328 research outputs found

    Supporting Quality of Service in Scientific Workflows

    Get PDF
    While workflow management systems have been utilized in enterprises to support businesses for almost two decades, the use of workflows in scientific environments was fairly uncommon until recently. Nowadays, scientists use workflow systems to conduct scientific experiments, simulations, and distributed computations. However, most scientific workflow management systems have not been built using existing workflow technology; rather they have been designed and developed from scratch. Due to the lack of generality of early scientific workflow systems, many domain-specific workflow systems have been developed. Generally speaking, those domain-specific approaches lack common acceptance and tool support and offer lower robustness compared to business workflow systems. In this thesis, the use of the industry standard BPEL, a workflow language for modeling business processes, is proposed for the modeling and the execution of scientific workflows. Due to the widespread use of BPEL in enterprises, a number of stable and mature software products exist. The language is expressive (Turingcomplete) and not restricted to specific applications. BPEL is well suited for the modeling of scientific workflows, but existing implementations of the standard lack important features that are necessary for the execution of scientific workflows. This work presents components that extend an existing implementation of the BPEL standard and eliminate the identified weaknesses. The components thus provide the technical basis for use of BPEL in academia. The particular focus is on so-called non-functional (Quality of Service) requirements. These requirements include scalability, reliability (fault tolerance), data security, and cost (of executing a workflow). From a technical perspective, the workflow system must be able to interface with the middleware systems that are commonly used by the scientific workflow community to allow access to heterogeneous, distributed resources (especially Grid and Cloud resources). The major components cover exactly these requirements: Cloud Resource Provisioner Scalability of the workflow system is achieved by automatically adding additional (Cloud) resources to the workflow system’s resource pool when the workflow system is heavily loaded. Fault Tolerance Module High reliability is achieved via continuous monitoring of workflow execution and corrective interventions, such as re-execution of a failed workflow step or replacement of the faulty resource. Cost Aware Data Flow Aware Scheduler The majority of scientific workflow systems only take the performance and utilization of resources for the execution of workflow steps into account when making scheduling decisions. The presented workflow system goes beyond that. By defining preference values for the weighting of costs and the anticipated workflow execution time, workflow users may influence the resource selection process. The developed multiobjective scheduling algorithm respects the defined weighting and makes both efficient and advantageous decisions using a heuristic approach. Security Extensions Because it supports various encryption, signature and authentication mechanisms (e.g., Grid Security Infrastructure), the workflow system guarantees data security in the transfer of workflow data. Furthermore, this work identifies the need to equip workflow developers with workflow modeling tools that can be used intuitively. This dissertation presents two modeling tools that support users with different needs. The first tool, DAVO (domain-adaptable, Visual BPEL Orchestrator), operates at a low level of abstraction and allows users with knowledge of BPEL to use the full extent of the language. DAVO is a software that offers extensibility and customizability for different application domains. These features are used in the implementation of the second tool, SimpleBPEL Composer. SimpleBPEL is aimed at users with little or no background in computer science and allows for quick and intuitive development of BPEL workflows based on predefined components

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    The 5th Conference of PhD Students in Computer Science

    Get PDF

    Computational Methods to Advance Phylogenomic Workflows

    Get PDF
    Phylogenomics refers to the use of genome-scale data in phylogenetic analysis. There are several methods for acquiring genome-scale, phylogenetically-useful data from an organism that avoid sequencing the entire genome, thus reducing cost and effort, and enabling one to sequence many more individuals. In this dissertation we focus on one method in particular — RNA sequencing — and the concomitant use of assembled protein-coding transcripts in phylogeny reconstruction. Phylogenomic workflows involve tasks that are algorithmically and computationally demanding, in part due to the large amount of sequence data typically included in such analyses. This dissertation applies techniques from computer science to improve methodology and performance associated with phylogenomic workflow tasks such as sequence classification, transcript assembly, orthology determination, and phylogenetic analysis. While the majority of the methods developed in this dissertation can be applied to the analysis of diverse organismal groups, we primarily focus on the analysis of transcriptome data from Lepidoptera (moths and butterflies), generated as part of a collaboration known as “Leptree”

