
KPI-Related Monitoring, Analysis, and

Adaptation of Business Processes

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der

Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Branimir Wetzstein
aus Osijek, Kroatien

Hauptberichter: Prof. Dr. Dr. h.c. Frank Leymann

Mitberichter: Prof. Dr. Dimka Karastoyanova

Tag der mündlichen Prüfung: 31. Oktober 2016

Institut für Architektur von Anwendungssystemen

der Universität Stuttgart

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147556029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS

1 Introduction 5

1.1 Application Area . 5

1.2 Motivation . 6

1.3 Contributions . 11

1.4 Structure of the Thesis . 13

2 Background and Related Work 15

2.1 BPM, SOA, and Web Services . 16

2.1.1 Business Process Management 16

2.1.2 Service-Oriented Architecture 18

2.1.3 Web Services . 19

2.1.4 Orchestration of Web Services 21

2.1.5 Service Choreographies . 23

2.2 Process Monitoring . 26

2.2.1 Event Processing . 29

2.2.2 Web Services Distributed Management 31

2.2.3 Business Activity Monitoring 33

2.2.4 Monitoring of Business Processes 35

2.2.5 Cross-Organizational Process Monitoring 42

iii

2.3 Process Performance Analysis and Optimization 45

2.3.1 Process Performance Analysis 46

2.3.2 Self-Adaptive Processes . 50

2.4 Summary and Conclusions . 55

3 Process Monitoring in Service Choreographies 57

3.1 Motivation and Objectives . 58

3.2 Choreography Monitoring Overview 60

3.2.1 Monitoring Method . 61

3.3 Monitoring Metamodel . 66

3.3.1 Overview . 66

3.3.2 Resource Types in BPEL4Chor Choreographies 69

3.3.3 Resource Identification . 73

3.3.4 Capabilities . 76

3.3.5 Custom Properties . 80

3.4 Summary and Conclusions . 88

4 Analyzing the Influential Factors of Business Process Performance 91

4.1 Motivation and Objectives . 92

4.2 Solution Overview and Method . 94

4.2.1 Classification Learning and KPI Dependency Analysis . . 94

4.2.2 Overview of the KPI Dependency Analysis Process 99

4.3 Modeling for KPI Dependency Analysis 101

4.3.1 Overview . 102

4.3.2 Key Performance Indicators 103

4.3.3 Influential Factors . 105

4.3.4 Generating Influential Factor Properties 106

4.3.5 Analysis Tasks . 108

4.4 KPI Dependency Analysis . 109

4.4.1 Learning of KPI Dependency Trees 109

4.5 Summary and Conclusions . 113

iv Contents

5 Runtime Adaptation Based on KPI Dependency Analysis 115

5.1 Motivation and Objectives . 116

5.2 Solution Overview and Method . 118

5.3 Modeling for Adaptation . 121

5.3.1 Overview . 121

5.3.2 Adaptation Subjects . 123

5.3.3 Checkpoints . 126

5.3.4 Constraints and Preferences 129

5.4 Runtime Adaptation based on KPI Prediction 130

5.4.1 Runtime Prediction of KPIs 132

5.4.2 Identification of Adaptation Requirements 135

5.4.3 Identification and Ranking of Adaptation Strategies . . . 138

5.4.4 Adaptation Enactment . 141

5.5 Summary and Conclusions . 143

6 Implementation and Evaluation 145

6.1 Prototypical Implementation . 145

6.1.1 Monitoring Framework . 148

6.1.2 Analysis and Adaptation Framework 153

6.2 Experimental Evaluation . 156

6.2.1 Experimental Evaluation of the KPI Dependency Analysis 156

6.2.2 Experimental Evaluation of Prediction and Adaptation . . 161

6.3 Summary and Conclusions . 164

7 Conclusions and Outlook 167

7.1 Outlook . 169

Bibliography 175

List of Figures 191

List of Tables 193

List of Listings 195

Contents v

ABSTRACT

In today’s companies, business processes are increasingly supported by IT

systems. They can be implemented as service orchestrations, for example

in WS-BPEL, running on Business Process Management (BPM) systems. A

service orchestration implements a business process by orchestrating a set

of services. These services can be arbitrary IT functionality, human tasks, or

again service orchestrations. Often, these business processes are implemented

as part of business-to-business collaborations spanning several participating

organizations. Service choreographies focus on modeling how processes of

different participants interact in such collaborations.

An important aspect in BPM is performance management. Performance is

measured in terms of Key Performance Indicators (KPIs), which reflect the

achievement towards business goals. KPIs are based on domain-specific metrics

typically reflecting the time, cost, and quality dimensions. Dealing with KPIs

involves several phases, namely monitoring, analysis, and adaptation. In a

first step, KPIs have to be monitored in order to evaluate the current process

performance. In case monitoring shows negative results, there is a need for

analyzing and understanding the reasons why KPI targets are not reached.

Finally, after identifying the influential factors of KPIs, the processes have to be

adapted in order to improve the performance.

This thesis presents an approach how KPIs can be monitored, analyzed, and

1

used for adaptation of processes. The concrete contributions of this thesis

are: (i) an approach for monitoring of processes and their KPIs in service

choreographies; (ii) a KPI dependency analysis approach based on classification

learning which enables explaining how KPIs depend on a set of influential

factors; (iii) a runtime adaptation approach which combines monitoring and

KPI analysis in order to enable proactive adaptation of processes for improving

the KPI performance; (iv) a prototypical implementation and experiment-based

evaluation.

2 Contents

ZUSAMMENFASSUNG

Die Ausführung von Geschäftsprozessen wird heute zunehmend durch IT-

Systeme unterstützt und auf Basis einer serviceorientierten Architektur umge-

setzt. Die Prozesse werden dabei häufig als Service Orchestrierungen implemen-

tiert, z.B. in WS-BPEL. Eine Service Orchestrierung interagiert mit Services, die

automatisiert oder durch Menschen ausgeführt werden, und wird durch eine

Prozessausführungsumgebung ausgeführt. Darüber hinaus werden Geschäft-

sprozesse oft nicht in Isolation ausgeführt sondern interagieren mit weiteren

Geschäftsprozessen, z.B. als Teil von Business-to-Business Beziehungen. Die

Interaktionen der Prozesse werden dabei in Service Choreographien modelliert.

Ein wichtiger Aspekt des Geschäftsprozessmanagements ist die Optimierung

der Prozesse in Bezug auf ihre Performance, die mit Hilfe von Key Performance

Indicators (KPIs) gemessen wird. KPIs basieren auf Prozessmetriken, die typis-

cherweise die Dimensionen Zeit, Kosten und Qualität abbilden, und evaluieren

diese in Bezug auf die Erreichung von Unternehmenszielen. Die Optimierung

der Prozesse in Bezug auf ihre KPIs umfasst mehrere Phasen. Im ersten Schritt

müssen KPIs durch Monitoring der Prozesse zur Laufzeit erhoben werden. Falls

die KPI Werte nicht zufriedenstellend sind, werden im nächsten Schritt die

Faktoren analysiert, die die KPI Werte beeinflussen. Schließlich werden auf

Basis dieser Analyse die Prozesse angepasst um die KPIs zu verbessern.

In dieser Arbeit wird ein integrierter Ansatz für das Monitoring, die Analyse

3

und automatisierte Adaption von Prozessen mit dem Ziel der Optimierung

hinsichtlich der KPIs vorgestellt. Die Beiträge der Arbeit sind wie folgt: (i)

ein Ansatz zum Monitoring von KPIs über einzelne Prozesse hinweg in Service

Choreographien, (ii) ein Ansatz zur Analyse von beeinflussenden Faktoren von

KPIs auf Basis von Entscheidungsbäumen, (iii) ein Ansatz zur automatisierten,

proaktiven Adaption von Prozessen zur Laufzeit auf Basis des Monitorings und

der KPI Analyse, (iv) eine prototypische Implementierung und experimentelle

Evaluierung.

4 Contents

C
H

A
P

T
E

R 1
INTRODUCTION

1.1 Application Area

Business processes in companies are increasingly supported by IT systems today.

This support ranges from automated business functions as part of business

processes, to fully automated business processes running as workflows. Consid-

ering the whole lifecycle of business processes, a new discipline has emerged,

Business Process Management (BPM), which encompasses methods, models,

and tools for managing business processes in and across organizations [Wes07].
Recently, BPM has been supported by an integrated set of tools, so called Busi-

ness Process Management Systems (BPMS), supporting the process lifecycle in

a unified manner.

Typically, the business process lifecycle begins with the modeling phase when

a business analyst analyzes business processes in the company and creates busi-

ness process models using a process modeling notation such as Business Process

Model and Notation (BPMN) [OMG11]. In this context, one can distinguish

between an orchestration model, which presents the business process from

the point of view of one partner and a choreography model, which is used for

modeling business-to-business collaborations focusing on interactions between

5

orchestrations of different partners. If the process model is to be enacted on a

BPMS, it is transformed and refined to an executable workflow model. In the

deployment phase, the workflow model is deployed to the workflow engine

(part of the BPMS), which executes the process by delegating process tasks to

humans and applications.

Service-Oriented Architecture (SOA) is the most recent architecture paradigm

for implementing enterprise integration solutions [PTDL07]. SOA is supporting

BPM by exposing functionality as services, which are used for implementing

activities in business processes and business processes again can be exposed as

services. The Web services platform is a concrete technology which can be used

to implement a SOA [WCL+05]. It consists of a set of specifications, such as Web

Services Description Language (WSDL) for describing service interfaces and Web

Services Business Process Execution Language (WS-BPEL, or BPEL for short) for

orchestration of Web services [OAS07]. In that context, service orchestrations

are used for implementing business processes. For example, business processes

can be modeled using BPMN and then mapped to BPEL for execution. The BPEL

process engine executes the BPEL process model by delegating the process tasks

to Web services. While a service orchestration implements an executable private

process model implemented by each participant, a service choreography models

the publicly visible processes and message exchanges between participants from

a global viewpoint [Pel03]. BPEL4Chor is a BPEL extension for modeling service

choreographies [DKLW07].
To summarize, this thesis focuses on business processes which are enacted on

a BPMS and are realized based on the SOA architecture paradigm, in particular

using Web service technologies as implementation platform.

1.2 Motivation

An important aspect in BPM, and the focus of this work, is performance man-

agement of business processes.

The motivation is provided based on a purchase order processing scenario,

which is also used throughout the thesis for explaining the concepts based on

examples. A high-level overview of the business process is shown in Figure 1.1.

6 1 | Introduction

It is a choreography between a customer, a reseller, and a shipper. Other in-

volved participants such as suppliers, internal services (e.g., warehouse service

of reseller) are not shown in the figure for simplicity reasons.

Figure 1.1: Purchase Order Processing Scenario

The scenario is as follows. The customer sends a purchase order to the

reseller. The reseller checks in his warehouse whether and by when he can

fulfill the order and sends a notification to the customer. The reseller then

orders the requested product items at suppliers if they are not in stock, packages

the products and hands them over to the shipment service. The order can be

split in several shipments. The reseller bills the customer. The shipper delivers

1.2 | Motivation 7

the products to the customer.

Figure 1.1 depicts from the perspective of the reseller, the phases relevant

for management of process performance. As the process is executed, the Key

Performance Indicators (KPIs) are first monitored, then analyzed, and finally

the process is adapted, if needed, to improve the performance.

In the following, the motivation and the research questions are described

for each of those three phases. Also the contribution of the thesis is sketched

shortly for each phase and then presented in detail in the next section.

Monitoring. Companies are interested in monitoring the performance of their

business processes. They specify and monitor KPIs, which are the most im-

portant metrics showing the achievement of business goals. Process-related

KPIs are measured based on metrics typically related to time, cost, and quality

dimensions. Exemplary KPIs in the above scenario are order fulfillment time

and number of orders processed from stock. A KPI definition specifies how the

underlying metric has to be calculated and a target function which maps the

metric values to a set of categories which enable interpretation of the metric

value in relation to business goals (e.g., green, yellow, red).

KPI monitoring can already be performed on process level, e.g., by using

state-of-the-art Business Activity Monitoring (BAM) technology, which is often

provided as part of BPMS systems. Such systems enable event-based monitoring

of service orchestrations in a near real-time fashion. Besides monitoring of

KPIs for service orchestrations, monitoring across business processes in ser-

vice choreographies is getting more and more important. Due to outsourcing,

there are more and more business processes which are spread across organiza-

tional boundaries. In that case, a company is still interested in monitoring of

outsourced process fragments. There is also a trend that companies provide

monitoring data of their business processes to some extent to other companies

as a feature. For example, shipment services today already provide data on

some steps of their business processes giving information on the location of

the shipment to the customer. In the scenario, for example, for calculating

the order fulfillment time the reseller needs monitoring information from the

shipper or customer on when the shipment was delivered. That information is

8 1 | Introduction

not available in the reseller process.

There is, thus, a need for monitoring of processes across single orchestrations

in service choreographies. The challenges include how to create monitor

models and corresponding monitoring interfaces which contain only those

monitoring information the participants are willing to provide and how to

correlate monitoring information of the different processes in order to calculate

composite properties needed for calculation of KPIs. The monitoring approach

developed in this thesis supports the definition of monitor models based on

service choreography descriptions. Such a monitor model is a monitoring

contract between choreography participants which specifies the monitored

resources and their properties each participant has to provide in his monitoring

interface.

Analysis. In process performance management, monitoring of KPIs is just the

first step. This is because when things go wrong, i.e., monitoring shows that KPI

targets are not met, in the next step the goal is to analyze the most influential

factors which lead to those target violations. For example, the reseller wants

to know why the order fulfillment time for some orders has been longer than

accepted. Due to the fact that KPIs are complex properties that rely upon a wide

range of factors, the analysis is not straightforward. In the scenario, the order

fulfillment time may be influenced by many different factors, such as duration

of sub-processes and activities, response time and availability of used services,

ordered products and their properties such as number of ordered items, product

type and size, cost of delivery service, and availability of IT infrastructure. All

those factors influence the KPI in some way. The difficulty in analysis comes

from the fact that those factors behave in a different way for different process

instances. For example, partners such as the supplier and shipper can behave

differently based on product types or some external context factors, such as

a specific day of week or the weather. All those factors and a combination of

those can lead to late delivery of orders.

In order to deal with the analysis problem, typically one would build a data

mart and then manually pose analysis questions in terms of OLAP queries. That

approach is however, time-consuming, costly, and does not allow automated

1.2 | Motivation 9

analysis. The approach in this thesis utilizes data mining techniques, in par-

ticular decision trees, for KPI analysis. At modeling time, for each KPI a set of

property definitions is generated which pose potential influential factors for

that KPI. At process runtime, those properties are monitored. For performing

the analysis, a classification learning problem is constructed, whereby each

process instance is classified according to its KPI value and the other properties

are used as features. As a result a decision tree, the so-called KPI dependency

tree, is built, which explains how the KPI depends on the lower-level influential

factors. This knowledge can then be used to adapt the process in order to

improve the KPIs.

Adaptation. The last step of the lifecycle is to adapt the process based on the

analysis in order to improve its performance. When adapting processes, one

can distinguish between process model adaptation, where the adapted model

affects all future process instances, and process instance adaptation, where

only particular process instances are adapted at process runtime. Furthermore,

one can distinguish between reactive and proactive adaptation. In reactive

adaptation, the adaptation is triggered after a certain event takes place, e.g.,

the KPI target has been violated. In proactive adaptation, one tries first to

predict the undesirable event and then adapt the process in order to prevent it.

In this thesis, the focus is on proactive adaptation of running process instances.

The goal is thereby to adapt running process instances in order to improve

their performance considering the specified KPIs. For example, in the scenario

after the warehouse check one might predict based on the requested product

types that the order fulfillment time will be red for the particular process

instance. One could then decide to adapt that process instance by selecting and

binding a faster supplier or shipper. That assumes, of course, that corresponding

adaptation mechanisms are available and that adaptation alternatives exist for

the particular process, e.g., that alternative shippers and suppliers are available.

Also, it should be taken into account that typically several KPIs are defined,

so improving one KPI could lead to deterioration of another. For example,

selecting a premium shipment service improves the shipment duration and thus

the order fulfillment time, however has a negative impact on a KPI reflecting

10 1 | Introduction

the costs.

To summarize, the goal is to enable a proactive runtime adaptation of process

instances in order to improve the specified KPIs. The adaptation approach of

the thesis uses the monitoring and analysis framework in order to perform

runtime adaptation of processes. Thereby, the KPI values are predicted based on

KPI dependency trees and then an adaptation strategy is identified and selected

based on predefined adaptation alternatives and preferences. Thereby, no

new adaptation mechanisms (e.g., dynamic service binding, process fragment

substitution) are developed, but existing ones are used as part of the adaptation

framework.

1.3 Contributions

As motivated in the previous section, the main goal of this work is to enable

monitoring of business process performance in choreographies in terms of KPIs,

analyzing the reasons for KPIs not meeting their targets and their explanation,

and corresponding proactive runtime adaptation of process instances which

leads to an improvement of process performance.

The contributions of this thesis are as follows:

Contribution 1: Business Process Monitoring in Service Choreographies

A monitoring approach is presented which enables process monitoring in

service choreographies.

The developed monitoring metamodel supports the definition of monitor

models in terms of monitored resources and properties based on service

choreography models. It allows to selectively define which monitoring

information is to be provided by the participants in the choreography and

represents a monitoring contract between the participants. Monitored

properties include basic properties such as execution state of process

activities needed for process tracking and composite properties needed

for calculation of KPIs, evaluated based on events stemming from different

processes using complex event processing.

1.3 | Contributions 11

The monitoring approach uses BPEL4Chor as the choreography language

and is based on Web Services Distributed Management (WSDM) as moni-

toring technology. Therefore, BPEL4Chor runtime entities are mapped to

a set of resource types, which can be monitored by a new set of monitor-

ing capabilities introduced as an extension to the WSDM framework. A

corresponding method for developing monitoring solutions based on the

metamodel is described.

Contribution 2: Analysis of Influential Factors of Process Performance

The process monitoring approach provides values which are used to

evaluate KPIs showing how business processes perform. Beyond that, if

KPI targets are not met, further analysis has to be done explaining why.

In this context, the KPI Dependency Analysis approach is presented which

explains the influential factors the KPI performance depends on.

A KPI analysis metamodel is presented which supports modeling of KPIs,

potential influential factors and analysis tasks. The so created analysis

model is integrated with the monitor model in order to ensure that

KPIs and influential factors are monitored. A corresponding method for

performing the KPI dependency analysis is described.

For the analysis, established decision tree algorithms are used. Data

preparation for the decision tree mining is performed in an automated

way based on the analysis model. The resulting decision tree, the so-called

KPI dependency tree, shows how a KPI depends on the combinations

of influential factors. The KPI dependency tree can be used as basis for

adapting the process.

Contribution 3: Runtime Adaptation based on KPI Dependency Analysis

The KPI dependency analysis shows the main influential factors of the

KPI performance and in particular those influential factor combinations

which lead to bad KPI values. It can also be used for predicting the KPI

values of running process instances. This contribution shows how the

process can be proactively adapted at runtime based on the dependency

trees so that KPIs are improved.

12 1 | Introduction

The approach includes an adaptation metamodel which allows defin-

ing adaptation subjects and related adaptation alternatives which can

be used at runtime to adapt the process by using available adaptation

mechanisms. Furthermore, preferences and constraints related to KPI

values and other properties can be specified to lead the adaptation. Based

on the adaptation metamodel, algorithms are presented which extract

adaptation requirements from the prediction results and group avail-

able adaptation alternatives into adaptation strategies to satisfy those

requirements. A selection strategy for adaptation strategies based on the

preferences model is presented.

This contribution brings together the monitoring (Contribution 1) and

analysis (Contribution 2) and extends it by the adaptation aspect, thus

developing a framework for KPI-related proactive adaptation of process

instances.

Contribution 4: Prototypical Realization and Scenario-based Evaluation

In order to demonstrate the realizability of the proposed concepts, a pro-

totype has been developed. It consists of a monitoring, analysis, and

adaptation framework, which has been implemented on top of an existing

BPEL engine, a CEP framework, and a data mining library. The purchase

order scenario has been implemented based on BPEL and has been used

for experiment-based evaluation of the approach.

1.4 Structure of the Thesis

The thesis is structured as follows. Chapter 2 presents the background and

related work needed for understanding the concepts developed in this thesis.

The first part of the chapter gives an overview of the concepts and technologies

of the BPM and SOA domains. The second part focuses on process performance

monitoring, analysis, and adaptation, which is the research domain of this

thesis. Related research approaches are presented and their relations to the

approach of the thesis are discussed.

1.4 | Structure of the Thesis 13

Chapter 3 presents the first part in the overall approach focusing on mon-

itoring of business processes in service choreographies. After presenting the

motivation and the objectives based on a scenario, an overview of the approach

is given and the method is described. Then in the following, the monitoring

metamodel is presented in detail, showing how service choreographies can

be mapped to monitorable resources and their properties. In particular, the

definition of composite events and custom properties is presented, which is the

basis for the following parts of the approach.

Chapter 4 explains how based on the monitoring results, the performance of

business processes can be analyzed. After giving an overview of the approach

and some background information on employed machine learning techniques,

in the first part of the chapter an analysis metamodel is presented which allows

modeling of KPIs and analysis tasks. The second part then shows how the

influential factors of KPIs can be analyzed using decision tree techniques for

creating KPI dependency trees.

In Chapter 5 monitoring and analysis are combined for supporting runtime

adaptation of processes in order to optimize process performance. First, the

overall process is presented explaining all phases from modeling to runtime

monitoring and adaptation. Then, the adaptation metamodel and the runtime

adaptation approach are presented in detail.

Chapter 6 presents the implementation and the evaluation of the approach. In

the first part, the prototypical implementation of the monitoring, analysis, and

adaptation is described. Then, the results of an experiment-based evaluation

are discussed.

Finally, in the last chapter the contributions of the thesis are summarized and

an outlook is given, discussing how the concepts of the thesis can be improved

and extended in future work.

14 1 | Introduction

C
H

A
P

T
E

R 2
BACKGROUND AND RELATED

WORK

This chapter introduces background concepts, technologies, and related work

needed for understanding the contributions of the thesis as presented in the

following chapters.

Section 2.1 gives an introduction into the areas of BPM and SOA. It ex-

plains the business process lifecycle, provides an overview of the main Web

service technologies and focuses then on service orchestrations and service

choreographies.

In the next two sections, monitoring, analysis, and adaptation aspects are

described in detail, presenting the relevant research approaches and comparing

them to the approach of this thesis. Section 2.2 gives an overview of monitoring

approaches in BPM and SOA, and explains concepts and technologies related

to event processing and BAM. In particular, related research approaches in the

area of BPEL monitoring and cross-organizational monitoring are presented.

Section 2.3 presents related process performance analysis techniques that go

beyond monitoring and process adaptation approaches, in particular those that

15

combine monitoring, analysis, and adaptation techniques.

2.1 BPM, SOA, and Web Services

This thesis deals with business processes that are realized based on a SOA, in

particular using Web services as a concrete SOA implementation technology. In

the following, an overview of BPM and SOA concepts is given and the main

Web service technologies relevant for this thesis are introduced.

2.1.1 Business Process Management

Business Process Management (BPM) is a discipline which deals with concepts,

methods, and techniques to support the business process lifecycle [Wes07]. A

business process consists of a set of activities which jointly realize a business

goal. A business process is enacted by a single organization, but it may interact

with business processes of other organizations. A business process model defines

the execution constraints between process activities. Execution constraints

are specified by defining sequencing of activities, decision points, parallel

execution, exception handling and so on. There are different languages for

specifying business process models (e.g., BPMN [OMG11], EPC [STA05]). A

business process model serves as a blueprint for business process instances,
which represent concrete executions based on the business process model (e.g.,

processing of a concrete purchase order). In the following, the term business
process may refer to either a model or an instance, depending on the context.

A business process can be enacted manually or automatically on a software

system. In the former case, the business process model is mainly used for

documentation and analysis purposes. In the latter case the business process

model is deployed on a software system (a.k.a. a workflow engine), which

executes the business process instances by delegating work to humans and

automated IT applications. Business processes which are executed by software

systems are also known as workflows [LR00]. In BPM, workflow engines are

part of a bigger software system known as Business Process Management System
(BPMS). The goal of the BPMS is to support all phases of the business process

16 2 | Background and Related Work

lifecycle.

A business process is often not performed in isolation, but is interacting

with other business processes, potentially crossing organizational boundaries.

Thereby, one distinguishes between a process orchestration and a process chore-
ography. A process orchestration can be controlled and executed by a central

software component which orchestrates the activity executions. A process chore-

ography models the interactions between several process orchestrations. There

is no central component which can execute a choreography and involved pro-

cess orchestrations can be executed by different organizations. A choreography

can focus solely on interactions between orchestrations, but can also include

internal behavior of the orchestrations which goes beyond interactions. In both

cases, the choreography models public processes of the participants, while an

executable process orchestration models the private process of a participant.

The business process lifecycle consists of several phases [Wes07]. In the design
and analysis phase the lifecycle begins by the identification of business processes

in an organization and the creation of business process models which are to

be realized. In addition, one specifies non-functional aspects of the process,

such as performance goals, compliance rules, and security aspects. In the

configuration phase the business process is implemented. In case of manual

processes, this might result in a set of rules and policies which the employees

have to follow. If the process is to be executed by a process engine, then it has to

be made executable. This involves first selecting the implementation platform.

If the implementation of the process follows the SOA paradigm, the process

model is realized as a service orchestration (cf. Section 2.1.4). In the next step

technical details have to be added to the business process model, which often

means transforming the business process model to a workflow representation of

the process engine. Non-functional aspects have to be correspondingly mapped

to implementation artifacts, e.g., measurement directives for performance

metrics. Finally, the process is tested and deployed on the process engine.

In the enactment phase, process instances are executed. The execution is

controlled by the process engine. As the process is executed, the engine typically

publishes execution events, which are stored in an audit log and can be used

by a monitoring tool to show the execution status of the process instances

2.1 | BPM, SOA, and Web Services 17

and evaluate non-functional aspects. In the evaluation phase, business process

models are evaluated with the goal of process optimization. The information

stored in the audit logs, for example, can be used for assessing the performance

of the business process and analyzing optimization potentials. For example,

the process model or the resources used by the process can be changed.

This thesis focuses on business processes which are realized as orchestrations

in the context of a SOA (cf. Section 2.1.2), and which can interact with other

orchestrations in choreographies.

2.1.2 Service-Oriented Architecture

The Service-Oriented Architecture (SOA) is an architectural paradigm for the

creation of software applications [Erl05, PTDL07]. A service-based application
(SBA) uses services as building blocks. A service has a well-defined service

interface and a service implementation.

The service interface defines how to interact with the service and consists of

a functional description, typically specified in terms of operations with inputs

and outputs and technical information on protocols to be used to interact with

the service, and optionally of a description of its non-functional properties. The

service implementation can be realized using arbitrary technologies. Thereby,

one can distinguish between atomic services and composite services. An atomic
service acts as a wrapper of a software component (or a set of components)

implemented using an arbitrary component implementation technology (e.g.,

Java EE, .NET) and programming language (e.g., Java, C++). Such an atomic

service does not use other services defined in a service-based application. A

composite service (a.k.a. service composition, service aggregation) implements a

new service by composing already existing services, which can be either atomic

or composite. In a wider sense, there are different types of service compositions

such as service orchestration, service choreography, service coordination, and

service wiring [KL03]. In a narrower sense, a service composition denotes a

service orchestration (cf. Section 2.1.4). For the service interface description

and the implementation of composite services, typically special models and

languages are provided (as in the case of Web services, cf. Section 2.1.3), while

18 2 | Background and Related Work

atomic services are typically implemented using 3GL languages and can be

used in a SOA by defining a service interface for them.

A service provider first implements a service he wants to offer to service

requesters. This can involve composing services from other providers and it

can also involve creating a choreography model thus agreeing with requesters

and providers on the message interactions. Then he creates a service interface

description for the service and publishes this service interface description to

a service registry or provides it directly to the service requesters. A service
requester obtains the service interface description and binds against the service.

One can thereby distinguish between static binding and dynamic binding. In

static binding, at design time or at deployment time the concrete service has

to be selected; typically then binding information (e.g., stubs for interaction

with the services) is generated. In dynamic binding, the decision which service

is to be used is prolonged to the runtime thus gaining in flexibility which

service is to be invoked. The invocation of a service is supported by a service
bus [Ley05, Cha04], which handles the technical interaction details in service

interactions. In some cases, the service requester and service provider create a

Service Level Agreement (SLA), which is a contract specifying the functional

and non-functional properties the service should provide, and the consequences

in case of SLA violations.

SOA supports the realization of business processes. Firstly, process orchestra-

tions can use services exposed in a SOA for implementing automated process

activities. Services in this context typically encapsulate business functions,

which are often reusable and can be used in several business processes. Sec-

ondly, process orchestrations can be implemented as service orchestrations and

executed in a corresponding workflow engine.

2.1.3 Web Services

The Web service (WS) stack [WCL+05, Pap08] is a particular implementation

of a SOA. It consists of a set of standardized specifications and technologies

which support the realization of service-based applications. In the WS stack,

services are called Web services. The WS stack consists of several specifications

2.1 | BPM, SOA, and Web Services 19

for defining different aspects needed for creation of service-based applications:

service interface description, service interaction, service discovery, service

composition, support for transactions, security, management, and SLAs. In the

following, a short overview of the key WS specifications is provided.

The functional interface of a Web service is specified using the Web Service

Description Language (WSDL) [W3C01], which is the basic technology of the

WS stack. A WSDL 1.1 description is an XML-based document specifying (i) the

abstract interface (a.k.a. portType in WSDL 1.1) of a Web service in terms of

operations, and input and output messages of these operations; (ii) a concrete

binding, which implements and provides the abstract interface using specific

message encodings and transport protocols (e.g., SOAP/HTTP, JMS) (iii) the

Web service endpoint (a.k.a. port in WSDL 1.1), which provides a binding at a

specific network address.

The SOAP-Messaging-Framework [W3C07] defines a message format and

processing rules for messages in WS interactions. A SOAP message consists of

a SOAP envelope, which contains an arbitrary set of SOAP headers and a SOAP

body. The actual transport of a SOAP message can be performed over different

transport protocols such as HTTP, SMTP, and JMS. A SOAP binding [W3C07]
defines how the SOAP message is to be serialized and transported over a

concrete protocol.

WS-Addressing [W3C06] is a specification which deals with (i) referencing of

Web service endpoints via Endpoint References (EPR) and (ii) defines the message
addressing properties which should be part of messages exchanged between WS

endpoints. An EPR is issued by the service provider and contains information

which is needed to address a WS endpoint. It includes (i) the endpoint address
as an Internationalized Resource Identifier (IRI), (ii) an unbounded set of

reference parameters which are domain-specific properties required to address

the endpoint, and (iii) an unbounded set of metadata elements describing the

endpoint.

In this thesis, Web services are used as basis for the implementation of services

and processes. The presented specifications are the basic specifications of the

WS stack. Additional relevant specifications related to service orchestration

(cf. Section 2.1.4), service choreography (cf. Section 2.1.5), and service

20 2 | Background and Related Work

management (cf. Section 2.2.2) are presented in the corresponding sections in

more detail.

2.1.4 Orchestration of Web Services

A service orchestration implements a new service by composing a set of given

services. Thereby, a logically central component interacts with the orchestrated

services according to an orchestration model. Services which are orchestrated

can be atomic services, i.e., services which do not use any other services, or

again service orchestrations.

While service orchestrations could be implemented in 3GL programming

languages such as Java, typically higher level languages are used as they support

the idea of two-level programming [LR97]. Thereby, the functionality specified

in 3GL languages is orchestrated using a workflow language, which often has a

graphical representation. The so created orchestration model is deployed on a

workflow engine for execution. In the context of Web services, the Web Service

Business Process Execution Language 2.0 (WS-BPEL, BPEL for short) [OAS07] is

the standard workflow language for implementing Web service orchestrations.

For implementing orchestration logic, BPEL provides a set of activity types.

Basic activities allow interaction with external Web services (e.g., invoke for a

Web service invocation, receive or pick for receiving messages from external

Web services), data handling (e.g., assign for copying data between process

variables), and some other activities (e.g., wait for pausing the execution for

a certain time, or throw for signaling internal faults). Structured activities are

used for implementing the control flow of the process. BPEL provides, among

others, sequence for sequencing activities, flow for the parallel execution

of activities, if for implementing alternative parts of execution, and while

for implementing loops. Alternatively to the block-structured modeling style,

BPEL allows also graph-based modeling inside of the flow activity by speci-

fying link elements between activities thus imposing an execution ordering.

BPEL also supports more advanced features via scope such as fault handling,

compensation handling, and event handling. In BPEL, data flow is implicit.

Activities can access process variables, which can be defined either globally for

2.1 | BPM, SOA, and Web Services 21

the whole process or for specific (nested) scopes (which restrict their visibility).

BPEL supports both stateless and stateful interactions. A stateless interaction

is given if the BPEL process invokes a Web service synchronously using an

invoke activity or if it is invoked by the client and uses the receive-reply
pattern. A stateful interaction (a.k.a. conversation) is given if the process

invokes a partner Web service asynchronously using an invoke, continues

its execution, and then later receives the response in a receive activity. In

that case, the incoming message from the service has to be correlated to the

corresponding process instance which initiated the interaction. Rather than

using WS-Addressing, which would perform correlation based on message

headers, BPEL performs this correlation based on specific properties defined in

the message payload. Therefore, the BPEL-specific mechanism of a correlation
set is used.

The Web services which are orchestrated in a BPEL process are defined in

WSDL 1.1. As the BPEL process is itself exposed as a Web service, it also

has a WSDL description. For each conversational relationship between the

BPEL process and a Web service one specifies a partnerLinkType, which

references the corresponding WSDL portType. For a partnerLinkType

one or more partnerLink elements can be defined. When defining a BPEL

interaction activity, one then specifies the partnerLink which should be used

and the WSDL operation to invoke or to be invoked by the partner. These

definitions use only the abstract interface definition of the WSDL description.

The concrete binding information and the EPR of the endpoints is provided

later at deployment time and is out of scope of the process model. BPEL

also allows to bind a partnerLink dynamically by providing mechanisms to

receive EPRs over messages and assign them to the partnerLink while the

process is running.

BPEL process models can be defined as abstract or executable. An executable
process model can be deployed and executed in a BPEL engine. After process

deployment, the BPEL process is exposed as a Web service to service consumers.

When a service consumer invokes a Web service operation which maps to an

instantiating receive or pick activity, a new process instance is created and

starts its execution. During execution, the process engine typically publishes

22 2 | Background and Related Work

events, which signal state changes of the process instance and its activities (cf.

Section 2.2.4), which can be used for process monitoring.

In abstract process models, certain BPEL constructs may be hidden, either

explicitly through the inclusion of opaque language extensions or implicitly

through omission. BPEL defines a Common Base, which defines basic rules for

abstract processes, e.g., which elements may be defined as opaque. Additional

profiles refine the Common Base for specific use cases and give a well-defined

semantics to the abstract process. This includes defining when an executable

process is a valid executable completion of an abstract process. BPEL defines two

such abstract process profiles: a profile for observable behavior and a profile

for templates. This set however can be extended, as in the case of BPEL4Chor

(cf. Section 2.1.5). The Abstract Process Profile for Observable Behavior can be

used for the definition of business process contracts in cross-organizational

interactions. It allows a service provider to specify (in addition to a WSDL

interface) its behavior, a so called public process, in the context of Web services

exchanges. The profile allows hiding private processing logic which is not to

be exposed to partners. Obviously, a valid executable completion of such an

abstract process must not add additional interaction activities with the partner

as this would break the contract. However, activities for interacting with other

partners can be added.

In this thesis, BPEL processes play a prominent role. They are used for the

definition of executable processes and as basis for monitoring. The prototype

implementation is based on the open-source Apache ODE BPEL engine.

