
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

11-17-2022 

Deep Learning -Powered Computational Intelligence for Cyber-Deep Learning -Powered Computational Intelligence for Cyber-

Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle 

Charging Station Charging Station 

Manoj Basnet 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Basnet, Manoj, "Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and 
Mitigation in 5G-Enabled Electric Vehicle Charging Station" (2022). Electronic Theses and Dissertations. 
3190. 
https://digitalcommons.memphis.edu/etd/3190 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F3190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/3190?utm_source=digitalcommons.memphis.edu%2Fetd%2F3190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and 

Mitigation in 5G-Enabled Electric Vehicle Charging Station 

by 

Manoj Basnet 

 

 

A Dissertation  

Submitted in Partial Fulfillment of the  

Requirements for the Degree of 

Doctor of Philosophy 

Major: Electrical and Computer Engineering 

 

 

The University of Memphis 

December 2022 

  



ii 

 

DEDICATION 

I would love to dedicate this Ph.D. dissertation to my late Mother, Saraswoti Basnet, my caring 

wife, Kamana Dahal, and the rest of my great family, who compassionately supported me from 

overseas throughout my studies abroad.  

 

  



iii 

 

ACKNOWLEDGEMENT  

I am sincerely grateful to my supervisor Dr. Mohd. Hasan Ali for his invaluable guidance and 

continuous support during my Ph.D. study at the University of Memphis. His insightful advice and 

great experience encouraged me in all aspects of my academic life. My gratitude extends to the 

Department of Electrical & Computer Engineering for their funding support and Carnegie R1 

Doctoral Fellowship. 

I would also like to warmly appreciate the committee members Dr. Madhusudhanan 

Balasubramanian, Dr. John Hochstein, and Dr. Myounggyu Won, who accepted to participate in 

the committee and for their valuable time and advice.  

 

  



iv 

 

PREFACE 

 “Guided by Learning, Optimization, and Control,  

to explore Computation, Cosmos, and Consciousness.” 

Most of my youth was driven by learning and maximizing my goals and rewards. The 

immense pleasure of achieving the goal and the miserable pain of losing were worth experiencing: 

The hard way of learning. However, in my mid-20s, when I had to fulfill multiple competing 

objectives, i.e., profession, family, health, I realized maximization does not work as it works on 

one dimension, i.e., one objective. Therefore, I realized life could be more beautiful with stability 

or balance brought by optimization, not maximization. Control/discipline is the only way to bind 

us in our desired direction. Like my life, I am always passionate about learning (Computational 

Intelligence), Optimization (heuristics, Meta-heuristics), and Control algorithms. I am pretty sure 

that one-day machines will achieve these learning, optimization, and control (LOC) skills to a 

sublime degree. It could eventually help us unwind the mysteries of Computation, the Cosmos, 

and Consciousness (3Cs).  

The outcome of this research has been published in two journal articles (one under review), 

four conference papers (one to be submitted), and one book chapter (under publication). The 

contents of this dissertation include all these publications, which are listed below: 

Chapter 2: M. Basnet and M. H. Ali, "Deep Learning-based Intrusion Detection System for Electric 

Vehicle Charging Station," in 2020 2nd International Conference on Smart Power Internet 

Energy Systems (SPIES), Sep. 2020, pp. 408–413. doi: 10.1109/SPIES48661.2020.9243152. 

 M. Basnet and M.H. Ali, “WCGAN-Based Cyber-Attacks Detection System in the EV Charging 

Infrastructure,” in 2022 4th International Conference on Smart Power Internet Energy Systems 

(SPIES), Oct. 2022 (Accepted for publication) 

Chapter 3: M. Basnet and Mohd. H. Ali, "Exploring cybersecurity issues in 5G enabled electric vehicle 

charging station with deep learning," IET Gener. Transm. Distrib., p. gtd2.12275, Aug. 2021, 
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doi: 10.1049/gtd2.12275. 

Chapter 4: M. Basnet, S. Poudyal, Mohd. H. Ali, and D. Dasgupta, "Ransomware Detection Using Deep 

Learning in the SCADA System of Electric Vehicle Charging Station," in 2021 IEEE PES 

Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Sep. 

2021, pp. 1–5. doi: 10.1109/ISGTLatinAmerica52371.2021.9543031. 

Chapter 5: M. Basnet and M. H. Ali, “A Deep Learning Perspective on Connected Automated Vehicle 

(CAV) Cybersecurity and Threat Intelligence,” in Deep Learning and Its Applications for 

Vehicle Networks, CRC Press, Taylor & Francis Group, 2022 (under Publication). 

Chapter 6: M. Basnet and Mohd. H. Ali, " Deep Reinforcement Learning-Driven Mitigation of Adverse 

Effects of Cyber-Attacks on Electric Vehicle Charging Station," IEEE Systems Journal (under 

review).  

M. Basnet and Mohd. H. Ali, " Cyber-Attacks Mitigation Strategies in the EV Charging 

Infrastructure," 2023 IEEE PES General Meeting, 16-20 July, 2023 (To be submitted). 
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ABSTRACT 

 

 

An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation 

electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, 

supply chain, and incumbent legacy technologies such as network, communication, and control. 

Therefore, proactively monitoring, detecting, and defending against these attacks is very 

important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, 

and defend against various cyber-physical attacks in the EVCS system. To overcome these 

limitations, this dissertation primarily designs, develops, implements, and tests the data-driven 

deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at 

the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing 

application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has 

been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data 

injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a 

standalone 5G-enabled EVCS environment have been considered. Mathematical models for the 

mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation 

has been analyzed. 

Various deep learning-powered intrusion detection systems have been proposed to detect 

attacks using local electrical and network fingerprints. Furthermore, a novel detection framework 

has been designed and developed to deal with ransomware threats in high-speed, high-

dimensional, multimodal data and assets from eccentric stakeholders of the connected automated 

vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, 

novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) 



vii 

 

Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller 

clones-based methods have been devised and tested to aid the defense and mitigation of the impact 

of the attacks of the EVCS operation. The performance of the proposed mitigation method has 

been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based 

digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and 

NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation 

of EVCS. The proposed detection and mitigation methods are effective and perform better than 

the conventional and benchmark techniques for the 5G-enabled EVCS. 
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Chapter 1  Introduction 

1.1 Background 

Electric Vehicles (EVs) are anticipated to bring the next generation of electrified mobility into 

the transportation industry to cut down the global carbon emission. However, the mass adoption 

of EVs depends on the efficient deployment of EV charging stations (EVCSs), their security, and 

reliability.  According to the second-quarterly (Q2)  data of 2021 from the Alternative Fuels Data 

Center, the United States hosts 128,474 public and private EVCS ports in 50,054 station locations 

[1]. In 2021 alone, charging stations increased by more than 55% in the United States. This upsurge 

is anticipated to grow further along with the announcement of the Bipartisan Infrastructure Law 

(BIL) to build out the nationwide electric vehicle network in April 2021 [2]. In February of 2022, 

the Whitehouse with the United States Department of Transportation ( USDOT ) and the US 

Department of Energy (USDOE), announced $5 billion over five years for the new National 

Electric Vehicle Infrastructure (NEVI) program under the BIL to create a network of EV charging 

stations along with designated alternative fuel corridors in the interstate highway [3]. 

 In contrast with the broad interest and investment in transportation electrification and EVCS 

deployment, the cyber-physical security hygiene of EVCS standalone/network is often slow-

paced, poorly defined, and understudied [4]–[7]. The internet-facing elements of EVCS are 

primarily designed for communications and controls with other Internet of Things (IoTs) and 

stakeholders such as EV, EV operators, grid,  Supervisory Control and  Data Acquisition 

(SCADA), and EVCS owners and push the air-gapped critical physical infrastructures to the 
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internet [8]. It could potentially open up large attack vectors for the interconnected systems of the 

EVCS.  

The operational failure of critical infrastructures has widespread and devastating impacts. For 

instance, Texas's February 2021 winter storm left 4.5 million homes and businesses without power, 

resulting in 57 deaths and $195 billion in property damage [9]. Similarly, cybercrime-induced 

coordinated attacks can potentially damage and disrupt critical cyber-physical infrastructures. On 

May 7, 2021, the largest pipeline in the United States, the Colonial Pipeline, was forced to shut 

down entirely by the ransomware attack that led to gas shortages on the east coast [10]. The attack 

vector was a Virtual Private Network (VPN) account with compromised passwords that allowed 

remote access to the company's computer network. The hackers threatened to release 100 GB of 

customers' data should the ransom was not paid [11]. The colonial pipeline prevented further 

attacks and damages to its critical physical process by paying cryptocurrency $4.4 million worth 

of ransom. The cybercriminal group, DarkSide, is believed to be behind the attack. Similarly, the 

meat Giant JBS paid an $11 million ransom in the late May of the same year that partially halted 

its operations due to ransomware attacks on its branches in Australia, the US, and Canada [12]. 

The most lethal attacks are the ones that exploit the vulnerabilities of physical controllers and 

engineer the attacks with domain expertise. In 2017, one of the deadliest and most sophisticated 

malware attacks, Triton, targeted the safety instrument system (SIS) designed to save lives (the 

last line of defense) in the Saudi Petrochemical plant [13]. The SIS used Triconex safety controllers 

distributed by Schneider Electric and widely used in nuclear, oil, and gas refineries and chemical 

plants across the globe [14]. While the initial attack vector was unknown, enough traces of Triton 

attacker mobility across the network were found to disrupt or damage the industrial process. The 

Triton malware attacker exploited and engineered the legacy Triconex architecture and proprietary 
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communication protocol TriStation to communicate with safety controllers and remotely 

manipulate the system memory. However, the attack failed and was discovered after an accidental 

shutdown. It was concluded that the consequence could have been devastating should the payload 

have been successful [15]. On December 23, 2015, the hacker group Sandworm compromised the 

distribution centers in the Ukrainian power grid, leaving 230,000 people in darkness for up to six 

hours. The adversary initially intruded on the SCADA systems, blinded the dispatchers, wiped the 

SCADA system servers and workstations, and flooded the call centers with Distributed Denial of 

Services (DDoS) requests [16]. Even two months after the attack, the control centers were 

unresponsive to any remote commands from the operator. Cybercriminals left the backdoor open 

by overwriting the firmware on critical devices at 16 substations [17]. 

Similarly, in June of 2010, a 500 kB self-replicating worm and spyware, Stuxnet, targeted the 

Iranian Uranium Enrichment facility to tear down the centrifuges [18]. The attack vector was the 

infected USB drive. First, it targeted the Microsoft Windows machines and networks, then 

propagated to Windows-based Siemens step 7 software (to program the industrial control system), 

and finally compromised the Programmable Logic Controllers (PLCs). These are examples of how 

cyberattacks can disrupt and damage critical infrastructures. Critical infrastructures are the holy 

grail of cyber war, and we must prepare to defend them. Due to the interoperability issues, poor 

security hygiene migrated cyber risks from legacy components and not well-defined protocols and 

standards. The EVCS can be the next target of cybercriminals. Table 1.1 summarizes some 

infamous cyber-borne attacks that could disrupt and damage physical systems. 
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Table 1.1 Cyberattacks disrupting/damaging the physical process 

Date Target Impact Attack Class 

05/2021 Colonial Oil Pipeline Entire System shutdown Ransomware  

05//2021 JBS meat Partial system shutdown Ransomware 

12/2017 

Saudi Petrochemical 

Plant 

Took over the plant’s safety 

Instrument systems 

Malware/Triton 

12/2015 

Ukrainian Power 

Grid 

Blackout for 1-6 hours 

DDoS/BlackEnergy 

3 

06/2010 

Uranium Enrichment 

Plant 

Tore down the centrifuges Worm/Stuxnet 

 

The seamless adoption of transportation electrification is bringing endless opportunities for 

technological disruption, such as next-generation networks (5G/6G), the internet of things (IoT), 

AI-based prediction, reinforcement learning-based optimal control, and bidirectional grid 

integration. The EVCS interfaced with such disruptive technologies brings the odd stakeholders to 

the common ground and acts as a plausible threat envelope for impact propagation. Nonetheless, 

the incumbent protocols and standards used in the EVCS have myriads of exploitable 

vulnerabilities. Unlike traditional cyber-physical systems (CPS), EVCS stands out as a networked 

CPS exposing it to the network.  

The EVCS suffers from two blended cyber-physical attacks based on attack origin: cyber-

enabled physical attacks and physically enabled cyberattacks [19]. Cyber-enabled physical attacks 

exploit the vulnerabilities in the cyber layer, mainly communication and network, to disrupt, 

damage, hijack, and freeze the physical processes. Examples of such attacks are Denial of Service 

(DoS), Man in the middle (MitM), False data injection (FDI), and Side channel attacks. The 

physically enabled cyberattacks are the categories of blended attacks that exploit vulnerabilities of 
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humans, supply chains, and software to launch the cyberattacks. Examples are Trojans, advanced 

persistent threats (APT), physical damage/disruption of critical controllers, and so on.  

It motivates the author to design, implement and test some deep learning-based intelligent 

systems that could detect cyberattacks at the network level of EVCS by analyzing the network 

packets. Nonetheless, like other ICS adopting cutting-edge computation, communication, and 

control, EVCS opens large attack surfaces as it interfaces between the fast pace electric mobility 

and critical power grids. Also, EVCS hardware, firmware, software, and controllers have 

vulnerabilities, and humans are the weakest link. An EVCS consists of three essential components: 

sensing, communication and networking, and computational components [20]. The sensing 

components deal with the array of wired/wireless sensors to assess the health and safety checks of 

the various electrical components in the EVCS. Communication and networking components 

interact with the local grid, SCADA system, internal sensors, and EVs through the internet to 

ensure energy efficiency and availability. Enabling wireless technology might be Wi-Fi, cellular, 

Bluetooth, etc. The computational components help perform logical, arithmetic, and control 

functions. An EV owner has to schedule the charging through an app or the internet so that the 

maximum number of EVs can be integrated into the grids [21]. An EVCS might ask for 

authentication before charging so that personal and financial information must be shared through 

some media such as radio frequency identification (RFID), Bluetooth, and near-field 

communication (NFC). These wireless communications pose extreme vulnerabilities in EVCS.  

The motivations behind the cyberattack on EVCS range from pranks, electricity theft, and 

identity theft to severe APT such as ransomware and malware, where EVCS might work as an 

entry point [22]. The denial of service (DoS) attack has been among the most widely seen attacks. 

The DoS attack causes congestion in the network with fake requests so that all the network 
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components are busy processing the fake requests and unable to respond to genuine requests [23]. 

Therefore, DoS attacks must be taken carefully; otherwise, they are costly in terms of the 

availability of resources.  

 Based on the above background, as the first layer of defense, this dissertation proposes the 

Deep Learning powered Network Intrusion Detection System (NIDS) that oversees and monitors 

the entire EVCS network by using the network packets. The algorithm performance is further 

improved using the Wasserstein Conditional Generative Adversarial Network (WCGAN) with an 

external classifier. As a last layer of defense in the physical layer of EVCS infrastructure, this 

dissertation proposes the air-gapped Host Intrusion Detection System (HIDS) that oversees the 

electrical and control signals in the operational EVCS.  Some Advanced Persistent Threats (APTs) 

may bypass the network intrusion detection and prevention tools that motivate the author to 

develop an intelligent system that could detect attacks by analyzing the local electrical fingerprints 

of the process. The dissertation studies a Bruteforce, controller clones, and data-driven  RL-based 

cyber defense that could detect and mitigate controller targeted APT in the EVCS charging 

process.  The internet of EVs and EVCS may need stringent requirements in terms of latency, 

bandwidth, and the number of connections. The 5G is the candidate technology capable of 

providing ultra-reliable low-latency communication (uRLLC), extended mobile broadband 

(eMBB), and massive machine-type communication (mMTC) that can guarantee the SLAs with 

added security and isolation. Finally, some of the applications of 5G slicing to the EV 

infrastructure are surveyed in this work. The following subsections briefly outline the motivation 

for this research and discuss the objectives pursued by the researcher.  

1.2 Motivation 

Cyberattacks on critical infrastructures are lethal as it impacts a large population and 
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compromises the safety of physical and non-physical assets. Therefore, it is imperative to conduct 

periodic threat assessments and vulnerability analyses and accordingly design and develop agile 

and stealthy cyberattack detection, mitigation, and defense methodologies.  In summary, the 

history of past attacks taught us vital lessons. Firstly, the attack can be a malware attack on an IT 

system targeted at the physical system or advanced persistent threats directly targeted at the legacy 

controllers of the physical system. Secondly, all legacy controllers (software, hardware) lack 

security by design and are vulnerable to attacks. Thirdly, there is no consensus on designing attack-

resilient, agile, intelligent controllers and hardware. Finally, advanced persistent cyber threats 

engineered with the domain expertise of legacy controllers and safety systems could cause 

irreversible damage and havoc in the physical system. Above all, there is an imminent need to 

develop distributed intelligence to defend the critical process controllers proactively and 

independently under threat incidence. Ideally, one can propose the solution zero to make EVCS 

off the internet or completely air-gapped. However, it may strip off many functionalities such as 

EV scheduling, over-the-air updates of EVCS software and firmware, online billing, remote 

connections to power grids and other EVCS for power management, etc. Also, the air-gapped 

system still has insider threats that can result in physically enabled cyberattacks. The general points 

that invoke motivations in this field are: 

• EVCS cyber-physical risks, vulnerabilities, and evolving threat landscapes have not been 

appropriately explored. 

• The impact of cyber-borne attacks on EVCS charging at the physical infrastructure layer 

is not studied in depth. 

• The integration of next-generation wireless networks, such as 5G, could revolutionize the 

experience of EVCS. However, the incumbent technologies' inherent vulnerabilities and 
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impacts are not fully exploited. 

• State-of-the-art algorithms have not been progressing well for attack detection and 

prediction in EVCS; They can be aided by cutting-edge computational intelligence at both in-

network and standalone levels. 

• CPS defense (capability of resisting attack) has been ill-defined and often confused with 

mitigation (reducing the severity). EVCS attack detection, defense, and mitigation are not 

fully explored. 

• The current research lacks the convergence of IT security, OT security, and physical 

infrastructure security in EVCS, with the slightest attention to OT and physical infrastructure 

security. 

• The current state of the art lacks the proactive vision for developing embedded intelligence 

that could defend/correct the attacks on the physical assets, mainly controllers of EVCS or 

any CPS.  

1.3 Objectives  

This research aims to address the issues and findings outlined in the motivation section as far 

as possible. The following objectives are sought in this research: 

• This research aims to develop the PV-powered standalone EVCS prototype with 

appropriate power and control circuitry with power generation, energy storage unit, and power 

delivery unit able to charge an EV.  

• The second research goal is to integrate 5G for its speed, connectivity, and bandwidth and 

assess/exploit its vulnerabilities to disrupt the charging process in EVCS. 

• The third research goal is to design, develop, validate, and assess the performance of the 
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computation intelligence algorithm capable of overseeing, monitoring, and detecting cyberattacks 

by analyzing the network packets at the network layer of EVCS. 

• The fourth goal is to design, develop and validate the computational intelligence that can 

detect the stealthy cyberattacks targeted at the physical layers of EVCS by using the local electrical 

fingerprints.  

• The fifth goal is to devise and develop defense and mitigation strategies to mitigate and 

isolate the impacts of cyberattacks on the EVCS. 

• The last goal is to explore the potential security and isolation aided by the 5G slicing in the 

smart grid with EVs and EVCS.  

1.4 Novelty of the Proposed Work 

The novelties of this work are aligned with the solutions for issues outlined in the research 

motivation and objective sections. In summary: 

• A 5G integrated PV-powered standalone cyber-secured EVCS prototype has been designed 

and simulated to deliver power to EVs with appropriate control and power circuitries. 

• State-of-the-art Deep learning-based models are implemented and validated to detect the 

attacks at the network level of EVCS, and the performance appraisal is performed. 

• Deep learning-based computational intelligence is adopted to detect the bypassed 

cyberattacks at the physical controllers of EVCS just with the electrical fingerprint. 

• As defense and mitigation strategies, Deep reinforcement learning-based digital control 

clone strategies, the brute force model, and the controller-clone-based model are devised, 

implemented, and tested for the mitigation of impacts of cyberattacks on EVCS. Also, the 

performance appraisal of various proposed methods, including TD3 clones and benchmark 
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algorithms, has been done. 

• Cyberattack detection frameworks employing deep learning are proposed to secure EVCS 

from ransomware. Controller Area Network (CAN) IDS using staked CNN-LSTM algorithm 

is proposed and tested in CAV environments. 

• A novel secure 5G slicing framework has been proposed to aid isolation and security for 

EVs and EVCS in the smart grid environment. 

1.5 Organization of this Dissertation 

This dissertation is composed of 8 chapters. Chapter 2 conducts a literature review and 

provides a detailed background of cyberattacks at EVCS and cyberattack detection techniques. 

Chapter 3 explores the impact assessment of the cyberattacks on 5G-enabled EVCS. Chapter 4 

presents a novel application of the Deep learning model for cyberattack detection in EVCS. 

Chapter 5 explores the mitigation of adverse impacts of cyberattacks on EVCS. Chapter 6 

discusses the deep learning perspective on connected automated vehicle cybersecurity and threat 

intelligence. Chapter 7 presents the analysis of the 5G slicing approach to EVCS. Finally, chapter 

8 concludes the results of this research, presents key findings, and wraps up the dissertation with 

some recommendations for future research.  
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Chapter 2 Literature Review  

 

2.1 Introduction 

The intelligent and extensive deployment of EVCS coerces heterogeneous stakeholders and 

customers to coordinate and communicate. The heterogeneous stakeholders mainly refer to i) the 

intelligent transportation system (ITS)/vehicle to everything (V2X) infrastructures such as 

roadside sensors, connected automated vehicles (CAV), EVs, ii) Electric grid infrastructures such 

as utility, generation, transmission, distribution, sensors, protection and relays so on, and iii) 

financial institution such as credit card companies for the management of transactions [22].  The 

extent of administrative privilege for coordinating these eccentric stakeholders to/from the EVCS  

is still a conflict of interest due to the lack of clearly developed standards for proper interoperability 

and a fully matured, trustworthy environment [24]. Therefore, the EVCS needs robust, secure, and 

reliable communication with its stakeholders and customers. In such a scenario, the 

communication between these multiple nodes may need stringent requirements in terms of latency, 

bandwidth, and the number of connections. 5G must be the ideal communication tech for fulfilling 

those requirements. As shown in Fig. 2.1, The most updated deployment scenarios of 5G till now 

are Industrial internet of things (IIoT) and ultra-reliable low-latency communication (uRLLC), 

extended mobile broadband (eMBB), massive machine-type communication (mMTC), with 

additions of  ITS/V2X, Integrated access and backhaul (IAB) and New Radio based access to 

unlicensed spectrum (NR-U) [25]–[29].  

The general system architecture of EVCS includes the power delivery modules, 

communication and control modules, sensing and protection modules, and user interfaces [30]. 
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The power delivery module deals with the unidirectional/bidirectional flow of electric power 

to/from EV/grid, such as a battery, power supply, and power regulator. The communication and 

control modules extend the capability to communicate with diverse stakeholders such as EV users, 

operators, utilities, credit card companies, and transportation. The key enablers for wireless 

technology may be 5G/6G, Wi-fi 6, Bluetooth, and ZigBee [31]. The sensing and protection 

modules ensure the electrical components' good health and safety in the EVCS. These open 

communications provide robust, smart, and accurate control and push air-gapped EVCS physical 

systems to the edge of cyber-physical vulnerabilities. Some vulnerabilities come with 

communication protocols, such as authentication, authorization, access control, and some inherent 

component vulnerabilities. Furthermore, there is always a risk of insider threats and socially 

engineered advanced persistent threats from notorious hackers [32]. 

 

Figure 2.1 Deployment scenarios of 5G 

Cyberattacks' motivation in EVCS ranges from a prank, electricity theft, and identity theft to 

vicious ransomware and malware that could infect the entire EVCS network [33]. The infected 
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EVCS can spread malware to other EVCS via charging EVs that get infected [34]. The transition 

and transformation of the attack vector from the communication/cyber layer to the physical 

infrastructure layer are the intricate metrics that should be analyzed in terms of the aftermath in 

real physical entities, such as power, current, voltage, and state of charge (SoC). The work in [35] 

enlists the vulnerability analysis and risk assessment of the EVCS with details of the potential 

attack scenario, such as a DoS, man in the middle (MitM), and FDI.  One of the DoS attacks, e.g., 

SYN-flood, originates from the inability of transport control protocol (TCP) 's three-way 

handshakes to correctly identify legitimate requests from the client's nodes and responding each 

of them. Therefore all of the DoS attacks target the network/source availability by processing 

illegitimate requests assuming it as the legitimate users causing the congestion [23]. Furthermore, 

developing a system that efficiently identifies DoS attacks is imperative. 

The proactive strategy for accurately detecting and classifying EVCS network attacks on time 

is known as an intrusion detection system [36]. It helps the operator take protective and preventive 

measures once the attack is identified. There are three types of IDS derived from their 

implementation locations, namely: Host-based (HIDS), network-based (NIDS), and hybrid IDS 

[33]. Three basic intrusion detection techniques have been widely deployed in state-of-the-art 

applications, namely: Signature-based detection (SD), Anomaly-based detection (AD), and 

Stateful protocol analysis (SPA) [33] [37].  

Researchers listed and characterized exploitable backdoors of the EV charging infrastructure; 

however, they lack the impact analysis of attacks and detection and mitigation strategies [4]. 

Authors [20] presented a system approach to list the interactions between various cyber-physical 

components inside the smart EVCS and a few approaches to improve its cyber-physical security. 

This research work also lacks an analysis of the impact in EV charging and any proactive detection 
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techniques. The research work [38] introduced the concept of cyber insurance that transfers the 

risk of paying a high price from the users to a third party in offline EV charging. Nevertheless, the 

cyber insurance model lacks security analysis. Likewise, cyber threats targeting different players 

in an EVCS are presented, lacking impact analysis and mitigation techniques [39]. Most of the 

research [17]-[20] in EVCS cybersecurity is limited to vulnerability analysis and risk assessment. 

It cannot explain the exact quantifiable effects on the physical system from the cyber-initiated 

attack. The literature also lacks proactive attack detection strategies such as IDS [13] and post-

attack specifications to deal with the attack in a standalone EVCS or fleet. The impact analysis of 

cyberattacks in EVCS is studied in [40]–[43]. The three-way handshakes of the TCP protocol at 

5G communications are exploited to delay the delivery of critical control signals in EV charging 

[40]. The control signals are poisoned by injecting the FDI, and the delay-induced and FDI-

induced impacts on the EV charging in controllers are studied at the physical layer. Reference [41] 

simulated the impacts of ransomware-driven DDoS and FDI attacks on SCADA-controlled EVCS 

capable of damaging and disrupting the battery management system (BMS) operation. On a similar 

note, Reference [42] investigated the impacts of FDI attacks on the charging interface and 

hijacking attacks (User mobile app) on EV charging coordination in case of a single point of 

failure. Reference [43] leveraged reverse engineering and penetration testing techniques to 

investigate the comprehensive security and vulnerability analysis of the EVCS management 

system. 

EVCS operation and management automation require remote centralized control like SCADA 

to communicate with numerous field devices with the least possible delay. Since 5G is a proven 

cellular technology with less than 1 ms latency, capable of millions of machine-type 

communication [44], it can also be the candidate technology for EVCS communication.  
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De et al. designed a control-oriented model-based static detector (deviation in battery cell 

voltage) and a dynamic detector (using system dynamics) algorithms to detect denial of charging 

attacks and overcharging attacks on PEV battery packs [45]. The threshold-based static and filter-

based dynamic detection techniques have the least flexibility toward APT and evolving zero-day 

attacks. 

Girdhar et al. used the STRIDE method for threat modeling and a weighted attack defense 

tree for vulnerability assessment in the extreme fast charging (XFC) charging station [46]. They 

proposed a hidden Markov model (HMM)-based detection and prediction system for a multi-step 

attack scenario. The proposed defense strategy optimizes the objective function to minimize the 

defense cost added by the cost of reducing the vulnerability index. As a means of 

defense/mitigation, the authors recommended isolating and taking the compromised EVCS off the 

interconnections and intercommunication. The traditional isolation-based protection approach 

miserably fails in the smart grid due to the availability constraints of electricity and few reserved 

physical backups. On this note, Mousavian et al. implemented mixed-integer linear programming 

(MILP) that jointly optimizes security risk and equipment availability in grid-connected EVCS 

systems [34]. Still, their model aims to isolate a subset of compromised and likely compromised 

EVCS, ensuring the minimal attack propagation risk with a satisfactory level of equipment 

available for supply-demand. Acharya et al. derived the optimal cyber insurance premium for 

public EVCS to deal with the financial loss incurred by cyberattacks [47].  

The traditional legacy system or embedded devices may not be able to adopt modern 

cryptographic functions. Intrusion detection and prevention systems can replace the encryption 

problem in legacy systems [48]. The team of multiple national lab teams recommended the layered 

network architecture with network segmentation at the lowest hardware/Field devices level for 
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better zonal management and for blocking the horizontal movement of attacks. Also, they 

recommended transport layer security (TLS) on the control layer to encrypt the communication 

between internal devices. The upper layers host the Firewall to control the acceptable traffic and a 

certificate authority for authentication and attribution capabilities. Finally, the multilayered 

architecture hosts the external connection in the demilitarized zone, protected data servers, or is 

enabled via VPN. The business layer featuring the enterprise's IT layer is segmented into it.  

2.2 Intrusion detection and prevention based on deployment location 

As the first layer of defense, security personnel deploy the IDS in conjunction with intrusion 

prevention systems (IPS) and collectively called the intrusion detection and prevention system 

(IDPS). Whenever IDS detects a potential threat, it alerts the IPS to take the appropriate action. 

Based on the position of its installation in the network, IDS falls under two categories--If the IDS 

is deployed to monitor the overall network behavior, it is a network IDS (NIDS); on the other side,  

If the IDS is deployed to monitor the behavior each node (computer) in the network rather than 

the whole network, It is a host-based IDS (HIDS). However, in practice, both HIDS and NIDS are 

implemented together as a hybrid IDS to enhance security performance at the cost of increased 

computational and economical overhead. 

2.2.1 Network Intrusion Detection System (NIDS) 

NIDS focuses on analyzing the network packets and detecting the anomalous packets in the 

entire EVCS network. The pros, cons, and monitored packets are as follows. 

