningful insights from huge volumes of real-time noisy data, especially for tasks such

as predictive maintenance (PdM) and remaining useful life (RUL) using machine learning tech-

niques. Determining the average time until the next maintenance based on the current state of

the automobile/engine can be useful in scheduling maintenance and lowering maintenance costs.

Predictive maintenance in automobiles using machine learning requires modeling huge volumes of
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sensor data, hence a representation learning to convert high dimensional data to low dimensional

and predicting vehicle faults was proposed in [98] using parallel stacked autoencoder. Machine

Learning techniques such as support vector machines (SVM) [140], random forest (RF) [119],

feed-forward neural networks (NN) [141], and Gaussian processes (GP) [142] are evaluated for

predictive maintenance in automotive engine components using simulated data [143]. Several deep

learning (DL) algorithms have been used in identifying faults and estimating remaining useful life

(RUL) in various automobile fields due to their ability to extract features automatically. An en-

semble approach combining RUL estimation from a similarity-based curve matching technique and

bidirectional recurrent neural network (RNN) was proposed in [144]. A multiscale convolutional

neural network was introduced for bearing RUL estimation using the bilinear interpolation of time-

frequency representations as input to the deep learning model [145]. Prognosis involves the effect of

time, hence as the time step increases, the accuracy of the prognosis decreases. Hence a sequence-

based recurrent neural network (RNN) model using the vibration signals of defect rolling bearings

was analyzed in [146] with more accurate prediction than the incremental training. Long Short-

Term Memory (LSTM) Neural Networks and Random Survival Forest (RSF) [147] are applied for

predicting the component failure probabilities in lead-acid batteries of heavy-duty vehicles using

few data collected during workshop visits [148] and LSTM performed significantly better compared

to other techniques. Multi-sensor fault detection, fault identification, isolation, and health index

forecasting were performed using deep convolutional neural networks in autonomous vehicles [149].

The remaining fatigue life based on health monitoring of automotive suspension was estimated in

test cars using LSTM [150].

There are a lot of studies related to maintenance prediction, but studies related to maintenance

cost estimation are very limited. To determine the cost involved in corrective maintenance of

replacing the failed part has been studied using the Poisson distribution stochastic model [151].

This study has been performed on urban rail vehicles with 45 vehicles used for 5 years. An artificial

neural network (ANN) model for classifying the faults and determining the frequency of failure was

analyzed [152]. The model includes six vehicle usage parameters such as fuel cost, fuel volume in

liters, car mileage in km, normalized fuel cost, normalized fuel volume, and normalized mileage as

input parameters with maintenance cost as output. The operating costs were studied for personal

vehicles and large commercial trucks based on consumer guides and a review of several sources



S. Katreddi Chapter 5. Machine Learning for Modeling Maintenance and Repair Costs ... 50

of trucking costs respectively based on stop-start conditions, pavement roughness, and inflation

[153]. However, the existing studies are limited to estimating maintenance costs for passenger cars

or a specific type of maintenance cost in vehicles. There are very few studies related to comparing

maintenance in alternative fuel vehicles and estimating the average cost per mile as the maintenance

of vehicles is highly impacted by the fuel type and the vocation.

There is a large gap in adopting alternative fuel vehicles due to the uncertainty and unavail-

ability of data and information [136] even though they produce fewer emissions [154]. Hence to

fill the gap, this study addresses the following:

1. Lack of real-time and real-world maintenance data records from alternative and diesel-fueled

heavy-duty trucks by collecting the data from fleet management companies.

2. Application of the machine learning models on the large volume of maintenance data collected

from delivery trucks using natural gas and diesel to understand the maintenance cost patterns.

5.1.1 Gap in Knowledge

A Survey of the literature reveals a large gap in information related to the changes in MR cost

as a function of vehicle age. The effect of age on MR cost can be highly variable between fleets

since the effectiveness of preventive maintenance strategies lowers the slope of the MR cost as a

function of age. Furthermore, the uncertainty and unavailability of this information about AFV

contribute to a critical barrier to AFV adoption.

Most of the previous work done in estimating MC of alternative fuel technology has used OEM-

prescribed maintenance intervals assumed parts failure rates, and generic periodic and preventive

maintenance schedules. However, there has been no study that has involved large-scale fleet partic-

ipation to document MC from both AFVs and diesel vehicles. Moreover, not all maintenance cost

studies are equipped with detailed vehicle telemetry data that characterize vehicle operation. Ul-

timately, the type of vehicle operation defines the type of maintenance, frequency of maintenance,

and the costs associated. The proposed study presents an innovative platform to collect both de-

tailed maintenance records from AFVs and modern diesel fleets as well as link them to vehicle

telemetry data. The study would positively impact the alternative fuel infrastructure stakeholders

and AFV manufacturers by helping them identify the barriers associated with AFV adoption in
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Figure 5.1: The data collection and data processing workflow [8]

certain vocations and regions. Due to the ongoing data collection process and lack of availability

of data for all alternative fuel vehicles, the initial study involves investigating the machine learning

models to model the maintenance and repair costs in delivery trucks using diesel and natural gas

fuels.

5.2 Methodology

The maintenance needs for a vehicle vary based on the vehicle type, fuel type, engine, and

many other factors. The vehicles undergo different types of maintenance such as periodic – peri-

odic scheduled maintenance, preventative – check for potential failures and eliminate them, and

corrective – after the failure occurred. The cost associated with these types of maintenance varies

drastically based on their type, the part of maintenance and the age of the vehicle, and other factors

such as region, weather, and the duty cycle of the vehicle. The data collection and data processing

workflow are shown in Figure 5.1 and described in the next sections.

5.2.1 Data Collection

The key challenge in studying the influence of vocation, fuel type, and other parameters on

maintenance cost is the lack of data. For this study, WVU CAFEE leverages the data collected

through a partnership from an ongoing study allowing additional information related to mainte-

nance cost (MC) and fleet-specific maintenance practices of diesel-powered and alternative-fueled
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vehicles. The team collected data related to the maintenance of diesel and alternative fuel vehicles

from many vendors. The maintenance costs related to three types of maintenance namely pre-

ventative, corrective, and periodic are recorded. Each of the maintenance categories is subdivided

into major vehicle components such as engine and transmission, tire and brake, fuel system, and

exhaust and emissions control system. The current data collected contains 19,641 instances for dif-

ferent vocational trucks. However due to the lack of availability of data for the school bus, transit

bus, and refuse trucks using different alternative fuels and the ongoing data collection process, this

chapter focuses on modeling data from delivery trucks using diesel and natural gas fuels only. Data

has been collected from multiple vehicles where each vehicle underwent several periodic, preventa-

tive, and corrective maintenance. The maintenance records include cascaded maintenance where

preventative or corrective maintenance is identified during the periodic maintenance or multiple

fixings/replacements are performed during a single maintenance.

5.2.2 Feature Selection and Feature Engineering

The data collected has the features shown in Table 5.1. The features such as fuel type, part of

truck, engine, region, comments, and season are categorical data types and cannot be fed directly

to the prediction models. Hence, these features are converted to numerical data type using one-hot

encoding which converts the nominal feature with n different values to n binary attributes [155].

The categorical variable has no ordinal relationship between values hence a new binary value is

added for each unique value in the variable. Additional relevant features such as the maintenance

number for the vehicle, the time between maintenance (TBM), miles per day, vehicle age, road

congestion index (RCI), and cost per mile can be calculated from the original features using a

statistical process included in the data. Maintenance number and TBM can give information related

to previous maintenance calculated based on the maintenance dates of consecutive maintenance.

Miles per day refers to the strength of activity performed by the vehicle before the maintenance has

occurred ad is calculated by dividing the difference in mileage by the number of days in between

consecutive maintenance. Vehicle Age is calculated as the number of days since the vehicle’s first

maintenance took place till the date of maintenance. The RCI has been obtained from the bureau of

transportation statistics [156]. The cost-per-mile is calculated as the total maintenance cost divided

by the number of miles accumulated till the current maintenance. This increased the number of
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Table 5.1: Features in the raw data collected

Feature Description Feature Description
VIN Vehicle Identification Engine Engine model used

Number in the vehicle
Unit Number Unique Vehicle Engine Year Year of Engine

Number Manufactured
Date Date Maintenance Make Make of the Engine

was performed
Fuel Type Type of fuel used Region Region of Operation

in vehicle of Truck
Mileage Mileage at which Repair Shop Name of the shop where

maintenance has occurred Name maintenance has
taken place

Part of Truck Part of the Truck Comments Type of Maintenance
Total Cost Cost of the maintenance Season The season during

during that visit vehicle maintenance
Owner of truck Owner of the Vocation Activity performed

operating truck by the vehicle
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Figure 5.2: Outlier Plots

input features in the dataset from 9 to 13 with cost-per-mile as the target variable. However, the

effect of these derived features on the maintenance cost is unknown.

5.2.3 Data Pre-Processing

The data contains 19,641 instances for all vocational trucks. However, there has been a lot

of duplicate data with varying total costs, hence the data has been consolidated by adding the

instances of the same vehicle having the same data in all features except the total cost. This

reduced the number of instances to 8,378 of which 1,412 instances are diesel delivery trucks, and

3,690 instances are natural gas delivery trucks. Since there is more data available for delivery

trucks, the initial study concentrated on modeling the data related to delivery trucks and later

extend it to include different vehicle types.

Firstly, the data with missing values and extreme values are identified which may be caused by

the error in the manual entry or abnormal odometer reading. Records containing negative values or

missing values are removed for reliability. Outlier analysis is performed using the Z-Score method

to identify instances that deviate from the distribution, but the outliers may also provide some

key information. Based on the box plots for IQR, a careful inspection of data points outside the

whiskers is performed to determine whether the data points should be considered an outlier. For

example, the case when maintenance incurs a high cost due to a large part replacement is labeled

as an outlier (shown in Figure 5.2), however, it carries important information related to corrective

maintenance. Such data points are included for modeling after careful analysis.
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After all the pre-processing is applied, there are 4,910 instances in the dataset that are robust

for analysis. To understand the correlation of features, a correlation plot shown in Figure 5.3 is

used. The feature association is about the correlation or the level of dependence of one feature

on another. The correlation score tells association strength which is how accurately a feature can

be determined based on the other. A correlation score of 0 means the features are independent.