2.1.5 Service Choreographies

As opposed to the service orchestration model, which focuses on the local
view of one participant (service) and its interactions with other participants, a

service choreography specifies the global point of view of interactions between

multiple participants [Pel03]. A choreography model is not executable itself,

but rather the execution is performed in a distributed manner whereby each

participant implements a service (orchestration) which behaves as specified in

the choreography model. Participants thereby can belong to the same but also

2.1 | BPM, SOA, and Web Services 23

different organizations.

The typical usages of choreography modeling are: (i) agreement on how

business partners should interact with each other; (ii) standardization of typ-

ical partner interactions in a certain domain (e.g., RosettaNet Partner Inter-

face Processes (PIPs) [Ros] and Supply Chain Operations Reference Model

(SCOR) [Sup05]); (iii) verification and conformance checking of existing inter-

acting service orchestrations, e.g., checking whether two partners can interact

with their existing service implementations; (iv) analysis and optimization of

partner collaborations. The first two usages are top-down approaches, where

participants of a collaboration first create a choreography model to agree be-

forehand on the interactions they should support and then later implement

their services (or adapts existing services) so that they conform to the chore-

ography model. The latter two usages are bottom-up approaches which start

with existing service implementations and create the choreography model for

analysis purposes.

There are two different paradigms for modeling choreographies: the in-
terconnected interface (behavior) model and the interaction model [DKLW09].
The interaction model paradigm specifies the interactions of all participants

in one model. The basic activities, which model the interactions (e.g., request-

response and one-way) between participants, are combined using structured

activities, which specify the control flow and the data flow from a global point

of view. Popular choreography languages that support this paradigm are WS-

CDL [W3C05], Let’s Dance [ZBDtH06] and BPMN 2.0 choreography [OMG11].
The interaction model focuses only on interaction activities and does not sup-

port modeling of silent activities (a.k.a. opaque activities), i.e., other activities

which are part of the public processes of participants. Another drawback of

the interaction model is that it is possible to define interactions that are not

realizable by the choreography participants (e.g. [FBS05]).

The interconnected interface paradigm defines the choreography by speci-

fying the connections between the behavioral interfaces of each participant.

Each participant specifies its behavioral interface as in the case of a service

orchestration, however focusing only on its public process and hiding private

process logic. The choreography is thus not defined in one global model, but

24 2 | Background and Related Work

spread across several participant behavior models. The choreography model

connects the participant behavior models by specifying message-based inter-

actions between them. Popular choreography languages which support this

paradigm are BPEL4Chor [DKLW07] and BPMN 2.0 collaboration [OMG11].
The advantage of this paradigm is that it is easier to derive the implementation

of each participant when starting with a choreography model, and vice versa.

Also this paradigm is not concerned with the problem of realizability. How-

ever, the interfaces of participants may be incompatible, which could result in

deadlocks during execution [MMGF06].
For this thesis, choreography models are important as they are used as

basis for monitoring of processes across participants. The thesis focuses on

interconnected interface models as they allow modeling of public processes

which contain more than just interaction activities. The concrete language used

is BPEL4Chor, which is presented in the following in more detail.

BPEL4Chor. BPEL4Chor [DKLW07, DKLW09] implements an interconnected

interface model and is based on BPEL. It uses the Abstract Process Profile for

Observable Behavior of BPEL [OAS07] as basis for modeling of participant

interfaces and adds a topology description, which connects the interfaces of

the participants. In addition, BPEL4Chor decouples the choreography logic

from the implementation details based on WSDL. A BPEL4Chor choreography

model consists thus of three different artifact types: (i) participant behavior

description (PBD), (ii) a participant topology, and (iii) a participant grounding.

A PBD specifies the abstract process of a participant type. The abstract

process is defined based on the Abstract Process Profile for Participant Behavior
Descriptions, which is based on the Abstract Process Profile for Observable

Behavior of BPEL and inherits all of its constraints. In addition it specifies

that interaction activities have to contain an identifier (so that they can be

easily referenced from the topology) and forbids the usage of partnerLink,

portType, and operation as these elements are WSDL-specific.

The participant topology defines the structural aspects of a choreography by

connecting the PBDs. It specifies participant types, participant references and

participant sets, and message links. A participant type refers to a PBD and thus

2.1 | BPM, SOA, and Web Services 25

defines the behavior of possibly several participants in the choreography. There

are three possible relationships between participant types and participants in

a choreography instance: (i) there is only one participant for a participant

type; (ii) there are several participants for a participant type and they are

known at design time; (iii) the number of participants is not known until

runtime. A participant reference defines one concrete participant as an instance

of a participant type, while participant sets are used for supporting several

participants per participant type. Finally, message links connect two PBDs by

defining the sending participant, the sending activity in the sender PBD, the

receiving participant (or participant set), the receiving activity in the receiver

PBD, and the message name. If needed, a message link also specifies participant

references which are to be passed in the message to the receiver for enabling

link passing mobility.

The participant grounding defines the technical configuration of the chore-

ography based on WSDL. Therefore, each message link from the topology is

grounded to a portType and operation. In addition participant references

are grounded to typed WSDL properties.

2.2 Process Monitoring

The term monitoring typically refers to the process of collecting relevant data on

monitored resources in order to evaluate properties of interest and report results

of that evaluation in a timely manner. Timeliness can range from milliseconds

(e.g., measuring the duration of a service invocation) to several days or even

months (e.g., measuring the cash-to-cash cycle time in a supply-chain or the

return on investment).

The boundaries between monitoring, and analysis and prediction approaches

(based on monitoring) are often not clear-cut. In this thesis, the following

distinction is used. Monitoring is used to evaluate functional and non-functional

properties of the system in order to check whether the system meets predefined

(functional or non-functional) requirements; this is typically done by collecting

raw data and processing it using arithmetic and aggregation operators to

evaluate higher level properties. Analysis uses monitoring results in order to

26 2 | Background and Related Work

learn and explain why they happened; in particular if requirements have not

been met (e.g., incorrect behavior or duration too long) the goal is to find out

how to optimize the system in order to meet the requirements in future; even

if requirements are met one often wants to discover patterns or models which

help to better understand how the system works. Prediction uses monitoring

results in order to predict the property values in future.

Figure 2.1: Conceptual Monitoring Metamodel

Figure 2.1 depicts the main entities involved in monitoring. Monitoring is

performed by monitors, which collect data from various information sources.

Information sources in the SOA and BPM domain are for example process

engines, ERP systems, legacy systems, human task managers, operational

databases, and the IT infrastructure. Monitors, which collect data from these

systems, can provide this data or an evaluated property based on this data

again recursively to other monitors. In that case monitors act as information

sources themselves. Information sources provide data on monitored resources
(e.g., the current execution state of a process instance). Monitored resources

are for example a process instance, a service endpoint, IT infrastructure, and

human resources involved in process execution.

Monitors evaluate monitored properties based on data obtained from infor-

mation sources. Simple properties correspond to basic data (e.g., state of a

process activity instance), composite properties (such as process duration) are

defined as a function over several data items from one or more information

2.2 | Process Monitoring 27

sources. Monitored properties can be defined for diverse functional and non-

functional aspects: (i) some non-functional aspects are duration, quality, cost,

security, compliance, and usability; (ii) some functional aspects are correctness

of the execution, behavioral properties, assertions, invariants, or the state of

the application instance.

Data collection from an information source can be active whereby the monitor

pulls the data from a monitoring interface of the information source or from

the information source itself (a.k.a. probing), or passive whereby the monitor

typically subscribes to events which are pushed to the monitor by the instru-

mented information source or another monitor. The monitor can be integrated

with the information source (intrusive) or decoupled communicating, e.g., over

message queues (non-intrusive).

There are several monitoring usages in the BPM and SOA domain: (i) process
tracking, i.e., observing the execution state of running process instances; in case

of failures (exception handling), manual termination of process instances; pro-

viding tracking information to customers (for example, in the case of shipment

tracking); (ii) process controlling (e.g., activity based costing), which evaluates

financial KPIs periodically (lagging indicators) and BAM, which denotes evalua-

tion of operational KPIs in near real time. BAM includes typically notification of

stakeholders in case of target violations and presentation of results in business

dashboards. (iii) system monitoring (e.g., resource utilization of the infrastruc-

ture) (iv) SLA monitoring, i.e., monitoring of agreed objectives considering the

performance and availability of the processes and infrastructure, and detection

of SLA violations (v) monitoring for audit purposes; (vi) run-time correctness

analysis, which checks whether the process execution conforms to the specified

process model.

The following sections present monitoring technologies and approaches

which are particularly relevant to the monitoring approach of the thesis, as

presented in Chapter 3. Event processing techniques (cf. Section 2.2.1) are

used for evaluating composite monitored properties, Web Services Distributed

Management (cf. Section 2.2.2) is used as basis for distributed monitoring.

Business Activity Monitoring (cf. Section 2.2.3), business process monitor-

ing (cf. Section 2.2.4), and cross-organizational monitoring approaches (cf.

28 2 | Background and Related Work

Section 2.2.5) are presented and compared to the approach of the thesis.

2.2.1 Event Processing

Event processing is a technique which enables the push-based monitoring

paradigm and near real time evaluation of monitored properties. The following

term definitions are based on [LS08, Luc02]. An event can be anything that

happens (e.g., a purchase order has been received). In order to enable its

processing, an event is represented by an event message (in the following the

term event is used interchangeably and it is explicitly distinguished between

event and event message only if needed), which contains a set of event attributes
(a.k.a. event properties). An event contains at least a timestamp attribute which

denotes the creation time of the event message. Concrete event messages are

based on event definitions, which define the schema of event messages.

One can distinguish between several types of events [LS08]: (i) simple events
are events which are not created based on other events; (ii) complex events are

abstractions of other events called its members; (iii) derived events are complex

events which are created based on one or more events; (iv) composite events
are derived, complex events which have been created based on a set of member

events (which can be any of the types) using a set of constructors such as

conjunction, disjunction, sequence etc. The composite event includes the base

events from which it is derived. Derived and composite events are sometimes

called aggregate events.

Event processing performs operations on events. Event Stream Processing
(ESP) deals with event processing based on event streams. An event stream
consists of a linearly ordered sequence of events, typically ordered by time.

A stream thereby can contain events of different event types. A window is a

view on an event stream defining a subsequence of it based on time or length

constraints. For example, one can define a time window for events gathered

each day or define a window for last 1000 events gathered. Event stream

processing queries existing streams, performs operations on events in these

streams, creating new events which are put into a new event stream. ESP

originates from active databases and data streams management [LS08].

2.2 | Process Monitoring 29

As opposed to ESP, Complex Event Processing (CEP) deals with processing

based on event clouds, which consist of a set of events that are only partially

ordered. In CEP, one specifies event patterns. An event pattern matches when

an event or multiple events occur that match a pattern expression. A pattern

expression consists of event types and filter expression on these event types and

pattern operators which combine those events logically and temporally. Event

patterns are the basis for rules, also called event pattern triggered reactive

rules, which define the actions to be performed if an event pattern is detected.

Event processing is performed by event processing agents, which support an

Event Processing Language (EPL) that can support either ESP or CEP or both.

An EPA can act as an event producer, event consumer, or even take both roles.

In an event processing network, a set of event processing agents is connected

via event channels. Event channels can be point-to-point based on queues or

publish-subscribe channels where multiple event consumers subscribe to topics.

An event channel can carry different types of events. The runtime deployment

of an event processing network can be distributed across multiple networks,

software components, and even organizations.

ESPER. Event processing is typically provided by designated event process-

ing frameworks. The framework used in this thesis is ESPER [Esp]. It is an

open source, Java-based framework which provides an EPL for event stream

processing and event pattern matching, support for different types of event

representations (based on JavaBeans, name value pairs, XML events, etc.),

Java-based API for querying results, Input-/Output Adapter, e.g., JMS, and

relational database access via SQL.

ESPER EPL supports both ESP and CEP. Event Stream processing is en-

abled by an SQL-like language with SELECT, FROM, WHERE, GROUP BY,

HAVING, and ORDER BY clauses. Thereby, event streams replace tables as the

source of data, events replace rows as the basic unit of data and event prop-

erties replace table columns. An example query could be specified as follows:

INSERT INTO CustomerAmountDay SELECT customer, sum(amount)

FROM OrderReceived.win:time_batch(1day) GROUP BY customer.

Here, one specifies that at the end of a time interval of one day (tumbling

30 2 | Background and Related Work

time window), one collects OrderReceived events, groups them by customer,

and creates a new event stream which for each customer carries an event with

the overall ordered amount for that day.

In addition to ESP, ESPER also supports CEP via event pattern matching.

Event patterns match when an event or multiple events occur that match

the pattern expression. A pattern expression consists of pattern atoms and

pattern operators. Pattern atoms are either events or filter expressions over

events or so called observers for time-based events (e.g., timer:interval(10

seconds)). Pattern operators combine atoms logically (and, or, not) or

temporally (followed-by (->)). An example query could be specified as follows:

SELECT a.orderId,(b.time-a.time) as duration FROM PATTERN[

EVERY a=OrderReceived ->b=OrderShipped(orderId=a.orderId)].

Thereby, the duration between order receipt and order shipment is calculated

by correlating events of those two types based on the orderId. The pattern is

evaluated for every order received.

In this thesis, event processing is used as the monitoring technique for eval-

uation of composite monitored properties. Thereby, simple events obtained

from the process execution infrastructure are aggregated using an EPL. ESPER

is used in the implementation of the prototype.

2.2.2 Web Services Distributed Management

Web Services Distributed Management (WSDM) [OAS06b] is an OASIS stan-

dard that deals with management aspects in the Web services environment.

Management thereby includes (i) (passive) monitoring, i.e., read access to

properties of interest from a manageable resource, (ii) active control, i.e., write

access to properties of a manageable resource. It consists of two specifications:

Management Using Web Services (MUWS) and Management of Web Services

(MOWS).

MUWS [OAS06d] defines how manageable resources can be managed using

Web services. Manageable resources thereby do not have to be Web services

themselves (e.g., a printer could be such a resource) but they just have to expose

a WSDL-based manageability endpoint, which provides management function-

2.2 | Process Monitoring 31

ality to manageability consumers. Therefore, the manageability consumer first

obtains an EPR of the manageability endpoint and then communicates with it as

specified in the corresponding WSDL document of the manageability endpoint.

A manageability endpoint provides a set of manageability capabilities that

allow getting information and modifying the functional and non-functional

aspects of the manageable resource (e.g., getting information on the state of

the resource, setting configuration parameters, etc.). A manageability capa-

bility is associated with a set of properties, operations, events, and metadata.

Properties are described using XML schema and are exposed to consumers

in a resource properties document as defined in the Web Services Resource

Framework (WSRF) [OAS06e]. In addition to the operations specified in WSRF,

also specific operations can be provided and have to be accordingly defined

in WSDL. Events are defined as a combination of a topic QName (as defined

in WS-Topics [OAS06f]) and the event message content which is based on a

WSDM event format. WS-BaseNotification [OAS06a] is used for implementing

the notification mechanism. Finally, metadata can be included specifying, for

example, the valid values of properties or whether properties are mutable or

modifiable.

MUWS has predefined a set of manageability capabilities. The Identity capa-

bility allows the identification of a resource by providing access to a ResourceId
property and is the only mandatory capability for a WSDM manageable resource.

The State capability exposes the state of a resource based on a domain-specific

state model. The Operational Status capability provides information on the

availability of a resource. The Metrics capability allows a resource to expose a

set of metrics. The definition of a metric contains two types of metadata. The

value modifiers are needed to correctly interpret the metric value. For example,

one can define when the metric value was last updated, when its value was reset,
and the time window of measurements. The definitional metadata specifies how

the metric value is obtained. Thereby, one can specify the change type of a

metric such as counter or gauge, its time scope (e.g., interval or point in time),

its gathering time (e.g., on change, periodic, on demand), and the calculation
interval, i.e., the frequency of metric value updates.

In addition to manageability capabilities, which are always offered by the

32 2 | Background and Related Work

manageability endpoint of a single resource, MUWS defines several management-
related capabilities, which can be offered by any Web Service endpoint. The

Relationships capability enables managing of relationships between resources.

The Advertisement capability provides notifications in case of creation or destruc-

tion of manageable resources. This kind of notifications cannot be provided

by the manageability endpoint as it does not exist before the corresponding

resource is created.

MOWS [OAS06c] is based on MUWS and deals specifically with Web service

endpoints as manageable resources. Therefore, it provides a set of manageabil-

ity capabilities several of which are already defined in MUWS (e.g., Identity,

Operational Status). Some of them are extended, e.g., Metrics and Operation

Metrics, which both specify specific metrics applicable for Web service end-

points and operations, respectively. In addition, several new capabilities are

defined. The manageability references capability provides a WS operation which

allows to obtain the endpoint reference to the manageability endpoint for a

Web service. The (Operation) Operational State and Request Processing State
capabilities provide information on the state of the endpoint or operation (e.g.,

busy, idle, stopped, crashed) and request (e.g., received, processing, completed,

failed).

The monitoring framework developed in this thesis uses MUWS as basis

for exposing processes of choreography participants as manageable resources.

Therefore, new capabilities have been developed which enable evaluation and

access to basic and composite properties of BPEL processes in BPEL4Chor

choreographies.

2.2.3 Business Activity Monitoring

Business Activity Monitoring (BAM) is a term coined by Gartner [McC02] and

denotes near real-time monitoring of business processes. Those business pro-

cesses are often spread between different systems such as process engines, ERP

systems, operational databases, and legacy systems. These systems generate

business events. Business events have business meaning and denote business

situations in business processes, e.g., “Order Received”, “Shipment Delivered”.

2.2 | Process Monitoring 33

Business events are composed and correlated to find trends of execution (e.g.,

bottlenecks, recurring conditions that lead to exceptions and failures), calculate

KPIs and display them in dashboards, provide an overview of the overall state

of the running business processes and proactively alert business managers for

corrective actions if KPI targets are not met, business rules are violated, or

exceptions occur. The monitored information is displayed in customizable

dashboards. Monitored properties are typically KPIs (business performance

metrics), but can also be based on security and compliance properties.

The development of a BAM solution involves instrumentation of applications

(if not yet the case) which results in event models exposed by those applications.

Based on monitoring requirements, one specifies a monitor model. It contains

definitions of monitored properties based on the event models (e.g., by using

CEP statements). It can also include definitions of how the results should be

presented in dashboard views and in which cases notifications should be sent.

The monitor model is deployed to a BAM tool.

BAM is to be distinguished from system monitoring (a.k.a. technical moni-

toring), which provides information about the QoS properties of IT resources

(e.g., availability and performance). This thesis focuses on BAM rather than

system monitoring. Section 7.1 on future work discusses possible extensions

towards including also system monitoring into the approach.

IBM Business Monitor. As one BAM product in the market, IBM’s Business

Monitor is presented in the following as an example for the capabilities of a

commercial BAM solution and is compared to the approach of the thesis. The

IBM Business Monitor, currently in the version 8.5 [IBM15], is a BAM product

which supports end to end monitoring of processes, i.e., it supports the creation

of monitor solutions which are based on events coming from different types of

products and systems.

The development of monitor models for the IBM Business Monitor is per-

formed in the Integration Designer bottom-up based on events obtained from

different systems. Many products are already instrumented to provide events in

the expected format, such as the Business Process Manager (BPMN engine), the

Process Server (BPEL engine), and the Human Task Manager. If a system does

34 2 | Background and Related Work

not provide application data as events in the expected format, then that appli-

cation data can be mediated into events using products such as IBM Adapters

or the IBM Integration Bus.

Based on inbound events, the monitor model is created by combining prede-

fined language elements such as metrics, keys, stopwatches, counters, triggers,
and outbound events. On top of these definitions, one can specify KPIs (metrics

with target values), dimensional models (specifying how the monitor model

should be stored in a warehouse schema), and visual models (dashboards).

At deployment time, the monitor model is deployed to the Business Monitor

server, which can be seen as an execution engine for monitor models. It

processes events, stored results in the underlying monitor database, and triggers

alerts if needed. The monitoring results as stored in the monitor database are

queried by the dashboard components. The monitoring results can also be

accessed using a REST API.

The monitoring approach of the thesis and the IBM approach are similar in

that they both use events as basis and use a language to construct monitor mod-

els bottom up. The language used by IBM is a custom higher-level monitoring

language while the thesis uses a standard CEP framework for the evaluation of

composite properties. The thesis approach is specifically designed for monitor-

ing of service choreographies and orchestrations, and focuses on the creation

of customizable Web service-based monitoring interfaces between choreog-

raphy participants, which is not supported by the IBM tool. While the IBM

approach is more general, in that it can use arbitrary events from any system,

the approach of the thesis focuses so far on monitoring of choreography-based

events. It could however be extended by additional capabilities for supporting

arbitrary events. Finally, the approach of thesis goes beyond the capabilities of

a BAM tool by enabling KPI dependency analysis, automated prediction, and

adaptation of business processes.

2.2.4 Monitoring of Business Processes

There are many approaches that deal with monitoring of service orchestrations,

in particular BPEL processes. They differ in the following aspects: (i) the used

2.2 | Process Monitoring 35

event model, (ii) monitoring languages and types of monitored properties,

and (iii) monitoring mechanisms for accessing monitoring information. In the

following, for each of those aspects the main approaches are presented and it

is discussed how the monitoring approach of this thesis is related to them.

BPEL Event Model. The basis for BPEL monitoring is an event model which

exposes the state changes of BPEL entities at process runtime. For example, a

process instance is first instantiated, is then running for a certain period of time,

and is finally completed, faulted, or terminated. The transitions between these

states are signaled using events. The states and state transitions of a BPEL entity

define the event model of that entity. For runtime monitoring purposes, one

can define event models for instances of the following BPEL entities: process,

activity, link, variable, partner link, and correlation set. In addition to those

runtime entities, also the process model itself has an event model, signaling its

deployment and undeployment.

The BPEL specification does not define a standard BPEL event model. Thus,

every BPEL engine implementation supports a slightly different event model.

The event models of different engine implementations are similar because to

some extent the event model is derived from the operational semantics of BPEL.

However, they differ in their granularity (number of events), event names, event

formats, and event contents. [Ste08] presents and compares event models of

several BPEL engines, including the commercial IBM WebSphere Process Server,

and the open-source Apache ODE. The event models differ also because some

of the events are added to support additional features of BPEL engines which go

beyond the BPEL specification. One such feature is, for example, active control

of process execution, such as suspending and resuming of process execution

or skipping of activities. Events are typically stored in an audit trail and are

published to a messaging infrastructure for passive monitoring.

In this thesis, the WS-BPEL 2.0 Event Model as defined in [KHK+11] is used. It

supports both passive monitoring and active control from external applications

which can trigger some of the state transitions by sending messages to the BPEL

engine. The overall event model consists of event models for the process model

and instances of the following entities: process, activity, scope activity, invoke

36 2 | Background and Related Work

activity, loop activity, link, variable, partner link, and correlation set.

The WS-BPEL 2.0 Event Model specifies also the information which the events

should contain in order to be able to assign them to the corresponding BPEL

entity. For example, a process model is identified by the QName of the process

model and its version number. A process instance is identified by the process

model identifier and in addition by a globally unique instance ID typically

assigned by the BPEL engine. The other types of entities (instances of activities,

links, variables, partner links, and correlation sets) are identified by an XPath

expression which identifies their definition in the process model relative to the

root (e.g., /process/sequence[1]/receive[1]), the process instance ID,

and the instance ID of the (innermost) scope where the element is nested in. In

case of an activity instance, an additional instance ID for that activity is needed.

The two latter IDs are needed to support special cases when parallel forEach

activities and event handlers are used (cf. [KHK+11] for more details).

This thesis uses the WS-BPEL 2.0 Event Model as basis for monitoring of

BPEL4Chor choreographies. In particular, blocking events are used to stop the

process execution and perform prediction and runtime adaptation.

Monitoring Languages and Monitored Properties In the context of BPEL

monitoring, different types of monitoring languages are used to specify moni-

tored properties.

The DYNAMO framework [BG05] deals with monitoring of BPEL processes

focusing on runtime validation of partner behavior. The goal is to detect

partner services which deliver unexpected results concerning functional and

non-functional expectations. Therefore, monitoring directives are specified as

rules using the Web Service Constraint Language (WS-CoL), which is based

on WS-Policy. WS-CoL specifies the rules as assertions over runtime data

gathered from the BPEL process using Aspect-Oriented Programming (AOP)

techniques. The ASTRO framework [BTPT06] supports run-time checking of

assumptions under which the partner services are supposed to participate in

the BPEL process and the conditions that the process is expected to satisfy. The

used Run-Time Monitor specification Language (RTML) based on temporal logic

supports specifying boolean, statistic, and time-related properties on instance

2.2 | Process Monitoring 37

level but also across process instances. Both approaches, DYNAMO and ASTRO,

can also be combined [BGPT09].
As already described in Section 2.2.3, the IBM Business Monitor [IBM15]

supports also BPEL monitoring. The Process Server exposes an event model,

which is then used to specify KPIs in the monitor model. Those properties

are specified using a domain-specific language, relying on XPath for querying

and extracting data from events and predefined elements such as counters,

metrics, stopwatches, and KPIs. Similarly, [WSL09] presents a domain-specific

XML-based language for defining process performance metrics (PPMs) for

BPEL processes. The language does not refer to events, but contains higher-

level functions (e.g., duration, cost, state, count) which reference activities

in the BPEL process model thus implicitly defining which events are needed.

After creating the PPM model, in the deployment phase a monitor model for

a specific BPEL engine is generated. [MGA09] also presents a model-driven

approach. Process performance indicators (PPIs) are specified for a BPMN

model representing a Computation-Independent Model (CIM). That PPI model

is then transformed subsequently to a Platform-Independent Model (PIM),

Platform-Specific Model (PSM), and finally platform-specific code which is an

instrumented BPEL process. [BEMP07] uses a query language directly on the

process model (based on XPath) and provides a corresponding simple visual

interface which enables users to specify monitoring tasks in an intuitive manner

(query by example). Queries are translated to BPEL processes that run on the

same process engine as the monitored processes. [FJMM12] extends BPMN

enabling the specification of KPIs graphically. BPMN elements for defining

duration, frequency, state occurrence, aggregated measures, among others,

are introduced. They can be used in combination to define complex KPIs for

a BPMN process. The approach however deals only with modeling aspects

and does not show how such a model could be transformed to an executable

monitor model.

[WML08] presents an approach to monitoring of KPIs of semantically an-

notated business processes. Thereby, the language specified in [WSL09] has

been extended to include semantic annotations of business processes when

defining KPIs. At execution time, reasoning technology is used for calculation of

38 2 | Background and Related Work

KPIs. [PLW+08] presents another approach for monitoring of semantic business

processes. Thereby, a core ontology for business process process analysis has

been extended by an events ontology and metrics ontology, and is used for the

specification of monitor models.

There are several approaches which use a general purpose event processing

language as basis for calculation of monitored properties. In [WLR+11], moni-

tored properties are specified based on an event processing language provided

by the event processing framework ESPER (cf. Section 2.2.1). The monitor

model is specified in an XML file defining which events are needed from the

BPEL engine. In the second part, these events are used in EPL statements

to calculate process metrics. [KK15] describes a model-driven approach to

event-based process monitoring. The monitoring objectives are specified in a

monitor model using a language called ProGoalML. The monitor model is then

transformed to monitoring probes for gathering the events, CEP rules, an SQL

schema for the data warehouse, and a visualization schema for dashboards.

[MZD13] presents another model-driven approach focusing on compliance

monitoring in business processes. A domain-specific language allows model-

ing of compliance rules, which are then transformed to EPL statements and

used for monitoring. [MRD10] presents another approach which uses CEP

for monitoring of service composition infrastructures. It intercepts the SOAP

invocations of the BPEL interaction activities using AOP and generates events

corresponding these invocations. These events are then processed using an ex-

isting CEP engine, which has been integrated into the overall VieDAME service

middleware framework.

When monitoring processes, the events stemming solely from the process

layer might not be enough for the evaluation of certain properties but events

from different layers might be needed and correlated. In [WLR+11], EPL state-

ments are also used to correlate events emitted by the process engine with

events emitted by an IT-level monitor (e.g., monitoring the availability and

load of the machine the process engine is deployed on). [BG13] presents a

domain-specific language for multi-level service monitoring, the Multi-layer

Collection and Constraint Language (mlCCL). It allows to define how to col-

lect, aggregate, and analyze the data in a system consisting of several layers.

2.2 | Process Monitoring 39

The ECoWare framework concretely supports systems based on the Service

Component Architecture (SCA).

To summarize, the approaches use either a special domain-specific language,

a general purpose language (such as an EPL), or a combination of those by

using a model-driven approach. A domain-specific language makes it easier to

specify the monitored properties for the domain user, while the general purpose

language such as an EPL is very expressive and the corresponding middleware

is designed for scalability and performance. In this thesis, an XML format

is used for the definition of monitor models, which combines measurement

directives (capabilities) for specifying needed basic events in choreographies

and uses an existing EPL as basis for defining composite properties based

on those events. The difference to the previously mentioned approaches is

the focus on choreographies and the support for defining custom monitoring

interfaces between choreography participants.

Monitoring Mechanisms. This aspect deals with mechanisms for (i) obtaining

the monitoring information from the process engine and (ii) processing that

information to evaluate monitored properties.

As described above, the BPEL engine provides an event model. These events

can be published to an audit trail and to a messaging infrastructure (queues,

topics) for monitoring purposes [LR00]. This is typically done as part of an

(ACID) transaction, as losing of events in most use cases cannot be afforded.

As the publishing of events is done in a transactional way, publishing of all

possible events can have a relatively high performance impact on the process

execution, in particular in short running processes [LR00]. Also, often one is

not interested in getting events for all entities of the process model and all

possible events as defined in the event model. Thus, engines typically enable

configuring which events are to be published. The granularity varies between

engine implementations. Apache ODE allows, for example, to specify in the

deployment descriptor which event types are to be published per scope [Apac].
It allows also to deploy an event filter which runs in the same process as

the engine and can filter events more flexibly. It can rely on event stream

semantics and it can be used for event processing, e.g., augmenting events with

40 2 | Background and Related Work

information, creating new events, etc. based on an EPL. In [WLR+11], an event

filter has been developed which can be configured to emit only needed events.

This configuration is done during deployment of the overall monitor model.

[KKL07a] describes the Pluggable Framework, which implements the WS-

BPEL Event Model 2.0 [KHK+11]. Thereby, a generic controller is integrated

with the BPEL engine and publishes events as they occur to a topic. An arbitrary

set of custom controllers can subscribe to that topic and process the events. In

addition, it allows custom controllers to register for specific blocking events,

which stop process instance execution. When a blocking event occurs during

process execution it is forwarded to the corresponding custom controller, which

then later has to send an unblocking event.

In addition to events which the engine pushes to monitors, the engine can also

expose a management interface which allows querying (pulling) monitoring

information on demand. Typically, it provides getting information on the de-

ployed process models, running instances, and some statistics, such as number

of running or finished instances. This information is typically obtained from the

model database and instance database [LR00]. In [vLLM+08] a management

framework for BPEL is presented. Process models and process instances are

exposed as resources and a resource oriented management API allows to access

those resources and their properties in a standardized manner. The approach

has been realized based on WSRF and WS-Notification enabling the clients to

subscribe to property changes of resources and to explicitly pull the information

on demand.

Another possibility for getting monitoring information for running processes

is to include monitoring activities into the process model itself. In [RSS06] a

BPEL process model is extended with auditing activities in order to publish

state changes by invoking operations on the monitoring tool. [MGA09] uses

a similar approach whereby the instrumented BPEL process is generated in a

model-driven manner.

The monitoring approach of the thesis uses an approach which is similar to

the management framework for BPEL as described in [vLLM+08] in that the

processes in the choreography are mapped to resources and resource properties.

The difference is that it focuses on choreographies and the resource interfaces

2.2 | Process Monitoring 41

are configurable using a monitor model and capabilities, i.e., the resource

interfaces are specifically designed for a particular choreography model. Also

the definition of composite properties as basis for the evaluation of KPIs is

supported. The prototype of the thesis uses the Pluggable Framework [KKL07a]
as basis for gathering the events from the process engine.

2.2.5 Cross-Organizational Process Monitoring

Cross-organizational process monitoring approaches deal with scenarios, mech-

anisms and techniques that go beyond monitoring of single business processes

implemented as service orchestrations.

While not explicitly focusing on cross-organizational monitoring, [vLLM+08]
presents an approach where BPEL processes are exposed as a set of resources to

clients, as already mentioned in the previous section. The approach explains in

detail how process models and process instances including activities, variables,

and other BPEL entities are mapped to resources. Clients can thus access moni-

toring information (such as the state of a running process instance) on running

processes at the service provider in a standardized way by using the well-known

WSRF framework. In a similar way, the approach described in [ZSW+10] repre-

sents a process management system as a manageable resource. It uses its own

process metamodel derived from XPDL and exposes it as managed resources

using the Web Services Distributed Management (WSDM) set of standards. In

addition, it supports the definition of processing rules based on CEP statements.

The monitoring approach of the thesis is different in that it focuses on chore-

ographies allowing to define monitor models for choreographies which result

in custom monitoring interfaces each participant has to provide. The monitor

model acts as a monitoring contract shared between several participants in a

service choreography.

[KSK07] presents an approach to monitoring of BPEL processes which are

deployed on several BPEL engines, with possibly different types of event models.

A common audit format is introduced which supports processing and corre-

lating events across different BPEL engines. [LKS+10] deals with end-to-end

monitoring and correlation in service-based applications. The concept of a

42 2 | Background and Related Work

business composite is introduced which groups a set of service components

implemented possibly in different business processes. For monitoring such a

business composite end-to-end, information invariants are used to correlate ser-

vice instances (and corresponding events) to instances of business composites.

IBM WebSphere tooling is used to evaluate the approach. Both approaches

deal with general correlation issues across processes but do not cover the def-

inition of monitor models, composite properties, and monitoring interfaces

in choreographies. [SVDS12] also deals with supporting monitoring of pro-

cesses running in several process engines across organizational boundaries.

The developed event model consists of all the events that can be created by

the different process engines. The events are propagated to a client dashboard

using a CEP engine. The approach however does not deal with correlation

issues between the processes and the creation of monitoring interfaces based

on monitor models.

Service choreography models define how participants should interact in

terms of message exchanges. At runtime, monitoring can be used for validating

whether participant interactions actually comply to the choreography model.

[vRR09] describes a monitoring infrastructure needed as a basis for confor-

mance checking in choreographies. The approach assumes that choreographies

have been modeled in WS-CDL and describes message correlation and logging

mechanisms, and their realization as part of a service bus. The conformance

checking itself is not dealt with in the approach. [KEvL+11] presents BPELgold,

which is a new choreography language based on BPEL supporting modeling

of interaction choreography models. The paper shows how a choreography-

aware service bus can be used to ensure that executed message exchanges

comply with a predefined choreography modeled in BPELgold. Different types

of exception handling mechanisms are discussed in case of protocol violations,

e.g., dropping of the wrong message, notifying the sender of the violation,

triggering of the default exception handling or a predefined exception handling,

and stopping of the choreography. The approach of the thesis does not deal

with conformance checking but assumes that participants behave according

to the agreed choreography model. [BFPG12] presents another approach to

conformance checking by deriving event queries from a choreography model.

2.2 | Process Monitoring 43

The choreography model is transformed to event queries at design time. At

runtime, message interactions result in events, which are then evaluated by a

CEP engine based on the generated event queries checking for violations of the

expected behavior.

