

UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE INFORMATICA

Departamento de Arquitectura de Computadores y
Automática

Planificación multinivel eficiente con aprovisionamiento
dinámico en grids y clouds

Efficient multilevel scheduling in grids and clouds with

dynamic provisioning

 MEMORIA PARA OPTAR AL GRADO DE DOCTOR
PRESENTADA POR

Antonio Juan Rubio Montero

Directores

Rafael Mayo García

Francisco Castejón Magaña

Eduardo Huedo Cuesta

Madrid, 2016

ISBN: - 978-84-608-5925-3 © Antonio Juan Rubio Montero, 2016

UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA
Departamento de Arquitectura de Computadores y Automática

TESIS DOCTORAL

Planificación Multinivel Eficiente
con Aprovisionamiento Dinámico en Grids y Clouds

Efficient Multilevel Scheduling in Grids and Clouds
with Dynamic Provisioning

Antonio Juan Rubio Montero

UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA
Departamento de Arquitectura de Computadores y Automática

Planificación Multinivel Eficiente
con Aprovisionamiento Dinámico en Grids y Clouds

Efficient Multilevel Scheduling in Grids and Clouds
with Dynamic Provisioning

Memoria que presenta para optar
al título de Doctor en Informática
Antonio Juan Rubio Montero

Dirigida por
Rafael Mayo García

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas.
(CIEMAT).

Francisco Castejón Magaña
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas.

Laboratorio Nacional de Fusión. (LNF-CIEMAT).

Eduardo Huedo Cuesta
Facultad de Informática. Universidad Complutense de Madrid.

Madrid, Spain. 2015

c© Antonio Juan Rubio Montero, 2015

ISBN: 978-84-608-5925-3

A todos los que me quieren, en especial a mi familia.

Acknowledgements

Es difícil nombrar a todas aquellas personas que en algún momento me han ayu-
dado a completar este trabajo, intentaré resumir, aún a costa de olvidarme de alguien
importante. En primer lugar quiero agradecer el apoyo y ayuda de mis directores,
Paco y Eduardo, pero en especial de Rafa, que ha estado siempre disponible para
supervisar toda esta investigación y poder cumplir cualquier plazo de entrega. Sin
ellos esta tesis no hubiera sido posible.

Por otro lado, siempre me han respondido a cualquier consulta técnica Javi Fontán,
Tino Vázquez, Ismael Marín y José Luis Vázquez Poletti. Además, José Luis ha sido
un referente para mí de lo que un investigador tiene que ser, sin ninguna duda. Todos
me han ahorrado muchas horas de trabajo y disgustos. Sin embargo, la persona con
la que más me alegro haber invertido mi tiempo de trabajo es Manuel Rodríguez
Pascual, junto a él muchos logros de esta tesis se han podido llevar a cabo.

También quiero agradecer a Esther Montes, Rosa de Lima Herrera, Jorge Blanco,
Ivan Casas y Manolo Giménez que se ocuparan de parte de mis tareas cuando los
plazos me obligaban a dedicarme casi exclusivamente a escribir artículos varios. Tam-
bién a mis jefes del CIEMAT, en particular a Fernando Blanco por conceder todas
las facilidades posibles para poder realizar una labor de investigación. En este sentido
también quiero agradecer a Ignacio Martín Llorente y Rubén Santiago Montero que
me ayudaran a iniciar mi carrera investigadora y a todos los colaboradores que han
aportado sus conocimientos en diversos artículos.

Finalizo agradeciendo al CIEMAT su apoyo institucional y logístico, al igual que
a los proyectos que nombro a continuación:

This work made use of the results produced by the EELA-2, EGEE, GISELA,
EGI-InSPIRE and CHAIN-REDS projects, co-founded by the European Commission
within its Seventh Framework Programme (Grants: INFRA-2007-223797, RI-222667 ,
RI-261487 , RI-261323 and RI- 306819). It also has been supported by BETTY (ICT
COST Action IC1201). Additionally, part of this work is based on observations obtai-
ned with XMM-Newton, an ESA science mission with instruments and contributions
directly funded by ESA Member States and the USA (NASA).

vii

About this Document

This thesis is based on the following main publications:

1. A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “Scheduling multiple
virtual environments in cloud federations for distributed calculations,” Future
Generation Computer Systems, p. (Under Review), 2016.

2. A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “A simple
model to exploit reliable algorithms in cloud federations,” Soft Computing, p.
(Under Review), 2016.

3. A. J. Rubio-Montero, E. Huedo, F. Castejón, and R. Mayo-García, “GWpilot:
Enabling multi-level scheduling in distributed infrastructures with GridWay and
pilot jobs,” Future Generation Computer Systems, vol. 45, pp. 25–52, April 2015.
doi : 10.1016/j.future.2014.10.003

4. A. J. Rubio-Montero, F. Castejón, E. Huedo, and R. Mayo-García, “A novel pilot
job approach for improving the execution of distributed codes: application to the
study of ordering in collisional transport in fusion plasmas,” Concurrency and
Computation: Practice & Experience, vol. 27, no. 13, pp. 3220–3244, September
2015. doi : 10.1002/cpe.3301

5. A. J. Rubio-Montero, F. Castejón, M. A. Rodríguez-Pascual, E. Montes, and
R. Mayo, “Drift Kinetic Equation Solver for Grid (DKEsG),” IEEE Transac-
tions on Plasma Science, vol. 38, no. 9, pp. 2093–2101, September 2010. doi :
10.1109/TPS.2010.2055164

6. A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “User-Guided Provisio-
ning in Federated Clouds for Distributed Calculations,” in Adaptive Resource
Management and Scheduling for Cloud Computing (ARMS-CC 2015), ser. Lec-
ture Notes in Computer Science, vol. 9438. San Sebastián, Spain: Springer,
20th July 2015, pp. 60–77. doi : 10.1007/978-3-319-28448-4_5

7. A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “Evalua-
tion of an adaptive framework for resilient Monte Carlo executions,” in 30th AC-
M/SIGAPP Symposium On Applied Computing (SAC’15). Salamanca, Spain:
ACM New York, 13–17 April 2015, pp. 448–455. doi : 10.1145/2695664.2695890

8. A. J. Rubio-Montero, F. Castejón, E. Huedo, M. Rodríguez-Pascual, and R. Mayo-
García, “Performance improvements for the neoclassical transport calculation
on Grid by means of pilot jobs,” in Int. Conf. on High Performance Comput.
and Simulation (HPCS 2012). Madrid, Spain: IEEE CS Press, 2–6 July 2012,
pp. 609–615. doi : 10.1109/HPCSim.2012.6266981

ix

http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1002/cpe.3301
http://dx.doi.org/10.1109/TPS.2010.2055164
http://dx.doi.org/10.1007/978-3-319-28448-4_5
http://dx.doi.org/10.1145/2695664.2695890
http://dx.doi.org/10.1109/HPCSim.2012.6266981

x About this document

9. A. J. Rubio-Montero, L. Flores, F. Castejón, E. Montes, M. Rodríguez-Pascual,
and R. Mayo, “Executions of a Drift Kinetic Ecuation solver on Grid,” in 18th
Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP 2010). Pisa, Italy: IEEE CS Press, 17–19 February 2010, pp. 454–459.
doi : 10.1109/PDP.2010.40

10. A. J. Rubio-Montero, R. S. Montero, E. Huedo, and I. M. Llorente, “Manage-
ment of Virtual Machines on Globus Grids using GridWay,” in 21st IEEE Int.
Parallel and Distributed Processing Symposium (IPDPS 2007). Long Beach,
USA: IEEE CS Press, 27–30 March 2007, pp. 1–7.doi:10.1109/IPDPS.2007.370548

For the elaboration of this thesis, results from these complementary publications
have been also used:

11. M. Rodríguez-Pascual, C. Kanellopoulos, A. J. Rubio-Montero, D. Darriba,
O. Prnjat, D. Posada, and R. Mayo-García, “Adapting reproducible research
capabilities to resilient distributed calculations,” International Journal of Grid
and High Performance Computing, p. (Accepted), 2016.

12. F. Castejón, A. J. Rubio-Montero, A. López-Fraguas, E. Ascasíbar, and R. Mayo-
García, “Neoclassical transport and iota scaling in the TJ-II stellarator,” Fusion
Science and Technology, p. (Accepted), 2016.

13. M. Rodríguez-Pascual, A. Gómez, R. Mayo-García, D. P. de Lara, E. M. Gon-
zález, A. J. Rubio-Montero, and J. L. Vicent, “Superconducting Vortex Lattice
Configurations on Periodic Potentials: Simulation and Experiment,” Supercon-
ductivity and Novell Magnetism, vol. 25, no. 7, pp. 2127–2130, October 2012.
doi : 10.1007/s10948-012-1636-8

14. M. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M. Llo-
rente, and R. Mayo, “Improvements on the Fusion Code FAFNER2,” IEEE
Transactions on Plasma Science, vol. 38, no. 9, pp. 2102–2110, September 2010.
doi : 10.1109/TPS.2010.2057450

15. M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo-García, C. Kanellopou-
los, O. Prnjat, D. Darriba, and D. Posada, “A fault tolerant workflow for re-
producible research,” in Annual Global Online Conference on Information and
Computer Technology (GOCICT 2014). Louisville, Kentucky, USA: IEEE CS
Press, 3–5 December 2014, pp. 70–75. doi : 10.1109/GOCICT.2014.10

16. R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, State-of-Art with Phylo-
Grid: Grid Computing Phylogenetic Studies on the EELA-2 Project Infrastruc-
ture, in Grid Computing: Towards a Global Interconnected Infrastructure, ser.
Computer Communications and Networks. Springer London / Heidelberg New
York, 2011, pp. 277–291. doi : 10.1007/978-0-85729-676-4_11

17. M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo, A. Bustos, F. Castejón,
and I. Llorente, “More Efficient Executions of Monte Carlo Fusion Codes by
Means of Montera: The ISDEP Use Case,” in 19th Euromicro Int. Conf. on Pa-
rallel, Distributed and Network-Based Processing (PDP 2011). Ayia Napa, Cy-
prus: IEEE CS Press, 9–11 February 2011, pp. 380–384.doi:10.1109/PDP.2011.46

http://dx.doi.org/10.1109/PDP.2010.40
http://dx.doi.org/10.1109/IPDPS.2007.370548
http://dx.doi.org/10.1007/s10948-012-1636-8
http://dx.doi.org/10.1109/TPS.2010.2057450
http://dx.doi.org/10.1109/GOCICT.2014.10
http://dx.doi.org/10.1007/978-0-85729-676-4_11
http://dx.doi.org/10.1109/PDP.2011.46

About this document xi

18. M. A. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M.
Llorente, and R. Mayo, “A Grid version of the Fusion code FAFNER,” in 18th
Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP 2010). Pisa, Italy: IEEE CS Press, 17–19 February 2010, pp. 449–453.
doi : 10.1109/PDP.2010.37

19. R. Isea, E. Montes, A. J. Rubio-Montero, J. D. Rosales, M. A. Rodríguez-
Pascual, and R. Mayo, “Characterization of antigenetic serotypes from the den-
gue virus in Venezuela by means of Grid Computing,” in Healthgrid Applications
and core Technologies. Proceedings of HealthGrid 2010, ser. Studies in Health
Technology and Informatics, vol. 159. Paris, France: IOS Press, 28–30 June
2010, pp. 234–238. doi : 10.3233/978-1-60750-583-9-234

20. M. Rodríguez-Pascual, F. Castejón, A. J. Rubio-Montero, R. Mayo, and I. M.
Llorente, “FAFNER2: A comparison between the Grid and the MPI versions of
the code,” in Int. Conf. on High Performance Comput. and Simulation (HPCS
2010). Caen, France: IEEE CS Press, 28 June–2 July 2010, pp. 78–84. doi :
10.1109/HPCS.2010.5547146

21. M. Rodíguez-Pascual, D. P. de Lara, E. M. González, A. Gómez, A. J. Rubio-
Montero, R. Mayo, and J. Vicent, “Grid computing simulation of superconduc-
ting vortex lattice in superconducting magnetic nanostructures,” in Proceedings
of the 4th Iberian Grid Infrastructure Conference, vol. 4. Braga, Portugal:
NETBIBLO S.L. (Sta. Cristina, La Coruña, Spain), 24–27 May 2010, pp. 97–
109. ISBN 978-84-9745-549-7

22. R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, “Computational Cha-
llenges on Grid Computing for Workflows Applied to Phylogeny,” in Distributed
Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Am-
bient Assisted Living. 10th Int. Work-Conference on Artificial Neural Networks
(IWANN 2009), ser. Lecture Notes in Computer Science, vol. 5518. Salamanca,
Spain: Springer-Verlag, 10–12 June 2009, pp. 1130–1138. doi : 10.1007/978-3-
642-02481-8_171

23. A. J. Rubio-Montero, P. Arce, J. I. Lagares, Y. P. Ivanov, D. A. Burbano,
G. Díaz, and R. Mayo, “Performance Tests of GAMOS Software on EELA-
2 Infrastructure,” in Proceedings of the Second EELA-2 Conference. Choroní,
Venezuela: Editorial CIEMAT (Madrid, Spain), 25–27 November 2009, pp. 379–
385. ISBN 978-84-7834-627-1

24. R. Isea, J. Chaves, E. Montes, A. J. Rubio-Montero, and R. Mayo, “The evolu-
tion of HPV by means of a phylogenetic study,” in Healthgrid Research, Innova-
tion and Business Case. Proceedings of HealthGrid 2009, ser. Studies in Health
Technology and Informatics, vol. 147. Berlin, Germany: IOS Press, 29 June–1
July 2009, pp. 245–250. doi : 10.3233/978-1-60750-027-8-245

http://dx.doi.org/10.1109/PDP.2010.37
http://dx.doi.org/10.3233/978-1-60750-583-9-234
http://dx.doi.org/10.1109/HPCS.2010.5547146
http://dx.doi.org/10.1007/978-3-642-02481-8_171
http://dx.doi.org/10.1007/978-3-642-02481-8_171
http://dx.doi.org/10.3233/978-1-60750-027-8-245

Abstract

The consolidation of large Distributed Computing infrastructures has resulted in
a High-Throughput Computing platform that is ready for high loads, whose best
proponents are the current grid federations. On the other hand, Cloud Computing
promises to be more flexible, usable, available and simple than Grid Computing,
covering also much more computational needs than the ones required to carry out
distributed calculations. In any case, because of the dynamism and heterogeneity that
are present in grids and clouds, calculating the best match between computational
tasks and resources in an effectively characterised infrastructure is, by definition,
an NP-complete problem, and only sub-optimal solutions (schedules) can be found
for these environments. Nevertheless, the characterisation of the resources of both
kinds of infrastructures is far from being achieved. The available information systems
do not provide accurate data about the status of the resources that can allow the
advanced scheduling required by the different needs of distributed applications. The
issue was not solved during the last decade for grids and the cloud infrastructures
recently established have the same problem. In this framework, brokers only can
improve the throughput of very long calculations, but do not provide estimations of
their duration. Complex scheduling was traditionally tackled by other tools such as
workflow managers, self-schedulers and the production management systems of certain
research communities. Nevertheless, the low performance achieved by these early-
binding methods is noticeable. Moreover, the diversity of cloud providers and mainly,
their lack of standardised programming interfaces and brokering tools to distribute the
workload, hinder the massive portability of legacy applications to cloud environments.