Pros 

• Detects the intrusion by continuously monitoring the network packets  

• Deployed in fewer numbers in the network rather than installing on each host computer 
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• Can detect the threat that bypasses the HIDS 

Cons 

• Bottleneck due to the congestion created by the network packets destined for the NIDS 

for the inspection 

• Needs more powerful processing capacity (best with parallel processing) and more 

storage requirements. 

• Ruins the whole network security while NIDS got attacked and bypassed by the 

hackers 

Monitored data/packets 

• Simple Network Management Protocol (SNMP) 

• Network packets (TCP/UDP/ICMP) 

• Management Information Base (MIB) 

• Router Netflow records 

2.2.2 Host Intrusion Detection System (HIDS) 

NIDS becomes ineffective against the stealthy attacks originating from the local host or attacks 

that fool its capability to detect. HIDS focused on local nodes instead of the entire network. The 

pros, cons, and monitored packets are as follows. 

Pros 

• Detects the intrusion by continuously monitoring the host files system and system logs. 

• Easy installation and no additional hardware requirements 
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Cons 

• Needs to be installed in each host node in the network 

• Consumes host resources 

• Can only monitor the attack on the machine where it got installed 

• Do not care about network invasion  

• Delay in reporting attacks 

Monitored data/packets 

• Log files 

• Audit records 

• Application program interface (API) 

• Rule patterns and system calls 

2.3 Intrusion detection techniques 

Three basic intrusion detection techniques have been widely deployed in the state of art 

applications, namely: Signature-based detection (SD), Anomaly-based detection (AD), and 

Stateful protocol analysis (SPA). 

2.3.1 Signature (Knowledge) based approach 

Signature-based detection (SD) is based on the pattern or fingerprint of known attacks; that is 

why it is called knowledge-based or misuse-based detection. SD captures the signature of each 

incoming data, compares it against the already stored signature, and flags the event as a potential 

intrusion if it has a different signature. 



19 

 

Pros 

• Simple and effective in terms of design 

• The signature collection is tedious 

Cons 

• Ineffective detecting unknown attacks and variants of known attacks 

2.3.2 Anomaly (Behavior) based approach 

If the attacker injects a new kind of intrusion whose signature is unknown, SD fails miserably; 

thus, the known behavior-based approach, AD, comes to the rescue. AD approach flags the event 

as an intrusion if it deviates from the usual network behavior and profile. Behavior/profile is 

derived by monitoring the regular activities, network connections, and users over a specified 

period. The problem with this approach is the dynamic behavior of the network—various attributes 

of the network change with time, which in turn, changes the network behavior/profile. If the new 

incoming attributes are compared against the old profile, it flags the normal traffic as an intrusion. 

Therefore, an increased false alarm rate (FAR) is the problem with this approach. 

2.3.3 Stateful protocol analysis (Specification) based approach 

Stateful protocol analysis (SPA),a.k.a. specification-based detection, on the other hand, 

extracts and crafts the correct behaviors of critical objects as security specifications and compares 

them against the actual behavior of the network [49]. The difference between SPA and AD is that 

the former compares the specification against standard security protocols, while the latter 

compares the behavior against the known network behavior. For optimal performance, hybrid, i.e., 

a combination of any two, has been used in state-of-the-art [50]. The pros and cons are presented 

below. 
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Pros 

• Know and trace the protocol states 

• Track the unexpected sequence of commands 

Cons 

• Resource consumption to protocol state tracing and examination 

• Failed to inspect benign protocol behaviors 

• It might be incompatible with a dedicated OS or APs. 

2.4 Anomaly-based ML techniques for IDS 

Anomaly-based IDS (AIDS) generally detects the anomaly by analyzing the incoming 

unknown data (test data) behavior against the known network behavior's fingerprint (train data). 

Liao et al. listed the various approaches to profile and match network behavior, such as statistics-

based, pattern-based, rule-based, state-based, and heuristic-based (ML-based) [51]. The vast 

majority of literature discussed the implementation of various ML algorithms for anomaly 

detection, such as K-nearest neighbors, hidden Markov model, Decision tree, Random forest, 

Fuzzy logic, Genetic algorithm, and SVM [50]–[52]. The classical ML techniques proved 

inefficient in accuracy, performance, and classification efficiency. The soaring popularity of AIDS 

is due to its ability to identify the zero-day attack and the growing interest in ML and AI 

techniques. With the dominating regime of ANN, the adoption of AI and ML in the research and 

industry is meteoric because AI and ML can automatically learn anything -- once the model is 

developed and trained enough to get some threshold accuracy -- and can make an intelligent 

decision without human intervention. The AI approaches are tested and trusted in signal 

processing, image processing, and computer vision. Along with the development of biologically 
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inspired AI that tries to mimic the functional mechanism of the human brain's neocortex, two 

potent tools of AI are born: artificial neural network (ANN) and hierarchical temporal 

memory(HTM).     

Grammatikis et al. [52] compiled the IDPS developed for advanced metering infrastructure 

(AMI), SCADA systems, substations, and synchrophasors, as well as presented the 37 cases of 

Intrusion Detection and Protection System (IDPS) for different databases. They briefly present the 

comparative analysis, limitations, shortcomings, and recommendations of the state of art IDPS in 

a smart grid domain. IDPS cannot discriminate accidental faults from cyberattacks; therefore, one 

should adopt the software-defined network (SDN) technology for global visibility and 

virtualization. However, SDN-based IDPS adds strengths, which might not be stand-alone against 

sophisticated human-driven targeted attacks such as coordinated attacks, APT, DDoS, and botnets. 

The security information and event management system (SIEM) is a multi-agent hierarchical 

system that aggregates and normalizes information from various information communication 

technology (ICT) devices to tackle threats. The deep neural net (DNN) based IDPS integrated with 

SDN and SIEM is the motivation for future works in the smart grid. 

2.4.1 Multilayered Perceptron (MLP) 

Kasango et al. in [53] incorporated the feature engineering technique in supervised learning 

to propose a new model for Intrusion Detection. They implemented the min-max normalization 

algorithm preceded by log transformation and Information Gain (IG) based filter to extract the 

high-ranked 21 features from the 41 features NSL-KDD dataset before feeding into the four-

layered multilevel perceptions (MLP). They achieved the best accuracy of 99.54% on validation 

data and 86.19% on test data to classify five different datasets: Normal, R2L, U2R, Probe, and 

DoS. The architecture was composed of three hidden layers with 60 nodes for each, with SoftMax 
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function for output and ReLU function for the hidden units. However, 21 ranked features generated 

by the IG filter reduced the validation accuracy and classification accuracy of Support Vector 

Machine (SVM), k-Nearest Neighbors (kNN), and Random Forests (RF) compared to the one with 

all features. Apart from that, it is apparent that the Information Gain (IG) filter improved Naïve 

Bayes (NB's) validation and classification accuracy. Although they got improved validation 

accuracy using the IG filter, their classification accuracy was reduced by .44%. Also, the algorithm 

could not improve R2L and U2R anomaly classification accuracy. Machine learning has been 

ubiquitously implemented for Intrusion Detection and Classification of publicly available datasets. 

However, no existing works have shown a detailed algorithm performance analysis on those 

datasets.  

Vinay Kumar et al. tried to scrutinize the technical details of the deep neural network and tried 

to exploit the effects of change in neural network architecture, hyperparameter tuning, and so on 

on the algorithm performance of six different public datasets, namely: KDDCup 99, NSL-KDD, 

UNSW-NB15, Kyoto, WSN-DS and CICIDS 2017 [54]. The good thing about this paper is its 

attempt to combine the NIDS and HIDS to develop a scalable real-time IDS. It is evident from the 

literature that features engineering is the one that is thriving the performance of the DNN algorithm 

on the various data sets. However, the paper does not aid in improving the performance; instead, 

it works on the analysis of the comparative performance of Net on six different data sets, as 

mentioned earlier. 

Yao et al. [55] proposed a novel idea of incorporating pure class extraction, pattern discovery, 

and fine-grained classification in semi-supervised ML to classify the KDD Cup 99 data set. The 

work attempted to address the two common problems of ML, namely: 1) traffic imbalance in the 

train set: Unequal number of samples for different categories of Intrusion leads ML not to learn 
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the non-linear relationships among the features efficiently, especially while there is few data 

sample in that category. That is why U2R and R2L attacks are poorly classified in publicly 

available intrusion datasets. 2) The non-identical distribution between the train and test set in the 

feature space: In contrast to the one, enough samples sometimes do not guarantee classification 

accuracy if the statistical distribution of the trained and tested features has a vast discrepancy. The 

claimed accuracy is 96.6 %, with a good F1 score; however, most of their work focused on data 

engineering rather than the ML model. The hyper-parameters are not flexible for tuning as the 

modern DNNs. The paper lacks an analysis of the performance of their algorithm based on training 

time, testing time, and computational cost. 

2.4.2 Support Vector Machine (SVM) 

The comparative study of the PCA-based and AE-based SVM is done to classify the attacks 

in the UNSW-NB15 dataset [56]. This dataset is newly introduced and includes nine kinds of 

recent attacks with  42 features.  Artificial Bee Colony (ABC) is used to optimize the parameters 

of the SVM. The PCA-SVM-ABC has less than 0.1 % accuracy and slightly more FAR (0.1 %) 

compared to AE-SVM-ABC, with the latter having an accuracy of around 89% and FAR 7 %, 

respectively. The algorithm's computational cost and running time are unknown, with no 

significant difference in PCA and AE-based accuracy and FAR. A room for improvement is there 

to implement advanced algorithms such as CNN with a combination of feature engineering 

techniques like IG, PCA, and AE. 

2.4.3 Deep Belief Network (DBN) 

Yang et al. devised the Deep Belief Network (DBN) with Multi Restricted Boltzmann 

Machine (RBM) to extract the features; the backpropagation (BP) layer to fine-tune the weights of 

the RBM; and finally fed the features from the aforementioned unsupervised layers to the 
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supervised SVM to classify the attacks in NSL-KDD dataset [57]. The accuracy of 97.45 %, recall 

rate of 97.48 %, and precision rate of 97.78 % are achieved. However, time and spatial complexity 

increases as the number and dimensionality of data increase for the SVM. The robustness of the 

algorithm to classify different types of attacks is not discussed in the paper. In the context of 

saturation of the architectural advancement of the neural network, optimization of the architecture 

is plummeting to improve the accuracy and detection rate of the classification.  

Wei et al. [58] implemented particle swarm optimization (PSO) to devise the optimized 

parameters for the Deep Belief Network (DBN). They claimed the improvement (with respect to 

other PSO algorithms to optimize DBN, Naïve Bayes, Random Forest, and SVM) of classification 

accuracy from at least 1.3 % to 24.69 % at the cost of increased average training time by 6.9 % on 

the benchmark KDD-NSL dataset. Starting with the Artificial Fish Swarm Algorithm (AFSA) to 

obtain the initial particles by optimizing the PSO algorithm, they applied the initial optimized 

particles as the initial particle swarm of the genetic algorithm PSO to get the optimal global 

parameters for the DBN. The longer training time constraints real-time IDS, and they lack the 

performance comparison with some advanced ANN, such as MLP, CNN, and LSTM-RNN.  

2.4.4 Convolutional Neural Network (CNN) 

Xiao et al. in [59] proposed the feature reduction technique employed in convolution neural 

networks to detect the Intrusion in KDD CUP 99 dataset claiming this method is more time-

efficient and suitable for real-time IDS along with its greater accuracy as compared to other 

machine learning algorithms such as Logistic Regression, Decision tree, Random Forest, SVM, 

AdaBoost, and Naïve Bayes. The layout of the method goes like this: 1) Data Preprocessing: 

digitize the non-numeric format into the unifying digital format, followed by min-max 

normalization to get all the data in the range of [0,1] and one-hot encoding to convert the 
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categorical data into a digital one. 2) Dimensionality Reduction (Principal Component Analysis 

(PCA) followed by Auto Encoders (AE)): PCA, the linear dimensionality reduction technique, 

reduces the highly correlated variables into an uncorrelated or independent variable in the lower 

dimension, and Auto-Encoder (AE) for non-linear dimensionality reduction. 3) Convert the 1D 

data into 2D to create the image-like data, and 4) Convolution Neural Network (CNN) along with 

Batch Normalization (BN) for robust fine-tuning. The author claimed accuracy of 94%, detection 

rate (DR) of 93 %, False Alarm Rate (FAR) of 0.5 %, and training time and testing time of the 20s 

per epoch and 1 s, respectively. Although the performance seems satiating in terms of time and 

accuracy, like [50], it can still not address the low accuracy and low detection rate for U2R and 

R2L attacks raised from the limited data sets of those categories. The proposed future work to 

resolve the issue is the generative adversarial network to identify more features of these categories.  

Park et al. [60] proposed a CNN-based anomaly detection technique for the HTTP attacks 

employing a convolutional autoencoder (CAE)-decoder inspired by Inception-ResNet-v2, which 

achieved the highest accuracy so far in state of the art [22]. The HTTP messages are mapped into 

the image data using character-level binary image transformation. The Encoder decoder is the fully 

connected symmetrical structure that reconstructs the normal image with lesser Binary Cross-

Entropy (BCE) error and anomaly image with more BCE error making it easier to classify. After 

training the encoder-decoder module, the reconstruction error for the anomaly image varies. 

Therefore, the Author is the first to incorporate these variations in the error function as binary 

cross-variable entropy (BCV). The CAE with the BCV achieved higher accuracy than that of BCE. 

CNN is famous for using the least computational complexity and producing very high accuracy, 

thus very popular among image and signal processing researchers. 

On top of that, CAE removes the additional burden of feature engineering for data cleansing, 
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while BCV adds more accuracy to the classification. However, it lacks to address the tradeoff 

between the speed vs. accuracy of the proposed net. The novelty in the paper [61] is to give more 

cost function weights to the class, having a smaller number of feature vectors to alleviate the effect 

of traffic imbalance on the DNN algorithm. CNN can learn better features and classify the data in 

cost and time-effective ways because it shares the same convolution kernels reducing the number 

of weights stored at the nodes. The author compared the performance of CNN and RNN, successful 

algorithms in state of the art. On testing the performance on the NSL-KDD test dataset, RNN 

achieves 2.4 % higher accuracy, 1.6 % higher detection rate, and 3.75 % lesser false alarm rate 

than CNN [56], [57]. The paper claimed the number of parameters in RNN is 20 times that of 

CNN, which needs twice the calculation time of CNN, meaning CNN has twice the operational 

efficiency of RNN [62]. We can infer that CNN is more suitable for real-time intrusion detection 

systems. However, the comparison does not seem more relevant because both models are not run 

in the same environment. Their method of converting 1D data into the 2D image using the square 

root method tends to lose some features since the number of features in the form of a perfect square 

of some number is highly unlikely. The paper focused on losing the feature with the least 

coefficient of variation rather than retaining all the features. The proper method for image mapping 

from 1D data is still open for exploration. 

2.4.5 Recurrent Neural Network (RNN) 

Sheikhan et al. proposed the partially connected reduced-size RNN with the cluster of features 

to classify the KDD data set [63]. The misuse-based approach with only two hidden layers 

achieved an accuracy of 94.1 %, FAR of 0.38, and cost per example (CPE) of 0.1666, which the 

author claimed was superior to the other classical ML algorithms. However, they could not solve 

the intriguing problem of the ML algorithm: FAR, which is the lower FAR achieved from MLP 
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(0.28). The training time for the proposed model is almost 600 seconds faster than MLP; however, 

it is twice slower compared to Elman-based Neural Networks.  

Yin et al. implemented the RNN for the binary classification and multiclass classification of 

the KDD data set and achieved a binary classification accuracy of 99.81% and multiclass accuracy 

of  99.53 % [62]. RNN stands out in terms of accuracy compared to traditional ML algorithms, 

such as Naïve Bayes, J48, NB Tree, Random Forest, Random Tree, MLPs, and SVM. The fully 

connected RNN has a stronger modeling ability and a higher detection rate than the partially 

connected one [64]. However, due to the loaded parameters, it is nearly 400 seconds slower than 

the one with a reduced size RNN.   

Kim et al.  [65] proposed the long short-term memory (LSTM) RNN for intrusion detection 

in the KDD Cup99 dataset. They attempted to optimize the architecture by tuning the learning rate 

and the number of hidden units. With a time step size of 100, batch size of 50, epoch size of 500, 

a learning rate of 0.01, and hidden units of 80, the average detection ratio achieved is 98.88 % with 

10.04 % of FAR. The best part of the paper is an attempt to formulate the efficiency of IDS in 

terms of detection rate and FAR ratio. However, computational cost and training time is not a part 

of the evaluation. The proposed model cannot detect the U2R since there are only 30 U2R instances 

in training. GAN might be one of the good alternatives for traffic imbalance in the data set. Also, 

a FAR of 10% might not be suited for a sensitive cyber-security scenario. 

2.4.6 Hierarchical Temporal Memory (HTM) 

HTM is a biologically inspired machine intelligence that mimics the architectures and 

processes of the neocortex  [66]. Unlike deep learning, HTM is a continuous online unsupervised 

learning that does not need training data or separate training models because automatic model 

building and learning remove the need for manual maintenance and updating data and model. The 
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supervised neural network cannot deal with high-speed dynamic data, which requires real-time 

intrusion detection. HTM can efficiently solve the problem of a different distribution of data and 

a sparse sample. HTM automatically builds the model for each metric that is being monitored. 

HTM assigns the time stamp to each metric value, and the encoder converts the temporal data to 

the sparse distributed representation (SDR). The SDR enables essential attributes such as 

generalizability across the data stream and strong resistance to noise in the data points. The 

sequence of SDR is fed to the HTM algorithm. HTM algorithm learns the temporal pattern of the 

metric data stream under consideration online, like memorizing the melody pattern with newly 

learned patterns replacing the older pattern. HTM-based anomaly detection is the best candidate 

for real-time intrusion detection since it is a memory-based online learning system representing 

any data stream as an SDR to detect the temporal variance.  The successful implementation of 

HTM for anomaly detection in modification attack and replay attack scenarios in In-Vehicle 

Networks has demonstrated higher accuracy, precision, and recall than the RNN and Hidden 

Markov Model(HMM) [67]. Although the performance seems superior, there is still room for 

improvement in FAR and performance improvement.  

The paper [68] starts with the ideal requirements for real-world anomaly detection: a) 

prediction must be made online that is 𝑥𝑡 should be classified as usual or anomaly before receiving 

𝑥𝑡+1. b) the algorithm must run continuously without the requirement for the stream to be stored. 

c) the algorithm must be automated and unsupervised that does not need data labels and tweaking 

parameters. d) the algorithm must be adaptive to the dynamic environment and concept drift since 

the statistics of the data stream are highly non-stationary. e) algorithm should be robust and 

minimize the false-positive and false-negative rates. The HTM algorithm can detect spatial and 

temporal anomalies in the noisy and predicted environment. Errors are not always correlated in 
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HTM and all other algorithms, so that an ensemble-based approach would enhance the accuracy. 

Since HTM is relatively new, there is plenty of room to work on it. 

The works at [40]–[42], [69] assessed the impacts of cyber-enabled physical attacks on EVCS 

infrastructures ranging from disruption, damage, hijack, and so on. On that note, researchers have 

worked on numerous detection methods implementing different computational intelligence 

algorithms, including machine learning and deep learning [7], [9], [13], [14]. The reference [7] 

designed and engineered a Deep learning-powered (DNN, LSTM)  network intrusion detection 

system that could detect DDoS attacks for the EVCS network based on network fingerprint with 

nearly 99% accuracy. Similarly, [40] developed a stacked LSTM-based host intrusion detection 

system solely based on a local electrical fingerprint that could detect stealthy 5G-borne DDoS and 

FDI attacks targeting the legacy controllers of EVCS with nearly 100% accuracy. Furthermore, 

several Deep Learning-based ransomware detection engines have been proposed, tested, and 

evaluated that can share the information in a cloud-based or distributed ransomware detection 

framework for EVCS [41]. 

The sophisticated cyberattack detection techniques for EVCS have rapidly evolved on the 

network and physical levels [2], [3], [6], [7], [8]. Reference [40] proposed and tested stacked-

LSTM-based detection capable of detecting cyber-enabled physical attacks on different electronic 

controllers with nearly 100% performance metrics solely based on the local electrical fingerprint. 

Moreover, reference [3] tested the efficacy of different deep learning algorithms (DNN, CNN, 

LSTM) to detect ransomware attacks on networked EVCS. Also, reference [33] proposed deep 

learning (DNN and LSTM) powered DDoS detection engine for the networked EVCS solely based 

on the network fingerprint. Similarly, reference [45] tested the effectiveness of the static and 

dynamic detection algorithm under a denial of charging and overcharging attacks at PEV. The 
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support vector machine (SVM) based detection algorithm against the FDI attack under the scenario 

of a P2P energy transaction based on blockchain has been proposed for connected EVs in the 

parking lots [70]. 

2.5 Cyberattack impacts mitigation in EVCS 

As far as the author's knowledge, there has been minimal or no work toward mitigating 

cyberattacks in EVCS. Girdhar et al. proposed a defense strategy that optimizes the objective 

function to minimize the defense cost added by the cost of reducing the vulnerability index. As a 

means of defense/mitigation, the authors recommended isolating and taking the compromised 

EVCS off the interconnections and intercommunication [46]. The traditional isolation-based 

protection approach miserably fails in the smart grid due to the availability constraints of electricity 

and few reserved physical backups. On this note, Mousavian et al. implemented mixed-integer 

linear programming (MILP) that jointly optimizes security risk and equipment availability in grid-

connected EVCS systems [34]. Still, their model aims to isolate a subset of compromised and 

likely compromised EVCS, ensuring the minimal attack propagation risk with a satisfactory level 

of equipment available for supply-demand. Acharya et al. derived the optimal cyber insurance 

premium for public EVCS to deal with the financial loss incurred by cyberattacks [47]. 

Reference [71] proposed the PI controller-based mitigation approach for the FDI attack on 

microgrids. This method is based on the reference tracking application. A feed-forward neural 

network produces the reference voltage required for the PI controller, and the PI controller injects 

the signal to nullify the FDI. The problem with the method is that the neural networks optimized 

under the microgrid's normal operating conditions may produce unreliable reference signals under 

adversarial conditions such as manipulated inputs. Recurrent neural networks better deal with 

reference tracking problems than regular feed-forward networks. The proposed model imposes 
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additional hardware requirements and is not efficient enough to deal with non-linear and periodic 

FDI attacks. 

Reference [72] implemented the DRL-based approach for mitigating oscillations of unstable 

smart inverters in DER caused by cyberattacks. The adversary who gained system access can 

reconfigure the control settings of the smart grid to disrupt the distribution grid operations. To 

mitigate the impact, the authors trained the actor-critic-based proximal policy optimization (PPO) 

DRL to develop the optimal control policy to reconfigure the control settings of uncompromised 

DERs. However, this article has not presented the DRL efficacy of mitigation methods.   

The reference [73] proposed the concept of an Autonomous Response Controller that uses the 

hierarchical risk correlation tree to model the paths of an attacker and measures the financial risk 

at CPS assets. In addition, the competitive Markov Decision Process was used to model the 

reciprocal security interaction between the protection system and adversary as a multi-step, 

sequential, two-player stochastic game. The proposed method is tested against the Aurora attack 

that can create cascading failure and voltage collapse by opening the generator breaker in the 

testbed.  

Based on the above discussions, there are several significant findings: Firstly, state-of-the-art 

algorithms have progressed well for attack detection and prediction in EVCS, aided by cutting-

edge computational intelligence at in-network and standalone levels. Secondly, CPS defense 

(capability of resisting attack) has been ill-defined and often confused with mitigation (reducing 

the severity). As a result, CPS research is jumping towards mitigation that optimizes the cost 

function to protect remaining assets from further invasions by implementing predefined strategies, 

such as isolation of compromised assets, optimal insurance premium design, and mobilizing 

reserve resources. The obvious questions are, are we even trying to defend against any attacks in 
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our critical CPS? Are we correcting the intruder/intruded signals? Thirdly, the current research 

lacks the convergence of IT security, OT security, and physical infrastructure security, with the 

slightest attention to OT and physical infrastructure security. The most devastating attacks in 

history have exploited the vulnerabilities in legacy controllers in OT or physical environments, as 

evident in Trident and Stuxnet attacks. The current state-of-the-art lacks a proactive vision for 

developing embedded intelligence that could defend/correct the attacks on the physical assets, 

mainly EVCS controllers. 

Along with the progress of AI, detection engines have been evolving rapidly for EVCS like 

other CPS. However, cyberattack mitigation, correction, and defense have a vast void to fill in for 

EVCS, like other CPS. References [71]–[73] devised the cyberattack mitigation techniques for 

CPS, ranging from PI-based control, RL-based optimal control, and game theoretic defense. The 

PI controller-based mitigation strategy for the FDI attack on microgrids was suggested in [71]. The 

reference tracking application is the foundation for this approach. A feed-forward neural network 

generates the reference voltage needed by the PI controller, and the PI controller injects the signal 

to cancel the FDI. The issue with the technology is that under adversarial conditions, such as 

manipulated inputs, neural networks that have been optimized for the microgrid's typical operating 

settings may give incorrect reference signals. Compared to traditional feed-forward networks, 

recurrent neural networks are more adept at handling reference tracking issues. The suggested 

model imposes more hardware requirements and is ineffective against non-linear and recurrent 

FDI attacks. 

The DRL-based method was utilized in Reference [72] to mitigate oscillations of unstable 

smart inverters in DER brought on by cyberattacks. The attacker who entered the system might 

change the smart grid's control settings to interfere with the distribution grid's operations. The 
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authors trained the actor-critic-based proximal policy optimization (PPO) DRL to create the best 

control policy to modify the control settings of uncompromised DERs to lessen the impact. The 

effectiveness of mitigation strategies for DRL hasn't been discussed in this article, though. The 

reference [73] proposed an autonomous response controller that models an attacker's paths using 

a hierarchical risk correlation tree and assesses the financial risk to CPS assets. Additionally, the 

adversary and protection system's reciprocal security interaction was modeled using the 

competitive Markov Decision Process as a multi-step, sequential, two-player stochastic game. The 

suggested technique is tested against the Aurora attack, which can open the generator breaker and 

cause cascade failure and voltage collapse in the testbed. 

2.6 Benchmark Dataset  

For the best performance of ML algorithms, the training data set must represent the real-world 

attack scenario, perfectly balanced traffic data (enough and a proportional number of samples for 

each attack category), and similar distribution between train and test data. However, academia is 

still struggling to get the best data set due to security and privacy issues. On the other hand, data 

collection, labeling, and attack categorization to build the train data set are tedious and costly for 

a researcher. Therefore, the simulated data set might be a good option if it could represent the real 

attack scenario, but it is hard to achieve. At the dawn of rapid advancement in computer processing, 

storage, cloud computing, sensor resources, wireless communication, and AI algorithms, it is 

obvious to expect powerful and unforeseen cyber threats in the coming days. Therefore, the ideal 

dataset should update all attacks daily for the best intrusion detection. Until now, no publicly 

available data sets can achieve all the requirements above, enabling the author to foray into the 

best data set for IDS in the smart grid paradigm. The mostly used datasets available online are as 

follows. 
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2.6.1 KDD CUP 99 

It has been the most widely used dataset since 1999 after Stolfo et al. [74] prepared it based 

on data captured(binary TCP dump data) in the DARPA’98 IDS evaluation program [75] with 

494,021 connections in train data and 311,029 connections in test data set each sample with 41 

features. Samples are labeled as either normal or as an attack with four different types of attack, 

namely denial of service (DoS), the user-to-root attack (U2R), remote to-local attack (R2L), and 

probing attack [76]. Some problems with the data set are i) data are synthesized and fabricated to 

preserve privacy and security, which threatens the validity of fabricated data. ii) TCPdump used 

to collect the traffic data are highly likely to be overloaded and drop the packet, which loses some 

essential features. iii) no exact definition of attacks. 

2.6.2 NSL KDD 

Tavallaee et al. [76] proposed the NSL-KDD data set, the refined version of KDD Cup 99, to 

remove the data redundancies, duplication, and traffic imbalance after a thorough statistical 

analysis of KDDCup 99. They applied the filter to remove connection records numbered 136,489 

and 136,497 from the test data so that the ML algorithms are not biased. The train and test sizes 

are reduced to 125,973 and 22,544, with 41 features. Still, this data set cannot address the traffic 

imbalance, Spatio-temporal variation of the network behavior, and the exact representation of the 

attack scenario. 

2.6.3 UNSW-NB15  

 The two existing data sets mentioned above cannot represent the contemporary orientation 

of network traffic and attacks. Moustafa et al. [77] created the dataset using the IXIA tool to 

generate real modern normal and synthetic abnormal network traffic in a synthetic environment. 

Unlike the previous two data sets, it represents nine major families of modern cyber-attacks 
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(Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, Worms) with 

49 features.  

2.6.4 KYOTO 

Song et al. [78] created the honeypot system with only 24 features, among which 14 are the 

most used features of KDDCup 99, and 10 features were extracted from the traffic log of the 

university of Kyoto in the year 2015. 

2.6.5 WSN-DS 

In 2016, Almomani et al. [79] came up with a brand new data set to better detect and classify 

the DoS attacks(in wireless sensor networks (WSN) ) into four subcategories, namely, Blackhole, 

Grayhole, Flooding, and Scheduling attacks. They considered one of the most popular routing 

protocols in WSN, LEACH protocol, to extract 23 features from NS2 and applied the ANN to 

classify them.  

 

2.6.6 CIC IDS 2017 

CIC IDS 2017 is the most recent and complete public dataset developed by the Canadian 

Institute for Cybersecurity in 2017. It has focused on collecting real-time traffic (by using B-

profile) while building the dataset [80]. It has 84 features designed explicitly for feature extraction 

using dimensionality reduction techniques such as PCA and AE. and seven recent attacks, namely 

SSH-Patator, FTP-Patator, DoS, Web, Bot, DDos, and Port Scan. The CIDS 2017 has been updated 

to CIDS 2018. 