In the context of virtual enterprises [Pau09], monitoring of processes within

business networks has typically focused only on monitoring in the network

formation phase, which determines what can be monitored during process exe-

cution. However when business networks and their processes evolve [DCS09],
the resulting monitoring contracts also have to change accordingly. In that

context, [CVG12] discusses mechanisms for preserving the monitorability of

processes for different types of business network evolution situations. Taking

into account dependencies between already established contracts, the goal is to

update the monitoring infrastructure in order to satisfy the new requirements

that arise after network evolution. [WDL+08] presents an approach to cross-

organizational process monitoring in service networks. Thereby, KPIs specified

in the service network layer are mapped to events in the choreography layer

which each participant has to provide to the other participants in the network

for calculating the KPIs. The approach of the thesis focuses on the monitoring

of processes in the choreography and orchestration layer and does not deal with

monitoring in service networks. It could however be used to support service

network monitoring as motivated in [WDL+08].
[WKK+10] uses the choreography language BPEL4Chor as a basis for defining

monitoring contracts between participants. A monitoring contract defines (i)

resource events each participant has to provide for its own public process and

(ii) composite events for calculating metrics and rules. Resource events are

specified based on state models of BPEL entities using the WS-BPEL 2.0 Event

Model [KHK+11], while composite events are defined using CEP statements

over resource events and other composite events. After deployment of the

monitoring contract on the monitoring infrastructures of the participants, the

participants exchange monitoring events as specified when the process instances

are executed as defined in the choreography. [BFPG12] is a similar approach

to monitoring of service choreographies by exchanging events between partici-

pants. Therefore, an External Flow Monitor (EFM) is implemented within each

44 2 | Background and Related Work

participating organization and according to the predefined choreography model,

each EFM monitors all incoming and outgoing messages of its organization and

automatically exchanges events with a predefined subset of other participants.

The participants are hierarchically classified thus determining how the events

are to be distributed in contrast to the approach presented in [WKK+10] where

each event exchange has to be explicitly modeled in the monitoring contract.

The approach stays on the conceptual level and does not deal with the technical

realization of the monitoring infrastructure.

To summarize, in this thesis, the monitoring approach builds on the concept

of monitoring contracts in choreographies as presented in [WKK+10]. It extends

that work by using the concepts of manageable resources in a similar way as

presented in [vLLM+08] and [ZSW+10] thus using Web service standards for

establishing monitoring interfaces between participants in a choreography.

2.3 Process Performance Analysis and Optimization

Process performance management deals with ensuring that business processes

achieve performance targets. That includes monitoring of business process

performance which has been presented in the previous section, but also the

following phases of analyzing and optimizing process performance. These two

latter phases and approaches which cover all three phases in an integrated

manner are the topic of this section.

Process performance management is part of the broader area of business

performance management, which has the scope on the whole organization.

One of the most popular methodologies for business performance management

on the strategy level is the Balanced Scorecard (BSC) [KN97]. It provides

a specific methodology for aligning organizations with business strategy by

using a balanced set of metrics across four perspectives: financial, internal

business processes, customer, and learning and growth. The four perspectives

are presented in a scorecard, which is a visual display mechanism that charts

progress towards achieving strategic objectives by comparing performance

against targets and thresholds. Scorecards are often supported by Business

Intelligence (BI) tools. For each perspective one defines (i) strategic objectives

2.3 | Process Performance Analysis and Optimization 45

(e.g., increase of customer satisfaction), (ii) measures (e.g., complaint rate,

reshipment rate, percentage of purchase orders completed in full and on time),

(iii) targets (e.g., complaint rate should be below 5%), and (iv) initiatives

(e.g., increase process quality, improve deadline adherence). Measures and

targets combined are better known as KPIs, which help assessing the achieve-

ment of important objectives. Process-related KPIs are typically evaluated in

terms of the three dimensions: time, cost, and quality [SS06]. However, also

other dimensions can be used such as flexibility, customer satisfaction, and

sustainability [NLS11]. For all of these dimensions one can specify a set of key

metrics, which are typically domain-specific. The SCOR framework [Sup05],
for example, defines a set of metrics relevant in the supply-chain domain.

While scorecards are used on the strategy layer and are not part of the ap-

proach of the thesis, they could be used as input to the process performance

management. Thereby, all KPIs specified in the scorecard which can be mea-

sured based on executable processes would serve as a starting point for the

creation of monitor models.

In the next section, related research approaches in the context of process

performance analysis are presented and compared to the KPI dependency

analysis approach as presented in Chapter 4. Section 2.3.2 presents runtime

process adaptation approaches. In particular self-adaptation approaches are

presented and compared to the approach of the thesis as presented in Chapter 5.

2.3.1 Process Performance Analysis

Process performance analysis deals with concepts, methods, and techniques

which help analyzing the monitored business processes with the goal of op-

timizing the process performance. Approaches which deal with analysis of

design-time process models only are not considered in the following, i.e., the

focus is on approaches which analyze monitored data of process instance exe-

cutions.

This type of analysis has been traditionally supported by BI tools. They

typically use a data warehouse as basis and enable Online Analytical Processing

(OLAP) analysis, interactive reporting, and data mining techniques. BI tools

46 2 | Background and Related Work

have traditionally however not been integrated with process engines. Thus,

several research approaches deal with combining process execution with BI

concepts. In the following, after introducing data warehousing and data mining

concepts, the relevant research approaches are presented and compared with

the KPI dependency analysis presented in Chapter 4.

Data Warehousing. A data warehouse is a database which integrates informa-

tion from multiple operational systems and makes it available for querying and

analysis used for decision support [Inm02].
One can distinguish between a data warehouse, which collects data enterprise-

wide, and a data mart, which focuses on one particular subject or department.

Both are typically based on a multidimensional data model realized based on a

star schema. The multidimensional model is based on the concept of a data

cube, which consists of a large set of facts and a number of dimensions. OLAP

operations such as slice-and-dice and drill-down can be implemented efficiently

using the data cube structure often based on a star schema.

[CBC+06] presents a model-driven approach to BAM which uses a data

mart as basis for a dashboard. This approach is used by the IBM Business

Monitor [IBM15]. A metric model is specified based on events from different

systems. The metrics model is used for configuring the runtime monitoring

infrastructure, which evaluates the metrics in near real time and stores them in

an operational data store. Frequently, the data is extracted from the operational

store and loaded into a data mart, which is queried by a BAM dashboard. The

data schema of the data mart is specific to the monitor model and is generated

at design-time of the model before its deployment. Mostly, measured KPIs are

mapped to fact tables, and business data and time are used as dimensions.

[CCDS07] presents a warehouse design for business process data. It does

not focus on a specific workflow system, but tries to support a generic schema

which can be used for different types of processes and implementations, and

in particular support also non-automated processes. Therefore, an abstract

process is modeled. The warehouse schema combines generic fact tables and

process-specific fact tables. Generic fact tables are created for tasks and process

instances, while specific business data types (e.g., invoice related data) are

2.3 | Process Performance Analysis and Optimization 47

stored in their own tables.

[KWL01] describes a design of a performance-related data warehouse for

processes. Thereby, the facts model the KPIs (e.g., duration, customer satis-

faction, turnover) and contain several measures (e.g., expectation, perception,

performance gap in the case of customer satisfaction). The main dimensions

associated to these facts are organization, customer, process, and time. For each

dimension a hierarchy is built (e.g., for the process dimension: business unit

hierarchy, business unit, process, activity). [LM04] shows how the latter ap-

proach can be used to implement a corporate performance measurement system

which integrates business process information into a traditional warehouse.

[zM01] discusses how to design a process-oriented data warehouse that

integrates workflow audit trail data with business object information. The issue

arises as workflow internal data often only uses IDs of some business data stored

outside of the workflow system in DBs (customer data with all its attributes).

In that case they should be integrated into the warehouse. [RSN15] introduces

a framework which provides an integrated view on process data generated

by workflow systems and operational data stored in separate databases. This

integrated view is based on a specialized federation layer and is reflected in a

set of operators which are used for posing analysis queries to the integrated

view.

The KPI dependency analysis approach developed in this thesis focuses on

data mining techniques rather than data warehousing. Obviously, both ap-

proaches could be combined by storing monitoring data in a data warehouse

schema thus enabling standard reporting and dashboard functionality, in addi-

tion to data mining based analysis as developed in this thesis.

Data Mining. Data mining deals with the discovery of patterns from large

amounts of data, whereby the data is typically stored in databases or data

warehouses [WF05]. It is an interdisciplinary field using techniques from areas

such as data warehousing, machine learning, statistics, pattern recognition,

and data visualization. The architecture of a data mining system typically

includes three layers: the data store, the data mining engine, and a graphical

user interface.

48 2 | Background and Related Work

Data mining tools find patterns in the data that might take days or weeks

for users to discover on their own, if at all. Data mining functionalities in-

clude [WF05] mining of association rules, correlation analysis, classification,

prediction, clustering, time-series analysis, graph mining, and text mining,

among others.

In particular interesting for the work in this thesis is classification, which is a

form of supervised learning. Thereby, based on historical data a classification

model is learned, which explains how the categorical labels of a set of historical

observations depend on a set of explanatory attributes. Such a model can

also be used for predicting the categorical labels of future observations. More

details on classification learning and the concrete learning techniques, the

decision trees, is given in Section 4.2.1 when the KPI dependency tree learning

is presented. In contrast to classification, regression focuses on the prediction

of continuous values (rather than categorical ones).

Most closely related to the KPI dependency analysis presented in the thesis

is iBOM, a platform for business operation management developed by Hewlett

Packard [CCSD05], as it supports both process monitoring, and analysis and

prediction based on data mining. In [CCDS04] the authors give an overview

and a classification of which data mining techniques are suitable for which

analysis and prediction techniques. Thereby, also decision trees are mentioned

as one supported technique, which is what is the focus of the analysis approach

in this thesis. The platform presented allows users to define and monitor

business metrics, perform intelligent analysis on them to understand causes

of undesired metric values, and predict future values. The KPI dependency

analysis approach of the thesis, as firstly presented in [WLR+09, WLR+11],
focuses on the analysis of process-related KPIs using decision trees. Compared

to the iBOM approach, the approach is different in that it focuses on BPEL-based

processes and choreographies, explains in detail how KPIs are modeled and

how explanatory metrics for these processes can be generated in an automated

manner based on the process models. It focuses only on decision trees, but pro-

vides detailed experimental results. Also, iBOM does not deal with automated

adaptation based on the learned decision trees.

[dLvdAD14] presents a framework for analyzing classification questions

2.3 | Process Performance Analysis and Optimization 49

based on event logs using decision trees. It is based on the ProM framework,

which provides process mining support, in particular process discovery when

there is no explicit process model a priori [vdAWM04]. The framework uses

an event log as input. The user specifies an analysis use case by defining a

classification problem, i.e., a class variable and a set of explanatory variables,

based on event characteristics such as activity, case, resource, and timestamp.

Based on such an analysis use case the event log is manipulated accordingly

and fed into a decision tree algorithm, which generates a decision tree thus

providing a classification model answering the question. The approach can

be seen as more general than the KPI dependency analysis, as it can specify

arbitrary classification problems based on the event log. The approach of the

thesis presents a specific solution for KPI dependency analysis and integrates it

tightly with monitoring and adaptation.

2.3.2 Self-Adaptive Processes

In this section, approaches which deal with runtime adaptation of processes

are presented. The focus is thereby on self-adaptive processes, i.e., approaches

where the adaptation decision is done in an automated manner at process

runtime.

Runtime adaptation changes the behavior of the process instance as defined

at design time and deployment time. The adapted subjects in the context of

service orchestrations include (i) the control flow and data flow of the process

instance itself, and (ii) the partner services, i.e., the concrete bound service at

deployment time is exchanged for another service. The adaptation is enabled

by adaptation mechanisms.

In the following, firstly, relevant approaches considering adaptation mecha-

nisms are presented. Then, self-adaptation approaches are described whereby

one can distinguish between reactive and proactive approaches.

Process Adaptation Mechanisms. [KLN+06] describes an approach for param-

eterized BPEL processes enabling dynamic binding of services using different

strategies. Thereby, the invocation of partner Web services in a process can

be parameterized at design time using four strategies, namely static, prompt,

50 2 | Background and Related Work

query, and fromVariable. Thereby, the query strategy allows to specify func-

tional and non-functional requirements on the service. The strategy query and

fromVariable are executed automatically at runtime thus realizing dynamic

binding of services. [KL09] presents BPELnAspects, an approach to runtime

BPEL process adaptation based on AOP. Thereby, aspects which are weaved

into the processes are arbitrary Web service operations which can be executed

before, after, or instead of activities in processes. They also can overwrite the

values of transition conditions and variables. The syntax is based on WS-Policy.

As already mentioned in the context of monitoring, the WS-BPEL 2.0 Event

Model supports runtime adaptation via so called blocking events [KHK+11].
Blocking events are events which block an activity execution until they are

unblocked by another event (potential parallel threads of the process instance

are not blocked). This allows suspending the instance execution for a while

and adapting the process execution, e.g., by skipping an activity, changing

variable values, compensating a scope, and service substitution via writing

another EPR to a partnerLink. In order to realize the blocking, some states

and corresponding events had to be added. For example, when an activity

becomes runnable its state changes from Inactive to Ready and a block-

ing event Activity_Ready is fired. Now one can unblock the activity by

sending the event Start_Activity, or for example by sending the event

Complete_Activity thus skipping the activity execution. If no blocking

would be needed, the activity could right away change to the state Executing

and start execution, and the state Ready would not be needed. The event

model is supported by the Pluggable Framework [KKL07a]. Thereby, a generic
controller is integrated with the BPEL engine and publishes events as they

occur to a topic. In addition, it allows custom controllers to register for specific

blocking events. When a blocking event occurs during process execution it is

forwarded to the corresponding custom controller who then later has to send

an unblocking event.

In this thesis, the Pluggable Framework is used as basis for monitoring and

adaptation. The adaptation approach, as presented in Chapter 5, does not

develop new adaptation mechanisms. It rather deals with how to select and

combine existing adaptation mechanisms in order to optimize running process

2.3 | Process Performance Analysis and Optimization 51

instances in respect to KPI targets.

Reactive Adaptation. When it comes to runtime adaptation one can distin-

guish between reactive and proactive approaches [Met11]. Reactive approaches

trigger adaptation after a certain undesirable event takes place, e.g., a failure

during service invocation. Proactive approaches try to predict that a failure

or undesirable situation, e.g., considering QoS constraints, will happen, and

thus adapt in order to prevent that situation. The approach of the thesis is a

proactive approach.

The reactive approaches mostly deal with self-healing after a service invoca-

tion failed or a QoS constraint was violated. [EM08] presents a policy-based

framework for self-adaptable processes which allows to recover from func-

tional faults during service invocation. The policy language is an extension of

WS-Policy and allows specifying discovery and selection of services to be used

and how to recover from potential faults using service rebinding at process

runtime. [BGNS10] presents an approach to self-supervising BPEL processes

which enables reacting to failures during process execution. Supervision con-

sists of monitoring and recovery. Monitoring directives and recovery strategies

are defined using policy-based languages based on WS-Policy. Recovery in-

cludes several strategies such as ignoring the fault, halting the process instance

execution, retry, and rebind, among others. [ZPG10] presents a declarative

framework for self-healing service compositions where an event calculus is

used for specifying the functional and non-functional constraints. At runtime,

monitoring is used for detecting violations by evaluating the event repository

which contains the monitored message exchanges. The recovery mechanisms

include reinstantiation and replanning of the composition.

As presented in [ACM+07], the Processes with Adaptive Web Services frame-

work enables defining candidate services for invocation activities at design time.

Thereby, also QoS constraints can be specified locally for each activity, and

globally for the whole BPEL process model. At runtime, the process optimizer

component selects candidate services in order to satisfy those QoS constraints.

In addition, a self-healing module enables retries or substitutions in case of fail-

ures during invocation. [CDPEV08] presents another approach to QoS-aware

52 2 | Background and Related Work

rebinding of services in a service composition. It uses genetic algorithms as

basis for service selection and performs the rebinding at process runtime when

monitoring shows that the actual QoS values deviate from initial estimates or

when a service is not available.

Proactive Adaptation. Proactive adaptation includes as a first step the pre-

diction of problems, after which one can analyze the reasons and decide on

adaptation actions to execute.

[AZ12] presents an approach to proactive adaptation that uses service re-

placement when it predicts situations that may lead to unavailable services

or services with a too high response time. Prediction is based on function

approximation and failure spatial correlation techniques. The approach uses

a composition template as basis and selects a set of candidate services to be

used in the composition and their replacements. The rebinding supports the

replacement of more than one service at once.

[HKMP08] presents a framework that uses online testing to trigger proactive

adaptation in service-based applications. Test objects are partner services

invoked by service compositions. If an online test fails, the framework triggers

adaptation to avoid undesirable events. [SMF+11] presents a framework which

combines monitoring, online testing, and quality prediction to enable proactive

adaptation. The selection of services to be tested using online tests is performed

based on usage frequency.

[dGAD14] presents QoS-based proactive adaptation for service compositions

based on fuzzy logic. The adaptation model uses two fuzzy inference systems

that evaluate the QoS values of service compositions, based on historical and

freshly monitored data. The QoS properties considered are response time, cost,

energy consumption, and availability.

There are several approaches which use data mining techniques to learn

models based on history data, which are then used for prediction purposes and

subsequent adaptation.

[ZLLC08] presents an integrated monitoring and prediction approach which

uses machine learning techniques for prediction. It supports not only instance

level prediction of metric values but also time series based prediction across

2.3 | Process Performance Analysis and Optimization 53

process instances. It however does not deal with adaptation.

[LWR+09] deals with prediction of SLA violations in service compositions.

The prediction model for a numerical metric is learned based on historical

data using Artificial Neural Networks (ANN). At process runtime, at specific

checkpoints in the process instance the prediction is performed by inserting the

monitored data into the ANN. [LMRD10] extends this work by using adaptation

in order to prevent SLA violations. After an SLA violation is predicted at a

checkpoint, the composition adaptor selects the available adaptation actions

at the checkpoint, and repeats the prediction for each possible combination of

those. Finally, the best fitting combination according to prediction result and

adaptation strategy (minimal or safe) is selected and enacted. Data manipula-

tion and service substitution as adaptation actions are supported. [LWK+10a]
extends that work by supporting also process fragment substitution as adapta-

tion action. Finally, [LHD13] in addition considers the costs of SLA violations

and adaptations to prevent them when selecting the adaptation actions to enact.

The approach of the thesis is based on the approach presented in [WZK+12,

KWK+09] and is similar to the previously described approach in that it uses

an integrated monitoring, prediction, and adaptation framework, and the

prediction is based on data mining. Major differences are as follows. Firstly, the

focus is on KPIs, which have categorical values and thus the usage of decision

trees as basis for prediction and adaptation. Secondly, the adaptation model

is different in that it allows defining (i) several KPIs, for which the prediction

and adaptation is to be done at the same time and (ii) a preferences and

constraints model which allows specifying weights and constraints on KPIs

and other metrics, which guide the selection and ranking of the adaptation

strategies based on multiple attribute decision making techniques. Thirdly, the

adaptation requirements and strategies are directly extracted from the decision

trees rather than enumerating all possible combinations of adaptation actions

and repeating the prediction with them. The approach of the thesis does not

take into account the cost of adaptations explicitly. However, to a certain extent

the cost could be taken into account by modeling a cost-related KPI with an

appropriate weight and specifying in the impact model of the adaptation actions

how they affect that KPI.

54 2 | Background and Related Work

2.4 Summary and Conclusions

This chapter has presented background information and related research ap-

proaches needed for understanding the approach and the contributions of the

thesis.

Firstly, an overview of the BPM, SOA, and Web services domains has been

given. Several Web service specifications which are used as basis of the approach

have been presented, in particular service orchestration with BPEL and service

choreography modeling with BPEL4Chor.

The next section has described concepts, technologies, and related work in

the context of process monitoring. This section is needed for understanding the

monitoring approach of the thesis as presented in Chapter 3. Standards such

as WSDM and technologies such as event processing have been introduced.

Related research approaches in the context of process monitoring and cross-

organizational process monitoring have been described.

In the last section, the process performance analysis and optimization topic

is presented, which is related to Chapters 4 and 5 of the thesis. Related work

in the context of process performance analysis and self-adaptive processes have

been described and compared to the approach of the thesis.

2.4 | Summary and Conclusions 55

C
H

A
P

T
E

R 3
PROCESS MONITORING IN

SERVICE CHOREOGRAPHIES

As motivated in the introduction (cf. Section 1.2), monitoring and evaluation of

KPIs based on single service orchestrations is often not sufficient, as processes

can be distributed across service orchestrations run by potentially different

organizations in service choreographies.

This chapter presents a solution to that problem by describing an approach

to monitoring of business processes in service choreographies. Runtime en-

tities in service choreographies are exposed as manageable resources with

corresponding properties. The approach is based on existing WS-* standards

and extends them where needed. Concretely, the monitoring infrastructure is

based on WSDM and BPEL4Chor is used as the service choreography language.

Custom properties used for the definition of KPIs are specified based on event

processing.

The presented monitoring approach is the basis of the overall framework, as

it enables the evaluation of KPIs in choreographies, which are the focus of the

analysis and adaptation phases as described in the following two chapters.

57

The chapter is structured as follows. Section 3.1 explains the motivation of

the approach in more detail. Section 3.2 gives an overview of the monitoring

framework and presents the monitoring lifecycle. In Section 3.3, the monitoring

approach is presented in detail by describing the metamodel and its usage in

the monitoring lifecycle phases. Finally, Section 3.4 concludes the chapter by

summarizing the contributions.

3.1 Motivation and Objectives

In service-based applications, business processes are implemented based on

services. In the scenario as shown in Figure 1.1 the services of the customer,

the reseller, and the shipper interact with each other and there are even more

services involved not shown in the choreography model. A service in a chore-

ography can be implemented as a service orchestration (i.e., using an explicit

orchestration model such as a BPEL process) or be a service implemented using

an arbitrary programming language and described just in terms of a WSDL-

based service interface. In the latter case, the implementation of the service is

not explicitly modeled as in the orchestration case.

When it comes to monitoring, then services which are just described in

terms of a service interface consisting of a set of operations enable monitoring

of properties of the invocation of these operations, such as availability of the

endpoint, duration of the operation invocation, and the outputs of the operation.

Obtaining monitoring information on the implementation of the service is

not possible without custom programming. If a service is implemented as a

service orchestration running in a process engine then in addition monitoring

of implementation aspects can be achieved. As discussed in Section 2.2.4,

process engines typically offer event models, which enable detailed tracking

of the execution of process instances. For example, if the reseller process is

implemented as a service orchestration, then events on the start and completion

of its activities and variable values can be obtained. Using monitoring languages

one can then use those events for calculation of process performance properties

such as the process duration.

In some cases, it is important to obtain monitoring events from more than

58 3 | Process Monitoring in Service Choreographies

one service in order to calculate process properties. Consider, for example,

the metric order fulfillment time, which could be measured in the scenario (cf.

Figure 1.1) from the start of the activity Receive PO in the reseller process

until the While Loop completes in the customer process. If the reseller wants

to calculate that property, he needs to obtain in some way the event from

the customer process when the last shipment arrived, as there is no explicit

message interaction between those processes in the choreography. Thus, one

needs to (i) ensure that both the reseller and the customer service expose the

corresponding monitoring information and then (ii) correlate that monitoring

information to calculate the process property.

Even if there exist orchestration models which expose the needed monitoring

information, there should be a possibility to provide only a subset of that

information for privacy reasons. This is because in cross-organizational settings,

a service provider is normally willing to provide only monitoring information

on its public processes, but not private processes. For example, the reseller

process in the choreography model shown in Figure 1.1 does not expose how it

interacts with its warehouse and payment services.

Figure 3.1: Monitoring Objective

3.1 | Motivation and Objectives 59

In order to support these scenarios, the approach uses choreography mod-

els not only for agreeing on interactions but also as basis for monitoring, as

sketched in Figure 3.1. Furthermore, it is assumed that an interconnected

interface choreography model is created and is used as basis for interaction

and monitoring. As discussed in Section 2.1.5 such a model specifies the public

processes (abstract processes) of the participants and their connections via

message exchanges. It is an agreement of the participants on how they want

to interact and in addition can include internal activities of public processes,

which are typically defined as opaque but give some information on what kind

of business logic is performed in the process. Thus, in addition to interaction

activities, also those public activities can be monitored. This is the reason

why, in our context, an interconnected interface choreography model is more

suitable than an interaction model, which just models the interactions but not

the opaque activities.

As shown in Figure 3.1, services of different participants interact over service

interfaces as described in the choreography model. Similarly, participants can

interact over their monitoring interfaces to exchange monitoring information

as described in a monitor model which is based on the choreography model.

Therefore, each participant monitors its process and provides a monitoring

interface. The monitoring interface provides monitoring information in terms

of operations and events to other participants.

3.2 Choreography Monitoring Overview

As motivated in the previous section, the goal is to support monitoring of

processes based on choreography models. The overall idea is to expose runtime

entities (e.g., process activity instance, process variable instance) and their

properties (e.g., activity instance state, variable instance value, process instance

execution duration) in the choreography as manageable resources.

As shown in Figure 3.2, for each manageable resource definition, a manage-

ability endpoint is exposed which supports accessing manageable resources of

the manageable resource definition. A manageable resource is accessed over the

manageability endpoint using an EPR and provides a set of capabilities which

60 3 | Process Monitoring in Service Choreographies

expose properties of that resource over operations and events to manageability

consumers.

Figure 3.2: Monitoring Approach

As already explained in Section 2.2.2, an implementation technology for

manageable resources in the WS-* platform is WSDM. It provides MUWS for

management using Web services and MOWS as an extension for management

of WSDL Web service endpoints. Similarly, here an extension for service chore-

ographies is provided. That involves supporting a set of new resource types and

capabilities. An example resource type in a choreography is an activity instance.

A corresponding capability could then expose its state model to consumers, i.e.,

allowing consumers to query or even modify the current state of the activity

instance over operations or notifying subscribed consumers on state changes.

In order to support the development of monitoring applications based on the

resource types and capabilities, a monitoring metamodel has been defined. It

specifies how monitor models are created. A monitor model uses provided ca-

pabilities to specify for a concrete choreography model which resources should

be exposed as manageable resources, which properties should be provided and

how they can be accessed.

3.2.1 Monitoring Method

In the following, a high-level overview of the monitoring method is given.

Details are then specified later in the respective sections of the chapter. The

steps from modeling to monitoring are depicted in Figure 3.3.

Choreography Modeling. The prerequisite of the monitoring approach is a

3.2 | Choreography Monitoring Overview 61

Figure 3.3: Overview of the Monitoring Process

choreography model. The monitoring approach assumes the existence of a

choreography description based on the interconnected interface model. The

choreography model consists of a set of interconnected abstract processes.

Concretely, BPEL4Chor is used as choreography language (cf. Section 2.1.5).

The choreography model can be created either in a top-down or a bottom-up

fashion. When using a top-down approach, one first creates the choreography

model and then in later phases refines its abstract processes to executable

processes (e.g., by refining the abstract BPEL processes to executable BPEL

processes [DD04]). The top-down approach is typically used when (i) designing

the process landscape from scratch or (ii) as an agreement between partners on

how to interact in a cross-organizational scenario. The latter scenario is in par-

ticular important if choreography models are standardized in certain domains

(e.g., RosettaNet PiPs [Ros]). Figure 3.3 depicts the top-down approach.

The bottom-up approach starts with already existing implemented processes

and derives the choreography description bottom-up based on those processes.

In both approaches, when designing the choreography model, it is important

to include all activities which should later be monitorable.

Process Implementation and Deployment. The processes are implemented

62 3 | Process Monitoring in Service Choreographies

as specified in the choreography. This can be done by refining the abstract

processes to executable processes (e.g., by refining the abstract BPEL processes

to executable BPEL processes [DD04]), when using the top-down modeling

approach. But in general any implementation technology could be used, not

necessarily a service orchestration language. The executable processes are

deployed. Process deployment information is needed as input to monitor

model deployment.

Creation of a Monitor Model. After the creation of the choreography model,

a monitor model can be created. It defines the monitored resources and their

properties which are to be monitored in a specific choreography and the moni-

toring mechanisms which allow accessing that information. The monitor model

uses a set of monitoring capabilities provided by the monitoring infrastructure.

Figure 3.4: Monitor Model

The monitor model is created for each choreography model separately based

on the monitoring goals. One possible goal is to allow monitoring consumers

to track the execution of the choreography; another goal is the evaluation of

KPIs for assessing the process performance. A standardized monitor model

which simply monitors everything in the choreography that is available based

on the monitoring capabilities is not realizable for several reasons: (i) process

properties (used for definition of KPIs) are often process-specific and cannot

be standardized (e.g., the calculation of order fulfillment time in the scenario

is not simply the duration of the reseller process instance but the duration

3.2 | Choreography Monitoring Overview 63

between two concrete activities in the specific choreography model, namely

the start of Receive PO in the reseller process model and the completion of

While Loop in the customer process model); (ii) monitoring of all possible

events of process execution can have a serious impact on process performance;

(iii) some of the available monitoring information might not be provided due

to privacy constraints.

For these reasons, the user creates a specific monitor model for a choreography

by defining which resources and corresponding properties of a choreography

should be monitored to achieve a certain monitoring goal. As shown in Fig-

ure 3.4, the monitor model is defined in terms of a set of manageable resource
definitions. Each such manageable resource definition is specified based on a

resource type (e.g., Activity Instance) for a set of resources of a specific choreog-

raphy (e.g., all activity instances of the reseller process). By selecting particular

capabilities, it is then specified which resource properties should be exposed for

these resources via operations and events. A corresponding resource interface,

specified as a WSDL portType, is created for each manageable resource defi-

nition. The portType defines resource properties, corresponding metadata

information, and WSDL operations. The contents specified in the portType

are provided by the functionality of the chosen capabilities, or are a subset of

that functionality, i.e., not every resource property or operation a capability

supports has also to be used in the resource interface. The resource interfaces

provided as WS interfaces as defined in the monitor model are created in addi-

tion to the WS interfaces of the participants as specified in the choreography

model (as also sketched in Figure 3.2).

Monitored properties range from basic properties such as simple state changes,

which are domain-independent (i.e., can be used for any choreography model)

and are already predefined for the available resource types to custom properties,

which are defined based on other properties (e.g., metrics such as average du-

ration between two activities). Those custom properties are defined specifically

for a choreography model (e.g., the metric order fulfillment time).

If a monitor model is created between participants in a cross-organizational

scenario, it is assumed that participants agree on the monitor model similarly

as they agree on the choreography model for interactions. The monitor model

64 3 | Process Monitoring in Service Choreographies

can thereby contain manageable resource definitions provided by different

participants in the choreography, e.g., one such definition can be defined for

resources in the reseller process and be offered by the reseller, another one

can be defined for resources in the shipper process and be offered by shipper.

Such a monitor model can in this case be seen as a monitoring contract between

these participants.

On top of the monitor model, one can add other models such as KPI defini-

tions, SLAs, and dashboards in order to create a monitoring solution used for

achieving a particular monitoring goal. In the overall approach, the monitor

model is also used as basis for KPI analysis and adaptation purposes.

Deployment of the Monitor Model. Deployment of the monitor model as-

sumes that the corresponding processes of the choreography have been imple-

mented and deployed first. In the deployment phase, the monitor model is

deployed to a monitoring infrastructure.

Deployment involves creating a deployment descriptor adding additional

information to the monitor model such as concrete endpoint addresses of the

monitoring interfaces and capability implementations and their configuration.

For example, if an abstract BPEL process has been implemented as an executable

BPEL process, then one has to specify that process and where it has been

deployed in the deployment descriptor. Also a mapping between abstract

process elements and executable process elements might be necessary (cf.

Section 6.1.1).

In case the monitor model contains definitions of several participants from

different organizations, then each participant deploys its corresponding man-

ageable resource endpoints of the monitor model.

As a result of the deployment, a set of manageability endpoints is deployed

and can be used for monitoring. As deployment is specific to an implementation

technology, it is described in more detail in the chapter on implementation and

evaluation (cf. Section 6.1.1)

Monitoring. In the monitoring phase, the resources and their properties are

monitored. The endpoints can be used for pulling the information via operations

or subscribing to events.

3.2 | Choreography Monitoring Overview 65

3.3 Monitoring Metamodel

This section defines the monitoring metamodel which is used for the creation

of monitor models.

3.3.1 Overview

In the following, a short overview of the main concepts is given. In the next

sections these concepts are then described in detail.

Figure 3.5: Monitoring Metamodel

Figure 3.5 shows the main concepts of the monitoring metamodel in a UML

class diagram. A monitor model defines a non-empty set of manageable resource
definitions. A manageable resource definition is defined for a resource type.

There is a set of predefined resource types (e.g., Activity Instance), but it is also

possible to define custom resource types.

The resource descriptor specifies the concrete resources (of the resource

66 3 | Process Monitoring in Service Choreographies

type) which should be exposed as manageable resources (e.g., which concrete

activities of a process should be manageable). The resource descriptor is

specified in terms of a property filter by specifying concrete values on the subset

of properties of the resource type.

A manageable resource definition can define two types of endpoints. The

manageability endpoint is provided by each manageable resource (as specified in

the resource descriptor) while a management endpoint is used for all manageable

resources together.

For each endpoint an interface is defined via a WSDL portType. The re-

source interface includes a subset of resource properties, metadata information

on the properties, operations, and topics as supported by the capabilities. Each

endpoint definition specifies the capabilities it offers. For a resource type there

is a set of predefined capabilities which can be used when specifying the monitor

model. From this set a subset is chosen for a manageable resource definition.

XML Serialization of the Monitoring Metamodel. A monitoring metamodel

is serialized as follows.

Listing 3.1: Monitoring Metamodel Pseudo XML Schema

1 <monitorModel targetNamespace ="URI " name="NCName"

xmlns =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c / schemas / monitorModel ">

3 <manageableResourceDef ini t ion name="NCName" resourceType ="URI">

<resourceDescr ip tor > . . . < / resourceDescr ip tor > +

5 <manageabi l i tyEndpoint resource In te r facePor tType ="QName">

< c a p a b i l i t y u r i ="URI " > . . . < / c a p a b i l i t y > +

7 </ manageabi l i tyEndpoint > *
<managementEndpoint resource In te r facePor tType ="QName">

9 < c a p a b i l i t y u r i ="URI " > . . . < / c a p a b i l i t y > +

</managementEndpoint> *
11 </ manageableResourceDefini t ion > +

</ monitorModel >

Example. An example monitor model is shown in Listing 3.2. It defines one

manageableResourceDefinition element for managing resources of the

3.3 | Monitoring Metamodel 67

resource type ActivityInstance. The resourceDescriptor element de-

fines which concrete activity instances are to be managed; this is done by

defining a propertyFilter on the resource identifying properties. In this

case, all activity instances of the reseller process of the purchase order choreog-

raphy are to be managed. For the monitoring of shipper activities one would

have created another manageable resource definition, as the corresponding end-

points have to be deployable independently of each other and are implemented

by different service providers, i.e., the reseller and the shipper, respectively.

There can however be cases where several process models in a choreography

are implemented by the same service provider; in that case one manageable

resource definition could include activities of several process models.

Listing 3.2: Monitor Model Example

<monitorModel name=" POChoreographyMonitorModel ">

2 <manageableResourceDefini t ion name=" R e s e l l e r A c t i v i t i e s "

resourceType =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c /

resourceTypes / A c t i v i t y I n s t a n c e ">

<resourceDescr ip tor >

4 < p r o p e r t y F i l t e r >

<m4c : topology >po : POChoreography </m4c : topology >

6 <m4c : process > r e s e l l e r : Resel lerProcess </m4c : process >

</ p r o p e r t y F i l t e r >

8 </ resourceDescr ip tor >

<manageabi l i tyEndpoin t resource In te r facePor tType =" m4cint :

A c t i v i t y P o r tT y p e ">

10 < c a p a b i l i t y u r i =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c /

c a p a b i l i t i e s / A c t i v i t y S t a t e C a p a b i l i t y " / >

</ manageabi l i tyEndpoint >

12 <managementEndpoint resource In te r facePor tType =" m4cint :

Ac t i v i t yS ta teEven tPor tType ">

< c a p a b i l i t y u r i =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c /

c a p a b i l i t i e s / A c t i v i t y S t a t e E v e n t C a p a b i l i t y " / >

14 </managementEndpoint>

</ manageableResourceDefini t ion >

16 </ monitorModel >

68 3 | Process Monitoring in Service Choreographies

The manageabilityEndpoint element specifies which capabilities should

be provided by the manageable resources. The endpoint interface is specified by

referencing a WSDL portType and listing a subset of capabilities provided by

the resource type. In the example, the ActivityStateCapability has been

used. The ActivityStateCapability exposes a state resource property

and corresponding operations and topics for monitoring the activity state. In

the corresponding WSDL file, the ProcessActivityPortType defines that

resource property and includes the provided operations.