Unlike the aforementioned early-binding methods, where the workload is schedu-
led in resources before they have been effectively assigned, the relatively recent pilot
job technique (or late-binding model) is being introduced into grids and clouds to
overcome the current limitations of middleware. This approach accomplishes compu-
tational tasks in a more flexible, stable and reliable way while reducing overheads.
Furthermore, it constitutes a powerful scheduling layer that can be used to solve
the aforementioned characterisation problems and can be combined with traditio-
nal mechanisms to achieve the required performance levels. In this sense, this new
scheduling overlay is logically placed between the ones provided by the applications
and the provisioning tools, building a Multilevel Scheduling architecture. Nevertheless
and even when they have provided a clear improvement in the execution of distribu-
ted calculations, the current systems based on pilot jobs are not exploiting all the
advantages that this technique could afford in grids and clouds, or they lack compa-
tibility or adaptability. In particular, these tools are not flexible enough to support
the characterisation needed, to customise the behaviour of the scheduling layers or to
dynamically configure the provisioned grid and cloud workspace. Moreover, some are

xiii

xiv Abstract

unable to run legacy applications based on accepted standards. These issues prevent
their application to other fields or codes different to the ones for which they were
developed.

The research performed in this thesis overcomes the limitations of current pilot
systems to fully exploit the Multilevel Scheduling in grid and cloud environments.
This study presents the design of a different general-purpose pilot framework, GW-
pilot, and a collection of related methodologies and technologies that allow users,
developers and institutional administrators to easily incorporate their legacy appli-
cations, scheduling frameworks and policies into the Multilevel model, achieving the
performance required for the calculations and preserving the compatibility and se-
curity among infrastructures. Moreover, the system provides individual users or ins-
titutions with a more easy-to-use, easy-to-install, scalable, extendable, flexible and
adjustable pilot framework than the current ones. Furthermore, the system also diffe-
rentiates from other approaches in its decentralisation, its middleware independence,
its support of brokering specific workspaces in cloud, the post-configuration of the
provisioned resources by users and the efficient accomplishment of short tasks, among
other features. All those are performed preserving the fair-share and compatibility
with diverse infrastructures. To demonstrate these achievements, the new framework
has been implemented and tested with different legacy applications and scheduling
policies, performing meaningful calculations on cloud and grid infrastructures in pro-
duction. Consequently, the new pilot system is available to be profited by the scientific
and industrial communities as well as additional contributions to other research areas
have been achieved. In this sense, calculations devoted to Chemical Physics, Evolutio-
nary Biology, High Energy Physics, Matter Interactions and Solid State Physics have
been performed with GWpilot on grids and clouds, due to their different computatio-
nal behaviour. Interesting new scientific results have been obtained too, in especial
for Nuclear Fusion.

Furthermore, the development of this new pilot job system represents a step for-
ward in the use of large distributed computing infrastructures, because it goes beyond
establishing simple network overlays to overcome the waiting times in remote grid
queues, making use of cloud resources or improving reliability in task production.
It properly tackles the characterisation problem in current infrastructures, allowing
users to arbitrarily incorporate a customised monitoring of resources and their run-
ning applications into the system. Any user can easily take advantage of this feature
to perform a specialised scheduling of his application workload without the need
of modifying any code in the pilot system. Users can also automatically guide the
provisioning among different grid and cloud providers without the need of explicitly
indicating one resource or manually submitting pilots. Moreover, an accurate mat-
hematical model on task turnaround has been formulated to allow building complex
scheduling. Subsequently, all of these features can also benefit skilled developers or
administrators. Even self-schedulers or workflow managers can be easily adapted to
establish an upper scheduling layer that will take into account the real characteris-
tics of resources. This last achievement has been demonstrated by stacking a generic
self-scheduler on the system, obtaining an improved performance. These goals were
not really registered before and constitute the main intellectual contribution of this
thesis.

Summing-up, the Multilevel Scheduling approach presented in this thesis actually
allows individual researchers and communities that rely on high-throughput calcula-
tions to efficiently profit of the large volume of distributed and heterogeneous resources

Abstract xv

available in grids and clouds. This conclusion is supported by the extensive experi-
ments performed on real infrastructures, which have demonstrated its capacity to
easily incorporate legacy distributed applications, to customise the characterisation
of resources, to personalise the different scheduling layers and to stack third-party
schedulers. Therefore, the impact of this research on Computer Science as well as on
any other field is guaranteed by the practicality, extensibility, compatibility, perfor-
mance and multiple possibilities of scheduling that the proposed solution allows.

Resumen (Spanish)

La consolidación de las grandes infraestructuras para la Computación Distribuida
ha resultado en una plataforma de Computación de Alta Productividad que está lista
para grandes cargas de trabajo. Los mejores exponentes de este proceso son las fede-
raciones grid actuales. Por otro lado, la Computación Cloud promete ser más flexible,
utilizable, disponible y simple que la Computación Grid, cubriendo además muchas
más necesidades computacionales que las requeridas para llevar a cabo cálculos distri-
buidos. En cualquier caso, debido al dinamismo y la heterogeneidad presente en grids
y clouds, encontrar la asignación ideal de las tareas computacionales en los recursos
disponibles es, por definición un problema NP-completo, y sólo se pueden encontrar
soluciones subóptimas para estos entornos. Sin embargo, la caracterización de estos
recursos en ambos tipos de infraestructuras es deficitaria. Los sistemas de informa-
ción disponibles no proporcionan datos fiables sobre el estado de los recursos, lo cual
no permite la planificación avanzada que necesitan los diferentes tipos de aplicacio-
nes distribuidas. Durante la última década esta cuestión no ha sido resuelta para la
Computación Grid y las infraestructuras cloud establecidas recientemente presentan
el mismo problema. En este marco, los planificadores (brokers) sólo pueden mejorar la
productividad de las ejecuciones largas, pero no proporcionan ninguna estimación de
su duración. La planificación compleja ha sido abordada tradicionalmente por otras
herramientas como los gestores de flujos de trabajo, los auto-planificadores o los siste-
mas de gestión de producción pertenecientes a ciertas comunidades de investigación.
Sin embargo, el bajo rendimiento obtenido con estos mecanismos de asignación an-
ticipada (early-binding) es notorio. Además, la diversidad en los proveedores cloud,
la falta de soporte de herramientas de planificación y de interfaces de programación
estandarizadas para distribuir la carga de trabajo, dificultan la portabilidad masiva
de aplicaciones legadas a los entornos cloud.

En contraste con los métodos mencionados, por los cuáles la carga de trabajo es
planificada en los recursos antes que éstos sean efectivamente apropiados, la técnica
relativamente reciente de los trabajos piloto (late-binding) está siendo introducida
en grids y clouds para superar las limitaciones del middleware. Esta aproximación
permite completar las tareas computacionales de los usuarios de un modo más fle-
xible, estable y robusto, mientras la sobrecarga se reduce. Además, constituye una
potente capa de planificación que puede ser usada para resolver los problemas de ca-
racterización mencionados y ser combinada también con los mecanismos tradicionales
para alcanzar los niveles de rendimiento requeridos. En este sentido, esta nueva capa
está ubicada entre la que proporcionan las aplicaciones y las herramientas de aprovi-
sionamiento, construyendo una arquitectura de Planificación Multinivel. Aunque los
actuales sistemas basados en trabajos piloto han permitido una clara mejora en la
ejecución de los cálculos distribuidos, no están explotando todas las ventajas que es-

xvii

xviii Resumen (Spanish)

ta técnica puede ofrecer, o bien son poco compatibles y adaptables. En particular,
estas herramientas no son suficientemente flexibles para soportar la caracterización
necesaria, personalizar el comportamiento de las capas de planificación o configurar
dinámicamente los espacios virtuales de trabajo que han sido aprovisionados en grids
y clouds. Incluso algunos son incapaces de ejecutar aplicaciones legadas basadas en
estándares aceptados. Estas cuestiones impiden su utilización en otros campos o con
códigos diferentes para los que fueron diseñados.

La investigación realizada en esta tesis supera las limitaciones de los sistemas de
trabajos piloto actuales para explotar completamente la Planificación Multinivel en
entornos grid y cloud. Este estudio presenta el diseño de un nuevo sistema de traba-
jos piloto de propósito general, GWpilot, junto con una colección de metodologías y
tecnologías que permiten a los usuarios, desarrolladores y administradores institucio-
nales incorporar fácilmente sus aplicaciones legadas, sus sistemas de planificación y
sus políticas en el modelo Multinivel, alcanzando el rendimiento requerido mientras se
preserva la compatibilidad y seguridad en las diferentes infraestructuras. Además, el
sistema es mucho más fácil de usar, instalar, apilar, extender y ajustar que las herra-
mientas existentes gracias a su flexibilidad. El nuevo sistema se diferencia también en
su descentralización, su independencia del middleware, la planificación bajo demanda
de diferentes máquinas virtuales en clouds, la configuración posterior por parte de los
usuarios de los espacios virtuales aprovisionados, la ejecución eficiente de tareas cor-
tas, todo ello preservando la compartición equitativa de recursos y la compatibilidad
con las diversas infraestructuras. Para demostrar estos logros, el nuevo sistema ha
sido implementado y probado con diferentes aplicaciones legadas y políticas de pla-
nificación, llevando a cabo cálculos significativos sobre infraestructuras grid y cloud
en producción. Consecuentemente, no sólo el nuevo sistema está disponible para ser
aprovechado por las comunidades científicas e industriales, también se han obtenido
resultados en otros campos de investigación. En este sentido, cálculos dedicados a
la Fisicoquímica, Biología Evolutiva, Física de las Altas Energías, Interacciones con
la Materia y Física del Estado Sólido se han llevado a cabo con GWpilot en grids
y clouds debido a su diferente comportamiento computacional, pero además se han
obtenido interesantes nuevos resultados, en especial para la Fusión Nuclear.

El desarrollo de este nuevo sistema de trabajos piloto representa un paso adelante
en el aprovechamiento de las grandes infraestructuras computacionales distribuidas,
ya que va más allá de establecer simplemente una envoltura para eliminar los tiempos
de espera en las colas grid remotas, permitir el uso de recursos cloud o mejorar la
robustez en la producción de tareas. Aborda apropiadamente el problema de la ca-
racterización en las infraestructuras actuales, permitiendo a los usuarios incorporar
arbitrariamente una monitorización personalizada de los recursos y sus aplicaciones
ejecutadas en el sistema. Cualquier usuario puede fácilmente aprovechar esta fun-
cionalidad para realizar una planificación especializada de la carga de trabajo de su
aplicación, sin tener que modificar el código del sistema. Además pueden guiar au-
tomáticamente el aprovisionamiento entre los diferentes proveedores grid y cloud sin
tener que indicar explícitamente qué proveedor usar o enviar manualmente los tra-
bajos piloto. Así mismo, un modelo matemático preciso de la duración de las tareas
ha sido formulado para poder elaborar planificaciones complejas. Por lo tanto, todas
estas funcionalidades distintivas pueden beneficiar también a los desarrolladores ex-
pertos o a los administradores. Incluso los auto-planificadores y los gestores de flujos
de trabajos pueden ser fácilmente adaptados para establecer una capa superior de
planificación que tome en consideración las características reales de los recursos. Este

Resumen (Spanish) xix

logro final ha sido demostrado acoplando un auto-planificador genérico al sistema,
obteniendo un rendimiento mejorado. Estos logros no habían sido registrados antes y
constituyen la principal aportación intelectual de esta tesis.

En resumen, la aproximación a la Planificación Multinivel presentada en esta
tesis realmente permite, tanto a investigadores individuales como a comunidades de
usuarios que dependen de los cálculos de alta productividad, beneficiarse de forma
eficiente del gran volumen de recursos distribuidos y heterogéneos disponibles en grids
y clouds. Esta conclusión está fundamentada por los extensos experimentos realizados
sobre infraestructuras reales, los cuáles han demostrado su capacidad para incorporar
aplicaciones legadas, personalizar la caracterización de los recursos y las diferentes
capas de planificación, así como para acoplar software planificador de terceros. Por lo
tanto, el impacto de esta investigación en los diferentes campos de la Informática como
en otras áreas está garantizada por la practicidad, extensibilidad, compatibilidad,
rendimiento y las múltiples posibilidades de planificación avanzada que la solución
propuesta permite.

Table of Contents

Acknowledgements VII

About this Document IX

Abstract XIII

Resumen (Spanish) XVII

1. Overview 1
1.1. Motivation . 1
1.2. Objective, methodology and structure 4

2. State of the Art 7
2.1. Distributed Computing paradigms . 7
2.2. The grid and IaaS cloud approaches 9

2.2.1. Interfacing with grid and cloud providers 10
2.2.2. Multiple providers versus federations 11
2.2.3. Federations established . 12

2.3. Scheduling in large infrastructures . 13
2.3.1. Definitions . 13
2.3.2. HTC workloads feasible to be distributed 14
2.3.3. Workload Scheduling . 16
2.3.4. Turnaround model and characterisation for scheduling 17
2.3.5. Resource Provisioning with pilot jobs 19
2.3.6. The developer’s point of view 20

2.4. Instruments to perform early-binding scheduling 22
2.4.1. Scheduling domains and tools 22
2.4.2. Resource brokering in grids and clouds 23
2.4.3. Workflow managers . 28
2.4.4. Self-schedulers . 29
2.4.5. Other tools . 30

2.5. Pilot jobs . 31
2.5.1. Overall vision and nomenclature 31
2.5.2. GS/LRMS embedded pilot systems 32
2.5.3. Pilot systems related to LHC VOs 35
2.5.4. Application-oriented overlays 37

xxi

xxii Table of Contents

2.5.5. Other frameworks . 40
2.5.6. Limited support to Multilevel Scheduling 41

2.6. Conclusions . 42

3. Lessons Learned and Objectives of the Research 45
3.1. Objectives . 45
3.2. Requirements for a new pilot system 46

3.2.1. Minimal functionalities . 46
3.2.2. Multilevel support . 48

I LIMITATIONS ANDADVANTAGES OF EARLY-BINDING
TECHNIQUES 51

4. Adapting Applications 53
4.1. Introduction . 53
4.2. Collection, mechanisms and summary of results 53
4.3. Standardised producer-consumer design pattern 55
4.4. Example: calculating NC transport coefficients 56

4.4.1. Adapting DKES code to run on grid resources 57
4.4.2. Implementing the transport coefficient calculation 59
4.4.3. Combining jobs into a single workflow 59
4.4.4. Managing jobs . 60

4.5. Executions on grid with DKEsG . 62
4.5.1. Test bed and common parameters 63
4.5.2. Parameter sweep calculations 63
4.5.3. Running in workflow mode . 65

4.6. Conclusions . 67

5. Scheduling Straightforward Executions in Clouds 69
5.1. Introduction . 69
5.2. Early developments . 70

5.2.1. Deployment of virtual machines 70
5.2.2. Multiple weaknesses . 71

5.3. The current approach on IaaS clouds 72
5.3.1. The GWcloud Information Driver (ID) 72
5.3.2. The GWcloud Execution Driver (ED) 72
5.3.3. Scheduling VMs and jobs . 73