2.7 5G Technology  

5G is one of the next-generation communication technologies famous for ultra-reliable low 

latency, extended mobile broadband, massive machine-type communications, and industrial IoT. 
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The key enablers for 5G are network function virtualization (NFV), software-defined networks 

(SDN), multi-access edge computation (MEC), and so on. The virtualization of the core network 

(CN)  in 5G, unlike its predecessor, adds higher flexibility and portability for the network resource 

management that delineates the control and user plane separation (CUPS) with the help of SDN 

and NFV [81]. SDN and NFV complement each other for simpler network control and 

management, better elasticity, and eliminating vendor-specific solutions [82]. Besides CN, SDN, 

and NFV, management and network orchestrator (MANO) and multi-access edge computing 

(MEC) are key enablers of 5G. The physical infrastructures layer embodies storage, computing, 

and networking infrastructures. The virtualized infrastructure has a 5G Radio access network 

(RAN), IAB, 5G core network functions (5G CN NF), MEC, and data network (DN) with MANO 

for additional network slicing. The ENISA has added processes to the security architecture on its 

December release because these are the prime stakeholders towards 5G security. The added 

processes are mobile network operators (MNO), assurance, and vendors. Fig. 2.2 represents the 

functional diagram of security architecture, and the in-depth information on individual components 

can be found here [82].  
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Figure 2.2 5G Security architecture  

Threat actors first identify the vulnerabilities of the 5G assets and then exploit them by 

assessing the attack surfaces.  

2.8 Chapter Conclusion  

 EV charging infrastructures in the 5G paradigm integrate the asynchronous 

interconnections among heterogeneous ICTs, machine-to-machine, and machine-to-human 

interconnectedness through IoTs, integrated communications between various wireless sensors 

and network components to add the robustness, automation, remote control, and self-healing 

capability in the existing electrical grids. However, cyber-physical threats inherently come up with 

this boon. IDS acts as the first layer of security by timely detection of the intrusion. Various ML 
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algorithms discussed above have their unique strengths and weaknesses. DBN, MLP, CNN, RNN, 

and HTM have an increased order of accuracy from the former to the latter. However, all ML 

algorithms always have a trade-off between accuracy and convergence speed. Moreover, the 

author attempted to present the overview of various public datasets and performance metrics that 

need to be benchmarked to better compare different ML algorithms for intrusion detection. The 

supervised Deep learning method fails when there is a traffic imbalance between different classes. 

Also, feature engineering such as PCA, AE, and IG filters was applied to get the best out of the 

data. High-speed dynamic data classification is still the daydream for supervised deep learning. 

Therefore, HTM and RL-based approaches are becoming popular day by day. IDS integrated with 

ML-based SDN offers virtualization and slicing of the network layer, which can flag the anomaly 

from faults that seemed impossible with all ML algorithms. The research focus should shift 

towards integrating SDN-based IDS with SIEM, which could tackle the advanced persistent threats 

by offering real-time visualization. This chapter provided a thorough literature review on 

cybersecurity issues in EVCS, AI-based detection, and mitigation. In the next chapters, the main 

parts of the research are presented, where a more specific and detailed explanation of each study 

will be elaborated. Chapter 3 will study the impact analysis of cyberattacks in EVCS. 
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Chapter 3 Impact Analysis of Cyber-Attacks on 5G-Enabled Electric Vehicle Charging 

Station 

3.1 Introduction 

The surging usage of EVs demands the robust deployment of a trustworthy EVCS with 

millisecond range latency and massive machine-to-machine communications where 5G could act. 

However, 5G suffers inherent protocols, hardware, and software vulnerabilities that threaten the 

communicating entities' cyber-physical security. To overcome these limitations in the EVCS 

system, this dissertation analyses the impact of FDI and DDoS attacks on the operation of EVCS. 

This chapter simulates the FDI attack and the SYN flood DDoS attacks on the 5G-enabled remote 

SCADA system that controls the solar photovoltaics (PV) controller, Battery Energy Storage 

(BES) controller, and EV controller of the EVCS. The delay has been increased to more than 500 

milliseconds with the severe DDoS attack via 5G. The attacks make the EVCS system oscillate or 

shift the DC operating point. The frequency of oscillation, damping, and the system's resiliency is 

related to the attacks' intensity and target controller. Finally, we propose the novel stacked LSTM-

based IDS solely based on the electrical fingerprint.  

3.2 Proposed EVCS Architecture 

The proposed EVCS is a standalone, PV-powered, and off-the-grid system. It has three 

electrical units: PV Generation Unit (PGU), Energy Storage Unit (ESU), and Power Delivery Unit 

(PDU), as shown in Fig. 3.1.  The PGU consists of a PV array, a boost converter, and control 

circuitry. The PV arrays deliver 1.065 kW at maximum power point (MPP) with the corresponding 

voltage of 36.75 V and current of 29 A at the constant irradiance of 1000 W/m2 and constant 

temperature of 25 ℃. The boost converter boosts the PV voltage (𝑉𝑃𝑉) to the DC link bus bar 

voltage of 𝑉𝑟𝑒𝑓_𝑏𝑢𝑠 . The ESU consists of BES, a DC-DC converter, and control circuitry. The BES 
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has a nominal voltage of 48 V and a nominal discharge current of 43.47 A with a 100 Ah rated 

capacity. The DC-DC converter charges the BES in buck mode while there is a surplus generation 

and discharges to the bus bar in boost mode while the PV can't meet the EV demand. The control 

circuitry continuously senses the battery current (𝑖𝐵) and 𝑉𝑟𝑒𝑓_𝑏𝑢𝑠 . This generates the pulses to 

drive the bidirectional DC-DC converter (BDC). PDU could be an offboard in the EVCS or 

onboard integrated with the EV. Either way, the functionalities remain the same. PDU has a buck 

converter and an EV controller. The buck converter steps down the voltage from the point of 

common coupling (PCC) as per the requirement of EV, i.e., 𝑉𝑟𝑒𝑓_𝑒𝑣. The EV controller 

continuously monitors the status of the EV battery voltage (𝑉𝑒𝑣) and battery current (𝐼𝑒𝑣) and 

generates the pulse to adjust the switching of the Buck Converter. Here, all three control units, 

namely, PV control, BES control, and EV control, can be assessed/overridden by remote operators 

at SCADA, EVCS, or EV owner through apps or the web via robust 5G communication 

infrastructures. Though in this dissertation we have considered the EVCS prototype with more 

focus on cyber-physical security as shown in Fig. 3.1, the EVCS architectures, structures, capacity, 

charging time, charging type, and interconnections may vary in real practice. But the basic 

functionalities remain the same with the prototype. 
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Figure 3.1 Proposed 5G-enabled EVCS Architecture 

3.2.1 Control Circuitry 

As shown in Fig. 3.1, there are three controllers: the PV control, BES control, and EV control. 

These are explained in detail below.  

3.2.1.1 PV Control 

The MPPT control continuously reads the 𝑉𝑃𝑉 and 𝐼𝑃𝑉 signals from the PV output. The Perturb 

and observe Maximum Power Point Tracking (P&O MPPT) algorithm tracks the maximum power 

points and corresponding 𝑉𝑃𝑉 and 𝐼𝑃𝑉 and adjust the duty cycle accordingly. The pulse width 

modulation (PWM) circuitry block will generate the 𝑆𝑏𝑜𝑜𝑠𝑡 signal from the duty cycle. The details 

of the P&O MPPT algorithm can be found in [83]. The duty cycle of MPPT can be adjusted and 

reinitialized manually by a human operator in the case of malfunction, disaster, and emergency. 

This operator at SCADA can remotely monitor and control the PV controller via 5G 

communication. 
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3.2.1.2 BES Control 

 The BES controller continuously monitors the 𝐼𝐵𝐸𝑆 ,𝑉𝑏𝑢𝑠, and 𝑉𝑟𝑒𝑓_𝑏𝑢𝑠 from the system. 

The slower outer loop in Fig. 3.2a. controls the bus voltage with the help of a Proportional-Integral 

(PI) controller driven by the error 𝑉𝑟𝑒𝑓_𝑏𝑢𝑠 − 𝑉𝑏𝑢𝑠. It generates the reference signal 𝐼𝑏𝑒𝑠_𝑟𝑒𝑓 for the 

inner current control loop, which is ten times faster than the outer loop, as in Fig. 3.2b. 
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Figure 3.2 BES control a) Outer voltage control b) Inner current control. 

The PI controller tries to track the 𝐼𝑏𝑒𝑠_𝑟𝑒𝑓 by minimizing the error between the reference 

current and measured current and generating the duty signal 𝐷𝑢𝑡𝑦𝑏𝑒𝑠 . This 𝐷𝑢𝑡𝑦𝑏𝑒𝑠 drives the 

PWM to create complementary pulses 𝑆1 and 𝑆2 that trigger the switching of a boost and a buck 

converter, respectively, in the bidirectional DC-DC converter. The details of this cascaded PI 

control strategy can be found in [84]. 

Through the 5G, the SCADA operator at the remote station could wirelessly monitor and 

control the BES controller at EVCS and can set the  𝑉𝑟𝑒𝑓_𝑏𝑢𝑠 as well as other PI controller settings. 
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3.2.1.3 EV Control 

The EV controller continuously monitors the battery's voltage (𝑉𝐵𝑒𝑣) and current (𝐼𝐵𝑒𝑣) of the 

PEV. This control block might be off-board or onboard the EV. The reference battery voltage 

(𝑉𝑟𝑒𝑓_𝑒𝑣) can be set by the EVCS owner or SCADA operator if it is off-board or can be set by the 

EV owner for dynamic charging or hardcoded by the original equipment manufacturer (OEM) in 

the CAN bus if it is onboard. These communications may take place through 5G. As in BES 

control, the same cascaded outer voltage and inner current control strategy are implemented to 

generate the Dutybev, which controls the buck converter to regulate the EV charging, as shown in 

Fig. 3.3 below.  
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Figure 3.3 EV controller a) Outer voltage control b) Inner current control 

 

3.2.2 System Formulation and Component Modelling 

The formulation and modeling of different system components are presented as follows. 

3.2.2.1 PV array 

The mathematical representation of the one-diode equivalent circuit model of a PV system as 

of Fig. 3.4 is given by the transcendental equation [85] as in (3.1).  
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Figure 3.4 One diode equivalent circuit of PV module. 

I = Iph − I0. {e
q

Ncs.k.T.γ
.(V+I.RS)

− 1} −
V + I. RS

RSh
 

(3. 1)  

 

Where I and V are the current and voltage of the PV module, respectively. 𝑁𝑐𝑠, 𝑘, 𝑇, and 𝑞 

denote the number of cells in series, Boltzmann constant, cell temperature, and elementary charge, 

respectively. The free model parameters are photocurrent 𝐼𝑝ℎ, diode saturation current 𝐼0, series 

resistance 𝑅𝑆, shunt resistance 𝑅𝑆ℎ, and the diode ideality factor 𝛾. The photocurrent depends on 

irradiation 𝐺 and temperature 𝑇 as in (3.2) [86].  

Iph(G, T) =
G

Gref
. [Iphref + μISC

. (T − Tref)] 
(3. 2)  

Where 𝐺𝑟𝑒𝑓, 𝐼𝑝ℎ𝑟𝑒𝑓, and 𝑇𝑟𝑒𝑓 are the irradiance, photocurrent, and temperature at some 

arbitrarily chosen reference conditions with 𝜇𝐼𝑆𝐶
 representing the temperature coefficient of 𝐼𝑆𝐶 . 

3.2.2.2 Boost Converter 

The boosting of voltage in the boost converter depends on the duty ratio 𝐷𝑏 as in  (3.3) [87]. 

Also, the boosting parameters L and C can be further calculated as  (3.4) and (3.5), respectively.  
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VDC =
1

1 − Db
VPV 

(3. 3)  

Lboost =
VDC. Db

∆ILf
 

 

(3. 4)  

CDC =
VPVDb

R0∆VPVf
 

(3. 5)  

   

Where 𝑉𝑃𝑉,  𝑉𝐷𝐶,   ∆𝐼𝐿,  𝑉𝑃𝑉, 𝑅0 and 𝑓 is the input voltage from PV, the output voltage of the 

converter, inductor ripple current, capacitor ripple voltage, the output impedance of boost 

converter, and switching frequency, respectively, in Fig. 3.5a. 
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Figure 3.5  a) Boost converter b) Bidirectional DC-DC converter. 

3.2.2.3 Bidirectional DC-DC converter 

The inductance and capacitance for buck mode of BDC, as in Fig. 3.5 b, while charging is 

given by 3.6 and 3.7. 

Lbuck =
(VDC − Vbatt). Dbuck

∆ILf
 

(3. 6)  
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Cbuck =
(1 − Dbuck)Vbatt

8Lbuck∆Vbattf 2
 

(3. 7)  

Similarly, for discharging mode, i.e., the BES charging EV controller should act as a Boost 

converter and follow the (3.4) and (3.5). 

3.2.3 5G Architecture 

The detailed security architecture is already presented in section 2.7. The 5G communication 

has the following components. 

3.2.3.1 EVCS 

EVCSs are equipped with long-term evolution new radio user equipment (LTE-NR-UE) 

device type with a configurable mobility model set to be static. The application layer implements 

an open-flow protocol and SDN controller, while the transport layer has a configurable TCP 

protocol. The network layer uses IPV4 protocol with a user-defined IP address, subnet mask, and 

default gateway. The physical layer of UE is equipped with configurable height, transmission 

power, and beamforming gain, respectively, set to 1.50 meters, 23 dBm, and 0 dB. The same 

configuration goes UE with rogue EVCS with spoofed IP.  

3.2.3.2 gNB 

Next-generation node B (gNB) is the 5G wireless base station that communicates with UE 

and the 5G core network. The gNB height is 10 meters with a transmission power of 40 dBm. The 

wireless communication between UE and gNB is time division duplexing (TDD) with 15 kHz 

subcarrier spacing, the outdoor scenario of rural macro, and channel characteristics with no path 

loss. The gNB is set to have a round-robin scheduling type with a UE measurement report of 120 

milliseconds for experimentation.  
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3.2.3.3 EPC   

Evolved packet core (EPC) was introduced in 4G LTE and had a core network functionality. 

3.2.3.4 SCADA server 

This wireless node is the SCADA system that continuously gets logs of electrical signals from 

EVCS and sends control commands to manage the controllers at EVCS. This setup is designed to 

communicate between the EVCS and the remote control station at SCADA. The SCADA 

continuously monitors the operation of EVCS and issues the control commands through the 5G 

network. These experimental setups start with no attack scenario, i.e., a normal operating condition 

of a 5G communication link, and the number of attackers increases from 0 to 15. The NetSim 

simulation time is set to run for 200 seconds to observe the delay.  

3.3 Cybersecurity Issues in EVCS 

The communication system is the nerve of the EVCS that facilitates various operations such 

as EV scheduling, slot allotment, authentication and authorization, charging session control, grid 

integration, and on and on [33]. Therefore, the entire EVCS risks disruption and dismantling once 

the communication is compromised. The future grid is envisioned to handle bidirectional power 

flow, blockchain-assisted peer-to-peer energy transactions, and vehicle-to-everything (V2X) 

communication [88]. The proper communication technology like 5G should moderate this odd 

marriage of evolving technology and the traditional grid infrastructure. Once the critical 

infrastructure is exposed to the open cyber layer through communication links, It is no more secure 

[38]. The communication vulnerabilities can be exploited to access the SCADA or EVCS system. 

An attacker may use social engineering, such as phishing and/or reverse engineering, to get 

legitimate SCADA's or EV's credentials. Then, the attacker can impersonate the legitimate 

SCADA operator or EV owner to breach the system's security [33].  
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3.3.1 Threat Landscapes of 5G enabled EVCS Cyber-Physical System 

Threat actors first identify the 5G assets' vulnerabilities and exploit them by assessing the 

attack surfaces. Table 3.1 depicts the CIA triad of 5G assets indicating the assets' risk [82]. 

Based on the works [20], [38], [39], [50], any cyber-physical security threats can be classified 

into four categories: Nefarious act/Abuse, Eavesdropping/ Hijacking/Interception, Intentional 

and/or Accidental damages, and Outages. The first two are ill-willed malicious actions generally 

targeted in cyberspace, while the latter two are threats to physical security. Nefarious activity/ 

Abuse targets the ICT infrastructures to steal, alter, or destroy the target. 

Eavesdropping/Hijacking/Interception targets unauthorized communication links to listen, seize, 

or interrupt the services. Intentional/ unintentional damage is intentional/unintentional action that 

causes damages/harm to the physical infrastructures and persons. Outages are the category that 

disrupts the availability and quality of service. Threats from nefarious activity/abuse are the most 

prominent and damaging threats for 5G and EVCS infrastructures. Some of them are listed below: 

Table 3.1. CIA triad of 5G assets 

Asset C I A 

MANO    

Network products    

Interconnections    

Services    

Organizations    

protocols   N/A 

Data    

Processes    

 

Red= Very high, yellow= high, green= medium 

3.3.1.1 Denial of service 

The prime target of DoS is to disrupt 5G/EVCS service availability. DoS can be triggered in 



49 

 

many ways, such as botnet/DDoS, flooding network components/base stations, 

jamming/interfering with the radio frequency, replay, amplification attacks, etc. 

3.3.1.2 Malicious code 

The injection of malicious code into the software environment detriments and affects the 

system's processes, control actions, and operating conditions. Some examples are viruses, 

malware, rootkits, worms, trojans, rogueware, ransomware, and SQL and XSS injection attacks.  

 3.3.1.3 Exploitation 

Most hardware and software systems have glitches or weaknesses. The attacker can exploit 

vulnerabilities in the architecture, design, and configuration of the network and software/hardware, 

such as zero-day exploits, open API, and edge API exploits.   

3.3.1.4 Abuse  

Since 5G-based EVCS is a highly complex, heterogeneous cyber-physical system with poorly 

developed administrative coordination and control, there is immense potential for abuse of remote 

access to the network, authentication/authorization, information leakage, virtualization, and even 

lawful interception. 

3.3.1.5 Manipulation 

 An insider/outsider attacker can compromise/manipulate hardware equipment, control 

settings, data, and network resources. They might attempt MAC spoofing, memory scraping, side-

channel attacks, fake nodes, rouge MEC gateway, and UICC format exploitation. Besides, there 

are always imminent threats from compromised vendors, spectrum sensing, data breach, 

unauthorized activities, identity theft/spoofing, and signaling storms/frauds. 
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3.4 Cyberattack Modeling 

The research has the following assumptions: to initiate the DoS attacks, hackers used the 

spoofed IP of legitimate EVCS. The channel loss of the 5G network is set to zero.  

3.4.1 FDI Attack Modeling  

A 𝑁𝑚-dimensional measurement vector 𝑦 of any nonlinear EVCS system function 𝐻 depends 

on 𝑁𝑛 -dimensional system state variable vector 𝑥 with normally distributed 𝑁𝑚-dimension 

measurements error vector 𝑒 as in (3.8) below [89]. 

y = Hx + e;     e~N(0,1) (3. 8)  

x̂ = arg min
x

 J(x) = (y − Hx)TW(y − Hx)   (3. 9)  

The overdetermined system (where 𝑁𝑚 > 𝑁𝑛) may not have an exact solution. Therefore, the 

attacker estimates the system variable 𝑥̂ by using lightweight optimization algorithms such as 

mean square error, least square error, or log-likelihood. This work uses weighted least square error 

over the residual function 𝐽(𝑥) as in (3.9).  Where W is the weight matrix and defined as 

𝑑𝑖𝑎𝑔{𝜎1
−2, 𝜎2

−2, … , 𝜎𝑁𝑚

−2 } and 𝜎𝑖
2 is the variance of 𝑖𝑡ℎ measurement. The 𝑦 is identified as FDI if 

it exceeds the predetermined residual threshold (Euclidean norm)  [90] 𝜏 as in (3.10). 

 J(x̂) = (y − Hx̂)TW(y − Hx̂) > τ (3. 10)  

ya = y + a = Hx + a (3. 11)  

Let 𝑦𝑎, in (3.11), be the measurement vector under the FDI attack vector  𝒂 having the same 

dimension as 𝑦𝑎. The attacker can access the logged data 𝑦 and limited state variable 𝑥 during the 

reconnaissance phase of the attack. 

The attacker can choose the distribution of the attack vector 𝒂 randomly or based on some 

heuristics. The more sophisticated and stealthy attack can be launched without being caught, but 
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the impact may not be enough to disrupt normal operations. The stealthy false data 𝑥̂𝑎 can be 

estimated using some nonlinear functions 𝑔 as  (3.12) with the help of  (3.11). The stealthy attack's 

objective is to get the attack vector 𝒂  that maximizes the error injected into the system without 

exceeding the detection threshold of 𝜏, which is the constrained optimization problem as in (3.13). 

x̂a = g(ya) = g(y + a) (3. 12)  

max
a

 ||x̂a − x̂|| subject to (y − Hx̂)TW(y − Hx̂) < τ        (3. 13)  

Based on the above background, the attacker can launch an FDI attack at three different 

controllers: PV controller on duty cycle, BES controller on 𝑉𝑟𝑒𝑓_𝑏𝑢𝑠,  and EV controller on 𝑉𝑟𝑒𝑓_𝑒𝑣. 

The attacker can solely control the duration of the attack and the distribution of false data. The eqs. 

(3.14)-(3.16) represent the FDI attack vector for PV control, BES control, and EV control, 

respectively. The 𝑃𝑅𝑁 (0,1,10) stands for a pseudorandom number that fluctuates ten times 

between the lower bound of 0 and the upper bound of 1. The reason for choosing PRN is 

completely heuristic-based, as the duty cycle ranges within this limit. Similarly, the attack injection 

at BES and EV follows the Gaussian distribution (G) with respective mean and variance as in eqs. 

(3.15) and (3.16).  

D̂a = D + ΔD ;  ΔD~PRN (0,1,10) (3. 14)  

V̂ref_busa = Vref_bus + ΔVref_bus ;  ΔVref_bus~G(48,10) (3. 15)  

V̂ref_eva = Vref_ev + ΔVref_ev ;  ΔVref_ev~G(24,10) (3. 16)  

3.4.2 DDoS Attack Modeling 

It is considered that the remote SCADA station continuously monitors all three control 

stations through the 5G. Once the DDoS launched through the 5G core network, no signal would 
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reach the EVCS. The duration of signal loss depends on the communication delay of the 5G 

network. The SCADA issues a control signal {𝑥𝑖}𝑖=0
𝑁   at any timestamp i, with N being the total 

number of samples. If the communication delay caused by a DDoS attack in a 5G network is 𝑁0, 

then the original control signal and delayed signal are presented in eq. (3.17) and (3.18), 

respectively. 

xorig(n) = x(n) = {xi}i=0
N     (3. 17)  

xdel(n) = x(n − N0) = {xi}i=−N0

N−N0  (3. 18)  

𝑥𝑑𝑒𝑙(𝑛 + 𝑁0) = 𝑥𝑜𝑟𝑖𝑔(𝑛)    (3. 19)  

In other words, to get the same sample from the original control signal  𝑥𝑜𝑟𝑖𝑔 , we should add 

𝑁0 sample time to the current timestep to 𝑥𝑑𝑒𝑙 as in (3.19). 

The attack sequence goes like this: i) EVCS working normally, i.e., communicating normally 

with remote SCADA through 5G preattack as in (3.20a). ii) Suddenly, the DDoS attack starts at 

the sample time of  𝑛1 ≥ 0 and lasts up to 𝑛2 = 𝑛1 + 𝑁0 ≤ 𝑁  where 𝑁0 is the variable delay that 

depends on the severity of the DDoS attack and comes from NetSim 5G simulation. At this time, 

the signal is completely lost, i.e., zero, as in (3.20b).  iii) After the attack is gone, the signal should 

retain the 𝑛1 + 1 signal sample as in post-attack of eq (3.20c) because DDoS should not 

compromise the signal integrity.  The composite control signal reaching to the EVCS controller 

𝑥𝐸𝑉𝑆𝐸  can be expressed as eq. (3.20). 

xEVCS(n) = {

xorig(n)  if 0 ≤ n < n1, pre attack (a)

0             if n1 < n ≤ n2 , attack        (b)

xdel(n)       if n2 < n ≤ N, post attack  (c)

 

(3. 20)  
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  3.4.3 DDoS Launch through 5G 

TCP-SYN flood attack is the type of DDoS attack that exploits the vulnerability of a three-

way handshake in the TCP protocol of machine-to-machine communication. The reasons to choose 

TCP protocol are: 1) it is the most ubiquitously used protocol along with IP to specify how data 

are exchanged over the internet by providing end-to-end communications. 2) It has known 

vulnerability in its three-way handshakes. 3) It is adopted by 5G communication. The attacker 

sends the TCP connection requests faster than the targeted machine can process, culminating in 

network saturation [91]. As shown in Fig. 3.6, The Attack can be summarized as follow: i) Client 

EVCS sends a TCP packet with an SYN flag on using a 5G network, ii) SCADA server, on 

receiving the SYN packet sends back an SYN-ACK packet to the client EVCS leaving half-open 

port for up to TCP connection timeout period. iii) EVCS acknowledges the SYN-ACK packet by 

sending an ACK to the SCADA server, and the communication starts. Before the half-open 

connections expire, malicious EVCS, either impersonating the legitimate EVCS or spoofing the 

IP, sends myriads of SYN requests to create many more half-open connections [92]. The malicious 

EVCS never receives SYN-ACK in spoofed IP and never sends ACK, coercing the SCADA server 
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to wait forever.  

Figure 3.6 SYN-Flood Attack 

3.5 Simulation Setups 

This research work uses licensed NetSim Standard version 12.2 as a discrete event network 

simulator to simulate a 5G network through which an EVCS communicates with SCADA for 

command and control. 
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Figure 3.7  Snapshot of Network Architecture with three attackers in NetSim.  

Each network component in a NetSim complies with Release 15/3GPP 38. xxx series and is 

flexible enough to specify user-defined longitude and latitude. The network components are 

summarized in section 3.2.3. Each smaller square box in Fig. 3.7 represents the area with 10-meter 

longitude and 10-meter latitude.  

3.6 Simulation Results and Discussion 

In this work, the Syn flood attacks are triggered in the 5G-enabled communication link 

between the SCADA node and the EVCS node. As evident from Table 3.2, The incremental change 

in delay with an increase in the number of attacks is more vehement. The throughput has been 

more consistent than latency, and the throughput drops to 20.94% compared to the base 

throughput. The latency has been increased significantly as the number of attackers increases from 

0 to 15. The worst scenario of 509.476 ms (0.5 seconds) delay has been used to visualize the impact 

on the EVCS system. 
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Table 3.2. Network performance with increasing attack penetration 

 

Malicious nodes delay(ms) 
Throughput  

(Mbps) 

0 2.957 23.138 

1 23.262 22.944 

2 23.261 22.944 

3 92.687 22.283 

4 127.318 21.928 

5 162.019 21.617 

6 196.850 21.285 

7 231.308 20.954 

8 266.424 20.629 

9 300.954 20.274 

10 335.503 19.956 

11 370.730 19.621 

12  405.044 19.290 

13  439.928 18.973 

14 474.631 18.627 

15 509.476 18.293 

 

3.6.1 Impact analysis of FDI attacks 

 In this case, the simulation runs continuously for 15 seconds in Simulink, and attacks are 

launched at different controllers within the simulation time. The FDI attack analysis has been done 

in two scenarios to quantify the severity. i) Attacks are launched on different controllers at different 

times, and ii) Attacks are launched on different controllers simultaneously. The black plot in Fig. 

3.8 represents the various electrical parameters during normal operation, while the red represents 

those parameters under the FDI attack.  

3.6.1.1. FDI Attacks launched on different controllers at different times 
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Figure 3.8  Impacts of FDI attacks launched at PV controller from 2-4 seconds, BES controller from 6-8 

seconds, and EV controller at 10 -12 seconds.  

 

A. PV controller attack 

The duty cycle attack launched from 2 to 4 seconds at the PV controller has caused severe 

ripples in PV power generation, excursing the power level to -500 Watts, as shown in Fig. 3.8a. 

The ripples at the PV controller contribute to the oscillating voltage at the DC bus bar by ± 5 V, 

as in Fig. 3.8b. Further ahead, the ripples pass on to the BES and oscillate the current through the 

range of [-17, +17] A from the normal operating current of -5 A as in Fig. 3.8 c. At the same time, 

the BES voltage goes down and oscillates, as in Fig.3.8d. Similarly, these low-frequency 

oscillations severely impact the EV battery as the charging current has steep spikes and dips 
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ranging from -31 A to -13 A within 105 ms, as in Fig.3.8 e. Fig. 3.8 f shows the slight oscillations 

in voltage during the attack. Therefore, the FDI attack at the PV controller can destabilize the entire 

EVCS ecosystem, i.e., PGU, ESU, and a plugged-in EV. However, the system gains its normal 

operating conditions as the attack goes off at t=4 seconds.  

B. BES controller attack 

The FDI attack at the BES controller does not seem to have any significant impact as the finely 

tuned PI controller saturates the incoming fluctuation from t=6-8 seconds in Fig.3.8e. 

C. EV controller attack 

The EV controller attack starts at t=10 seconds and lasts for 2 seconds, as in Fig.3.8. This 

impact is irreversible and does not affect PGU, except it increases the bus voltage by 2V (Fig.3.8b). 

The attack has risen sharply the constant charging current at BES by 11 A (Fig.3.8c) with a slight 

DC shift of 117 mv (Fig.3.8 d). The attack on EV has shifted the constant charging battery current 

at -21 A to 0.268 µA (Fig.3.8e), assisted by a slight voltage drop (Fig.10f), i.e., forces the charging 

EV to stop charging completely.  

3.6.1.2  FDI Attacks launched on different controllers simultaneously 
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Figure 3.9 Impacts of FDI attacks launched at all controllers simultaneously from 2-4 seconds. 

In this case, all the controllers are attacked simultaneously from 2 to 4 seconds, as in Fig.3.9. 

The integrated attacks resulted in reversible low-frequency oscillations throughout the attack and 

irreversible DC shift. The magnitude and frequency of oscillation at power generation remain the 

same Fig.3.9a. The DC bus voltage has spikes of equal magnitude and shifted up by 2V, as shown 

in Fig.3.9b, as opposed to the standalone attack at PV control. 

The variation of BES current ranges from [ -25 A 8.5 A] from normal constant charging of -

5.6 A. It signifies BES's frequent charging and discharging within a short period. The peaks are 

even, and the constant charging current has been increased by 300% even after the attack that never 

returns to normal mode, as shown in Fig.3.9c. The BES voltage oscillations are the same as the 
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standalone attack at PV except for an irreversible DC shift of 117 mV, as shown in Fig.3.9d.  

The EV charging current is dropped to zero permanently from -22 A with slight oscillation 

around 0-2 seconds, as shown in Fig.3.9e. That means the EV has stopped charging. The minimal 

temporary oscillation has been observed in EV battery voltage with a slight irreversible drop 

shown in Fig.3.9f.   