The managementEndpoint element provides the capabilities for manage-

ment functionality used independently of a specific activity instance. In this case,

the ActivityStateEventCapability is provided and the corresponding

resource interface is specified. Based on this definition at runtime a manage-

ment endpoint is deployed which publishes activity state change events for all

activity instances resulting from the definition in the resource descriptor.

3.3.2 Resource Types in BPEL4Chor Choreographies

In the following, resource types in choreography monitoring are defined, i.e., it

is specified how the runtime choreography entities are mapped to resources

and resource properties and corresponding capabilities. Thereby, BPEL4Chor is

used as choreography language, however, in principle, any other choreography

language supporting the interconnected interface model could be used.

Process Execution in BPEL4Chor. BPEL4Chor choreographies [DKLW07] are

used as monitored subjects. A BPEL4Chor participant topology (topology, for

short) defines how a set of participants interact with each other. Each participant

is defined in terms of a participant behavior description, which is an abstract

BPEL process model. The abstract BPEL process model has the semantics of an

observable behavior profile of BPEL with the exception that partner links are

not allowed. The interactions between participant behavior descriptions are

modeled in terms of message links.

A choreography topology results at runtime in a set of choreography exe-

cutions. A choreography execution represents one particular execution of the

participant processes and their interactions as defined in the topology, i.e., it

3.3 | Monitoring Metamodel 69

consists of a set of process instances whereby each participant instance corre-

sponds to a participant behavior description and is executed by a participant.

In the scenario, a choreography execution represents one particular purchase

order and spans process instances of the customer, the reseller, and the ship-

per. A choreography execution can result in several process instances of the

same participant, e.g., the shipper process can be instantiated several times per

purchase order if the order is split into several shipments.

A process instance is executed according to the operational semantics of

BPEL. The execution is exposed using an event model which provides events

on instance entities and their state changes as they are executed. The WS-

BPEL Event Model 2.0 [KHK+11] (cf. Section 2.2.4) defines state models

and corresponding events for the following instance entities: Process, Scope,

Activity, Invoke Activity, Loop, Link, Variable, Message Variable, Partner Link,

and Correlation Set. The events which are fired to state transitions in the event

models, carry identifiers of the instance entities they refer to.

To summarize, there is a need to create resource types for (i) BPEL process

instance entities including its child entities, and (ii) deal with choreography

executions (which span several process instances).

Resource Types. Based on the BPEL event model 2.0, the following resource

types have been defined: Process Instance, Activity Instance, Link Instance, and

Variable Instance. Thereby, all activity types, i.e., scopes, invoke activities,

loops, and all other activities, have been combined into the resource type Ac-

tivity Instance. Also all variable types, i.e., variable, message variable, and

correlation set, have been combined into the resource type Variable Instance.

Partner link is not included as it is not used in BPEL4Chor. The state models

of the corresponding entities are mapped to a resource property state (cf. Sec-

tion 3.3.4). Thereby, e.g., a resource of the type Activity Instance representing

a loop activity has a different state model than a resource of the same type

representing an invoke activity. In addition, the Variable Instance resource type

contains the property value for holding the variable value. The events carry a

set of properties which are used for identification of the corresponding instance

entity. Those properties are also mapped to resource properties and are used

70 3 | Process Monitoring in Service Choreographies

for resource identification purposes (cf. Section 3.3.3).

In addition to process models, which result in process instances at runtime, a

BPEL4Chor choreography also defines a topology and participants. A topology

can be seen as resulting at runtime in a set of choreography executions. For

the monitoring of choreography executions, the resource type Choreography
Interaction has been defined. A Choreography Interaction groups a set of

interacting process instances (as specified in the topology) by specifying how a

choreography interaction is identified based on process data exchanged between

the process instances. As that process data is different for each choreography

model, Choreography Interaction is a custom resource type, which is used

specifically for a concrete choreography model based on monitoring objectives,

e.g. for calculating domain-specific KPIs across process models. In the purchase

order processing scenario, one could define several choreography interactions:

an interaction between the customer and the reseller, an interaction between the

reseller and a shipper, or also an interaction consisting of all those interactions

together as part of a specific purchase order. Choreography interactions thus can

be defined on different granularity levels (depending on monitoring objectives)

and are specified implicitly by defining how a choreography interaction is

identified based on process data exchanged between the process instances.

Considering resource identification in choreographies, two more items of

information have to be specified, namely (i) by which participant a process

instance has been executed and (ii) in which topology a process instance

has been executed. Resource identification and definition of choreography

interactions is discussed in the following subsections in more detail.

Finally, an additional resource type Custom has been added. It is needed, in

some cases, when defining composite properties across resources of existing

resource types (cf. Section 3.3.5), e.g., across choreography interactions (e.g.,

average order fulfillment time) or even choreography models.

Example. Figure 3.6 shows an example on how resources are created during

choreography execution. The choreography consists of three process models

(customer, reseller, and shipper). At runtime, the figure depicts one particular

choreography execution (i.e., one particular purchase order). It results in four

3.3 | Monitoring Metamodel 71

Figure 3.6: Resource Creation Example

resources of the resource type Process Instance. For the customer process

model, four resources have been created, a process instance resource, and three

activity instance resources. For the reseller process model, which contains a

while activity, at runtime two corresponding while instance resources have

been created, as the loop is executed two times. In each of the loop iterations

a process instance of the shipper process model is instantiated, thus resulting

in two process instance resources for the shipper process model.

In addition, the Figure shows three resources of the resource type Choreog-

raphy Interaction, one is created for the interaction between the customer and

the reseller, the other two are created for the interaction between the reseller

and the shipper for each shipment. The first choreography interaction could

72 3 | Process Monitoring in Service Choreographies

be used for the correlation of the customer and the reseller process instance

based on the shared purchase order identifier and the calculation of the order

fulfillment time. The other two choreography interactions could be used for

the correlation of the reseller and the shipper process instance based on the

shared shipment identifier and the calculation of the shipment time.

3.3.3 Resource Identification

Each resource needs one or more properties which allow identifying the re-

source. In our context, resource identifiers are used for two purposes. Firstly,

they are needed for accessing resources over their manageability endpoints and

are therefore defined as part of the endpoint reference of the manageability

endpoint. In case of SOAP based access, the resource identifier is mapped to

reference parameters. In case of resource-related events, the event contains

the resource identifier as part of its event properties. Secondly, resource identi-

fiers are needed for storing resources in a monitor database acting thereby as

primary keys.

There are alternative ways to define resource identifiers. Resource identi-

fiers can be (i) purely technical identifiers or (ii) domain-specific identifiers

(consisting potentially of a set of properties). Also several identifiers can be

used at the same time. For example, a technical identifier can be used in the

database, while a domain-specific identifier is defined as part of the EPR. In

our context, for example, for a specific activity instance one could generate a

Universally Unique Identifier (UUID) as a technical identifier, or use a set of

properties which identify the resource in respect to its model element (e.g.,

process QName) and the instance elements the resource is part of. In the former

case, the identifier does not reflect the semantics of the resource (i.e., that the

resource is an activity instance which is part of a certain process model) while

in the latter case the resource is identified in respect to its process model and

instance element. In the following, the approach focuses on the latter case, as

there is a need for domain-specific identifiers for event correlation purposes,

but note that in practice both approaches could be combined.

Based on the resource identification properties, the goal is to be able to deduce

3.3 | Monitoring Metamodel 73

which particular entity instance of a choreography execution the resource

represents. That includes (i) the model element in the choreography the

resource represents (e.g., in case of an activity instance to which particular

activity, in which process and choreography model it belongs) and (ii) the

instance element it represents, as a model element can result in several instances

at runtime.

Resource Identification Choreography Process Activity Link Variable
Properties Interaction Instance Instance Instance Instance

Topology QName X X X X X

Participant (Set) X X X X

Participant EPR X X X X

Process QName X X X X

Process ID X X X X

Scope XPath X X X

Scope ID X X X

Activity XPath X

Activity ID X

Element XPath X X

Table 3.1: Predefined Resource Identification Properties

Table 3.1 shows the resource identification properties for each predefined

resource type. Each resource is identified by a set of properties identifying its

model representation and a set of properties identifying the concrete instance.

For example, the model representation of an activity instance is identified using

the topology QName, the participant reference name (or alternatively partici-

pant set name), process model QName, and the XPath expression identifying

the activity definition in the BPEL XML document. The instance of an activity

is identified using the choreography interaction ID (domain-specific, thus not

shown in the table; discussed further below), the participant EPR (if participant

is part of a participant set), process (instance) ID, the scope (instance) ID of the

innermost scope, and an activity (instance) ID. The two latter IDs are needed

because there can exist several instances of the same activity instance per

74 3 | Process Monitoring in Service Choreographies

scope execution. The instance IDs are technical IDs generated by the process

implementation which executes the instance (i.e., typically the process engine).

Thereby, it should be made sure that the process ID is globally unique, while

other IDs can then be unique only within the process instance. One should

also note that not each of the model element identifying properties is necessary

for each resource type. For example, the process QName is not needed for

identifying an activity instance as the process ID could be used for finding out

the process QName by accessing the corresponding process instance resource

or reading the properties of a corresponding process instance event, which

contains the process QName property. We have decided to include all identi-

fication properties of the corresponding model element for practical reasons.

Thus, each resource provides complete information on its model element and

does not require correlation with other resources, which can be cumbersome.

The IDs corresponding to process entities have already been described in

the BPEL event model 2.0 (cf. [KHK+11] for more details). That set has been

extended to support choreographies. Firstly, the topology QName specifies

in which choreography a resource has been executed. This property is in

particular needed if processes with the same QName can be used in different

choreographies. Secondly, a participant name and participant set name are

needed as a process model can be used by several participants or participant

sets. In case of participant sets, in addition a participant EPR is needed to specify

the concrete participant which has executed a particular process instance in

that participant set.

Thirdly, there is a need for identifying a particular choreography interaction

for being able to correlate process instances which interact with each other. If

each process instance is identified via a technical process ID, then obviously

correlation between those process instances is not possible without further

information, because a process instance does not know the technical process

instance IDs of other process instances it interacts with in a choreography. A

correlation in that case can be done based on information which is exchanged

between the process instances over message interactions.

Thereby, properties have to be determined which are either part of the

message payload or transported via the message header. For example, in the

3.3 | Monitoring Metamodel 75

scenario, the purchase order ID is exchanged between the reseller process and

the customer process, and the shipment ID is exchanged between the reseller

process and the shipment process. These IDs are thus known in both process

instances and can be used to correlate those two process instances, e.g., for

calculating the duration between activities in these process instances. This

duration property is then assigned to a manageable resource definition with

the resource type Choreography Interaction which has the purchase order ID

as identifier. A concrete example is described in more detail in Section 3.3.5.

If no unique identifier is part of the message payload, then the correlation

(between two interacting process instances) can only be done based on techni-

cal identifiers on protocol level. In synchronous invocations (BPEL invoke with

input and output) the correlation between the sent and replied message is done

on protocol level, e.g., SOAP/HTTP and not based on message payload (which

does not necessarily contain needed identifiers). For SOAP-based communica-

tion this technical identifier can be transported in the SOAP header. Obviously,

the corresponding middleware, e.g., BPEL engine and service bus [Ley05],
would have to be adapted to include and read the identifier during message ex-

changes, and also write it into corresponding published events. The approach of

the thesis does not deal with technical identifiers for choreography interactions,

but assumes that the correlation can be done based on message payload.

3.3.4 Capabilities

Each manageable resource exposes a number of capabilities. The resource type

thereby determines which capabilities are meaningful and are supported. A

capability is the atomic unit of functional definition for a resource type and

is identified by an URI. It defines a set of properties, operations, events and

metadata items which are used for managing a certain aspect of the resource.

Those elements are specified in accompanying files containing the XML schema

definitions, WSDL definitions, and metadata descriptors. An endpoint interface

of a manageable resource is defined by combining a set of capabilities.

In the following, it is discussed which existing capabilities are most useful

in the context of the thesis and which new capabilities have been defined.

76 3 | Process Monitoring in Service Choreographies

Table 3.2 shows the new capabilities and the corresponding resource types. For

each capability the properties and operations are given. The capabilities also

provide topics which are not shown in the table.

Coarsely, the capabilities can be grouped as follows: (i) capabilities dealing

with the identification and description of the resource, (ii) capabilities for

managing the state of resources and the value of variables, (iii) capabilities for

evaluation of custom properties.

Identification and Description of Resources. Each resource type has the

mandatory WSDM capability Identity, which exposes a URI-based ResourceId

property giving a unique identifier to the manageable resource. In our approach,

a UUID for each resource is generated. In addition to Identity, other useful

WSDM capabilities which can be reused are Manageability Characteristics and

Correlatable Properties.

Capability Resource Type Properties Operations

Process State Process Instance State, triggerStateTransition
LastStateTransition

Process State Event Process Instance

Activity State Activity Instance State, triggerStateTransition
LastStateTransition

Activity State Event Activity Instance

Link State Link Instance State
LastStateTransition triggerStateTransition

Link State Event Link Instance

Variable State Variable Instance State triggerStateTransition
LastStateTransition

Variable State Event Variable Instance

Variable Value Variable Instance Value setValue

Custom Property All Resource Types Custom Property

Event Composition All Resource Types

Blocking Event All Resource Types registerForBlockingEvents
unregisterForBlockingEvents

Table 3.2: Capabilities for Choreography Monitoring

3.3 | Monitoring Metamodel 77

Resource State. Each entity type defined in the BPEL event model 2.0 has

a corresponding state model [KHK+11]. A state model consists of a set of

states and state transitions. A state transition is signaled using events. Thereby,

outgoing events are always fired by the process engine, while incoming events

can stem from external applications who wish wo actively influence state

transitions and thus the process execution. Based on the capabilities and state

models of the BPEL event model, the goal is thus to (i) expose the state model

using resource properties, and (ii) enable manageability consumers to cause

state transitions actively when supported by the event model.

For each of the resource types, a corresponding capability for managing the

state has been created (cf. Table 3.2, e.g., Activity State). The capability exposes

one resource property State for representing the current state and one property

LastStateTransition representing the last state transition. The state models are

adopted from the BPEL event model. Both properties can be accessed by using

WSRF operations and topics.

The BPEL event model 2.0 supports triggering of state transitions by external

applications via incoming events. For example, the process instance state

model defines that in the state Ready the process execution can be blocked

waiting for incoming events. The incoming event Start_Activity triggers a state

transition leading to the state Executing while Skip_Activity leads to the state

Completing, thus skipping the activity execution. In both cases, the outgoing

event Activity_Executing is fired.

For supporting this feature, a WSDL operation triggerStateTransition is pro-

vided. It receives the name of the incoming event as parameter and sends

it to the engine. In the above example, one would invoke that operation

with Start_Activity or Skip_Activity, respectively. The manageability consumer

first has to register for blocking events. Therefore, an operation registerFor-
BlockingEvents is provided, which is supported by the capability Blocking Event,
which is a management capability assigned to the management endpoint. The

manageability consumer uses that operation to subscribe for corresponding

blocking events, which block the process execution. One should note that

alternatively standard WSRF operations could have been used for enabling the

triggering of state transitions, such as setResourceProperties. In that case, the

78 3 | Process Monitoring in Service Choreographies

implementation of those standard operations would have to make sure that

only the allowed properties may be changed (e.g., the state). As in our case

there are only few properties which may be changed (state and variable value)

and the change has side effects (a change of the state unblocks and resumes

the blocked process instance), we have taken the design decision not to use

the standard WSRF operations, but offer special operations whereby it is more

obvious how to use the operation and what the operation does.

For accessing resources over their manageability endpoints and querying their

state (either over operations or by subscribing to events), the manageability

consumer first has to know that the corresponding resource exists and have

the EPR of the resource endpoint. In our case, the resources are dynamically

created at runtime as the choreography is executed. The consumer has several

possibilities for discovery of resources: (i) advertisement of resource creation

via events, (ii) a resource registry, and (iii) navigation via relationships. All of

those approaches could be used in our case. In the prototype implementation,

the first approach has been used. For each resource type, a management-

related capability (e.g., Activity State Event) has been defined, which allows

subscribing for all events of the corresponding manageable resource definition.

This capability is assigned to the management endpoint. Thus, on the receipt

of the first state event of a resource, the consumer knows that the resource has

been created and uses the resource identification properties (which are part of

the event) for accessing the manageable resource. For example, the consumer

can use the Activity State Event capability for subscribing to all activity state

change events of a certain process. After receiving the first event of an activity

instance, he can use the Activity State capability for retrieving the current value

of the state property or trigger state transitions.

Other Capabilities. In addition to the state capabilities several other capabil-

ities have been created. The capability Variable Value manages the variable

value of the corresponding resource of the resource type Variable Instance. The

Variable State Event capability provides events which contain the new value of

the variable when it has been changed. Finally, the capabilities Event Composi-
tion and Custom Property allow evaluating custom properties based on events;

3.3 | Monitoring Metamodel 79

these two capabilities are discussed in detail in the next section.

3.3.5 Custom Properties

So far, properties have been evaluated based on the events resulting from the

process execution based on the BPEL event model. This in particular includes

state changes of activities and values of process variables. Those simple events
published based on the BPEL event model can be used as basis for evaluating

custom properties. A custom property is, for example, the duration between two

activities. It can be calculated based on the timestamps of two simple events

which are fired on particular state transitions of the two activities.

In order to evaluate custom properties, simple events can be recursively cor-

related and aggregated to composite events. Event correlation and composition

is a well-known topic in the area of CEP, and there are different languages

available for the specification of composite events [Luc02]. In this thesis, the

event processing language of ESPER (cf. Section 2.2.1) is used. ESPER is the

CEP implementation used in the prototype. However, alternatively, any other

language could be used instead.

Composite events are specified based on simple events provided by the BPEL

event model (or other composite events) using an event processing language.

The language provides an extensive set of functions (arithmetic, aggregation,

relational) for calculating a new property value. The value of the custom

property is extracted from the corresponding event property.

The definition of composite events is supported by the capability Event

Composition, which is assigned to the management endpoint of the manageable

resource definition. A custom property is then specified by using the capability

Custom Property, which is assigned to the manageability endpoint. It specifies

the event (simple event or composite event) and defines then how an event

property value is to be mapped to the custom property value.

Definition Process for Custom Properties. In contrast to a predefined prop-

erty, a custom property definition has to specify how the property value is

evaluated. This includes in particular (i) specifying the consumed event (which

contains the custom property as event property) by referencing the corre-

80 3 | Process Monitoring in Service Choreographies

sponding manageable resource endpoint and topic and (ii) defining the event

property which contains the custom property value. If the existing events are

not sufficient, then first a new composite event has to be specified using event

composition.

The steps for defining a custom property are as follows:

1. Identification and definition of source event(s): The first step towards

creation of a new custom property, is to define the underlying source
events which are needed as basis and the corresponding manageable

resource definitions. This can be either only one existing event from

which a property is to be extracted or several events which have to be

composed first using event composition. In both cases, one has to make

sure that the corresponding manageable resource definitions are part

of the monitor model. For example, for the calculation of the duration
between two activities, for the corresponding activities a manageable

resource definition has to be defined which contains the capability Activity

State Event.

2. Specification of the corresponding manageable resource definition: The

new custom property has to be defined as part of a manageable resource

definition. If the property cannot be assigned to one of the existing

definitions, one has to define a new one for the custom property. If

the predefined resource types cannot be used, then a custom resource

type is defined. For example, the calculation of properties assigned to

a choreography interaction needs the definition of a new manageable

resource definition representing that choreography interaction. To the

created manageable resource definition one then adds the capabilities as

specified in the next two steps.

3. Specification of the Event Composition: If the existing events are not

sufficient, one uses the capability Event Composition to specify a new

event based on existing events. This is done by consuming events specified

in the first step and then defining an EPL statement for creating a new

event. Finally, one defines the target topic to which the event is published.

3.3 | Monitoring Metamodel 81

The Event Composition capability is added to the management endpoint

of a manageable resource definition.

4. Specification of the Custom Property: Finally, one specifies the custom

property. This includes adding the Custom Property capability and defin-

ing how the property value is extracted from an event property of the

consumed event. One then specifies a corresponding resource property

by defining its name and type in XML-Schema and defines metadata for

that property. Metadata includes in particular defining the unit (e.g.,

seconds, hours). This includes adding the composite property to the

corresponding resource interface (WSDL file).

Example. Figure 3.7 sketches a monitor model which defines the custom

property OrderFulfillmentTime. The custom property is calculated by

subtracting the timestamps of two events, namely the receipt of a new purchase

order in the reseller process and the receipt of the order at the end of the

customer process. As these two activities are part of different process instances,

the two events cannot be correlated based on their own event properties. It is

assumed that the purchase order ID is exchanged between the two processes

via messages and is held in process variables in both processes. As basis for the

calculation, thus four events are needed: two activity state change events of the

corresponding activities for calculating the time difference, and two variable

state events of the two processes which both hold the purchase order id for

correlation.

Therefore, the corresponding four manageable resource definitions are cre-

ated (cf. Figure 3.7). Each of the definitions includes the capability for publish-

ing activity state changes and variable state changes, respectively. A new man-

ageable resource definition CustomerResellerInteractionDefinition

is created for the custom property. It specifies a new composite event by using

the EventCompositionCapability. The event is specified by composing

the four events mentioned before. Based on this event definition, the custom

property is defined using the CustomPropertyCapability which extracts

the corresponding property value from the event. Finally, as the created man-

ageable resource definition has the resource type Choreography Interaction,

82 3 | Process Monitoring in Service Choreographies

Figure 3.7: Custom Property Definition Example

which is a special case of a custom resource type, one has to define how the re-

sources of this type are created and identified (CustomResourceDefinition

element). More details are described in the rest of the section.

Composite Events and Custom Properties. A composite event is defined

by using the capability Event Composition. When a composite event is to be

specified for a manageable resource definition, the capability is inserted into the

management endpoint definition and configured by defining a set of composite
event definitions. Each such composite event definition includes the following

three elements:

• Consumed events: Firstly, one has to specify the names of the manageable

resource endpoints and corresponding topics from which the events

should be aggregated. Required events can be simple events or composite

3.3 | Monitoring Metamodel 83

events. Each event is a ManagementEvent and carries the identification

properties of the corresponding resource.

• Event composition statement: This is an EPL statement which correlates

and aggregates the consumed events to a new event. The new event

contains at least the resource identifying properties (of the corresponding

resource type) and the calculated custom property.

• Target topic: Finally, one has to specify a topic to which the new event is

to be published.

On deployment of such a Composite Event definition, the monitoring frame-

work subscribes at the topics of the consumed event definitions. The event

composition statement is registered in the CEP engine. It should be noted,

that at runtime, for such a composite event definition, not a single composite

event, but an event stream of composite events is created, one per resource

of the corresponding resource type. In the example, the result is a stream of

OrderFulfillmentTimeEvents, whereby each event is associated with one

particular purchase order.

A custom property is defined by using the Custom Property capability. When

a custom property is to be specified for a manageable resource definition, the

capability is inserted into the manageability endpoint definition and configured

by defining a set of property definitions. Each such property definition includes

the following elements:

• Name: The name of the property is specified as a QName. The property is

defined in XML schema and is defined as resource property in the WSDL

interface of the manageability endpoint.

• Consumed event: The consumed event is the event which contains an

event property which is used for the definition of the custom property.

The consumed event can be a basic event or a composite event.

• Event property: This element specifies using XPath which event property

is to be used as basis for the custom property.

84 3 | Process Monitoring in Service Choreographies

Listing 3.3: Event Composition Example

< c a p a b i l i t y u r i =" h t t p : / / . . . / EventComposi t ionCapabi l i ty ">

2 <compositeEvent ta rge tTop i c ="poChoreo : OrderFu l f i l lmen tT ime ">

<consumedEvent manageableResourceDef ini t ion =" R e s e l l e r A c t i v i t i e s "

4 t o p i c =" A c t i v i t y E v e n t C a p a b i l i t y " a l i a s =" R e s e l l e r A c t i v i t y E v e n t " / >

<consumedEvent manageableResourceDef ini t ion =" Rese l l e rVa r iab les "

6 t o p i c =" Va r iab leEven tCapab i l i t y " a l i a s =" Rese l le rVar iab leEvent " / >

<consumedEvent manageableResourceDef ini t ion =" Cus tomerAc t i v i t i es "

8 t o p i c =" A c t i v i t y E v e n t C a p a b i l i t y " a l i a s =" CustomerAct iv i tyEvent " / >

<consumedEvent manageableResourceDef ini t ion =" CustomerVariables "

10 t o p i c =" Va r iab leEven tCapab i l i t y " a l i a s =" CustomerVariableEvent " / >

<eventComposit ionStatement >

12 < ! [CDATA[

SELECT abs (d . timestamp − a . timestamp) AS orde rFu l f i l lmen tT ime ,

14 c . value . purchaseOrder . poId AS poId , c . topo logy AS topology

FROM PATTERN

16 [EVERY

a=ManagementEvent (name=" R e s e l l e r A c t i v i t y E v e n t " ,

18 a c t i v i t y X P a t h = ’ / process / sequence [1] / rece ive [1] ’ ,

s t a t e ="Ready ")

20 −> b=ManagementEvent (name=" Rese l le rVar iab leEvent "

elementXPath = ’ / process / v a r i a b l e s [1] / v a r i a b l e [1] ’ ,

22 processId=a . processId)

−> c=ManagementEvent (name=" CustomerVariableEvent "

24 elementXPath = ’ / process / v a r i a b l e s [1] / v a r i a b l e [2] ’ ,

value . purchaseOrder . poId=b . value . po . i d)

26 −> d=ManagementEvent (name=" CustomerAct iv i tyEvent " ,

a c t i v i t y X P a t h = ’ / process / sequence [1] / wh i le [1] ’ ,

28 s ta te =" Complete " ,

processId=c . processId)]

30]] >

</ eventComposit ionStatement >

32 </ compositeEvent >

</ c a p a b i l i t y >

3.3 | Monitoring Metamodel 85

Example. An exemplary definition of a composite event is shown in Listing 3.3

(namespaces left out for readability reasons). First, the four consumedEvent

elements are defined by referencing the corresponding manageable resource

endpoints and corresponding topics. Note that these definitions result in four

event streams, whereby each event is part of one particular process instance.

When defining the composite event, one has to correlate the corresponding

events from the different event streams.

Then, one defines an eventCompositionStatement which calculates the

order fulfillment time as the time difference of the corresponding event times-

tamps and stores the value in the event property orderFulfillmentTime.

In addition, the event contains the resource identification properties of the

corresponding choreography interaction, i.e., the topology QName and the

poId. Those three event properties are mapped to XML elements in the re-

sulting XML event. The composite event is defined by correlating four events.

The first two events are correlated based on the processId of the reseller

process instance. The second and third event are correlated based on the poId,

and finally the third and fourth event are correlated based on the processId

of the customer process instance. Thus, the first and fourth event are also

correlated and can now be used for calculating the property value by subtract-

ing their timestamps. The resulting event is published to the corresponding

targetTopic. One should note that writing such event composition state-

ments is rather cumbersome and requires knowledge of the concrete event

processing language (ESPER EPL in our case). Also referencing the BPEL el-

ements via XPath (e.g., setting the correct activityXPath) is error-prone

when done by hand. In practice, a GUI-based tool could be developed which

supports the user in creating such statements.

Listing 3.4 shows how a corresponding custom property is defined. It is

defined as part of a CustomPropertyCapability. The consumedEvent

definition references the previously defined composite event. The attribute

eventProperty specifies in an XPath expression how the property value is to

be extracted from the event.

86 3 | Process Monitoring in Service Choreographies

Listing 3.4: Custom Property Example

1 < c a p a b i l i t y u r i =" h t t p : / / . . . / CustomProper tyCapabi l i ty ">

<proper ty name="poChoreo : o rde rFu l f i l lmen tT ime " >

3 <consumedEvent

manageableResourceDefini t ion ="mM: Cus tomerRese l le r In te rac t ion "

5 t o p i c ="poChoreo : OrderFu l f i l lmen tT ime " / >

<eventProperty >/ o rde rFu l f i l lmen tT ime </ eventProperty >

7 </ proper ty >

</ c a p a b i l i t y >

Custom Resource Types. Custom properties can be defined for any resource

type. For example, activity instance duration is defined for the resource type

Activity Instance, while process instance duration is defined for the resource

type Process Instance. In addition to the resource types derived from the

choreography model, one can define properties which cannot be assigned to

any of those resource types. For example, this is the case when they are related

to a group of several process instances; the average process instance duration

cannot be assigned to a particular process instance.

Therefore, a new resource type Custom can be used to construct arbitrary

resource types implicitly by (i) defining how the resources are created, and (ii)

specifying the resource identifying properties. Therefore, in the definition of a

manageable resource endpoint the element customResourceDefinition is

provided. It consists of two elements. The element resourceCreationEvent

specifies the event stream which triggers the resource creation. It is defined by

referencing an existing manageable resource definition and a topic. The second

element resourceIdentificationProperties specifies the identification

properties for the resources of the resource type. These properties have to be

part of the resource creation event.

Example. Listing 3.5 shows the definition of manageable resource defini-

tion with a resource type ChoreographyInteraction. A Choreography

Interaction is a custom resource type, as for a choreography interaction

the resource identification properties are domain-specific. In this case, the

OrderFulfillmentTime event is defined to be the resource creation event

3.3 | Monitoring Metamodel 87

(cf. Listing 3.3). Furthermore, two resource identification properties are de-

fined, topology specifying the corresponding BPEL4Chor topology, and poId

specifying the instance of the choreography interaction.

Listing 3.5: Custom Resource Type Example

<manageableResourceDef ini t ion name=" Cus tomerRese l le r In te rac t ion "

resourceType =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c /

resourceTypes / ChoreographyIn terac t ion ">

2 <customResourceDef in i t ion >

<resourceCreat ionEvent

4 manageableResourceDefini t ion ="mM: Cus tomerRese l le r In te rac t ion "

t o p i c ="poChoreo : OrderFu l f i l lmen tT ime " / >

6 < r e s o u r c e I d e n t i f i c a t i o n P r o p e r t i e s >

<proper ty name="m4c : topo logy " eventProper ty = " / topo logy " / >

8 <proper ty name=" r e s e l l e r : poId " eventProper ty = " / poId " / >

</ r e s o u r c e I d e n t i f i c a t i o n P r o p e r t i e s >

10 </ customResourceDef in i t ion >

. . .

12 </ manageableResourceDefini t ion >

At runtime, on receipt of such an event, the resource is created and can be

accessed using its manageability interface, e.g., by accessing the value of the

OrderFulfillmentTime property over corresponding WSRF operations.

3.4 Summary and Conclusions

This chapter has presented an approach to monitoring of business processes

based on service choreography models. The approach is based on a monitoring

metamodel which enables specifying a set of manageable resource definitions

for runtime monitoring of choreographies. Therefore, a set of resource types and

a set of corresponding capabilities have been defined which expose functionality

for accessing resource properties. In particular, it has been shown how custom

properties can be calculated across processes in a choreography based on event

processing. The approach is concretely based on WSDM and uses the BPEL

event model 2.0 and BPEL4Chor models as basis.

88 3 | Process Monitoring in Service Choreographies

The presented monitoring approach serves as a basis for the following analysis

phase presented in the next chapter, which uses the monitored custom properties

for assessing the process performance in terms of KPIs and analyzing the

influential factors of KPIs.

3.4 | Summary and Conclusions 89

C
H

A
P

T
E

R 4
ANALYZING THE INFLUENTIAL

FACTORS OF BUSINESS

PROCESS PERFORMANCE

The monitoring framework presented in the previous chapter enables mon-

itoring of process properties in service choreographies. For evaluating the

process performance, the next step is to define KPIs based on those properties

which enable evaluating the process performance towards business goals. If

monitoring shows unsatisfactory KPI values, then the goal is to understand

the dependencies of these KPIs on a set of influential factors. That knowledge

can then be used to adapt the process in order to improve the performance in

future.

This chapter presents an analysis framework which enables analyzing the

process performance in terms of KPIs and influential factors. More concretely,

classification learning based on decision trees is used to analyze the influential

factors of KPIs of monitored process instances. The analysis result is a KPI

dependency tree, which explains how a KPI depends on a set of influential

91

factors.

The KPI dependency tree can also be used for predicting KPI values for future

instances. Thus, the analysis framework is not only used for analyzing and

explaining the KPI performance of historical instances but can also be used as

basis for prediction and adaptation as presented in the following chapter.

The chapter is structured as follows. Section 4.1 explains the motivation of

the approach in more detail. Section 4.2 gives an overview of the approach by

explaining the analysis process and giving needed background on classification

learning. Section 4.3 shows how KPIs and potential influential factors are

modeled. Section 4.4 then explains, how based on the analysis model decision

tree learning can be used to analyze the influential factors of KPIs. Finally,

Section 4.5 summarizes the contributions.

4.1 Motivation and Objectives

The previous chapter has described an approach which enables monitoring

of properties of business processes in service choreographies. As a next step,

the goal is to use monitoring as a basis for evaluating the performance of

business processes. When measuring the performance of business processes,

one first defines business goals and based on those goals specifies a set of KPIs

which measure whether those goals are reached in a certain time period. A

KPI is based on an arbitrary monitored property (the KPI property) and in

addition specifies a categorization function which enables the interpretation of

the property values in correspondence to the business goals. The categorization

function maps value ranges of the KPI property to a set of categories (a.k.a.

KPI classes). For instance in the purchase order processing scenario typical KPI

properties are order fulfillment time (process duration from order receipt until

shipment arrives at the customer) and order delivery in full and in time [Sup05].
For such a KPI property definition, one could define a categorization function

as follows: order fulfillment time < 3 days is “good”, < 5 days is “medium”,

and otherwise “bad”. One should note that when referring to “performance” in

the context of KPIs, one does not only refer to properties which reflect the time

dimension (e.g., process duration), but also other dimensions such as quality,

92 4 | Analyzing the Influential Factors of Business Process Performance

cost, customer satisfaction, and flexibility can be used. While order fulfillment

time is used in most of the examples in this thesis, the approach does not make

any assumptions on the semantics of the underlying property and thus supports

KPI definition based on arbitrary properties.

After defining the KPIs, they have to be measured based on executed process

instances. If after a while the monitoring shows an unsatisfying result in terms

of reached KPI categories, then the goal is to find out why the performance

goals have not been reached. In our scenario, understanding the reasons why

certain orders are delivered on time and others are not, is often not trivial,

as the KPI depends on the combination of several influential factors such as

ordered product types and amounts (input data of the process), duration and

availability of the internal services, duration and reliability of external services,

and many more. For example, standard shipment duration could take from

one to five days or in untypical cases even longer, supplier delivery time might

depend on certain product types and amounts and their availability in stock.

These deviations in service behavior lead to different outcomes of process

instances considering KPI categories.

If there are many thousand process instances, it becomes difficult to under-

stand which of the potential influential factors lead to different KPI values for

different process instances. Data warehousing and OLAP (cf. Section 2.3) could

then be used to analyze the potential problems and answer business questions.

The typical approach would be to create a data mart by defining the KPI as a

fact and select a set of dimensions which reflect the potential influential factors.

The user could then manually pose analysis questions as queries in order to find

out the influential factors. However, in that case a user has to manually perform

the analysis and search for patterns in the data, i.e., suspect the influential

factors and then perform queries, which can be very time-consuming.

In order to increase the automation in the analysis of influential factors,

data mining techniques can be used. The analysis problem is mapped to a

classification problem and machine learning, in particular decision trees, are

used to learn and explain the factors which lead to different KPI categories.

The so created decision trees are called KPI dependency trees. KPI dependency

trees (i) visualize and explain the influential factors and (ii) can be used for

4.1 | Motivation and Objectives 93

prediction of future KPI values.

4.2 Solution Overview and Method

This section first gives background information on classification learning, which

is the basis of the approach and sketches the approach by describing how

classification learning maps to the KPI analysis problem and then describes the

method.