5.4. Analysing data from the XMM-Newton spacecraft on the cloud 74
5.4.1. Feasibility of the virtualisation mechanisms 76
5.4.2. Scheduling executions in cloud federations 79

5.5. Conclusions . 82

6. Deploying Self-scheduling Techniques 85
6.1. Introduction . 85
6.2. Resilient executions of MC codes . 85

6.2.1. Characterisation . 86

Table of Contents xxiii

6.2.2. Adaptive sample-based algorithm 88
6.2.3. Submission, monitoring and accounting 89

6.3. Experimental evaluation . 90
6.3.1. Test bed and simulations . 91
6.3.2. Results . 92

6.4. Conclusions . 96

II MULTILEVEL SCHEDULING WITH PILOT JOBS 99

7. The GWpilot Framework 101
7.1. Introduction . 101
7.2. Architecture . 102

7.2.1. Pilots . 106
7.2.2. The GWpilot Server (GW PiS) 109
7.2.3. The GWpilot Factory (GW PiF) 113

7.3. Functional comparison . 113
7.3.1. DIANE . 113
7.3.2. DIRAC . 114
7.3.3. Comparison . 115

7.4. Reproducible comparison with other pilot systems 116
7.4.1. Test bed setup . 119
7.4.2. Simple calculation . 120
7.4.3. Results . 121

7.5. Conclusions . 126

8. Simple Provisioning for Legacy Applications 127
8.1. Introduction . 127
8.2. Straightforward adaptation of legacy applications 128
8.3. Customised Provisioning . 129

8.3.1. Provisioning in grid federations 129
8.3.2. Provisioning in cloud federations 131

8.4. On-demand radiotherapy simulations on the cloud 135
8.4.1. Legacy application and configuration 135
8.4.2. Results . 136

8.5. Conclusions . 138

9. Improved Scheduling and Provisioning Techniques 139
9.1. Introduction . 139
9.2. Improved matchmaking . 140
9.3. Overloading queues . 142
9.4. Scheduling configuration and performance 142
9.5. A more reliable mechanism to perform transport calculations 143

9.5.1. Test bed . 144
9.5.2. Preliminary test . 145
9.5.3. Main computation . 148

9.6. Conclusions . 150

xxiv Table of Contents

10.Customising the Whole Scheduling at User-level 151
10.1. Introduction . 151
10.2. Dynamic and customisable characterisation 151
10.3. Feasible Workload Scheduling . 153
10.4. User-guided Provisioning . 154
10.5. Effects of configuration on the scheduling layers 154
10.6. Experimental demonstration . 156

10.6.1. Proposed calculation . 156
10.6.2. Customising characterisation and scheduling 157
10.6.3. Competitive tests . 159
10.6.4. Results . 160

10.7. Conclusions . 164

11.Modelling and Stacking Scheduling Tools 165
11.1. Introduction . 165
11.2. Modelling task turnaround with GWpilot 166

11.2.1. Simple turnaround model . 166
11.2.2. Statistical validation of the model 167

11.3. Methodology to incorporate third-party schedulers 170
11.4. Stacking self-schedulers on the cloud 171

11.4.1. Adaptation approach . 172
11.4.2. Proposed tests . 173
11.4.3. Results . 175

11.5. Conclusions . 176

12.Main Contributions and Future Work 179
12.1. Contributions and expected impact . 179
12.2. Future work . 181

III APPENDICES 183

A. Dissemination 185
A.1. JCR publications . 185
A.2. Book chapters and other journals . 187
A.3. Proceedings . 187
A.4. Other contributions . 191

B. Applications 193
B.1. Chemical Physics . 193

B.1.1. Grif . 193
B.2. Evolutionary Biology . 194

B.2.1. jModelTest2 . 194
B.2.2. MrBayes and PhyloGrid . 194
B.2.3. ProtTest3 . 195

B.3. High Energy Physics . 195
B.3.1. Nagano . 195

Table of Contents xxv

B.3.2. XMM-Newton SAS software . 196
B.4. Matter Interactions . 196

B.4.1. BEAMnrc . 197
B.4.2. FLUKA . 197
B.4.3. GAMOS . 197

B.5. Nuclear Fusion . 198
B.5.1. DKES and DKEsG . 199
B.5.2. FAFNER2, ISDEP and FastDEP 199

B.6. Solid State Physics . 200
B.6.1. DiVoS . 200

C. Physics of Transport Codes and Physical Results 201
C.1. Introduction . 201
C.2. Flux calculation . 203

C.2.1. Determination of fluxes from NC transport 204
C.2.2. The Monte Carlo approach . 206

C.3. The effective ripple . 207
C.4. A summary of the results . 207

C.4.1. First plasma results from DKEsG 208
C.4.2. Comparison of fluxes . 211
C.4.3. Relation between rotational transform scaling and NC transport

in stellarators . 214

Bibliography 219

List of Figures

2.1. Suitability of applications for being executed in grid environments. . . 15
2.2. Workload Scheduling fields and the usual scope of scheduling tools. . . 23
2.3. GridWay architecture and its interaction with grid services. 26

4.1. Formal workflow scheme for the DKEsG framework. 61
4.2. Real execution time of DKES compared with the associated overheads. 66

5.1. Schematic representation of the job execution process within virtual
machines deployed in a grid site. 71

5.2. Sequence of activities to accomplish any job in a cloud federation with
the GWcloud drivers. 75

5.3. Average operation times obtained in first experiment. 78
5.4. Throughput obtained in first experiment. 79
5.5. Accumulated overheads classified according to cloud providers that ha-

ve been significantly contributed to second experiment. 82

6.1. Speedup obtained with respect to GridWay (top) and WMS (bottom).
Please note that the latter is in logarithmic scale. 92

7.1. GWpilot components in GridWay architecture. 102
7.2. State machine diagrams representing pilot internal behaviour (left) and

task management (right). 105
7.3. The GWpilot PiS internal modules, procedures, information workflow

and its relation to external operations. 107
7.4. State machine diagrams representing the management of tasks (left)

and pilots (right) by the GWpilot Server. 108
7.5. Sequence of activities performed by the actors of GWpilot to accom-

plish any task. They correspond to the steps 1-6 described in Subsec-
tion 7.2.2. 110

7.6. Difference between the number of running pilots and active tasks in
the experiments comparing GWpilot, DIRAC and DIANE. 122

8.1. Description of a task with the different approaches offered by GWpilot. 130
8.2. GridWay ecosystem architecture for cloud federations. 131
8.3. Sequence of activities performed by the actors of GWpilot to accom-

plish any task in clouds. They correspond to the steps 1-7 described in
Subsection 8.3.2. 134

xxvii

xxviii List of Figures

8.4. Resource Provisioning during the execution of the BEAMnrc applica-
tion on the EGI FedCloud infrastructure. Additionally, the filling rate
is included for every test. 137

9.1. Turnaround average times per hour of BoTs submitted by DKEsG to
GWpilot system. 147

10.1. Linear fitting of the values in Table 10.2 for the he X5365 processor.
This is the suggested profile of DKEsG-Mono on that processor. . . . 158

10.2. Average times obtained in the competitive tests that demonstrate the
improvement through the time with guided approaches. 161

11.1. Box plots of the different turnaround times obtained with every com-
pleted task grouped by experiment. 168

11.2. Overhead with respect to expected turnaround (Equation 11.3) accor-
ding to the number of Nagano’s samples per task and the GWpilot
configuration (tsi/2 = 5 s, tpi = 30 s). 173

11.3. Nagano production using tasks with fixed size E of 6,000 particles
(without DyTSS). 174

11.4. Nagano production with DyTSS algorithm. 175

C.1. Evolution of the diffusion coefficients as a function of collisionality (re-
presented as CMUL) for different values of the electric field (eΦ/T). . 208

C.2. D̂ij normalised diffusion coefficients calculated by DKEsG-Mono in the
performed test. They are independent of T , and n, but proportional to
the D̂ij ones. 209

C.3. Neoclassic transport coefficients Lij calculated by the DKEsG framework.210
C.4. Normalised monoenergetic coefficients of the outer radial plasma posi-

tion in TJ-II. 211
C.5. D̂11 representation of an inner radial plasma position (ρ = 0.0786)

in TJ-II (figure (a), left) and final comparison of ion particle fluxes
obtained by DKEsG and ISDEP (figure (b), right). 212

C.6. Representation of the effective ripple (εeff), as a function of volume
and rotational transform in TJ-II. 213

C.7. Representation of the effective ripple (εeff), as a function of volume
and rotational transform in TJ-II for ρ = 0.007. 214

C.8. Representation of the effective ripple (εeff), as a function of volume
and rotational transform in TJ-II for ρ = 0.650. 215

C.9. Representation of the effective ripple (εeff), as a function of volume
and rotational transform in TJ-II for ρ = 1. 216

List of Tables

2.1. Scheduling options for GridWay configuration. 27
2.2. Comparison of some distinguishing features of main pilot systems. . . 38

4.1. Maximum speedup over the sequential execution of the adapted appli-
cations obtained in several works using an early-binding approach. . . 55

4.2. Memory consumption and time spent by one task of DKEsG-Mono sor-
ted by number of Fourier/Legendre modes and radius (with a coupled
order of 5). 58

4.3. DKEsG-Mono executions on every resource available on the EELA-2
infrastructure. 64

5.1. Summary of characteristics of the test bed resources in first experiment. 77
5.2. Disk layout of the virtual machines in first experiment. 77
5.3. FedCloud IaaS providers actually used in experiments. 80
5.4. Direct job executions in VMs deployed in EGI FedCloud. 81

6.1. Scalability of the self-scheduling approach: walltime factor when pro-
blem size is increased. N0 represents the size of the first experiment. . 91

6.2. Time saved by self-scheduling with respect to GridWay and WMS.
(Speedup is shown in Fig 6.1). 94

6.3. Speedups obtained in real calculation cases (a = 100). 95
6.4. Replication overload performed by the self-scheduling framework in

terms of non-necessary submitted samples. 96

7.1. Some characteristics notified by pilots to GW PiS and subsequently
published into GridWay Host Pool. 112

7.2. Scheduling policies with similar significance for the pilot systems com-
pared in this work. Values set to accomplish the experiments are shown.117

7.3. Time complexity of long multiplication and real time measurements. . 120
7.4. Results obtained in the experiment comparing GWpilot, DIRAC and

DIANE. 123

8.1. Differentiation between the meaning of basic task statements and con-
figuration options as well as the effects on Workload Scheduling and
Provisioning. 132

xxix

xxx List of Tables

8.2. Number of VM instances successfully set up and failed at every pro-
vider. Additionally, the number of failed requests at unreliable sites is
shown. 137

9.1. Executions of DKEsG bags of tasks in pilots and the corresponding
grid jobs containing pilots on GISELA infrastructure. 146

10.1. Static options for GWpilot configuration. 155
10.2. Average DKEsG-Mono execution times obtained from reference machi-

nes for some indexed radius in the standard TJ-II configuration. . . . 158
10.3. Results obtained in the competitive tests that evaluate the renovation

of pilots and performance. 161
10.4. Makespan values obtained through the competitive tests that compare

guided and not guided scheduling. 162

List of Acronyms

AAI authentication and authorization infras-
tructure.

AGWL Abstract Grid Workflow Language.
ALICE A Large Ion Collider Experiment.
AliEn ALICE Environment.
AMWAT AppLeS Master Worker Application

Template.
APEL Accounting Processor for Event Logs.
API application programming interface.
AppLeS Application Level Scheduling

framework.
ARC Advanced Resource Connector.
ATLAS A Toroidal LHC ApparatuS.
AWS Amazon Web Services.

BDII Berkeley Database Information Index.
BOINC Berkeley Open Infrastructure for Net-

work Computing.
BoT bag of tasks.

CA certification authority.
CCF current calibration files.
CERN European Organization for Nuclear Re-

search (Conseil Européen pour la Recher-
che Nucléaire).

ClassAds Classified Advertisements language.
CLI command line interface.
CMS Compact Muon Solenoid.
CMUL normalised collisionality.
COMPSs COMP Superscalar.
CORBA Common Object Request Broker Ar-

chitecture.
CREAM Computing Resource Execution And

Management.

DAG directed acyclic graph.
DCI Distributed Computing infrastructure.
DEISA Distributed European Infrastructure for

Supercomputing Applications.
DHCP Dynamic Host Configuration Protocol.

DIANE Distributed Analysis Environment.
DIRAC Distributed Infrastructure with Remo-

te Agent Control.
DiVoS Superconducting Vortex Dynamics (Dí-

namica de Vórtices Superconductores).
DKES Drift Kinetic Equation solver.
DKEsG Drift Kinetic Equation solver for Grids.
DKEsG-Mono DKEsG monoenergetic modu-

le.
DKEsG-Neo DKEsG Neoclassical module.
DRMAA Distributed Resource Management

Application API.
DyTSS Dynamic Trapezoid Self-Scheduling.

EDG European DataGrid Project.
EDGeS Enabling Desktop Grids for e-Science.
EELA-2 E-science grid facility for Europe and

Latin America.
EFIELD normalised electrical field.
EGEE Enabling Grids for E-sciencE.
EGI European Grid Infrastructure.
EM Execution Manager.
EMI European Middleware Initiative.
EUGridPMA European Policy Management Aut-

hority for Grid Authentication.

Falkon Fast and Light-weight tasK executiON
framework.

FCFS first come first serve.
FedCloud EGI Federated Cloud.
FRFS fit resource first serve.

GAMOS GEANT4-based Architecture for
Medicine-Oriented Simulations.

GARUDA Global Access to Resources Using
Distributed Architecture.

GASS Globus Access to Secondary Storage.
GENIUS Grid Enabled Web Environment for

Site Independent User Job Submission.
GFDL Grid Workflow Description Language.
GGUS Global Grid User Support.

xxxi

xxxii List of Acronyms

GISELA Grid Initiatives for e-Science Virtual
Communities in Europe and Latin Ameri-
ca.

GLUE Grid Laboratory Uniform Environment.
GPFS General Parallel File System.
GPU graphics processing unit.
GRAM Grid Resource Allocation Manager.
GridFTP Grid File Transfer Protocol.
GridSAM Grid job Submission And Monito-

ring web service.
GS grid scheduler.
GSFL Grid Services Flow Language.
GT Globus Toolkit.
gUSE grid and cloud User Support Environment.
GW PiF GWpilot Factory.
GW PiS GWpilot Server.
GWcloud ED GWcloud Execution Driver.
GWcloud ID GWcloud Information Driver.
GWEL Grid Workflow Execution Language.
GWorkflowDL Grid Workflow Description

Language.

HEP High Energy Physics.
HPC High Performance Computing.
HTC High Throughput Computing.
HTTP Hypertext Transfer Protocol.

IaaS infrastructure-as-a-service.
IM Information Manager.
IP Internet Protocol.
IS information systems.
ISDEP Stochastic Differential Equations for

Plasmas.
IWIR Interoperable Workflow Intermediate Re-

presentation.

JDL Job Description Language.
JSDL Job Submission Description Language.

K-Wf Knowledge-based Workflow System for
Grid Applications.

LAN local area network.
LCG LHC Computing Grid.
LDAP Lightweight Directory Access Protocol.
LHC Large Hadron Collider.
LHCb Large Hadron Collider beauty.
LJF longest job first.
LRMS local resource management system.