These instances are indicated with lighter dots on the feature association matrix in Figure 5.3. A

correlation score of 1 indicated perfect correlation and is represented by darker dots on the matrix.

The features that are correlated are clustered into groups seen as blue, green, and orange on the

matrix. The darkness of the dots in these clusters further indicates how strongly the features are

correlated. Ideally, multicollinearity should be avoided, as the high degree of correlation can cause

a problem in fitting a model.

In addition to the removal of outliers and analysis of feature correlation, the data are also

randomized to make machine learning models capture patterns in data. Without randomization,

machine learning methods applied to data may predict well short-term maintenance well, but not

the one that has higher vehicle age with larger mileage. Therefore, the randomization of data

is important in the machine-learning process. With the numerical data, different features have

different ranges of values as the features are not unified. To protect data integrity, normalization

is performed. The dataset is then divided into training and testing sets.

5.2.4 Machine Learning Analysis

Deep learning (DL), a class of machine learning algorithms, has demonstrated an exclusive

performance in application to data containing images and videos. However, on tabular data, ana-

lyzing the performance of DL methods presents a challenge. Therefore, machine learning ensemble

models remain the promising tool as they do not require that objective functions be differentiable,

an inductive bias be introduced, and a large sample size for training [24]. In addition, deep learning

neural networks on tabular data require a lot of data pre-processing and exploratory data analysis

as data containing irrelevant features that make the neural network performance worse especially

with irregular patterns in the target. Most importantly, machine learning algorithms are easy to

train and have low tuning costs. However, the data collected are imbalanced as there is a much

larger number of instances of diesel vehicles than other alternative fuels since the usage of alterna-
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Figure 5.3: Feature Association Matrix
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Figure 5.4: Machine Learning Workflow

tive fuels is very low in the heavy-duty vehicle sector [157] resulting in a lack of data. To prevent

bias in the performance of the machine learning models in estimating the maintenance cost, the

initial study only considered the maintenance data from delivery trucks using diesel and natural

gas.

Various machine learning algorithms for predicting continuous variables are investigated on the

diesel truck maintenance data. The general process of machine learning prediction models is shown

in Figure 5.4. The selected features from the data collected along with the derived features are

passed to the machine learning model for training. The model is then used to make predictions on

unseen data.

In this study, several machine learning algorithms [158]: multiple linear regression [125], sup-

port vector machine (SVM) [140], k-nearest neighbor (k-NN) [159], random forest (RF) [119],

extreme gradient boosting (XGB) [160], and a neural network (NN) are evaluated on the pre-

processed data. Each machine learning model has its hyper-parameters that need to be determined

to achieve the best-performing model. A grid search has been performed for each of the algorithms

to identify the hyper-parameters. Since the amount of data is limited, k-fold cross-validation is

performed to prevent overfitting and to understand how well the model generalizes for unseen data.

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Deter-

mination (R2) are widely used in regression tasks to compare the performance of models. The
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mathematical expressions for RMSE, MAE, and (R2) are given below

MAE = 1
N

N∑
i=1

|xi − x̂i|, (5.1)

RMSE =

√√√√ 1
N

N∑
i=1

(xi − x̂i)2, (5.2)

R2 = 1 −
∑N

i=1 (xi − x̂i)2∑N
i=1 (xi − x)2 , (5.3)

where xi is the actual measured fuel consumption at time i, x̂i is the predicted value at time i, x

is the mean of data given by ∑N
i=1 xi/N , and N is the number of data points.

5.2.5 Multiple Linear Regression

Multiple Linear Regression is the most well-known regression technique where the data is fitted

to a straight line to predict output by minimizing a cost function or error. In this study, a multi

variable linear equation given by equation 5.4 is used due to multiple input parameters.

y = θ0 + θ1x1 + θ2x2 + θ3x3 (5.4)

Where, y is the output and x1, x2, x3 are the input variables with θ0, θ1, θ2, θ3 being parameters to

learn.

Support Vector Machine (SVM)

SVM is a state-of-the-art supervised machine learning model used for classification and regres-

sion analysis. The kernel function such as polynomial, radial basis function, sigmoid, etc. used

in SVM makes it effective in non-linear mapping by mapping inputs to high-dimensional feature

spaces. Different kernel functions were tested, and it was found that for the given data, the poly

kernel suits the best.

K-Nearest Neighbor (k-NN)

K-NN is another simple supervised instance-based machine learning algorithm for performing

both classification and regression tasks. It is referred to as lazy learning as the algorithm does not

create a model but instead uses all the data instances to calculate the similarity measure. However,
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Figure 5.5: Random Forest Model developed for Maintenance Cost Data

its major drawback is that the number of neighbors and the performance is highly dependent on

the quality of the data. In addition, this algorithm can be slow when applied to large datasets

as it takes all instances into memory. With the hyper-parameter search number of neighbors was

determined to be 5 with uniform weight and Euclidean distance.

Random Forest (RF)

RF is an ensemble machine-learning technique that uses decision trees to build a model. The

model fits several decision trees built in parallel from subsets of data. The final decision is based

on the average for regression tasks. Since it internally performs cross-validation, over-fitting is

minimized. The key hyper-parameter in the performance of RF is the number of trees which is set

to be 25 in the model developed. The developed RF model is shown in Figure 5.5.

Extreme Gradient Boosting (XGB)

Like RF, XGB is an ensemble learning algorithm that considers more detailed approximations

to build the final model based on a series of decision trees. The over-fitting is handled by minimizing
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Figure 5.6: XGBoost Model developed for Maintenance Cost Data

the loss using gradients. XGB performs well with larger datasets, and its training is fast due to

parallel processing. The developed model (shown in Figure 5.6) has a learning rate and the number

of trees as the key parameters that are set to 0.1 and 100, respectively.

Neural Network (NN)

NNs are referred to as a system imitating the operation of human brain neurons. A NN or

a multi-layer perceptron (MLP) is a base architecture of deep learning typically containing an

input layer, hidden layers, and an output layer with multiple neurons called a perceptron. The

network learns by updating the weights of neurons through the backpropagation technique. NNs

may become computationally expensive and require lots of hyperparameter tuning such as the

number of neurons, number of layers, learning rate, batch size, etc. A 6-layer fully connected dense

network with 4 hidden layers containing 15 neurons in each layer is developed. The input layer

contains 10 inputs, and the output layer contains single neurons. All the neurons are activated

with an activation function called ReLU (Rectified Linear Unit) and an Adam optimizer with a

learning rate of 0.001 is used. The model is trained using a batch size of 64 for 200 iterations and

the mean square error loss function. All the hyper-parameters are selected after several tests and

grid searches. The developed NN is shown in Figure 5.7.
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Figure 5.7: Neural Network Model developed for Maintenance Cost Data.

Super Learner Model

The Super-Learner model [59] is developed by stacking multiple base algorithms to improve

the performance of the model. In this work, a super-learner model based on the predictions from

base models such as random forest (RF) and XGBoost (XGB) and a linear regression meta-model

is developed. The framework for super-learner is shown in Figure 5.8. The training of the super-

learner model involves various steps. The dataset is initially divided into training and validation

datasets. A 5-fold cross-validation is performed using the training dataset to prevent the over-

fitting of the model whereas the validation dataset is used for the validation of the model. The

folded training data are used to train the base models (random forest and XGBoost) and the

validation set is passed to the base model to make the predictions. The predictions on the test

fold of the training data are stacked for a new training dataset and the averaged validation dataset

outputs are stacked to get a new validation dataset. The new datasets are weighted based on the

performance of the base models to add more significance to the best-performing base model. The

super-learner (meta model) is then trained with the weighted new training dataset and evaluated

using the weighted new validation set. This ensemble technique performs as well as or better than
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Figure 5.9: Distribution of cost per mile ($/mile) vs fuel type for train data

an individual model. The super-learner model improves the prediction capability of the model and

is more robust to overfitting and underfitting.

5.3 Results and Discussion

Delivery trucks are prominently used in transporting goods whose lifespan ranges from 50,000

miles to 150,000 miles and even more. The data used in this study included 18 delivery trucks

fueled by diesel and 12 delivery trucks fueled by natural gas. The diesel trucks ranged in mileage

from 2896 to 895592 miles while the natural gas trucks ranged in mileage from 756 to 563249 miles.

The model year of diesel trucks was in the range of 2010 to 2022 while that of natural gas was in the

years 2014 to 2017. The data includes various types of maintenance such as periodic, corrective, and

preventative for major parts such as chassis, engine and transmission, tire and brake, exhaust and

emission, and fuel system. Natural gas vehicles have a lower cost per mile ranging from 0.000285

- 0.152489 $/mile with few outlier points whereas diesel fuel vehicles have a cost per mile ranging

from 0.000851 - 0.456851 $/mile. The higher value is the indication of corrective maintenance for

replacing the failed larger or complex parts such as transmission, exhaust system, etc. that have

incurred a very large amount. Since these data points are important for calculations, they are
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Table 5.2: Comparison of cross-validation scores for all ML models using original features

Model MAE ($/mile) RMSE ($/mile) R2 Train R2 Validation
XGB 0.0106 ± 0.0005 0.0172 ± 0.0022 0.9754 ± 0.0007 0.9400 ± 0.0169
RF 0.0127 ± 0.0003 0.0199 ± 0.0011 0.9820 ± 0.0005 0.9306 ± 0.0115

k-NN 0.0150 ± 0.0005 0.0252 ± 0.0009 0.9201 ± 0.0017 0.8735 ± 0.0102
NN 0.0217 ± 0.0031 0.0329 ± 0.0037 0.8081 ± 0.0564 0.7821 ± 0.0462

MLR 0.0320 ± 0.0017 0.0500 ± 0.0025 0.6896 ± 0.0194 0.6735 ± 0.0289
SVM 0.0580 ± 0.0021 0.0623 ± 0.0016 0.9704 ± 0.0007 0.9301 ± 0.0169

included in the analysis. Diesel vehicles include an after-treatment system that consists of multiple

catalytic systems that require increased maintenance to reduce vehicle downtime. Whereas natural

gas vehicles compared to diesel have only a single catalytic system in the form of a three-way catalyst

(TWC) offering lower maintenance costs, especially the corrective maintenance cost as shown in

Figure 5.9. The results for the models on the original data without the calculated features are

shown in Table 5.2. All the results are obtained by 5-fold cross-validation. The cross-validation

scores represent the average ± standard deviation of the results from 6 models trained by randomly

splitting the dataset 5 times. The MAE and RMSE are used to evaluate the performance of the

regression model while R2 explains how well the variability in data is explained by the model. The

lower values of MAE and RMSE quantify how well the model can predict. From Table 5.2, XGB

has the smallest values of MAE and RMSE, and the highest values of R2 for both the training and

testing sets compared to other models. XGB is followed by RF. The third lowest error is observed

for k-NN but as the data increases, k-NN requires more memory and time to process data. Unlike

other models, k-NN depends on the neighboring samples using feature similarity to predict the

values of unseen data rather than creating a model. Even though NN has a lower coefficient of

determination, the error values are lower compared to SVM. Although SVM has a higher coefficient

of determination, the error rate is high, hence SVM might not be generalizing well for unseen data.