    Performance Evaluation of Function Composition in Middlewares supporting FaaS for Serverless computing

    Get PDF
    The concept of Serverless Computing is a new and exciting aspect of cloud computing that involves the deployment of small pieces of software applications and services as serverless functions. Serverless computing architecture enables the cloud provider to fully manage the execution of a server's code, eliminating the need for customers to develop and deploy the traditional underlying infrastructure required for running applications and programs. Even though big tech companies are extensively utilizing serverless computing in their products and investing billions on this novel but affirmed technology, it is affected by various problems still considered an open field in research. In fact, by definition, FaaS architectures are geographically dislocated and consequently subject to event propagation delays that can significantly degrade the overall system performance. What is generally done, is to reduce as much as possible cumulative delays especially if attributable to the infrastructure itself that could determine a greater or lesser competitiveness on the market. The background idea, which becomes the leit motiv throughout this work, is to develop and assess the performance, and thus the validity, of a Message-Oriented Middleware-centric serverless platform architecture promising to enable advanced analytics capabilities and better overall performance, without renouncing the essential characteristic of scalability in the context of distributed systems. Experiments in emulated conditions show that applying the MOM coordination co-locality principle improves the end-to-end delay and data processing performance

    Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data

    Get PDF
    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and

    KPI-related monitoring, analysis, and adaptation of business processes

    Get PDF
    In today's companies, business processes are increasingly supported by IT systems. They can be implemented as service orchestrations, for example in WS-BPEL, running on Business Process Management (BPM) systems. A service orchestration implements a business process by orchestrating a set of services. These services can be arbitrary IT functionality, human tasks, or again service orchestrations. Often, these business processes are implemented as part of business-to-business collaborations spanning several participating organizations. Service choreographies focus on modeling how processes of different participants interact in such collaborations. An important aspect in BPM is performance management. Performance is measured in terms of Key Performance Indicators (KPIs), which reflect the achievement towards business goals. KPIs are based on domain-specific metrics typically reflecting the time, cost, and quality dimensions. Dealing with KPIs involves several phases, namely monitoring, analysis, and adaptation. In a first step, KPIs have to be monitored in order to evaluate the current process performance. In case monitoring shows negative results, there is a need for analyzing and understanding the reasons why KPI targets are not reached. Finally, after identifying the influential factors of KPIs, the processes have to be adapted in order to improve the performance. %The goal thereby is to enable these phases in an automated manner. This thesis presents an approach how KPIs can be monitored, analyzed, and used for adaptation of processes. The concrete contributions of this thesis are: (i) an approach for monitoring of processes and their KPIs in service choreographies; (ii) a KPI dependency analysis approach based on classification learning which enables explaining how KPIs depend on a set of influential factors; (iii) a runtime adaptation approach which combines monitoring and KPI analysis in order to enable proactive adaptation of processes for improving the KPI performance; (iv) a prototypical implementation and experiment-based evaluation.Die Ausführung von Geschäftsprozessen wird heute zunehmend durch IT-Systeme unterstützt und auf Basis einer serviceorientierten Architektur umgesetzt. Die Prozesse werden dabei häufig als Service Orchestrierungen implementiert, z.B. in WS-BPEL. Eine Service Orchestrierung interagiert mit Services, die automatisiert oder durch Menschen ausgeführt werden, und wird durch eine Prozessausführungsumgebung ausgeführt. Darüber hinaus werden Geschäftsprozesse oft nicht in Isolation ausgeführt sondern interagieren mit weiteren Geschäftsprozessen, z.B. als Teil von Business-to-Business Beziehungen. Die Interaktionen der Prozesse werden dabei in Service Choreographien modelliert. Ein wichtiger Aspekt des Geschäftsprozessmanagements ist die Optimierung der Prozesse in Bezug auf ihre Performance, die mit Hilfe von Key Performance Indicators (KPIs) gemessen wird. KPIs basieren auf Prozessmetriken, die typischerweise die Dimensionen Zeit, Kosten und Qualität abbilden, und evaluieren diese in Bezug auf die Erreichung von Unternehmenszielen. Die Optimierung der Prozesse in Bezug auf ihre KPIs umfasst mehrere Phasen. Im ersten Schritt müssen KPIs durch Monitoring der Prozesse zur Laufzeit erhoben werden. Falls die KPI Werte nicht zufriedenstellend sind, werden im nächsten Schritt die Faktoren analysiert, die die KPI Werte beeinflussen. Schließlich werden auf Basis dieser Analyse die Prozesse angepasst um die KPIs zu verbessern. In dieser Arbeit wird ein integrierter Ansatz für das Monitoring, die Analyse und automatisierte Adaption von Prozessen mit dem Ziel der Optimierung hinsichtlich der KPIs vorgestellt. Die Beiträge der Arbeit sind wie folgt: (i) ein Ansatz zum Monitoring von KPIs über einzelne Prozesse hinweg in Service Choreographien, (ii) ein Ansatz zur Analyse von beeinflussenden Faktoren von KPIs auf Basis von Entscheidungsbäumen, (iii) ein Ansatz zur automatisierten, proaktiven Adaption von Prozessen zur Laufzeit auf Basis des Monitorings und der KPI Analyse, (iv) eine prototypische Implementierung und experimentelle Evaluierung