M/W Master/Worker.
MA message accumulator.
MAD middleware access driver.
MC Monte Carlo.
MPI Message Passing Interface.
MUPJ multi-user pilot jobs.

NAT network address translation.
NC Neoclassical.
NFS Network File System.
NIS Network Information Service.

OASIS Organization for the Advancement of
Structured Information Standards.

OCCI Open Cloud Computing Interface.
ODF observation data files.
OGF Open Grid Forum.
OGSA-BES Open Grid Services Architecture -

Basic Execution Service.
OpenMP Open Multi-Processing.
OS Operating System.
OSG Open Science Grid.

P-GRADE Parallel Grid Run-time and Appli-
cation Development Environment.

PaaS platform-as-a-service.
PanDA Production and Distributed Analysis.
PBS Portable Batch System.
PC personal computer.
PiF pilot factory.
PiS pilot server.
PMES Programming Model Enactment Servi-

ce.
PMS production manager system.
PRACE Partnership for Advanced Computing

in Europe.
PVM Parallel Virtual Machine.

QoS quality of service.

RB resource broker.
REST Representational State Transfer.
RMI Java Remote Method Invocation.
RPC remote procedure call.
RSH Remote shell.

SaaS software-as-a-service.
SAGA Simple API for Grid Applications.
SAM Service Availability Monitoring.

List of Acronyms xxxiii

SAS XMM-Newton Science Analysis System.
ServiceSs Service Superscalar.
SG scientific gateway.
SHIWA SHaring Interoperable Workflows

for large-scale scientific simulations
on Available DCIs.

SJF shortest job first.
SLA service level agreement.
SNMP Simple Network Mangement Protocol.
SOA service oriented architecture.
SOAP Simple Object Access Protocol.
SRM Storage Resource Manager.
SSH Secure Shell.
SSL Secure Socket Layer.
SWFL Service Workflow Language.

TCP Transmission Control Protocol.
TLS Transport Layer Security.

UMD Unified Middleware Distribution.
UML Unified Modelling Language.
UNICORE Uniform Interface to Computing Re-

sources.
URI Uniform Resource Identifier.
UTQ user task queue.

VIM virtual infrastructure manager.
VM virtual machine.
VO virtual organization.
VOMS Virtual Organization Membership Ser-

vice.
VPN virtual private network.
VWS Virtual Workspace Service.

WAN wide area network.
WfE workflow engine.
WfM workflow manager.
WMS gLite/UMD Workload Management Sys-

tem.
WS web service.
WS-BPEL Business Process Execution

Language for WS.
WSDL Web Service Description Language.
WSRF Web Service Resource Framework.

XPDL XML Process Definition Language.
XSEDE eXtreme Science and Engineering En-

vironment.

YAWL Yet Another Workflow Language.

Chapter 1

Overview

1.1. Motivation

The consolidation of Distributed Computing infrastructures (DCIs) is a long pro-
cess involving continuous changes, standardisation processes, upgrades of middleware
tools, implementation of new capabilities, dissemination of their use, adaptation of
applications, etc. In any case, this effort has enabled the integration of a large pool
of resources around the world, resulting in a High-Throughput Computing (HTC)
platform that is ready for high loads whose best proponents are the current grid fe-
derations. Moreover, with the advent of infrastructure-as-a-service (IaaS) clouds (and
even, the Volunteer Computing or the services oriented to Big Data), the number
of resources and capabilities have exponentially increased, which opens the door to
face new research challenges. However, despite recent advances, the work is not yet
complete, particularly for job scheduling. Users, developers and site administrators
continuously experience poor performance, complexity, and resource underutilisation.

Because of the dynamism and heterogeneity that are present in the majority of
DCIs, especially those based on Grid [1] and Cloud [2] Computing, calculating the
best match between computational tasks and resources in an effectively characterised
infrastructure is, by definition, an NP-complete problem [3], and only sub-optimal
solutions (schedules) can be found for these environments. Nonetheless, the persis-
tent problems on DCIs have avoided the deployment of those complex algorithms
in production, even though they have been well-tested on simulators and in contro-
lled environments. Grid and cloud information systems (IS) [4] (usually based on
GLUE [5]), which are commonly misconfigured, do not provide an effective or reliable
characterisation of the offered resources.

The basic information is not provided for scheduling. IS do not currently show any
information about the bandwidth or latency, neither the quotas established in cloud
providers. In the case of grid infrastructures, for example, the shared policy of the
remote queues and the average waiting time are unknown to users. As a consequence,
no valuable functionality devoted to advanced reservation of resources has been im-
plemented so far. Therefore, current middleware does not allow the knowledge of the
type of resources that will be effectively assigned a priori. A lack of tools for generic
user application profiling is an added difficulty. Another problem is the continuous
overload of centralised services and resources, which increases the response lag and
queue times, resulting in poor turnaround of individual jobs.

1

2 Chapter 1. Overview

According to the performance aspect considered [6], the scheduling problem can be
oriented to increase the throughput and the resource utilisation of the infrastructure,
to reduce the application makespan or to improve the user share, the prioritisation and
the data allocation. Algorithms for these policies are widely utilised by local resource
management systems (LRMS) to exploit the clusters and constellations belonging
to the same institution. Because their computational environments experience few
changes, their schedules are based on static descriptions of resources. On the other
hand, any developer (or skilled user) of any HTC application should take account of
localisation and performance of the available resources to reduce the final makespan
of his calculation, the process of which requires from some abstraction. This is so
because these specialised users need effective mechanisms to access resources in a
way that they could choice between a unified, abstracted view of the infrastructure
as a whole, and the opportunity to target specific providers for their needs. For this
purpose, users should rely on brokers in the first instance. Resource brokers (RBs)
are cognisant of grid and cloud dynamism, and they constitute the first mechanism to
reduce DCI complexity, thus providing automated and unattended access to all the
resources.

Diverse implementations of grid schedulers (GSs) have been proposed, but a few
GSs have survived because of their adaptation to the grid complexity, scalability or
ease of use. Currently, the GSs based on Condor [7] are the predominant ones in
the largest grid infrastructures in its two versions: Condor-G [8] on Open Science
Grid (OSG1) and gLite/UMD WMS [9] on the European Grid Infrastructure (EGI2).
GridWay [10] is a potential alternative. However, neither Condor nor GridWay have
yet addressed consistent methods to overcome the resource characterisation problem,
despite the implementation of behaviour models [11, 12, 13]. The consequences are
especially evident when executing short jobs, in which the middleware overhead re-
presents an important percentage of the consumed time. As a result, GSs are devoted
to improve the throughput of long jobs from an organisational point of view.

In current IaaS clouds, basic brokering capabilities are still far from being provi-
ded for HTC. Cloud Computing promises to be more flexible, usable, available, and
simple than Grid Computing, covering also much more computational needs than the
ones required to carry out distributed calculations. Nevertheless, the diversity of IaaS
cloud providers makes difficult to design a general-purpose broker and the available
ones are devoted to service consolidation. Thus, the lack of standardised program-
ming interfaces and brokering tools to distribute the workload hinder the massive
portability of legacy applications to cloud environments.

To overcome the lack of reliable information provided from the IS, many application-
oriented frameworks have assumed some of its roles and other functionalities that
initially correspond to the RBs to improve the quality and quantity of the supplied
resources, such as statistical accounting or remote profiling. In this sense, GSs are com-
monly used as a tool for resource provisioning or dispatching [14]. Moreover, because
those frameworks select the resources, they are able to re-implement basic functionali-
ties from the RBs. Systems included in this category are some workflow managers [15],
production manager systems (PMS) [16, 17, 18, 19], and self-schedulers [20, 21, 22],
which promise a better performance based on a deeper knowledge of the computatio-
nal needs of a specific application. This is an expensive approach that increases the
intrinsic difficulty in testing innovative algorithms in a real environment. Another

1http://www.opensciencegrid.org
2http://www.egi.eu

1.1. Motivation 3

issue is the specialisation of such specific types of applications. As a consequence, the
performance gain over those applications provided by a general-purpose GS is usually
measured in controlled environments, such as simulators, small laboratories or infras-
tructures with only a few production nodes. Thus, although they show interesting
results, their improvements cannot usually be extrapolated to real infrastructures or
to different application types with the same good performance.

Unlike the aforementioned early-binding methods, where the workload is scheduled
to resources before they have been effectively assigned, the relatively recent pilot job
technique (or late-binding model) is being introduced in DCIs to overcome the current
limitations of middleware. This approach accomplishes computational user tasks in a
more flexible, stable and reliable way while reducing overhead. Moreover, it consti-
tutes a powerful scheduling layer that can be combined with traditional mechanisms
to achieve the required performance levels. In this sense, this new scheduling overlay
is logically placed between the ones provided by the applications and the provisio-
ning tools, and can be used to solve the aforementioned characterisation problems.
Thus, pilot frameworks build Multilevel Scheduling systems that are composed by the
Application (or User) layer, the introduced Task Scheduling layer, and the Resource
Provisioning layer.

Nevertheless and even when they have provided a clear improvement in the exe-
cution of distributed calculations, the current systems based on pilot jobs [17, 19, 23,
24, 25, 26, 27, 28, 29, 30, 31] are not exploiting all the advantages that the techni-
que could afford in grids and clouds, or they lack compatibility or adaptability. In
particular, these tools are not flexible enough to support the characterisation needed,
to customise the behaviour of the scheduling layers or to dynamically configure the
provisioned grid and cloud workspace. Moreover, although current pilot systems are
accomplishing great results in the area for which they have been implemented and
designed, their limitations prevent their deployment and application to other fields or
codes.

Therefore, the aim of this thesis is overcome the limitations of current pilot frame-
works to fully exploit the Multilevel Scheduling in grid and cloud environments. This
includes allowing users, developers and institutional administrators to easily incorpo-
rate their legacy applications, frameworks and scheduling policies into the Multilevel
architecture, achieving the performance required for these calculations and preserving
the compatibility and security among infrastructures. For this purpose it is necessary
an extensive study of the related work and the clarification of concepts to keep the
advantages of previous works and to found new suitable approaches.

The main intellectual contribution of the research presented in this thesis is the
collection of methodologies and technologies that result in the design of a new pi-
lot framework, which accomplishes these stated requirements. To demonstrate these
achievements, the new framework has been implemented and tested with different
legacy applications and scheduling systems, performing meaningful calculations on
cloud and grid infrastructures in production. Consequently, the new pilot system is
available to be profited by the scientific and industrial communities as well as addi-
tional contributions to other research areas have been achieved.

Furthermore, the development of this system represents a step forward in the use
of DCIs because it goes beyond establishing simple network overlays to overcome the
waiting times in remote grid queues, making use of cloud resources or improving relia-
bility in task production. It properly tackles the characterisation problem in current
infrastructures, allowing users to arbitrarily incorporate customised monitoring of

4 Chapter 1. Overview

resources and their running applications into the system. Any user can easily take ad-
vantage of this feature to perform a specialised scheduling of his application workload
without the need of modifying any code in the pilot system. Users can also automa-
tically guide the Provisioning among different grid and cloud providers without the
need of explicitly indicating one resource or manually submitting pilots. Moreover, all
of these features can also benefit skilled developers or administrators to build complex
scheduling policies such as the ones in [6, 32]. Additionally, self-schedulers or workflow
managers can be easily adapted to establish an upper scheduling layer that will take
into account the real characteristics of resources, even when they were federated.

Therefore, the global contribution of this thesis to the Distributed Computing field
is remarkable, allowing the efficient profiting of large volume of distributed hetero-
geneous resources by individual researchers and communities that rely on any kind
of HTC calculation. Thus, the impact on Computer Science as well as on any other
field is guaranteed by the practicality, extensibility and the multiple possibilities of
scheduling that the proposed solution allows.

1.2. Objective, methodology and structure
The objective of this thesis is to found mechanisms to fully profit from the ad-

vantages that the Multilevel Scheduling can provide in grid and cloud environments.
This is, the capacity to:

perform several specialised scheduling at every level adapted to the computatio-
nal and organisational needs;

make the most from resources belonging to different DCIs;

create personalised virtual environments on-demand and maintain them during
the calculations.

Moreover, the vision under which this research has been carried out results in that,
the positive experience and the expensive work performed in large and collaborative
grid federations must be preserved as long as possible. Thus the research must assure
the:

support of legacy applications and tools with scheduling capacities;

the security and compatibility among DCIs;

the fair-share in a competitive environment.

These items were not previously achieved together by any pilot system. Therefore,
the main result of this thesis is to offer a new general-purpose pilot system that
accomplishes these capacities for the scientific and industrial community. For this
purpose, the following main points must be performed:

a) an extensive study on the advances previously carried out and the weaknesses
found, which allows determining the suitable techniques to be applied as well as
defining a detailed list of design requirements for a new pilot system;

b) an evaluation and improvement of the existent early-binding techniques, or even
the creation of new ones if needed, to be posteriorly profited following a late-
binding approach.

1.2. Objective, methodology and structure 5

c) the design of the new system and its consequently validation, customising the
scheduling layers, incorporating third-party schedulers and stressing the framework
with real executions on real grid and cloud infrastructures in production.

d) the demonstration of the final suitability of the solution for diverse scientific fields,
obtaining valuable results in their scope.

With the achievement of these items, the intellectual contribution of this thesis
to the Computer Science field is completed. This demonstrates that the presented
approach is suitable for bestowing the customisation of the Multilevel Scheduling
allowed by pilot jobs to the final users, i.e. the efficient and easy profiting from grid
and cloud infrastructures according to the computational requirements of their appli-
cations. The last item is also considered as an additional contribution that must be
explained in appendices.

For these reasons, the structure of this thesis follows these previously mentioned
points. Chapters 2 and 3 describe the state of the art, this is, the strengths and
drawbacks of the existing scheduling approaches and frameworks, the reason for their
design and the compiling of motivations to develop a new pilot system. Moreover, in
Chapter 3, the specific division in subsequent chapters of the rest of the research is
detailed and justified by the requirements of the new pilot system. Therefore, this
paragraph only aims an overall vision of the structure of this work. Thus, the se-
cond point is achieved in the Part I of this thesis, which is focused on propose new
approaches (Chapters 5 and 6) to be used for the early-binding scheduling of the cal-
culations adapted (Chapter 4) to distributed environments. Finally, the architecture
of the new pilot system as well as its design details that makes its features possible
is introduced in the Part II. Therefore, the mechanisms to properly manage the dif-
ferent scheduling layers, the execution of legacy applications and the incorporation
of third-party schedulers are explained and demonstrated through the Chapters 7, 8,
9, 10 and 11. Furthermore, in addition to the Chapter 12, in which a summary of
the main intellectual contributions and future work is presented, this thesis concludes
with complementary appendices that show the impact of the research performed on
different fields (Appendix B) besides of the publications (Appendix A), in special new
physical have been achieved for Nuclear Fusion (Appendix C).