 3.6.2. Impact analysis of DDoS attack 

Under similar simulation setups as the FDI attack, different delays resulting from a 

cyberattack on 5G in NetSim have been tested in our EVCS system. Likewise, the DDoS attack is 

carried out in all three control components simultaneously and at different times. Fig. 3.10 presents 

the impact of DDoS attacks on the physical system caused by the 500 ms delay of the 5G 

communication system.  

The attacker launches the DDoS attack on the PV controller at t=2 seconds and lasts for 500 

ms. This attack causes high-frequency oscillations at the power signal that fluctuates between -3.6 

kW to 1.277 kW, while the PV generation system was designed to deliver 1.065 kW, as shown in 

Fig.3.10a. The negative power means the PV is drawing the power from the EVCS. Similarly, 

these high-frequency oscillation causes momentary voltage swing and drop of 2V at the DC bus, 

as shown in Fig.3.10b. At BES, the current surges by 17 A, as shown in Fig.3.10c, and voltage 

drops by 200 mV, as shown in Fig.3.10d. 
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Figure 3.10  Impacts of DDoS attacks launched at PV controller from 2-2.5 seconds, BES controller from 6-

6.5 seconds, and EV controller at 10 -10.5 seconds.  

Similarly, spikes of -10 A and -26 A were observed at the beginning and end of the attack, 

respectively, in the charging current, as shown in Fig.3.10e, and are accompanied by small 

complementary voltage surges in the EV battery, as shown in Fig.3.10f. As soon as the attack 

stops, the system completely comes back.  

The attacks at BES control and EV controller have no impact on system response. This is 

because the PI controller has fixed upper and lower saturation thresholds that do not let the 

manipulated 𝑉𝑟𝑒𝑓 signal to produce a zero-control signal, though the signal is completely lost 

throughout the attack. Our experiment suggests that the improperly tuned PI controller with no 

saturation thresholds is found to be exploited by the DDoS attack.   
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3.7. Chapter Conclusion 

This work analyzes the cybersecurity issues in the 5G-enabled EVCS system with a deep 

learning-based attack detection method. The 5G enabled standalone off-the-grid PV-powered 

EVCS architecture has been built and simulated to charge the PEV. The FDI and DDoS attacks 

have been successfully launched and simulated in the 5G-powered EVCS communicating with 

remote SCADA, and consequent impact analysis has been presented. The following conclusions 

can be drawn from the study: 

• The low-frequency FDI attack on the PV controller's duty cycle produces ripples and 

impacts all the subsequent components throughout the attack. 

• The FDI attack at BES has no visible impact since the PI controller operates around 

the saturation region to cope with the attack. 

• The FDI attack at the EV controller has resulted in an irreversible DC shift in operating 

current and voltage. 

• The simultaneous FDI attacks at all controllers have an integrated impact of points 

previous three bullets. 

• The DDoS attack at the PV controller has caused high-frequency oscillations at PV 

power generation and high-magnitude spikes and dips to subsequent Bus, BES, and 

EV controllers throughout the attack. 

• The DDoS attack at EV and BES has no impact due to PI controller saturation. 

In the following chapters, the study will focus on developing and designing a deep learning-

based algorithm for Cyberattack detection and mitigation in EVCS. 
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Chapter 4  Cyberattack detection methods in the Electric vehicle charging station 

4.1 Introduction 

Timely detection of the attacks and their most accurate classification helps the EVCS operator 

take the appropriate prevention strategy against them, known as an IDS. Host-based (HIDS), 

network-based (NIDS), and hybrid IDS are mostly used IDS and classified accordingly in terms 

of their implementation location. Three basic intrusion detection techniques have been widely 

deployed in state-of-the-art applications, namely: Signature-based detection (SD), Anomaly-based 

detection (AD), and Stateful protocol analysis (SPA) [37].  SD-based IDS has to know the 

fingerprint (pattern) of the attacks beforehand to match the pattern of the incoming attack to the 

stored fingerprint. Therefore, they cannot learn new kinds of attacks. Also, the system admin must 

manually update the new attacks' fingerprints.  AD-based IDS detects the anomaly by analyzing 

whether the incoming attack deviates from the network behavior. The mostly used IDS is AD- 

NIDS, which includes all the machine learning-based IDS.  

Despite the capability to learn and detect new network attacks, it suffers from a high false 

alarm rate (FAR) and goes offline to rebuild the network behavior as it discovers the new attack 

type. Stateful protocol analysis (SPA), a.k.a. specification-based detection, on the other hand, 

extracts and crafts the correct behaviors of critical objects as security specifications and compares 

them against the actual behavior of the network [94]. The difference between SPA and AD is that 

the former compares the specification against standard security protocols, while the latter 

compares the behavior against the observed network behavior. SPA is resource-consuming since 

it has to trace and examine the protocol states. Moreover, it fails to inspect benign protocol 

behaviors and might not be compatible with the dedicated operating system (OS) and applications.  

Mostly, researchers deal with the cyber-attack scenario in the entire smart grid, leaving out 
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the most vulnerable and critical infrastructure, the EVCS. In other words, there is a technical gap 

in the cybersecurity studies for the EVCS. This chapter presents the deep learning-powered IDSs 

for cyberattack and ransomware detection in the EVCS environment.  

4.2 Performance Metrics 

The detection algorithms for the EVCS cyber-attack detection need assessment metrics to 

evaluate their performance. The confusion matrix is the most ubiquitous matrix for the 

performance evaluation of the classifier, which is shown in Table 4.1 below. 

Table 4.1 Confusion matrix 

 

True positive(TP):  correctly classified intrusion,  

False-positive(FP): non-intrusive behavior wrongly classified as an intrusion,  

False-negative(FN): intrusive behavior wrongly classified as non-intrusive,  

True negative(TN): correctly classified non-intrusive behavior. 

4.2.1 Accuracy 

 It estimates the correctly classified data out of all datasets. The higher the accuracy, the better 

the ML model. (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∈= [0,1]) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

4.2.2 Precision 

It estimates the ratio of correctly classified attacks to the number of all identified attacks. 

Anomaly class↓\Predicted class→ Anomaly Normal 

Anomaly TP FN 

Normal FP TN 
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Precision represents the repeatability and reproducibility of the model (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∈= [0,1]). The 

higher the precision, the better the ML model.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4.2.3 True positive rate/Recall 

It estimates the ratio of a correctly classified anomaly to all anomaly data. A higher value is 

desired to be a better ML model and is given by:  (𝑅𝑒𝑐𝑎𝑙𝑙 ∈= [0,1]) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4.2.4 F1-Score/Measure 

 It is the harmonic mean of precision and recall. A higher value of the F1 score represents the 

good ML model (𝐹1 − 𝑠𝑐𝑜𝑟𝑒 ∈= [0,1]) and given by 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

4.2.5 False Positive (Alarm) rate 

It estimates the ratio of normal data flagged as attacks to the total numbers of normal data. 

The lower the FAR, the better would be the ML model(𝐹𝐴𝑅 ∈= [0,1]) and is given by 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

4.2.6 Receiving Operating Characteristics(ROC) 

 ROC represents the trade-off between the TPR (y-axis) and FPR (x-axis) for the different 

thresholds of FPR.  The area under the ROC curve(AUC) is used as a comparison metric. Higher 
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the AUC, the better the ML model and is given by: 

𝐴𝑈𝐶 = ∫
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
d

𝐹𝑃

𝑇𝑁 + 𝐹𝑃

1

0

 

 

4.3 Deep Learning-based Network Intrusion Detection System for Electric Vehicle 

Charging Station 

4.3.1 Proposed IDS Methodology 

 Based on the above background, we propose a novel deep learning-based IDS to deal with 

the DoS attacks in the EVCS. The proposed methods implement two mostly successful deep 

learning algorithms, namely: the deep neural network (DNN) and LSTM for the binary (DoS attack 

or not attack (benign)) and multiclass ( four different classes of DoS attacks as well as benign 

class) classification of the DoS attacks in the CICIDS 2018 [95] dataset for EVCS scenario. The 

proposed DNN- and LSTM-based IDS in the EVCS network have proved to be at least 99% 

accurate for detecting the DoS attacks with better performance metrics, the latter being the more 

efficient in terms of precision and recall and F1-score. 
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Figure 4.1 Steps involved in the Deep learning approach. 

Each supervised deep learning algorithm has to go through some necessary steps, as shown in 

Fig. 4.1. Training all the features might not be viable due to the computation and storage resources 

limitation. Therefore, selecting the best training features would save time and computational 

complexity, called feature engineering. The principal component analysis (PCA), filter-based 

approaches such as IG filters, and auto-encoder-decoder are implemented in state-of-the-art [96], 

[97]. Most of the time, the feature sets might have categorical data, integers, and floats. Therefore, 

pre-processing and normalization generally convert them into a uniform format. Min-max scaling 

and one hot encoding have been implemented in the algorithm. DNN and LSTM algorithm uses 

50% of the data for training, 20% for validation (to check the model's performance on unknown 

data), and the remaining 30%  for testing. The data in training, validation, and classification are 

mutually exclusive. 

The main goals of our algorithms are first to classify whether the incoming vector is an attack 

or a benign (Normal) data vector and second to classify the incoming data vector into different 

attack classes (4 DoS attack classes and one benign class). The former is best known as binary 

classification, and the latter is called multi-class classification. Furthermore, the third is to present 

a comparative analysis of applied algorithms. 

4.3.1.1 Dataset 

The mostly used datasets available online are KDDCUP 99 [98], NSL KDD [99], UNSW-

NB15 [100], Kyoto [101], WSN-DS [102], CICIDS 2017 [103], and CICIDS 2018. The CICIDS 

2018  DoS attack dataset is used for this research since it includes the recent DoS attacks. Table 

4.2 represents the number of datasets belonging to different DoS attack classes. 

Table 4.2 Datasets overview 
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4.3.1.2 Deep Neural Network 

A three-layered DNN with two hidden layers, each layer with 64 hidden neurons for the binary 

classification and 128 hidden units for multi-class classification, is implemented for IDS 

development in EVCS. Apart from that, the hidden layer uses the ReLU function since it has better 

convergence properties and prevents the problem of the sigmoid function, which tends to produce 

vanishing and exploding gradients. The de facto standard for the optimizer, Adam, is implemented 

in the DNN [104]. The only difference between the architecture of binary vs. multi-class DNN is 

the number of units in the hidden layer, output layer, and the corresponding activation function 

and loss function. The default activation function in the output layer and the loss: are softmax and 

categorical cross-entropy, respectively, for multi-class classification; sigmoid and binary cross-

entropy, respectively, for binary classification. The proposed model implements the L1-L2 

regularizers. These Regularizers apply penalties on layer parameters or layer activity during 

optimization, and these penalties are incorporated into the loss function that the network optimizes 

[105]. 

4.3.1.3 Long Short-term Memory (LSTM) 

LSTM is the variant of the RNN developed to eliminate the vanishing gradient problem of 

RNN and is significantly more complex than traditional neural units. LTSM Cell Architecture: 

Each cell has four sets of weights that feed into it (instead of one). Output squashing can take any 

activation function we want, though. It learns 1). What/when to let something in, 2). When to 

Benign and Attack data Numbers 

Benign 1426795 

DoS attacks-GoldenEye  41508 

DoS attacks-Slowloris  10990 

DoS attacks 

SlowHTTPTest  
139890 

DoS attacks-Hulk  461912 
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forget, 3). What/when to let something out. Most of the architecture is similar to DNN shown [65], 

except for the cell structure. A 76, 16, 16, 16, 1 architecture is used for binary classification, while 

76,  32, 32, 32, 5 architecture is used for the multiclass classification with neuron dropout of 10 % 

between each hidden layer. The architecture mentioned above is read as # of input units=76, # of 

LSTM cells in first hidden layer= 32, # of LSTM cells in second hidden layer= 32, # of LSTM cell 

in third hidden layer= 3, and # of output units=5. The first and last layers are the input and output 

layers with corresponding nodes, while the middle layers represent the hidden layers with 

corresponding nodes. 

4.3.2 Results and Discussion 

In this work, all the simulations and codings are created in Python 3.7.4 in the Jupyter lab 

(version 1.1.4) under the free and open-source Anaconda distribution. Intel® Core™ i5-3470 @ 

3.20 GHz processor with 8.00 GB RAM and 64 -bit Windows 10 OS is used in the experiment. 

4.3.2.1 Plot-based Responses 

Fig. 4.2 represents the variance captured by the singular values. Each singular value represents 

a prominent feature. The most prominent feature ranges from left to right. At least four features 

could represent 93.57 % of the variance. The more the variance captured, the more significant 

features will be. As shown in Fig.4.3., The PCA plot of the features in 2D showed that any linear 

classifier function could not classify the given datasets, so a deep neural network with hidden 

layers is the ultimate solution to classify the data  
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Figure 4.2 Variance captured by singular values. 
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Figure 4.3 Two-component PCA plot. 

As shown in Figs. 4.4-4.7, the 99% accuracy has been achieved within less than 10 epochs for 

the LSTM, while it took 30 epochs and 70 epochs, respectively, for binary and multiclass 

classification using DNN. It means LSTM is superior in terms of speed and accuracy as compared 

to DNN. Also, training and validation are smoother for LSTM as opposed to DNN. 
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Figure 4.4 Model accuracy vs. model loss for the binary classification using DNN. 

 

Figure 4.5 Model accuracy vs. model loss for the binary classification using LSTM. 
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Figure 4.6 Model accuracy vs. model loss for the multiclass classification using DNN. 

 

Figure 4.7 Model accuracy vs. model loss for the multiclass classification using LSTM 

Fig. 4.8 gives the comparative training and testing accuracy for the binary classification of the 

data (whether the data is normal (benign) or the attack) using the DNN and LSTM- based IDS. 

Compared to DNN, The training and testing accuracy for the LSTM-based IDS are superior by 

0.76 and 0.67, respectively. Similarly, as illustrated in Fig. 4.9, the training and testing accuracy 
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for the multiclass classification using LSTM is superior by 0.63 and 0.62, respectively. 

 

Figure 4.8 Binary classification accuracy. 

 

Figure 4.9 Multi-class classification accuracy 
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4.3.2.2 Performance Evaluation 

In this work, to quantify the performance of the proposed detection method, some 

performance metrics have been considered, such as accuracy, precision, recall, and F-1 score 

(defined below) from the confusion matrix. The confusion matrix generally reflects how efficiently 

a particular machine/algorithm classifies the actual data, and it is the most ubiquitous matrix for 

the performance evaluation of the classifier. The perfect score of all three metrics (precision, recall, 

and F1-score) suggests that LSTM-based IDS has superior classification performance as compared 

to DNN-based IDS for the binary classification (attack or benign), as shown in Table 4.3.  

Tables 4.4 and 4.5 represent the detailed performance metrics of our proposed classifiers 

(DNN and LSTM, respectively) with respect to each category (4 different attack categories and a 

normal/benign category) for multiclass classification. The support in the Tables represents the 

number of samples of true responses that lie in that class. As shown in Tables 4.4 and 4.5, the 

LSTM-based IDS is superior in multi-class classification compared to the DNN-based IDS as 

represented by higher precision, recall, and F1-score. Also, for the imbalanced classes and classes 

having comparatively less data (for instance: DoS attacks-Slowloris), the LSTM-based IDS 

exhibits good performance metrics with precision=1, recall=0.99, and F1-score of 0.99 as opposed 

to the DNN-based IDS with precision=1, recall=0.70 and F1-score= 0.82. 

 

Table 4.3 Classification Metrics for DNN and LSTM for Binary classification 

Algorithm Data Precision  Recall F1-score 

DNN_Binary Attack 1 0.99 0.99 

DNN_Binary Benign 0.98 1 0.99 

LSTM_Binary Attack 1 1 1 
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LSTM_Binary Benign 1 1 1 

 

Table 4.4 Classification metrics of DNN for multi-class Classification 

Attack Class Precision Recall F1-score Support 

Benign 1.00 1.00 1.00 430408 

DoS attacks-

GoldenEye 
0.99 0.80 0.88 12361 

DoS attacks-Hulk 0.98 1.00 0.99 138678 

DoS attacks-

SlowHTTPTest 
0.99 1.00 1.00 42022 

DoS attacks-

Slowloris 
1 0.70 0.82 3268 

 

Table 4.5 Classification metrics of LSTM for multi-class Classification 

Attack Class Precision Recall F1-score Support 

Benign 1.00 1.00 1.00 430977 

DoS attacks-

GoldenEye 
1.00 1.00 1.00 12348 

DoS attacks-Hulk 1.00 1.00 1.00 138126 

DoS attacks-

SlowHTTPTest 
1.00 1.00 1.00 41959 

DoS attacks-Slowloris 1.00 0.99 0.99 3327 
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4.4 Deep Learning-based Host Intrusion Detection System for EVCS 

4.4.1 Proposed IDS Methodology 

 

Figure 4.10 Proposed IDS at EVCS. 

The proposed IDS is tested and validated with an FDI attack on our EVCS architecture. As 

shown in Fig. 4.10, the proposed IDS constantly records electrical and control signals (fingerprint) 

logs through the Data Acquisition System. Then the Data Wrangling block chooses, processes, 

and fetches the features into stacked LSTM in the compatible format. First, the output class for 

each data sample has been assigned. That can be done by appending {'0'}, {' 1'}, {'2'}, {'3'}, {' 4'} 

at the end of dataset, i.e., 37th column of each class. Now, these strings in the output class have 

been converted to categorical data for classification purposes. The dataset can be split into two 

mutually exclusive sets: train (70%) and test (30%) class. 20% of training data were further split 

into validation data. Training data in deep learning is used to fit the nonlinear convex curve using 

input-output mapping based on forward and backward propagation. Validation data are generally 

EVSE Data 
Acquisition 

System

Feature 
Engineering

Preprocessing

Offline Validation 

Offline Training

Classification

Online Testing

Data Wrangling

Stacked LSTM

Normal
PV Attack
BES Attack
EV Attack
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used for hyperparameters and model tuning. Testing data is used to see the generalization of the 

trained model. Our deep LSTM model is 3-layered with a 10% dropout between each stacked 

LSTM layer, and it has an output layer with four nodes. The deep LSTM architectures and 

parameters are shown in Table 4.6 below.  

 
Table 4.6. stacked LSTM architecture 

 

 

 

 

 

 

 

 

 

 

 

 

Each stacked hidden layer has 64 LSTM units. The model is compiled using the categorical 

cross-entropy loss function and Adam optimizer, which are de facto choices for multiclass 

classification. The model is trained for 20 epochs with a batch size of 1000 samples, which took 

almost 32.91 minutes. 

The primary goal of the proposed system is to detect the different classes of the bypassed 

cyberattack on different components of the EVCS system using only the electrical fingerprint and 

making it autonomous against the cyberattack. 

 

4.4.1.1  Data Set 

We have collected 36 features from our EVCS architecture at a single timestamp. The features 

include all the electrical and control signals used in the operational EVCS system.  The sampling 

time of data collection is set at 𝑇𝑠 = 10 µs, thus the sampling frequency is 𝑓𝑠 =
1

𝑇𝑠
=

105 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 . Since the total simulation time is set to 15 seconds, the total number of samples 

Layer(type) Output Shape Param # 

LSTM_1 (None, None,64) 25856 

Dropout_1 (None, None,64) 0 

LSTM_2 (None, None,64) 33024 

Dropout_2 (None, None,64) 0 

LSTM_3 (None,64) 33024 

Dropout_3 (None,64) 0 

Dense_1 (None,64) 260 
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belonging to a single attack class is 15𝑓𝑠 = 15𝑥105 = 1.5 𝑀 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. For four different attack 

classes ('Normal', 'PV Attack', 'BES Attack', 'EV Attack') we have dataset {x} of sample size of 

[1500000, 36, 4]. Table 4.7 presents the electrical fingerprint used for IDS. 

Table 4.7.  Datasets overview for HIDS 

Components  Features Total # 

PV panel 𝑖𝑝𝑣 , 𝑣𝑝𝑣 , 𝑝𝑝𝑣 , 𝑖𝑑𝑖𝑜𝑑𝑒 , 𝑑𝑒𝑙𝑖𝑛 , 𝑇, 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 7 

MPPT Boost converter 𝑠𝑏𝑜𝑜𝑠𝑡 , {𝑖, 𝑣}𝑠𝑤𝑖𝑡𝑐ℎ , 𝑑𝑢𝑡𝑦𝑝𝑣 , 𝑖𝑏𝑢𝑠, 𝑣𝑏𝑢𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠 7 

BES 𝑠𝑜𝑐, 𝑖, 𝑣, 𝑠𝑝 , 𝑠𝑛 , 𝑖𝑟𝑒𝑓 , 𝑑𝑢𝑡𝑦𝑏𝑒𝑠, 𝑣𝑟𝑒𝑓 , {𝑖, 𝑣}𝑠𝑤𝑖𝑡𝑐ℎ𝑥2   12 

EV 𝑠𝑜𝑐, 𝑖, 𝑣, 𝑑𝑢𝑡𝑦, 𝑖𝑟𝑒𝑓 , 𝑣𝑟𝑒𝑓  6 

Diodes  {𝑖, 𝑣}𝑥2  4 

 

4.4.1.2  Stacked/Deep LSTM 

The LSTM is the generalized state machine and de-facto RNN primarily designed for the 

regression or classification of sequential data, i.e., sequence learning. Stacking these individual 

LSTM cells into the hidden layers forms the Deep LSTM. A single LSTM unit is much more 

complex than a traditional neural unit. It has four gates: input gate, output gate, forget gate, and 

cell gate [106]. The LSTM cell takes the input feature 𝑥𝑡 along with cell state 𝑐𝑡−1 and hidden state 

ℎ𝑡−1 from previous LSTM units and outputs the current cell state 𝑐𝑡 and hidden state ℎ𝑡. 

The deep LSTM has stacked layers of multiple single LSTM cells with four gate parameters 

and an output parameter described below by (4.1)-(4.5) [107]. 

Input gate parameters:   (𝑊𝑥𝑖
𝑊ℎ𝑖

)   ∈ ℝ(𝐷+𝐻)𝑋 𝐻, 𝑏𝑖 ∈ ℝ𝐻            (4. 1)  

Forget gate parameters: (𝑊𝑥𝑓

𝑊ℎ𝑓
)   ∈ ℝ(𝐷+𝐻)𝑋 𝐻, 𝑏𝑓 ∈ ℝ𝐻       (4. 2)  
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Cell parameters:           (𝑊𝑥𝑐
𝑊ℎ𝑐

)   ∈ ℝ(𝐷+𝐻)𝑋 𝐻, 𝑏𝑐 ∈ ℝ𝐻            (4. 3)  

Output gate parameters: (𝑊𝑥𝑜
𝑊ℎ𝑜

)   ∈ ℝ(𝐷+𝐻)𝑋 𝐻, 𝑏𝑜 ∈ ℝ𝐻 (4. 4)  

Network output layer parameters: WhK ∈ ℝHX K, bK ∈ ℝK   (4. 5)  

 

Where 𝑾(.) is the weight matrices, 𝒃(.) is the bias vectors, 𝑫   is the dimension of the input 

signal, 𝑯 is the number of LSTM units, and 𝑲 denotes the number of output classes. The respective 

outputs of the input, forget, cell, and output gates {𝑖𝑡, 𝑓𝑡, 𝑐𝑡̃, 𝑜𝑡}  in the forward pass can be written 

as follows in  (4.6)-(4.10). 

it = σ [ (Wxi
Whi

 )
T

[xt, ht−1] + bi]    
(4. 6)  

ft = σ [(Wxf
Whf

 )
T

[xt, ht−1] + bf]    
(4. 7)  

ct̃ = tanh [(Wxc
Whc

 )
T

[xt, ht−1] + bc]     
(4. 8)  

ot = σ [ (Wxo
Who

 )
T

[xt, ht−1] + bo]                               
(4. 9)  

ht = ot ∗ tanh(ct)        (4. 10)  

Where 𝜎 is a nonlinear function. The current LSTM outputs: cell and hidden states  {𝑐𝑡, ℎ𝑡} 

are passed to the next timestamps to iterate through the above equations. The probability vector 

{𝑝𝑡}𝑘=1
𝑘=𝐾   for class K can be computed by using the SoftMax function as in (4.11). 

pt = SoftMax(WhK
T ht + bK)     (4. 11)  

K̂ = argmax
k

  ptk     (4. 12)  

The predicted class 𝐾̂ would be the one with the highest probability at timestamp t, as shown 



81 

 

below in (4.12). 

4.4.2 Results and Discussion 

 The deep learning algorithms are created in Python 3.7.4 in the Jupyter lab (version 1.1.4) 

under the free and open-source Anaconda distribution. Intel® Core™ i7-9750 @ 2.60 GHz 

processor with 16.00 GB RAM and 64 -bit Windows 10 OS is used. 

Fig. 4.11 represents the accuracy and loss progression during the training and validation of 

the model. The proposed model achieves more than 99.9999% accuracy within the fifth epoch for 

training and validation data. The loss is diminished to 6.11e-06 within the fifth epoch for both 

training and validation datasets. This signifies a smoother progression during the training, and our 

model is ready to classify the previously unseen datasets of the attack. 

The classifier's testing or generalization performance can be better presented with the 

confusion matrix, as shown in Fig.4.12 The distribution of test data among different attacks is 

almost equiproportional, i.e.,  ≅ 25% from each class. The y-axis represents the predicted class, 

and the x-axis represents the actual class. The numbers and % in each cell represent the number of 

samples and % of samples belonging to that cell. For instance, for the first cell, among 449,234  

normal samples fetched to our model. It correctly predicts 449,232 sample instances, leaving only 

one sample misclassified as a PV attack and another sample misclassified as BES Attack, which 

is almost 100% classification accuracy. Each row in the last column represents the total number of 

samples fetched to the classifier. Each column of the last row sums up the total number of classified 

samples belonging to different classes. Our classifier detects  PV attacks, BES attacks, and EV 

attacks with 100% accuracy while detecting normal data with 99.99999% accuracy.  
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Figure 4.11 Accuracy and loss during Training and Validation progression 

 

 

Figure 4.12  Confusion Matrix for assessing model performance  

 

As per Table 4.8 below, the proposed classifier has almost 100% precision implying the 

model's repeatability, 100% recall implying the capability to correctly classify attacks among 
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different classes of attack, and a 100 % F1-score indicating superior sensitivity and separability of 

the model. 

Table 4.8. Classification Metrics 

Attack Class Precision Recall F1-score support 

Normal 1.00 1.00 1.00 449232 

PV Attack 1.00 1.00 1.00 450398 

BES Attack 1.00 1.00 1.00 449922 

EV Attack 1.00 1.00 1.00 450450 

 

All the proposed IDS performance metrics are superior to our past IDS [33]. The most 

important capability of our proposed IDS is that it can detect the attempt of attack that bypasses 

the cyber layer and is not noticed in the monitoring station. For instance, the FDI attack at BES 

from 6-8 seconds, as shown in Fig 3.9, does not seem to change any electrical parameters, though 

the attack is there. But our IDS can detect it with 100% precision and recall, and f1-score does not 

misclassify a single sample. It's because of including the control signals as features. 

4.5 Ransomware Detection using Deep Learning in the SCADA System of Electric Vehicle 

Charging Station 

4.5.1 SCADA-Controlled EVCS 

SCADA facilitates the management of remote access to real-time data and channels. It issues 

automated or operator-driven supervisory commands to remote stations (field devices) [108]. The 

underlying control system of most critical infrastructures, such as power, energy, water, 

manufacturing plants, traffic lights, and nuclear plants, is SCADA [109]. SCADA consists of 

sensors, Programmable Logic Controllers  (PLC), actuators, Remote Terminal Units (RTU), a 
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supervisory station, a backend server, a human-machine interface, and a communication link. It 

needs constant vigilance of the target physical plant through the communication link. Sensors are 

primarily used for data acquisition in the plant's physical environment or monitored processes, 

which are embedded in the various dynamics of the process. 

 

Figure 4.13 SCADA system connected to EVCS through 5G 

 

Fig. 4.13 represents the high-level block diagram of remote SCADA 

communicating/controlling the multiple EVCS through 5G communication infrastructure. It also 

depicts the threat actors in the system. The SCADA constantly monitors the state of charge (SoC) 

of the battery energy storage (BES) at EVCS to control the charging.  

4.5.2 Ransomware Attack Modelling on EVCS 

Criminally motivated organizations such as WIZARD SPIDER run ransomware-as-a-

service(RaaS) to target big game hunting [110]. An attacker encrypts the critical files:  access 
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control files, historian data, input scripts, and the communication packet at SCADA. The attack 

motif may not necessarily be a full shutdown of the system but might interrupt normal operations. 

An operator may not pass the supervisory command or ride-over command to the field devices at 

EVCS. While the victim pays the ransom, it is not guaranteed that the hacker will give a decryption 

key. Once the attacker gains access to the cyber-physical system's critical files, there are two ways 

they can harm the operations first, by initiating a DDoS attack, and second by an FDI attack. Recent 

attacks [101]–[103] reported are relatively easy attacks to start. The severity of ransomware attacks 

on critical infrastructures depends on how long they captivate the network and how much false 

data they can inject.  

We simulate the system in MATLAB Simulink, where the remote SCADA controls the charge 

and discharge of the BES of the EVCS by issuing charge/discharge commands to the ideal 

switches. The control commands are based on the SoC of the BES. The control is designed so that 

the BES should discharge, i.e., charge to EV if SoC > 80 % or charge from PV or DC source if 

SoC < 35 % between the timeframe of 50 seconds to 150 seconds. The ransomware-triggered 

DDoS on SCADA generally delays the control commands to/from the EVCS. We have simulated 

ransomware-induced delay ranging from zero to five minutes in the charging behavior. Secondly, 

we have simulated the effect of ransomware-triggered FDI attacks by manipulating SoC thresholds 

set to control charge/discharge. 

4.5.3 Proposed Framework for Ransomware Detection 

The prime target for ransomware could be any field devices (such as PLC, RTU, IoT devices 

for process dynamics control, and data acquisition), control, and monitoring systems such as 

supervisory stations and HMI. Reconnaissance of the vulnerabilities in the field devices might 

need domain knowledge and configuration in the air-gapped system. Also, poorly developed 
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protocols in field devices have easily exploitable authentication, authorization, and access control 

issues [111]. However, internet-facing field devices could be easily scanned and exploited using 

available scanning tools such as Shodan, ZoomEye, and Censys. The easy target might be HMI or 

supervisory station because they are the one who controls and monitors all field devices. That's 

why ransomware attacks in these computing systems that access the SCADA backend could be 

dangerous. The ease of attack comes here as these components could be treated more or less like 

the IT system. Besides, the attacker might not need in-depth design and domain knowledge, unlike 

in PLC and RTU. We propose the novel ransomware monitoring and detection system in Fig. 4.14. 