4.2.1 Classification Learning and KPI Dependency Analysis

In classification learning, the input is a dataset consisting of a set of instances
(a.k.a., observations, examples). Each instance is described in terms of a set

of explanatory attributes and one categorical target attribute. An explanatory

attribute may be categorical or numerical. Unlike in regression, the target

attribute is always categorical and takes a finite number of values (a.k.a.,

classes).

In our context, the KPI property is the categorical target attribute. The

possible attribute values consist of a set of KPI classes (e.g., green, yellow,

red). The explanatory attributes consist of a set of lower-level (monitored)

process properties which potentially influence the KPI class. The properties

are therefore representing potential influential factors. The analyzed dataset

consists of a set of monitored process instances. For each instance of the dataset

the KPI class and the values of the explanatory attributes can be determined

from monitored data.

Based on such a dataset as input, the goal of classification learning is to

create a classification model which identifies recurring relationships among the

explanatory variables which describe the instances belonging to the same class.

In our case, the classification model thus explains how the KPI classes depend

on the lower-level process properties.

Classification Learning Phases. In classification learning, a subset of the

instances in the dataset, the training set, is used for training a classification

model, i.e., for deriving the functional relationship between the target variable

94 4 | Analyzing the Influential Factors of Business Process Performance

and the explanatory variables. The remaining instances of the available dataset,

the test set, are used later to evaluate the accuracy of the created classification

model.

Figure 4.1: Classification Learning Phases

The development of a classification model consists therefore of two main

phases, as shown in Figure 4.1:

Training phase During the training phase, the classification algorithm is ap-

plied to the instances belonging to the training set, which is a subset

of the overall dataset. The classification model is created based on the

training set.

Test phase In the test phase, the classification model generated during the

training phase is used to classify the instances of the test set, for which

the target class value is already known. To assess the accuracy of the

classification model, the explanatory attribute values of each instance

in the test set are used as input to the classification model and the

predicted class (the output of of the model) is then compared with the

known class of the test set instance. The accuracy metric is then given

4.2 | Solution Overview and Method 95

by the percentage of correctly classified instances from the test set. It

allows assessing the quality of the model considering its application

for interpretation and prediction. In our approach, a set of monitored

instances is provided as input to an existing decision tree algorithm,

which then splits these instances into training data and test data and

performs the training phase and test phase automatically.

Interpretation and Prediction. The so created classification model can then

be used for interpretation and prediction. Interpretation means that the classifi-

cation model should provide experts in the analyzed application domain with

some new non-trivial knowledge about the analyzed data, which the expert

would not have obtained by simply looking at the dataset. Classification mod-

els which are particularly well-suited for interpretation typically express and

visualize the identified regular patterns in the data in a way that they can be

easily understood by experts in the application domain. In our case, the goal

of the classification model is to explain to the expert how a KPI depends on a

set of lower-level process properties. In that way, the expert can try to adapt

the process in order to improve the performance.

While interpretation explains the classes of past instances, the purpose of

prediction is to anticipate the class of instances in the future. Typically, thereby

the classification model is given the values of explanatory variables as input and

then provides the predicted class of the instance as output. In our approach,

prediction will be used in the next chapter for predicting the KPI class of a

running process instance.

Decision Trees. There are different types of classification models and cor-

responding algorithms available. Some of the better known techniques are

decision trees, classification rules, and support vector machines [WF05]. These

models have different characteristics when it comes to suitability for inter-

pretation or prediction, support for handling numerical or categorical data,

prediction precision, and performance. For the KPI analysis problem, in the

approach of this thesis decision trees have been chosen as the classification

model.

96 4 | Analyzing the Influential Factors of Business Process Performance

Decision trees have several advantages when used for our purposes. They

are easy to depict graphically and are simple to understand and interpret. Non-

experts are able to understand decision tree models after a brief explanation.

They are thus suitable for both interpretation and prediction, in contrast, for

example, to black box models such as artificial neural networks, which are used

for prediction only.

Decision trees are able to handle both numerical and categorical data, which

is needed for representing different types of influential factors. Other techniques

are usually specialized in analyzing datasets that have only one type of variable.

For example, relation rules can be used only with nominal variables while

neural networks can be used only with numerical variables.

Another big advantage of decision tree algorithms, especially so in our context,

is their non-parametric nature. They need only a very limited set of parameters

(in the simplest case none) as input, and can therefore be expected to provide

useful results from the first run, without the need for extensive experiments

with different parameter sets. This is why the approach is suitable for business

analysts, who are generally no experts in data mining. Of course, expert users

can still customize the algorithms if they want to, which may lead to better

results in some cases. The usage of different parameters is discussed in the

evaluation section (cf. Section 6.2). Apart from parameters, decision tree

learning also requires little data preparation. Other techniques often require

data normalization, the creation of dummy variables, and the removal of blank

values.

Decision trees are a standard technique for supervised learning (i.e., concepts

are learned based on historical data where the classification of the instances

is known). Decision tree learning uses a “divide and conquer” approach to

learning of concepts. Thereby, a tree of decision nodes is iteratively constructed,

each decision node consisting of a test on an explanatory attribute, such as

whether a given numerical attribute is smaller or greater than a given threshold.

Leaf nodes in the tree represent a classification to a category, i.e., contain a

value of the target attribute.

Figure 4.2 shows a decision tree example. It contains five decision nodes

specifying tests on four explanatory attributes (A1-A4). The leaf nodes contain

4.2 | Solution Overview and Method 97

Figure 4.2: Decision Tree Example

the target attribute classes (C1-C4). The decision tree shows, for example, that

if A1 < 2 and A2 = yes, then the target attribute class is C1. That rule has been

deduced automatically by the decision tree algorithm based on historical data

which was used for creating the training set. Each path from the root to the

leaf of the tree can be seen as a rule which shows how a target attribute class

depends on the combination of explanatory attributes with certain value ranges.

In addition to the interpretation aspect, the tree can be used for predicting the

outcome of future instances. This is done by starting at the root of the tree

and following the path according to the values of explanatory attributes of the

future instance. The path ends at a leaf, which is the predicted target attribute

class.

There exist many well-researched algorithms to construct decision trees from

data, such as the C4.5 [Joh93] or the alternate decision tree, ADTree [FM99].
Two different existing algorithms have been used to evaluate the approach.

The experiment results are discussed in Section 6.2.

98 4 | Analyzing the Influential Factors of Business Process Performance

4.2.2 Overview of the KPI Dependency Analysis Process

In the following, an overview of the KPI dependency analysis process is given.

It uses the development process for monitoring as basis (cf. Section 3.2.1) and

extends it by adding the steps needed for analysis. The steps of the process are

depicted in Figure 4.3.

Figure 4.3: Overview of the Analysis Process

Creation of a Monitor Model. The first step of the process is to create a

monitor model. The prerequisite to this step is the creation of the corresponding

choreography model (or orchestration model) for which the performance is to

be analyzed (cf. Section 3.2.1). The monitor model defines all properties which

should be monitored and which are needed for later analysis purposes. Those

properties include (i) the KPI properties and (ii) all the potential influential

factors. Potential influential factors are those monitored properties which

are suspected to influence the KPI values. Typically, one would start with the

creation of KPI property definitions and in a second step model the potential

influential factor properties. As the definition of a potentially big number of

influential factor properties can be rather tedious and time-consuming, a set

4.2 | Solution Overview and Method 99

of templates for the most typical ones have been predefined, which make the

definition easier, as discussed in Section 4.3.4.

Deployment and Monitoring. The monitor model is deployed as described in

Section 3.2.1. At process runtime, the processes are continuously monitored

evaluating KPI properties and influential factor properties as defined in the

monitor model. The monitored properties (as part of corresponding monitored

resources) are stored in a monitor database and are from now on available for

KPI dependency analysis.

Creation of a KPI Analysis Model. The basis for KPI dependency analysis

is the creation of a KPI analysis model. The analysis model is only used as

input to the analysis phase and thus does not have to be created necessarily

before monitoring starts. The analysis model contains the following types of

information:

• Key Performance Indicators: A KPI is defined by selecting a resource

property from the monitor model (the KPI property) and defining a

categorization function which maps KPI property values to a set of KPI

classes based on business goals. The analysis model can define several

KPIs.

• Influential factors: A set of potential influential factors is defined by

referencing a subset of the available resource properties in the monitor

model.

• Analysis tasks: An analysis task is defined by selecting one concrete KPI

and a subset of influential factors (default value: all available influential

factors) which should be used as explanatory attributes for this particular

KPI. In addition, the dataset is specified by defining how many instances

should be analyzed (e.g., last 1000 instances). Optionally, the user can

select the algorithm used for analysis and adjust the algorithm parameters.

If not selected by the user, default values are used.

KPI Dependency Analysis. The KPI dependency analysis can be triggered

manually by the user (on demand) or automatically by the system (e.g., after

100 4 | Analyzing the Influential Factors of Business Process Performance

a certain number of instances has been executed). The prerequisite of the

KPI dependency analysis is that the instances have been monitored and are

available in the monitor database. The dependency analysis is performed for

each analysis task specified in the analysis model and consists of the following

steps, which are performed automatically:

• Data preparation: The goal of this step is to prepare the dataset used as

input to decision tree learning. The input to this step is (i) an analysis

task as defined in the analysis model and (ii) the values of monitored

properties stored in the monitor database. The first step of the data

preparation is determining the historical instances which should be used.

This selection has been specified as part of the analysis task. For each

instance the corresponding monitored property values of the KPI property

and the influential factors are then retrieved from the Monitor DB. The

KPI class is evaluated and assigned to each instance.

• Learning of the KPI dependency tree: The created dataset is provided as

input to decision tree learning. A decision tree is learned using a standard

decision tree algorithm like C4.5 or ADTree.

• Displaying and storing the KPI dependency tree: As a result of the de-

pendency analysis, the tree is displayed to the user (if the learning was

triggered by the user) or stored for later use.

At the end of the KPI dependency tree learning phase, the user evaluates the

result. In some cases, the generated tree might not be satisfactory to the user.

The typical cases are discussed in the evaluation section (cf. Section 6.2). In

that case, the user can adjust analysis task settings and repeat the analysis.

4.3 Modeling for KPI Dependency Analysis

This section defines the metamodel which is used for the creation of KPI de-

pendency analysis models (analysis models, for short). An analysis model

references elements from one or more monitor models as specified in Sec-

tion 3.3.

4.3 | Modeling for KPI Dependency Analysis 101

An analysis model defines KPIs, influential factors and analysis tasks. An

analysis task groups a KPI and a set of potential influential factors. Each analysis

task later results in one KPI dependency tree after decision tree learning.

4.3.1 Overview

The main elements of the KPI dependency analysis metamodel are shown in

Figure 4.4. The analysis model defines a non-empty set of KPIs, a non-empty

set of influential factors, and a non-empty set of analysis tasks. A KPI defines

the KPI property by selecting a resource property of a manageable resource

definition specified in a monitor model (cf. Section 3.3). A KPI definition

specifies a set of KPI classes which are the possible categorical values of the KPI.

The categorization function is specified in terms of predicates which specify how

the KPI classes are calculated based on the underlying KPI property values. An

influential factor is specified in the same way as the KPI property by selecting a

resource property from a monitor model. An analysis task combines a KPI and

a list of influential factors. It further specifies the number of instances which

should be used as basis for analysis and optionally the algorithm settings.

XML Serialization of the KPI Analysis Metamodel. An analysis metamodel

is serialized as follows:

Listing 4.1: KPI Analysis Metamodel Pseudo XML Schema

<kpiAnalys isModel targetNamespace ="URI " name="NCName"

2 xmlns =" h t t p : / / www. iaas . uni−s t u t t g a r t . de /m4c / schemas / analys isModel ">

<kp i name="NCName">

4 <prope r t ySe lec to r manageableResourceDef ini t ion ="QName"

proper ty ="QName"/ >

6 <kpiClass name=" S t r i n g ">

<pred ica te type ="LOWER|GREATER| . . . " > St r ing </ pred ica te > +

8 </ kpiClass > +

</ kpi > +

10 < i n f l u e n t i a l F a c t o r name="NCName">

<prope r t ySe lec to r manageableResourceDef ini t ion ="QName"

12 proper ty ="QName"/ >

102 4 | Analyzing the Influential Factors of Business Process Performance

Figure 4.4: KPI Dependency Analysis Metamodel

</ i n f l u e n t i a l F a c t o r > +

14 <analys isTask name="NCName" instanceNumber =" In tege r "

t r i g g e r =" S t r i n g " a l go r i t hmSe t t i ngs =" S t r i n g ">

16 <kp i name=" S t r i n g " / >

< i n f l u e n t i a l F a c t o r name=" S t r i n g " / > +

18 </ analysisTask > +

</ kpiAnalys isModel >

4.3.2 Key Performance Indicators

Key Performance Indicators (KPIs) are used to assess the process performance

in respect to business goals. A KPI is defined based on a resource property (KPI

property) and maps value ranges of that property to a set of categorical values

(KPI classes). KPI classes thus allow evaluating how good the KPI property

value conforms to business goals.

4.3 | Modeling for KPI Dependency Analysis 103

The KPI property is defined based on a resource property of a specific man-

ageable resource definition in the monitor model. The resource type of the

manageable resource endpoint is typically a process instance but in general

any resource type could be used as basis (e.g., a variable instance, an activity

instance, or a custom resource type).

The KPI value is defined in terms of KPI classes, which are categorical values.

Thereby, at least two KPI classes have to be defined, e.g., “KPI target fulfilled”

and “KPI target violated”. There can, however, be also more than two classes,

such as the traffic light function (green, yellow, red). The categorization

function defines how the values of the underlying KPI property map to KPI

classes. The function is specified implicitly via predicates over KPI property

values. Each KPI class is assigned a predicate which compares the KPI property

value with another value or a set of values using a set of operators. The

following set of operators have been predefined: EQUAL, NOT_EQUAL, LOWER,

GREATER, LOWER_EQUAL, GREATER_EQUAL, IN, BETWEEN. The KPI value

is the KPI class whose predicate evaluates to true for the KPI property value.

Listing 4.2: KPI Example

1 <kp i name=" OrderFu l f i l lmen tT ime ">

<prope r t ySe lec to r

3 manageableResourceDefini t ion ="mM: Cus tomerRese l le r In te rac t ion "

p roper ty ="poChoreo : o rde rFu l f i l lmen tT ime " / >

5 <kpiClass name=" green ">

<pred ica te type ="LOWER" >4 </ pred ica te >

7 </ kpiClass >

<kpiClass name=" ye l low ">

9 <pred ica te type ="BETWEEN" >4;7 </ pred ica te >

</ kpiClass >

11 <kpiClass name=" red ">

<pred ica te type ="GREATER" >7 </ pred ica te >

13 </ kpiClass >

</ kpi >

Example. In the following example, the KPI OrderFulfillmentTime is de-

104 4 | Analyzing the Influential Factors of Business Process Performance

fined for the KPI property orderFulfillmentTime, which has been defined

for the manageable resource definition CustomerResellerInteraction in

the monitor model. The KPI classes green, yellow, and red are defined. The

categorization function maps the values of the underlying KPI property to the

KPI classes: < 4 days→ green, >= 4 days and <= 7 days→ yellow, otherwise

red. The function is specified via predicates assigned to each KPI class. At

analysis time, for each monitored resource (as specified in the analysis task),

the KPI property value is retrieved, the predicates are evaluated and the one

which returns true provides the KPI class.

4.3.3 Influential Factors

In addition to the KPI, which is the target attribute in classification learning,

the potential influential factors, which represent the explanatory attributes

have to be defined. The goal is, in general, to define a big set of properties, and

then let the decision tree algorithm find out which of those are the influential

ones. An expert user later still has the possibility to restrict the set as part of

the analysis task definition.

An influential factor is defined based on a resource property of a specific

manageable resource definition in the monitor model. The constraint is thereby

that is has to be a manageable resource endpoint definition of one of the KPIs

defined in the analysis model. This is because at analysis time, both the KPI

class and the values of the corresponding influential factors are assigned to the

resources (instances) of the corresponding manageable resource definition.

The definition of potential influential factors can be done semi-automatically,

i.e., a subset can be generated automatically based on the process model as

described in the following section 4.3.4. The other subset consists typically

of domain-specific properties and has to be defined manually. As a result, the

influential factor list in the analysis model contains all potential influential

factors.

Example. The following example shows an influential factor definition based

on the property supplierDeliveryTime.

4.3 | Modeling for KPI Dependency Analysis 105

Listing 4.3: Influential Factor Example

< i n f l u e n t i a l F a c t o r name=" Supp l ie rDe l iveryT ime ">

2 <prope r t ySe lec to r

manageableResourceDefini t ion ="mM: Cus tomerRese l le r In te rac t ion "

4 proper ty ="poChoreo : supp l ie rDe l i ve ryT ime " / >

</ i n f l u e n t i a l F a c t o r >

4.3.4 Generating Influential Factor Properties

The core of the KPI dependency analysis approach is the availability of a

meaningful and complete set of potential influential factors. Thereby, in the

first step it is important to have a rather big set of properties and let the

decision tree algorithm find out the relevant ones. In further analysis steps,

a user can still restrict the set and perform analysis tasks on specific analysis

factors. The evaluation section describes in which cases that might make sense

(cf. Section 6.2).

The manual definition of influential factor properties is rather cumbersome

and time-consuming. In our case, each such property is typically a custom

property which has to be defined based on an event processing statement

(cf. Section 3.3.5). Many of those properties can be defined in an automated

manner based on the process model definition. Some domain-specific properties

can then still be added by the user manually.

The automated approach analyzes the process models, in our case BPEL

process models, and defines meaningful resource properties for the different

elements of the process. The following rules to generate properties for a KPI

defined for the process instance resource type are supported:

• For the process instances of the given BPEL process model, one generates

(i) a property representing the end state of the process instance (exited,

completed, or faulted) and (ii) a property representing the execution

time of the process instance.

• For every BPEL invoke activity which is not part of a loop activity (i.e.,

which is executed 0 or 1 times in every process instance), one generates a

106 4 | Analyzing the Influential Factors of Business Process Performance

property representing the execution time of the activity instance (i.e., the

time between the first and last state change event related to that activity

instance).

• For every BPEL invoke activity which is part of one or more (nested)

loop activities (i.e., which is potentially executed several times in a

process instance), one generates a property representing the average

execution time of the activity in the process instance. Additionally, one

generates properties representing the number of times the activity has

been executed in this process instance, and the minimum and maximum

execution time of the activity instances in the process instance.

• For every loop activity (sequential forEach activity, the repeatUntil

activity, or the while activity), one generates a property representing

the number of iterations in the particular process instance.

• For every branching activity, one generates a property representing the

branch that has been executed.

• For every link, one generates a property stating whether the link was

activated or not.

• For every asynchronous interaction, one generates a property representing

the callback time of every asynchronous activity in the BPEL process, i.e.,

the execution time between an invoke activity and the corresponding

receive activity.

Properties for short-running activities such as assign activities are not

generated, as the focus is on longer running processes and their duration can

mostly be neglected in comparison to service invocations.

Which of these rules should be used, can be configured. For each of the

property types a template has been created which contains the EPL statement

with placeholders (e.g., ${activityXPath}) which are then replaced with

concrete values during generation. The properties are generated as part of the

monitor model, and are thus monitored. It should be noted that the generated

4.3 | Modeling for KPI Dependency Analysis 107

properties provide only a partial list of meaningful properties. The user (a

domain expert) still has to define additional domain-specific properties. These

are in particular related to variable values. The properties are specified by

selecting specific parts of those variables (e.g., number of ordered items, types

of ordered products in case of a purchase order variable).

4.3.5 Analysis Tasks

Analysis tasks define the KPI dependency analysis problems to solve. An analysis

task specifies a classification problem by using a KPI as the target attribute, a

set of potential influential factors as explanatory attributes, and defining the

instances (the dataset) for which the KPI should be evaluated. Each analysis

task results later in a KPI dependency tree.

The prerequisite for the definition of an analysis task is that a set of KPIs

and influential factors have been defined as described in the previous sections.

When defining an analysis task, the user first chooses the KPI to analyze. In

the second step, he then selects a set of potential influential factors he wants

to use as explanatory attributes. The restriction thereby is that the selected

influential factors must be based on the same manageable resource definition

as the selected KPI. In the default case, all influential factors which have been

defined in the analysis model will be chosen. If the user wants to analyze

the dependencies on specific properties, he will choose a specific subset of

the influential factors. For example, the user might want to analyze the KPI

dependency on input data to the process. In that case, he will restrict the

subset to properties representing attributes of the input variable. In another

case, he might be interested in analyzing only the dependencies on external

service invocations. For the same KPI, several analysis tasks with different sets

of influential factors can be specified, depending on the analysis goal.

After defining the KPI and the influential factors, one has to specify which

instances (resources) should be used for analysis. In our approach, one simply

specifies the number of instances whereby the instances are selected according

to their completion date (youngest instances first). In addition, one can specify

a trigger when the analysis process should be started. This is needed if learning

108 4 | Analyzing the Influential Factors of Business Process Performance

is to be done automatically in the background as in our adaptation approach,

presented in the next chapter. The trigger is specified as a cron expression as

supported by the Quartz Scheduler [Ter]. Finally, one can adjust the decision

tree algorithm and its parameters which is needed only in those cases, when

the default settings do not lead to satisfactory results (see discussion in Section

6.2.1).

Example. In the following example, an analysis task for the previously defined

KPI OrderFulfillmentTime is defined. It uses (only) four potential influ-

ential factors and defines that the last 10000 instances should be analyzed.

The learning is triggered on every Sunday at 1:00 am (one uses a cron trigger

expression used by the Quartz Scheduler: seconds, minutes, hours, day of

month, month, day of week). The J48 decision tree algorithm [HFH+09] is to

be used.

Listing 4.4: Analysis Task Example

1 <analys isTask name=" OrderFu l f i l lmen tT ime " instanceNumber ="10000"

t r i g g e r ="0 0 1 ? * SUN" a lgo r i t hmSe t t i ngs ="−J48">

3 <kp i name=" OrderFu l f i l lmen tT ime " / >

< i n f l u e n t i a l F a c t o r name=" Supp l ie rDe l iveryT ime " / >

5 < i n f l u e n t i a l F a c t o r name=" ShipmentDel iveryTime " / >

< i n f l u e n t i a l F a c t o r name=" OrderInStock " / >

7 < i n f l u e n t i a l F a c t o r name=" I temQuant i ty " / >

</ analysisTask >

4.4 KPI Dependency Analysis

This section describes how the KPI dependency trees are created based on the

analysis model definitions and how they are to be interpreted.

4.4.1 Learning of KPI Dependency Trees

KPI dependency analysis is performed for each analysis task defined in the

analysis model. It can be triggered automatically (as specified in the analysis

4.4 | KPI Dependency Analysis 109

task via the trigger definition) or by the user on demand. The next steps are

then performed automatically. A dataset is constructed based on the settings

in the analysis model and the monitoring results and fed into a decision tree

algorithm. Existing well-known decision tree algorithms are used. As a result,

a KPI dependency tree is created, which can be used for interpretation and

prediction.

For each analysis task the dataset is created as follows. First, the set of in-

stances to be analyzed are determined. Therefore, for the specified manageable

resource definition a set of resources (instances) is obtained from the monitor

database. Then for each instance, the values of configured influential factor

properties and the KPI property are also obtained from the monitor database.

The KPI class is determined by evaluating the specified predicate using the

categorization function and the KPI class is assigned to the instance. As a result,

one obtains the data set as a table consisting of a set of instances as rows and

influential factor properties and KPI class as columns (as shown in Figure 4.6).

This dataset is used as input to the algorithm.

In our approach, the popular J48 algorithm has been used to generate KPI

dependency trees [HFH+09]. The metamodel of the generated tree is shown in

Figure 4.5: KPI Dependency Tree Metamodel

110 4 | Analyzing the Influential Factors of Business Process Performance

Figure 4.5. A KPI dependency tree consists of a (possibly empty) set of non-leaf

decision nodes representing influential factors and a non-empty set of leaf nodes
representing KPI classes. Thereby, a particular influential factor or KPI class can

be present in the tree zero to several times. An outgoing branch of a tree node

defines a condition on the influential factor property of that node. The property

values on outgoing branches of a node are disjoint. The tree has exactly one

root node (with no incoming branches). Each leaf node contains as information

the KPI class and in addition the number of instances which satisfy the path of

this leaf to the root. Thus, by following the path from the root to a leaf node,

one learns which property values lead to a particular KPI class, and for how

many instances that was the case.

Example. The KPI dependency analysis steps are depicted in Figure 4.6. In the

KPI analysis model an analysis task has been defined for the KPI order fulfillment

time with three KPI classes. Furthermore, a set of potential influential factors

has been defined. Those properties have been monitored for a set of instances

and stored in the Monitor DB. Based on these two inputs a dataset is created,

shown in the Figure 4.6 as a table. Each row of the table contains the property

values (representing potential influential factors) of one particular instance,

whereby the first column specifies the KPI class, i.e., the result of the application

of the categorization function on the KPI property value of that instance.

Based on this dataset, a decision tree is automatically learned. It shows on

which combinations of influential factors and their value ranges the KPI classes

are reached. For example, one can see that if the ordered products were not

in stock and supplier delivery time was higher than 7,5 days for an instance,

that instance has lead to a red KPI class. That was the case for 55 instances in

the dataset. If, however, the supplier delivery time was lower or equal 3 days

and the shipment delivery time was below 2,2 days then a green KPI class was

reached. The tree shows thus how the KPI class depends on the values of the

influential factors. This information can be used by an analyst to think about

possible adaptations of the process.

4.4 | KPI Dependency Analysis 111

Figure 4.6: KPI Dependency Tree Learning Example

112 4 | Analyzing the Influential Factors of Business Process Performance

4.5 Summary and Conclusions

This chapter has presented an approach to the analysis of process performance

in terms of KPIs and their influential factors. A KPI analysis metamodel has been

defined which enables the definition of KPIs and a set of potential influential

factors based on properties of manageable resources provided by the monitoring

framework. Based on the KPI analysis model, established decision tree learning

algorithms are used to automatically generate a KPI dependency tree, which

explains how the influential factors affect the KPI values. The prototypical

implementation and an experimental evaluation of the approach are described

in Chapter 6.

The generated KPI dependency trees are not only useful for explaining the

KPI dependencies to the user, but can also serve as prediction models for

future process executions. In the next chapter, KPI dependency trees are used

for predicting the KPI classes of running process instances. The result of the

prediction is then used as basis for runtime adaptation of process instances.

4.5 | Summary and Conclusions 113

C
H

A
P

T
E

R 5
RUNTIME ADAPTATION BASED

ON KPI DEPENDENCY ANALYSIS

The previous chapter has described an approach for the analysis of KPIs of

business processes based on KPI dependency trees. The focus was thereby on

providing the user an explanation of KPI values based on monitored historical

process instances. After understanding the influential factors of KPIs, the next

step is to adapt the process accordingly in order to improve the performance in

future.

In this chapter, the monitoring and analysis framework presented in the

last two chapters is extended by enabling the proactive adaptation of process

instances with the goal to improve the KPI performance. Therefore, running

process instances are halted at predefined checkpoints where based on KPI

dependency trees the KPI classes are predicted. Based on the prediction result,

the adaptation requirements are identified and a set of adaptation strategies

is derived and ranked. Finally, the process instance is proactively adapted by

enacting the selected adaptation strategy with the goal to improve the process

performance. The adaptation framework does not explicitly deal with the

115

adaptation of choreographies, but supports choreography adaptation through

the adaptation of the underlying process instances running in a choreography.

The adapted process instances, however, do not have to necessarily run as part

of choreographies.

The chapter is organized as follows. Section 5.1 explains the motivation of

the approach. Section 5.2 gives an overview of the approach by explaining

the overall process. Section 5.3 explains the models created in the modeling

phase. Section 5.4 explains how KPI dependency trees can be used to predict

KPI values at process runtime and describes how based on prediction results

adaptation strategies can be derived in order to adapt the running process

instance. Finally, Section 5.5 summarizes the contributions of this chapter.

5.1 Motivation and Objectives

The KPI dependency analysis generates decision trees which explain how KPI

classes depend on a set of influential factors. The tree paths which lead to

unsatisfactory KPI classes are in particular interesting as they show which

influential factors and combinations of those might need to be improved. There

are several aspects to consider when thinking about improving the process

based on this particular type of analysis.

Depending on the concrete process, some of the influential factors might be

improved easily, while others might be more difficult or impossible to improve

or change. For example, consider the influential factors shipment delivery time

and supplier delivery time used in the scenario. For an organization, it might be

perfectly possible to define or redefine the SLAs with the shipper and the supplier

or use alternative services from the providers or choose completely different

service providers. On the other hand, changing influential factors representing

ordered product types or contextual conditions such as dependencies on weather

might be more difficult or impossible to accomplish. So, there are influential

factors which can be improved in our context and others which are well-suited

for explaining the KPI value, but which are not improvable.

When improving the influential factors, one can either change and redeploy

the process model or adapt only particular instances. The latter choice is in

116 5 | Runtime Adaptation Based on KPI Dependency Analysis

particular interesting in our case, as the KPI dependency tree can be used

to predict the KPI class of an instance and thus enable proactive adaptation.

As already discussed in Section 4.2, decision trees can be used as prediction

models. Thereby, explanatory attribute values are given as input and the tree

provides the target value as output. The idea is thus to halt process instance

execution at certain points, provide the monitored values collected until that

point as influential factors to the tree, and obtain the predicted KPI class as

output. In that case, one has more information on whether and how to adapt

the running process instance. After potential adaptation, the instance execution

is resumed.

The runtime adaptation approach assumes that the user has thought be-

forehand about possible adaptations and that there exist certain adaptation

mechanisms from which the user can choose. One such mechanism, which

is used in the approach, is service substitution. Therefore, it is assumed that

there is a set of candidate services for a set of service types used in the process.

E.g, there might be several alternative shippers which offer different SLAs via

shipment options (e.g., standard, premium, overnight express). Each of those

options can be modeled as a candidate service with different quality of service

characteristics (such as shipment delivery time, shipment cost, reliability). The

goal is then to select one of the alternatives at runtime based on KPI dependency

analysis.

When adapting the process in order to improve certain influential factors,

one has to take into account that those adaptation actions might negatively

influence other influential factors and other KPIs. For example, choosing a

faster shipment delivery will often imply higher cost. Thus, while improving

the duration-based KPI, one would deteriorate the cost-based KPI. In order to

deal with this issue, a constraints and preferences model is used which allows

to specify hard constraints and preferences in terms of weights on KPIs and

influential factors, and thus allow taking those into account during adaptation.

To summarize, the goal is to perform runtime adaptation of processes based

on KPI dependency analysis, in order to proactively improve the KPI perfor-

mance and take into account specified constraints and preferences.

5.1 | Motivation and Objectives 117

5.2 Solution Overview and Method

In the following, an overview of the overall process is given. It uses the

monitoring and KPI dependency analysis as presented in the previous two

chapters as basis and adds models and algorithms needed for proactive runtime

adaptation. The steps of the process are depicted in Figure 5.1.

Modeling for Adaptation. The first step of the process is to create appro-

priate models, which are then used at runtime for monitoring, analysis, and

adaptation.

The following elements are defined as part of the adaptation model:

• Adaptation Subjects: An adaptation subject specifies an adaptable entity

of the process (e.g., a shipment service used by the process) for which

(i) there are several alternatives available (e.g., two or more alternative

shipment services) and (ii) for which there is an adaptation mechanism

available which allows runtime adaptation. An adaptation subject de-

fines a set of properties (e.g., service duration, service cost) which are

called the characterizing properties of the adaptation subject. These

properties are used as basis for selecting an adaptation alternative for

the adaptation subject, as different alternatives have different effects on

the characterizing properties.

• Adaptation Alternatives: For each adaptation subject a set of alternatives is

specified. When the process is deployed, for each adaptation subject one

particular alternative is configured thus creating an initial configuration.

During process execution, this runtime configuration can change for

each process instance due to assigning other adaptation alternatives to

the adaptation subjects. Each alternative specifies how it affects the

characterizing properties of the adaptation subject. These effects are

used for ranking and selection purposes.

• Checkpoints: A checkpoint defines where in the process, the process

instance execution should be halted in order to perform KPI prediction

and potential adaptation.

118 5 | Runtime Adaptation Based on KPI Dependency Analysis

Figure 5.1: Overview of the Adaptation Process

• Preferences and Constraints: In addition to the KPI prediction result, pref-

erences and constraints are used for ranking and selecting adaptation

strategies at a checkpoint. Both preferences and constraints are specified

on KPIs and characterizing properties of adaptation subjects. Constraints

are used for removing adaptation alternatives from the set, while prefer-

ences are used for ranking purposes.

In addition to the adaptation model, a corresponding monitor model and

an analysis model are created. The monitor model contains the manageable

resource definitions for the adaptation subjects and corresponding properties

needed for calculation of KPIs and influential factors. The analysis model

defines the KPIs, influential factors and analysis tasks. Thereby, analysis tasks

are specified per KPI and per checkpoint.

Monitoring. In the monitoring phase, all properties specified in the monitor

model are monitored. That includes in particular the KPI properties and the

5.2 | Solution Overview and Method 119

properties of the potential influential factors. As a result, property values for a

set of executed process instances are obtained and stored in a monitor database.

Monitoring is also used for triggering of the checkpoints, i.e., for halting the

execution of the process instance after the triggering event of a checkpoint has

been received. Checkpoints are realized via blocking events.

KPI Dependency Analysis. KPI dependency analysis is performed automati-

cally (without user support) and “offline” (in the background) for each KPI and

per checkpoint. That means that learning does not affect process execution and

adaptation. It creates KPI dependency trees which are then used for prediction.

The trees are learned and later relearned after a certain configurable number

of instances (e.g., every 1000 instances). The generated trees are stored in the

database and can then be used for prediction.

KPI Prediction. A checkpoint specifies at which point in the process the KPI

prediction should take place. When a running process instance reaches a check-

point, it halts its execution. The property values which have been measured

until the checkpoint for that instance are gathered and used as input to the

(already created) KPI dependency tree. The prediction result is (in the special

case) a predicted KPI class (e.g., green, yellow, or red) or (in the general case)

an instance tree, i.e., a subtree of the original tree, which shows for a particu-

lar running process instance which properties should be improved to reach a

specific KPI class and serves thus as basis for adaptation. There can be more

than one KPI specified; in that case the KPI prediction is performed for each

KPI separately.

Identification of Adaptation Requirements. Adaptation requirements are

identified by extracting influential factor properties which should be improved

from the instance tree. If several KPIs have been defined, then from each tree a

set of requirements is extracted and those requirements are then combined.

Identification and Selection of Adaptation Strategies. Based on the adap-

tation requirements, a set of alternative adaptation strategies is identified by

taking into account available alternatives for the available adaptation subjects.

An adaptation strategy thus consists of a set of alternatives which should be

120 5 | Runtime Adaptation Based on KPI Dependency Analysis

used in the process instance in order to reach a certain KPI class.

The list of alternative adaptation strategies is filtered and ranked based on

the constraints and preferences model. Preferences are specified as weights on

characteristics of alternatives (e.g., cost, duration, reliability), which enables

ranking of strategies according to scores.

Adaptation Enactment. The first ranked adaptation strategy is enacted. This

is done by enacting the adaptation alternatives of the adaptation strategy. It

can happen that those alternatives are already specified in the current runtime

configuration of the process instance. In that case, nothing has to be done. The

process execution is finally unblocked and continues its execution.

While the adaptation is being performed at runtime for a certain number of

instances, monitoring is continued. After a certain number of instances, the

effectiveness of the adaptations can be evaluated by checking whether the KPI

classes reached have been improved. This might lead to adjustment of the

models, e.g., adjustment of KPI targets, (re)moving or adding of checkpoints,

and adjustment of the constraints and preferences model.

5.3 Modeling for Adaptation

This section defines the metamodel which is used for the creation of adapta-

tion models. An adaptation model defines (i) what can be adapted in terms

of adaptation subjects and alternatives, (ii) where in the process the runtime

prediction and potential adaptation should be triggered in terms of checkpoints,
and (iii) how a particular adaptation strategy should be selected in terms of

constraints and preferences.