Chapter 2

State of the Art

2.1. Distributed Computing paradigms

Computing systems, which elements maintain independent their memory from
processors belonging to other elements, can be considered as distributed platforms.
Storage can be considered as a type of memory. Consequently, following strictly the
previous definition, a distributed system has its memory, processors, and disks phy-
sically distributed into isolated elements. As any other multi-processor system, to
improve the execution of an algorithm, slices of calculation are distributed among
different processors and the speedup obtained is strongly limited by the Amdahl’s
Law [33]. However, in contrast to the shared-memory platforms, the communication
between two processes running on different elements has to be performed through the
interconnection network. Therefore, it is the network latency, (and in lesser degree,
the bandwidth) the key factor that limits the performance gain of parallel algorithms
on distributed platforms. In this sense, the overhead introduced by communications
usually increases with the number of processes and it can become unmanageable, being
higher than the real processing time when conventional LANs (or WANs) are used.
Additionally, the probability of failure increases with the duration of every compu-
tational slice. A failed process can stop and waste the whole parallel calculation or, in
the better case, it will imply restarting this process, stretching on the final makespan.
Thus, the reliability of every distributed element gains influence on the speedup with
long processes, especially when these elements are uncontrollable. Other key factor is
the level of heterogeneity of the elements, because the slower process can determine
the final makespan of the whole calculation.

Precisely, the capacity for accomplishing parallel algorithms is the distinguishing
feature of High Performance Computing (HPC) architectures from the High Through-
put Computing (HTC) ones. HPC platforms tend to offer a uniform hardware access
from all processors to memory, avoiding the effect of slower elements and communica-
tions. Therefore, HTC platforms are only suitable for accomplishing embarrassingly
parallel algorithms or completely independent processes, where the order of execution
does not influence the execution time of every job, only the ones on which dependences
should be preserved. For this reason, their performance is usually measured in jobs
per second (i.e. the throughput), while the HPC ones are in operations per second
(i.e. their capacity for performing processor operations in parallel). It is noteworthy
to mention that HPC platforms can accomplish HTC calculations, but the feature is

7

8 Chapter 2. State of the Art

not achieved backward.
The HTC platforms are a sub-set of the wide range of architectures proposed for

Distributed Computing and multiple aims. In this sense, diverse classifications can be
found [34, 2, 35, 36, 37], but currently the accepted Distributed Computing paradigms
for HTC can be summarised in Cluster, Volunteer, Grid, and Cloud Computing as
well as Big Data, following the historical order of appearance.

Clusters are the evolution of the non-uniform memory access (NUMA) platforms
for massive parallel processing (MPP) to commodity hardware. They usually support
both HPC and HTC calculations. For this purpose, the job scheduling is managed
by batch queues or local resource management systems (LRMS) inherited from the
previous platforms. They implement shared storage area networks (SANs) as well as
low latency networks such as Infiniband. In general, they are composed by identical
servers based on x86 architecture supporting the same configuration (operating system
(OS) and software releases). The cluster is within the administrative domain of an
institution, where quotas and preferences are set up for the users according to the
different projects of interest.

A step forward is the inclusion of the personal computers (PCs) of the institution
campus in the resource pool of the cluster [7]. Resources still belong to the same
administrative domain: they are connected to the intranet and supervised by aut-
horised staff. However, as the PCs are not under the protection of the datacentre,
they are exposed to power cuts, performance slowdowns or hangs, because the desk-
top is also running arbitrary programs and the intranet can experiment unexpected
congestion. Moreover, every user requires a PC with certain configuration. Thus, the
heterogeneity and the reliability make these implementations only suitable for HTC.

Unlike clusters, Volunteer Computing platforms distribute the calculations across
different administrative domains, which are the PCs belonging to anonymous people
around the world. Additionally to the privacy issues and the low network performan-
ce compared with an intranet, the reliability and heterogeneity are obviously much
more important in these systems, because the resources escape the control from any
administrator [38]. However, both Volunteer and Cluster Computing are centralised
architectures since only a coordinator system is allowed to use their resources.

On the other hand, the Grid Philosophy proposed by Foster [1], defines a grid
as a system (i) not subject to a centralised control, (ii) based on standard, open
and general-purpose interfaces and protocols; that (iii) provides some level of quality
of service (QoS). This definition is applicable to Cloud Computing and Big Data,
but with the necessary extension to their peculiarities and features. In this sense,
the Cloud Computing covers much more computational needs than the ones requi-
red for an HTC platform, like resource elasticity, service consolidation, or cost re-
duction [39]. These features are offered thanks to the virtualisation mechanisms of
machines (infrastructure-as-a-service, IaaS clouds), development tools (platform-as-
a-service, PaaS clouds), and applications (software-as-a-service, SaaS clouds). The
term Big Data generally encompasses the inherent difficulties of storing and mining
the great amount of data generated by scientific or industrial experiments, business
accounting, social networks and even, the whole internet activities. However, the mea-
ning of interest for this work is the one related to the mechanism to split and process
pieces of the data into multiple providers, which offer specific interfaces for data-
mining algorithms such as MapReduce [40]. Therefore, Grid, Cloud and Big Data
paradigms propose a service oriented architecture (SOA) [41], where any user can
benefit from computational resources with certain QoS without the needed passing-

2.2. The grid and IaaS cloud approaches 9

through a unique and centralised system.
This work is focused on the efficient scheduling of HTC calculations in large grid

and IaaS cloud infrastructures. The abstractions enabled with PaaS and SaaS clouds
are counterproductive for HTC scheduling because they do not allow the characte-
risation of resources at infrastructure level. However, these and other paradigms are
closely related and usually are mixed through the related work. For example, grid re-
sources are customary formed by clusters and can elastically grow with clouds [42, 43];
or the algorithms used in Big Data can be deployed on clouds [44, 45] and even offered
as-a-service (PaaS and SaaS). Therefore, the interest is not to explore the approach
usually called as Utility Computing, where one (or few) provider on-demand allows
increasing the computational power of certain institution. The aim is going further
by studying the effective distribution of the calculations among the resources from a
large set of grid and IaaS cloud providers.

For this purpose, the necessary concepts to understand how the calculation wor-
kload can be scheduled in grid and IaaS cloud infrastructures following the SOA model
are summarised in this chapter.

2.2. The grid and IaaS cloud approaches

The main achievement of the research in Grid Computing was the establishment
of a service oriented architecture (SOA) [46] for HTC, which was widely accepted by
the whole community. This fact allowed the federation of large volume of resources
across the world, but also implied a long process of testing and standardisation. One
of the results was the creation of a set of APIs for highly distributed computation [47],
as well as the establishment of protocols to interface with the computational services
offered. However, Grid Computing has not properly addressed several problems. One
of them is the rigidity of configurations that are present in the federations. Besides,
one of the major issues in grid computation is still the efficiency of the submitted jobs.
Such efficiency can be considered from different perspectives [6], but always bearing in
mind that the final users want their calculations ended in the shortest possible time.
For this purpose, it is mandatory to count on scheduling mechanisms that properly
build and distribute these jobs among available providers.

Cloud Computing promises to be more simple, flexible, usable and available than
Grid Computing. Nevertheless, the latter affirmation is far away from being a reality
in many cases. In first place, the diverse sponsor institutions, funded projects, in-
frastructure providers and manufactures have different views, and propose different
models about how the cloud federation should be. This is, Cloud Computing is expe-
rimenting a process of standardisation and consolidation similar to the one performed
for Grid Computing. A good introduction of this matter can be found in [48]. Due
to this diversity, the result is an increased complexity of the current cloud platforms
from the user’s point of view. On the other hand, although the flexibility is increased,
users not always can run their applications exactly on the virtual environment that
they require, and resources are effectively limited for every user. Additionally, they
usually lack of APIs and service interfaces similar to the ones available in grids. As a
result, optimising the placement of virtual machines (VMs) across multiple clouds and
also abstracting the deployment and management of components of the virtual infras-
tructure created are complex. Such plethora of solutions were surveyed and classified
in the proposed taxonomy by Grozev and Buyya [49].

10 Chapter 2. State of the Art

Regardless, any scheduling approach working on any optimisation [6] aspect should
take account of localisation and performance of the available resources to target spe-
cific providers. Obviously, computational resources must be requested by interfacing
with the services that providers offer, but these resources must be previously dis-
covered and characterised in some way. Therefore, an adequate introduction to the
design and behaviour of current grid and cloud infrastructures should begin with the
description of these protocols and services.

2.2.1. Interfacing with grid and cloud providers

2.2.1.1. Grid interfaces

These interfaces have been traditionally tied to the different middleware imple-
mentations. With the development of Globus Toolkit [50] the establishment of first
grid infrastructures was possible. Consequently, GRAM2 [51], was widely accepted as
the gatekeeper interface for computational jobs, GASS and GridFTP [52] protocols
were used for transferring their inputs and outputs, the security was based on X.509
certificates and the description of sites on LDAP[4], among other services.

Although other middleware such as EDG/LCG/gLite/UMD/EMI [53], ARC [54],
GridSAM or UNICORE [55] progressively offered another interfaces for other pur-
poses, the basic operation with grid sites relied on the protocols stated by Globus.
However, this status quo ended with the introduction of web services (WS) into the
architecture of Globus 3 and 4 [46], but the presented protocols were also not stan-
dardised. Consolidated infrastructures are resistant to change to the new middleware,
maintaining old interfaces until the lack of support forced their developers to imple-
ment new ones. Finally, Globus 4 resulted unfeasible, but web services were adopted.
Currently, grid gatekeepers are mainly based on CREAM [56] or on the standardised
OGSA-BES [57] protocol, while storage is usually accessed through GridFTP or SRM.

2.2.1.2. IaaS interfaces and contextualisation

The need of specific interfaces that abstract the common operations with VMs
(creation, booting, stopping, halting, destruction, etc.) has driven the appearance
of several proposals and implementations (such as Globus VWS, Nimbus, Eucaly-
ptus [58]) since 2006. However, Amazon Web Services1 (AWS) was the first large
IaaS provider and many deployments were based on its interfaces, because it was
considered as the de-facto standard for the industry. Lately, the Open Grid Forum
(OGF) standardisation group proposed the OCCI [59] and, in general, is supported by
a wide set of current virtual infrastructure managers (VIMs) such as OpenNebula2,
OpenStack3, or Synnefo4.

Other issue is the need of instantiate VMs with a certain configuration. The initial
approach is to upload the customised disk images of the VM to the provider. Neverthe-
less transfers are too expensive due to the size of images. Therefore, it is more efficient
the support of generic VM templates at every provider. Thus, the contextualisation is
the procedure to pre-configure a VM at boot time. In this sense several technologies

1http://aws.amazon.com
2http://opennebula.org
3http://www.openstack.org
4http://www.synnefo.org

2.2. The grid and IaaS cloud approaches 11

have been developed, many of those tightly dependent on a concrete VIM. Finally,
Cloud-Init5 is imposing around the current IaaS providers.

Nevertheless, the interfaces and contextualisation tools are not enough to comple-
tely manage a virtual environment. Other services and systems are needed, especially
when multiple cloud providers are available.

2.2.2. Multiple providers versus federations
There is a conceptual differentiation between a simple group of providers and the

ones making a federation that has important implications on the feasible scheduling to
be performed. Following several definitions in the related work [49, 60], when a client
(or service) uses multiple, but independent, and not related grid or cloud providers,
he is working on a multi-grid or multi-cloud environment. Therefore, it is the client
(or service) who must completely manage the compatibility among interfaces, monitor
every provider, and handle its authorised accounts because it is working on different
configuration and security domains. This entails a lot developing work that should
limit the scheduling capacity of the client system. In consequence, the distribution of
the calculation among providers will scale on the order of few orders of magnitude,
although these providers can supply a great amount of resources (e.g. AWS).

These difficulties are widely studied in the related work, and they are usually
presented as an interoperation [47] issue among grid or cloud infrastructures. For
example, the interoperation of grid islands [61] (or multi-grid [60] environments) has
been managed through the tools described in Subsections 2.4.2 and 2.4.3. Additionally,
the multi-cloud [49] approach currently is too common due to the multiplicity of cloud
conceptions and commercial providers. Interoperation among clouds can be faced with
similar tools as grid but entails the same drawbacks.

To enable scheduling systems for managing providers on the order of thousands,
these systems should work on federated infrastructures. Federations voluntarily asso-
ciate providers, which even share their resources among each other, but completely
following the SOA model [41]. In this sense, the weaknesses of multi-grid and multi-
cloud approaches are not related to deal with the interoperability issues that SOA
tackles. Thus, it is not enough to offer services as the ones described in previous Sub-
section 2.2.1. These services must accomplish common visibility, governance, security,
orchestration and monitoring properties among others. Therefore, it does not simply
imply the agreement to use certain protocols; it also includes the establishment of
common services as:

Information systems (IS): they are indexation locations where the rest of services
are dynamically described. They constitute the starting point from which any
client (i.e. the scheduler) can discover the resources belonging to the federation.
The development efforts to characterise interesting aspects of the infrastructure
should be focused on this service.

Authentication and authorisation infrastructure (AAI): it stand for the group
of services, authorities and procedures that enable the security governance in
federated environments, which are usually based on encryption and temporal
tokens. They work together as an overlapped and independent infrastructure
that allows the management of users and projects within, or even crossing fede-
rations, i.e. it allows the establishment of virtual organisations (VOs). Through

5http://cloudinit.readthedocs.org

12 Chapter 2. State of the Art

AAI, the clients or groups of clients are granted to use certain amount of re-
sources by setting quotas for them in providers according to signed contracts.

Accounting, monitoring and incident systems: they compile the performance,
throughput and failures of every provider and every user through the time.
Therefore, they offer a detailed measurement of the current QoS of whole in-
frastructure that can be useful for scheduling, not only to check the compliance
with SLA contracts subscripted by providers. In this sense, the information
should be also summarised in IS for further benefit. Additionally they include
the procedures of notification and solving from the issues detected.

2.2.3. Federations established
The paradigm of a federated infrastructure is the grid constructed to process the

data generated by the Large Hadron Collider (LHC) experiments at CERN. It was
built throughout: the consecutive core projects European DataGrid (EDG), Enabling
Grids for E-SciencE (EGEE) and currently the European Grid Infrastructure6 (EGI);
the satellite ones EELA-2 and GISELA, among others, which were progressively assi-
milated in the main infrastructure; the association with Open Science Grid7 (OSG),
which is the proposal of the United States of America to create a large federation; and,
other infrastructures such as NorduGrid in Scandinavia. The initial infrastructure de-
voted to High Energy Physics (HEP) was progressively turned into a multi-propose
platform counting on more than 530,000 processors and 500 PBs of storage, opened
to any scientific area.

Note that EGI, OSG or NorduGrid are considered as different infrastructures, i.e.
they has their own agreements about the middleware to be used, the QoS provided,
etc. Thus the global platform is actually a federation of infrastructures, each of which
is a federation of providers.

The goal was achieved by deploying common services with the properties described
in the last subsection:

The top Berkeley Database Information Indexes (BDIIs) as IS. They are LDAP
servers that compile the characterisation of providers structured following the
GLUE schema. Several can co-exist in an infrastructure. They can also be hierar-
chically organised, filtering the information of BDIIs bounding sub-infrastructures.
It is noteworthy to mention that other mechanisms were tested, for example the
WSRF of Globus 4 in OSG, but finally were discarded.

The establishment of an AAI based on signed X.509 certificates, distributed
certification authorities (CAs), temporal and delegated proxies, and VOMS as
authorisation service.

The deployment of monitoring systems to regionally and globally test the in-
frastructure, which trigger several notification and tracking actions. Currently,
SAM tests are managed with Nagios, and incidents are tackled with the GGUS
ticket system. Accounting is performed through APEL.