Considering the training time, memory requirements and the need for understanding data, XGBoost

and RF are the best-performing models with the NN following them. If we had more data to train

and test NN, it may perform better than its current version.

The second set of training involved the newly derived features in the input features as described

in section 5.2.2. Table 5.3 shows the results for all the machine learning models with the new
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Table 5.3: Comparison of cross-validation scores for all ML models using combined features

Model MAE ($/mile) RMSE ($/mile) R2 Train R2 Validation
XGB 0.0092 ± 0.0003 0.0151 ± 0.0018 0.9920 ± 0.0003 0.9538 ± 0.00123
RF 0.0111 ± 0.0004 0.0180 ± 0.0013 0.9955 ± 0.0003 0.9353 ± 0.0091

KNN 0.0136 ± 0.0003 0.0235 ± 0.0009 0.9299 ± 0.0015 0.8901 ± 0.0091
NN 0.0202 ± 0.0012 0.0292 ± 0.0011 0.8451 ± 0.0084 0.8302 ± 0.0130

MLR 0.0294 ± 0.0007 0.0428 ± 0.0006 0.6941 ± 0.0194 0.6903 ± 0.0018
SVM 0.0611 ± 0.0013 0.0650 ± 0.0011 0.9920 ± 0.0003 0.9538 ± 0.0124

Figure 5.10: Comparison of Cross Validation Performance for ML models. Mean Absolute Error
(Left Panel), Root Mean Square Error (Center Panel), Coefficient of Determination (Right Panel)
using machine learning models.
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Figure 5.11: Distribution of cost per mile ($/mile) vs fuel type for test data

combined feature input. In this case, the error for most of the models is lower than in the previous

case and the coefficient of determination has increased.

The cross-validation performance metrics presented in Table 5.3 is plotted in Figure 5.10.

Based on the cross-validation results, the tree-based models XGB, RF and the SVM have higher

R2 but the MAE and RMSE using SVM is high whereas for tree-base models the error is less.

However, to complete the performance evaluation, the models need to be evaluated using the

testing dataset. Two vehicles using diesel and natural gas fuels operated with 5 and 7 years of

maintenance records respectively are used as test data. The average cost-per-mile distribution of

the testing data for diesel and natural gas is shown in Figure 5.11. Like the distribution of the

training data, the original testing data show that natural gas has a lower average cost per mile

than diesel fuel trucks. The natural gas vehicles have a lower cost per mile ranging from 0.011543

- 0.106729 $/mile with few outliers whereas the diesel fuel vehicles have an average cost per mile

ranging from 0.037794 - 0.268725 $/mile.

The model is evaluated using evaluation metrics for all the models on test data as shown

in Figure 5.12. Based on the cross-validation and the model evaluation results, the tree-based

ensemble model performs better on the tabular data compared to neural networks. Though neural
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Figure 5.12: Comparison of ML model performance on test data. Mean Absolute Error (Left
Panel), Root Mean Square Error (Center Panel), and Coefficient of Determination (Right Panel)
using machine learning models.

networks have gained success on data containing images, videos, text, audio, etc. their performance

on tabular data is still unclear and machine learning ensemble models remain the promising tool as

they don’t need differentiable functions [24]. Neural networks on tabular data require a lot of data

pre-processing and exploratory data analysis as data containing irrelevant features makes the neural

network performance worse especially with irregular patterns in the target. Most importantly,

Machine learning algorithms are easy to train and have low tuning costs.

Based on the performance evaluation metrics for each model, it is observed that SVM and

KNN have very low R2 values for test data followed by neural networks unlike the train data

indicating that these models do not generalize well for unseen data. This might be due to an

imbalance in the train data. Moreover, neural networks require more training data and training

time and are computationally expensive. Though the multiple linear regression has an R2 value of

0.9457, the model assumes a linear relationship between the features and does not explain well if

the relationship is not linear. The tree-based ensemble models random forest and XGBoost seem

to generalize well for unseen test data.

The scatter plot for actual and predicted cost per mile for the test dataset using the machine

learning models trained is shown in Figures 5.13 and 5.14. The red diagonal line is where the actual

value and predicted value are equal. The blue data points along with the blue line represent the

data with the regression fit. The closer the red line to the blue line is in terms of the distance and
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Figure 5.13: Scatter plots for actual and predicted cost per mile based on fuel type Natural Gas
for test data using different machine learning models
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Figure 5.14: Scatter plots for actual and predicted cost per mile based on fuel type Diesel for test
data using different machine learning models
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Table 5.4: Cross-validation results for Super-Learner Model

Model CV MAE ($/mile) CV RMSE ($/mile) R2 Train R2 Validation
XGB 0.0092 0.0151 0.9501 0.9792
RF 0.0110 0.0180 0.9421 0.9755

Super 0.0068 0.0086 0.9728 0.9880
Learner

slope, the better the model performs. SVM and k-NN models’ regression lines substantially deviate

from the true performance lines making the models poor options. Each of the RF and XG boost

models has a regression line slightly deviating to the left from the actual line indicating that these

models perform well but they are predicting slightly lower than the actual values should be. The

neural network has a regression line to the right of the actual line indicating the over-predicted

values. The same trend is observed among models for the diesel data, however, the fitted lines have

much larger deviations from the actual lines compared to the case of Gas fuel. This trend might

be because the training dataset has less data related to diesel vehicles than natural gas.

The random split in data, however, tends to change the feature importance due to an imbalance

in data for each machine learning model as few maintenances occur rarely and each vehicle is

maintained differently based on usage, ownership, driving behavior, etc. As each machine learning

model works differently and tends to have different feature importance as shown in Figure 5.15

the performance of machine learning models is affected.

Hence, a super learner ensemble model, shown in Figure 5.8 is developed. The super learner

model has two levels where the prediction from individual base models in level 1 is used for training

the level 2 meta-model. Using random forest, and XG boost as base models and fusing the results

using a linear regression model improves the performance leading to cost-effective maintenance in

both diesel and natural gas vehicles. The super-learner ensemble model works by training the

meta-learning algorithm by creating an optimal weighted average of the level one base learners

per k-fold cross-validation to approximate complex relationships. Super-learner eases the issue of

selecting the right learners for learning a function. The performance metrics for the super learner

and the base learners on the training dataset are shown in Table 5.4. The ensemble model achieved

a mean absolute error as low as 0.0068, a root mean square error of 0.0086 with R2 equal to 99.79%
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Figure 5.15: Feature Importance using Random Forest (Top Panel) and Neural Network (Bottom
Panel)
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Figure 5.16: Cross Validation Performance using Super-Learner Model. Mean Absolute Error (Left
Panel), Root Mean Square Error (Center Panel), Coefficient of Determination (Right Panel)
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Figure 5.17: Model Evaluation on Test Data using Super-Learner Model. Mean Absolute Error
(Left Panel), Root Mean Square Error (Center Panel), Coefficient of Determination (Right Panel)

for training data and 95.46% for the validation dataset which is better than the results seen in

Table 5.3.

The comparison of cross-validation performance metrics for the super-learner model and the

base models used in super-learner model presented in Table 5.4 is plotted in Figure 5.16. Based on

the plots, the performance of super-learner model is higher compared to the base models, random

forest and XGBoost. The super-learner performance is then validated by testing the model on test

data. The performance of super-learner model along with the base models is shown in Figure 5.17.

The performance of super-learner model on the entire testing dataset containing data for diesel

and natural gas delivery truck seems good with R2 of 96.78%, MAE of 0.0071 ($/mile) and RMSE

of 0.0085 ($/mile). To see the generalization for each individual fuel type, the scatter plot for actual
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Figure 5.18: Scatter plot for actual and predicted cost per mile based on fuel type Natural Gas
(Left Panel) and Diesel (Right Panel) for test data using super-learner ensemble model

and predicted cost-per-mile is plotted in Figure 5.18. Unlike previous models, the super learner

model demonstrates better or similar prediction capability for both natural gas and diesel data as

the actual and predicted lines are almost aligned.

The average cost per mile over the age of maintenance is shown in Figure 5.19. The results for

natural gas vehicle data using the super-learner model seem to be close to random forest model

performance whereas the results for diesel vehicle data are close to the actual values unlike before.

Because of the prominent usage of diesel vehicles, the maintenance duration for diesel vehicles is

longer than other alternative fuel vehicles. However, from the data and the results it is evident

that the average maintenance cost for diesel vehicles is higher than for natural gas vehicles for a

given lifetime.