It monitors and detects ransomware attacks in SCADA, power generation/transmission and 

distribution networks, EVCS networks, and CAEV. The unit ransomware detection framework 

(RDF) architecture is presented in Fig. 4.15 for the SCADA. Likewise, RDF could be implemented 

for all remaining three layers beneath SCADA. 
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Figure 4.14 Proposed ransomware detection system for the smart grid architecture.  

 

Figure 4.15 The internal architecture of the proposed RDF monitoring and detection system 

The monitoring and detection system has two phases offline and online. In the offline phase, 

the ransomware and benign samples are collected from the attack. Important features are extracted 

from the collected samples by using assembly frequency analysis. Finally, the feature database is 

built to train and validate the deep learning-based model. Training is generally the curve fitting 

process based on weight optimization. Simultaneously, validation is how to tune the architectures 

and hyperparameters to get the best model before deploying it. Deep learning does not provide a 

sophisticated way to automate the model's tuning process.  In the online phase, the feature from 

the real-time traffic is extracted using the same method as in training and is fed to the model to 

detect whether it is ransomware or a benign file. Once the ransomware is detected, an appropriate 

control strategy is activated to turn the backups on, isolate the physical layer; or shut down the 

system in the worst-case scenario. 
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4.5.3.1 Datasets 

We have collected 561 ransomware samples and 447 normal samples, up to 1008. 

Ransomware binaries were collected from VirusTotal, whereas normal samples were extracted 

from the Windows operating system. The normal samples have similar sizes as ransomware (50KB 

– 8 MB), and files with cryptographic behavior (Filezilla, Winscp, OpenSSH, and so on) are also 

included. The ransomware considered here is Crypto ransomware. Feature selection is made by 

using frequency analysis of assembly instructions. Individual assembly instruction, including the 

grouping count, was taken. Assembly Grouping is grouped as  Data transfer, Arithmetic, Logical, 

shift, and so on. A dynamic binary instrumentation technique was used to extract assemblies. It's 

a dynamic running of malware samples in a controlled virtual unit via the PIN framework. Further 

feature extraction was done extensively using custom python programming (Grouping, frequency 

generation, unique features, and CSV file generation). 

4.5.3.2 Deep Learning Architectures and parameters setting for simulations 

For the binary classification, a three-layered DNN with two hidden layers, each layer with 64 

hidden neurons, is implemented for ransomware detection in SCADA. The ReLU activation 

function has been used because of its superior convergence property to the sigmoid function that 

comes with the problem of exploding and vanishing gradients. Adam, the de facto standard for the 

optimizer, is implemented [33]. The output layer uses the sigmoid activation function and binary 

cross-entropy loss for ransomware classification. The L1-L2 regularizers apply penalties on layer 

parameters or layer activity during optimization and are incorporated in the loss function. 

LSTM is developed to eliminate the vanishing gradient problem of RNN and is much more 

complex than traditional neural units [40]. Each LSTM cell has four sets of incoming weights. 

Output squashing can take any activation function.  LSTM shares a similar model architecture to 
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DNN except for the cell structure. The model has  140, 64, 64, 64, and 1 architecture for 

classification, with a neuron dropout of 10 % between each hidden layer. The architecture is read 

as # of input units=140, # of LSTM cells in first hidden layer= 64, # of LSTM cells in second 

hidden layer= 64, # of LSTM cell in third hidden layer= 64, and # of output units=1. The first and 

last layers are the input and output layers with corresponding nodes, while the middle layers 

represent the hidden layers with corresponding nodes. 1D CNN  is the variant of the CNN designed 

to convolve 1D data vectors rather than convolving 2D or higher. Our model consists of two 

convolution layers with a kernel size of 64 and filter length of 3, each followed by a max-pooling 

layer. A fully connected hidden layer with 128 hidden units is between the max-pooling and output 

layers, with a unit dropout rate of 50%. 

4.5.4 Simulation results and discussion  

4.5.4.1 Simulation Setups 

Before starting the simulation, data preprocessing was done to scale down diverse features 

with a magnitude between 0 and 1 using the Keras standard preprocessing. scale() library. Also, 

the categorical output classes ransomware vs. normal are binarized to 0 and 1, respectively. Out of 

1008 samples, 30% of data are preserved for testing,  the other 30% are preserved for validation, 

and finally, the model is trained with the remaining 40 % of the samples for a single run of the 

experiment. Each of these train, test and validation categories is mutually exclusive. Moreover, the 

training and validation are done with 10-fold stratified cross-validation to check the model's 

consistency and reproducibility. Our experiment is done with a batch size of 100 with 70 epochs 

for all deep learning algorithms. 

With ransomware attackers having access to the critical process file of SCADA, they can 

hijack the system for the time they want and inject or manipulate the control variables. These 
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impacts are observed under the ransomware-driven DDoS attack trying to deprive legitimate users 

and FDI attack to decimate the EV charging. 

4.5.4.2 Ransomware-driven DDoS attack 

As mentioned in section 4.5.2, the charging behavior of BES is observed as the DDoS attack 

penetration increases from no delay to a delay of up to five minutes. The five SoC transition edges 

are recorded with a tuple of < SoC, time > at those edges between the control action period of 50 

to 150 seconds; as shown in Fig. 4.16, The SoC0 represents the SoC without attack, i.e., normal 

behavior. SoCi represents the SoC behavior with i minutes of delay due to DDoS. With further 

data analysis as the SoC0 as a reference signal, the state transition due to the attack is delayed by 

a minimum of 0.139 % to a maximum of 4.84 %. This also forces SoC to exceed the control 

thresholds, potentially impacting the battery dynamics. 
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Figure 4.16 Ransomware-driven DDoS attack impact on charging behavior 

The severity of SoC threshold crossing increases as the attack penetration increases from a 

minimum of 0.29 % to a maximum of -54.73 % compared to the normal operating SoC. With a 

five-minute delay induced by DDoS penetration, the charging profile becomes so worse that it just 

stays above the lower threshold of 35 % SoC without charging again after 150 seconds. Therefore, 

it can be concluded that even a simple DDoS driven by ransomware could produce erroneous 

control commands, which is enough to detriment the EV charging. 

4.5.4.3 Ransomware-driven FDI attack 

Similar architecture has been implemented to model the FDI attack, except the ransomware 

attacker manipulates the SoC thresholds to make control decisions at the state transition diagram 

of SCADA. The Fig. 4.17 represents the different SoC profiles S0C0, SoC1, SoC2, SoC3 with 

respective state transition thresholds tuples of (35,80), (10,90), (5,95), and (0,100). The tuple has 

a minimum and maximum value of SoC that should not be exceeded and issue either charging or 

discharging command at the instant of crossing them. The BES at EVCS has specific energy and 

power densities with limited cycles. The FDI attack can abruptly change the charging behavior 

and damage the BES or physical system in the worst-case scenario, as depicted in the figure below. 
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Figure 4.17 Ransomware-driven FDI attack impact on charging behavior 

4.5.4.4 Deep learning-based analysis 

As shown in Fig. 4.18, all models achieved at least 98 % accuracy, with DNN being very 

smooth, representing the perfect fitting during the training phase. 1D CNN has a lot of noise after 

ten epochs. Though LSTM initially shows small fluctuation for a few epochs, it is the most smooth 

algorithm that achieves the desired accuracy within ten-eleven epochs. Therefore, one can 

conclude that finely tuned LSTM looks superior for one experiment, though model replicability is 

the issue of all deep learning techniques. Let's see the results of 10 stratified cross-validations in 

Table 4.9. The area under the curve (AUC) refers to the degree of separability of the model to 

distinguish between different classes. LSTM seems the right option for AUC because of its highest 

AUC and the lowest standard deviation. However, CNN seems superior in terms of accuracy. 
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The Training of DNN is way faster than at least five times faster than LSTM and sixteen times 

faster than CNN for 70 epochs, as shown in Table 4.10. It is because of the least units and 

parameters used in DNN compared to CNN and LSTM. However, As evident from Fig. 4.18, the 

desired accuracy could be achieved using fewer epochs than 70, reducing LSTM and CNN's 

training time. Table. 4.11 shows the mean precision, recall, f1-score, and FAR with standard 

deviation, all in %  after 10-fold stratified cross-validation. The CNN model achieves the best f1-

score with minimum FAR. 

Table 4.9 The area under the curve (AUC) and Accuracy (ACC) of 10-fold stratified cross-validation for RDF 

 

 

 

 

Table 4.10 Training Time for RDF 

DL methods Training time 

DNN 1.349 seconds 

CNN 16.581 seconds 

LSTM 5.98 seconds 

 

Table 4.11 Performance Metrics After 10-Fold Cross-Validation for RDF 

DL 

methods 

Precision 

Mean | std in 

% 

Recall 

Mean | std 

in % 

F1-score 

Mean| std 

in % 

FAR 

Mean| std 

in % 

DNN 98.45 | 1.71 97.92 | 1.94 98.17 |1.46 1.88 |2.07 

CNN 99 | 1.22 97.33 | 1.77 98.35 |1.14 1.30 |1.59 

LSTM 98.70 |1.75 97.66 | 2.17 98.16 |1.47 1.56 |2.10 

 

DL methods 
AUC(Mean) 

 

AUC 

(Std) 

ACC 

(mean) 

ACC 

(std) 

DNN 98.17 % 2.35 % 98.30 % 1.52 % 

CNN 98.16 % 1.10 % 98.73 % 1.27 % 

LSTM 98.94 % 0.72 % 97.59 % 1.91 % 
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Figure 4.18 Model accuracy vs. loss for a single experiment for DNN, 1D CNN, and LSTM top to bottom. 
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4.6 GAN-based Network Intrusion Detection System for Electric Vehicle Charging Station 

4.6.1 Proposed EC-WCGAN Methodology 

The 5G core network uses three-way handshakes of TCP protocol to initiate communication 

between the SCADA server and EVCS or EV. The client EVCS sends a TCP packet with an SYN 

flag on through 5G. Upon receiving the SYN packet, the SCADA server acknowledges the 

connection request and sends back the SYN-ACK signal leaving half open port up to TCP 

connection timeout. The EVCS acknowledges the SYN-ACK by sending an ACK to the SCADA 

server, and the communication starts. Before the half-open port timeouts, the malicious EVCS 

(either by impersonating or via spoofed IP) floods the SCADA server by sending myriads of SYN 

requests to create many more half-open connections. 

 As evident from our prior works [40], [41], the DDoS can disrupt the availability of the 

critical control signal passing from SCADA to the PV controller, BES controller, and EV 

controller. As a result, low-frequency and high-frequency oscillations are induced in the bus, BES, 

and EV's generated power, voltage, and current. The proposed detection algorithm can be installed 

on the SCADA server to inspect the incoming network packets and detect the DDoS attacks on 

EVCS infrastructure. 

The proposed method can be implemented to monitor the traffic flow in the SCADA server 

of EV infrastructure to detect malicious DDoS attacks. The data are the feature vectors of 

normal/benign and attack packets fetched to the proposed detection model. The following sections 

present the operational algorithm and model architectures for GAN and EC-WCGAN with 

gradient penalty. 

4.6.1.1 Generative Adversarial Network (GAN) 

Deep Generative models can generate synthetic data by learning the underlying data 
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distribution of the real data. Among VAE, CAE, and GAN, GAN is the most popular model for 

synthetic data generation. GAN is the adversarial learning-based generative model that trains both 

Generator G (ought to capture the data distribution) and Discriminator D (ought to estimate the 

probability of a sample coming from training 𝑝𝑟(𝑥) rather than the generated data) 𝑝𝑔(𝑧) 

simultaneously under the two-player minimax game-theoretic setting. G and D are the 

differentiable functions represented by a parameterized multilayered neural network. The 

generator model can be considered a counterfeiter trying to generate a fake currency without 

getting caught. In contrast, the discriminator model can be considered as police detecting fake 

currency [112]. The minimax objective of a GAN is described in eq. (4.13). 

min
𝐺

  max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑟(𝑥)
[log 𝐷(𝑥)] + 𝔼𝑧~𝑝𝑔 (𝑧)[log(1 − 𝐷(𝐺(𝑧)))]     (4. 13)  

 

Researchers have used GAN and its variants to address the data imbalance problem in various 

domains and aid the generated data for training the classification model to enhance the 

performance metrics [113]–[116]. On the other hand, there are several architectural modifications 

of GAN to aid the classifications and generation. A shared discriminator architecture such as the 

GAN has two final layers: one for discrimination and the other for classification [117]. However, 

this approach might not be optimal because the network's performance decreases if the 

discriminator is given two incompatible tasks classification and discrimination. 
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4.6.1.2 WCGAN with External Classifier (EC-WCGAN) 

Classifier

Incoming 
Traffic (real 

Data)

Noise 

Class Label

Attack Prediction

Degree of 
realnessGenerator Critic

WC-GAN with Gradient penalty 
on Discriminator

Synthetic Data

 

Figure 4.19 EC-WCGAN method for DDoS attack detection. 

The proposed EC-WCGAN for EV charging infrastructure consists of three nets: a generator, 

a discriminator, and a separate classifier as in Fig.4.19. A generator is a WC-GAN capable of 

generating data of the given random noise vector and class label with stable and improved training. 

A Discriminator (or Critic) is a neural net that discriminates between real and generated data. 

Likewise, the external classifier is the neural net trained and supervised to classify the real and 

generated data into different classes.  

Algorithm 1: Training EC-WCGAN with gradient penalty on the discriminator  

Input: The gradient penalty coefficient 𝜆, the number of critic iterations per generator iterations 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, the 

batch size 𝑚 and Adam hyperparameters 𝛼, 𝛽1, 𝛽2, class label 
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Initialize →critic parameters 𝑤0, Generator parameters 𝜃0, Classifier parameters Θ0 

    While 𝜃 has not converged, do 

       for t= 1 ,…., 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do 

         for i= 1,…., m do  

           sample real data 𝑥~𝑃𝑟, noise variable 𝑧~𝑃𝑧,  

           a random number 𝜖~𝑈[0,1] 

           𝑥̃ ← 𝐺𝜃(𝑧) 

           𝑥   ← 𝜖𝑥 + (1 − 𝜖) 𝑥̃ 

           𝐿𝑖 ←   𝐷𝑤(𝑥̃) − 𝐷𝑤(𝑥) + 𝜆( | |∇𝑥̂ 𝐷𝑤(𝑥̂) | |2 − 1)2 

         end for 

         𝑤 ← 𝐴𝑑𝑎𝑚(∇𝑤  
1

𝑚
∑ 𝐿𝑖𝑚

𝑖=1 , 𝑤, 𝛼, 𝛽1, 𝛽2)  

       end for  

       sample a batch of noise variables {𝑧𝑖}
𝑖

𝑚
~𝑝(𝑧) 

       𝜃 ← 𝐴𝑑𝑎𝑚(∇𝜃  
1

𝑚
∑ −𝐷𝑤(𝐺𝜃(𝑧))𝑚

𝑖=1 , 𝜃, 𝛼, 𝛽1, 𝛽2)  

       sample batch of real data 𝑥~𝑃𝑟, generated data  

       𝑧~𝐺𝜃(𝑧), class label y 

       𝑥̃ ← 𝐺𝜃(𝑧) 

       𝐿𝑖 ←   𝐶𝐸(𝐶Θ(𝑥), 𝑦) +         𝜆 𝐶𝐸( 𝐶Θ(𝑥̃), 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶Θ(𝑥̃) > 𝑡)) 

      Θ ← 𝐴𝑑𝑎𝑚(∇Θ  
1

𝑚
∑ 𝐿𝑖𝑚

𝑖=1 , Θ) 

   end while 

The architectures of all three neural nets are independent. The generator, critic, and classifier 

have three hidden layers with ascending numbers of hidden units (256, 512, 1024) with 30 % 

dropout in a generator, with descending numbers of hidden units (256, 512, 1024) in critic and 

with (128,256,128) hidden units with 30% dropout in the classifier. The neural architecture 

remains the same in the binary and multiclass classification of the DDoS attacks. The generator 

and critic use "𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈" activation function with a negative slope coefficient (𝛼) equal to 0.2 

for hidden layers, while the classifier uses the normal "𝑅𝑒𝐿𝑈" activation function. The generator 
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and critic use "𝑡𝑎𝑛ℎ" activation for its terminal layers, while the classifier uses "𝑠𝑜𝑓𝑡𝑚𝑎𝑥" 

activation. The 𝑎𝑑𝑎𝑚 optimizer has been used to optimize the parameters of the model. We have 

trained the model with a batch size of 128, many critics parameter updates per generator update 

(𝑛_𝑐𝑟𝑖𝑡𝑖𝑐=5) with noise dimension=30, confidence threshold=0.2, and adversarial weight =0.1. 

The main goals of our algorithms are first to classify whether the incoming vector is an attack or 

a benign (Normal) data vector and second to classify the incoming data vector into different attack 

classes (4 DDoS attack classes and one benign class). The former is best known as binary 

classification, and the latter is termed multiclass classification. Furthermore, the third is to present 

a comparative analysis of applied algorithms. 

4.6.1.3 Data set 

There are no disclosed instances of DDoS attacks on the real EV infrastructure so far. 

Therefore, most cybersecurity researchers test their algorithms on datasets that closely fit the attack 

scenarios and the infrastructure setup. Also, the network architecture of the CPS system is not 

much different than the IT infrastructures. These datasets are created by emulating cyberattacks 

on the network testbed and represent the most up-to-date attack data. The CICIDS 2018  DDoS 

attack dataset is used for this research since it includes the recent DDoS attacks and closely 

matches the infrastructure setup of EV charging infrastructures.  

Before fetching the data into the EC-WCGAN, all the feature vectors are standardized using 

the Standard Scaler, which transforms the feature vectors into another feature space with zero mean 

and unit variance. The principal component analysis (PCA) has been implemented to convert 77 

hyperdimensional feature space to 30-dimensional lower hyperdimensional space. The 𝐿2 

normalizer has been implemented to scale individual samples to have a unit norm. After that, the 

attack classes have been one-hot encoded for appropriate representation. Finally, 70% of the data 
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has been used in training, and 30% has been used in testing. 

4.6.2 Results and Discussion 

The 5G-induced DDoS has been simulated in NetSim and MATLAB Simulink. In this work, 

all the coding for the detection and classification are run in Python 3.7.13 in the Google CollabPro 

with 12.68 GB RAM and 225.89 GB disk. The article serves two-fold goals, the first one predicting 

the DDoS attack and the second categorizing the incoming traffic into different classes of DDoS 

attack and normal packets for the EV charging infrastructures.  

 

Figure 4.20 Impacts of DDoS attacks launched at PV controller from 2-2.5 seconds, BES controller from 6-6.5 

seconds, and EV controller at 10 -10.5 seconds.  

Fig.4.20 represents the impact of the DDoS attack on the cyber-physical system of EVCS 

caused by the 500 ms delay in the 5G communication system. The attacker launches the attack on 
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the PV controller at t=2 seconds, lasting 500 ms. The observed impacts are the high-frequency 

oscillations in the power signal as in Fig. 4.20a, momentary voltage swing at DC bus voltage as in 

Fig. 4.20b, BES current surge as in Fig. 4.20c, and BES voltage drop as in Fig. 4.20d. Similarly, 

current and voltage spikes in the EV charging have been observed in Fig. 4.20e and Fig. 4.20f, 

respectively. However, due to PI controllers fixed upper and lower saturation thresholds, the DDoS 

attack at BES and EV controller has no impact. In contrast, the improperly tuned PI controllers 

with no saturation thresholds are found to be exploited.  

For the DDoS detection problem as well as the multiclass classification problem of DDoS, the 

EC-WCGAN is trained with the same architecture as described in section 4.5.1. However, the 

proposed architecture is trained for 200 epochs for the DDoS detection problem and 50 epochs for 

multiclass classification. 

4.6.2.1 Plot-based Responses 

 As in Fig. 4.21, at the start of training,  the generator and the critic suffer from a high loss as 

they have to optimize high Wasserstein loss due to the random noise vector passed to the generator. 

And as the training progresses, the loss decreases and is stabilized. The same holds for multiclass 

classification as well as in Fig. 4.22. Classifiers in binary and multiclass classification are trained 

with the actual data as long as the generator produces a plausible synthetic sample. That's why 

classifier error does not change much. 

As per Table 4.12 and Table 4.13, The classifier trained with WCGAN has more than 99% 

performance metrics such as precision, recall, and F1-score for DDoS detection and classification 

problems.  
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Figure 4.21 Generator, Critic, and Classifier loss during the training of binary classification (DDoS attack or 

Normal operation) 

 

Figure 4.22 Generator, Critic, and Classifier loss during the training of multiclass classification. 

Table 4.12       Classification metrics for DDoS Detection using EC-WCGAN 
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Attack 

Class 
Precision Recall F1-score support 

Benign 0.999935 0.998677 0.999306 430912 

DDoS 

Attack 
0.997097 0.999857 0.998475 195825 

 

Table 4.13 Classification metrics for multiclass classification using EC-WCGAN 

Attack Class Precision Recall F1-score support 

Benign 0.999916 0.998689 0.999302 430912 

DoS attacks-

GoldenEye 
0.995257 0.999127 0.997188 12600 

DoS attacks-Hulk 0.996080 0.999645 0.997859 138018 

DoS attacks-

SlowHTTPTest 
0.999881 1.00000 

0.999940 
41927 

DoS attacks-

Slowloris 
0.994787 0.989024 0.991897 3280 

 

4.6.2.2 Performance comparison with DNN and LSTM Algorithm 

Unlike our previous work at [33], the proposed method surpassed the deep learning-based IDS 

performance metrics in detection and classification tasks. We observed that the low sample class 

did not perform better, but the proposed model seems to be a good fit as it enhances the 

performance of the low sample class. Also, the proposed model has similar or superior 

performance compared to the LSTM-based IDS in the same paper. Moreover, The proposed model 

only uses 30 best features as opposed to all 76 features used by our previous work. 
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Figure 4.23 Comparative performance of EC-WCGAN with existing DL models 

The EC-WCGAN has a 0.73 % increment in detection accuracy and a 5.5 % decrement in loss 

with respect to DNN. Also, it exhibits comparable performance metrics with LSTM, trailing the 

detection accuracy by 0.0035% and loss by 0.019%. The blue bars in Fig. 4.23 presents the binary 

DDoS detection accuracy of various DL and proposed method. Similarly, EC-WCGAN has the 

highest DDOS classification accuracy, with a 1.01 % increment in classification accuracy with 

respect to DNN and a 0.81% increment with respect to LSTM. Also, the proposed method has a 

10.2% reduction in average loss as compared to the DNN and a 0.098% decrement with respect to 

LSTM. 

4.7 Chapter Conclusion  

This section presents different cyberattack detection algorithms for the EVCS in the network 

and the host. We integrated the DL-based classifier with WCGAN based model and trained the 

classifier with the generator to solve the DDoS detection and classification task in EV 

infrastructure. The proposed EC-WCGAN-based IDS outperformed another DNN-based IDS in 
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terms of accuracy, precision, recall, and F1-score for the binary as well as multiclass classification 

and achieved the desired accuracy of around 99.9%. Also, the proposed model has comparable 

performance with LSTM and improved DDoS classification accuracy. The main advantage of the 

proposed method is it is well-suited for low-sample data classification. Unlike DL-based models 

such as DNN and LSTM, EC-WCGAN performs better with just 30-dimensional features as 

opposed to 76-dimensional features in DL methods. This application could safeguard the EV 

infrastructure and its stakeholders from possible cyber threats. Adding new kinds of attack data in 

training, the proposed model could easily scale up to detect more diverse attacks. It ensures the 

scalability and interoperability of our model. The next chapter will focus on designing cyber-

defense and mitigation strategies for efficient attack recovery planning. 
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Chapter 5 Mitigation of Adverse Effects of Cyber-Attacks on Electric Vehicle Charging 

Station 

5.1 Introduction 

Cyber recovery planning for EVCS is a less studied and less explored area of cyber-physical 

systems, as transportation electrification is in the nascent deployment phase. The sophisticated 

computational intelligence detection is the primary step for cyber-physical security of EVCS, but 

challenges remain to address the defense and mitigations of attack impacts. Cyber defense and 

mitigations of cyberattack impacts during and after the attacks are the two important pillars of 

recovery planning.  Therefore, the mitigation of adverse effects of cyberattacks on EVCS should 

be addressed appropriately. All the past works do not contribute enough to the attack recovery, 

defense, and corrections in the EVCS. The major contributions of this chapter are as follows: It 

performs the impact analysis of the APT attacks engineered with domain expertise on standalone 

PV-powered EVCS.  Also, it develops and analyzes the cyber-enabled physical attack strategy to 

impact the entire charging process stealthily. A novel data-driven controller clone with a TD3-

based algorithm that could correct or take over the legacy controllers under APT detection has 

been proposed. Each agent is independent and can correct attacks on the corresponding legacy 

controller of  EVCS. The performance of the proposed TD3 based clones has been compared with 

that of  the benchmark DDPG clone. We envisioned the concept of embedded and distributed 

intelligence for critical legacy controllers. This chapter also introduces the more visible and less 

complex Bruteforce attack mitigation strategy with a human or automated agent in the loop for 

attack recovery planning. In addition, it introduces the concept of Controller clone for CPS attack 

recovery planning. 
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5.2 System Model and Mathematical Formulation 

We have designed the PV-powered off-the-grid standalone EVCS prototype comprised of PV, 

BES, and EV with an associated control strategy in Chapter 3. It has the SCADA system 

communicating with three isolated field controllers: PV, BES, and EV. The EVCS architecture, 

control circuitry, system formulation, and component modeling are available in Chapter 3 as well. 

These field controllers are responsible for the reliable and safe operation of EVCS and hold 

exploitable technical vulnerabilities. Using social engineering and/or reverse engineering, the 

adversary can poison the control signals reaching the physical controllers at EVCS either at the 

network level of the SCADA system or the physical infrastructure layer. On that note, the threat 

actors with domain expertise can launch vicious APT attacks on these legacy controllers. To deal 

with these APT, Reinforcement Learning can be the reasonable control paradigm. Fig. 5.1. depicts 

the working mechanisms of an individual DRL-based controller agent in EVCS and is valid for all 

controller agents: PV, BES, and EV agents. The detailed functionality and deployment of these 
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agents with states, rewards, and action information will be discussed in section 5.4.3.  

Figure 5.1  Proposed Detection and Defense based on DRL. 

5.2.1 Reinforcement Learning 

Reinforcement learning is a goal-directed, direct, adaptive control that maps observation into 

the actions to maximize the expected scalar reward founded on the notion of trial-and-error search 

and delayed reward [118]. As per Fig. 5.2., At each discrete time step t, with the given observation 

states 𝑠𝑡 ∈ S, the agent selects actions 𝑎𝑡 ∈ 𝐴 with respect to policy 𝜋: 𝑆 → 𝐴 receiving reward 𝑟𝑡 

and new state of the environment 𝑠𝑡+1.  The discounted sum of rewards  𝑅 is given in (5.1) where 

the discount factor 𝛾 ∈ [0,1] represents the priority of short term rewards.    
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Figure 5.2 The agent environment interaction of RL in a Markov Decision Process. 

𝑅 ≜  ∑ 𝛾𝑖−𝑡𝑟(𝑠𝑖, 𝑎𝑖)
𝑇
𝑖=𝑡   
  

(5. 1)  

Theorem 1: Markov Property 

Given the present, it states that the future is independent of the past. A state 𝑠𝑡 ∈ S is Markov 

if and only if as in (5.2) 

𝑃[𝑠𝑡+1|𝑠𝑡] ≜ 𝑃[𝑠𝑡+1|𝑠1, … . . , 𝑠𝑡]                                           (5. 2)  

Markov Decision Process (MDP) formally characterizes an environment in an RL where the 
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current state describes the process completely. An MDP is a tuple of  𝑀 = 〈𝑆, 𝐴, 𝑃, 𝑅, 𝛾 〉 Where S 

is a finite set of states, A is a finite set of actions, and P is a state transition probability referring to 

the likelihood of going to the next state s' from current state s after taking action a defined in (5.3). 

𝑃𝑠𝑠′ = 𝑃[𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 
                                           

(5. 3)  

     The goal of reinforcement learning is to find the optimal policy 𝜋𝜙 with parameter 𝜙 that 

maximizes the expected return as in (5.4). The parameterized policy 𝜋𝜙 for continuous control can 

be updated by taking the gradient of the expected reward  ∇𝜙 𝐽(𝜙)  as in (5.5). The actor or policy 

can be updated using a deterministic policy gradient algorithm in Actor-Critic methods. The critic 

or the value function , 𝑄𝜋(𝑠, 𝑎), is defined as the expected return while taking action a in state s 

and following the policy 𝜋 after that as in (5.6). One of the ways to learn the value function is to 

use a temporal difference learning in the Bellman equation that relates the value of the current 

state-action pair to the value of the next state-action pair as (5.7). As there are too many states and 

actions to store in memory in the large MDP, the value function can be approximated by using a 

differentiable function approximator 𝑄𝜃(𝑠, 𝑎). It is parameterized by 𝜃 as in (5.8). The parameter 

𝜃 can be updated by using Monti Carlo or Temporal difference learning. In this learning of DQN, 

𝜃 is updated by using a secondary frozen target network 𝑄𝜃′(𝑠, 𝑎) to maintain the fixed objective 

y over multiple updates, as in (5.9). The actions 𝑎′ are selected from the target actor-network 

𝜋𝜙′(𝑠′). The parameter 𝜃′ of the target network can be updated by exactly matching the weight of 

the current network or by some proportion 𝜏 at each timestep as in (5.10). 