On the other hand, some associations of providers cannot be considered federa-
tions according to the definition proposed in this work, in particular, the partnership

6http://www.egi.eu/
7http://www.opensciencegrid.org/

2.3. Scheduling in large infrastructures 13

of public HPC centres. While infrastructures such as GARUDA8 follow similar fede-
ration procedures than the ones described for EGI or OSG; XSEDE9 (as continuation
of TeraGrid) and PRACE10 (as continuation of DEISA) do not deploy IS or VO ser-
vices, they do not even offer interfaces such as the described in Subsection 2.2.1. The
execution access is managed through centralised user interfaces (UIs) which maintain
the authorisation credentials of users. In general the UNICORE graphical interface
is used, or the UI directly enables the possibility of opening remote SSH sessions to
directly post LRMS commands in the HPC facilities. Additionally, a mix of clustered
file systems such as GPFS and Lustre are used as global storage. Thus, the utilisation
of GRAM5, OGSA-BES or GridFTP is residual.

With respect to cloud infrastructures, several initiatives have been proposed th-
rough the last years [62, 63], but the long-stablished one is EGI FedCloud. This fede-
ration is taking advantage of grid experience to deploy grid-style services to enable its
federation11 [64]. Cloud sites fully support the EGI AAI based on X.509 and VOMS,
sharing the same VOs already established for grid. Providers must be compatible, at
least, with OCCI, but also expose their characteristics by LDAP to be compiled by top
BDIIs. This last aspect is very important to establish a real federation. OCCI shows
information about VM templates, allowed resources, etc. However, to perform the dis-
covering of new cloud sites or to facilitate their monitoring, any system should have
access to an IS. In the same way, the accounting, monitoring and incident tracking
was managed with the same tools than EGI, but adapted to the cloud environment.

2.3. Scheduling in large infrastructures

2.3.1. Definitions
The Workload Scheduling is the process for which the calculation is split into

manageable units and distributed among a set of known resources. However, there
are two main approaches to obtain these resources in large federations: the early and
late-binding methods.

Like to the code compilation process that fixes the assignation of the object type
to a variable (or function) before running the application, the early-binding scheduling
fixes the slice of a calculation to a unique provider before this provider has supplied
the corresponding resources. This is, the selection of the provider is performed before
the job was submitted.

In contrast, the type of variables is known at runtime following the late-binding
approach (e.g. scripting languages). In the Distributed Computing field, late-binding
denotes that the resource is supplied before any assignation of workload was perfor-
med. In consequence, a new level of scheduling is added, which is not directly managed
with Workload Scheduling: the Resource Provisioning level. This implies the imple-
mentation of resource appropriation mechanisms such as the pilot job technique, but
provides the biggest possibilities in terms of low overheads and flexibility [65].

Workload Scheduling and Resource Provisioning are the basis of the Multilevel
Scheduling considered in this work. Obviously, both can be performed with diverse
software, which are stacked to several scheduling layers. In this sense, part of the

8http://www.garudaindia.in/
9http;//www.xsede.org

10http;//www.prace-ri.eu
11https://www.egi.eu/infrastructure/cloud/

14 Chapter 2. State of the Art

Workload Scheduling, such as the division of the calculation, is commonly performed
by user’s tools and it can be called User-level or Application Scheduling. However,
to completely profit from the Multilevel model, every layer should communicate and
influence the others.

On the other hand, leaving some collaborative [66] scheduling aside, the early-
binding approach does not limit by itself the deployment of a wide range of scheduling
algorithms on grids and clouds. The actual reason is that middleware lacks of the
properly characterisation of resources according to the application requirements. To
limit its negative impact, several strategies have been followed, such as the dynamic
allocation of jobs depending on the infrastructure status and capacity at any time [67].

To understand the possibilities and issues that really offer every approach, the type
of HTC applications suitable for being distributed among grid and cloud providers
must firstly be clarified. This includes how their workload can be split, how the
providers are selected, the resources are used, and finally, which tools are available
to perform them. The following subsections offer an abstracted view of these aspects,
while current frameworks are deeply explained through last sections of this chapter.

2.3.2. HTC workloads feasible to be distributed
First the latency of WANs, and then, the data-locality, the reliability and the

heterogeneity of resources, mainly limits the suitability of algorithms to be distributed
among grid and cloud providers. These affirmations are fully justified in Section 2.1.
In this sense, HTC codes can potentially run on grid and cloud by definition, but some
of them are more adaptable than others, even if a portion is unadaptable in practice,
especially on grid environments. For example, it is unfeasible to execute codes which
non parallelisable sequential part lasts more than 48 hours, since grid sites do not
usually allow this walltime in their queues. Other example is those applications that
continuously require reading access to a large amount of indivisible data, being the
computation time insignificant with respect to the transferring time.

The feasible calculations are the ones which main workload (calculation and data)
can be completely or partially divided, being more adaptable when more divisible
are, because the obtained parts can be arbitrary distributed. This feature is usually
denoted as malleability or mouldability [68]. Obviously, the calculation can contain
sections that should be executed in an HPC environment. These elements increase
the complexity of the adaptation and it usually decreases the performance obtained,
because some providers have to support them (which is not common). Moreover,
other issues such as the imposed middleware or the libraries required can hinder their
adaptability. All these aspects are summarised for grid in Figure 2.1. In the case of
cloud infrastructures, most of configuration issues are avoided thanks to virtualisation.

Therefore, the more suitable calculations are: bunch of independent computational
sections (random numbers, parameter sweep, or mixes of both) and computational
workflows (composed by several instances of the first ones).

The main examples of algorithms based on random numbers are the Monte Carlo
(MC) methods [69, 70]. They are a class of algorithms employed for modelling complex
phenomena which are often used in physical and mathematical problems due to they
are well suited for problems where it is very hard to obtain a closed-form expression
or unfeasible to apply a deterministic algorithm. The simplest type of MC algorithms
allows the division into computational sections that correspond to one random gene-
ration (one simulation or sample) and subsequently, they are suitable for running on

2.3. Scheduling in large infrastructures 15

!"#$%$"#$"&'()'

$*+,)),--."/01'%,),00$0'
2./3&01'4(5%0$#

678!'9'23)$,#-'9:8;'4(#$<=.*%0$'

>(+-

!!!!!?(*%0$@.&1'6,"#'0$--'%$)A()*,"4$<'("'/).#-

B)),1'()'

8,),*$&).4'
C()DA0(E-

C.&3(5&'#$,#0."$ F$,0'2.*$9'!"&$),4&.G$

?(**,"#'H."$?(**5".&1'8()&,0-

=&,"#,)#

=4).%&."/'0,"/5,/$-

=$0AI'4("&,."$#'

."'4(*%.0$#'+.",)1

;-."/'$@&$)",0'

0.+),).$-'()'-(A&E,)$

:0(+5- /H.&$;J!?KFL9(&3$)-MN2

J5*+$)',"#'O(='(A')$-(5)4$-

!"&$)4(**5".4,&.("'

,"#'

%,),00$0.-*'0$G$0

F$&5)"'&.*$'$@%$4&$#

;-,+.0.&1'F$P5.)$#'

=(A&E,)$')$P5.)$#

!"A),-&)54&5)$

'.*%(-$#

:$"$),&.("Q',44$--'1'

0(4,0.&1'(A'#,&,

K:R'

=&,"#,)#-

=$)G.4$-'%)(G.#$#'$@405-.G$01'

+1','*.##0$E,)$

=$0AI*,#$'-$)G.4$-'9

."-&)5*$"&,&.("',44$--

H(4,0'."%5&9(5&%5&

J(&'-5.&,+0$'

A()'/).#-

N.-&).+5&$#'#,&,'-(5)4$9(5&%5&

J5*+$)',"#'-.S$'(A'A.0$-

Figure 2.1: Suitability of applications for being executed in grid environments.

grids or clouds. In this sense, this type of MC is applied to problems of very different
nature, such as Radiological Medicine [71], Chemistry [72], Plasma Physics [73], or
HEP [74], and they require to be solved in a manageable interval of time despite their
high computational load. On the other hand, parameter sweep calculations are the
ones based on varying their parameter values within certain ranges, and they are also
typical on grid [75].

Consequently, every simulation randomly generated is named as sample and every
combination of parameters is called as task. The mouldability property allows grou-
ping several samples into a single task because they share the same input files and
combination of parameters. In the same way, mouldability allows grouping several
tasks into a bag of tasks (BoT) that usually share the same inputs (although it is not
a necessary condition).

The distributable computational unit for early-binding scheduling is the job. It is
composed by a unique BoT, but it also specifies a set of requirements for its correct
execution. These requirements include preferences or constraints related to any cha-
racterisation aspect such as hardware, software, protocols, data locations and even
degrees of reliability or QoS.

Workflows are a set of jobs that must preserve an order of execution and termi-
nation because the outputs of some jobs are the inputs of others. Usually, the most
usual and manageable type of workflows is the direct acyclic graph (DAG) [76], but
there are other models such as Petri nets [77, 78], or other abstractions that support
the provenance [79] and reproducibility of the data processing. In any case, the exe-
cution sequence can be also set as precedence constraints within the requirements of
every job. Additionally, the data-allocation constraints are usually related to work-
flows because can be used for provenance, but these requirements are not restricted
to them [80]. Jobs without precedence constraints are widely used to compute large

16 Chapter 2. State of the Art

sets of data stored, the localisation of which becomes a scheduling issue [81].

2.3.3. Workload Scheduling

Grids and clouds are complex systems [82] due to their dynamism and heteroge-
neity and, consequently, calculating the best match between a set of computational
requirements and resources in an effectively characterised infrastructure is, by defi-
nition, an NP-complete problem [3]. Thus only sub-optimal schedules can be found.
This affirmation can be extended to clouds because although the virtualisation me-
chanisms allow instantiating customised execution environments, every provider in a
federation effectively supplies a variable amount of resources, which are supported
by different hardware and achieve different performance and QoS. Moreover, cloud
federations will be more dynamic than grids because much more parameters are taken
into account for scheduling [83, 84].

Having in mind these facts, multiple scheduling approaches can be followed. In
general, several approaches developed in Operative Research area [85] used to improve
the industrial manufacturing, transportation or telecommunications can be applied.
For example, the Queue Theory [86, 87] is a reference point to take account of a
wide range of characteristics and requirements. Graph Theory [88], and in special,
the Theory on Directed Graphs [89] can be useful to improve the execution of single
and concurrent workflows. Moreover, classical stochastic [90] and probabilistic [91]
methods, used to estimate the flow of requests, can be mechanisms to foreseen busy
providers and reduce the global cost in market-oriented environments.

However, it is noteworthy to introduce the specific approaches proposed for the
HTC applications described in previous Subsection 2.3.2. In this sense, taking account
of the mouldability property of workload, an excellent mathematical approach is the
Divisible Load Theory [92] (DLT). A good introduction is the work of Robertazzi et
al. [93, 94], which methodology is also applied to data-loads [95] or to cloud resour-
ces [96]. Equivalent MC methods can be used [97] rather than DLT. Furthermore,
multiple self-scheduling approaches also take advantage of mouldability. For example
works on loop-based algorithms [20], or about the adapted procedures from the Arti-
ficial Intelligence area, such as genetic algorithms [22] or heuristics [21], can be cited
as useful comparative studies.

On the other hand, a job must be constructed for every BoT. Besides the specifi-
cation of the location and names of outputs to be distinguishable among the results
from other executions, the building process includes the establishment of a require-
ment set for the job. This latter action must be considered another type of scheduling
because allows several ways of optimisation. In this sense, the requirement set does
not only contain the preferences among types of resources, it includes the preceden-
ce constraints among jobs that make up a workflow, which can be improved with
diverse techniques [98, 99, 100]. Job specification also includes the URIs of several
suitable inputs and the adequate place to store outputs, which also implies further
researches [80, 81].

Subsequently, the final scheduling phase is to correctly distribute jobs among pro-
viders [101], taking into account their requirements. The scheduling system can be
in charge of distributing many jobs belonging to different applications and users.
Therefore, the advanced algorithms implemented in commercial LRMS such as back-
filling [102] can be useful for grid and cloud. However, in contrast to cluster envi-
ronments, the job scheduling includes the previous discovery of providers and their

2.3. Scheduling in large infrastructures 17

characterisation, which is indispensable to their correct selection.
All of those scheduling approaches and their consequent combinations are difficult

to be classified. In this sense, several taxonomies can be found through the literature;
thus, the typical generic ones such as [103, 21, 104], or the more specifically focused on
workflows on grid [105, 106] or on cloud [107], are extensive introductions. However,
they do not provide with a proper focus on the Workload Scheduling that allows
illustrating the behaviour of the available tools and the work achieved in this thesis.
To solve this issue, a simplified vision of the Workload Scheduling is proposed. It
implies its differentiation in three scheduling fields:

Workload Division. It stands for the procedures related to creation of BoTs. In
this phase the size of every BoT is chosen before any execution. In contrast
to other authors [20, 108, 109], this scheduling is considered static when these
sizes are pre-established by a mathematical function without taking into account
the infrastructure status. Thus, they include the equal-size divisions as well the
decreasing-size ones. On the other hand, when the scheduling algorithm changes
the size during the calculation according to the infrastructure status or the
statistics retrieved from current executions, it is considered as dynamic.

Job Building. For every BoT a distributable job is completely described and format-
ted with certain specification or language (see Subsection 2.3.6). The scheduling
field is related to the establishment of requirements, constraints and preferences
that enable a previous optimisation and a posterior guidance of job execution.
The process is considered static or dynamic following the same meaning exposed
in the previous phase, i.e. if it takes account of infrastructure status.

Job Scheduling. This scheduling field stands for the job scheduling and the effecti-
ve submission steps explained in [101], namely: resource discovery and selection
according to the requirements set in the previous phase, job preparation, sub-
mission, monitoring, migration and termination.

Note that the three fields include a phase of characterisation of the infrastructure
when dynamic scheduling is performed. Moreover, the characterisation phase must be
completed before the matchmaking process in Job Scheduling. This issue is repeatedly
commented through the text, but especially in Subsection 2.4.2.2, where certain tools
(suppliers) are separated from the ones that properly perform cloud brokering. In this
sense, resource brokers (RBs) are the main entities which handle jobs but a similar
scheduling approach is performed by systems managing VMs in cloud federations.
Additionally, the selection of a certain provider can be performed by other tools wor-
king on the Job Building field, due to these systems can constraint the job execution
on this provider. For example, when workflows are directed by workflow managers
(WfMs), the RBs will usually only perform the submission and control of the job, i.e.
working as dispatchers. Workload Division is usually performed by application-level
approaches such as the self-schedulers. However, some self-scheduling frameworks deal
with the whole Workload Scheduling. These three main types of tools (RBs, WfMs,
self-schedulers), their scheduling domains and combinations were deeply explained
through the Section 2.4.

2.3.4. Turnaround model and characterisation for scheduling
Before describing more deeply the tools and approaches available to perform the

Workload Scheduling, the basic model that supports any of the scheduling algorithms

18 Chapter 2. State of the Art

compiled in this thesis must be introduced, i.e. the job turnaround. In this sense, the
widely accepted and simplified definition of turnaround [68, 110] follows the equation:

T = Tsched + Txfer + Texec (2.1)

where:

Texec is the effective execution time of the application in the remote resource.
It depends on the hardware, software, overload and reliability offered by the
provider for the concrete application, as well as on the BoT size.