5.3.1 Overview

The main elements of the adaptation metamodel are shown in Figure 5.2. An

adaptation model specifies a set of adaptation subjects thus defining what can

be adapted in the process. An adaptation subject is characterized by a set of

characteristics. A characteristic is specified by referencing an influential factor

from an analysis model. For each adaptation subject a set of alternatives is

5.3 | Modeling for Adaptation 121

Figure 5.2: Adaptation Metamodel

defined. Each alternative specifies how it affects the characteristics of the

adaptation subject in terms of effects. Each effect specifies how it affects a

characteristic by defining a predicate. An alternative specifies an adaptation
action which defines how the adaptation subject is to be adapted in order to

use the corresponding alternative.

An adaptation model defines a set of checkpoints where the prediction and

potential adaptation should take place. A checkpoint defines a trigger which

specifies where in the process the checkpoint should be triggered. A checkpoint

specifies a set of available adaptation subjects at the checkpoint, i.e., those

adaptation subjects for which still an alternative can be selected for the running

instance after the checkpoint. A checkpoint also specifies the analysis tasks

used at the checkpoint for KPI dependency analysis.

Finally, an adaptation model specifies a set of preferences and constraints.
A preference is specified by referencing an influential factor or KPI from the

analysis model and assigning a weight to this factor. A constraint is specified

as a predicate over an influential factor or KPI.

122 5 | Runtime Adaptation Based on KPI Dependency Analysis

The adaptation model is based on an already defined analysis model as

it references influential factor definitions and KPI definitions from such an

analysis model. The analysis model is again dependent on an already existing

monitor model.

XML Serialization of the Adaptation Metamodel. An adaptation metamodel

is serialized as follows.

Listing 5.1: Adaptation Metamodel Pseudo XML Schema

<adaptat ionModel targetNamespace ="URI " name="NCName"

2 xmlns =" h t t p : / / . . . / m4c / schemas / adaptat ionModel ">

<adapta t ionSub jec t name="NCName">

4 < c h a r a c t e r i s t i c name="NCName">QName</ c h a r a c t e r i s t i c > +

< a l t e r n a t i v e name="NCName">

6 < e f f e c t c h a r a c t e r i s t i c =" S t r i n g ">< pred ica te / > </ e f f e c t > +

<act ion > . . . < / ac t ion >

8 </ a l t e r n a t i v e > +

</ adapta t ionSubjec t > +

10 < c o n s t r a i n t p roper ty ="QName">< pred ica te / > </ cons t r a i n t > *
<preference proper ty ="QName" weight =" I n tege r " / > +

12 <checkPoint name="NCName">

< t r i g g e r > . . . < / t r i g g e r >

14 <adapta t ionSub jec t name=" S t r i n g " / > +

<analysisTask >QName</ analysisTask > +

16 </ checkPoint > +

</ adaptat ionModel >

5.3.2 Adaptation Subjects

An adaptation model defines a non-empty set of adaptation subjects. An adap-

tation subject represents an adaptable entity of a specific process. In a BPEL

process, an adaptation subject could be, for example, a particular partner link

instance, activity instance or a variable instance. Possible adaptations for these

subjects would then be service substitution, skipping of the activity, or changing

of the variable value. The definition of adaptation subjects depends on the

5.3 | Modeling for Adaptation 123

available adaptation mechanisms and on the given alternatives for the adapta-

tion subject in a specific process, i.e., the definition of an adaptation subject

only makes sense, if there are at least two concrete adaptation alternatives

(e.g., two or more alternative services).

An adaptation subject defines a non-empty set of characteristics. Characteris-

tics is a set of properties which are affected by the adaptation subject and which

are used for alternative selection purposes. Each alternative of an adaptation

subject has to specify how it affects those characteristics. This makes it possible

to compare the different alternatives in the selection process. Characteristics

have to be defined as resource properties in the monitor model and as influen-

tial factors in the analysis model. They are defined in the adaptation model by

referencing the corresponding influential factors in the analysis model.

An adaptation subject defines at least two alternatives (the default one at

deployment time and an additional one) whereby exactly one alternative can be

used for an adaptation subject at a point of time. When the process is deployed,

then each adaptation subject has a default alternative assigned.

Each alternative specifies how it affects the characterizing properties of

the corresponding adaptation subject. Therefore, an alternative specifies an

effect for each characterizing property. An effect is specified as a predicate

over property values (e.g., delivery time < 3 days). One possible source of

information needed for the definition of effects are past measurements. If no

such measurements are available then they have to be estimated by experts

or can be derived from SLAs (e.g., in case of service substitutions). Obviously,

after a certain period of time, one can compare the specified effects with

actual monitored effects and then correspondingly adapt the effect definitions

if needed.

In addition to its effects, the alternative defines how the adaptation should

concretely be performed. This is done by defining an adaptation action. The

definition of an adaptation action depends on the available adaptation mech-

anism. Three adaptation action types have been predefined, which can be

used for adapting a running BPEL process instance after it has been halted at a

checkpoint: (i) WritePartnerLink allows changing the service EPR (endpoint

reference as defined in WS-Addressing) property in a partner link in the BPEL

124 5 | Runtime Adaptation Based on KPI Dependency Analysis

process thus effectively performing service substitution; (ii) WriteProcessVari-
able allows changing process variable values, which can be used for example

for changing the control flow in data-based branching activities (e.g., if-else);

(iii) ChangeActivityState allows, e.g., skipping of activities. Of course, this set of

adaptation action types could be extended to include other types of adaptation

such as infrastructural reconfiguration.

Listing 5.2: Adaptation Subject Example

1 <adapta t ionSub jec t name=" ShipmentService ">

< c h a r a c t e r i s t i c name=" Del iveryTime ">aM: ShipmentDel iveryTime

3 </ c h a r a c t e r i s t i c >

< c h a r a c t e r i s t i c name=" R e l i a b i l i t y ">aM: Shipper−R e l i a b i l i t y

5 </ c h a r a c t e r i s t i c >

< c h a r a c t e r i s t i c name=" Cost ">aM: Shipper−Cost

7 </ c h a r a c t e r i s t i c >

< a l t e r n a t i v e name=" ShipmentStandard ">

9 < e f f e c t c h a r a c t e r i s t i c =" Del iveryTime ">

<pred ica te type ="LOWER_EQUAL" value ="3" / >

11 </ e f f e c t >

< e f f e c t c h a r a c t e r i s t i c =" R e l i a b i l i t y ">

13 <pred ica te type ="EQUAL" value ="0 .5 " / >

</ e f f e c t >

15 < e f f e c t c h a r a c t e r i s t i c =" Cost ">

<pred ica te type ="EQUAL" value ="0 .3 " / >

17 </ e f f e c t >

<act ion >

19 <Wr i tePar tne rL ink serviceURI =" h t t p : / / . . . / StandardShipment " / >

</ ac t ion >

21 </ a l t e r n a t i v e >

. . .

23 </ adapta t ionSubjec t >

Example. In the scenario, one defines the shipment partner link in the reseller

process as an adaptation subject, as it is assumed that there are alternative

shipment services with different QoS characteristics available. For the adap-

5.3 | Modeling for Adaptation 125

tation subject, one defines ShipmentDeliveryTime, Shipper-Cost and

Shipper-Reliability as characterizing properties. These properties have

been defined in the analysis model as influential factors. One alternative

ShipmentStandard is created, which specifies its effects on the three proper-

ties. It also defines the adaptation action WritePartnerLink and specifies

the serviceURI of the service to invoke.

5.3.3 Checkpoints

An adaptation model defines a non-empty set of checkpoints. Checkpoints

define where in the process the KPI prediction and potential adaptation should

take place. Therefore, a checkpoint definition contains three types of informa-

tion: (i) the trigger of the checkpoint, (ii) the available adaptation subjects at

the checkpoint, and (iii) the analysis tasks for creating checkpoint specific KPI

dependency trees.

The checkpoint trigger is defined as a process runtime event typically sig-

naling the start or completion of an activity. The event is typically but not

necessarily configured to be blocking, i.e., to stop process instance execution

until prediction and potential adaptation are performed. The trigger definition

references the corresponding topic of a manageable resource definition from

which the events are retrieved.

A checkpoint furthermore defines adaptation subjects which are still available

for adaptation at the checkpoint. Obviously, if process execution has already

passed an adaptable subject before a checkpoint is triggered, then that adapta-

tion subject is no more available at that particular checkpoint. The earlier a

checkpoint is defined in the process, the more adaptation subjects are available.

At the same time, however, the KPI prediction accuracy is lower, and vice versa.

Definition of Analysis Tasks for Checkpoints. When the checkpoint has

been triggered, a prediction at that checkpoint is performed for each KPI.

Therefore, corresponding KPI dependency trees (one tree per KPI) have to

be already available, i.e., they should already have been learned based on

historical instances.

For the creation of these dependency trees, one has to create corresponding

126 5 | Runtime Adaptation Based on KPI Dependency Analysis

analysis tasks in the analysis model. Thereby, for each checkpoint in general

specific analysis tasks have to be defined and thus also each checkpoint will

have different KPI dependency trees. This is because checkpoints differ in the

available influential factor values and adaptation subjects, resulting in different

influential factor sets as part of analysis task definitions.

A KPI dependency tree at a checkpoint should in particular show how the

KPI depends on the characteristics of the available adaptation subjects. This

knowledge can then be used to select the most appropriate alternatives for

those adaptation subjects. When defining influential factors for an analysis task

of a checkpoint, two groups of influential factors are selected: (i) influential

factors whose values have already been monitored and thus are known at the

checkpoint; (ii) influential factors representing characteristics of available adap-

tation subjects at the checkpoint. The values of the latter group of influential

factors are possibly not yet known at the checkpoint as the adaptation subject

has not yet been executed. However these influential factors are needed for

learning how the KPI depends on the characteristics.

The first group of influential factors is defined using the method as presented

in Section 4.3.4 with the constraint that the underlying property values have

to be already known when the checkpoint is executed. The second group

of influential factors is defined by simply selecting the influential factors of

all characteristics of all available adaptation subjects of the corresponding

checkpoint. In our scenario, consider a checkpoint which is placed right after

the warehouse check service. At that point one knows the ordered products,

the result of the warehouse check and the execution duration of the process

instance until the checkpoint. These properties are specified as influential

factors as they are important factors for predicting a (duration-based) KPI value

of an instance. These factors belong to the first group of factors. Assuming that

at this checkpoint the available adaptation subjects are the supplier service and

the shipment service, one would add in addition characteristics of these two

adaptation subjects as influential factors, e.g., supplier delivery time, shipment

delivery time, supplier reliability, shipment cost etc. These factors belong to

the second group. Some of these might be constant values, which are not

measured at runtime (e.g., supplier reliability), while others are measured

5.3 | Modeling for Adaptation 127

after the checkpoint for an instance, e.g., supplier delivery time, and is thus

unknown during checkpoint execution. Their values are specified as part of the

effects of corresponding alternatives, which is used in the adaptation process.

Obviously, the set of available factors of the first group increases in size

the later the checkpoint is defined in the process thus increasing prediction

accuracy, however at the same time the set of available adaptation subjects

decreases, and thus there are fewer adaptation possibilities or it could even be

too late for adaptation. Thus, there is a tradeoff between prediction accuracy

and adaptation possibilities. In long-running processes where the prediction

and adaptation only marginally influence the overall process execution time,

one could define and use many different checkpoints in a process model.

Example. As shown in the listing, a checkpoint is defined after the warehouse

check in the reseller process. The checkpoint trigger is specified by referencing

the corresponding topic of the manageable resource definition in the monitor

model. Also the checkpoint is defined to be blocking. The available adaptation

subjects are the supplier service and the shipment service as they can still be

selected after the checkpoint. Finally, an analysis task in the analysis model

is referenced which defines the influential factors for a KPI for this specific

checkpoint.

Listing 5.3: Checkpoint Example

1 <checkPoint name=" AfterWarehouseCheck ">

< t r i g g e r >

3 < t r i gge r Even t b lock ing =" t r ue "

manageableResourceDefini t ion ="mM: Cus tomerRese l le r In te rac t ion "

5 t o p i c ="poChoreo : WarehouseCheckExecuted " / >

</ t r i g g e r >

7 <adapta t ionSub jec t name=" Supp l ie rServ ice " / >

<adapta t ionSub jec t name=" ShipmentService " / >

9 <analysisTask >aM: OrderFulf i l lmentTimeWarehouseCheck </ analysisTask >

</ checkPoint >

128 5 | Runtime Adaptation Based on KPI Dependency Analysis

5.3.4 Constraints and Preferences

After KPI prediction, when several alternative adaptation strategies are identi-

fied, one needs to make a decision which of those alternatives is to be selected.

Thereby, the approach addresses two aspects. Firstly, one wants to be able to

specify that certain values of KPIs and characteristics should always be avoided.

Secondly, as there are typically competing KPIs and properties (e.g., time vs.

cost), one wants to be able to specify the preferences considering these proper-

ties thus allowing to rank adaptation strategy alternatives. The former aspect

is addressed via constraints, the latter via preferences.

Constraints. A constraint is specified for a KPI or a characteristic and defines

via a predicate the allowed values of the corresponding property. If during the

selection of a strategy a constraint evaluation results in the value false for an

adaptation strategy, then that strategy is removed from the set of alternatives.

In the scenario, for example, one can use constraints for defining which KPI

classes are allowed and which ones should be prevented in any case, e.g., by

specifying that the KPI classes of a specific KPI should be green and yellow

(and thus red is to be avoided). In the exceptional case that each adaptation

strategy violates one or more constraints, constraints are neglected, and the

strategy selection is performed solely based on preferences.

Preferences. Preferences are used for ranking of adaptation strategies accord-

ing to a score represented by a number between 0 and 1. Therefore, Simple

Additive Weighting as part of Multiple Attribute Decision Making [HY81] is

used.

As part of the adaptation model, the user assigns weights to KPIs and char-

acteristics of all adaptation subjects, whereby the sum of all weights has to

be 1 (so that the resulting score is between 0 and 1; see equation 5.2 in Sec-

tion 5.4.3). In addition, one has to specify for each underlying property of a

KPI or characteristic (i) whether a higher value is better (e.g., reliability) or

a lower value is better (e.g., cost), and (ii) a mapping of property values to

a cardinal scale (if needed). For example, for a KPI with categorical values

one could map green to 1, yellow to 0.5, and red to 0. These two pieces of

5.3 | Modeling for Adaptation 129

information are specified in the corresponding metadata descriptor of the prop-

erty. Section 5.4.3 describes how based on this information a score for each

adaptation strategy is calculated enabling ranking of adaptation strategies.

Example. In the following example, a constraint is specified which defines the

allowed KPI classes. Furthermore, preferences are specified by giving weights

on the KPI (0.3) and the six characteristics of all adaptation subjects in the

adaptation model.

Listing 5.4: Constraints and Preferences Example

< c o n s t r a i n t p roper ty ="aM: OrderFu l f i lmentT ime ">

2 <pred ica te type =" IN " value =" green ; ye l low " / >

</ cons t r a i n t >

4 <preference proper ty ="aM: OrderFu l f i lmentT ime " weight ="0 .3 " / >

<preference proper ty ="aM: ShipmentDel iveryTime " weight ="0 .15" / >

6 <preference proper ty ="aM: Shipper−R e l i a b i l i t y " weight ="0 .1 " / >

<preference proper ty ="aM: Shipper−Cost " weight ="0 .1 " / >

8 <preference proper ty ="aM: Supp l ie rDe l iveryT ime " weight ="0 .15" / >

<preference proper ty ="aM: Suppl ier−R e l i a b i l i t y " weight ="0 .1 " / >

10 <preference proper ty ="aM: Suppl ier−Cost " weight ="0 .1 " / >

5.4 Runtime Adaptation based on KPI Prediction

Based on the adaptation model, at process runtime, prediction and adaptation

are performed. KPI prediction involves monitoring of KPIs, learning of KPI

dependency trees, and the actual runtime prediction based on the KPI depen-

dency trees at predefined checkpoints. The adaptation part of the approach

involves identification of adaptation requirements based on prediction results,

the identification of adaptation strategies, and selection and enactment of one

of those strategies.

Figure 5.3 shows the artifacts which are created and used at runtime during

the prediction and adaptation process. Based on the monitor model and the

analysis model, instances and properties are monitored and used for the creation

of KPI dependency trees. When a checkpoint is triggered for a running instance,

130 5 | Runtime Adaptation Based on KPI Dependency Analysis

Figure 5.3: Runtime Artifacts Metamodel

a checkpoint instance is created. For each KPI, a KPI prediction is performed

based on the KPI dependency tree resulting in an instance tree. An instance

tree is a subtree of the corresponding KPI dependency tree and is derived

by removing those nodes and branches which are no more relevant for the

particular process instance based on monitored property values gathered so far

until the check point. From an instance tree a set of adaptation requirements is

extracted specifying how the contained influential factors should be improved.

For each adaptation requirement a set of adaptation strategies is identified

by using the available adaptation alternatives at the checkpoint. For each

strategy a score is calculated based on the preferences model. Finally, resulting

from the selected adaptation strategy, the runtime configuration contains the

current assignment of an adaptation alternative to an adaptation subject (for

all adaptation subjects).

5.4 | Runtime Adaptation based on KPI Prediction 131

5.4.1 Runtime Prediction of KPIs

Runtime prediction consists of two steps. First, the needed KPI dependency

trees have to be learned for each checkpoint based on a set of already executed

instances. Then, when a checkpoint is triggered for an instance, based on the

trees, for each KPI a prediction is performed. The KPI prediction removes all

those nodes and branches which are no more relevant for the running process

instance and as a result creates an instance tree (per KPI). The instance tree

contains only those influential factors (as nodes) which are still adaptable in

the particuar process instance by using the available adaptation alternatives at

the check point. The instance tree is then used as input to the next phase, the

identification of adaptation requirements.

KPI Dependency Analysis for Adaptation. It has already been shown in the

previous chapter how decision trees can be used for explanation purposes, i.e.,

to explain how KPI classes depend on a set of influential factors. In the context

of the adaptation framework, those trees are utilized for prediction.

The adaptation model defines a set of checkpoints. Each checkpoint ref-

erences a set of analysis tasks, whereby exactly one analysis task is defined

for each KPI (cf. Section 5.3.3). For each analysis task, a KPI dependency

tree is learned as described in Section 4.4.1. If, for example, two checkpoints

and three KPIs are defined for the process, then six KPI dependency trees are

created and stored in the monitor database. Learning is performed in parallel

to the process execution (in the background) and is started after the configured

number of instances has been executed.

Runtime Prediction based on Decision Trees. When the process instance

execution reaches a checkpoint as specified in the checkpoint trigger, a new

checkpoint instance is created. The process instance execution is halted if

the triggering event is defined as blocking. For each defined analysis task of

the checkpoint, the corresponding KPI dependency tree is obtained from the

database. The prediction is then performed as described in the following for

each KPI.

When using KPI dependency trees for prediction, based on the values of

132 5 | Runtime Adaptation Based on KPI Dependency Analysis

Algorithm 5.1 Prediction based on KPI Dependency Trees
1: T = (N , B) // KPI dependency tree as a set of nodes and branches
2: I T = ; // instance tree
3: P = {p1, p2, ...} // set of known influential factor properties

4: I T = InstanceTree(rootNode(T)) // creates instance tree for T

5: function INSTANCETREE(n)
6: if isLea f (n) then
7: return (n,;)
8: end if
9: if proper t yO f (n) ∈ P then

10: for b ∈ B, sourceNode(b) = n do
11: if proper t yValueO f (n) ∈ values(b) then
12: return InstanceTree(tar getNode(b))
13: end if
14: end for
15: else
16: I Tr = (n,;) // new subtree with n as root node
17: for b ∈ B, sourceNode(b) = n do
18: // create tree IT’ for target node
19: I T ′ = InstanceTree(tar getNode(b))
20: b′ = (n, rootNode(I T ′)) // connect n with IT’
21: I Tr = I Tr ∪ (;, b′)∪ I T ′

22: end for
23: return I Tr
24: end if
25: end function

influential factors, the tree is traversed from the root to a leaf. In our case, the

tree can contain (i) known (measured) influential factors and (ii) influential

factors representing characteristics of adaptation subjects which are called in

the following adaptable factors.
The tree is traversed breadth-first (cf. Algorithm 5.1). The recursive function

InstanceTree starts at the root node of the dependency tree (line 4) and traverses

the tree until the leaf nodes are reached (lines 6-8). If the current node

5.4 | Runtime Adaptation based on KPI Prediction 133

corresponds to a known factor (line 9), one follows the outgoing branch whose

predicate is satisfied by the measured factor value (line 11) and replaces the

current node with the target node of that branch for which the recursive function

is continued (line 12); otherwise, in case of an adaptable factor one keeps the

node in the tree (and continues with its children until a leaf node is reached)

(lines 16-23).

As a result one gets a subtree of the original one (in the following denoted as

instance tree) consisting either of (i) just one leaf representing the prediction

of the corresponding KPI class (the special case); (ii) a tree containing one or

more nodes of adaptable factors, i.e., properties representing characteristics of

the available adaptation subjects. In the latter (general) case, the KPI class is

thus predicted in relation to the values of adaptable factors.

Example. Figure 5.4 shows a KPI dependency tree (see also Section 4.4.1,

Figure 4.6) generated for a checkpoint defined right after the interaction with

Figure 5.4: Instance Tree for Order In Stock = No

134 5 | Runtime Adaptation Based on KPI Dependency Analysis

the warehouse and the corresponding instance tree. The original tree contains

two known factors (order in stock, item quantity) and two adaptable factors

(supplier delivery time, shipment delivery time), as the supplier and shipper

still can be selected after the checkpoint.

If for the particular process instance order in stock = no, then the shown

instance tree is created as a result of prediction. Starting at the root of the tree,

order in stock is removed as it is a known factor and the left subtree is removed.

The right subtree contains only adaptable factors which are not removed.

The resulting tree now consists of two distinct adaptable factors. It shows

how the KPI classes depend on the value of supplier delivery time and shipment

delivery time. This information is used in the next steps for selecting an

adequate supplier service and shipment service.

5.4.2 Identification of Adaptation Requirements

At a checkpoint, after obtaining an instance tree for each KPI, it has to be

decided whether adaptation is needed, and if yes, which properties should be

improved and how. An instance tree shows how the KPI class of the running

instance depends on the characteristics of available adaptation subjects.

If the instance tree contains only one leaf denoting the KPI class, then the

predicted KPI class is independent of the adaptable subjects and an adaptation

would not lead to another KPI class (for this KPI). If the instance tree contains

more than just one leaf (as the one in Figure 5.4), then the non-leaf nodes

correspond to influential factor properties which are adaptable by the predefined

adaptation alternatives and the tree shows how one should adapt. For example,

if in the instance tree in Figure 5.4 a supplier delivery time below 3 and a

shipment delivery time below 2,2 are ensured, one will very likely (assuming

that the classification model has a high accuracy) reach the KPI class green.

The idea towards adaptation based on the instance tree is thus (i) to extract

tree paths and the corresponding conditions (specified on tree branches), and

then (ii) select adaptation alternatives which will lead to satisfaction of those

conditions. Each path (consisting of a conjunction of conditions) is an alterna-

tive adaptation requirement for the corresponding KPI. All conditions (of a path)

5.4 | Runtime Adaptation based on KPI Prediction 135

have to be true in order to satisfy the adaptation requirement. Note that at this

point, the paths which lead to bad KPI classes (e.g., red) are also extracted and

considered. This is because in case of several KPIs and corresponding settings

in the preferences model, such a path could still be relevant.

An adaptation requirement (AR) is specified in terms of (i) the predicted KPI

class per specified KPI, and (ii) a conjunction of conditions which should be

achieved in order to reach those KPI classes.

Adaptation requirements are identified as shown in Algorithm 5.2. In case

more than one KPI has been defined, alternative adaptation requirement sets

are extracted from each instance tree separately (line 4, 17-30). Thereby, the

recursive function ExtractRequirements extracts each root-to-leaf path of the

instance tree and creates one AR per path by extracting the conditions from the

branches (lines 23-27). Arriving at a leaf of the tree, an adaptation requirement

is created by adding the KPI class of the leaf and all conditions collected so far

on the corresponding root-to-leaf path (lines 19-21).

The adaptation requirements of the instance trees are combined by iteratively

building a Cartesian product between them (using nested for-loops in lines

6-14), i.e., AR1 × AR2 × ... × ARn whereby ARi denotes the set of adaptation

requirements for the i-th instance tree. For each resulting element of the

product a new adaptation requirement is created by combining the classes and

conditions of the underlying adaptation requirements using the union operator

(line 11). As a result, one gets a set of alternative adaptation requirements each

consisting of a conjunction of conditions over adaptable factors which have to

be satisfied to reach the corresponding KPI class(es).

Example. For the example instance tree in Figure 5.4, four adaptation require-

ments are extracted, one for each tree path. For example, for the tree path

leading to the green KPI class, the adaptation requirement (green, Supplier

Delivery Time <= 7,5 and Shipment Delivery Time <= 2,2 and Supplier Deliv-

ery Time <= 3,0) is created (the function ExtractRequirements is called in this

case four times until it reaches the leaf where the corresponding adaptation

requirement is created (line 20)). The two adaptation requirements with KPI

class red are also extracted. While in most cases the corresponding strategies

136 5 | Runtime Adaptation Based on KPI Dependency Analysis

Algorithm 5.2 Identification of Adaptation Requirements
1: I T = {i t1, i t2, ...} // set of KPI instance trees
2: AR = ; // set of resulting adaptation requirements ari = (C , CN), whereby

C contains a KPI class for each KPI, CN is a set of branch conditions

3: for i t i ∈ I T do
4: ARi = Ex t ractRequirements(rootNode(i t i),;)
5: ARnew = ;
6: for (C , CN) ∈ ARi do
7: if AR= ; then // first tree
8: ARnew = ARnew ∪ (C , CN)
9: else// combine with ARs of other trees so far

10: for (C ′, CN ′) ∈ AR do
11: ARnew = ARnew ∪ (C ∪ C ′, CN ∪ CN ′)
12: end for
13: end if
14: end for
15: AR= ARnew
16: end for

17: function EXTRACTREQUIREMENTS(n, CN)
18: ARnew = ;
19: if isLea f (n) then
20: ARnew = ARnew ∪ (kpiC lass(n), CN)
21: return ARnew
22: else
23: for b ∈ B, sourceNode(b) = n do
24: CNnew = CN ∪ condi t ion(b)
25: b′ = tar getNode(b)
26: ARnew = ARnew ∪ Ex t ractRequirements(b′, CNnew)
27: end for
28: return ARnew
29: end if
30: end function

5.4 | Runtime Adaptation based on KPI Prediction 137

will be irrelevant during strategy selection (cf. Section 5.4.3) due to their bad

score, they might be relevant in the case that this particular KPI gets a low

weight in the preferences model if there is more than one KPI specified.

5.4.3 Identification and Ranking of Adaptation Strategies

After the requirements have been identified, the next step is to identify adapta-

tion strategies which can be used to satisfy the adaptation requirements. An

adaptation strategy defines for each adaptation subject (of a checkpoint) an

adaptation alternative which (i) satisfies the conditions of one particular adap-

tation requirement and (ii) satisfies the specified constraints in the adaptation

model.

Identification of Adaptation Strategies. Adaptation strategies are identified

as shown in Algorithm 5.3. For each adaptation requirement a set of alternative

strategies is identified by using the function DetermineStrategies. For each

adaptation subject (line 10), one searches for qualifying alternatives (of that

subject) which do not violate the conditions of the adaptation requirement

according to their specified effects (lines 14-23). An effect violates a condition

(line 17) if it refers to the same influential factor and the effect predicate does

not satisfy the condition. If the underlying characteristic has a cardinal scale,

then the worst value of the predicate is taken and inserted into the condition.

For example, if an effect predicate specifies that Supplier Delivery Time <= 5

and the condition is Supplier Delivery Time < 3, then the effect does not satisfy

the condition as 5 is the worst value of the value range expressed by the effect

predicate and 5 < 3 is false. If the underlying characteristic has a nominal

scale (i.e., only EQUAL, NOT_EQUAL operators are allowed in the condition

and the effect predicate), then each nominal value resulting from the predicate

(whereby several nominal values are possible if predicate uses the NOT_EQUAL

operator) is checked against the condition. If no qualifying alternative is found

for an adaptation subject, then for the corresponding AR no valid adaptation

strategy exists (lines 24-26). For already executed adaptation subjects (which

can no more be adapted), the chosen alternative is used as the single qualifying

alternative of that subject (not shown in the Algorithm 5.3). Each qualifying

138 5 | Runtime Adaptation Based on KPI Dependency Analysis

Algorithm 5.3 Identification of Adaptation Strategies
1: AR= {ar1, ar2, ...} // set of alternative adaptation requirements
2: AS = {as1, as2, ..., asn} // set of adaptation subjects
3: A= {a11, a12, ..., anm} // set of alternatives where anm is the m-th

alternative of the n-th adaptation subject
4: S = ; // set of resulting adaptation strategies si = {(as1, a1a), ..., (asn, anb)}
5: for ar ∈ AR do
6: S = S ∪ DetermineSt rategies(ar)
7: end for
8: function DETERMINESTRATEGIES(ar)
9: Sr = ; // resulting strategies

10: for asi ∈ AS do
11: S′ = Sr // temporary set of partial strategies
12: Sr = ;
13: QA= ; // qualifying alternatives
14: for ai j ∈ A do
15: for e f ∈ e f f ec tsO f (ai j) do
16: for cn ∈ condi t ionsO f (ar)) do
17: if violates(e f , cn) then
18: continue with ai j+1 // alternative does not qualify
19: end if
20: end for
21: end for
22: QA=QA∪ ai j // alternative qualifies
23: end for
24: if QA= ; then
25: return ; // ar cannot be satisfied
26: end if
27: for ai j ∈QA do
28: if S′ = ; then
29: Sr = Sr ∪ {(asi , ai j)}
30: else
31: for s ∈ S′ do
32: Sr = Sr ∪ (s ∪ (asi , ai j))
33: end for
34: end if
35: end for
36: end for
37: return Sr
38: end function

5.4 | Runtime Adaptation based on KPI Prediction 139

alternative of one adaptation subject is combined with each qualifying alterna-

tive of other adaptation subjects thus creating a set of alternative adaptation

strategies (lines 27-35). The number of resulting adaptation strategies is given

by |QA1| · |QA2| · ... · |QAn| whereby QAi denotes the set of qualifying alternatives

for the i-th adaptation subject. As a result, a set of adaptation strategies for an

AR is created, whereby each adaptation strategy contains for each adaptation

subject exactly one alternative.

Finally, the resulting set of alternative adaptation strategies is the union of

adaptation strategies for each (alternative) AR (lines 4-6).

Filtering of Adaptation Strategies. After the identification, the adaptation

strategy set is filtered according to the constraints defined in the adaptation

model. If a constraint evaluation evaluates to false for a strategy, then that

strategy is removed from the set. The result is set of alternative valid adaptation

strategies.

Ranking of Adaptation Strategies. Based on the specified preferences in the

adaptation model, for each strategy a score number is calculated. The strategies

are then ranked according to the score and the strategy with the highest score

is enacted.

The score of an adaptation strategy is calculated based on the preferences

model, which assigns weights to the property set Pw = {p1, p2, ..., pm} consisting

of KPIs and characteristics of the adaptable entities (cf. Section 5.3.4). For each

adaptation strategy x and property y ∈ Pw one can determine the property

value vx y . In case of a KPI, vx y is the predicted KPI class (specified in the

referenced adaptation requirement). In case of a characteristic, it is the value

defined by the predicate of the effect definition of the corresponding alternative

(the worst value is taken in case the predicate specifies a value set). For example,

if the predicate is specified as duration <= 5 days, then 5 days is used as value.

The vx y is always a real number; if the underlying property has not a cardinal

scale, a mapping has to be provided (cf. Section 5.3.4).

Before applying the simple additive weighting (SAW) [HY81], one has to

normalize these values to make the different properties comparable. The

normalized property value nvx y can be calculated by using the division by

140 5 | Runtime Adaptation Based on KPI Dependency Analysis

maximum value method:

nvx y =











vx y

max y (v1y ,v2y ,...,vmy)
if higher values are better

vx y
−1

max y (v1y
−1,v2y

−1,...,vmy
−1) if lower values are better

(5.1)

The normalized metric values nvx y are in the range between 0 and 1, whereby

the value 1 is always given to the best property value among all strategies. One

thereby has to distinguish between properties where a higher value is better

(e.g., reliability) and properties where a lower value is better (e.g., cost). This

has to be specified for each property in its metadata descriptor.

Finally, for each strategy, a score is calculated by summing up the weighted

metric values:

scorex =
m
∑

y=1

w y nvx y (5.2)

Example. Table 5.1 shows two adaptation requirements extracted from the

instance tree (Figure 5.4) and the identified alternative strategies per require-

ment. Each strategy consists here of a combination of a shipper service and

supplier service with different effects. For each strategy a normalized metric

values vector is constructed containing the corresponding KPI class (green is

mapped here to the value 1.0, while yellow is assigned 0.5), and the duration,

cost, and reliability characteristics for the shipper and the supplier, respectively.

Based on the weight distribution (0.3, 0.1, 0.2, 0.05, 0.1, 0.2, 0.05) in the

preferences model (0.3 being given to the KPI), the score for each strategy is

calculated and used for ranking.

5.4.4 Adaptation Enactment

When the process is deployed, all the adaptation subjects have to be assigned

a (default) adaptation alternative. This default runtime configuration of all

5.4 | Runtime Adaptation based on KPI Prediction 141

Requirements Adaptation Strategies
ID KPI Class Strategy Constr. Score Rank

1 green (1.0)

Sh1 (0.9, 0.2, 1.0), Su1 (1.0, 0.3, 0.9) ok 0.69 2
Sh1 (0.9, 0.2, 1.0), Su2 (0.9, 0.5, 0.8) ok 0.71 1
Sh2 (1.0, 0.1, 0.8), Su1 (1.0, 0.3, 0.9) nok 0.67 -
...

2 yellow (0.5)

Sh3 (0.7, 0.7, 0.6), Su3 (0.6, 0.9, 0.6) ok 0.66 3
Sh3 (0.7, 0.7, 0.6), Su4 (0.7, 0.7, 0.7) ok 0.64 4
Sh3 (0.7, 0.7, 0.6), Su2 (0.9, 0.5, 0.8) ok 0.62 5
...

Table 5.1: Identification and Ranking of Adaptation Strategies

adaptation subjects is then dynamically changed if the selected adaptation

strategy contains different adaptation alternatives than the default ones for at

least one adaptation subject. Otherwise, no adaptation has to take place, as

the default configuration is already the optimal one.

For creating the default configuration before deployment, the specified con-

straints and preferences can be used. Therefore, one first creates a set of

adaptation strategies by simply enumerating all adaptation alternatives for

each adaptation subject and then building the Cartesian product over all sub-

jects. The constraints for each strategy are checked and the score is calculated

for each strategy based on characteristics only, i.e., without KPIs as these are

obviously not known at design time. Thus, the ranking is done based on

characteristics of the adaptation alternatives.

After the first deployment, the framework starts monitoring the execution of

process instances based on the default configuration. Until the KPI dependency

trees are learned, the default configuration can be used for all monitored

process instances. This leads to KPI dependency trees which have been learned

only based on execution data of the default configuration. They do not reflect

the behavior of all other adaptation alternatives, as those have not yet been

executed. In our example, the trees would reflect only the behavior of a

specific supplier and a specific shipper; the behavior (e.g, supplier delivery time,

shipment delivery time) of other alternative suppliers and shippers would not

be present in the historical data and thus also not be present in the dependency

142 5 | Runtime Adaptation Based on KPI Dependency Analysis

trees. Thus, the accuracy of the trees after this first learning would not be

optimal in respect to all available adaptation alternatives, in particular if the

behavior of those alternatives differs a lot from the default ones. There are two

possibilities to deal with this issue: (i) neglect this fact, perform the runtime

adaptation for some time (taking into account the lower accuracy) and then

relearn the trees; (ii) explicitly use a bootstrapping phase where not only the

default configuration is used but many different or all possible configurations

of adaptation alternatives. After the bootstrapping phase, learn the trees and

then start with the adaptation.