𝐽(𝜙) = 𝔼𝑠𝑖~𝑝𝜋,𝑎𝑖~𝜋[𝑅0]                                           (5. 4)  

 

∇𝜙 𝐽(𝜙) = 𝔼𝑠~𝑝𝜋
[∇𝑎 𝑄𝜋(𝑠, 𝑎)|𝑎=𝜋(𝑠)∇𝜙𝜋𝜙(𝑠)] (5. 5)  
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𝑄𝜋(𝑠, 𝑎) = 𝔼𝑠𝑖~𝑝𝜋,𝑎𝑖~𝜋[𝑅𝑡|𝑠, 𝑎] (5. 6)  

 

𝑄𝜋(𝑠, 𝑎) = 𝑟 + 𝛾𝔼𝑠′,𝑎′[𝑄𝜋(𝑠′, 𝑎′)], 𝑎′~𝜋(𝑠′) 

 

(5. 7)  

 

𝑄𝜃(𝑠, 𝑎) ≈ 𝑄𝜋(𝑠, 𝑎) (5. 8)  

 

𝑦 = 𝑟 + 𝛾𝑄𝜃′(𝑠′, 𝑎′), 𝑎′~𝜋𝜙′(𝑠′) (5. 9)  

 

𝜃′ ⟵ 𝜏𝜃 + (1 − 𝜏)𝜃′ (5. 10)  

 

 

5.3 Attack Modeling  

The attacker's primary goal is to disrupt, damage, or freeze the critical controllers of EVCS. 

The attacker is assumed to poison/manipulate the critical parameters with sophisticated attacking 

tools and domain expertise. Most legacy controllers generate a critical control signal, i.e., the duty 

cycle that controls the switching of the high-frequency transistor switches. It is assumed that the 

attacker can control the number of controllers (𝑁𝑐 ∈ ℝ), the attack duration (𝑇𝑎 ∈ ℝ) and Types 

of the attack 𝑆𝑎 = {(𝐴𝑡, 𝐸𝑎)} once it exploited the critical control signals 𝒞 = {𝐶1, 𝐶2, . . , 𝐶𝑛} from 

controllers 𝑁1, 𝑁2, . . , 𝑁𝑛 . The attacker chooses the set of exploited resources 𝜁 from another set  

ℳ = {𝑁𝑐, 𝑇𝑎, 𝑆𝑎, 𝒞} in such a way as to minimize the critical functionality 𝐶𝐹 of the process as in 

(5.11). The attack Type 𝑆𝑎 can be a tuple of attack time 𝐴𝑡 = {𝑠𝑖𝑚, 𝑑𝑖𝑓𝑓} and engineered attack 

Types 𝐸𝑎 = {𝜏1, 𝜏2} where sim and diff refer to the attack that can be launched simultaneously and 

at different times, respectively, with attack Types 𝜏1 𝑎𝑛𝑑 𝜏2 defined in (5.12) and (5.13).  
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argmin
𝜁⊂ℳ

 𝐶𝐹  (5. 11)  

 

𝜏1 = Τ(𝛼) (5. 12)  

 

𝜏2 = 𝑐 (5. 13)  

 

Where Τ is some random function parameterized by parameters 𝛼 and c is some scalar 

constant. The function Τ is envisioned to generate the statistical randomness in the attack. With 

critical control signals of the controllers 𝒞 ∈ [𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡, 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡], it is wise for a stealthy 

attacker to design a similar kind of pseudorandom attack that intersects with the range of 𝒞. 

Pseudorandom number PRN (low_limit, up_limit, rep) fluctuates between the lower and upper 

bound, and repeating rep times serve the purpose. Similarly, c is the average of the upper and lower 

limit of the 𝒞. After finding the sets of optimal 𝜁, Finally, the attacker algebraically combines the 

attack signal 𝐸𝑎with the critical parameter set 𝒞 as per (5.14). 

𝑎𝑡𝑡𝑎𝑐𝑘𝑠𝑖𝑔𝑛𝑎𝑙 = 𝒞 ± 𝐸𝑎 subjected to 𝜁 

 

(5. 14)  

 

Table 5.1 Parameters for attack modeling 

Parameters Value 

𝑁𝑐 3 

𝑇𝑎 2 seconds 

𝑆𝑎 {𝑠𝑖𝑚, 𝑑𝑖𝑓𝑓} × {𝜏1, 𝜏2} 

𝒞 {𝔇𝑃𝑉 , 𝔇𝐵𝐸𝑆 , 𝔇𝐸𝑉} 
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We pragmatically chose the 𝜁 𝑎𝑛𝑑 𝐶𝐹 of the attack for this case, as in table 5.1, after repeated 

experimentation. Type I and Type II attacks are carefully engineered APT attacks with domain 

expertise. The Type I attack imposes the low-frequency attack on the duty cycles, while the Type 

II attack imposes the constant duty cycle attack. 

5.4. Proposed Mitigation Techniques 

5.4.1. Controller clone-based mitigation employing the DRL TD3 algorithm 

The data-driven digital clones for the physical controllers employing DRL-based TD3 

algorithms are trained and deployed in each critical controller that controls a dynamic system's 

critical functionality. Moreover, the clones employing TD3 agents are compared with the 

benchmark DDPG algorithm. Upon the threat incidence or operational anomaly, the rule-based or 

DL-based detection engine deploys the corrected control signal from the clones. It takes over the 

legacy controllers until the threat has been eliminated. The RL-based autonomous defense agent 

is employed for each controller whose primary purpose is to generate the corrected control signal 

upon incidences of cyberattacks and system anomalies. These controllers are designed for the mere 

to extreme adversarial setups such as APT or malware that could freeze/control the legacy 

𝐶𝐹 

Observed normalcy or stability of the 

process variables such as power, bus voltage, 

BES, and EV voltages and currents 

𝜏1 PRN(0, 1,10) 

𝜏2  0.5 

𝑇𝑦𝑝𝑒 𝐼 𝑎𝑡𝑡𝑎𝑐𝑘 = 𝒞 ± 𝐸𝑎 s.t. 𝜁(. 𝜏1) {𝔇𝑃𝑉 + 𝜏1, 𝔇𝐵𝐸𝑆 − 𝜏1, 𝔇𝐸𝑉 − 𝜏1} 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑎𝑡𝑡𝑎𝑐𝑘 = 𝒞 ± 𝐸𝑎 s.t.  𝜁(. 𝜏2) {𝔇𝑃𝑉 − 𝜏2, 𝔇𝐵𝐸𝑆 − 𝜏2, 𝔇𝐸𝑉 − 𝜏2} 
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controllers. The detailed functionality and deployment of these agents with states, rewards, and 

action information will be discussed in sections 5.4.1.3-5.4.1.5.  

 

5.4.1.1 Twin Delayed Deep Deterministic Policy Gradient (TD3)  

Actor-critic RL learns value function (as in value-based RL) and policy (as in policy-based 

RL) and is proven with better convergence properties, the ability to learn stochastic policy, and 

efficacy in hyperdimensional or continuous action space. The function approximation error in 

actor-critic RL leads to overestimated value estimates and suboptimal policies [119]. TD3 is the 

off-policy actor-critic RL designed for continuous action space to minimize the impact of 

overestimation bias on both actor-critic networks by implementing three tasks. The first is Clipped 

Double -Q Learning, where TD3 uses a minimum of two Q-values to form the target. The second 

one is the delayed policy updates of the target network. And the third one is the Target policy 

smoothing, where TD3 adds noise to the target action so that the target policy cannot exploit Q 

function error by smoothing out Q along the gradient of action. 

Algorithm 5.1: TD3 Algorithm 

Each proposed standalone control agent for EVCS follows the strict training protocol as follows.  

Initialize critic networks 𝑄 = [ 𝑄𝜃1
, 𝑄𝜃2

] and actor-network 𝜋𝜙 with random parameters 𝜃1, 𝜃2 𝑎𝑛𝑑 𝜙 

Initialize target networks 𝜃1
′ ⟵ 𝜃1,  𝜃2

′ ⟵ 𝜃2, 𝜙′ ⟵ 𝜙 

Initialize replay buffer ℬ 

for t=1 to T do  

Select action with exploration noise 𝑎~𝜋𝜙(𝑠) + 𝜖  where 𝜖~𝒩(0, 𝜎) 

Store transition tuple 〈𝑠, 𝑎, 𝑟, 𝑠′, 𝑑〉 into ℬ where d is the signal to indicate 𝑠′ is the terminal state 

      If 𝑠′ is the terminal state, reset environment state 

    Else randomly sample mini-batch of N transitions 

    〈𝑠, 𝑎, 𝑟, 𝑠′, 𝑑〉  from ℬ 

    Compute the target actions and compute targets: 

𝑎′(𝑠′) = 𝑐𝑙𝑖𝑝( 𝜇𝜙′(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖, −𝑐, 𝑐), 𝑎𝑙𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ), 𝜖~𝒩(0,1) 
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    𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑) min
𝑖=1,2

𝑄𝜃′
𝑖
 (𝑠′, 𝑎′(𝑠′)) 

Update critics Q-function by using one step of gradient descent:  

    θi ⟵ argmin𝜃𝑖
 ∇𝜃𝑖

 
1

|ℬ|
 ∑ ( 𝑄𝜃𝑖  (𝑠, 𝑎) −           𝑦(𝑟, 𝑠′, 𝑑) )〈𝑠,𝑎,𝑟,𝑠′,𝑑〉 ∈ℬ  

2
    

    If t mod policy_delay, then  

          Update 𝜙 by the deterministic policy gradient:   

∇𝜙 𝐽(𝜙) =  
1

|ℬ|
 ∑  ∇𝑎  𝑄𝜃𝑖

(𝑠, 𝑎)|𝑎=𝜇𝜙(𝑠) ∇ϕ 𝜋𝜙(𝑠) 

           Update target networks:  

  𝜃𝑖
′ ⟵ 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

′ 

  𝜙′ ⟵ 𝜏 𝜙 + (1 − 𝜏)𝜙′ 

        End if  

    End for    

5.4.1.2 Graphical representation of TD3 algorithm 

TD3 uses twin critic networks (critic 1 and critic 2) inspired by DRL with clipped Double Q-

Learning, where it takes the smallest Q-value of two critic networks to remove the overestimation 

bias in  𝑄𝜃𝑖
(𝑠, 𝑎). The concept of target networks is introduced to stabilize the agent training. The 

target network provides a stable objective and greater coverage of the training data, as DNN 

requires multiple gradient updates to converge [119]. Without the fixed target, the accumulated 

residual errors after each update produce divergent values when paired with a policy maximizing 

the value estimate. Therefore, TD3 uses delayed updates of the actor-network (policy update) 

compared to the critic network (value update), resulting in more stable training.  

The replay buffer stores the history of agent experience and randomly fetches the data in mini-

batches to update actor and critic networks. There are six neural networks in TD3: two critic 

networks, two target networks for two critics, an actor network, and a corresponding target network 

for the actor. Fig. 5.3 summarizes the graphical abstract of a TD3 agent. 
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Figure 5.3 Graphical representation of a TD3 agent. 

5.4.1.3 PV agent 

The design goal of the PV agent is to take over the infected MPPT controller and implement 

the optimized control policy to generate the duty cycle 𝔇𝑃𝑉(𝑡)  needed by the boost converter to 

have the least impact on the system. A PV agent continuously monitors the error ℯ𝑃(𝑡) and 

integrated errors 𝑒𝑖𝑛𝑡_𝑃(𝑡) between the PV output power 𝑃𝑃𝑉(𝑡) and reference power  𝑃𝑟𝑒𝑓(𝑡) as 

in (5.15) and (5.16). The objective of the PV agent is to find the optimal policy for the duty cycle 

that correctly transforms observation space into action space by maximizing the cumulative scalar 

reward. 

The output or action of the PV agent is the duty cycle with a linear quadratic regulator (LQR) 

as the instantaneous reward or cost function 𝑟𝑃𝑉(𝑡) as in (5.17). The 𝛼 = 0.01 and 𝛽 = 1 on 𝑟(𝑡) 

represent the negative penalty terms imposed on error and action, respectively. 𝑇𝑆 is the sampling 

time and is the same for each agent. 
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ℯ𝑃(𝑡) = 𝑃𝑟𝑒𝑓(𝑡) − 𝑃𝑃𝑉(𝑡) (5. 15)  

 

𝑒𝑖𝑛𝑡_𝑃(𝑡) = ∑ ℯ𝑃(𝑡)

𝑇𝑠

 
(5. 16)  

 

𝑟𝑃𝑉(𝑡) = 𝛼ℯ𝑃(𝑡)2 + 𝛽𝔇𝑃𝑉(𝑡)2 (5. 17)  

 

The rule/threshold-based detection engine derived pragmatically for the PV agent will 

determine the attack event if observed power falls beyond the range (1020,1045) AND the duty of 

MPPT falls beyond the range (0.200,0.201). 

 

5.4.1.4 BES agent 

The design goal of the BES agent is to generate the corrected duty cycle 𝔇𝐵𝐸𝑆(𝑡) for the buck-

boost converter under the threat incidence. Similar to the PV agent, the BES agent observes the 

states of  the error ℯ𝑉(𝑡) and integrated errors 𝑒𝑖𝑛𝑡_𝑉(𝑡) between the desired reference bus voltage 

𝑉𝑏𝑢𝑠_𝑟𝑒𝑓(𝑡) and the bus voltage 𝑉𝑏𝑢𝑠(𝑡) as in (5.18) and (5.19). The optimal control policy that 

maps the observation space to the action space is found by minimizing the expected value of the 

cost function 𝑟𝐵𝐸𝑆(𝑡), which is the linear quadratic regulator function. The 𝛼 = 0.01 and 𝛽 = 1 on 

𝑟𝐵𝐸𝑆(𝑡) represent the negative penalty terms imposed on error and action, respectively, as in (5.20).  

ℯ𝑉(𝑡) = 𝑉𝑏𝑢𝑠_𝑟𝑒𝑓(𝑡) − 𝑉𝑏𝑢𝑠(𝑡) (5. 18)  

 

𝑒𝑖𝑛𝑡_𝑉 = ∑ ℯ𝑉(𝑡)

𝑇𝑠

 
(5. 19)  

 

𝑟𝐵𝐸𝑆(𝑡) = 𝛼ℯ𝑉(𝑡)2 + 𝛽𝔇𝐵𝐸𝑆(𝑡)2  (5. 20)  
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The rule/threshold-based detection engine derived pragmatically for the BES agent will 

determine the attack event if observed power falls beyond the range (1020,1045) and the PI 

controller's duty falls beyond the range (0.7,0.71). 

5.4.1.5 EV agent 

The design goal of the EV agent is to generate the corrected duty cycle 𝔇𝐸𝑉(𝑡) for a buck 

converter if the legacy EV charger got infected. Similar to the previous agent, the EV agent 

observes the states of  the error ℯ𝑉𝐸𝑉(𝑡) and integrated errors 𝑒𝑖𝑛𝑡_𝑉𝐸𝑉(𝑡) between the desired 

reference battery voltage 𝑉𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑡) and the bus voltage 𝑉𝑏𝑎𝑡𝑡(𝑡) as in (5.21) and (5.22). The 

optimal control policy that maps the observation space to the action space is found by minimizing 

the expected value of the cost function 𝑟𝐸𝑉(𝑡), which is the linear quadratic regulator function. The 

𝛼 = 0.01 and 𝛽 = 1 on 𝑟𝐸𝑉(𝑡) represent the negative penalty terms imposed on error and action, 

respectively as in (5.23). 

ℯ𝑉𝐸𝑉(𝑡) = 𝑉𝑏𝑎𝑡𝑡_𝑟𝑒𝑓(𝑡) − 𝑉𝑏𝑎𝑡𝑡(𝑡) (5. 21)  

 

𝑒𝑖𝑛𝑡_𝑉𝐸𝑉 = ∑ ℯ𝑉𝐸𝑉(𝑡)

𝑇𝑠

 
(5. 22)  

 

𝑟𝐸𝑉(𝑡) = 𝛼ℯ𝑉𝐸𝑉(𝑡)2 + 𝛽𝔇𝐸𝑉(𝑡)2 (5. 23)  

 

 

The rule/threshold-based detection engine derived pragmatically for the EV agent will 

determine the attack event if observed power falls beyond the range (1020,1045) and the PI 

controller's duty falls beyond the operating range (0.54,0.55). Table 5.2 summarizes the 

observations, reward, and action information of multiple TD3 agents. 
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Table 5.2 Summary of multiple independent agents  

Agents 

Observations 

(𝓢) 

Reward 

(𝓡) 

Action(𝓐) 

PV Agent {𝑒𝑃, 𝑒𝑖𝑛𝑡_𝑃} {𝑟𝑃𝑉} {𝔇𝑃𝑉} 

BES Agent {𝑒𝑉 , 𝑒𝑖𝑛𝑡_𝑉} {𝑟𝐵𝐸𝑆} {𝔇𝐵𝐸𝑆} 

EV Agent {𝑒𝑉𝐸𝑉 , 𝑒𝑖𝑛𝑡_𝑉𝐸𝑉}  {𝑟𝐸𝑉} {𝔇𝐸𝑉} 

 

5.5 Experimental setups for the TD3-Based method 

The TD3-based agents are built with specific neural architectures for critics and actor neural 

networks with similar architecture for the target neural network. Then, the layerwise actors' and 

critics' neural networks with their targets are properly engineered and parameterized with desired 

activation functions and appropriate initial weights and biases. Finally, the hyperparameters are 

carefully selected to train the agents optimally after the series of training up to 500 episodes. 

Similarly, all the hyperparameters and neural architectures are kept the same in the DDPG agents 

for accurate comparison. 

5.5.1 Configurations of TD3 Critic networks  

A TD3 critic estimates the optimal Q-value based on the observations and actions received by 

the parameterized DNN. Fig. 5.4 depicts the structure of a single critic network we have created. 

Before concatenating those features, the state and action information goes through some local 

neural network transformations. After concatenation, it goes through another set of neural 

networks to produce the Q-value function. The network that takes state info has three fully 

connected hidden layers with respective hidden units of 64, 32, 16, and the ReLU activation layer 

between them. Also, the action info is passed through the fully connected neural network with 64 

hidden units. After the concatenation, the transformed state and action info pass-through two fully 
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connected hidden layers with 64 and 32 hidden units, respectively, with the ReLU layer in between 

to produce the Q-value. We then create the critic representation using specified neural networks 

and options.  

5.5.2 Configurations of TD3 Actor networks 

The actor-networks in the TD3 agent decide which action to take based on the observations, 

i.e., policy mapping. We have created a DNN with three fully connected hidden layers with 

respective hidden units of 64, 32, and units equal to the number of actions, i.e., 1 in our case, with 

ReLU layers in between. In addition, a sigmoid layer is added since the output of the action ranges 

from 0 to 1 for the duty cycle in our case. Finally, the scaling layer scales the output from the 

sigmoid layer with a scale of 1 and a bias of 0.5. The scale is set to the range of the action signal, 

and the bias is set to half a range. We then create the actor representation using specified neural 

networks and options as in Fig. 5.5. Table 5.3 presents the options of actor-network, critic network 

as well as training of agent. Table 5.4 presents the hyperparameters setting to administer the 

training. 
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Figure 5.4 Structure of proposed a) Critic-Network b) Actor-Network. 

 

Table 5.3 Actor-Critic Network parameters 

 Optimizer 
Learning 

Rate 

Gradient 

Threshold  

L2 Regularization 

Factor 

Critic Adam 0.001 1 0.0001  

Actor  Adam 0.001 1 0.00001 

 

Table  5.4 Training parameters setting 

Discount factor 0.99 

Experience buffer Length 106 

Mini-batch size 128 

Number of steps to look ahead 10 

Target smooth factor 5𝑒−3 

Target update frequency 2 

Exploration variance  0.01 

Target Policy smooth variance 0.2 
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5.5.3 Training an agent 

The agent trains by randomly selecting mini-batches of size 128 with a discount factor of 0.99 

towards the long-term reward from the replay buffer or experience buffer with a maximum 

capacity of 1e6. The target critics and actors are time-delayed clones of the critics and the actor 

networks with a smoothing factor of 0.005 that update every two agent steps during training. The 

agent uses a Gaussian action noise model with a specified noise variance and decay rate to explore 

the action space during training. The agent also uses the specified Gaussian noise model to smooth 

the target policy updates. Each training consists of 500 episodes, with each episode consisting of 

nearly 170 steps. The agent training is terminated when the agent receives an average cumulative 

reward of more than 800 over 100 consecutive episodes. 

5.6 Benchmark Deep Deterministic Policy Gradient (DDPG) 

Deep Q Network (DQN) has been a proven RL method capable of solving complex problems 

on par with human-level performance, as proven in Atari video games. However, DQN only solves 

the problem with high-dimensional observation space and low-dimensional discrete action space. 

For the continuous control problem that requires an iterative optimization process at every step to 

find the action that maximizes the action-value function, DQN can not be applied 

straightforwardly. The DDPG is a model-free, online, off-policy actor-critic algorithm that can 

learn the optimal policies to maximize the expected cumulative rewards in high dimensional 

continuous action spaces. While training, a DDPG agent updates the critic and actor parameters at 

each time step. It stores past experiences in the circular experience buffer, and the agent updates 

the critic and actor parameters using mini-batches of experiences selected randomly from the 

buffer. After that, in each time step, the action chosen by the policy with a stochastic noise model 

is perturbed. 
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Algorithm 5.2:  DDPG Algorithm 

Initialize critic networks Q(s, a|θQ ) and actor-network  μ(s|ϕμ) with random parameters θ and ϕ 

Initialize target networks Q′ and μ′ with  θ′ ⟵ θ, ϕ′ ⟵ ϕ 

Initialize replay buffer ℬ 

for t=1 to T, do  

Select action with exploration noise a~πϕ(s) + ϵ  where ϵ~𝒩(0, σ) and execute a in the EVCS 

environment 

Store transition tuple 〈s, a, r, s′, d〉 into ℬ where d is the signal to indicate s′ is the terminal state 

      If s′ is the terminal state, reset environment state 

   Else randomly sample mini-batch of N transitions    〈s, a, r, s′, d〉  from ℬ 

      Compute the target: 

        y(r, s′, d) = r + γ(1 − d)Q′(s′, μ′(s′)) 

     Update critic Q-function by using one step of gradient    descent:  

        θ ⟵ argminθ ∇θi
 

1

|ℬ|
 ∑ ( Qθi  (s, a) −           y(r, s′, d) )〈s,a,r,s′,d〉 ∈ℬ  

2
    

      Update the actor policy ϕ by the deterministic policy   gradient:   

∇ϕ J(ϕ) =  
1

|ℬ|
 ∑  ∇a Qθi

(s, a)|a=μϕ(s) ∇ϕ πϕ(s) 

           Update target networks:  

  θ′ ⟵ τθ + (1 − τ)θ′ 

  ϕ′ ⟵ τ ϕ + (1 − τ)ϕ′     

End for 

 

5.7 Computational performance Comparison of DDPG and TD3 

The proposed digital clones with DRL agents: the PV agent, the BES agent, and the EV agent, 

train individually as the agents should learn to act independently employing both DDPG and TD3 

algorithms. The motive behind designing the independent agents is that they should be able to 

work with legacy controllers ( in case only a few controllers got infected) and other trained RL 

agents (all legacy controllers got infected). We train the agents as configured in sections 5.4.3.3, 

5.4.3.4, and 5.4.35 independently for both DDPG and TD3 algorithms.  
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Since we are about to engineer independent agents, there won't be a collaborative or 

adversarial learning paradigm such as the concept of hierarchical (global and local) rewards. 

Instead, we retrain the EV agent with the trained RL agents PV and BES agents so that it can 

upgrade the learned policy. After that, we test various combinations of DDPG/TD3 agents and 

legacy controllers to assess the control actions on the EVCS. Finally, the trained agents are 

deployed with the tendency to upgrade the policy while EVCS is running. All the computations 

and simulations are performed in Matlab 2022 b and Simulink 10.6 model version 5.6  in Dell XPS 

15 7590 machine with i7-9750H CPU @2.6 GHz and 16GB RAM. Each agent took approximately 

6.68 hours of training for the 500 episodes under DDPG and TD3. The TD3 training progress in 

average rewards is shown in Fig. 5.5 with stabilized reward within 99 episodes for the PV agent, 

136 episodes for the BES agent, and 101 episodes for the EV agent. However, the clones trained 

with DDPG exhibit poor convergence stability due to its higher sensitivity towards the 

hyperparameter settings though it is trained with the same hyperparameters and observation spaces 

as in TD3. The optimal episodes for training DDPG agents are 398 for the PV agent, 22 for the 

BES agent, and 348 for the EV agent after analyzing the rewards and Q-values as in Fig. 5.5, 5.6, 

and 5.7. The incremental bias and suboptimal policy seen in DDPG training are due to the 

overestimation of Q-values as it updates the Q-value as in DQN, as evident in episode rewards of 

Fig.5.6 and estimated Q-values in Fig. 5.7. That’s the reason the DDPG has myriads of suboptimal 

overshoots till the end of training progression. Therefore, the near-optimal policy under DDPG 

training can be found in 398 epochs for the PV agent, 22 episodes for the BES, and 351 episodes 

for the EV agent under the horizon of 500 episodes. 
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Figure 5.5 Training performance of the DDPG and TD3 Agents in terms of average rewards. 
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Figure 5.6 Training performance of the DDPG and TD3 Agents in terms of episode rewards. 



127 

 

 
Figure 5.7 Training performance of the DDPG and TD3 Agents in terms of episode Q-values. 

 

Unlike heavily parameterized, complex, and black box algorithms, more reliable, 

interpretable, and visible attack recovery or mitigation approaches are proposed to deal with the 

impact of cyberattacks on EVCS. The Bruteforce and Controller clone-based mitigation 

approaches are discussed in subsections 5.8 and 5.9. 

5.8 Bruteforce mitigation 

The Bruteforce mitigation is the manual or automatic override of the control signal under 

cyber-attack detection. This approach might be good for the stable and convergent linear time-

invariant system. This approach learns the critical control signals from analyzing repeated 

experimentations with human domain experts. These learned signals are released as a corrective 
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measure to the physical controllers under threat detection. The operator can estimate the corrective 

duty cycles for each Controller 𝒞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 by examining the repeated experimentation or by using 

the Monte-Carlo simulation as 𝒞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 = {𝔇𝑃𝑉, 𝔇𝐸𝑉, 𝔇𝐵𝐸𝑆 }. In case of attack detection, the 

operator can override the 𝒞 with 𝒞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒. The working logic of brute force mitigation is given 

below. 

If (𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝔇(.) < 𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) &&               (𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝐶𝐹(.) <

𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

 Continue with Legacy controllers 𝒞 , i.e., duty=𝔇(.); 

Else  

 Correct the duty cycle with the 𝒞𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 , i.e., duty =𝔇(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑); 

end 

After careful examination of the process, the desired control signals, the duty cycle for PV, 

BES, and EV controller, are 0.2, 0.7, and 0.55, respectively, for the stable operation of EVCS. This 

approach has less complexity and less implementation cost. This method can restore the EVCS 

operation under a constrained environment, with the following limitations. 

• This method is purely static and not intelligent (it does not have learning capability); therefore, 

it is not adaptive. 

• Small changes in operational conditions or minor flaws can fail the model, i.e., very high failure 

susceptibility. 

• This model is prone to failure under the APT or ransomware attack that can freeze the 

controllers where manual overriding is no longer an option. 
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5.9 Controller clone-based mitigation 

We develop the concept of Controller clones/twins to deal with the freezing of controllers due 

to worst-case cyberattacks such as APT and Ransomware. Unlike brute force mitigation, this 

model has an exact clone of the controllers, meaning the same operational technologies and 

configurations in case one fails; the clone can take over. The controller clones are the reserved 

physical backup controllers preserved for the cyberattack recovery and are given by 𝐶𝑐𝑙𝑜𝑛𝑒 =

{𝐶}𝑁
𝑖=1 where N is the number of operating controllers. The control logic of this method is given 

below. 

If (𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝔇(.) < 𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) &&               (𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝐶𝐹(.) <

𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

 Continue with Legacy controllers 𝒞 , i.e., duty=𝔇(.); 

Else  

 Replace the duty cycle with the 𝒞𝑐𝑙𝑜𝑛𝑒  

end 

For the EVCS, exact physical copies of controllers with the same configurations and operating 

principles are deployed under the attack detection on the operating controllers. This method 

outperforms the Bruteforce-based control. Also, the EVCS has to pay a huge price for attack 

recovery compared to the Controller clone implementation cost. Therefore, the industry can easily 

adopt the mitigation. However, this method has the following limitations.  

• The Controller clones share the same vulnerabilities as the operating ones; hence, they can be 

easily exploitable.  
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• These are adaptive; however, they are not intelligent enough to have learning capabilities.  

• Scalability is the issue. 

• Changes in operational setpoints and configurations update need the retuning of the controllers. 

• High economic overhead is needed to set up the entire clone of the operating controllers. 

5.10 Simulation Results and Discussion 

5.10.1 Type I and Type II Attacks  

Fig. 5.8 summarizes the Type I and Type II attacks launched at different controllers 

simultaneously and at different times. The Type I attack is the low-frequency attack at the duty 

cycles of the controllers, while Type II is the constant attack. The BES duty cycle is found to be 

more vulnerable to both kinds of attacks than the duty cycles of other controllers. The Type I attack 

has an irreversible impact on the BES controller as opposed to the Type II attack on the BES 

controller and both attacks on other controllers. 
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Figure 5.8 Impacts of Type I and Type II attacks on duty cycles of different controllers. 

5.10.2 Mitigation results and analysis  of proposed TD3-based clones vs. DDPG clones 

5.10.2.1 Type I Attack on Different Times and Mitigation Analysis 

 The Type I attack was launched in three different controllers PV controller at 5-7 seconds, 

BES controller from 9-11 seconds, and EV controller from 13-15 seconds, as shown in Fig. 5.9. 

Tables 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 present the corresponding statistics of important electrical 

parameters. The Type I attack has impacted all the critical electrical parameters. It forces the power 

to have approx. 2.99k times the normal range, 7.5k times the normal interquartile range (IQR), and 

a median less than 18.4 Watts to the median at regular operation. The proposed mitigation restores 

the power with approximate errors of 0.002 watts in the median, 0.0001 watts in IQR, and -2.44 

watts in range with the one at normal operations, as evident in Table 5.5. 

Similarly, the Type I attack has an inverse impact on bus voltage with a range elevation of 
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approximately 158 V, IQR elevation of 1.63 V, and median reduction of 0.0052 V compared to 

the base operating conditions. The proposed mitigation can restore the bus voltage with 

approximate errors of 0 V in the median, 0.0001 V in IQR, and 0.5288 V in the range with the one 

at normal operations, as per Table 5.6. 