Txfer stands for the time wasted in transferring inputs, outputs and software.
It depends on the protocols used and the bandwidth of the remote provider, as
well as on the amount of data to transfer.

Tsched comprises the time wasted in Job Scheduling processes. It depends on
the infrastructure overload (queues and shared RBs), the allowed utilisation
(quotas) and the middleware implementation. The Workload Division and Job
building are only included if they are performed by the same system, i.e. a WfM
or self-scheduler; if not, the added overhead is usually denoted as related to the
application behaviour (Tapp).

Consequently, the suitability and preference for any provider depends on its real
availability for a type of calculation at certain time, which is compound by:

(a) the volume of the hardware and software resources actually offered, i.e. number
of cores, memory, storage, bandwidth, data, libraries, licenses, etc., as well as the
VM images in cloud providers;

(b) the effective performance of these resources for the application, i.e. the profile
of the application on that hardware, as well as the granted percentage utilisa-
tion (because the hardware is usually shared) and the potential associated costs
(especially with cloud providers).

(c) the reliability of the application, the middleware and the provider itself (that
depends on the configuration, maintenance, security, network supplier, etc.).

Nevertheless, as the date of writing this thesis, the information belonging to point
(a) is as much partially available at the IS deployed in federations. The rest of points
are practically discarded. In particular, the GLUE schema implemented in top-BDIIs
currently does not allow knowing (among others aspects):

1. the estimated waiting time for a queue at the LRMS of a grid site;

2. the capacity and filling rate of a cloud provider;

3. the maximum number of jobs that certain user can queue and run in a grid site;

4. the quotas established in cloud providers for a user belonging to certain VO;

5. the exact hardware or reliable benchmarks of every worker node (WN), group
of identical WNs or virtualisation hosts;

6. statistics about the QoS or the SLA achievement for every provider.

2.3. Scheduling in large infrastructures 19

It is noteworthy to mention that GLUE is extensible, and currently count on tags
that declare some of the aforementioned characteristics. Nevertheless, the information
provided is usually incomplete, not updated and erroneous in many cases. Additio-
nally, much more aspects should be taken into account in cloud environments [83].
Nevertheless, the grid experience with GLUE shows that many characterisation as-
pects will never be implemented. Obviously, a scheduling system working with cloud
providers can follow a multi-cloud approach, monitoring every one through its OCCI
interface. However, the OCCI v1.1 specification does not even provide the aforemen-
tioned information.

Moreover, accounting and monitoring tools do not aggregate their statistics to
the IS, and also cannot be directly interfaced because only visual tools are availa-
ble [111]. In this sense, standardisation advances are carrying on [112], but there are
not implementations to evaluate their suitability.

Therefore, the deployment of advanced Workload Scheduling algorithms are hinde-
red by this lack of characterisation required to estimate the job turnaround. Having
in mind the aforementioned issues, the possibilities that systems performing early-
binding really offer will be described through the Section 2.4. In contrast, late-binding
techniques can solve many of the commented characterisation problems and they can
provide more advantages, as will be explained in the following subsection.

2.3.5. Resource Provisioning with pilot jobs
The current necessity of a grid job to access different grid services anywhere outside

the specific administrative domain of resources where it is being run implies that
this job could require access to the Internet through NAT or proxy services. This
requirement enables any master-slave application where the slave, running inside a
worker node (WN), to directly communicate with a coordinator server through its own
communication protocol and bypass (some) grid middleware. The main motivations
for establishing this network overlay within a DCI are:

to reduce overhead, mainly the waiting time in remote queues at the LRMS and
shared GSs using slot appropriation;

to effectively characterise the assigned resources (the WNs) by sending their
real properties and current status to the master;

to enable compatibility with other legacy systems and applications by checking
and creating special configurations; and

to reduce grid complexity by directly using assigned resources and monitoring
the user tasks.

Thus a pilot system [17, 19, 23, 24, 25, 26, 27, 28] is defined as a framework where
many satellite programs (pilots) running inside grid jobs branch out to monitor a
set of computational user tasks (or BoTs) that are continuously assigned by a server
following the master-slave scheme. The difference between user task and grid job
must be introduced; in this study, a pilot job is a regular grid job, and each of the
computational parts of the user application that are being run inside a pilot job are
user tasks. In this sense, the series of procedures needed to set every pilot job up is
within the scope of Resource Provisioning, as well as the mechanism to assign every
task to pilots is within the Workload Scheduling. Subsequently, two of the scheduling
fields that belong to the later are renamed as Task Building and Task Scheduling.

20 Chapter 2. State of the Art

On the other hand, the provisioning mechanisms currently available in IaaS clouds
are focused on setting up VMs for the consolidation of services. However, they do not
prevent running pilot jobs as temporal services [29, 30, 31]. In general, for the most
of those systems that demonstrated their suitability in grid [113, 114, 115, 31, 65],
the use of cloud resources will provide the following advantages:

Concurrent use of clouds and grids (and other infrastructures such as local
clusters or Volunteer Computing if supported by the system).

Compatibility with applications previously ported to these systems, at least,
preserving the achieved performance or speedup.

Keeping the expertise acquired from grid, reducing the user training-gap and
the operational costs.

Preserving the robustness of the system or the use of complementary tools such
as web browsers, monitoring tools, etc.

However, the utilisation of current pilot systems also implies drawbacks. The weak-
nesses are the consequence of their design, mainly if the system adopts a pushing or
pulling behaviour. The former implies technical issues that hinder their deployment,
while the latter strongly condition a feasible scheduling [65]. Moreover some of them
are designed for a concrete calculation type and they lack compatibility or adaptabi-
lity. Furthermore, the performance of most of them is unpredictable, which prevents
coupling them with Workload Scheduling algorithms. For this reason, few abstraction
models of pilot jobs have been proposed [12, 116, 117]. All these issues are deeply
explained through the Section 2.5.

2.3.6. The developer’s point of view
Other important issue to be tackled is the mechanisms to code the applications to

be distributable. In general, developers implementing embarrassingly parallel calcula-
tions should distinguish between two complementary concerns [118]: the computation,
i.e. the procedural mechanism to execute a job; and the coordination of the jobs gene-
rated. Thus, the submission and monitoring of jobs are included in the computation
issues. Unlike, the Workload Division, the Job Building and the selection of resources
performed within the Job Scheduling field belong to the coordination problem. This
is, coordination corresponds to the User-level (or Application) Scheduling mentioned
in Subsection 2.3.1. Moreover, any entity (application, self-scheduler, WfM or RB)
that interfaces with other system makes this differentiation. This is the reason for
isolating the submission phase in the simplified structure of self-schedulers described
in Subsection 2.4.4.

In particular, developers count on several programming models and tools which
progressively avoid the need of writing too much code for the computation issues,
and more advanced ones that facilitate their work on the coordination, i.e. the real
scheduling. Therefore according to the abstraction level provided, any developer must
choice among the approaches described below:

(a) To directly implement the interface protocol of the target system. The ap-
plication developer codes the binding with the services of resource providers such
as GRAM, OGSA-BES or CREAM, with the IS of the infrastructure, or with

2.3. Scheduling in large infrastructures 21

other systems, such as a WfM or a RB, to delegate some scheduling procedures.
This approach is expensive and prone to errors. It should be only selected in the
absence of other solutions.

(b) To perform system calls on a command line interface (CLI) to perform local or
remote operations on providers or other systems. It is lesser expensive that the
pervious approach, but inefficient, increasing dramatically the overheads, and tied
to middleware.

(c) To make use of an API for computation. Applications are much more robust
using procedures from a library than system calls to commands. There are two
options:

a) Middleware-specific libraries. Globus, gLite or GridSAM libraries are
available for interfacing with services such as the aforementioned ones, but
they tight the code to middleware.

b) Widely accepted APIs. The standardised APIs for HTC such as DRMAA
[119] and SAGA [120] are the recommended way to deal with the job distri-
bution. RBs and LRMS usually support DRMAA libraries and consequently,
users will not need multiple versions of their applications for every system.
However, DRMAA is focused on delegating the Job Scheduling to these sys-
tems and it does not allow querying the IS, neither managing data, etc.
Unlike, SAGA is continuously extended with adaptors which progressively
enable the compatibility with any service, such as the ones used in cloud.
Additionally, other libraries that expose a non-standardised API should be
also considered. For example, Ganga [121] also provides similar portability
among platforms and it is widely used in HEP calculations.

(d) To abstract the coordination. Previous approaches progressively hide the ac-
cess to resources, but the developer must deal with the Workload Division and the
Job Building without assistance. Consequently, specific languages, patterns, tem-
plates or translators have been proposed to soften the coordination. In this sense,
a large compilation of the approaches proposed for parallel calculations can be
found in [118]. Although some of them are feasible for distributed environments,
it is necessary to extend the classification with the proposals devoted to HTC.

a) Workflow specification languages: They allow specifying a complete
workflow that can be globally optimised by an underlying system. In gene-
ral, RBs only support simple DAGs, and some WfMs works with their own
description languages. However, more complete and general-purpose specifi-
cations for workflows were proposed such as WS-BPEL [122], GSFL [123],
AGWL [124], SWFL [125], GWEL [126], or the YAWL [127]. Moreover, so-
me are based on coloured Petri nets such as the GWorkflowDL [128] and the
homonym GFDL [129]; or even with the UML [130] representation.

b) Skeleton approaches. They are high-level programming mechanisms which
enable methodologies to abstract the scheduling algorithmic structure. They
allow programmers to focus on some aspect of scheduling by tuning the
workload algorithm offered by the skeleton framework or library. They in-
clude algorithm templates, design patters, procedures in imperative [131]
or functional languages, or parameterisable scheduling tools. For example,

22 Chapter 2. State of the Art

self-scheduling frameworks [132, 67] which support several applications are
within this last category.

c) Embedded directives: In this case, the objective is not to modify the
original code. Loops with high computational load or data processing are
previously marked with an added instruction to be split into jobs and sub-
sequently distributed [29], in a way similar to the OpenMP directives used
for the automatic parallelisation of loops on shared-memory environments.

2.4. Instruments to perform early-binding schedu-
ling

2.4.1. Scheduling domains and tools
Systems with scheduling attributions continuously generate and modulate the wor-

kload into different types of objects in grid or cloud environments. These systems only
work with a volume and type of objects and relations belonging to one or several of
the aforementioned fields, i.e. they works on a concrete scheduling domain to achieve
certain optimisation objective. In this sense, systems in charge of Workload Division
generate equal or variable size BoTs every interval time, independently if these BoTs
are dynamically modelled or not. In general, the aim is to reduce the makespan of a
single application, which is the scope of self-schedulers embedded in applications, as
well as the self-scheduling frameworks.

Workflow managers (WfMs) are developed to facilitate users the management of
data and the implementation of precedence constraints among their jobs. Therefore
they mainly work on the Job building field, but they can also merge jobs to improve the
graph. Both self-schedulers and WfMs typically can also modify the job requirements
to fit the execution to the status of the infrastructure. Therefore they control the
suitability of providers, and they can allow improving costs and energy, and achieve
deadlines more properly than the simple Workload Division. However, they generally
work with a single calculation with exception to the workflow engines (WfEs), which
allow the concurrent management of workflows belonging to several users. Thus, fair-
share policies and global throughput are partially implemented in these systems, as
will be explained in Subsection 2.4.3.

Furthermore, a scheduling domain including jobs with multiple requirements is
similar to a multi-user environment. Resource brokers (RBs) are designed to mana-
ge a large volume of jobs in these environments to improve the global throughput,
resource usage and to grant deadlines and fair-share. In contrast to WfMs and self-
schedulers, they only work on the Job Scheduling field because they must not modify
the requirements that users set for their jobs. However, private RBs can potentially
be deployed for a specific calculation, and consequently they can be tuned to reduce
makespan.

Figure 2.2 shows relation of the scheduling fields in Workload Scheduling through
the type of objects managed by the usual tools used in in early binding scheduling.
As can be seen, self-scheduling frameworks manage all type of objects, but generally
belonging to a single calculation. On the other hand, the scheduling domain of WfMs
does not include jobs with fixed requirements, because a workflow implies that some
jobs have constrained to the completion of other jobs. Job Scheduling is in the scope of
self-scheduling frameworks and WfMs because many of them previously performs the

2.4. Instruments to perform early-binding scheduling 23

Resource
brokers

Fixed job
requirements

Precedence
constraints

Multiple job
requirements

Independent
jobs

Job
Building

Job
Scheduling

Workload
Division

Equal-size
BoTs

Variable
BoTs

W
or

kl
oa

d
Sc

he
du

lin
g

fie
ld

s

Se
lf-

sc
he

du
le

rs

Figure 2.2: Workload Scheduling fields and the usual scope of scheduling tools.

matchmaking among jobs and providers and then directly interface with these selected
providers. Obviously this is an expensive approach that limits their compatibility; for
this reason, they rely on libraries for inter-operation (see Subsection 2.3.6) or even
RBs are used as dispatchers.

2.4.2. Resource brokering in grids and clouds

Resource brokers automatically perform the matchmaking among jobs and resour-
ces following the typical Job Scheduling steps described in Subsection 2.3.3. Therefore,
they are cognisant of grid and cloud dynamism, and they constitute the first mecha-
nism to reduce the complexity of infrastructures, thus providing an automated and
unattended access to all the resources. In this sense, the resource broker designation
describes more properly the work performed by these systems. Through the related
work, other terms have been used, but they suggest confusing meanings. For example,
these systems have been typically called distributed resource management (DRM) sys-
tems, workload management systems (WMSs), meta-schedulers or super-schedulers.
RBs do not necessarily have to manage the resources as if they were of their own,
neither to mould the workload, nor to work on several infrastructures at the same
time, nor to be stacked over other scheduling systems. These can be valuable features,
but they get the concept away from the generality.

In this work, two RBs types are distinguished. Grid schedulers (GSs), specifically
designed for the distribution of jobs in grid environments, and the IaaS cloud brokers,
devoted to the placement of VMs across different providers. Obviously, many cloud
frameworks completely manage the VMs instantiated as own resources; these provi-
sioning mechanisms are depicted in Section 2.5, but the interest now is to introduce
the systems that can be used for selecting the suitable provider before the VM is
booted, i.e. the scheduling following the early-binding approach.

24 Chapter 2. State of the Art

2.4.2.1. Grid schedulers

The current GSs only include fair-share mechanisms based on priority first come
first served (FCFS) queues that enable dead-lines. Thus, the scheduling is focused
on the global throughout and only DAGs are allowed. The reason for which GSs do
not include more advanced algorithms is that their scheduling is based on the da-
ta published by the IS. As it is mentioned in Subsection 2.3.4, this information is
not trustworthy and prevents to properly characterise the resources. However, this
behaviour can be improved with diverse techniques. For example GridWay compiles
statistical data about the successful executions, the waiting, execution and transfe-
rring times, which can be used for the subsequent selection of providers. Nevertheless,
the absence of mechanisms to effectively profile the applications and to reserve resour-
ces has hindered putting into practice simple policies such as shortest job first (SJF)
or longest job first (LJF) o even backfilling, already implemented in LRMS such as
Condor.