The predicted average cost per mile over 5 years for natural gas and diesel vehicles are compared

in Figure 5.20. As the original data indicate, the predicted average cost per mile for natural

gas is lower than for diesel vehicles. The resulting model serves as a tool for fleet companies to

estimate maintenance costs. This helps the companies understand how a new vehicle purchased

for a particular task is going to affect the cost spent on its maintenance and repairs. However,

when data related to different vocational vehicles are considered, these models fail to generalize

well, hence more robust models are required to capture the functions in data.
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5.4 Conclusion

Maintenance Cost is one of the important considerations for fleet companies. Understanding

how the maintenance cost is changing over the years given the vehicle operation, fuel type, region of

operation, etc., would enable the fleet companies to make data-driven decisions on the procurement

of vehicles that reduce their overall total cost of ownership. This chapter presented an extensive

literature survey on the topic of data-driven fleet maintenance solutions that have been published

in recent years, for the commercial vehicle industry. One of the major gaps found in the literature

is the availability of real-world maintenance datasets from a diverse set of vocational applications,

which has limited the validation of algorithms developed using ML techniques. The present study

aimed to address this gap by using real-world datasets collected from a variety of fleet companies.

In this work, an investigation study based on real-world maintenance data using machine learn-

ing algorithms to predict the average cost per mile is shown. Different machine learning algorithms

such as multiple linear regression, support vector machines, k-nearest neighbors, neural networks,

random forest, XGBoost, and super-learner models were applied to the well pre-processed data. A

5-fold cross-validation technique is performed to understand the generalization of the model with

comprehensive results. To evaluate the performance of models several regression metrics such as

mean absolute error (MAE), root means square error (RMSE), and coefficient of determination

(R2) were used. The Super-learner model has demonstrated promising results, and the compari-

son of predicted values for delivery trucks using diesel and natural gas fuel types has been shown.

The super-learner works by training the meta-learning algorithm by creating an optimal weighted

average of the level one base learner per k-fold cross-validation to approximate complex relation-

ships. Super-learner eases the issue of selecting the right learners for learning a function. The

super-learner model achieved errors as low as 0.0068 $/mile for mean absolute error (MAE) and

0.0086 $/mile for root mean square error (RMSE) with a coefficient of determination (R2) equal

to 99.8%. This study is important as it fills the gap by considering real-world maintenance and

vehicle activity data and compares natural gas alternative fuel with diesel fuel in delivery trucks.

The results demonstrated lower maintenance costs for natural gas delivery trucks, indicating that

opting for alternative fuel vehicles offers a low cost of ownership along with reduced emissions. The

outcome of the solution developed in this study could potentially pave the way for creating a cloud-
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based application, that can ingest the data from fleet companies, run the deployed machine learning

model in the cloud, and enable the companies in making data-driven decisions for procurement of

newer fleet that will have a positive impact on meeting their TCO targets and sustainability goals,

by adopting alternative fuel vehicles.
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Chapter 6

Mixed Effects Model for Estimating
Maintenance Costs in Heavy-Duty
Vehicles using Alternative and Diesel
Fuels

Transportation plays a vital role in socioeconomic interactions, especially freight transporta-

tion. The poor planning of regular maintenance, driving conditions such as road, driver behavior,

increased fuel costs, etc. impact the reliability of vehicles resulting in frequent breakdowns. These

frequent breakdowns increase the downtime of the vehicle as well as maintenance costs.

Along with fuel and labor costs, maintenance costs are significant for companies. In the previous

chapter, the maintenance data for delivery trucks using diesel and natural gas fuels were modeled

using machine learning models and a super-learner model for estimating the maintenance costs.

However, these models do not perform well when data of different vehicles such as school buses,

good movement, transit buses, refuse trucks, and vocational trucks operating on different fuel

types such as diesel, natural gas, and propane are mixed together. This is due to the clustered

nature of data collected from vehicles that perform different activities. Each heavy-duty vehicle

type has a different duty cycle based on the activity it performs. For example, a refuse truck

mostly operates in the urban area making frequent stops and idling whereas goods movement

trucks operate on highways carrying heavy loads moving at a consistent speed with less frequent

stops. Selecting vehicles that are tailored for specific duty can ensure lower maintenance costs,
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lower fuel consumption, and less downtime.

The real-world data in the wild are clustered in structure most of the time. Most importantly

longitudinal clustering is where an individual instance of phenomena has multiple measurements

sometimes with hierarchy. For example, there is a natural gas school bus, diesel school bus, and

propane school bus which further have data collected from multiple vehicles over time. Each of

these can be considered a cluster. The idiosyncrasies of the vocation type, fuel type, and vehicle

need to be taken into account while modeling. Developing a global model or individual models per

cluster of data is not a feasible solution as the global model cannot learn idiosyncratic about the

cluster, and having multiple models per cluster cannot learn across populations resulting in too

many models and generalizing well.

To address this issue, a mixed effect model is developed in this chapter where the prior is

taken from data with random effects in each cluster. The goal of this study is to develop a single

generalized prediction model for estimating the average cost per mile for heavy-duty trucks that

have different duty cycles and use different fuel types. This work helps in raising awareness regarding

alternative fuel vehicles (AFVs) to the public and their impact on reducing emissions. This would

further enable companies to easily analyze the maintenance costs associated and adapt to the AFVs

based on the type of vehicle operation, region of operation, and other factors.

6.1 Introduction

Maintenance and Repair (MR) costs play an important role in the total cost of ownership

for companies but is not well studied due to limited/lack of data on costs associated with the

maintenance of advanced powertrain systems. The maintenance and repair costs reflect the cost of

parts and labor for activities such as (i) periodic maintenance activities such as tire rotation, engine

oil change, coolant inspection, etc., (ii) corrective maintenance such as replacing failed components

such as exhaust system, brakes, transmission, etc. (iii) preventative maintenance such as replacing

tires, brakes, etc. before they fail. The important economic indicator for vehicles is the operating

cost which includes maintenance and repair costs, fuel costs, and the decreased value of the vehicle

over time [153].

Medium and Heavy-Duty vehicles are key to global transportation for activities such as goods
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movement, deliveries, services, etc. accounting for about 23% of greenhouse gas (GHG) emissions

in the United States [135]. These vehicles are classified into different types based on the maximum

loaded weight called gross vehicle weight rating (GVWR). Class 7 heavy-duty vehicles with GVWR

26,001 – 33,000 pounds include furniture trucks, towing trucks, and transit buses whereas class 8

heavy-duty trucks with GVWR of greater than 33,000 pounds include heavy semi-tractors, dump

trucks, fire trucks, semi-sleepers, etc. [161]. Heavy-Duty trucks with internal combustion engines

(ICE) powered by diesel are predominant resulting in increased pollution, climate change, and

health impacts despite the zero-emission and clean air acts [162]. To reduce the emissions from

diesel combustion, alternative fuels [163] such as natural gas [164], propane, electric vehicles [165],

and hybrid-electric powertrain systems [166] using batteries [167] were introduced as lower emission

or zero-emission strategies and have a lower cost of maintenance for the useful life of vehicles [168].

However, studies show that only 6% of alternative fuel vehicles are currently being used by global

transportation fleets. The main barrier is promoting the use of AFVs is the public knowledge,

opinion, unknown upfront and fuel costs, and vehicle performance [169].

Diesel engine technology has been the preferred powertrain for delivery and goods movement

applications. The performance of diesel engines is characterized by high torque and durability

that has contributed to it being the preferred technology choice in goods movement applications.

However, stringent emissions standards set forth by the US EPA in 2010, meant that diesel engine

technology had to embrace a series of after-treatment and emissions control strategy that was aimed

at lower tailpipe oxides of nitrogen (NOx) and soot emissions. The introduction of a complex after-

treatment system also introduced increased maintenance costs, failure rates, and vocation-specific

fuel penalties due to an aggressive emissions control strategy.

Natural Gas Vehicles have emerged as a low oxide of nitrogen (NOx) solution in many of the

non-attainment regions of the country. Ultra-low NOx emissions from a three-way catalyst (TWC)

based after-treatment system provide a cost-effective solution for emissions control. The low-NOx

capability is showcased in urban operations where conventional diesel’s emissions control system

operation is severely hindered. In a study conducted in Europe, it was found that for long-haul

operations a liquified natural gas (LNG) vehicle had a 3% lesser maintenance cost compared to a

conventional diesel powertrain. The lower cost of the LNG vehicle was owed to a less complex ex-

haust after-treatment system. Furthermore, for a straight truck operating in an urban environment
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fueled by compressed natural gas (CNG) a 4% higher maintenance and repair cost was estimated.

The increased cost was attributed to the up-keeping of the high-pressure CNG fuel system [170].

Like NGVs, propane vehicles operate with a TWC as well as using a stoichiometric platform.

Propane vehicles are highly sorted after in school bus applications, with more than 11,000 buses

operating throughout the country. Low-fuel cost and abundant fueling infrastructure make propane

an attractive alternative fuel option. In comparison to natural gas, propane is used in vehicles with

lower GVWR. Propane vehicle GVWR is currently at 33,000 lbs., while heavy-duty natural gas

vehicles are operating with a GVWR of up to 56,000 lbs. and can haul a trailer with a combined

load of up to 65,000 -70,000 lbs. Although the powertrain technology and emissions control of

natural gas and propane are the same and their comparison to a conventional diesel powertrain is

on similar metrics, we expect to see significantly different MC estimates between fleets operating

propane and NGV.

Electric vehicle (EV) technology has seen significant penetration into the medium and heavy-

duty segments in the recent past. The state of California has been pioneering various plugin electric

vehicle development for drayage and urban delivery application. The Volvo LIGHTS project in

Southern California is a clear example of the state’s push toward zero-emissions battery electric

trucks in the goods movement sector [171]. California will require large transit agencies in the

state to procure 25% of their new vehicles as EVs and by 2040, 100% of their vehicle purchases

should be EVs. EVs have been traditionally used in school buses and transit bus applications

throughout the country. A report developed by the US Public Interest Research Group (PIRG)

suggests that EV transit buses provide combined fuel and MC savings of up to $50,000 a year [172].