 

Figure 5.9 Impacts of Type I attack launched at PV controller from 5-7 seconds, BES controller from 9-11 

seconds, and EV controller from 13-15 seconds and the mitigation performance during the attack 

 

Table 5.5 PV power statistics in Watt during normal, attack and mitigation  

 

 
Range  IQR median 

Normal [1043.59,1044.60] [1043.593,1043.599] 1043.5996 

Attack  [1768.23,1255.32] [998.97,1043.71] 1025.1726 

Mitigation [1040.15,1043.60] [1043.594,1043.5998] 1043.5969 
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Table 5.6 DC bus voltage statistics in Volts during normal, attack and mitigation  

 Range  IQR median 

Normal [52.7593, 52.761] [52.7596,52.7607] 52.7605 

Attack  [-0.23051,157.502] [52.2102,53.8464] 52.7553 

Mitigation [52.608,53.1379] [52.7596,52.7608] 52.7605 

 

Also, as per table 5.7, the Type I attack has an inverse impact on BES current with a range 

elevation of approximately 683 A, IQR elevation of 14 A, and median increment of 0.1 A 

compared to the base operating conditions. The proposed mitigation can restore the BES current 

with approximate errors of 0.0001 A in the median, 0.0013 A in IQR, and 2.4159 A in the range 

with the one at normal operations. 

Table 5.7 BES current statistics in Ampere during normal, attack, and mitigation  

 Range  IQR median 

Normal [-6.947,-6.9435] [-6.9435,-6.944] -6.9452 

Attack  [-193.294,489.396] [-8.816,- 6.358] -6.8273 

Mitigation [-9.143,-6.723] [-6.9456, -6.944] -6.945 

 

Likewise, the Type I attack has an inverse impact on BES voltage with a range elevation of 

approximately 4.3434 V, IQR elevation of 0.5747 V, and median decrement by 0.0914 V 

compared to the base operating conditions. The proposed mitigation can restore the BES current 

with approximate errors of 0.000 V in the median, 0.0102 V in IQR, and 0.0251V in the range 

with the one at normal operations evident from Table 5.8. 

Table 5.8 BES voltage statistics in Volts during a normal, attack, and mitigation  

 Range  IQR median 

Normal [52.0586,52.0588] [52.0586,52.0588] 52.0587 

Attack [47.9982,52.3418] [51.5319,52.1066] 51.9673 

Mitigation [52.0586,52.0839] [52.0586,52.069] 52.0587 

 

Table 5.9 shows that the Type I attack has an inverse impact on EV current with a range 

elevation of approximately 241.2919 A, IQR elevation of 8.0385 A, and median increment of 
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2.0851 A compared to the base operating conditions. The proposed mitigation can restore the EV 

current with approximate errors of 3e-4 V in the median, 0.0015 A in IQR, and 4.0534 A in the 

range with the one at normal operations. 

Table 5.10 implies that the Type I attack has an inverse impact on EV voltage with a range 

elevation of approximately 1.4074 V, IQR elevation of 0.1438 V, and median decrement of 0.0602 

V compared to the base operating conditions. The proposed mitigation can restore the BES current 

with approximate errors of 4.0000e-04 V in the median, 0.0193 V in IQR, and 0.0472 V in the 

range with the one at normal operations. 

Table 5.9 EV current statistics in Ampere during normal, attack, and mitigation  

 Range IQR median 

Normal [-18.674,-18.668] [-18.674,-18.669] -18.6713 

Attack [-241.298,5.26e-5] [-19.531, -11.488] -16.5862 

Mitigation [-18.9473,-14.887] [-18.674,-18.671] -18.6716 

 

Table 5.10 EV voltage statistics in Volts during normal, attack, and mitigation  

 Range IQR median 

Normal [26.312,26.313] [26.312,26.313] 26.3126 

Attack [26.056,27.465] [26.199,26.344] 26.2524 

Mitigation [26.265,26.313] [26.293,26.313] 26.3122 

 5. 10.2.2 Type I Attack simultaneously on all controllers and mitigation analysis 

The Type I attack was launched simultaneously in three different controllers at 5-7 seconds, 

as shown in Fig. 5.10. The Type II attack that launches at different times has impacted all the 

critical electrical parameters.  
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Figure 5.10 Impacts of Type I attack launched at PV controller from 5-7 seconds, BES controller from 5-7 

seconds, and EV controller from 5-7 seconds and the mitigation performance during the attack. 

5.10.2.3 Type II Attack on different times and mitigation analysis 

The Type II attack was launched in three different controllers PV controller at 5-7 seconds, 

the BES controller from 9-11 seconds, and the EV controller from 13-15 seconds, as shown in Fig. 

5.11.  
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Figure 5.11 Impacts of Type II attack launched at PV controller from 5-7 seconds, BES controller from 9-11 

seconds, and EV controller from 13-15 seconds and the mitigation performance during the attack. 

5.10.2.4 Type II Attack simultaneously on all controllers and mitigation analysis 

The Type II attack was launched simultaneously in three different controllers at 5-7 seconds, 

as shown in Fig. 5.12.  
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Figure 5.12 Impacts of Type II attack launched at PV controller from 5-7 seconds, BES controller from 5-7 

seconds, and EV controller from 5-7 seconds and the mitigation performance during the attack. 

5.10.2.5 Performance Comparison of Various Proposed Methods  

Fig. 5.13 depicts the control actions, i.e., duty cycles of the legacy controllers employed in the 

EVCS and trained clones with DDPG and TD3 algorithms. Under normal operation, the legacy 

MPPT controller at PV stabilizes the duty cycle to 0.2, around 4.8 seconds. In contrast, the digital 

clone trained with DDPG and TD3 settles at a duty cycle of 0.4 and 0.495, respectively, from the 

beginning, as in Fig. 5.13 a. Fig. 5.13 b clearly shows the superior control action of TD3 duty cycle 

converged to 0.99 from the beginning as compared to DDPG BES clone converged to same after 

4.2 seconds. The digital clone of the EV controller trained with DDPG and TD3 has produced the 

same control action, i.e., the duty cycle of 0.5. The legacy controllers are manually tuned heuristic-
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based control that stabilizes the EVCS operation; however, it takes some time to stabilize the duty 

cycles. Unlike, the control actions taken by DDPG and TD3 are data-driven as they optimize the 

control policy based on maximizing the expected long-term rewards. Therefore, clones are free to 

choose the duty cycles that perfectly drive the normal operation of the EVCS.  

Table 5.11 presents the features of the proposed mitigation methods with respect to other 

related works. Our proposed air-gapped TD3-based mitigation has surpassed the various state-of-

the-art methods in attack detection with online mitigation with embedded intelligence.  

 

 
Figure 5.13 Control actions of Legacy controllers, DDPG clone, and TD3 clone mitigations. 

Table 5.11 Comparison between the proposed and the STATE-OF-THE-ART algorithms 

Solution 
Attack 

detection  

Coordinat

ed Attacks 

Online 

Mitigation 

Embedded 

Intelligence 

Air 

gapped 

TD3 (our work) √√ √√ √√ √√    √√ 

DDPG 

(Benchmark) 
√√ √√ √√ X   √√ 

HIDS for EVCS √√ √√ X √√    √√ 
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[40] 

NIDS for EVCS 

[7] 
√√ √√ X X     X 

Weighted attack 

defense tree [46] 
√√ √√ X X     X 

 

5.10.3 Mitigation results and analysis of the Bruteforce and controller clone 

 Fig. 5.14 depicts the control actions, i.e., duty cycles of two proposed methods under the 

Type-II attack at all controllers from 5-7 seconds. For the PV duty cycle correction, the Bruteforce 

mitigation provides a constant duty cycle of 0.2 no matter what happens to the process. In contrast, 

the controller clone settles at a duty cycle of 0.2 after nearly 5 seconds. Hence, one can implement 

the heuristics-based Bruteforce method without needing additional controllers for simplicity. In 

contrast, the controller clone-based approach provides the same functionalities as the deployed 

controllers with added cost. Fig. 5.15 presents the performance of the proposed mitigation methods 

during the Type I attack launched at different controllers simultaneously on different operating 

parameters of the EVCS. Fig. 5.16 shows the performance evaluation of proposed mitigations 

against the Type II attacks. Table 5.12 compares the performance of the proposed models with 

superior mitigation performance for Controller clones. The performance scores such as R-squared, 

Mean Absolute Error (MAE), Median Absolute Error (MDAE), Mean Squared Error (MSE), and 

Mean Absolute Percentage Error (MAPE) of the Mitigation duty cycles are obtained with respect 

to the duty cycle of PV, BES and EV controller during the normal operating conditions.  
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Figure 5.14 Corrective duty cycles of Bruteforce and Controller clone mitigations 
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Figure 5.15 Mitigation performance during the Type I attack launched at PV controller from 5-7 seconds, BES 

controller from 5-7 seconds, and EV controller from 5-7 seconds. 

Table 5.12 Performance comparison of proposed Bruteforce and Clone Mitigations 

 Bruteforce(PV,BES,EV) Clone(PV,BES,EV) 

R-squared -0.317,-0.001,-0.037 1,1,1 

MAE 0.039,0,0.002 0,0,0 

MDAE 0,0,0 0,0,0 

MSE 0.006,0,0 0,0,0 

MAPE 0.11,0,0.04 0,0,0 
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Figure 5.16 Mitigation performance during the Type II attack launched at the PV controller from 5-7 seconds, 

BES controller from 5-7 seconds, and EV controller from 5-7 seconds. 

5.11 Chapter Conclusion  

The chapter proposed and assessed different classical and data-driven mitigation approaches for 

the cyber-physical attack at EVCS. The repetitive low-frequency attack (Type-I) on all 

controllers, at different times or simultaneously, has adverse impacts on the critical 

functionalities of all controllers with the tendency to damage the EVCS with an upsurge/down 

surge in electrical signals. The proposed mitigations successfully restore the EVCS operation by 

correcting the control signals of legacy controllers. The constant attack (Type-II) on controllers 

at different times or simultaneously corrupts and damages the electrical components related to 
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the legacy control actions. The proposed methods attempt to correct the control signals. The 

proposed methods successfully responded to the APT attacks with the least error margin. Clone-

based mitigation surpasses the performance of Bruteforce mitigation as examined with various 

error measures. The proposed Bruteforce-based mitigation is simple but can't adapt to changes 

in system dynamics. The Controller clone can restore the operation; however, it shares the same 

vulnerabilities as the legacy controllers. Data-driven approaches were proposed to solve the 

problem of the previous two methods. The proposed TD3-based software clones can take over 

the legacy controllers under APT attacks or even under anomalous behavior. The TD3-based 

clones are superior to DDPG-based clones in terms of convergence, stability, hyperparameter 

sensitivity, and mitigation actions. The proposed multiple clones can learn and relearn the control 

policy online, resulting from changes in the EVCS environment or configurations. This is not 

the case in traditional legacy controllers. The detection engine deploys the agent based on the 

infection of the legacy controller. The sophistication and accuracy of the detection engine can 

be upgraded by using AI. The proposed clones successfully restored regular operation under the 

APT attacks and system anomaly on the legacy EVCS controllers. Finally, the proposed digital 

clones with TD3 outperform the benchmark DDPG-based clones in terms of stability, 

convergence, and mitigation performance. 

The next Chapter presents the deep learning perspective and threat intelligence in the CAV 

paradigm. 
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Chapter 6 A Deep Learning Perspective on Connected Automated Vehicle Cybersecurity 

and Threat Intelligence 

6.1 Introduction 

The connected and autonomous vehicle (CAV) is the next-generation mobility service—

powered by intelligent automation and robust communication--aimed at replacing human-

maneuvered vehicles with the software agent matching or even exceeding the human-level 

intelligence, control, and agility with the least decision errors possible. US National Safety Council 

(NSC) [120] reported a 24 %  spike in roadway death rates from 2019 despite miles driven 

dropping 13%,  the highest increment in 96 years in the US since 1924. Most of the time, it’s from 

human error. NSC estimated that 4.8 million additional roadway users were seriously injured, 

costing $474 billion in 2020. The next generation of transportation and mobility envisions a safe, 

reliable, agile, automated, trustworthy, and service-based mobility architecture. The architecture 

should be able to eliminate human errors by using intelligent decision-making software agents 

based on the situational and behavioral information collected by sensors and transceivers through 

communication. Apart from that, the service-based architecture removes the concept of vehicle 

ownership and includes more diversity, such as disabled and older people. CAV is the evolving 

technology to achieve future mobility and transportation goals.  

Commutation vehicles nowadays are not merely electromechanical entities but also complex 

software agents with electronics [121]. Connected means the vehicle exchanges data between the 

systems and networks (to other vehicles and infrastructures) for predictive maintenance, dynamic 

insurance policy, passenger information, fleet management, comfort, and situational and 

behavioral awareness [122]. Fully autonomous means the vehicle conducts dynamic driving tasks 

automatically in real time without the driver’s intervention [123]. 
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The connected vehicle generates 25 GB of data per hour, even at a lower level of autonomy. 

Integrating RADAR, LIDAR, Camera, Ultrasonics,  Motion sensors, GNSS, and IMU into the 

vehicle can generate 40 Gbit/s data leading up to 380 TB to 5100 TB of data in a year [124]. This 

wealth of high-volume, high-speed data needs gigantic storage, intense computation, and astute 

processing. As the data volume vehemently upsurges, software, hardware, and data privacy and 

security become critical. Increased connectivity elevates the attack surfaces of the CAV, while 

automation lacks the sophisticated human-level agility and intelligence for threat mitigation. The 

inherent vulnerabilities come from the untested supply chain, such as hardware, software, and 

infrastructures.  

Deep learning has been unprecedently successful in deciphering the complex nonlinear 

spatiotemporal pattern of highly stochastic data. Given the volume, veracity, and velocity of the 

data, deep learning could be handy in designing cyberattack detection and mitigation in the CAV 

environment. Fig. 6.1. shows the current trends of publications queried under 

“(((ALL=(Connected Vehicle )) OR ALL=(Automated vehicle)) AND ALL=(Cybersecurity)) OR 

ALL=(Deep learning)” in the web of science for 2017 through 2020. It resulted in 127,042 

publications so far, with growing interest per year.  
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 The number of publications on connected automated vehicles over the last five years. 

This chapter deals with the deep learning perspective on CAV cybersecurity and threat 

intelligence. Also, We proposed novel end-to-end deep CNN-LSTM-based computational 

intelligence for cyberattack detection and classification in the CAV ecosystem. The proposed 

model has been successfully trained, tested, and evaluated on the CAV-KDD dataset and compared 

against other deep learning models such as Deep Neural Networks (DNN), Convolutional Neural 

Network (1D-CNN), LSTM. The proposed model outperformed the aforementioned deep learning 

models in terms of various performance metrics and increased model complexity.   

6.2 CAV technological enablers: Automation and Connectivity 

The key technological enablers for CAV are Automation and Connectivity.  Vehicle driving 

automation system performs part or all of the dynamic driving tasks (DDT). The Society of 

Automotive Engineers (SAE) defined the six levels of automation for vehicles ranging from no 
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automation (Level 0) to full automation (Level 5) in its 2021 release [125]. In Levels 0-2, the driver 

drives the entire or part of DDT, while in Levels 3-5, ADS performs the entire DDT upon 

engagement. Fig. 6.2. shows the overall connectivity architecture with a wireless network 

interface, physical interface, and In-vehicle network in between and is adapted from [126].  CAV 

is co-evolving with next-generation network architectures and communication protocols. It can 

exploit the latency, speed, and bandwidth of recent cellular communication, such as 5G.  The 

recent advancement in Wi-Fi 6 could be used in place of high user density. Also, inbuilt GPS has 

been widely used for navigation. 

Moreover, Bluetooth, RFID, ZigBee, and V2X communication have extended the range of 

connectivities and applications. The in-vehicle network has mainly a high-speed infotainment 

system for information dissemination and entertainment; and a Powertrain network for core 

functionalities of the vehicle. These are mostly composed of electronic control units (ECUs) 

connected through local control area network (CAN) buses. Physical network interface provides 

ports to connect the phone, USB, CD, AUX from the infotainment system, and ODB-II from the 

powertrain system. This ODB- II can be extended via physical or wireless network interfaces to 

OEM, drivers, and computerized intelligence in the vehicle. The hitherto advancement in 

connectivity and automation has enabled the following vehicle functionalities as per the US 

department of transportation (DoT) [127].  

a) Collision warning: forward collision warning, lane departure warning, rear cross-traffic 

warning, and blind-spot warning  

b) Collision intervention: automatic emergency braking, pedestrian automatic emergency 

braking, automatic rear braking, and blind-spot intervention. 

c) Driving control assistance: adaptive cruise control, lane-centering, and lane-keeping 
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assistance.  

d) Additional systems: Automatic high beams, backup camera, and automatic crash 

notification. 
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 Connectivity of the CAV. 

6.3 CAV threat landscape and threat intelligence 

Threat intelligence begins with identifying the assets and then finding the weighted utility to 

the assets, i.e., threat landscape. Assets are entities with specific utilities and hence add values to 

the system. The value comes from the cost of creating it and the competition to make it easily 

available. Therefore, from a game-theoretic perspective, there is always competition to exploit the 

utility, i.e., the risk of biased usage, which creates vulnerabilities. An attacker can exploit the 
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vulnerabilities by using social engineering and reverse engineering. The electromechanical 

vehicle, while adopting the evolving network architecture and automation—so-called CAV-- 

migrates all the vulnerabilities related to the processes, protocols, supply chains, and software from 

the incumbent technologies. Furthermore, CAV has vulnerabilities or risks originated from 

communication, automation, IT, OT, and physical system. Here, we will briefly explain the cyber 

vulnerabilities of low-level sensors [128] and vehicle control modules. 

6.3.1  In-vehicle (low-level sensor) cyber vulnerabilities  

GPS: The transparent architecture of GPS, its open standard, and free accessibility are the 

main reasons for generating spoofing and jamming attacks on GPS.  

Inertial measurement units (IMUs):  IMUs provide velocity, acceleration, and orientation data 

using accelerometers and gyroscopes. The gyroscope and inclination sensors measure the road 

gradient and adjust the speed for safe maneuvering. The spoofed data can generate a false control 

signal for speed control. Also, the jamming of the sensors may disrupt the vehicle’s autonomous 

speed adjustment. 

Engine control sensor: These sensors monitor the dynamics of the engine, such as temperature, 

airflow, exhaust gas, and engine knock, and are connected to CAN. 

Tire Pressure Management System (TPMS): TPMS has not been used in decision-making but 

is physically accessible to outsiders. 

LiDAR sensors: are used to generate the 3D map of the vehicle’s environment for localization, 

obstacle avoidance, and navigation. Laser beams can fool liDAR sensors.  

Cameras (stereo- or mono-vision) and infrared systems: These are used for static and dynamic 

obstacle detection, object recognition, and 360-degree information with other sensor fusion. 
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Cameras contain the charge-coupled device (CCD) or complementary Metal Oxide Semiconductor 

(CMOS) sensor that can be partially disabled from a 3- meter distance using low-powered lasers.  

6.3.2. Vehicle control modules 

All modern vehicles use engine control units (ECU) to acquire, process and control electronic 

signals. ECUs are roughly categorized into powertrain, safety systems, body control, and data 

communications. The powertrain is the brain of the ECU that controls transmissions, emissions, 

charging systems, and control modules. Safety systems are responsible for collision avoidance, 

airbag deployment, active braking, etc. Body control controls the electric windows, AC, mirrors, 

immobilizer, and locking. Data communications control the communication between different 

communication modules. The networking of ECUs can be done through either CAN buses or 

FlexRay. The key ECUs in CAV in descending orders of importance are as follows [128], [129]. 

a) Navigation control module (NCM) 

b) Engine control module (ECM) 

c) Electronic brake control module (EBCM) 

d) Transmission control module (TCM) 

e) Telematics module with remote commanding 

f) Body control module (BCM) 

g) Inflatable restraint module (IRM) 

h) Vehicle vision system (VVS) 

i) Remote door lock receiver 

j) Heating, ventilation, and air conditioning (HVAC) 

k) Instrument panel module 

l) Radio and entertainment center 



151 

 

 

6.3.3. Security analysis of CAV threats 

CAV can have around 100 million lines of code across 50-70 ECUs. As the number of lines 

of code grows, It’s infeasible to perform careful security implications. Some security incidences 

and their analysis are presented here [122]. 

a). Remotely control a vehicle: The attacker exploits the vulnerability in the cellular system 

and lands on the infotainment system. In most vehicles, the infotainment system has a driver with 

information such as service schedules, tire pressure, etc. The infotainment system connects with 

the CAN bus that connects all the ECUs. Therefore, it is possible to enter through the infotainment 

system and inject or spoof malicious signals. E.g., ECUs controlling steering or brake.  

b). Disable the vehicle: exploiting flaws in authentication, authorization, and access control 

in smart devices and apps to activate AC, windows, and windshield to drain the battery.  

c). Remotely unlock the vehicle/theft: exploit known vulnerabilities in the keyless entry 

system using SDR. Hackers unlocked the car door remotely and started the engine in the Mercedes 

Benz-E class in 2020. The manufacturer generally uses symmetric keys between the key fob, entry 

system, and ignition keys. An attacker can sniff the radio frequency between the key fob and entry 

system either by brute force or as a man-in-the-middle attack. Later the symmetric key can be 

compromised by replay attack or reverse engineering. The problem became humongous when 

some leading vehicle manufacturers used the same master cryptographic keys along the model 

line.  

d). Safety conditions: Panic attacks such as Mobileye and Tesla X hack fooled the autopilot 

system to trigger the brakes and steer into an oncoming vehicle. 

e). Vehicle tracking/monitoring: extract patterns or fingerprints from the data. 
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f). Weaponizing the vehicle 

g). Malware: bots for crypto-jacking or DDoS.  

h). Ransomware could be a huge problem to be dealt with in the future CAV. 

i). Distribution of illicit goods. 

6.3.4. Attack surfaces 

While adopting the evolving network architecture, communications, and AI-powered 

automation, the orthodox electro-mechanical vehicles migrate all the vulnerabilities of incumbent 

technologies.  

Cellular KES V2X CAN TPMS

Servers
Mobile 

App
Sensors

Personal Area Network (Wi-
Fi,Bluetooth,NFC)

ECUsOBD port

 

 Key attack surfaces of CAV. 

With the elevated sophistication, CAV also inherits elevated attack surfaces and attack 

vectors. These attack vectors are the specific methods, paths, or processes through which the CAV 

can be exploited. Insider threats such as Levandowski trade secret trial between Waymo and Uber 

[130], Cyberattack into V2X   communications [131], Sensor spoofing and exploitation [132], 

Dumpster diving for data: acting as a honeypot, Supply chain, and third-party risks are some of 

the prominent threats in the CAV ecosystem.  Fig.6.3 enlists the prime attack surfaces. 
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6.3.5 Organizational risks to the CAV ecosystem 

The organizational risks imposed on the CAV ecosystem are well documented in [133]. The 

convergence of IT, OT, and physical security is a challenging issue in any cyber-physical system, 

including the CAV ecosystem. The interconnections, interactions, and co-impacts of attack on 

these eccentric systems should be analyzed and evaluated. Dealing with big data (high volume, 

high speed, wide variety) and extracting inferences in the CAV ecosystem needs high 

computational capacity, storage, and processing to deal with the multimodal data from different 

sensors. Data communication between multiple nodes, servers, and systems impose security and 

privacy risks. The divergent nature of stakeholders, such as different vendors of CAV, OEM, ITS, 

V2X, and its data privacy policy, might not allow CAV actors to collaborate in threat detections 

and mitigations. The cyber-physical security protocols, enterprise policies, and regulations still 

have to go a long way in the CAV ecosystem. 

6.4 CAV threat mitigation: anomaly detection and classification with deep learning 

“Deep Learning is building a system by assembling parameterized modules into a (possibly 

dynamic) computation graph and training it to perform a task by optimizing the parameters using 

a gradient-based method,” as quoted by Yann Le Cunn, ACM Turing awardee and a pioneer in 

deep learning in AAAI-20 event [134]. Graphs can be defined dynamically by input-dependent 

programs. Output computation may not necessarily be the feedforward; it might be some 

minimizing energy functions (inference model) [135]. The designer has complete freedom to 

choose learning paradigms such as supervised, reinforced, self-supervised/unsupervised, and 

objective functions such as classification, prediction, and reconstruction. Often limitations of 

supervised learning are mistakenly seen as limitations of deep learning. If the cake is intelligence, 

self-supervised learning is the bulk of the cake; supervised learning is the icing on the cake, and 
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RL is the cherry on the cake. The next revolution in AI won’t be supervised nor reinforced [136].  

Deep learning has been an exciting paradigm for anomaly detection and classification in 

various cyber-physical realms, such as industrial control systems, smart grids, SCADA-controlled 

systems, etc. [137]. Now the specific state-of-the-art applications of deep learning in CAV 

cybersecurity are summarized. In [138], Generative Adversarial Network-based IDS has been used 

to detect the anomaly in ECU by analyzing the CAN message frame, specifically the message 

identifier and frequency. The dataset was recorded from the OBD-II port of an undefined vehicle. 

The authors modified the firefly algorithm to find the optimal structure of the Generator network. 

Finally, they claimed the superior accuracy of the proposed model to the PSO- and GA- optimized 

GAN. However, the paper does not have much information regarding the training time, data size, 

data samples, computational complexity, etc.  

In [126], a Deep learning-based LSTM autoencoder has been implemented to design IDS for 

CAN and central network gateways using car hacking and UNSW-NB15 datasets, respectively. 

Statistical features such as total count, mean, and standard deviation are extracted from the network 

packets. The proposed model claimed to outperform some of the decision tree and SVM-based 

classifiers. It’s unlikely to claim DL model can detect zero-day attacks since the supervised ML 

model cannot detect and classify the data that have never been trained. 

In [139], authors use GAN for designing IDS capable of learning unknown attacks in the in-

vehicle network. They extracted the CAN bus data for normal and attack categories using raspberry 

pi and simple hardware in the OBD-II port. Instead of converting all the CAN data to an image 

(make real-time detection at stake due to increased processing), only CAN IDs are converted into 

the image by using one-hot encodings. For training, the first discriminator uses the normal and 

abnormal CAN images extracted from the actual vehicle, while the second discriminator uses 
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normal and random noise. The generator and discriminator compete to increase their performance, 

and the second discriminator can detect fake images similar to real CAN images. The proposed 

model, however, has used only CAN IDs as the main feature to identify the attack from the non-

attack. Converting data into images hinders the real-time detection of IDS. Also, the model can’t 

detect operational flaws from the attack. 

In [140], ResNet-inspired DCNN has been used for sequence learning of broadcasted CAN 

IDs using the same dataset as in [139]. However, they are more interested in finding the pattern in 

the sequence of IDs than individual IDs. 29 bits IDs are recorded for every 29 consecutive IDs 

forming a 29x29 grid image ready to go into the DCNN and correspondingly labeled as an attack 

or no attack. They claimed that the DCNN seems to be more efficient in sequence learning than 

LSTM for this problem. This model needs high computational power and cannot detect unknown 

attacks.  

Yu [141] proposed a novel self-supervised Bayesian Recurrent Autoencoder to detect 

adversarial trajectory in Sybil attacks targeting crowdsourced navigation systems. It uses time-

series features of vehicle trajectories and embeds the trajectories in a latent distribution space as 

multivariate random variables using an encoder-reconstructor. This distribution is used to 

reconstruct the authentic trajectories and compared with the input to evaluate the credibility score. 

The author claimed that this model improves the baseline model by at least 76.6 %. 

6.5 Frontiers in deep learning :Advancement and Future) 

The challenges of deep learning: Supervised models need extensive data labeling, while 

reinforcement learning needs a massive number of interactions. Very slight modifications in fewer 

pixels and even a small change in rules in the environment can err the model. The inefficacy of 

the deep learning-based models is rooted in the assumption of “independent and identically 
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distributed (i.i.d)” data. This assumes that the training data capture all the stochasticity of the real 

dynamic environment and that observations are independent. The learner model should evolve 

accordingly to capture the dynamics of changing environments. Deep learning models are data-

hungry; future deep learning should be envisioned to learn with fewer samples and fewer trials. 

For that model should correctly and broadly understand the environment before learning the tasks. 

Deep learning models are very poor at abstraction, and reasoning needs humongous data to learn 

a simple task. Symbolic AI has proven to be much better at reasoning and abstraction. Deep 

learning models are good at providing end-to-end solutions but miserable at breaking them down 

into interpretable and modifiable subtasks. 

Deep learning is said to have achieved system I natural intelligence, i.e., just associative or 

mapping intelligence. For example, a human driver navigates to the neighborhood with visual cues 

that have been used a hundred times before without looking up at the direction or map. Also, he 

could use a map, direction, reasoning, and logic while navigating to the new environment to get to 

the destination. The first is system I cognition, while the second is system II cognition [142].  

The pioneer deep learning scientists pointed out the following roadmaps for the future AI to 

be more conscious (system II cognition) at NeurIPS 2019: 

• Handling the out-of-distribution (o.o.d) nonstationarity data in the environment  

• Systematic generalization 

• Consciousness prior 

• Meta-learning and localized change hypothesis for causal discovery 

• Cosmopolitan DL architectures  
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6.5.1. Meta-learning 

When we start learning some new tasks, we merely start from scratch rather we try to use prior 

experiences (𝜃𝑖 ∈ Θ)  from the prior known tasks (𝑡𝑗 ∈ 𝑇).  Where Θ is the discrete, continuous, 

or mixed configuration space, T is the set of all known tasks.  For example, a human driver can 

easily drive in a completely new environment. Along the way of learning specific tasks human 

brain also learns how it is learning. These prior learning experiences from the tasks, if applied to 

learn new tasks, could bring one step closer to getting the cognitive power of system II.  As a 

result, this new model would learn the new tasks with sparse data in a short time.  Meta-learning 

or learning to learn is the science of transferring learning experiences, metadata, from the broader 

tasks to learn a new task with the least information in the least possible time [143]. The meta-data 

embody the prior learning tasks and the learned models in terms of exact algorithm configurations, 

hyperparameters, network architectures, and the resulting performance metrics such as accuracy, 

training time, FAR, F1-score, prior weights, and measurable properties of tasks (meta-features).  

Once meta-data is collected, a machine needs to extract and transfer knowledge of the meta-data 

to search for the optimal models to solve the new tasks. Paper [143]  explains how meta-learners 

learn from the model evaluations, such as task-independent recommendations, configurations of 

space design, and its transfer techniques, including surrogate models and warm, started to 

multitask learning. Instead of the base learner, where the model adapts to the fixed apriori or fixed 

parameterized biases, meta-learners dynamically choose the correct biases [144].  

The meta-learning tends to transfer knowledge learned from different environments to learn a 

new task with the least training as opposed to data-hungry supervised learning heavily biased due 

to i.i.d assumption. The evolution of transfer learning may help the machine achieve system II 

cognition like the human. The working principle of the Meta-learning algorithm is presented 
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below. 