    Efficient multilevel scheduling in grids and clouds with dynamic provisioning

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 12-01-2016La consolidación de las grandes infraestructuras para la Computación Distribuida ha resultado en una plataforma de Computación de Alta Productividad que está lista para grandes cargas de trabajo. Los mejores exponentes de este proceso son las federaciones grid actuales. Por otro lado, la Computación Cloud promete ser más flexible, utilizable, disponible y simple que la Computación Grid, cubriendo además muchas más necesidades computacionales que las requeridas para llevar a cabo cálculos distribuidos. En cualquier caso, debido al dinamismo y la heterogeneidad presente en grids y clouds, encontrar la asignación ideal de las tareas computacionales en los recursos disponibles es, por definición un problema NP-completo, y sólo se pueden encontrar soluciones subóptimas para estos entornos. Sin embargo, la caracterización de estos recursos en ambos tipos de infraestructuras es deficitaria. Los sistemas de información disponibles no proporcionan datos fiables sobre el estado de los recursos, lo cual no permite la planificación avanzada que necesitan los diferentes tipos de aplicaciones distribuidas. Durante la última década esta cuestión no ha sido resuelta para la Computación Grid y las infraestructuras cloud establecidas recientemente presentan el mismo problema. En este marco, los planificadores (brokers) sólo pueden mejorar la productividad de las ejecuciones largas, pero no proporcionan ninguna estimación de su duración. La planificación compleja ha sido abordada tradicionalmente por otras herramientas como los gestores de flujos de trabajo, los auto-planificadores o los sistemas de gestión de producción pertenecientes a ciertas comunidades de investigación. Sin embargo, el bajo rendimiento obtenido con estos mecanismos de asignación anticipada (early-binding) es notorio. Además, la diversidad en los proveedores cloud, la falta de soporte de herramientas de planificación y de interfaces de programación estandarizadas para distribuir la carga de trabajo, dificultan la portabilidad masiva de aplicaciones legadas a los entornos cloud...The consolidation of large Distributed Computing infrastructures has resulted in a High-Throughput Computing platform that is ready for high loads, whose best proponents are the current grid federations. On the other hand, Cloud Computing promises to be more flexible, usable, available and simple than Grid Computing, covering also much more computational needs than the ones required to carry out distributed calculations. In any case, because of the dynamism and heterogeneity that are present in grids and clouds, calculating the best match between computational tasks and resources in an effectively characterised infrastructure is, by definition, an NP-complete problem, and only sub-optimal solutions (schedules) can be found for these environments. Nevertheless, the characterisation of the resources of both kinds of infrastructures is far from being achieved. The available information systems do not provide accurate data about the status of the resources that can allow the advanced scheduling required by the different needs of distributed applications. The issue was not solved during the last decade for grids and the cloud infrastructures recently established have the same problem. In this framework, brokers only can improve the throughput of very long calculations, but do not provide estimations of their duration. Complex scheduling was traditionally tackled by other tools such as workflow managers, self-schedulers and the production management systems of certain research communities. Nevertheless, the low performance achieved by these earlybinding methods is noticeable. Moreover, the diversity of cloud providers and mainly, their lack of standardised programming interfaces and brokering tools to distribute the workload, hinder the massive portability of legacy applications to cloud environments...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEsubmitte

    Applications Development for the Computational Grid

    Get PDF

    Molecular phylogenetic analysis: design and implementation of scalable and reliable algorithms and verification of phylogenetic properties

    Get PDF
    El término bioinformática tiene muchas acepciones, una gran parte referentes a la bioinformática molecular: el conjunto de métodos matemáticos, estadísticos y computacionales que tienen como objetivo dar solución a problemas biológicos, haciendo uso exclusivamente de las secuencias de ADN, ARN y proteínas y su información asociada. La filogenética es el área de la bioinformática encargada del estudio de la relación evolutiva entre organismos de la misma o distintas especies. Al igual que sucedía con la definición anterior, los trabajos realizados a lo largo de esta tesis se centran en la filogenética molecular: la rama de la filogenética que analiza las mutaciones hereditarias en secuencias biológicas (principalmente ADN) para establecer dicha relación evolutiva. El resultado de este análisis se plasma en un árbol evolutivo o filogenia. Una filogenia suele representarse como un árbol con raíz, normalmente binario, en el que las hojas simbolizan los organismos existentes actualmente y, la raíz, su ancestro común. Cada nodo interno representa una mutación que ha dado lugar a una división en la clasificación de los descendientes. Las filogenias se construyen mediante procesos de inferencia en base a la información disponible, que pertenece mayoritariamente a organismos existentes hoy en día. La complejidad de este problema se ha visto reflejada en la clasificación de la mayoría de métodos propuestos para su solución como NP-duros [1-3].El caso real de aplicación de esta tesis ha sido el ADN mitocondrial. Este tipo de secuencias biológicas es relevante debido a que tiene un alto índice de mutación, por lo que incluso filogenias de organismos muy cercanos evolutivamente proporcionan datos significativos para la comunidad biológica. Además, varias mutaciones del ADN mitocondrial humano se han relacionado directamente con enfermedad y patogenias, la mayoría mortales en individuos no natos o de corta edad. En la actualidad hay más de 30000 secuencias disponibles de ADN mitocondrial humano, lo que, además de su utilidad científica, ha permitido el análisis de rendimiento de nuestras contribuciones para datos masivos (Big Data). La reciente incorporación de la bioinformática en la categoría Big Data viene respaldada por la mejora de las técnicas de digitalización de secuencias biológicas que sucedió a principios del siglo 21 [4]. Este cambio aumentó drásticamente el número de secuencias disponibles. Por ejemplo, el número de secuencias de ADN mitocondrial humano pasó de duplicarse cada cuatro años, a hacerlo en menos de dos. Por ello, un gran número de métodos y herramientas usados hasta entonces han quedado obsoletos al no ser capaces de procesar eficientemente estos nuevos volúmenes de datos.Este es motivo por el que todas las aportaciones de esta tesis han sido desarrolladas para poder tratar grandes volúmenes de datos. La contribución principal de esta tesis es un framework que permite diseñar y ejecutar automáticamente flujos de trabajo para la inferencia filogenética: PhyloFlow [5-7]. Su creación fue promovida por el hecho de que la mayoría de sistemas de inferencia filogenética existentes tienen un flujo de trabajo fijo y no se pueden modificar ni las herramientas software que los componen ni sus parámetros. Esta decisión puede afectar negativamente a la precisión del resultado si el flujo del sistema o alguno de sus componentes no está adaptado a la información biológica que se va a utilizar como entrada. Por ello, PhyloFlow incorpora un proceso de configuración que permite seleccionar tanto cada uno de los procesos que formarán parte del sistema final, como las herramientas y métodos específicos y sus parámetros. Se han incluido consejos y opciones por defecto durante el proceso de configuración para facilitar su uso, sobre todo a usuarios nóveles. Además, nuestro framework