Furthermore, the report also cites that electric school buses in California reported an annual savings

of $4,400 in MC. The biggest benefit of MC in the EV platform for HD and MD applications is in

the brake wear component of the vehicle. Regenerative braking is a significant factor in reducing

brake wear. However, the MC related to battery wear has been seldom documented and the

changes to this cost as a function of ambient operating temperatures are critical. Extreme hot

conditions with insufficient cooling and extremely cold conditions can cause significant stress to the

batteries and thereby deteriorating health. Furthermore, EVs have far fewer components than an

internal combustion engine powertrain. However, the deterioration of high-power electronics and

the associated downtime related to these failures could be a direct function of the aggressiveness
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of day-to-day activity.

Real-world data collected by WVU show that urban operation adversely affects fuel consump-

tion and the performance of modern diesel technology. Particularly, the diesel particulate filter

(DPF) undergoes frequent regeneration due to excessive soot loading, and the cost of DPF ash

cleaning is seldom considered during the maintenance cost evaluation. AFV vehicles operating on

both natural gas and propane will not be subjected to the maintenance cost of complex particulate

matter (PM) and NOx after-treatment systems. The exhaust gas recirculation (EGR) systems of

vehicles operating in urban scenarios are significantly dirtier than long-haul operations and conse-

quently, EGR cooler maintenance costs of diesel vehicles operating in urban applications are high.

The proposed study will be analyzing the comparative maintenance cost at a fine component level

resolution, wherein, every component that could potentially be affected due to the duty cycle will

be considered as a key parameter in maintenance and repair cost.

Modern diesel vehicles have a suite of onboard sensors that are used for onboard diagnostic

purposes. Many of these sensors are subject to harsh operating conditions and frequent failures

whereas AFV control systems typically operate with minimal sensor-based diagnostics reducing

failure rates and maintenance costs (MC). The cost of consumables in a diesel vehicle is higher

than that of AFVs due to the use of diesel exhaust fluid (DEF) for NOx control. Finally, the brake

maintenance cost of electric vehicles would be the lowest due to the availability of regenerative

braking. Although HD diesel has advanced engine brakes that improve the life of wheel brakes,

EVs operating in transit buses, school buses, and medium-duty applications will have lower brake

maintenance than comparable diesel and other AFVs as well. The maintenance and repair cost

data is generally collected from fleet owners/operators or by surveying truck original equipment

manufacturers (OEMs) [173].

Based on the technology and truck type, the patterns of maintenance differ impacting the

maintenance and repair costs. Maintenance and Repair costs for heavy-duty diesel trucks were

well studied and documented based on literature sources [174] but there are very few studies re-

lated to alternative fuel heavy-duty trucks. A detailed component level MR cost and the total

cost of ownership for different electrified propulsions is studied on German cars which tend to have

lower MR cost due to less complex power train [175]. The TCO associated with class 8 long-haul,

class 8 short-haul, and class 4 parcel delivery vehicles using 6 power trains such as conventional
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(diesel), hybrid-electric, plug-in hybrid electric, compressed natural gas, fuel cell electric, and bat-

tery electric are analyzed [176]. The total cost of ownership for internal combustion, hybrid, and

electric light-duty vehicles was studied taking vehicle components into consideration based on a

few assumptions [177]. A study was performed to promote the diffusion of battery electric vehicles

(BEV) based on the total cost of ownership (TCO) [178]. The maintenance cost for transit buses

involving various maintenance costs was studied. Theoretical frameworks have been developed for

promoting the diffusion of alternative fuel vehicles [157].

Despite these studies, the adoption of alternative fuel vehicles has not reached the mark ex-

pected. Most of the studies till now are relied on simulations or theoretical frameworks taking

assumptions or a vehicle type into account. Development of a model based on the historical main-

tenance and repair data to estimate the maintenance cost would be a feasible solution that can be

used by consumers.

With Industry 4.0 technologies, Artificial Intelligence has gained success in a wide range of

applications in the automotive and transportation sector. These technologies enable the collection of

vast data and making use of the data for studying difficult tasks or time-consuming to perform using

existing methods. Studies applied machine learning algorithms for predictive maintenance [93],

failure of components in trucks [179], estimating remaining useful life [145]. Studies using analytical

models are used to estimate the maintenance and repair costs at the component level for heavy-duty

trucks using battery electric and fuel cells.

Most of the studies are analytics based on an individual vehicle type or just taking the change

in cost for various components. The duty cycle, region of operation, season, and frequency of

maintenance greatly affect the maintenance cost impacting the total cost of ownership. Taking these

factors into consideration while modeling the maintenance and repair costs is important. However,

there is very little data on maintenance and repair costs for heavy-duty vehicles using alternative

fuels such as compressed natural gas, liquefied propane gas, battery electric, and hydrogen fuel

cells, while data related to conventional diesel trucks are available. But the maintenance needs and

patterns in different trucks with varying technologies differ widely, and it cannot be assumed that

conventional diesel truck MR costs can be applied to represent other alternative fuel heavy-duty

trucks.

This study intends to bridge the gap in research by developing a generalized machine learning
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model that can be used to estimate the average cost per mile ($/mile) for various medium- and

heavy-duty trucks using diesel or an alternative fuel such as natural gas or propane. This could be an

important contribution as the model can be used by the consumer to estimate the maintenance and

repair costs given the activity being performed by the truck, the region of operation, the mileage

that is expected to hit, and the fuel type enabling procurement decisions. Most importantly,

this study uses historical maintenance and repair data collected from heavy-duty vehicles such as

delivery trucks, goods movement, school buses, transit buses, refuse trucks and vocational trucks

operated using diesel or natural gas, or propane gas. It is important to consider the activity,

fuel type, region of operation, mileage, etc since this could be the basis for new and improved

public policy and marketing for alternative fuel vehicles. The prediction model helps estimate the

average cost per mile throughout operation for a vehicle emphasizing factors that influence the

choice of vehicle, fuel type, and the total cost of ownership (TCO). The input features remained

the same as discussed in section 5.2.1 with few other features representing the activity performed

by the vehicle. Data has been collected from multiple vehicles where each vehicle underwent a

number of periodic, preventative, and corrective maintenance. The maintenance records include

cascaded maintenance where preventative or corrective maintenance is identified during the periodic

maintenance or multiple fixings/replacements are performed during a single maintenance.

6.2 Methodology

The duty cycle of heavy-duty vehicles affects the maintenance cost associated. This study uti-

lizes a large volume of data collected from different medium- and heavy-duty trucks using different

fuel types such as diesel, natural gas, propane, and electric vehicles with different duty cycles per-

forming activities such as goods movement, delivery, school bus, refuse, and vocational. The data

collection has been performed following the technical proposal by WVU CAFEE and the Depart-

ment of energy (DOE). The data is collected in partnership with Clean City Coalitions to reach

fleet companies that operate AFVs. The distribution of data grouped by fuel type and activity is

shown in Figure 6.1.

The data has been pre-processed to remove duplicate records and missing values. A Z-score

method is used to calculate the interquartile range (IQR) for the target variable. Based on the box
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Table 6.1: Features and Description

Feature Description Feature Description
UnitNumber Unique Identification Vehicle Type Activity type performed

number per vehicle by the vehicle
Date Date of maintenance TotalCost Total cost for the maintenance

or repair performed or repair performed
Mileage Mileage recorded on TBM Number of days from

the vehicle previous maintenance
FuelType Type of fuel VAge Age of the vehicle

PartofTruck Part of the truck on MilesPerDay The number of miles recorded
which maintenance or per day (calculated

repair performed based on previous mileage)
Comments Type of Maintenance MaintenanceYear Calendar year in which

maintenance is performed
Engine Engine Model MaintenanceNum Count of the maintenance

recorded on the vehicle
EngineYear Year of engine Season The season during which the

manufacture maintenance or repair occurred
Make Make of vehicle RCI Road congestion index

for the region
Region Region of operation CostPerMile Cost Per Mile

of the vehicle
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Figure 6.1: The distribution of data based on activity and fuel type

plots for IQR, a careful inspection of data points outside the whiskers is performed to determine

whether the data points should be considered an outlier. The feature correlation is then performed

on the pre-processed data to determine the association between features. The feature association

matrix for the input features and the target variable is shown in Figure 6.2. The pre-processing

involves the same steps discussed in section 5.2.3 on features mentioned in Table 6.1.

The maintenance and repair data are categorized into 3 maintenance types: periodic, preven-

tative, and corrective with 5 major parts of trucks: chassis, engine and transmission, exhaust and

emission, fuel system, tire & brake.

1. Periodic maintenance is planned or regularly scheduled maintenance such as engine oil change,

tire rotation, engine inspection, and other routine work. These are based on manufacturer

recommendations or mandated by law.

2. Preventative maintenance is performed proactively to reduce vehicle downtime and to prolong

the useful life of components. These include checking for issues/failure in major components.

3. Corrective maintenance is a significant portion of overall maintenance and repair costs. These
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Figure 6.2: Feature Association Matrix
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are major fixings such as the replacement of transmission, and fuel system which cost signif-

icantly over the lifetime of the vehicle.

The total cost for maintenance and repair includes the cost of parts and the labor cost. Hence the

cost-per-mile is calculated as

Cost Per Mile = Part Cost + Labor Cost
Mileage (6.1)

The data being used for this analysis are clustered longitudinally, where random effects exist

between subgroups of vehicle types and fuel types. Furthermore, the maintenance of each vehicle

is performed at different intervals of time varying in the total miles of operation for vehicles. For

example, a few fleet managers might perform more periodic maintenance whereas a few companies

might not perform regular maintenance resulting in more corrective maintenance. Hence the time

interval between maintenance for a given vehicle is not regular resulting in repeated or longitudinal

clustered data. By carefully analyzing the data, the fixed and random effect features are identified.

The features varying within a cluster such as Mileage, TBM, VAge, and MilesPerDay are identified

to be random effect features whereas MaintenanceYear and Region are considered as both fixed

and random effect features as they tend to have a constant value for some clusters. Along with the

input features a cluster id is passed as input for each cluster.

6.2.1 Mixed Effect Models

In this chapter, the goal is to develop a generalized model to capture the mixed effects in

the data. Most of the machine learning algorithms assume the training data to be i.i.d. which

is commonly violated in longitudinal data where there is a high correlation between subgroups.