Step 1:  Make a set of prior known tasks: 𝑡𝑗 ∈ 𝑇  

Step 2: Make a set of configurations resulting from the learning task 𝑡𝑗 such as hyperparameter 

settings, network architecture, and so on : 𝜃𝑖 ∈ Θ   

Step 3: Prior evaluation measures (accuracy, FAR, training time, cross-validation ) of each 

configuration 𝜃𝑖  to  task 𝑡𝑗: 𝑃𝑖,𝑗(𝜃𝑖, 𝑡𝑗) 

Step 4: Assign a set of all prior scalar evaluations 𝑃𝑖,𝑗(𝜃𝑖 , 𝑡𝑗) of configuration 𝜃𝑖 on task 𝑡𝑗 to P: P= 

{𝑃𝑖,𝑗(𝜃𝑖 , 𝑡𝑗)} 

Step 5: evaluate the performance 𝑃𝑖,𝑛𝑒𝑤 on new task 𝑡𝑛𝑒𝑤 and assign it to 𝑃𝑛𝑒𝑤: 𝑃𝑛𝑒𝑤 = {𝑃𝑖,𝑛𝑒𝑤} 

Step 6: Now the meta-learner L is trained on 𝑃′ to predict recommended configurations Θ𝑛𝑒𝑤
∗  for 

new task 𝑡𝑛𝑒𝑤, where 𝑃′ = 𝑃 ∪ 𝑃𝑛𝑒𝑤 

Step 7: L is the learning algorithm derived from meta-learning to learn a new task 

6.5.2. Federated learning  

Federated learning (FL) is a machine learning framework where multiple nodes 

collaboratively train a model with local data under the orchestration of the centralized service 

provider/server [145]. Each node does not transfer or share locally stored data; instead transfers the 

focused updates for immediate aggregation. This way, a learning model can harness the privacy, 

security, regulatory and economic benefits [146]. In FL, we define N set of CAVs ready to 

collaborate {𝑉1, … . , 𝑉𝑁} from different vendors with corresponding decentralized and isolated data 

{𝐷1, … . , 𝐷𝑁}. The conventional ML/DL model pulls up all the data 𝐷 = 𝐷1 ∪ … .∪ 𝐷𝑁 and train 

the learning model L with D. In contrast, FL does not pulls up data D instead it share some model 
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inference/parameters to train the learning model L. 

The future CAV industry is envisioned with numerous CAVs from multiple vendors. With the 

lack of fully developed protocol standards, cross-vendor trust issues discourage data sharing 

among competing vendors.  The various FL application in the CAV domain can be found in [147]–

[150]. Article [147] describes how a piece of falsified information from a single CAV could disrupt 

the training of the global model. [148] proposed the dynamic federated proximal (DFP) based FL 

framework for designing the autonomous controller of the CAV. DFP is said to account for the 

mobility of CAVs, wireless fading channels, and non-iid and unbalanced data. While solving the 

privacy leakage problem, FL has inherent vulnerabilities such as model inversion, membership 

inference, etc. [149] proposed Byzantine-fault-tolerant (BFT) decentralized FL with privacy 

preservation in the CAV environment. Blockchain-based FL for CAV operations is proposed in 

[150]. Non-iid data distributions among multiple nodes, unbalanced datasets, and communication 

latency are some of the challenges being solved in FL [145], [146], [151].  

6.6 End-to-end deep CNN-LSTM architecture for CAV cyberattack detection  

We propose the novel deep CNN-LSTM architecture for attack detection and classification in 

the CAV environment as per Fig. 6.4. Generally, CNN can learn the high dimensional spatial 

information of the feature space and may fail to capture distant temporal correlation. LSTM, on 

the other hand, can capture the temporal correlation by learning the sequence. Thus, the stacked 

model can learn the Spatio-temporal features of the learning problem. The CNN-LSTM model is 

expected to perform better by learning hierarchical feature representations and the long-term 

temporal dependencies of the huge data. 
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 Proposed end-to-end deep CNN-LSTM architecture. 

The proposed end-to-end Deep CNN-LSTM architecture pipeline has a preprocessor, a deep 

CNN layer, a fully connected LSTM, and an output layer.  

a). Preprocessor: The preprocessor transforms the features into a machine-learning-

compatible format. Most datasets contain mixed features such as numerical (integer, float) and 

categorical (nominal, ordinal) datatypes. Deep learning algorithms perform the computation only 

in integer or float features. Therefore, all the categorical features should be transformed into 

numerical forms. OneHotEncoder transforms the nominal features into binary formats. However, 

the high cardinality features would be encoded with elevated dimensionality. The SimpleImputer 

transformer deals with the dataset's missing values for numerical features. Moreover, the standard 

scaler standardizes the features by implementing zero mean and unit variance. Finally, the 

preprocessor outputs the features ready to fetch to the Deep CNN architecture.  

b). Deep CNN architecture:  This layer is generally implemented to extract the spatial 

information using its kernel and present the high-level features. Being able to capture the local 

patterns, 1D CNN is the popular algorithm for time series classification/regression successfully 

tested in natural language processing, the audio industry, and anomaly detection [152]. The 1D 
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convolution layer creates 64 kernels of size three that convolve with the inputs over a single spatial 

or temporal dimension. The filters determine the dimensionality of output space, while the kernel 

determines the length of the 1D convolution window. The Batch Normalization Layer normalizes 

the filter's output using the mean and standard deviations of the current batch of inputs. The 

activation function used is ReLU for solving the exploding and vanishing gradient of its other 

compatriots, such as sigmoid, tanh [33]. MaxPolling1D downsamples the normalized filters’ output 

by taking the maximum value over the spatial window of pool size four that extracts the high-level 

features. This marks the completion of a single block of deep CNN architecture, and we have 

added a similar block twice to extract more high-level features.  

c). Fully connected LSTM: The 1D CNN generally extracts the local temporal information, 

and it is hard to capture all the long-term sequential correlations. That is where fully connected 

LSTM comes in handy to capture long-term sequential relations. The details of the LSTM model 

are explained in our previous journal work [40]. The LSTM layer has 64 LSTM units.  

d). Output layer: The output layer has three nodes-belonging to three different classes- to 

evaluate the probability of the sample belonging to each class. The probability sums to one with 

the highest probability indicating the predicted class taken care of by the softmax [153] activation 

function. For one-hot encoded output classes, categorical cross-entropy [154] is used.  

6.6.1 performance analysis 

 6.6.1.1 Dataset 

The CAV-KDD dataset is adapted from the KDD99 [155] dataset, a well-known benchmark 

for intrusion detection. KDD99 dataset includes normal connections data and simulated attack data 

in a military network environment. Authors of  [123] adapted using 10% of KDD99 train data and 

10% of KDD99 test data to form the CAV-KDD train and test dataset. The train data and test data 
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are mutually exclusive, meaning the model has never experienced the test data during model 

fitting. There are three kinds of data, normal data refers to the normal packets, Neptune and Smurf 

refer to the simulated DoS attacks. The reason for choosing only these three types is that deep 

learning models are data-hungry and need massive sample data to capture the distribution of the 

dataset. Further, we preprocess and refine the dataset that will be implementable in a deep learning 

environment. Table 6.1. represents the distribution of the dataset while training and testing the 

CNN-LSTM. 30 % of training data is held to validate the model for the hyperparameter tuning. 

Table 6.1 indicates the class imbalance in the CAV train—20% belonging to the Normal category, 

22% belonging to the Neptune attack, and 58% belonging to the Smurf attack – that inherently 

induces data biases in the learning model. Fig. 6.5 presents the variance captured by the singular 

values over the 20 samples, which is interpreted as the information captured by the prominent 

features. The four singular values, i.e., four prime features, can contribute to 92.90% of data 

variance. Singular value decomposition (SVD) is the popular dimensionality reduction technique 

that projects the m-dimensional data (m-columns/features) into a subspace with m or fewer 

dimensions without losing the essence of the original data [155].  

Principal component analysis (PCA) is the dimensionality reduction technique that uses the 

SVD to project data from hyperspace to lower dimensional space and extracts the dominant 

patterns in the matrix [156]. Fig. 6.6 presents the PCA with two principal components over the 

90,000 data samples showing tightly overlapped subspaces. In this notion, it’s hard for any linear 

classifier to draw the non-linear boundaries between different classes. Therefore, a non-linear 

classifier such as deep learning could be handy. Deep learning is handy when one expects minimal 

or no feature selections since it can make good decisions with hyperdimensional feature space.   
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 Variance captured by the Singular values. 

Table 6.1 Data distribution for CAV 

 

 

Data/Attack Label CAV Train CAV Test 

Normal 97,262 60,590 

Neptune  107,201 58,001 

Smurf 280,790 164,091 
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 Principal Component Analysis. 

6.6.1.2 Evaluation metrics 

The end-to-end deep CNN-LSTM architecture uses accuracy, precision, recall, and F1-score to assess the 

performance of the classifier model.  In this work, to quantify the performance of the proposed detection 

method, some performance metrics have been considered, such as accuracy, precision, recall, and F-1 score 

(defined below) from the confusion matrix. The confusion matrix generally reflects how efficiently a 

particular machine/algorithm classifies the actual data. It is the most ubiquitous matrix for the performance 
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evaluation of the classifier, which is discussed in chapter 2.6.  

6.7 Results and discussions 

The experiments have been carried out in Intel® Core ™ i7 2.6 GHz CPU with 16 GB RAM 

computer. The Anaconda Navigator 2.0.4 hosts JupyterLab 3.0.14, where algorithms are written 

in Python 3.8.8 of notebook 6.3.0. Our end-to-end deep CNN-LSTM model architecture clearly 

explains the number and size of convolution filters, kernel size, numbers and size of pooling layers, 

batch normalization layers, fully connected LSTM layer, and output layer, as in section 6.6.  For 

the comparison purpose, along with the CNN-LSTM, we created  Deep Neural Network (DNN), 

Convolution Neural Network (CNN), and LSTM. The models' performance metrics are evaluated 

under similar constraints, such as the same train and test data, hyperparameters, batch size, and so 

on. Apart from that, all our deep learning models run for 10 epochs taking a batch of size 500 while 

training and all the models are tested with a batch size of 20. 30 % of the train data has been held 

out for validation so that one can tune the hyperparameters. The trained model has never 

experienced the features from the test data during the training, so the models don't over-

parameterize and memorize.  

Fig. 6.7. presents the progression of training and validation accuracies and training and 

validation losses along the epochs. The training was so smooth that within 680 steps of the first 

epoch, our proposed model achieved successive training and validation accuracies of 91.80% and 

99.98% with successive losses of 0.3231 and 0.0052. The average training time per epoch was 

95.1 seconds. The best model from the training has achieved 99.99% accuracy on validation data. 

This model can be trained up to two epochs to get more than 99% training and validation 

accuracies. 

Table 6.2 compares the precision, recall, F1-score, AUC, and testing accuracy of different 
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deep learning algorithms against the proposed CNN-LSTM. The proposed CNN-LSTM model has 

achieved the highest precision, recall, F1-score, AUC, and testing accuracy, i.e., more than 99% 

in each metric among the class of other implemented algorithms. 1D CNN algorithm has achieved 

almost similar AUC and accuracy as the proposed CNN-LSTM algorithm. For similar setups with 

two hidden layers and 64 hidden nodes, LSTM is the most inferior in terms of all other performance 

metrics except the AUC. All the performance metrics for DNN, CNN, and CNN-LSTM were 

found to perform excellently with more than  99% evaluation metrics. This justifies the superior 

performance of our proposed deep CNN-LSTM  algorithm. Similarly, Table 6.3 presents the 

proposed model's classwise performance, where the model exhibits an almost 100% precision 

score for the samples from all three classes. The resulting recall and f1-score is almost 100% for 

Smurf and Neptune, with 99% for samples from a normal class. 

 

 Training and Validation progression of deep CNN-LSTM. 

Table 6.2 Performance metrics of DCNN-LSTM 
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Algorithms Precision  Recall F1-score AUC Accuracy 

DNN 99.70% 99.50% 99.60% 99.82% 99.64% 

CNN 99.84% 99.62% 99.73% 99.99% 99.75% 

LSTM 92.41% 96.29% 93.85% 99.95% 93.89% 

CNN-LSTM 99.85% 99.73% 99.74% 99.99% 99.75% 

 

Table 6.3 Classwise performance evaluation of the proposed DCNN-LSTM model 

Label Precision  Recall F1-score  Support 

Smurf 1.00 1.00 1.00 164091 

Normal  1.00 0.99 0.99 60590 

Neptune 1.00 1.00 1.00 58001 

 

Fig. 6.8 presents the multiclass confusion matrix where each block has the number of samples 

with a percentage belonging to that block. The last row indicates the actual samples belonging to 

that class, while the last column represents the predicted samples using the proposed algorithm. 

The numbers and percentages in red are misclassified samples. The highest misclassification rate 

of the proposed is 0.23% for the Smurf attack, which is 640 out of 164,091 samples. This implicit 

misclassification, i.e., bias, came from the data distribution because smurf got almost 58.04% of 

total samples for the testing model got similar bias because of similar data distribution in training. 

This bias in classifying Smurf resulted in a false alarm of normal class, i.e., there is a Smurf attack, 

but the model will predict it as a normal event. However, this error is less than 0.23% which is 

very small. But for high-sensitivity CAV attack detection, upsampling and downsampling can help 

to get equal data distribution while training the model. Overall, the proposed model has 

outstanding performance metrics, almost close to 100%. 
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 Confusion Matrix of deep CNN-LSTM 

6.8  Chapter Conclusion  

Along with the luxury of automation and connectivity, CAV inherits most of the cyber-

physical vulnerabilities of incumbent technologies that primarily include evolving network 

architectures, wireless communications, and AI-assisted automation. This chapter sheds light on 

cyber-physical vulnerabilities and risks that originated in IT, OT, and the physical domains of the 

CAV ecosystem,  eclectic threat landscapes, and threat intelligence. To deal with the security 

threats embedded in high-speed, high dimensional, multimodal data and assets of eccentric 

stakeholders of the CAV ecosystem, this chapter presents and analyzes some of the state-of-the-

art deep learning-based threat intelligence for attack detection. Since deep learning has been 

evolving to attain superior cognition and intelligence, it would also directly impact threat 
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intelligence. The collaborative learning platform of deep learning, federated learning, can share 

threat intelligence without sharing the data between divergent stakeholders of the CAV ecosystem. 

Also, deep learning for CAV has still to work on Meta-learning for robust and swift generalization 

under the dynamic environment and out of distribution data context. The frontiers in deep learning 

and the challenges have been included in the chapter. We have proposed, trained, and tested the 

deep CNN-LSTM model for CAV threat intelligence; we assessed and compared the proposed 

model's performance against other deep learning algorithms such as DNN, CNN, and LSTM. Our 

results indicate the superiority of the proposed model, although DNN and 1d-CNN  also achieved 

more than 99% of accuracy, precision, recall, f1-score, and AUC on the CAV-KDD dataset. The 

performance of deep CNN-LSTM comes with increased model complexity and cumbersome 

hyperparameter tuning. Still, there are open challenges to deep learning adoption in the CAV 

cybersecurity paradigm due to costlier implementations and training, lack of properly developed 

protocols and policies, poorly defined privileges between stakeholders, adversarial threats to the 

deep learning model, and poor generalizability of the model under out of data distributions. 

The next chapter briefly studies 5G capabilities, Slicing, and their potential application to the 

internet of EVs and EVCSs. 

  

 

 

 

 

 



170 

 

 

Chapter 7 Analysis of 5G Slicing Approach to Electric Vehicle Charging Station 

7.1 Introduction 

The intelligent and extensive deployment of EVCS forces heterogeneous stakeholders to 

coordinate and communicate. The heterogeneous stakeholders mainly refer to i) the intelligent 

transportation system (ITS) infrastructures such as roadside sensors, connected automated vehicles 

(CAV), and EVs, ii) Electric grid infrastructures such as utility, generation, transmission, 

distribution, sensors, protection and relays so on, and iii) financial institution such as credit card 

companies for the management of transactions.  The extent of administrative privilege for 

coordinating these eccentric stakeholders to/from the EVCS  is still a conflict of interest due to the 

lack of clearly developed standards for proper interoperability and a fully matured, trustworthy 

environment. Therefore, the EVCS needs robust, secure, and reliable communication with its 

stakeholders. In such a scenario, the communication between these multiple nodes may need 

stringent requirements in terms of latency, bandwidth, and the number of connections. The 

enabling technology capable of providing ultra-reliable low-latency communication (uRLLC), 

extended mobile broadband (eMBB), and massive machine-type communication (mMTC) is 5G. 

This chapter attempts to explore the implementation of 5G slicing on EVCS.  

7.2 Benefits 5G Slicing 

5G slicing is a tenant-oriented virtual network that acts as a network as a service (NaaS) to 

handle specific service requirements, meets differentiated service level agreements (SLAs), and 

automatically builds isolated network instances on demand. It provides secure service isolation, 

end-to-end assurance for SLAs, customizable on-demand network function, and automation. 

• End users can have guaranteed SLAs. 
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• Tenants can reduce the cost by network resource sharing, isolation, on-demand 

deployment, on-demand function customization 

• Operators have maximized the use of the network supporting vertical industries and 

fast service rollout. 

New Energy: The growing demand for energy-constrained to zero carbon emission involves 

random and intermittent power generation, which challenges the grids' operation and management.  

New user: There are EVs, and EVCSs has the potential to change power consumption 

dynamics. The massive integration of EVs to the grid needs efficient control and smart 

management communication.  

New requirements: Some high-tech digital devices require zero interruption and better asset 

utilization efficiency.  

7.3 Key Performance Index (KPI) requirements for EVCS 

5G slicing for smart grid-enabled EV ecosystem needs uRLLC, high reliability, isolation, and 

a huge number of connections, as shown in Fig. 7.1 The latency of 4G is 40 ms, and all services 

running on the same network, resulting in no isolation, same network function for all services do 

not guarantee the SLAs) [157]. 5G slicing has the following potential.  

• Diversification of services: new user, new energy, and new requirements 

• Security Isolation 

• High-performance requirements 

• Millions of nodes  

5G offers 1ms latency and 10 million connections per square km, perfect for CAV and EV 
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charging services. It provides security and isolation as much as costly fiber optics. 5G MEC offers 

local traffic processing and logical computing that saves BW and latency. 

 

Figure 7.1 key performance indicator (KPI)requirement for low latency EVCS 

 

7.4 5G Slicing model for EV infrastructure  

This chapter deals with the potential implementation of 5G slicing for EV infrastructure. Paper 

[158] implemented LSTM-based EV charging prediction using 26,000 charging records of 318 

users collected over a year in  Los Angels in a 5G smart grid based on network slicing and edge 

computing concept. However, the paper lacks the implementation of 5G for the work, although 

they provided the theoretical background. An author in [159] filed a patent by adding a wireless 

edge computing module and 5G cellular antenna module in EVCS. The edge computing module 

connects to an IP network for a cellular network's mobile/internet gateway, and the cellular base 

station connects to the antenna system, as shown in Fig. 7.2.  

Unlike its predecessor, 5G has some key enabling techniques such as edge computing, 
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network function virtualization, and network slicing.  5G network slicing is designed to handle 

specific service requirements, meets differentiated service level agreements (SLA), and 

automatically builds the isolated network instance on demand. 5G network slicing provides end-

to-end network assurance for SLA, service isolation, customizable on-demand network function, 

and automation. It enables communication service operators to allocate the network resources 

dynamically and provide the network as a service [160].  The orchestrated network for the EVCS 

slice should have ultra-low latency (<1 ms), very high reliability, and very high isolation, as shown 

in Fig. 7.2. 

 

Figure 7.2 5G-enabled EVCS architecture  
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 7.5 5G network Slicing Architecture 

 

Figure 7.3 Fig. 5G reference Architecture [161] 

Fig.7.3 presents the end-to-end architecture spanning all network domains, RAN, CN, and 

transport network. RAN and CN domains provide the Network Slice Subnet Instances (NSSIs) 

that can be combined to define the NSIs. TN provides virtual links between the components 

building the NSIs. In the middle layer, there's NFV-Management and Orchestration and the 

controllers for each domain. MANO focuses on virtualization-specific tasks, while the domain 

controller focuses on non-virtualization-related operations. MANO is responsible for managing 

VNFs. RAN and Core domain controllers manage different NFs at the application level and control 

all the non-virtualized tasks. The transport controllers have SDN controllers. The end-to-end 

service operations and management level coordinates and controls all the domain controllers and 

network services to harmonize RAN, Core, and transport. 

7.6 Isolation and Security of NSIs 

The SLA's key performance indicators (KPIs) must always be met in a particular NSI 

regardless of congestion and load surge in the remaining NSIs [161]. The isolation concept of NSI 
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must ensure security to the NSI regardless of breaches and malfunctions in other NSIs. That 

implies there should be no unauthorized read or write access to the NSI-specific configurations. 

Also, faults or attacks in an NSI must be confined and should not propagate to other NSIs. The 

isolation guarantee can be met in two ways: the first is to partition the resources at the infrastructure 

level. The second way is to introduce isolation among NSIs at the management level by employing 

policy-based orchestration or multi-tenancy support defined in the participant management block. 

There are three ways of achieving isolation in NSIs: the first is physical isolation with all the 

physical resources given to the tenant, and it is the best way of isolation. The second way is 

physical resource splitting, e.g., frequency band split into sub-carriers. The third is logical 

isolation, which can be achieved by logical-capacity delimitation, logical -prioritization, and 

simple logical isolation. The problem with the splitting is it has access to all the shared resources, 

which can be the prime security threat. The tenant may demand isolation in the different levels of 

the radio domain, such as radio access technologies (RAT),  antennas, frequency, or carrier bands. 

Fig. 7.4 shows the isolation concept in 5G slices. 

 

Figure 7.4 Isolation dimension in Network Slicing [161] 
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7.7 Proposed 5G slicing architecture for EVCS 

Based on the above background, we propose the 5G slicing architecture for holistic EVCS 

with aided isolation as shown in Fig. 7.5. Each 5G slice can be implemented horizontally for the 

layered architecture; e.g., the SCADA, utilities governing power network, EVCSs, and CAEV 

each can have a slice as shown in fig below. Also, the detection and mitigation framework (DMF) 

can be included in the slice. The vertical implementation of 5G slices is not recommended since 

SCADA, Power network, EVCS, and CAEV have heterogeneous network resource requirements 

and KPIs. Another potential vertical implementation issue is the privilege conflict to slice 

management and operation between different service providers in the ecosystem. The proposed 

architecture can share the threat information with the help of DMF and DMF management and 

synchronization.  

 

Figure 7.5 5G slicing implementation for secure EVCS. 
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7.8 Discussions  

The reference [162] proposed the idea of slice leaders for clusters of Evs using K-Means 

clustering to tackle the problem of network traffic congestion caused by multiple vehicles sending 

requests to EVCS through the roadside unit (RSUs). Instead of sending the request from each 

vehicle in the slice, the leader will communicate with EVCS and then relay that information to the 

clustered vehicles. It has improved the throughput and data rates with better resource utilization 

than the first come, first serve algorithm. However, unsupervised clustering may not produce 

accurate results for the vast platoons of EVs. Also, the number of slices exponentially increases as 

there might be highly dynamic clusters, and allocating numerous slices might stress the 5G 

resources. As far as the author's knowledge, there has been no real implementation of 5G slicing 

for EV infrastructures. Ref [158] hypothesized the generic smart grid architecture based on 5G 

network slicing but missed important details about the slicing architecture and technical 

specifications. Ref. [163] proposed the secure blockchain-based 5G mobility framework to 

enhance the security of IoEV data but still lacks the implementation details of 5G. On a similar 

note, ref. [164] analyzes the KPI of the power grid, and the high-level architecture of 5G slicing 

has been presented. Ref. [165] highlights the security threats and recommendations in 5G network 

slicing in terms of intra-slice security, inter-slice security, and life cycle security. Based on the 

above discussion, there has been no research so far with actual 5G slice implementation in smart 

grids, seldom the EV infrastructure. However, there's growing interest as the technology becoming 

more matured. As a result, most of the researcher came up with their own network architecture 

that basically lacks the technical details about the slicing and therefore implementation can surely 

face challenges.  
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7.9 Chapter Conclusion 

Ideally, 5G slices are logically isolated independent NSIs with the capability to confine the 

faults and attacks within the NSIs. This feature could safeguard the communication between 

critical controllers and SCADA/EMS in the EVCS. Also, the EVs and EMS communication for 

charge schedules, authentication, and authorization. 

The next chapter summarizes our conclusion, contributions, and future works. 
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Chapter 8 Conclusion, Contributions, and Future Work 

8.1 Conclusion and Contributions 

This dissertation presented several studies conducted in deep learning-powered computational 

intelligence to detect and mitigate the adverse impacts of cyberattacks on 5G-enabled EVCS. In 

terms of the field's level or type of research, one study focused on devising a novel double-layered 

cyberattack detection framework capable of detecting attacks in the network and physical layer in 

the 5G-enabled  EVCS infrastructure and the rest concentrated on designing mitigation and defense 

of the cyberattacks. The research approach was based on analyzing the existing methods, 

identifying the gaps or drawbacks, and finding the right solutions. The methodologies were 

validated through computer simulations. The following findings are briefly concluded:  

• This research proposed, designed, and tested a NIDS for EVCS employing DNN and 

LSTM that could detect and categorize stealthy DDoS attacks on the EVCS network with nearly 

99 % performance metrics.  

• The performance of the proposed NIDS is further improved by implementing a semi-

supervised generative model called WC-GAN-based external classifier that improves the 

detection performance by resolving the problem of a low sample class, i.e., class imbalance. 

• The resultant impact on EVCS operation caused by the  DDoS attacks and FDI attacks on 

5G core infrastructure has been studied and found to be detrimental to the physical controllers 

and the controlled components of EVCS.  

• The attacks make the EVCS system oscillate or shift the DC operating point. The frequency 

of oscillation, damping, and the system's resiliency is related to the attacks' intensity and the target 
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controller. 

• A novel, air-gapped stacked LSTM-based HIDS has been proposed, designed, and tested 

that can detect bypassed cyberattacks on the physical controllers of EVCS with nearly 100% 

performance metrics. 

• A novel ransomware detection framework employing DNN, CNN, and LSTM has been 

proposed, designed, and tested for the smart grid environment. The performance of different DL 

algorithms is compared and recommended for deployment. 

• Also, the dissertation proposed and tested the deep CNN-LSTM architecture for CAV 

threat intelligence, assessed and compared the performance of the proposed models with other 

DL models, and found a superior performance.  

• The dissertation introduced, designed, and tested a novel, data-driven clone-based 

cyberattack mitigation and defense in critical EVCS controllers. The proposed TD3-based 

software clones are capable of taking over the legacy controllers under APT attacks or even under 

anomalous behavior. The TD3-based clones are superior to DDPG-based clones in terms of 

convergence, stability, hyperparameter sensitivity, and mitigation actions. 

• The dissertation proposed and tested the generic Bruteforce mitigation and controller 

clone-based mitigation approaches to deal with the APT attacks at standalone EVCS. The 

performance measures indicate effective mitigation results by both the proposed models. The 

results also indicate the superiority of Controller clone-based mitigation in terms of adaptation to 

system dynamics compared to the less agile but simple Bruteforce method. 

• The potential application of 5G slicing to enhance the security and isolation of smart grid 

environments with Power delivery, EVs, CAEVs, EVCS, and SCADA/EMS networks has been 
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envisioned, and a novel multi-slice architecture has been proposed. 5G slices are logically isolated 

independent NSIs with the capability to confine the faults and attacks within the NSIs. This 

feature could safeguard the communication between critical controllers and SCADA/EMS in the 

EVCS. Also, the EVs and EMS communication for charge schedules, authentication, and 

authorization. 

It is to note here that all models in this study have been simulated in Python, 

MATLAB/Simulink, and NetSim environments. The obtained results closely match realistic 

situations, as the software developer has numerically validated the accuracy of basic model blocks 

and function blocks found in the software library and toolboxes.  

8.2 Future Work 

The researcher is interested in pursuing this research or recommends extending this research 

in the following directions:  

• The EVCS integration into the grids can bring many opportunities, such as bidirectional 

energy transactions from the grid to EVs and vice-versa through EVCS. It will enable consumers 

to be prosumers and adopt renewable energy sources such as PV, Wind, etc. 

• Current industry practices for EVCS, such as AC charging to extreme  DC fast charging, 

and its architecture and efficiency could be enhanced by improving the power, control, and 

communication circuitries.  

• Dynamic wireless charging on the roads can reduce the wait queues and congestion at 

EVCS and stress on the grids. 

• The periodic security assessments and hardening of the current standards and protocols for 

EVCS, such as IEC 15118, IEC 61851-1, IEEE 2030.5, OCPP, OCHP, OCPI, OSCP, CCS, is 
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worth exploring. 

• The 5G-enabled proposed EVCS can be integrated and tested under the various DERs and 

power grids to seamlessly adopt EVs. The prediction, detection, and mitigation of cyber-physical 

attacks propagated to the grids and other DERs should be explored. 

• Blockchain can be adopted for more democratized and secure energy transactions between 

EVCS, grid, EVs, and DERs. 

• Actual cyberattack data for EVCS has not been shared in the research community because 

of the trust, reputation, and fear of further exploitation. Academia and industry should unite to 

share threat intelligence and tighten security standards. 

• The 5G-enabled EVCS prototype in a Simulink environment can be built, and the proposed 

algorithms for detection and mitigation can be validated and tested on more realistic and 

sophisticated environments.  

• Deep learning-powered detection algorithms in NIDS and HIDS of EVCS can be extended 

to detect diverse attacks as they can be trained with the new attack types. The highly parameterized 

DL algorithms should be optimized and tested before deployment for the best performance. 

• The future research direction would be developing more efficient and sophisticated 

algorithms for detecting and mitigating cyberattacks in EV infrastructure. 

• The quest for developing and testing lightweight and more visible algorithms with 

heuristics and rules should always be open along with the forays for developing high-performance 

DL architecture. 

• If there were enough data and testbeds, the DL-powered computational intelligence for 
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cyberattack detection in EVCS should have been at its peak. However, cyberattack mitigation and 

defense have a long way to go. 

• Cyber-physical threats in 5G-enabled EVCS are the continuously evolving paradigm as it 

migrates the inherent vulnerabilities of incumbent technologies such as NGN, DL-based 

computational intelligence, Control, and Optimization. Therefore, security by design and defense 

in depth should also evolve to tackle the problems.  
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