5.5 Summary and Conclusions

This chapter has presented a proactive runtime process adaptation approach

based on KPI dependency analysis. Based on a monitor model and a KPI

analysis model, an adaptation model is created which defines (i) adaptation

subjects and corresponding alternatives, (ii) checkpoints, and (iii) constraints

and preferences. Based on these settings, at runtime the adaptation frame-

work adapts the running process instances automatically, trying to improve

KPI performance and take into account specified constraints and preferences.

This is done by halting the process execution at predefined checkpoints and

performing a KPI prediction based on KPI dependency trees. The KPI prediction

result is an instance tree, which is used for the extraction of adaptation require-

ments. Based on the predefined adaptation alternatives, a set of adaptation

strategies is identified. Finally, one strategy is selected and enacted based on

the predefined constraints and preferences. The prototypical implementation

and an experimental evaluation of the approach are described in Chapter 6.

5.5 | Summary and Conclusions 143

C
H

A
P

T
E

R 6
IMPLEMENTATION AND

EVALUATION

This chapter presents a prototypical implementation and an experimental

evaluation of the approach. In Section 6.1, a Java-based prototype is described

which implements the monitoring, prediction, and adaptation concepts as

presented in the previous chapters. Section 6.2 then describes experiments

performed based on this prototype. Therefore, the purchase processing scenario

has been developed and run on the prototype.

6.1 Prototypical Implementation

In the following, an overview of the architecture and the main components

is given. The details are then provided in the following subsections. The

prototype is a Java-based application running in a Tomcat server. It uses

several existing open-source frameworks and libraries, in particular an existing

BPEL process engine, a library implementing the BPEL 2.0 event model, a CEP

engine, a framework supporting WSDM, and data mining tooling. The needed

145

functionality has been implemented on top of them.

Figure 6.1 gives an overview of the main components. The process execution

is implemented based on the Apache ODE BPEL execution engine 1.3.4 [Apac].
In addition to ODE, the Pluggable Framework extension for ODE is used [Ins].
It implements the BPEL 2.0 event model [KHK+11] and allows in particular

subscribing to events needed for monitoring, and halting and resuming of

process instances needed for the implementation of checkpoints.

The monitoring framework is responsible for obtaining events from the

process engine, processing them based on CEP, storing the evaluated resource

property values in a Monitor DB and exposing the monitoring functionality

over a WSDM-based interface. The events are received from the process engine

using the Pluggable Framework. The events are thereby published by a generic

controller to queues and topics, which are then received by custom controllers.

The Pluggable Framework uses JMS for messaging and Active MQ 5.2 [Apaa]
is used as the underlying JMS implementation. The events are then processed

as defined in the monitor model by the implemented capabilities. Composite

properties are evaluated based on the ESPER complex event processing (CEP)

framework 3.2 [Esp]. The resources and corresponding property values are

stored in the Monitor DB for later use (e.g., by the analysis component) and are

also directly forwarded, if needed, to subscribers using the WSDM interfaces.

For implementing WSDM, the Apache Muse 2.2 library [Apab] has been used.

The KPI dependency analysis is based on the WEKA suite 3.5 [HFH+09],
which provides data mining tooling and in particular decision tree algorithm

implementations. A KPI dependency analyzer component performs data prepa-

ration based on the KPI dependency analysis model and the data in the Monitor

DB and uses the WEKA Java API to construct the dependency trees. WEKA’s

functionality for displaying the resulting trees in a GUI has also been integrated.

For the implementation of checkpoints and instance adaptation, the Pluggable

Framework has been used as basis. The checkpoints are supported via blocking

events, which stop process instance execution until they are explicitly unblocked

by a corresponding incoming event coming from the adaptation framework.

The adaptation actions are also realized using incoming events whereby the

adaptation framework populates the corresponding incoming event (e.g., by

146 6 | Implementation and Evaluation

Figure 6.1: Main Components of the Prototype

setting a new partner link value) and sends it to the process engine. The

algorithms for identification of adaptation requirements and strategies are

implemented in Java.

The Monitor DB, Analysis DB, and Adaptation DB have not been realized

based on a database management system, but their contents are simply held in

memory in corresponding Java objects, which is sufficient for experimentation

purposes.

Based on the prototype, the purchase order process has been implemented,

mainly based on the examples that have been used throughout the thesis. The

services used by the process are configurable to simulate certain behavior, which

allows us to perform experiments and evaluate the approach. The experimental

evaluation is presented in Section 6.2 in detail.

6.1 | Prototypical Implementation 147

6.1.1 Monitoring Framework

The monitoring framework as presented in Chapter 3 uses the WSDM frame-

work as basis and uses it to support monitoring of process-related resource

types. When in it comes to implementation, it can be seen as consisting of

two parts, namely (i) gathering of the needed monitoring information from

the process engine and (ii) exposing that information as manageable resources

over corresponding Web service interfaces. The first part is implemented on

top of the Pluggable Framework, the second one uses the Apache Muse library

as basis, as shown in Figure 6.2.

Usage of the Pluggable Framework. The Pluggable Framework provides a

generic controller, which runs in the ODE engine and communicates with an

arbitrary set of custom controllers using a messaging infrastructure. The generic

controller sends outgoing events (as defined in the BPEL 2.0 event model) to

a JMS topic, which custom controllers can subscribe to. In addition, they can

subscribe to blocking events and send incoming events to the generic controller

Figure 6.2: Monitoring Framework

148 6 | Implementation and Evaluation

for active control of the process instance; this is used for adaptation and is

described further below in the context of the adaptation framework.

For supporting the monitoring approach, the Mon4ChorCustomController

has been implemented. During deployment, it subscribes to the topic of the

generic controller. At runtime, it then simply forwards the incoming events to

the corresponding capability implementations, e.g., all activity state change

related events are forwarded to the ActivityStateEventCapability and

the ActivityStateCapability implementation. It is then in the responsi-

bility of the capability implementation to process the event as specified in the

deployed monitor models.

Event Mappings. When using executable BPEL processes as implementation

of the abstract processes in a choreography, two additional aspects have to be

considered when a monitor model is specified based on choreography models:

(i) taking into account the differences between the executable process and

the corresponding abstract process considering their event models, and (ii)

augmentation of events with resource identifiers related to choreographies.

An abstract BPEL process can define opaque elements and can omit elements

which are then added during executable completion. In our context, opaque

activities are relevant, as their state model and identifiers can change during

executable completion. If an activity is defined as an opaque activity, it is

treated as having the resource type Activity Instance and the state model of

a standard activity (i.e., no loop or invoke activity). If during executable

completion the opaque activity is realized as an invoke activity or a loop activity,

i.e., the corresponding state model has changed in the executable process,

then it has to be ensured that when monitoring the abstract process, the state

model of a standard activity is exposed. Besides defining activities as being

opaque, one can omit activities in the abstract process which are then added

during executable completion. In that case, it can happen that the identification

properties which rely on XPath are no more valid.

Those two aspects are dealt with by defining an event mapping. The source

event is the event retrieved from the BPEL engine (based on BPEL event model

2.0), and the target event is the event which (i) corresponds to the defined

6.1 | Prototypical Implementation 149

manageable resources based on an abstract process, and (ii) contains additional

identifiers. Listing 6.1 shows an example event mapping. It is defined for a

specific manageable resource definition. In this case the mapping is defined

for the activities of the reseller process. It then defines the source event and

the corresponding target event which is to be created when the source event is

retrieved from the engine. Thereby, the source event properties are replaced by

target event properties. In this case, the activityXPath is changed and an

additional topology identifier is added. Also the target event is only published

for state changes relevant for opaque activities, i.e., states of invoke activities

are mapped to states of opaque activities. Therefore, a mapping between the

state model of an invoke activity (and a loop activity, respectively) and the state

model of an opaque activity has been predefined. The mapping is performed

at runtime by the EventMappingHandler, which based on such an event

mapping definition gets a source event as input and creates a target event as

output.

Listing 6.1: Event Mapping Example

<eventMappings >

2 <eventMapping

manageableResourceDefini t ion ="mM: R e s e l l e r A c t i v i t i e s ">

4 <sourceEventProper t ies elementType =" I n v o k e A c t i v i t y ">

<m4c : process >rs2 : PurchaseOrderProcess </m4c : process >

6 <m4c : scopeXPath >/ process </m4c : scopeXPath>

<m4c : ac t i v i t yXPa th >/ process / sequence [0] / invoke [2]

8 </m4c : ac t i v i t yXPa th >

</ sourceEventProper t ies >

10 < ta rge tEven tP rope r t i es elementType =" OpaqueAct iv i ty ">

<m4c : topology >po : POChoreography </m4c : topology >

12 <m4c : process > r e s e l l e r : Resel lerProcess </m4c : process >

<m4c : scopeXPath >/ process </m4c : scopeXPath>

14 <m4c : ac t i v i t yXPa th >/ process / sequence [0] / opaqueAc t i v i t y [1]

</m4c : ac t i v i t yXPa th >

16 </ ta rge tEven tProper t i es >

</ eventMapping>

150 6 | Implementation and Evaluation

18 . . .

</ eventMappings >

Usage of the Muse Framework. Apache Muse provides a framework for

implementing applications which access resources as specified in the WSRF,

WS-BaseNotification, and WSDM specifications.

The Muse programming model is as follows. One defines a resource type in

terms of a WSDL interface which specifies a set of WSRF resource properties and

operations. In a corresponding Muse deployment descriptor one then defines,

in addition to the resource router and resource manager implementation, for

each resource type the context path and the set of provided capabilities which

reflect the functionality of the WSDL interface. Each capability is provided

a capability implementation in terms of a Java class. A Muse application is

packaged as a WAR file and deployed in a web container, such as the Tomcat

server. At runtime, the resource router obtains the SOAP request from the

SOAP engine and based on the SOAP headers constructs the EPR of the target

resource, obtains the resource to which the request is to be routed from the

resource manager based on the EPR, and then delegates the request to the

corresponding capability of the resource.

Muse provides a set of standard capability implementations, in particular

the ones specified in WSDM, and a standard resource router and resource

manager. All of these components can be customized and extended. Muse

has been used as follows. New resource router and resource manager im-

plementations have been created, the Mon4ChorResourceRouter and the

Mon4ChorResourceManager respectively, by overriding the existing Muse

classes. This was needed because the Muse internal Resource representa-

tion has not been used. Instead, the resources are stored in the Monitor DB.

Internally, a Muse resource type has been mapped to one Muse Resource,

which then obtains the particular concrete resource based on the EPR from the

Monitor DB.

New capabilities as described in Chapter 3 have been implemented. That

involved creating the corresponding WSDL definition and a corresponding

Java-based implementation for each capability. The capability implementa-

6.1 | Prototypical Implementation 151

tion realizes the operations, notifications, and property access of the capa-

bility interface. A capability implementation can use other capabilities, e.g.,

for sending of notifications, or internal monitoring mechanisms, such as the

Mon4ChorCustomController for getting information from the process en-

gine.

For example, the interface of the ActivityStateCapability provides

a state property of an activity instance. A corresponding WSDL defini-

tion ActivityState.wsdl has been created and a corresponding Java class

ActivityStateCapabilityImpl, which provides a getState method has

been implemented. Only one object of that class is instantiated. It acts as a

proxy for all resource instances of that capability. If, for example, the service

requester invokes a WSRF method (e.g., getResourceProperty) on the Ac-

tivity State interface requesting that property for a specific activity instance

referenced in the EPR, the getState method is invoked by the Muse frame-

work. The method first obtains the corresponding activity instance from the

Monitor DB and then returns the state property value of that resource.

When the Muse application is deployed in the web container, the monitor

model is used for configuring the capability implementations. Depending on

the capability, this can include establishing filters on which concrete resources

are to be monitored (based on the settings in the resourceDescriptor

element of the manageable resource definition), subscribing to topics of other

manageable resource endpoints, or in case of custom properties, registering of

CEP statements in the CEP engine.

For implementing notifications, the pub/sub-mechanism of WS-Notification

for which Muse already provides several capabilities is used. Thereby, the

NotificationProducer provides a subscribe operation which is used by

NotificationConsumers to subscribe for a set of topics. They are then

notified using the notify operation. For instance, when an activity event is

received from the generic controller, the Mon4ChorCustomController for-

wards that event to the Java class ActivityStateEventCapabilityImpl.

The capability implementation first determines based on the monitor model

whether that event is relevant at all. In the positive case, a corresponding

XML-based WSDM event is created and published to the corresponding topic

152 6 | Implementation and Evaluation

of the capability Activity State Event.

The implementation of the Event Composition capability creates composite

events based on CEP statements. During initialization, the capability implemen-

tation EventCompositionCapabilityImpl subscribes to topics for getting

events needed for calculation of the corresponding properties and registers

the CEP statement in the ESPER engine. At runtime, when an XML-based

event is received, it is forwarded to the CEP engine. The CEP engine sends

the resulting event back to the capability implementation which forwards it to

a corresponding target topic. The property value is extracted from the event

by CustomPropertyCapabilityImpl and is updated in the corresponding

resource in the Monitor DB. It is available for later pull requests and sent

to the outgoing topic of the Custom Property capability notifying subscribed

consumers.

6.1.2 Analysis and Adaptation Framework

The KPI dependency tree learning is based on the WEKA suite 3.5, which

provides well-known decision tree algorithms as a Java library. The concrete

algorithms and settings which have been used are described in the experimen-

tation section.

The KPIAnalyzer gets as input a KPIAnalysisModel. For each analysis

task, first the resources to be analyzed are determined in the Monitor DB.

For each resource, the needed property values are obtained and the data

set as requested by WEKA is built, i.e., the corresponding data objects are

populated. The learned tree is returned describing the tree in the DOT format.

For manipulating the tree structure for prediction as part of the adaptation

framework, a TreeParser parses the DOT text and creates a Java-based

representation of the tree, a DecisionTree object consisting of TreeNode

and TreeBranch objects. It also stores a set of quality metrics provided by the

WEKA learning algorithm, e.g., the accuracy of the learned tree. The Java-based

representation of the tree is then later used during prediction and extraction

of adaptation requirements. If a graphical display of the tree is needed for

analysis purposes, the tree can be shown in a Java Swing-based user interface.

6.1 | Prototypical Implementation 153

The runtime adaptation part as described in Chapter 5 consists of the imple-

mentation of checkpoints, runtime prediction based on KPI dependency trees,

identification and ranking of adaptation strategies, and adaptation enactment.

The components of the adaptation framework are depicted in Figure 6.3.

The prerequisite for adaptation to take place, is that already a set of process

instances has been monitored and corresponding KPI trees have been learned.

Therefore, a DependencyAnalysisScheduler regularly checks in the Mon-

itor DB whether the configured set of process instances has been executed and

then triggers the learning process. The DecisionTree objects for analysis are

stored in the Analysis DB.

The realization of checkpoints is based on the Pluggable Framework and its

feature of blocking events. A blocking event halts the process instance execution,

until another event (incoming event) is sent to the engine. For supporting check-

points, a new custom controller, the CheckPointCustomController, has

been implemented. It is configured via the adaptation model (cf. Section 5.3.3).

Based on the checkpoint trigger definition, it registers at the generic controller

and creates a temporary incoming queue for receiving needed blocking events

from the generic controller.

Figure 6.3: Adaptation Framework

154 6 | Implementation and Evaluation

During process execution, the CheckPointCustomController receives

blocking events and checks whether they trigger a checkpoint. When a check-

point is triggered, the performAdaptation operation is invoked in the class

AdaptationProcess. The operation orchestrates all steps of the adaptation

process as follows. A new CheckPointInstance object is created represent-

ing an instance of the corresponding checkpoint definition. The corresponding

resource (typically the current process instance) is determined and retrieved

from the Monitor DB and assigned to the CheckPointInstance.

For each KPI, the PredictionManager retrieves the KPIDependencyTree

objects of the checkpoint from the Analysis DB and the known properties for the

instances are retrieved from the Monitor DB. The prediction is performed and

a new InstanceTree object is created representing the instance tree. The

resulting instance trees are saved in the CheckPointInstance object and

can be used in the next phase for identification of adaptation requirements.

The RequirementsIdentifier extracts a set of adaptation requirements

from the trees. The StrategyIdentifier identifies strategies, which are

then ranked by the StrategySelector based on the defined preferences and

constraints in the adaptation model. The created AdaptationRequirement

and AdaptationStrategy objects are appropriately connected and stored in

the Adaptation DB for later analysis purposes (cf. runtime artifacts metamodel

in Section 5.4).

The selected adaptation strategy is sent to the AdaptationEnactor, which

updates the RuntimeConfiguration with the current binding of adaptation

subjects (if needed). The adaptation actions are supported by the Pluggable

Framework via incoming events, i.e., as a reply to a blocking event, an incoming

event is sent to the engine, which changes the state or value of an activity or

variable and unblocks the process execution. Supported adaptation action types

are service substitution by changing the endpoint address in a partner link,

change of process variable values, and skipping of activity states.

6.1 | Prototypical Implementation 155

6.2 Experimental Evaluation

The KPI dependency analysis and the runtime adaptation approach have been

experimentally evaluated based on the purchase order processing scenario.

The purchase order processing scenario has been implemented based on

the prototype. The process of the reseller has been realized as a BPEL process

which interacts with six Web services. These Web services are provided in the

scenario by two different suppliers, the shipper, the warehouse, the bank and

the customer. The customer service thereby triggers the reseller process by

sending an order to it. The reseller process interacts with the other five services

to process the order.

The Web services have been implemented in Java as mockup services and

simulate certain influential factors. For example, the execution time, the avail-

ability and the outputs of a service operation can be configured to vary based

on certain configurable probabilities and dependent on input data. Additionally,

a simple Java client simulating the customer role in the choreography has been

created, which triggers the process instances of the reseller. The so created

testbed allows to configure the behavior of services in the choreography.

For experimentation, all components of the prototype have been installed on

a single laptop computer. This ensures that external influential factors such as

network latency cannot influence the experimentation results.

6.2.1 Experimental Evaluation of the KPI Dependency Analysis

In the first step, the KPI dependency analysis has been evaluated without

runtime prediction and adaptation focusing solely on evaluating its capability to

explain the influential factors. The evaluation results presented in the following

have already been described in [WLR+09].
Order fulfillment time is defined as the KPI to be analyzed, measured as the

overall duration of the reseller process, and create a set of around 30 potential

influential factors. The corresponding property definitions are generated as

described in Section 4.3.4. In addition, several domain-specific properties such

as product types, number of ordered products, customer type, and order in stock

156 6 | Implementation and Evaluation

are defined manually.

The experimentation procedure is as follows. First, a setting is created by

configuring the mockup services to simulate a certain behavior, so that the

influential factors which are expected to be shown by the analysis are known

beforehand. Then, the execution of a set of process instances is triggered using

the test client. As the process instances are executed, both the result of the

KPI property and the values of the influential factors are monitored and saved

in the Monitor DB. After the execution of all process instances has finished,

the dependency analysis is performed. The analysis result is then evaluated in

respect to the previously configured expected influential factors.

The configuration simulates the following influential factors: (i) certain

product types are configured to not be available in the warehouse with higher

probability than others; in that case these products have to be ordered from

suppliers, which has a major impact on process duration (ii) the supplier

delivery time of supplier 1 is on average higher than expected; (iii) the average

shipment delivery time can vary strongly and is relatively high in relation to

the overall process duration. The KPI has two classes (green and red). Based

on the settings, the expectation is that the dependency analysis shows that the

KPI mainly depends on product type, supplier 1 delivery time, and shipment

delivery time. Other influential factors such as response times of services also

influence the KPI value, but in rather marginal way, and they are expected not

to be shown.

Figure 6.4 shows the generated dependency tree after the execution of 390

process instances. The tree was generated using the J48 decision tree algorithm

from the WEKA tool suite. It shows that all process instances in which shipment

delivery time was greater than 96 seconds (the time unit shown in the tree is

milliseconds) were red. It also shows that this was the case for 59 instances

(out of 390). In the other case, the outcome further depended on the order in

stock property, which denotes whether the orders could be delivered from stock

or had to be ordered by the suppliers. All instances where order in stock was

true, reached a green KPI value. Otherwise, again the outcome depended on

shipment delivery time, supplier 1 delivery time, and response time supplier 1.

When comparing the influential factors in the generated tree with the ex-

6.2 | Experimental Evaluation 157

Figure 6.4: Generated Dependency Tree for Order Fulfillment Time

pected influential factors that have been configured, one can see that two of the

three expected factors are shown, namely the shipment delivery time and the

supplier 1 delivery time. The third factor that was expected, the product type,

is however missing. Instead, order in stock has been chosen by the decision

tree algorithm. This is because the unavailability of the product type directly

influences order in stock. Both properties are correlated and influence the KPI

value in the same way, and thus only one of them is shown in the tree. This

result can be seen as unsatisfactory, as it does not show the root cause, namely

a specific product type in this case. Note also that an additional factor has been

shown in the tree, which has not been expected, the supplier 1 response time.

Displaying of undesirable factors is discussed further below.

In order to deal with a factor shown in the tree “hiding” other factors, because

it is coincidentally correlated with those factors, the user who performs the

analysis can follow two approaches: (i) he can simply remove the factor (in

this case order in stock) from the potential influential factor set and repeat the

158 6 | Implementation and Evaluation

Figure 6.5: Generated Tree for Order in Stock

analysis; obviously in that case other factors will be chosen by the algorithm

to classify the instances instead; (ii) he can drill-down and use the factor as

target variable and repeat the analysis. In the second case, the order in stock

property would be chosen as KPI property (with the KPI class green in case

of order in stock=true) and another tree would be generated which explains

when ordered products are not in stock. Such a tree is shown in Figure 6.5.

This tree now clearly explains how the availability of products in stock depends

on product type and ordered quantity.

Several more experiments have been performed. Table 6.1 summarizes the

results.

Different Algorithms. The experiments were performed using two different

algorithms from the WEKA suite, J48 and ADTree. Both algorithms were used

for generating trees based on different numbers of instances (100, 400, 1000).

The experiment results show that for the same number of instances, the ADTree

algorithm produced bigger trees than J48 (third column: number of leaves

and nodes). However, at the same time, it also reached a higher accuracy (last

column: correctly classified instances). The column “Distinct Factors” shows

how many distinct influential factors are displayed in the tree. Concerning

both the number of distinct factors and also the concrete chosen factors, both

algorithms have shown similar results.

6.2 | Experimental Evaluation 159

Instances Algorithm Leaves/ Distinct Correctly
Nodes Factors Classified

100 J48 4/7 4 95,0 %

100 ADTree 11/16 4 98,0 %

400 J48 6/11 4 97,8 %

400 ADTree 17/26 5 99,0 %

1000 J48 11/18 6 98,8 %

1000 J48 -R 6/11 4 97,9 %

1000 J48 -U 13/22 9 99,2 %

1000 ADTree 19/28 6 99,4 %

Table 6.1: Experiment Results: KPI Dependency Analysis

Tree Size. The experiments have further shown that the generated trees are

getting bigger with the number of instances. For example, for 100 instances J48

generated a tree with 7 nodes, for 1000 instances however a tree with 18 nodes.

The accuracy of the bigger tree improved thereby only by 1%. Bigger trees are

less readable and contain often several factors of only marginal influence. For

reducing the tree sizes, experiments were performed with several algorithm

parameters. The table shows the results of using unpruned trees (maximizing

accuracy; -U) and reduced error pruning for J48 (-R). Thereby, reduced error

pruning (J48 -R) was shown to be effective for reducing the tree size while not

losing too much of accuracy. For example, for 1000 instances reduced error

pruning reduced the size of the tree by half, sacrificing only 1% of accuracy. In

general, however, the usage of parameters has lead to only marginal changes in

the experiments. In case of too many undesirable (marginal) factors shown in

the tree, an option is to simply remove those factors from the analyzed factor

set and repeat the analysis. This assumes that the user has a certain domain

knowledge being able to decide which factors are marginal.

Learning Performance. The performance of the learning of a tree is about 30

seconds for 1000 instances (on a standard laptop computer). As learning can

160 6 | Implementation and Evaluation

be done in the background, it does not affect the instance execution.

Accuracy of the Learned Classification Model. The quality of the trained

tree as a classification model can be assessed in terms of its accuracy, which is

the percentage of correctly classified instances from a test set. This metric is

provided by the decision tree algorithm after validation of the model (cross-

validation) [WF05]. As already discussed, ADTree generates trees with slightly

higher accuracy than J48 resulting in bigger trees. For explanation purposes, it

is more preferable to have readable trees than to maximize accuracy. When

the tree is used automatically for prediction, then a higher accuracy would be

preferable instead.

Conclusions. The experiments have demonstrated that the generated depen-

dency trees show the expected influential factors in a satisfactory manner and

produce suitable results with default settings without requiring the user to

adjust settings manually. Two issues have been identified which may arise and

require the user to adjust the analysis settings in order to improve the analysis

result: (i) the tree might “hide” an influential factor, if it affects the KPI in the

same way as some other factor; in that case removal or drill-down might help;

(ii) the tree grows with the number of analyzed instances making it less readable

for explanation purposes; in that case one can try to use reduced error pruning

(reducing accuracy) or remove marginal factors from the potential influential

factor set manually. Both cases require the user to have domain-knowledge

in order to either suspect the possible dependencies or the marginal factors,

respectively.

6.2.2 Experimental Evaluation of Prediction and Adaptation

In the second step, runtime prediction and adaptation are evaluated. The

evaluation results presented in the following have already been described

in [WZK+12].
An adaptation model with order fulfillment time as KPI and two checkpoints

is defined. The first one is triggered after completion of the Check Stock activity

thus allowing still to select both the supplier and shipper. The second one

6.2 | Experimental Evaluation 161

is placed right before the shipment thus allowing to still select the concrete

shipment service.

As service substitution is supported as adaptation action, overall 30 service

candidates for the shipper and supplier services with different QoS characteris-

tics are created. The QoS characteristics are time, cost, and reliability. While

cost and reliability are defined as constant values, execution time can vary for

each execution of the service, in particular because the services are configured

to implement some random behavior to some extent. The adaptation model

defines how these services affect the influential factors at each checkpoint.

A configuration for these services is created to simulate the behavior of the

specified QoS characteristics, however with small deviations dependent on

certain influential factors (e.g., duration is made dependent on factors such as

product types and amounts, and random behavior).

Before the self-adaptation can take place, in a bootstrapping phase, a set

of process instances has to be executed first in order to create dependency

trees for each checkpoint. In this phase, for each process instance the concrete

supplier and shipper services are randomly selected in order to ensure that

historical data used for learning contains QoS data on each of these services

and on most of their combinations. The execution of 500 process instances is

triggered using a test client. After process execution, for each ckeck point a

dependency tree is learned using the J48 algorithm. For the first checkpoint

the decision tree has an accuracy of 88.2%, for the second one the accuracy is

94.7%.

Two different constraints and preferences models are created, one preferring

lower cost, the other lower duration. The preferences are specified in respect

to the KPI, and the three QoS characteristics (time, cost, reliability). Table 6.2

shows the weights specified for the two preferences models (second column).

The KPI is specified to have three KPI classes (green, yellow, red). In addition,

a constraint is specified that the KPI class red is to be prevented.

The experiment is now performed as follows. One triggers the execution

again using a test client. For each of the two constraints and preferences

models three experimental runs are performed, with 200 instances per run;

the first run is performed with the default configuration (optimal according to

162 6 | Implementation and Evaluation

the preferences model) without using the adaptation framework; the second

run performs the adaptation at the first checkpoint only, the third run at the

second checkpoint only.

Prediction and Adaptation (200 instances per run)
Check Weights No Need Too Late Adapt. Need KPI
Point KPI/time/cost/rel. pred./meas. pred./meas. pred./success Evaluation

None
0.2/0.1/0.5/0.2 N/A N/A N/A 110/26/64
0.2/0.5/0.1/0.2 N/A N/A N/A 148/31/21

Wareh.
0.2/0.1/0.5/0.2 102/63 0/0 98/88 119/32/49
0.2/0.5/0.1/0.2 108/105 0/0 92/90 183/12/5

Shipm.
0.2/0.1/0.5/0.2 85/85 6/6 109/92 157/20/23
0.2/0.5/0.1/0.2 105/103 5/5 90/88 180/11/9

Table 6.2: Experiment Results: Prediction and Adaptation

Table 6.2 shows the experiment results. Each row of the table depicts one

particular run of 200 process instances. The columns “No Need”, “Too Late”,

and “Adaptation Need” show what is predicted at a checkpoint (first value)

and whether the prediction has been correct (second value) when measured at

the end of the process instance (“measured”). This is done for the three cases

“No Need” (predicted KPI class is green or yellow), “Too Late” (predicted KPI

class is red), and “Adaptation Need” (instance tree has more than one leaf). For

example, the value of “102/63” in the “No Need” column means that for 102

process instances the KPI class green or yellow was predicted at the checkpoint,

however at the end only 63 instances reached those predicted classes, the other

ones in this case led to the KPI class red. The last column “KPI Evaluation”

depicts the overall result for the KPI classes (green, yellow, red) of the 200

instances in each run.

Duration and Cost of Adaptation. The prediction and adaptation time to-

gether have been measured to be below a second. Thus, only in case of very

short running processes, this should be taken into account. In case of usage of

adaptation mechanisms which take longer to be enacted, the adaptation time

and potentially other factors reflecting the cost of adaptation could also be

modeled as influential factors and be given a weight in the preferences model.

6.2 | Experimental Evaluation 163

Then, they would be taken into account during selection of an adaptation

strategy.

Adaptation Effectiveness. The results of the KPI evaluation (column “KPI

Evaluation”) show that the KPI performance has been considerably improved

by using the adaptation framework (runs 2 and 3 using adaptation at check-

points outperform the first one without checkpoints). For example, for the

first preference model the number of KPI violations (KPI class = red) has been

reduced from 64 to 49 and 23, respectively.

The effectiveness of preventing KPI violations obviously depends strongly

on the preferences model. In case of preference on service execution time

rather than cost, faster services are selected and the overall process duration

is decreased. For example, at the warehouse checkpoint in case of preference

on time only 5 KPI violations rather than 49 have been reached (last number

in column “KPI Evaluation”). The reason that there are still violations, is that

the services do not behave exactly as specified in the impact model. They have

been configured to deviate in a certain range.

The experiments show further that the prediction accuracy is the higher the

later the checkpoint is executed. For example, at the shipment checkpoint

when no adaptation was needed (column “No Need”) the prediction accuracy

was 100% (85/85) for preference on cost and 98% for preference on service

execution time. However, the later the adaptation takes place, the higher

the risk that it is too late to adapt, which was the case for several instances

at the shipment checkpoint (column “Too Late”). Of course, for even better

effectiveness, one could predict and adapt at both checkpoints for each process

instance.

6.3 Summary and Conclusions

This chapter has presented a prototypical implementation and an experimen-

tal evaluation of the approach. The prototype is based on the Apache ODE

BPEL engine and uses the Pluggable Framework and the Muse framework

for implementing the monitoring framework. The dependency analysis uses

164 6 | Implementation and Evaluation

decision tree algorithms from the WEKA suite to implement the dependency

tree analysis. Finally, the adaptation framework algorithms are implemented

in Java. Based on this prototype, the purchase order scenario has been imple-

mented. Thereby, the reseller process has been implemented as a BPEL process,

while other choreography participants have been implemented as Java mockup

services with configurable behavior needed for experiments.

The experimental evaluation of the analysis approach has shown that the

generated dependency trees explain the influential factors in a satisfactory

manner out-of-the-box. It has been sketched how the user can perform drill-

down analysis and how the size of trees can be decreased, if necessary. The

evaluation of the adaptation approach has shown that KPI performance is

improved and that effectiveness in particular depends on the placement of

checkpoints, the weights set in the preferences model, and the conformance of

effects specified in the adaptation model to the actual measured values.

6.3 | Summary and Conclusions 165

C
H

A
P

T
E

R 7
CONCLUSIONS AND OUTLOOK

In this thesis an integrated approach to monitoring, analysis, and adaptation of

processes based on KPIs was presented. In the following the main contributions

of the thesis are summarized and possible extensions for future work are

discussed.

In Chapter 1, the application area and the motivation of the thesis were

introduced. This thesis focused on business processes implemented as service

orchestrations running in service choreographies. One important aspect of such

processes is management of their performance in terms of KPIs. Management

thereby includes three aspects. Firstly, KPIs have to be monitored in service

choreographies. Secondly, if monitoring shows that KPI performance is not

satisfactory, there is a need for analyzing and understanding the influential

factors. Thirdly, after analyzing how the KPIs depend on a set of influential

factors, the process is to be proactively adapted in an automated fashion in

order to improve its performance. The goal of the thesis was thus to provide

an automated approach to monitoring, analyzing, and adapting processes in

service choreographies with the goal to improve their KPI performance.

After motivating the work, in Chapter 2, related BPM and SOA concepts and

technologies were presented. These include orchestrations and choreographies

167

and corresponding languages used in the thesis, namely BPEL and BPEL4Chor,

and Web services technologies such as WSDM. In the second part of the chapter

related research approaches were discussed and compared to the approach of

the thesis.

As the first contribution of the thesis, Chapter 3 presented a monitoring

approach for monitoring of processes in service choreographies. The presented

monitoring metamodel allows defining monitor models in terms of a set of

manageable resources and their properties. Resources and their properties can

be accessed over WSDL-based resource endpoints. The supported resource

types are derived from the runtime instance types of a choreography. A monitor

model is created by defining a set of resource endpoints each assigned to a

resource type and specifying a set of concrete resource instances which should

be exposed, e.g., which concrete activities of the purchase order process should

be monitored. In addition to basic properties such as activity state or variable

value, a resource can expose custom properties, which are calculated based

on events using an event processing language. These custom properties are

needed to evaluate the performance characteristics of the processes and are

used for the evaluation of KPIs. The monitoring approach is the basis of the

overall approach as it allows to monitor KPIs of the processes in choreographies.

The second contribution, presented in Chapter 4, builds on the monitoring

framework and extends it in order to support the analysis of process perfor-

mance in terms of KPIs and their dependencies on influential factors. The KPI

dependency analysis is mapped to a classification problem and decision tree

algorithms are used for classification learning. A KPI analysis model is defined

on top of a monitor model specifying a set of KPIs, potential influential factors

and analysis tasks. Within the classification learning, a KPI represents the target

attribute and is defined based on a resource property specified in the monitor

model and a set of KPI classes; influential factors are the explanatory attributes.

For each defined analysis task, a KPI dependency tree is learned. It explains

to the user how the KPI depends on the selected potential influential factors.

The created KPI dependency trees can also be used for prediction, which is the

basis for runtime adaptation.

The third contribution extends the monitoring and analysis framework in

168 7 | Conclusions and Outlook

order to enable proactive runtime adaptation of processes with the goal to

improve the KPIs. Chapter 5 described an adaptation metamodel which enables

specifying a set of adaptation subjects with corresponding characteristics and

adaptation alternatives, a set of checkpoints, and a set of constraints and prefer-

ences. Each adaptation alternative specifies how it affects the characteristics of

the corresponding adaptation subject. This information is then used at runtime

to pause the process execution at specified checkpoints, perform a KPI prediction

based on KPI dependency trees, and select the most appropriate alternatives for

each adaptation subject according to the specified constraints and preferences.

The algorithm to select the adaptation alternatives uses dependency trees as

input which are learned for each checkpoint and each KPI.

Chapter 6 presented the prototypical realization and scenario-based evalua-

tion of the approach. In order to demonstrate the realizability of the proposed

concepts, a prototype has been developed. It is based on an existing BPEL

engine, a CEP framework, a WSDM framework, and a data mining framework.

Based on those components the monitoring, analysis and adaptation framework

has been implemented. The purchase order scenario has been implemented

based on BPEL and has been used for experiment-based evaluation of the

approach.

7.1 Outlook

The approach presented in the thesis can be extended in several ways in future

work.