The vocation-based data analysis and graphical analysis have been performed previously on the

data collected using excel and MATLAB [180]. The distribution of residual and random effects

is of importance for the accurate and unbiased estimation of the model. The fixed-effect model

works well when studies include analysis of identical data and the goal is to model the identified

population rather than generalizing for other populations. On the other hand, the random effects

are performed on data from a series of experiments where the subjects differ impacting the results

to generalize well for various scenarios [181]. Mixed-effects regression models estimate fixed and

random effects in a single mode.



S. Katreddi Chapter 6. Mixed Effects Model ... 88

Mixed effects regression models are used to model data that has group-level and global trends

in data. Linear Mixed Models (LMM) are extended linear models introduced to capture the depen-

dencies using random effects and effects between covariates and using fixed effects with correlated

multilevel longitudinal data [182]. The typical linear model is represented as y = Xβ + ϵ where Xβ

represents fixed term and ϵ represents error. An incorrect specification of random effects in linear

models has consequences on the maximum likelihood estimator [183]. In longitudinal clustered

data, the variability within the group or between groups affects the outcome. One way of handling

such data is to aggregate the individual group data, which then becomes independent. However,

this approach does not consider all data missing the key patterns within the group. Another ap-

proach analyzes each group at a time resulting in an individual model for each group. However,

this approach does not take information from the global population. LMMs are in between making

the trade of the two alternative approaches. The key idea of the mixed model is to take into con-

sideration both the fixed and random effects. Fixed effects are a parameter that is fixed without

variation whereas random effects are parameters that are random variables like linear regression,

but the parameters are fixed. The true population β is a random normal variable with mean µ and

standard deviation σ given by β ∼ N(µ, σ). The linear mixed models are represented as

yi = Xiβ + biZi + ϵi, (6.2)

where yi is ni × 1 vector containing responses for ni observations in cluster i, Xi is ni × p matrix

of fixed-effects covariates, bi is q × 1 unknown vector of random effects for the cluster i, Zi is

ni × q matrix of random-effects covariates, ϵi is ni × 1 vector of errors and β is an unknown vector

of fixed effects coefficients. The random part, Zibi, is assumed linear. bi and ϵi are assumed

to be independent and identically distributed normal random vectors given by bi ∼ N(0, D) and

ϵi ∼ N(0, Ri), where D and Ri are covariance matrices for bi and ϵi, respectively.

In this chapter mixed-model regression analysis is performed which deals with longitudinal data

having within and between group variances. The approach includes both fixed effects which define

overall change over time and random effects accounting for variability among clusters. Expectation

Maximization (EM) algorithm is used to iteratively learn the maximum likelihood and the random

effect coefficients. However, this requires the functional form to be specified which is difficult,

especially for complex longitudinal clustering. To address this using a tree-based method, a semi-
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parametric mixed model with fixed effects non-parametric tree model, and random effects part

is proposed [184]. A similar approach named mixed effect regression trees (MERT) is proposed

in [185].

Random forests are an ensemble model that combines individual decision trees [186] to improve

the predictive capability of the model and reduce the variance [187]. The idea of bagging [188] is

applied to the random forest for bootstrap aggregation on de-correlated trees controlled by several

trees and the number of variables per split. Each de-correlated tree in the forest aims at mini-

mizing the prediction mean square error (MSE) resulting in the random forest regression function

minimizing the point-wise mean square error (MSE). For a regression model, the minimization of

squared error loss is the conditional mean of the target variable given the data. However, while

using the random forest model observations are assumed independent and ignore the underlying

assumptions such as linearity and distribution of data. Ignoring the correlation in data results in

lower pointwise predictions. Therefore, the fixed effects part of MERT was replaced with random

forests to develop mixed effects random forests (MERF) [189]. The advantages of random forest

and linear random effects have been combined to develop a mixed-effects random forest model given

by the form:

yi = f(Xi) + Zibi + ϵi, (6.3)

bi ∼ N(0, D) and ϵi ∼ N(0, Ri), i = 1, 2, . . . , n,

where yi is ni × 1 vector containing responses for ni observations in cluster i, Xi is ni × p matrix of

fixed-effects covariates, bi is q × 1 unknown vector of random effects for the cluster i, Zi is ni × q

matrix of random-effects covariates, ϵi is ni × 1 vector of errors and β is an unknown vector of

fixed effects coefficients. The random part, Zibi, is assumed linear. bi and ϵi are assumed to be

independent and identically normal distributions given by bi ∼ N(0, D) and ϵi ∼ N(0, Ri), D and

Ri are covariance matrices for bi and ϵi respectively. The non-linear function f(Xi) learned using

random forest is used to represent the fixed effect in MERF. An expectation-maximization (EM)

algorithm [190,191] is used to iteratively fit the MERF by optimizing one parameter while keeping

others fixed until convergence is reached. The EM algorithm for fitting MERF is as follows:
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1. Start with default values for variance (σi), random effects coefficient (b̂i) and the diag-
onal matrix of unknown variance (D̂).

2. Calculate the response variable (y∗
i(r)), the estimated function (f̂(xij)), and the random

effects coefficient (b̂i(r)).

• Calculate response variable, y∗
i(r) = yi − Zib̂i.

• Estimate fixed effects by taking bootstrap samples (y∗
ij , xij) using the random

forest.

• Find the random effects coefficient b̂i at cluster i using the estimated f̂(xij) from
random forest.

3. Compute variance σ̂2 and D̂ from estimated residuals and random effects respectively.

4. Repeat step 2 and 3 until convergence.

The convergence of the MERF algorithm is monitored using generalized log-likelihood (GLL)

given by:

GLL(f, bi|y) =
n∑

i=1

{
[yi − f(Xi) − Zibi]T R−1

i [yi − f(Xi) − Zibi] (6.4)

+bT
i D−1bi + log |D| + log |Ri|

}
,

where Ri is the covariance matrix for ϵi and D is the covariance matrix for bi.
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Figure 6.3: Workflow for MERF Model
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Table 6.2: The number of vehicles available per cluster

Vehicle Type CV MAE Diesel Natural Gas Propane
School Bus 27 15 81

Delivery 24 30 2
Vocational 4 8 2

Refuse 5 6 0
Transit Bus 0 2 0

Goods Movement 14 48 0

The MERF assumes the random effects term to be correct for estimating the forest function

and assumes out-of-bag predictions from the forest to be correct for estimating the random effect’s

part [192]. The unused observations from the forests sub-tree are used in Out-of-Bag predic-

tions [187].

A typical workflow for MERF model is shown in Figure 6.3. Once the model is fitted, it can

be used to make predictions on known clusters as well as new clusters that are not seen during

training. For the known cluster data, the predictions are given by: ŷ = f(X) + biZ whereas for

new clusters the predictions only include fixed effect given by ŷ = f(X).

6.3 Results and Discussion

The qualitative data collected from different fleet management companies are used for modeling

a MERF model. The number of vehicles per activity per fuel type in the data collected is shown

in Table 6.2.

The entire dataset is divided into the train, validation, and test datasets. Data related to one

vehicle per cluster is randomly selected based on the cluster id to form a test dataset. This test

dataset is not seen by the model during the training process and is used to evaluate the model

performance once the model is trained completely. To test the model on a new cluster that has

not been presented for training, transit bus data are used. There are only two transit buses with

very few data points, hence the transit bus cluster has not been used for training. The remaining

data is split into 70% and 30% randomly based on the vehicle unit number to form train and

validation datasets respectively. The training dataset is used to fit the model and the validation
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Figure 6.4: Generalized Log-Likelihood (Left Panel) and Mean Square Error (Right Panel)

dataset is used to evaluate the model performance at every iteration. The cost-per-mile continuous

feature is the target variable with the remaining features being input variables. The MERF model

is trained for 50 iterations with the number of trees being 50 in the random forest. The generalized

log-likelihood during the training of the MERF model over each iteration is shown in Figure 6.4.

From the plot, the model converges by the 50th iteration.
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Figure 6.5: Distribution of values of bi after training

Along with the GLL, the validation mean square error is shown in Figure 6.4. The model
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Table 6.3: Evaluation Metrics on Test Data Clusters

Fuel Type - Vehicle Type R2(%) MAE ($/mile) MSE ($/mile)
Diesel - School Bus 79.81 0.0351 0.00205

Natural Gas - School Bus 90.32 0.0284 0.00144
Propane - School Bus 76.98 0.0393 0.00434

Diesel – Delivery Truck 85.26 0.0486 0.00351
Natural Gas – Delivery Truck 75.89 0.0208 0.00077

Propane – Delivery Truck 81.63 0.0188 0.00058
Diesel – Vocational Truck 95.92 0.0136 0.00355

Natural Gas – Vocational Truck 96.98 0.0459 0.00632
Propane – Vocational Truck 65.89 0.1011 0.01768

Diesel – Refuse Trucks 76.47 0.1710 0.10646
Natural Gas – Refuse Trucks 94.55 0.0228 0.01103

Diesel–Goods Movement 69.82 0.1395 0.00292
Natural Gas – Goods Movement 96.87 0.0651 0.00736

Natural Gas – Transit Bus 95.46 0.0114 0.00086

achieved a coefficient of determination (R2) of 98.96% and a mean square error (MSE) of 0.0089

$/mile for the training dataset and R2 of 94.31% and MSE of 0.0312 $/mile for the validation

dataset. The trained model also holds the distribution of bis learned over iterations. The bi is

different for each cluster but is drawn from the prior data distribution. The distribution of learned

bis is shown in Figure 6.5.