permite la ejecución desatendida de los sistemas filogenéticos generados, tanto en ordenadores de sobremesa como en plataformas hardware (clusters, computación en la nube, etc.). Finalmente, se han evaluado las capacidades de PhyloFlow tanto en la reproducción de sistemas de inferencia filogenética publicados anteriormente como en la creación de sistemas orientados a problemas intensivos como el de inferencia del ADN mitocondrial humano. Los resultados muestran que nuestro framework no solo es capaz de realizar los retos planteados, sino que, en el caso de la replicación de sistemas, la posibilidad de configurar cada elemento que los componen mejora ampliamente su aplicabilidad.Durante la implementación de PhyloFlow descubrimos varias carencias importantes en algunas bibliotecas software actuales que dificultaron la integración y gestión de las herramientas filogenéticas. Por este motivo se decidió crear la primera biblioteca software en Python para estudios de filogenética molecular: MEvoLib [8]. Esta biblioteca ha sido diseñada para proveer una sola interfaz para los conjuntos de herramientas software orientados al mismo proceso, como el multialineamiento o la inferencia de filogenias. MEvoLib incluye además configuraciones por defecto y métodos que hacen uso de conocimiento biológico específico para mejorar su precisión, adaptándose a las necesidades de cada tipo de usuario. Como última característica relevante, se ha incorporado un proceso de conversión de formatos para los ficheros de entrada y salida de cada interfaz, de forma que, si la herramienta seleccionada no soporta dicho formato, este es adaptado automáticamente. Esta propiedad facilita el uso e integración de MEvoLib en scripts y herramientas software.El estudio del caso de aplicación de PhyloFlow al ADN mitocondrial humano ha expuesto los elevados costes tanto computacionales como económicos asociados a la inferencia de grandes filogenias. Por ello, sistemas como PhyloTree [9], que infiere un tipo especial de filogenias de ADN mitocondrial humano, recalculan sus resultados con una frecuencia máxima anual. Sin embargo, como ya hemos comentado anteriormente, las técnicas de secuenciación actuales permiten la incorporación de cientos o incluso miles de secuencias biológicas nuevas cada mes. Este desfase entre productor y consumidor hace que dichas filogenias queden desactualizadas en unos pocos meses. Para solucionar este problema hemos diseñado un nuevo algoritmo que permite la actualización de una filogenia mediante la incorporación iterativa de nuevas secuencias: PHYSER [10]. Además, la propia información evolutiva se utiliza para detectar posibles mutaciones introducidas artificialmente por el proceso de secuenciación, inexistentes en la secuencia original. Las pruebas realizadas con ADN mitocondrial han probado su eficacia y eficiencia, con un coste temporal por secuencia inferior a los 20 segundos.El desarrollo de nuevas herramientas para el análisis de filogenias también ha sido una parte importante de esta tesis. En concreto, se han realizado dos aportaciones principales en este aspecto: PhyloViewer [11] y una herramienta para el análisis de la conservación [12]. PhyloViewer es un visualizador de filogenias extensivas, es decir, filogenias que poseen al menos un millar de hojas. Esta herramienta aporta una novedosa interfaz en la que se muestra el nodo seleccionado y sus nodos hijo, así como toda la información asociada a cada uno de ellos: identificador, secuencia biológica, ... Esta decisión de diseño ha sido orientada a evitar el habitual “borrón” que se produce en la mayoría de herramientas de visualización al mostrar este tipo de filogenias enteras por pantalla. Además, se ha desarrollado en una arquitectura clienteservidor, con lo que el procesamiento de la filogenia se realiza una única vez por parte el servidor. Así, se ha conseguido reducir significativamente los tiempos de carga y acceso por parte del cliente. Por otro lado, la aportación principal de nuestra herramienta para el análisis de la conservación se