The monitoring approach of the thesis supports monitoring in choreographies

across participants of different organizations. It assumes that these partici-

pants have agreed on the choreography model and then have derived the

WSDM-based monitoring interfaces which each participant has to provide. This

approach could be extended towards SLAs supporting the creation of monitor-

ing agreements containing SLAs between participants in choreographies. Using

WS-Agreement terminology [Ope07], a service provider could provide an agree-

ment template defining service level objectives based on resource properties

specified in its WSDM-based monitoring interface. He could also define several

7.1 | Outlook 169

agreement templates which offer different levels of monitoring and manage-

ment functionality as a service. Such an SLA specified for a choreography could

not only model the monitoring interface the service provider provides, but

also the monitoring interface he requests from the service requester, e.g., to

calculate composite properties across processes of different participants which

are the basis of service level objectives.

The analysis approach of the thesis deals with analyzing how a KPI depends

on a set of influential factors. Firstly, one should note that the approach is not

constrained to be used only for the typical KPI dimensions, i.e., time, quality,

and cost. But the approach could also be used to analyze indicators from

other areas such as flexibility, sustainability, and compliance. Secondly, one

important aspect of the approach is the modeling of potential influential factors

used for analysis. Manual modeling is cumbersome and time-consuming, thus

several rules have been presented how influential factors can be generated

based on the process model. This approach could be refined and extended for

supporting the generation of an appropriate set of potential influential factors

for different types of KPIs and different analysis questions. For example, the

set of potential influential factors is different for a KPI specified only for one

process model (e.g., process duration) and a KPI specified across several process

models (e.g., overall choreography duration), and even other granularities are

possible. Also, it should be possible to pose different analysis questions, such

as analysis of process duration in respect to process input data only or analysis

in respect to service infrastructure metrics. In both cases, different sets of

potential influential factors should be used.

The adaptation approach relies on existing adaptation mechanisms. In addi-

tion to already supported mechanisms, more sophisticated adaptation mecha-

nisms could be integrated such as splitting of processes or process fragment

substitution (e.g., [KKL07b, LWK+10b]). Another challenge is how to express

the effects of the corresponding adaptation actions on influential factors. In

the thesis, predicates with concrete values have been specified on influential

factor property values. In some cases such a predicate might be unknown, so

one could specify effects which simply state that an adaptation action improves

or deteriorates a certain property. Accordingly, the selection algorithms would

170 7 | Conclusions and Outlook

have to be adapted.

Service-based applications can be divided into several logical layers, a chore-

ography layer, an orchestration layer, a service layer, and a service infrastructure

layer. In all of those layers, there are different types of resources and properties

which can be monitored, analyzed, and adapted. Also, properties in one layer

often influence properties in other layers. For example, the unavailability of the

service infrastructure can have severe impact on the overall process duration

in the process layer. This thesis focused on the service choreography layer

and the service orchestration layer. The approach could be extended to take

into account also the service layer and the service infrastructure layer. One

possible approach in that direction has been presented in [GKMW11]. This

requires integrating additional monitoring and adaptation mechanisms. For

example, in the service infrastructure layer system monitoring and management

mechanisms could be used. If business processes run in the cloud, then cloud

infrastructure management can be integrated. In those cases, additional influ-

ential factors can be monitored and additional adaptation actions are available

(e.g., provisioning of new resources in the cloud). In addition to simply adding

those monitoring and adaptation mechanisms, one has to correlate information

between the layers.

On top of single applications one can also look at service networks. [WDL+08]
has discussed that KPIs specified in the service network layer result in events in

the choreography and orchestration layer. One challenge would be in providing

methods to derive monitor contracts in service networks in a model-driven

manner. If a service network is mapped to a service choreography between par-

ticipants which is again refined to executable service orchestrations, then in the

same way KPIs and SLAs between participants specified in the service network

layer could be mapped to monitoring contracts in the service choreography

layer and further refined to monitor models for service orchestrations.

7.1 | Outlook 171

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of several people

who I want to thank.

First and foremost I want to thank my supervisor Frank Leymann for giving

me the opportunity to work in his research group, for his advice, patience, and

continuous support. I also want to say a big thank you to Dimka Karastoy-

anova for her constant support, many valuable discussions and suggestions,

encouragement, and guidance during the entire process.

I want to thank my colleagues at the IAAS for many helpful discussions on

technical topics but also for the great times we spent together outside the

institute. I especially want to thank my office mates Zhilei Ma and Alexander

Nowak for the pleasant time and support in all the tasks we had to fulfill.

Special thanks go to Alexander Nowak and Steve Strauch for reviewing the

thesis and giving me valuable comments. I also thank Oliver Kopp who patiently

answered all my questions on choreography topics. Thanks also go to various

other colleagues at IAAS, most notably Olha Danylevych, Tammo van Lessen,

Daniel Martin, Joerg Nitzsche, Daniel Schleicher, David Schumm, Sebastian

Wagner, and Daniel Wutke, with whom I worked in EU projects.

During my work on EU projects I collaborated with many people of other

research institutions who gave me valuable insight and ideas. Special thanks go

to Philipp Leitner from the Technical University of Vienna for our collaboration

173

on machine learning topics and Raman Kazhamiakin from the FBK Trento for

our collaboration on adaptation topics.

Last but not least I want to thank my family for their continuous motivation

and support.

174 7 | Conclusions and Outlook

BIBLIOGRAPHY

[ACM+07] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici,

and Pierluigi Plebani. PAWS: A Framework for Executing Adaptive

Web-Service Processes. IEEE Software, 24(6):39–46, 2007.

[Apaa] Apache Software Foundation. Apache ActiveMQ 5.2. http:

//activemq.apache.org/.

[Apab] Apache Software Foundation. Apache Muse 2.2.0. http://

attic.apache.org/projects/muse.html.

[Apac] Apache Software Foundation. Apache ODE 1.3.4. http://ode.

apache.org/.

[AZ12] Rafael R. Aschoff and Andrea Zisman. Proactive Adaptation of

Service Composition. In Proceedings of the 7th International Sym-
posium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS ’12), pages 1–10. IEEE Computer Society, 2012.

[BEMP07] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg. Monitoring

Business Processes With Queries. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases (VLDB ’07), pages

603–614. VLDB Endowment, 2007.

[BFPG12] Aymen Baouab, Walid Fdhila, Olivier Perrin, and Claude Go-

dart. Towards Decentralized Monitoring of Supply Chains. In

175

http://activemq.apache.org/
http://activemq.apache.org/
http://attic.apache.org/projects/muse.html
http://attic.apache.org/projects/muse.html
http://ode.apache.org/
http://ode.apache.org/

Proceedings of the 19th International Conference on Web Services
(ICWS ’12), pages 600–607. IEEE Computer Society, 2012.

[BG05] Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring

of WS-BPEL Processes. In Proceedings of the 3rd International
Conference of Service-Oriented Computing (ICSOC ’05), pages 269–

282. Springer, 2005.

[BG13] Luciano Baresi and Sam Guinea. Event-Based Multi-level Service

Monitoring. In Proceedings of the 20th International Conference
on Web Services (ICWS ’13), pages 83–90. IEEE Computer Society,

2013.

[BGNS10] Luciano Baresi, Sam Guinea, Olivier Nano, and George

Spanoudakis. Comprehensive Monitoring of BPEL Processes. IEEE
Internet Computing, 14(3):50–57, 2010.

[BGPT09] Luciano Baresi, Sam Guinea, Marco Pistore, and Michele Trainotti.

Dynamo + Astro: An Integrated Approach for BPEL Monitoring.

In Proceedings of the 16th International Conference on Web Services
(ICWS ’09), pages 230–237. IEEE Computer Society, 2009.

[BTPT06] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Train-

otti. Run-Time Monitoring of Instances and Classes of Web Service

Compositions. In Proceedings of the 13th International Conference
on Web Services (ICWS ’06), pages 63–71. IEEE Computer Society,

2006.

[CBC+06] Pawan Chowdhary, Kumar Bhaskaran, Nathan Caswell, Henry

Chang, Tian Chao, Shyh-Kwei Chen, Michael Dikun, Hui Lei,

Jun-Jang Jeng, Shubir Kapoor, Christian Lang, George Mihaila,

Ioana Stanoi, and Liangzhao Zeng. Model driven development

for business performance management. IBM System Journal, Vol.
45, No. 3, 2006.

176 Bibliography

[CCDS04] Malú Castellanos, Fabio Casati, Umeshwar Dayal, and Ming-Chien

Shan. A Comprehensive and Automated Approach to Intelligent

Business Processes Execution Analysis. Distributed and Parallel
Databases, 16(3):239–273, 2004.

[CCDS07] Fabio Casati, Malu Castellanos, Umeshwar Dayal, and Norman

Salazar. A Generic Solution for Warehousing Business Process

Data. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07), pages 1128–1137. VLDB Endow-

ment, 2007.

[CCSD05] Malú Castellanos, Fabio Casati, Ming-Chien Shan, and Umeshwar

Dayal. iBOM: A Platform for Intelligent Business Operation Man-

agement. In Proceedings of the 21st International Conference on
Data Engineering (ICDE ’05), pages 1084–1095. IEEE Computer

Society, 2005.

[CDPEV08] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and

Maria Luisa Villani. A Framework for QoS-aware Binding and

Re-binding of Composite Web Services. Journal of Systems and
Software, 81(10):1754–1769, 2008.

[Cha04] David A. Chappell. Enterprise Service Bus. Theory in Practice.
O’Reilly Media, 2004.

[CVG12] Marco Comuzzi, Jochem Vonk, and Paul Grefen. Measures and

Mechanisms for Process Monitoring in Evolving Business Net-

works. Data and Knowledge Engineering, 71(1):1–28, 2012.

[DCS09] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba:

A Methodology for Modeling and Evolving Cross-organizational

Business Processes. ACM Transactions on Software Engineering
and Methodology, 19:6:1–6:45, 2009.

[DD04] Remco Dijkman and Marlon Dumas. Service-oriented Design: A

Multi-viewpoint Approach. International Journal of Cooperative
Information Systems, 13(4):337–368, 2004.

Bibliography 177

[dGAD14] Silvana de Gyvés Avila and Karim Djemame. Proactive Adaptation

in Service Composition using a Fuzzy Logic Based Optimization

Mechanism. In Proceedings of the 4th International Conference
on Cloud Computing and Services Science (CLOSER ’14), pages

257–267. SciTePress, 2014.

[DKLW07] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.

BPEL4Chor: Extending BPEL for Modeling Choreographies. In

Proceedings of the 14th International Conference on Web Services
(ICWS ’07), pages 296–303. IEEE Computer Society, 2007.

[DKLW09] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.

Interacting Services: From Specification to Execution. Data &
Knowledge Engineering, 68(10):946 – 972, 2009.

[dLvdAD14] Massimiliano de Leoni, Wil van der Aalst, and Marcus Dees. A

General Framework for Correlating Business Process Characteris-

tics. In Proceedings of the 12th International Conference on Business
Process Management (BPM ’14), pages 250–266. Springer, 2014.

[EM08] Abdelkarim Erradi and Piyush Maheshwari. Dynamic Binding

Framework for Adaptive Web Services. In Proceedings of the
3rd International Conference on Internet and Web Applications and
Services (ICIW ’08), pages 162–167. IEEE Computer Society, 2008.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, 2005.

[Esp] EsperTech. ESPER 3.2. http://www.espertech.com/

esper/.

[FBS05] Xiang Fu, Tevfik Bultan, and Jianwen Su. Realizability of Conver-

sation Protocols with Message Contents. International Journal of
Web Services Research, 2(4):68–93, 2005.

[FJMM12] Jan-Philipp Friedenstab, Christian Janiesch, Martin Matzner, and

Oliver Muller. Extending BPMN for Business Activity Monitoring.

178 Bibliography

http://www.espertech.com/esper/
http://www.espertech.com/esper/

In Proceedings of the 45th Hawaii International Conference on
System Sciences (HICSS ’12), pages 4158–4167. IEEE Computer

Society, 2012.

[FM99] Yoav Freund and Llew Mason. The Alternating Decision Tree

Learning Algorithm. In Proceedings of the 16th International Con-
ference on Machine Learning (ICML ’99), pages 124–133. Morgan

Kaufmann Publishers Inc., 1999.

[GKMW11] Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and Bra-

nimir Wetzstein. Multi-layered Monitoring and Adaptation. In

Proceedings of the 9th International Conference on Service Oriented
Computing (ICSOC ’11), pages 359–373. Springer, 2011.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H. Witten. The WEKA Data Mining

Software: An Update. ACM SIGKDD Explorations Newsletter,
11:10–18, 2009.

[HKMP08] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco

Pistore. A Framework for Proactive Self-adaptation of Service-

Based Applications Based on Online Testing. In Proceedings of
the 1st European Conference on Towards a Service-Based Internet
(ServiceWave ’08), pages 122–133. Springer, 2008.

[HY81] Ching-Lai Hwang and Kwangsun Yoon. Multiple Attribute Decision
Making: Methods and Applications. Springer, 1981.

[IBM15] IBM Knowledge Center. IBM Business Monitor 8.5.5 doc-

umentation, 2015. http://www-01.ibm.com/support/

knowledgecenter/SS7NQD_8.5.5.

[Inm02] William H. Inmon. Building the Data Warehouse. John Wiley &

Sons, Inc., 3rd edition, 2002.

Bibliography 179

http://www-01.ibm.com/support/knowledgecenter/SS7NQD_8.5.5
http://www-01.ibm.com/support/knowledgecenter/SS7NQD_8.5.5

[Ins] Institute of Architecture of Application Systems (IAAS). Pluggable

Framework Extension for ODE (ODE-PGF). http://www.iaas.

uni-stuttgart.de/forschung/projects/ODE-PGF/.

[Joh93] John R. Quinlan. C4.5: Programs for Machine Learning. Morgan-

Kaufmann, 1993.

[KEvL+11] Oliver Kopp, Lasse Engler, Tammo van Lessen, Frank Leymann,

and Jörg Nitzsche. Interaction Choreography Models in BPEL:

Choreographies on the Enterprise Service Bus. In Proceedings of
the 2nd International Conference on Subject-Orientation as Enabler
for the Next Generation of BPM Tools and Methods (S-BPM ONE ’10),

pages 36–53. Springer, 2011.

[KHK+11] Oliver Kopp, Sebastian Henke, Dimka Karastoyanova, Rania Kha-

laf, Frank Leymann, Mirko Sonntag, Thomas Steinmetz, Tobias

Unger, and Branimir Wetzstein. An Event Model for WS-BPEL

2.0. Technical Report 2011/07, Universität Stuttgart, Fakultät

Informatik, Elektrotechnik und Informationstechnik, Germany,

2011.

[KK15] Falko Koetter and Monika Kochanowski. A Model-driven Ap-

proach for Event-based Business Process Monitoring. Information
Systems and e-Business Management, 13(1):5–36, 2015.

[KKL07a] Rania Khalaf, Dimka Karastoyanova, and Frank Leymann. Plug-

gable Framework for Enabling the Execution of Extended BPEL

Behavior. In Proceedings of the 3rd International Workshop on Engi-
neering Service-Oriented Application (WESOA ’07), pages 376–387.

Springer, 2007.

[KKL07b] Rania Khalaf, Oliver Kopp, and Frank Leymann. Maintaining Data

Dependencies Across BPEL Process Fragments. In Proceedings of
the 5th International Conference on Service-Oriented Computing
(ICSOC ’07), pages 207–219. Springer, 2007.

180 Bibliography

http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/
http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/

[KL03] Rania Khalaf and Frank Leymann. On Web Services Aggregation.

In Proceedings of the 4th International Workshop on Technologies
for E-Services (TES ’03), pages 1–13. Springer, 2003.

[KL09] Dimka Karastoyanova and Frank Leymann. BPEL’n’Aspects:

Adapting Service Orchestration Logic. In Proceedings of the 7th In-
ternational Conference on Web Services (ICWS ’09), pages 222–229.

IEEE Computer Society, 2009.

[KLN+06] Dimka Karastoyanova, Frank Leymann, Joerg Nitzsche, Branimir

Wetzstein, and Daniel Wutke. Parameterized BPEL Processes:

Concepts and Implementation. In Proceedings of the International
Conference Business Process Management (BPM ’06), pages 471–

476. Springer, 2006.

[KN97] Robert S. Kaplan and David P. Norton. Balanced Scorecard – Strate-
gien erfolgreich umsetzen. Schäffer-Poeschel Stuttgart, 1997.

[KSK07] Shinji Kikuchi, Hisashi Shimamura, and Yoshihiro Kanna. Mon-

itoring Method of Cross-Sites’ Processes Executed by Multiple

WS-BPEL Processors. In Proceedings of the 9th IEEE International
Conference on nterprise Computing, E-Commerce, and E-Services
(CEC/EEE ’07), pages 55–64. IEEE Computer Society, 2007.

[KWK+09] Raman Kazhamiakin, Branimir Wetzstein, Dimka Karastoyanova,

Marco Pistore, and Frank Leymann. Adaptation of Service-based

Applications Based on Process Quality Factor Analysis. In Proceed-
ings of the 2nd Workshop on Monitoring, Adaptation and Beyond
(MONA+ ’09), pages 395–404. Springer, 2009.

[KWL01] Peter Kueng, Thomas Wettstein, and Beate List. A Holistic Process

Performance Analysis through a Performance Data Warehouse.

In Proceedings of the American Conference on Information Systems
(AMCIS ’01), pages 349–356, 2001.

Bibliography 181

[Ley05] Frank Leymann. The (Service) Bus: Services Penetrate Everyday

Life. In Proceedings of the 3rd International Conference on Service
Oriented Computing (ICSOC ’05), pages 12–20. Springer, 2005.

[LHD13] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-

Based Optimization of Service Compositions. IEEE Transactions
on Services Computing, 6(2):239–251, 2013.

[LKS+10] Geetika T. Lakshmanan, Paul Keyser, Aleksander Slominski, Fran-

cisco Curbera, and Rania Khalaf. A Business Centric End-to-End

Monitoring Approach for Service Composites. In Proceedings of
the 7th International Conference on Services Computing (SCC ’10),

pages 409–416. IEEE Computer Society, 2010.

[LM04] Beate List and Karl Machaczek. Towards a Corporate Performance

Measurement System. In Proceedings of the 19th Annual ACM
Symposium on Applied Computing (SAC ’04), pages 1344–1350.

ACM, 2004.

[LMRD10] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and

Schahram Dustdar. Monitoring, Prediction and Prevention of

SLA Violations in Composite Services. In Proceedings of the 17th
International Conference on Web Services (ICWS ’10), pages 369–

376. IEEE Computer Society, 2010.

[LR97] Frank Leymann and Dieter Roller. Workflow-based Applications.

IBM Systems Journal, 36:102–123, 1997.

[LR00] Frank Leymann and Dieter Roller. Production Workflow – Concepts
and Techniques. Prentice Hall, 2000.

[LS08] David Luckham and Roy Schulte. Event Processing Glossary -

Version 1.1, 2008. http://www.complexevents.com/2008/

08/31/event-processing-glossary-version-11.

182 Bibliography

http://www.complexevents.com/2008/08/31/event-processing-glossary-version-11
http://www.complexevents.com/2008/08/31/event-processing-glossary-version-11

[Luc02] David Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley

Professional, 2002.

[LWK+10a] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Walde-

mar Hummer, Schahram Dustdar, and Frank Leymann. Preventing

SLA Violations in Service Compositions Using Aspect-Based Frag-

ment Substitution. In Proceedings of the 8th International Confer-
ence on Service-Oriented Computing (ICSOC ’10), pages 365–380.

Springer, 2010.

[LWK+10b] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Walde-

mar Hummer, Schahram Dustdar, and Frank Leymann. Preventing

SLA Violations in Service Compositions Using Aspect-Based Frag-

ment Substitution. In Proceedings of the 8th International Confer-
ence on Service-Oriented Computing (ICSOC ’10), pages 365–380.

Springer, 2010.

[LWR+09] Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton

Michlmayr, Schahram Dustdar, and Frank Leymann. Runtime

Prediction of Service Level Agreement Violations for Composite

Services. In Proceedings of the 3rd Workshop on Non-Functional
Properties and SLA Management in Service-Oriented Computing
(NFPSLAM-SOC ’09), pages 176–186. Springer, 2009.

[McC02] David McCoy. Business Activity Monitoring: Calm before the

Storm. Technical Report LE-15-9727, Gartner, 2002.

[Met11] Andreas Metzger. Towards Accurate Failure Prediction for the

Proactive Adaptation of Service-oriented Systems. In Proceed-
ings of the 8th Workshop on Assurances for Self-adaptive Systems
(ASAS ’11), pages 18–23. ACM, 2011.

[MGA09] Christof Momm, Michael Gebhart, and Sebastian Abeck. A Model-

Driven Approach for Monitoring Business Performance in Web

Service Compositions. In Proceedings of the 4th International

Bibliography 183

Conference on Internet and Web Applications and Services (ICIW
’09), pages 343–350. IEEE Computer Society, 2009.

[MMGF06] Axel Martens, Simon Moser, Achim Gerhardt, and Karoline Funk.

Analyzing Compatibility of BPEL Processes. In Proceedings of
the Advanced International Conference on Internet and Web Ap-
plications and Services (AICT-ICIW ’06). IEEE Computer Society,

2006.

[MRD10] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Event

Driven Monitoring for Service Composition Infrastructures. In Pro-
ceedings of the 11th International Conference on Web Information
Systems Engineering (WISE ’10), pages 38–51. Springer, 2010.

[MZD13] Emmanuel Mulo, Uwe Zdun, and Schahram Dustdar. Domain-

specific Language for Event-based Compliance Monitoring in

Process-driven SOAs. Service Oriented Computing and Applications,
7(1):59–73, 2013.

[NLS11] Alexander Nowak, Frank Leymann, and David Schumm. The

Differences and Commonalities between Green and Conventional

Business Process Management. In Proceedings of the International
Conference on Cloud and Green Computing (CGC ’11), pages 569–

576. IEEE Computer Society, 2011.

[OAS06a] OASIS. Web Services Base Notification 1.3 (WS-BaseNotification) –
OASIS Standard, 2006.

[OAS06b] OASIS. Web Services Distribued Management V1.1 (WSDM) – OA-
SIS Standard, 2006.

[OAS06c] OASIS. Web Services Distributed Management: Management of
Web Services 1.1 (MOWS) – OASIS Standard, 2006.

[OAS06d] OASIS. Web Services Distributed Management: Management Using
Web Services 1.1 (MUWS) – OASIS Standard, 2006.

184 Bibliography

[OAS06e] OASIS. Web Services Resource Properties 1.2 (WS-
ResourceProperties) – OASIS Standard, 2006.

[OAS06f] OASIS. Web Services Topics 1.3 (WS-Topics) – OASIS Standard,

2006.

[OAS07] OASIS. Web Services Business Process Execution Language Version
2.0 (WS–BPEL) – OASIS Standard, 2007.

[OMG11] OMG. Business Process Model and Notation (BPMN), Specifica-

tion, Version 2.0, 2011.

[Ope07] Open Grid Forum. Web Services Agreement Specification (WS-
Agreement), 2007.

[Pap08] Michael P. Papazoglou. Web Services - Principles and Technology.

Prentice Hall, 2008.

[Pau09] Paul Grefen and Rik Eshuis and Nikolay Mehandjiev and Giorgos

Kouvas and Georg Weichhart. Internet-Based Support for Process-

Oriented Instant Virtual Enterprises. Internet Computing, IEEE,

13(6):65–73, 2009.

[Pel03] Chris Peltz. Web Services Orchestration and Choreography. IEEE
Computer, 36(10):46–52, 2003.

[PLW+08] Carlos Pedrinaci, Dave Lambert, Branimir Wetzstein, Tammo van

Lessen, Luchesar Cekov, and Marin Dimitrov. SENTINEL: A Se-

mantic Business Process Monitoring Tool. In Proceedings of the
First International Workshop on Ontology-supported Business Intel-
ligence (OBI ’08), pages 1–12. ACM, 2008.

[PTDL07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and

Frank Leymann. Service-Oriented Computing: State of the Art

and Research Challenges. IEEE Computer, 40(11):38–45, 2007.

[Ros] RosettaNet. RosettaNet Partner Interface Processes (PIPs). http:

//www.rosettanet.org/.

Bibliography 185

http://www.rosettanet.org/
http://www.rosettanet.org/

[RSN15] Sylvia Radeschütz, Holger Schwarz, and Florian Niedermann.

Business Impact Analysis – a Framework for a Comprehensive

Analysis and Optimization of Business Processes. Computer Science
- Research and Development, 30(1):69–86, 2015.

[RSS06] Heinz Roth, Josef Schiefer, and Alexander Schatten. Probing

and Monitoring of WSBPEL Processes with Web Services. In

Proceedings of the 8th International Conference on E-Commerce
Technology (CEC-EEE ’06), 2006.

[SMF+11] Osama Sammodi, Andreas Metzger, Xavier Franch, Marc Oriol,

Jordi Marco, and Klaus Pohl. Usage-Based Online Testing for

Proactive Adaptation of Service-Based Applications. In Proceedings
of the 35th Annual International Computer Software and Applica-
tions Conference (COMPSAC ’11), pages 582–587. IEEE Computer

Society, 2011.

[SS06] Hermann J. Schmelzer and Wolfgang Sesselmann. Geschäft-
sprozessmanagement in der Praxis. Hanser Verlag München, 2006.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process
Aware Information Systems: Bridging People and Software Through
Process Technology, chapter Process Modeling Using Event-Driven

Process Chains. Wiley-Interscience, 2005.

[Ste08] Thomas Steinmetz. Ein Event-Modell für WS-BPEL 2.0 und

dessen Realisierung in Apache ODE. Diploma Thesis, Universität

Stuttgart, Fakultät Informatik, Elektrotechnik und Information-

stechnik, Germany, 2008.

[Sup05] Supply Chain Council. Supply Chain Operations Reference Model

Version 7.0, 2005.

[SVDS12] Thomas Schlegel, Krešimir Vidačković, Sebastian Dusch, and

Ronny Seiger. Management of Interactive Business Processes

186 Bibliography

in Decentralized Service Infrastructures Through Event Process-

ing. Journal of King Saud University - Computer and Information
Sciences, 24(2):137–144, 2012.

[Ter] Terracotta. Quartz Scheduler 1.8.6. http://www.

quartz-scheduler.org.

[vdAWM04] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow

Mining: Discovering Process Models from Event Logs. IEEE Trans-
actions on Knowledge and Data Engineering, 16(9):1128–1142,

2004.

[vLLM+08] Tammo van Lessen, Frank Leymann, Ralph Mietzner, Jörg

Nitzsche, and Daniel Schleicher. A Management Framework for

WS-BPEL. In Proceedings of the 6th IEEE European Conference
on Web Services (ECOWS ’08), pages 187–196. IEEE Computer

Society, 2008.

[vRR09] Michael von Riegen and Norbert Ritter. Reliable Monitoring

for Runtime Validation of Choreographies. In The 4th Interna-
tional Conference on Internet and Web Applications and Services
(ICIW ’09), pages 310–315. IEEE Computer Society, 2009.

[W3C01] W3C. Web Services Description Language (WSDL) 1.1, W3C Note,

2001.

[W3C05] W3C. Web Services Choreography Description Language Version
1.0, W3C Candidate Recommendation, 2005.

[W3C06] W3C. Web Services Addressing 1.0 - Core – W3C Recommendation,

2006.

[W3C07] W3C. SOAP Version 1.2 Part 1: Messaging Framework – W3C
Recommendation, 2007.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony

Storey, and Donald F. Ferguson. Web Services Platform Architecture:

Bibliography 187

http://www.quartz-scheduler.org
http://www.quartz-scheduler.org

SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall, 2005.

[WDL+08] Branimir Wetzstein, Olha Danylevych, Frank Leymann, Marina

Bitsaki, Christos Nikolaou, Willem-Jan van den Heuvel, and Mike

Papazoglou. Towards Monitoring of Key Performance Indicators

Across Partners in Service Networks. In Proceedings of the Work-
shop on Service Monitoring, Adaptation and Beyond (MONA+ ’08),

pages 7–18. ICB, 2008.

[Wes07] Mathias Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2. edition,

2005.

[WKK+10] Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank

Leymann, and Daniel Zwink. Cross-Organizational Process Mon-

itoring based on Service Choreographies. In Proceedings of the
25th Annual ACM Symposium on Applied Computing (SAC ’10),

pages 2485–2490. ACM, 2010.

[WLR+09] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona

Brandic, Schahram Dustdar, and Frank Leymann. Monitoring and

Analyzing Influential Factors of Business Process Performance. In

Proceedings of the 13th IEEE International Enterprise Distributed
Object Computing Conference (EDOC ’09), pages 141–150. IEEE

Computer Society, 2009.

[WLR+11] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Schahram

Dustdar, and Frank Leymann. Identifying Influential Factors of

Business Process Performance Using Dependency Analysis. Enter-
prise Information Systems, 5(1):79–98, 2011.

188 Bibliography

[WML08] Branimir Wetzstein, Zhilei Ma, and Frank Leymann. Towards

Measuring Key Performance Indicators of Semantic Business Pro-

cesses. In Proceedings of 11th International Conference on Business
Information Systems (BIS ’08), pages 227–238. Springer, 2008.

[WSL09] Branimir Wetzstein, Steve Strauch, and Frank Leymann. Mea-

suring Performance Metrics of WS-BPEL Service Compositions.

In The 5th International Conference on Networking and Services
(ICNS ’09), pages 49–56. IEEE Computer Society, 2009.

[WZK+12] Branimir Wetzstein, Asli Zengin, Raman Kazhamiakin, Annapaola

Marconi, Marco Pistore, Dimka Karastoyanova, and Frank Ley-

mann. Preventing KPI Violations in Business Processes based

on Decision Tree Learning and Proactive Runtime Adaptation.

Journal of Systems Integration, 3(1):3–18, 2012.

[ZBDtH06] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and

Arthur H. M. ter Hofstede. Let’s Dance: A Language for Service

Behavior Modeling. In Proceedings of the On the Move to Mean-
ingful Internet Systems Conferences (OTM ’06), pages 145–162.

Springer, 2006.

[ZLLC08] Liangzhao Zeng, Christoph Lingenfelder, Hui Lei, and Henry

Chang. Event-Driven Quality of Service Prediction. In Proceedings
of the 6th International Conference on Service-Oriented Computing
(ICSOC ’08), pages 147–161. Springer, 2008.

[zM01] Michael zur Muehlen. Process-driven Management Information

Systems - Combining Data Warehouses and Workflow Technology.

In Proceedings of the 4th International Conference on Electronic
Commerce Research (ICECR ’01), pages 550–566. IFIP, 2001.

[ZPG10] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. DISC: A

Declarative Framework for Self-Healing Web Services Composi-

tion. In Proceedings of the 17th International Conference on Web
Services (ICWS ’10), pages 25–33. IEEE Computer Society, 2010.

Bibliography 189

[ZSW+10] Sonja Zaplata, Daniel Straßenburg, Benjamin Wunderlich, Dirk

Bade, Kristof Hamann, and Winfried Lamersdorf. Ad-hoc Man-

agement Capabilities for Distributed Business Processes. In Pro-
ceedings of the 3rd International Conference on Business Process
and Services Computing (BPSC ’10), pages 139–152. GI-Edition,

Lecture Notes in Informatics, 2010.

The URLs have been checked for validity on March 28, 2016.

190 Bibliography

LIST OF FIGURES

1.1 Purchase Order Processing Scenario 7

2.1 Conceptual Monitoring Metamodel 27

3.1 Monitoring Objective . 59

3.2 Monitoring Approach . 61

3.3 Overview of the Monitoring Process 62

3.4 Monitor Model . 63

3.5 Monitoring Metamodel . 66

3.6 Resource Creation Example . 72

3.7 Custom Property Definition Example 83

4.1 Classification Learning Phases . 95

4.2 Decision Tree Example . 98

4.3 Overview of the Analysis Process . 99

4.4 KPI Dependency Analysis Metamodel 103

4.5 KPI Dependency Tree Metamodel 110

4.6 KPI Dependency Tree Learning Example 112

5.1 Overview of the Adaptation Process 119

191

5.2 Adaptation Metamodel . 122

5.3 Runtime Artifacts Metamodel . 131

5.4 Instance Tree for Order In Stock = No 134

6.1 Main Components of the Prototype 147

6.2 Monitoring Framework . 148

6.3 Adaptation Framework . 154

6.4 Generated Dependency Tree for Order Fulfillment Time 158

6.5 Generated Tree for Order in Stock 159

192 List of Figures

LIST OF TABLES

3.1 Predefined Resource Identification Properties 74

3.2 Capabilities for Choreography Monitoring 77

5.1 Identification and Ranking of Adaptation Strategies 142

6.1 Experiment Results: KPI Dependency Analysis 160

6.2 Experiment Results: Prediction and Adaptation 163

193

LIST OF LISTINGS

3.1 Monitoring Metamodel Pseudo XML Schema 67

3.2 Monitor Model Example . 68

3.3 Event Composition Example . 85

3.4 Custom Property Example . 86

3.5 Custom Resource Type Example . 88

4.1 KPI Analysis Metamodel Pseudo XML Schema 102

4.2 KPI Example . 104

4.3 Influential Factor Example . 105

4.4 Analysis Task Example . 109

5.1 Adaptation Metamodel Pseudo XML Schema 123

5.2 Adaptation Subject Example . 125

5.3 Checkpoint Example . 128

5.4 Constraints and Preferences Example 130

6.1 Event Mapping Example . 150

195

	1 Introduction
	1.1 Application Area
	1.2 Motivation
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background and Related Work
	2.1 BPM, SOA, and Web Services
	2.1.1 Business Process Management
	2.1.2 Service-Oriented Architecture
	2.1.3 Web Services
	2.1.4 Orchestration of Web Services
	2.1.5 Service Choreographies

	2.2 Process Monitoring
	2.2.1 Event Processing
	2.2.2 Web Services Distributed Management
	2.2.3 Business Activity Monitoring
	2.2.4 Monitoring of Business Processes
	2.2.5 Cross-Organizational Process Monitoring

	2.3 Process Performance Analysis and Optimization
	2.3.1 Process Performance Analysis
	2.3.2 Self-Adaptive Processes

	2.4 Summary and Conclusions

	3 Process Monitoring in Service Choreographies
	3.1 Motivation and Objectives
	3.2 Choreography Monitoring Overview
	3.2.1 Monitoring Method

	3.3 Monitoring Metamodel
	3.3.1 Overview
	3.3.2 Resource Types in BPEL4Chor Choreographies
	3.3.3 Resource Identification
	3.3.4 Capabilities
	3.3.5 Custom Properties

	3.4 Summary and Conclusions

	4 Analyzing the Influential Factors of Business Process Performance
	4.1 Motivation and Objectives
	4.2 Solution Overview and Method
	4.2.1 Classification Learning and KPI Dependency Analysis
	4.2.2 Overview of the KPI Dependency Analysis Process

	4.3 Modeling for KPI Dependency Analysis
	4.3.1 Overview
	4.3.2 Key Performance Indicators
	4.3.3 Influential Factors
	4.3.4 Generating Influential Factor Properties
	4.3.5 Analysis Tasks

	4.4 KPI Dependency Analysis
	4.4.1 Learning of KPI Dependency Trees

	4.5 Summary and Conclusions

	5 Runtime Adaptation Based on KPI Dependency Analysis
	5.1 Motivation and Objectives
	5.2 Solution Overview and Method
	5.3 Modeling for Adaptation
	5.3.1 Overview
	5.3.2 Adaptation Subjects
	5.3.3 Checkpoints
	5.3.4 Constraints and Preferences

	5.4 Runtime Adaptation based on KPI Prediction
	5.4.1 Runtime Prediction of KPIs
	5.4.2 Identification of Adaptation Requirements
	5.4.3 Identification and Ranking of Adaptation Strategies
	5.4.4 Adaptation Enactment

	5.5 Summary and Conclusions

	6 Implementation and Evaluation
	6.1 Prototypical Implementation
	6.1.1 Monitoring Framework
	6.1.2 Analysis and Adaptation Framework

	6.2 Experimental Evaluation
	6.2.1 Experimental Evaluation of the KPI Dependency Analysis
	6.2.2 Experimental Evaluation of Prediction and Adaptation

	6.3 Summary and Conclusions

	7 Conclusions and Outlook
	7.1 Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Listings