Once the model is trained, the random forest model f(X) along with learned bi is used to predict

the cost-per-mile for the unseen test dataset. Sample data from each cluster are used to test the

model performance. The results indicate that the MERF model generalizes well for the unseen

clustered test dataset. For a few clusters such as diesel – school bus, and propane – vocational the

model performs reasonably well due to very few data points and large variations of data within

the cluster. To test the performance on clusters that are not available during the training, the

natural gas transit bus data is used. The values of performance metrics including coefficient of

determination (R2), mean absolute error (MAE), and mean square error (MSE) for each cluster in

the test dataset are presented in Table 6.3.
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Table 6.4: School Bus Test Data Summary

Fuel Type Diesel Natural Gas Propane
Maintenance Year 2015-2019 2018-2022 2013-2022

Mileage (1000 miles) 5-130 101-160 2-93
Number of Periodic Maintenances 30 3 40

Number of Preventative Maintenances 3 27 4
Number of Corrective Maintenances 1 8 27

6.3.1 School Bus

The summary of test data for a diesel and natural gas school bus operated in California and

a propane school bus operated in Colorado is presented in Table 6.4. The diesel school bus

had more periodic maintenance performed with few preventative maintenances and one corrective

maintenance related to the engine and transmission performed. The natural gas school bus vehicle

has recorded preventative and corrective maintenance related to chassis, engine & transmission,

exhaust & aftertreatment, and a few periodic maintenance. The engine & transmission corrective

maintenance in the natural gas vehicle has incurred high maintenance costs after 125,000 mileage.

The propane school bus underwent more corrective maintenance and preventative maintenance

related to the engine and transmission after 30,000 miles with frequent periodic maintenance. The

corrective and periodic maintenance of the engine and transmission involved higher maintenance

costs but lower than the cost incurred for tire and break.

The comparison of average cost per mile over the duration for diesel, natural gas, and propane

school bus data is shown in Figure 6.6. The diesel vehicle showed the highest average cost per

mile with just one corrective maintenance related to the engine & transmission at around 70,000

miles as the periodic maintenance of the engine & transmission, fuel system was costly. Natural

gas vehicles showed an increasing trend in the average cost per mile as the duration of operation

increased. However, the observed values are for mileage ranging from 101,000 – 160,000 miles.

Though propane vehicles underwent several preventative and corrective maintenance before hitting

52,000 miles, the average cost-per-mile is observed to be lower than diesel and natural gas vehicles.



S. Katreddi Chapter 6. Mixed Effects Model ... 95

0.225

0.38 0.39

0.34

0.16

0.24

0.375
0.33

0.195

0.009

0.075 0.06

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

A
v

er
a

g
e 

C
o

st
 P

er
 M

il
e 

($
/m

il
e)

Duration (Years)

Comparison of Average Cost Per Mile for a Diesel, a 

Natural Gas and a Propane School Bus

Diesel Natural Gas Propane

Figure 6.6: Average predicted cost per mile in school bus

6.3.2 Delivery Truck

The summary of test data for a diesel and propane delivery truck operated in South Carolina

and a natural gas delivery truck operated in Pennsylvania is presented in Table 6.5. The diesel

delivery truck underwent a similar number of periodic and corrective maintenance with a couple

of preventative maintenance performed throughout the operation. The corrective maintenance on

the chassis had a total cost much higher after the vehicle recorded mileage greater than 104,000

miles with one major engine & transmission at a mileage of around 68,000. Engine & transmission

Table 6.5: Delivery Test Data Summary

Fuel Type Diesel Natural Gas Propane
Maintenance Year 2012-2017 2017-2021 2015-2022

Mileage (1000 miles) 12-106 0.4-462 6.5-100
Number of Periodic Maintenances 13 40 21

Number of Preventative Maintenances 2 17 5
Number of Corrective Maintenances 10 55 15
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preventative maintenance has a total cost of 10 times more than tire & brake preventative mainte-

nance. The cost of periodic maintenance for tire & brake is 2 to 3 times higher than chassis whereas

the periodic maintenance cost for engine & transmission is lower than all. Since the natural gas

delivery truck has operated for a very high mileage of 460,000, it has recorded a high number of

corrective maintenance and periodic maintenance with few preventative maintenance. The chassis

has less periodic maintenance costs followed by engine & transmission and then tire & brake. But

the preventative maintenance costs for engine & transmission are higher than tire & brake. The

fuel system has the lowest corrective maintenance costs among all parts. The tire & brake compo-

nents have seen corrective maintenance costs more than double after 113,000 miles whereas exhaust

& emissions corrective maintenance at 160,000 miles is higher than the cost above 330,000 miles.

The engine & transmission went through much corrective maintenance with one maintenance at
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Figure 6.7: Average predicted cost per mile in delivery truck

360k miles incurring 10 times higher cost than the maximum of other corrective maintenance costs

on the same part. The corrective maintenance cost for the chassis has been observed to be more

than doubled every 100,000 miles. The periodic maintenance for the chassis had constant costs
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throughout the operations. For tire & brake, the periodic maintenance costs have increased and for

engine & transmission, the mileage below 13,000 and above 74,000 had a higher value. One-third

of the corrective maintenance for the engine & transmission had higher costs at various mileages.

The preventative maintenance for this vehicle was only performed for the engine & transmission

with increasing maintenance costs.

The comparison of average cost per mile over the duration for diesel, natural gas, and propane

delivery data is shown in Figure 6.7. The natural gas delivery truck showed the lower average cost

per mile even with the highest mileage accumulated in 5 years. The trend shows an increase in the

value throughout the operation. A similar increasing trend is observed for diesel delivery trucks

but with a higher average cost per mile. The propane vehicle projected nearly similar average cost

per mile every year except the first year.

6.3.3 Vocational Truck

The summary of test data for a diesel vocational truck operated in Ohio, a natural gas vocational

truck operated in California, and a propane vocational truck operated in Rhode Island is presented

in Table 6.6. The diesel vocational truck recorded a high number of corrective and preventative

maintenance related to chassis and engine & transmission for a total of 6000 miles over 2 years. The

corrective maintenance cost for the engine & transmission was very high at 3000 miles whereas for

the chassis both the corrective maintenance and preventative maintenance cost had a fluctuating

trend. The natural gas vocational truck for 3 years had frequent periodic maintenance related

to the chassis with corrective maintenance related to the chassis and fuel system. The corrective

maintenance costs are much higher compared to periodic and preventative maintenance costs. The

propane vocational had periodic maintenance every year with one corrective maintenance related to

the engine & transmission which has 3.5-4 times lower maintenance cost than periodic maintenance.

The comparison of average cost per mile over the duration for diesel, natural gas, and propane

vocational truck data is shown in Figure 6.8. The average cost-per-mile for a diesel vehicle is

recorded as very high for a mileage range of 1000-6000 miles with an increasing trend. A similar

increasing trend is observed in a natural gas vocational truck for mileage range 5000-9000. The

propane vocation trucks have lower average cost-per-mile even with higher mileage of 13,500-50,000

miles.
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Table 6.6: Vocational Test Data Summary

Fuel Type Diesel Natural Gas Propane
Maintenance Year 2021-2022 2020-2022 2016-2019

Mileage (1000 miles) 1-6 5-9 13-50
Number of Periodic Maintenances 1 10 5

Number of Preventative Maintenances 4 1 0
Number of Corrective Maintenances 8 2 1
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Figure 6.8: Average predicted cost per mile in vocational truck

6.3.4 Refuse Truck

The summary of test data for a diesel refuse truck operated in Ohio and a natural gas refuse

truck operated in California is presented in Table 6.7. The diesel refuse truck went through 3

corrective maintenance related to chassis, tire & brake before the truck records 7913 miles with

one preventative maintenance at 2750 miles. The natural gas refuse truck had many corrective

maintenances related to chassis, tire & brake, and engine & transmission most of the corrective

maintenances were observed during periodic and preventative maintenance. The maintenance cost

for all types of maintenance had a fluctuating total cost with a few higher costs at some mileage.

The comparison of average cost per mile over the duration for diesel and natural gas refuse
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Table 6.7: Refuse Test Data Summary

Fuel Type Diesel Natural Gas
Maintenance Year 2021-2022 2020-2022

Mileage (1000 miles) 2.7-7.9 42-83
Number of Periodic Maintenances 3 21

Number of Preventative Maintenances 0 22
Number of Corrective Maintenances 3 66
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Figure 6.9: Average predicted cost per mile in refuse truck

truck data is shown in Figure 6.9. The diesel refuse has less average cost-per-mile with mileage

ranging from 5000-8000 miles with an increase in value over the years. However, the estimated

values for natural gas are very high as the vehicle has data with mileage greater than 42000 miles.

6.3.5 Goods Movement Truck

The summary of test data for a diesel and a natural gas goods movement truck operated in

California is presented in Table 6.8. The diesel goods movement truck has corrective maintenance

related to the engine & transmission, chassis, and exhaust & emissions after recording 114,000

miles observed during regular periodic maintenance. Like, refuse trucks, the natural gas goods

movement truck also had many corrective maintenances related to chassis, tire & brake, engine
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Table 6.8: Goods Movement Truck Test Data Summary

Fuel Type Diesel Natural Gas
Maintenance Year 2010-2014 2017-2021

Mileage (1000 miles) 32-296 30-153
Number of Periodic Maintenances 15 15

Number of Preventative Maintenances 1 11
Number of Corrective Maintenances 8 25

& transmission, and fuel system. The number of corrective maintenance on this vehicle is almost

equal to the number of periodic and preventative maintenance together.
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Figure 6.10: Average predicted cost per mile in goods movement truck

The comparison of average cost per mile over the duration for diesel and natural gas goods

movement truck data is shown in Figure 6.10. The natural gas goods movement truck had de-

creasing average cost-per-mile throughout the operation as mileage increased from 30,000 to 152,000

whereas the diesel goods movement truck had a similar value throughout the operation with mileage

of 32,700 – 296,000.



S. Katreddi Chapter 6. Mixed Effects Model ... 101

Table 6.9: Transit Bus Test Data Summary

Fuel Type Natural Gas
Maintenance Year 2016-2022

Mileage (1000 miles) 2.1-311
Number of Periodic Maintenances 99

Number of Preventative Maintenances 104
Number of Corrective Maintenances 29

6.3.6 Transit Bus

Since there is no data for transit buses using diesel and propane fuels, the transit bus data is

not presented for training the model during the training or validation phases. The summary of

maintenance data for a natural gas transit bus operated in California is presented in Table 6.9. The

natural gas transit bus has operated for 310,000 miles over 6 years. The vehicle had comparably a

smaller number of corrective maintenance due to frequent periodic and preventative maintenance

performed. The total cost for periodic maintenance of the chassis was higher than the cost for the

engine & transmission and tire & brake. The average corrective cost for the engine & transmission

is almost equal to the average corrective cost for the tire & brake and half the corrective cost for

the fuel system.