basa en la paralelización de los métodos clásicos aplicados en este campo, alcanzando speed-ups cercanos al teórico sin pérdida de precisión. Esto ha sido posible gracias a la implementación de dichos métodos desde cero, incorporando la paralelización a nivel de instrucción, en vez de paralelizar implementaciones existentes. Como resultado, nuestra herramienta genera un informe que contiene las conclusiones del análisis de conservación realizado. El usuario puede introducir un umbral de conservación para que el informe destaque solo aquellas posiciones que no lo cumplan. Además, existen dos tipos de informe con distinto nivel de detalle. Ambos se han diseñado para que sean comprensibles y útiles para los usuarios.Finalmente, se ha diseñado e implementado un predictor de mutaciones patógenas en ADN mitocondrial desarollado en máquinas de vectores de soporte (SVM): Mitoclass.1 [13]. Se trata del primer predictor para este tipo de secuencias biológicas. Tanto es así, que ha sido necesario crear el primer repositorio de mutaciones patógenas conocidas, mdmv.1, para poder entrenar y evaluar nuestro predictor. Se ha demostrado que Mitoclass.1 mejora la clasificación de las mutaciones frente a los predictores más conocidos y utilizados, todos ellos orientados al estudio de patogenicidad en ADN nuclear. Este éxito radica en la novedosa combinación de propiedades a evaluar por cada mutación en el proceso de clasificación. Además, otro factor a destacar es el uso de SVM frente a otras alternativas, que han sido probadas y descartadas debido a su menor capacidad de predicción para nuestro caso de aplicación.REFERENCIAS[1] L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,” Journal of computational biology, vol. 1, no. 4, pp. 337–348, 1994.[2] W. H. E. Day, D. S. Johnson, and D. Sankoff, “The Computational Complexity of Inferring Rooted Phylogenies by Parsimony,” Mathematical Biosciences, vol. 81, no. 1, pp. 33–42, 1986.[3] S. Roch, “A short proof that phylogenetic tree reconstruction by maximum likelihood is hard,” IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 3, no. 1, p. 92, 2006.[4] E. R. Mardis, “The impact of next-generation sequencing technology on genetics,” Trends in genetics, vol. 24, no. 3, pp. 133–141, 2008.[5] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “PhyloFlow: A Fully Customizable and Automatic Workflow for Phylogeny Estimation,” in ECCB 2014, 2014.[6] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “PhyloFlow: A Fully Customizable and Automatic Workflow for Phylogenetic Reconstruction,” in IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1–7, IEEE, 2014.[7] J. Álvarez, R. Blanco, and E. Mayordomo, “Workflows with Model Selection: A Multilocus Approach to Phylogenetic Analysis,” in 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011), vol. 93 of Advances in Intelligent and Soft Computing, pp. 39–47, Springer Berlin Heidelberg, 2011.[8] J. Álvarez-Jarreta and E. Ruiz-Pesini, “MEvoLib v1.0: the First Molecular Evolution Library for Python,” BMC Bioinformatics, vol. 17, no. 436, pp. 1–8, 2016.[9] M. van Oven and M. Kayser, “Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation,” Human Mutation, vol. 30, no. 2, pp. E386–E394, 2009.[10] J. Álvarez-Jarreta, E. Mayordomo, and E. Ruiz-Pesini, “PHYSER: An Algorithm to Detect Sequencing Errors from Phylogenetic Information,” in 6th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2012), pp. 105–112, 2012.[11] J. Álvarez-Jarreta and G. de Miguel Casado, “PhyloViewer: A Phylogenetic Tree Viewer for Extense Phylogenies,” in ECCB 2014, 2014.[12] F. Merino-Casallo, J. Álvarez-Jarreta, and E. Mayordomo, “Conservation in mitochondrial DNA: Parallelized estimation and alignment influence,” in 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2015), pp. 1434–1440, IEEE, 2015.[13] A. Martín-Navarro, A. Gaudioso-Simón, J. Álvarez-Jarreta, J. Montoya, E. Mayordomo, and E. Ruiz-Pesini, “Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides,” BMC Bioinformatics, vol. 18, no. 158, pp. 1–11, 2017.<br /
    corecore