The predicted average cost-per-mile for this vehicle is compared with the average cost-per-mile

for the original test data as shown in Figure 6.11. This shows how well the model is generalized

to unseen cluster data and the performance of the model. The higher average cost-per-mile in the

initial year of operation is due to the replacement of the fuel system. The vehicle has seen an

increasing trend in the average cost-per-mile for maintenance done.

Overall, most corrective maintenance has been identified during periodic or preventative main-

tenance. The total cost incurred for maintenance based on the maintenance type, part of the truck,

etc. may not always have a trend but the average cost-per-mile calculated using the total cost

and the mileage of the vehicle gives interesting insights for each of the truck types. For example,

the natural gas delivery truck having many corrective maintenance has less cost-per-mile whereas

the natural gas refuse truck went through a higher number of corrective maintenance resulting in

a higher average cost-per-mile. From the comparison plots, it is observed that the school buses
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Figure 6.11: Average predicted cost per mile in transit bus

and vocational trucks which have stop-and-go activity operated at lower speeds have lower average

cost-per-mile using propane fuel compared to natural gas and diesel whereas the delivery trucks

have lower average cost-per-mile using natural gas. The refuse and goods movement trucks using

diesel fuel have lower average cost-per-mile. The variation is expected as modern diesel vehicles

are designed to have better fuel efficiency with large weights at higher speeds operated in long

routes compared to lower speeds with short distances. Hence the goods movement trucks have

lower cost-per-mile with diesel than other vehicles such as school buses, delivery trucks, etc.

6.4 Conclusion

Maintenance cost is considered an important factor for the total cost of ownership while pur-

chasing a vehicle as the downtime and maintenance of the fleet costs a lot for fleet companies.

Recently with the clean air act, the government is promoting the use of alternative fuel vehicles

as they provide soot-free emissions. However, the lack of understanding of how the maintenance

cost associated with alternative fuel vehicles changes over time is making fleet companies opt for
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diesel vehicles as diesel vehicles are known to be robust for a long time. The studies related to

maintenance costs for alternative fuel vehicles have been a challenge due to the lack of availability

of data. In this study, WVU in collaboration with fleet management companies has collected large

volumes of data related to diesel and alternative fuels performing various tasks such as school buses,

delivery trucks, vocational trucks, refuse trucks, transit buses, and goods movement.

Regular machine learning models do not generalize well for real-world complex data involving

clustered longitudinal data. The maintenance data collected is complex as the activity performed

by each truck involves a different duty cycle impacting the maintenance and the performance of

vehicles differently. Hence each of the diesel, natural gas, and propane fuel types has different

clusters of data among them associated with the truck activity type. Furthermore, different fleet

companies maintain vehicles differently further making the pattern more complex.

To address the challenge and fill the knowledge gap, a mixed effect random forest (MERF)

model is developed to capture the complex patterns within the group and between groups taking

the overall population distribution into account. The model is fitted using the EM algorithm,

allowing us to learn fixed effects and random effects. The model is evaluated on the unseen test

data from each cluster and observed to perform well giving the predicted values close to actual values

for most of the cases. For scenarios where there is large variation within the cluster, the model

seems to perform reasonably. The goal of this study is to develop a generalized model that could

capture the random effects in data rather than having an individual model for different activity

types using different fuel types for which large volumes of data may not be available. Based on

the performance metric achieved by the MERF model on the test dataset indicate that the model

is generalized well for clusters seen during the training process as well as to the clusters not seen

during the training. Given the fuel type, activity, region of operation, etc., the model predicts the

average cost per mile as the age and total miles of operation for truck increases helping the fleet

management companies to make procurement decisions.
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Chapter 7

Contributions & Future work

The operational costs of a truck play a key role in the total cost of ownership (TCO) for a fleet

company. The break-even cost per mile can be broken into various factors such as maintenance

& repairs, fuel, driver wages, insurance, etc., of which fuel and maintenance & repairs contribute

a lot to the total cost of ownership. Since fuel costs and maintenance & repairs are the two

largest factors for the total cost of ownership, examining these factors help in identifying the

differences in the total cost of operation between fuels based on duty cycles. To make procurement

decisions, fleet management companies should have a clear understanding of how the differences in

fuel, and maintenance impact the TCO. Also, with the increasing prices of diesel, optimizing fuel

consumption by considering the factors that result in higher fuel consumption for existing vehicles

would be beneficial. Hence, in this study, the following contributions are made that would benefit

fleet management companies to analyze the operational costs for better procurement decisions as

well as to the economy through energy saving.

7.1 Contributions

1. Developed a Neural Network model by identifying and using very few vehicle parameters that

affect fuel consumption most and can be easily obtained from vehicle trip telemetry data.

2. Developed a Super-Learner model by fusing Machine Learning models and improved the

performance and generalization of model.

3. Analyzed Mixed Effects in maintenance data and Developed Mixed Effects Random Forest
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model, a single generalized model that can be used to predict cost-per-mile for HDVs per-

forming different activities and fuel types.

4. Created a database by collecting real-time medium- and heavy-duty vehicle telemetry activity

data and maintenance data in collaboration with fleet management companies.

5. Modeled maintenance data for predicting maintenance cost of diesel and alternative fuel

vehicles performing different activities that enable companies to make procurement decisions.

6. The study would positively impact the alternative fuel infrastructure stakeholders and AFV

manufacturers by helping them identify the barriers associated with AFV adoption in certain

vocations and regions

7. This work helps in the diffusion of Alternative Fuel Vehicles in the market.

Our findings can be used by analysts, researchers, and policymakers when determining the

relative ownership costs of alternative fuel vehicles (AFVs), optimizing the fuel consumption by

trips and deciding directions for future research, and by consumers and fleet operators to select

cost-effective vehicles. Future Work

7.2 Future Work

Though alternative fuels are gaining popularity, their usage has not reached the expectation

yet. With the current data capturing technologies, it is recommended that companies should con-

centrate on logging the maintenance data frequently for vehicles using advanced technologies/alter-

native fuels for longer duration or mileage. This would help in understanding the performance and

maintenance of vehicles with different duty cycles using different fuel engines which further helps

promote the usage of alternative fuels where feasible to offer soot-free emissions and environmentally

reduce pollution.

Including more features such as the maximum and minimum temperatures, precipitation, road

grade, etc would enable the development of more robust prediction models. The developed models

can be applied to electric vehicles. Models for identifying the factors resulting in high maintenance

costs could be beneficial for fleet management companies in understanding the impact of different
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parameters on the maintenance of vehicles. Metrics such as Jaccard Similarity or Euclidean Dis-

tance are used to identify similarity in data to determine if the model can be used on new clusters

of data, for example, new fuel type.
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Presentations

A.1 Published

• S. Katreddi and A. Thiruvengadam, “Trip-Based Modeling of Fuel Consumption in Heavy-

Duty Vehicles using Artificial Intelligence,” Energies, Dec. 2021.

• S. Katreddi, S. Kasani and A. Thiruvengadam, “A Review on Applications of Artificial In-

telligence in Heavy Duty Trucks,” Energies, Sep. 2022.

A.2 In Review

• S. Katreddi, A. Thiruvengadam, G. Thompson, N. Schmid, and V. Padmanaban, “Machine

Learning Models for Maintenance Cost Estimation in Delivery Trucks using Diesel and Nat-

ural Gas Fuels” Frontiers in Mechanical Engineering.

• S. Katreddi, A. Thiruvengadam, G. Thompson and N. Schmid, “Mixed Effects Random

Forest Model for predicting maintenance cost in heavy-duty vocational vehicles using diesel
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A.3 Conference Presentations

• “Fuel Consumption Estimation in Heavy Duty Vehicles Using Machine Learning.” 8th Inter-

national Conference on Mechanical, Materials, and Manufacturing, 2021.
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[97] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, and S. Byttner, “Predicting the need for vehicle com-
pressor repairs using maintenance records and logged vehicle data,” Engineering Applications
of Artificial Intelligence, vol. 41, pp. 139–150, 5 2015.



REFERENCES 116

[98] V. Revanur, A. Ayibiowu, M. Rahat, and R. Khoshkangini, “Embeddings based parallel stacked
autoencoder approach for dimensionality reduction and predictive maintenance of vehicles,”
Communications in Computer and Information Science, (Cham), pp. 127–141, Springer Inter-
national Publishing, 2020.

[99] C. Chen, Y. Liu, X. Sun, C. D. Cairano-Gilfedder, and S. Titmus, “Automobile maintenance
prediction using deep learning with gis data,” Procedia CIRP, vol. 81, pp. 447–452, 2019.

[100] Y. Sun, Z. Xu, and T. Zhang, “On-board predictive maintenance with machine learning,”
tech. rep., Warrendale, PA, 4 2019. ISSN: 0148-7191, 2688-3627 DOI: 10.4271/2019-01-1048.

[101] D. Rengasamy, M. Jafari, B. Rothwell, X. Chen, and G. P. Figueredo, “Deep learning with
dynamically weighted loss function for sensor-based prognostics and health management,” Sen-
sors, vol. 20, p. 723, 1 2020. number: 3 publisher: Multidisciplinary Digital Publishing Institute.

[102] J. Wang and H. A. Rakha, “Fuel consumption model for conventional diesel buses,” Applied
Energy, vol. 170, pp. 394–402, 5 2016.

[103] D. Zhu and X. Zheng, “Fuel consumption and emission characteristics in asymmetric twin-
scroll turbocharged diesel engine with two exhaust gas recirculation circuits,” Applied Energy,
vol. 238, pp. 985–995, 3 2019.

[104] C.-L. Lo, C.-H. Chen, T.-S. Kuan, K.-R. Lo, and H.-J. Cho, “Fuel consumption estimation
system and method with lower cost,” Symmetry, vol. 9, p. 105, 7 2017. number: 7 publisher:
Multidisciplinary Digital Publishing Institute.
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