Therefore, during the last two decades diverse GS implementations have been pro-
posed, but few GSs have survived, not because of their capacity for complex scheduling
but because of some other aspects, such as their adaptation to the grid characteristics,
scalability or ease of use. It is out of the scope of this thesis to perform an extensive
comparison among these GS and the reasons for which most of them were disconti-
nued. Different surveys and taxonomies [133, 134] classify these solutions and tackle
their related issues.

For this reason, only Condor-G, WMS and GridWay are described in this subsec-
tion, putting more attention on GridWay because it is the system selected for being
adapted in this thesis. Thus the aspects detailed through the following paragraphs
are needed to understand the whole work performed.

Condor-G and WMS

Currently, the GSs based on Condor [7] are the predominant ones in the largest grid
infrastructures in its two versions: Condor-G [8] on OSG and gLite/UMD WMS [9]
on EGI. The main difference between both flavours is their user interface, which will
determine their final performance and adaptability. Condor-G is used as any LRMS
with the local CLI inherited from Condor. Thus, users must login into the machine
running Condor-G to submit their jobs, but also they can straightforwardly execute
DRMAA applications. In contrast, the approach of WMS is to build a brokering
service within the SOA model. Therefore users can only remotely submit and monitor
their jobs through its proprietary interface. For this purpose, users usually describe
their jobs within files following the proprietary Job Description Language (JDL) and
posteriorly, they make use of middleware commands for submitting and controlling
these jobs. Consequently, legacy standardised applications are not compatible with
WMS.

On the other hand, Condor has some known drawbacks, i.e. it is hard to install,
maintain and customise, even the WMS version, and it has some rigidity on the grid
because it was initially designed as LRMS. As consequence, these GSs are usually over-
loaded by users because they are deployed as central services. Additionally, user can
not modify the scheduling configuration of a shared service for certain calculations.
Moreover, Condor was designed to manage resources belonging to a single adminis-
trative domain with stable networks. Its adaptation to the dynamism inherent to grid
was not completely achieved. Its behaviour is not efficient in many situations, as it has

2.4. Instruments to perform early-binding scheduling 25

been demonstrated in diverse studies [135, 136]. These issues have a larger effect on
its gLite/UMD flavour, where the overhead imposed by several layers of middleware
results in poor job turnaround.

Nonetheless, Condor-G and WMS have demonstrated high stability and scala-
bility, and are able to support hundreds of thousands of jobs every month. These
features make possible to improve the global throughput of large VOs: jobs are al-
ways executed on resources that match the job requirements but the grid-wide load
balance is maintained. A consequence is that the fault detection, recovery, migration
and unattended retries are not completely supported because it is not necessary to
achieve this objective. For example, the use of Condor-G is almost limited to the CMS
or ATLAS production and to support certain OSG VOs devoted to large computatio-
nal challenges. WMS is extensively used as provisioning mechanism for pilot jobs in
EGI, as will be explained in Section 2.5.

The meta-scheduler GridWay

GridWay12 [137] enables large-scale, reliable and efficient sharing of the heteroge-
neous computing resources offered by grid infrastructures via the current UMD/gLite,
Globus and other middleware releases. It performs a reliable and unattended execu-
tion of jobs transparently to application programmers and end-users. Furthermore,
it fully accomplishes the steps [101] described for the Job Scheduling field in Sub-
section 2.3.3. For this purpose, the design of GridWay is based on the Core element,
which orchestrates the different modules and where the characterisation of providers
and jobs are compiled (Host and Job Pools); on several user interfaces (CLI, DRMAA,
OGSA-BES, and WS-GRAM); and, a set of middleware access drivers (MADs) that
allow interfacing with the IS and providers belonging to different infrastructures. In
this sense, the providers are discovered and monitored through the drivers handled
by the Information Manager (IM) and compiled in the Host Pool. Thus, any job spe-
cified through any user interface will be queued in the Job Pool to be subsequently
scheduled among the suitable providers listed in the Host Pool. The Scheduler module
implements the effective polices that allow this task. For example, priorities can be
set for users, groups and providers (i.e. fixed and resource priorities, FP and RP).
The fair-share (SH) works together with deadlines (DL) and the current wasted time
of jobs waiting in the Job Pool (waiting-time, WT). Moreover, reliability policies are
based on accounting the failure rate (FR) of every provider. In addition, the compiled
usage (UG) statistics allows prioritising providers following a certain measurement
of their achieved QoS or performance for certain application. Additionally, Scheduler
takes account of the requirements set for every job, and it ranks (RA) and limits
the submission to constrained resources. These scheduling options are summarised in
Table 2.1.

Consequently, when a provider is selected to execute a job, the job execution is
performed in three steps: prolog, for creating the remote experiment directory and
transferring the executable and input files; wrapper for executing the actual job and
obtaining its exit code; and epilog for transferring back output files and cleaning tasks.
The prolog and epilog phases are done by interacting with the grid file transfer services
(usually GASS or GridFTP), while the wrapper step interfaces the grid execution
services (such as GRAM2/4/5, CREAM, ARC or OGSA-BES). The architecture of
GridWay and the interaction with the grid services of the target infrastructure are

12www.gridway.org

26 Chapter 2. State of the Art

shown in Figure 2.3.

GridWay

core

User space

Scheduler

DRMAA API

Library

Command

Line

Dispatch

Manager

Transfer

Manager

Information

Manager

Execution

Manager

Job Pool Host Pool

Information
 Systems

OGSA−BES

Interface

GridFTP
GASS CREAM

GRAM, OGSA

Storage Gatekeeper

Cluster

MDS2/4
BDII

Figure 2.3: GridWay architecture and its interaction with grid services.

Although GridWay efficiently implements some capabilities such as the error re-
covery mechanism, job migration, and checkpointing triggering, it gives application
programmers the responsibility of determining the correctness of the generated out-
puts, the detection of performance losses, and the application ability to perform the
checkpoint. These verifications and mechanisms are considered by GridWay develo-
pers out of the scope of a general multi-purpose meta-scheduler, since exit code can
be itself the final output of an application. Additionally, GridWay does not automati-
cally deploy monitoring tools for the jobs beyond checking their execution state. This
is so because only programmers can properly estimate the execution performance of
their applications. In this sense, it only includes a simple trigger in the wrapper script
that enables the automatically migration or the checkpointing of a job if the CPU
utilisation falls down under certain threshold percentage. Users have to modify it to
monitor the performance aspect of their interest.

In contrast to the differentiation between Condor-G and WMS, the GridWay fra-
mework works on single or multiuser mode, and it can be equally accessed using
its CLI, or remotely through its standard OGSA-BES interface [138] and the WS-
GRAM [139] one, maintaining its features. However, its deployment is oriented to-
wards individual institutions or users and, with the exception of a few medium-sized
infrastructure projects such as GARUDA [140], it has not been selected as part of
the production manager systems (PMS) of large VOs; consequently, its suitability for
these communities has yet to be demonstrated.

Therefore, GridWay is more oriented to the needs of specialised users and de-
velopers than Condor-G and WMS, allowing the creation of specific policies for a
given calculation. It takes care of all the necessary steps for the remote execution of
a job and is able to analyse the performance of the remote resource. This makes it
more reactive [137, 135] to changes in resources, and consequently, it achieves better
performance and reliability [141].

2.4. Instruments to perform early-binding scheduling 27

Table 2.1: Scheduling options for GridWay configuration.

Scheduler loop options:
SCHEDULING_INTERV AL Interval to perform a new scheduling of pending jobs

DISPATCH_CHUNK
Maximum number of jobs dispatched in every
scheduling interval

MAX_RUNNING_RESOURCE
Maximum number of jobs concurrently submitted to
same provider

Dispatch priority of a job (j): Pj =
∑

i
wi · pij ,

where w is the weight and p the priority contribution of every
i = {FP, SH,WT,DL}
FP_USER,FP_GROUP Fixed priority per user or group (default 0)

SH_USER,SH_GROUP
Ratio of submissions of a user or group over the rest
(default 1)

SH_WINDOW_SIZE
Timeframe over which user submissions are evaluated
(in days)

SH_WINDOW_DEPTH Number of frames (present frames are most relevant)

DL_HALF
When pilot or task should get half of the maximum
priority assigned by this policy (in days)

Suitable priority of a provider (h): Ph = f ·
∑

i
wi · pih,

where w is the weight and p the priority contribution of every
i = {RP,RA,UG}. f is 1 when provider h is not banned.
RP_HOST , RP_IM Fixed priority per every provider discovered by an IM

FR_MAX_BANNED

T∞ · (1− e∆t/C), where T∞ is the maximum time
that a provider can be banned, ∆t is the time since
last failure, and C is a constant that determines how
fast the T∞ limit is reached

FR_BANNED_C The value of the C constant in the above equation

UG_HISTORY_WINDOW
Timeframe over which compile execution times to
compute their average Tavg

h
(in days)

UG_HISTORY_RATIO
The value of the R constant in the equation to
estimate the execution time of any job in h:
Th = (1−R) · Tavg

h
+R · T last

h .

2.4.2.2. IaaS cloud brokers

To be considered a cloud broker, a system must perform at least: the dynamic
discovering and monitoring of cloud providers; the selection of every provider based
on a set of requirements; and, the automatic management of provisioned VMs.

In this sense, based on the OCCI standard, several cloud brokering solutions are
being developed nowadays [29, 142, 143, 144]. However, many of them work on a
multi-cloud environment that does not allow the automatic discovery of providers.
Additionally, it must be clarified when the IaaS providers are statically ranked or
selected in a simpler way such as round-robin, without taking into account neither
of requirements set for diverse applications nor of the changes in IaaS statuses, the
selection performed cannot be considered really brokering or scheduling either. In
this work, these tools are denoted as suppliers. They repeatedly appear through the
related work [113, 30, 42, 43, 145, 146, 147, 114, 115, 31].

However, due to the limited number of IaaS providers, brokers were successfully
fulfilled by suppliers through years. Additionally, VIMs can act as a kind of broker
when making use of external providers to grow their own resources. To be stackable,
VIMs must expose an IaaS interface such as OCCI or AWS. Nevertheless, these pro-
tocols are not directly usable by legacy HTC applications [47]. For this purpose, a
hybrid API such as DRMAA-OCCI [142] was proposed to enable a direct execution

28 Chapter 2. State of the Art

of jobs on the VMs managed by a cloud broker.
With the appearing of first cloud federations, more specialised systems were de-

ployed, but they cannot be considered as VIMs. For example, following the same idea
of direct execution, the PMES broker [29] offers the OGSA-BES interface to allow
instantiating a single VM per each computational task formatted with the JSDL spe-
cification. In any case, this type of approaches is limited to the execution of long jobs
that compensate for the VM instantiating time.

However, the majority of new approaches are oriented to consolidate complex ser-
vices on demand, not to offer compatibility with legacy applications. For example,
SlipStream13 was tested in the Helix-Nebula project, although it can work in a multi-
cloud environment. It performs VM image management and contextualisation, with
virtual cluster automated deployments. It makes use of CPU/Disk/Memory metrics
in their scheduling, but it does not inspect the requirements of applications. In con-
trast, QBROKAGE [143] is an interesting solution recently proposed that focuses the
brokering mechanism on satisfying the QoS requirements of applications. Other solu-
tions overcome the absence of federated services building their own ones. For example,
CompatibleOne14 [144] is a complete platform, with its own user management, ac-
counting and monitoring systems. Nevertheless, neither exposes an OCCI service, nor
standard interfaces to execute jobs.

2.4.3. Workflow managers
The industrial and scientific needs of counting on graphical tools that control

complex production processes, which are described through directed graphs, were the
origin [148] of WfMs. Many approaches have been proposed focused on HTC, descrip-
tion of which is out of the scope of this thesis. Different taxonomies and comparatives
can be found in [15, 106, 149] and a useful summarisation of the current workflow
technologies is schematised in the first figure in [150].

Currently, interactive WfMs such as Kepler [151], Pegasus [152], P-GRADE [60],
Taverna [153] or Triana [154] are customary used. Researchers select one of these
WfMs according to their features, not only to their suitability for certain calculation
type or the support of provenance. In this sense, WfMs are usually selected for their
capacity of interoperating among diverse infrastructures (clusters, grids and clouds),
or the availability of modules that support the access to specific data sources, such
as public databases or commercial cloud storage. For example, Kepler or P-Grade
implements adaptors for the different interfaces described in Subsection 2.2.1, and
Taverna supports a wide range of public bioinformatic resources based on web services.

The simplest behaviour supported by the interactive WfMs is the step-by-step ac-
complishment of the work depicted in vertexes, preserving the precedence established
with the edges of the graph. This implies time wasted in local tasks or remote data
access that is not taken into account in a global scheduling. On the other hand, if some
of these expensive tasks are overlapped with the execution of jobs, the scheduling pos-
sibilities increase. In this sense, early dead-line first (EDF) or critical job first (CJF)
policies can be easily implemented. However, if the WfM sequentially submits jobs to
a shared RB that does not support deadlines or user-defined priorities, there are not
guarantees of the critical jobs will be firstly executed. One solution is to inform RB
about the whole workflow. For this purpose, languages mentioned in Subsection 2.3.6

13 http://sixsq.com/products/slipstream.html
14http://www.compatibleone.org

2.4. Instruments to perform early-binding scheduling 29

should be used. Nevertheless, current RBs (Condor-G, WMS, GridWay) only support
simple DAGs [7]. This specification is not complete and even can be considered as
obsolete [155] due to it does not take into account communication dependencies or
the differentiation among types of jobs. In any case, multiple optimisations can be
performed [76] only based on DAGs.

WfMs running in non-interactive mode [156] as well of workflow engines (WfEs)
such as ASKALON [157], MOTEUR [158], K-Wf [128], BPEL or Shark support di-
verse languages that properly enable the characterisation [159] of the workflow and
the provenance. The characterisation of the calculation is indispensable to perform
an efficient scheduling. Unlike RBs, this jointly features their capacity of working
on the Job Building field, allowing these Engines to perform the optimisation of the
workflow previously to its execution. The generic phases that transform the abstract
workflow specified by the user to the one optimised and its execution are described
in [160]. Within these phases multiple techniques can be used. For example the generic
horizontal and vertical clustering, which includes the task grouping [161]; Min-Min,
Min-Max and other types of partitioning; heuristics as heterogeneous early-finish-time
(HEFT) [162, 163] or the localised HTEF (L-HEFT) [155]); data pre-allocation; or
even the efficient distribution [164] based on the characterisation of specific aspects
of cloud infrastructures, such as QoS [165] or costs [166].

However, the multiplicity of languages has become an important issue [79] for the
knowledge reutilisation and the provenance, in particular for the reproducibility. For
example, if the support of certain WfE is discontinued, the results obtained with this
system can not be posteriorly verified. In the same way, workflows can not be shared
among WfMs. To solve these problems, the Workflow Management Research Group
from OGF, the OASISWS-BPEL Technical Committee, or the WorkflowManagement
Coalition (WfMC) standardisation groups were created, as well as projects such as
the SHIWA15 [150]. Consequently, inter-brokering tools among WfEs, translators and
several languages such as YAML, WSBPEL, XPDL or IWIR have been proposed as
solutions, but currently the workflow interoperability is far away from being achieved.

2.4.4. Self-schedulers
Due to the impossibility of performing an adaptive scheduling for specific appli-

cations based on GSs, WfMs and available middleware, developers have implemented
scheduling tools based on their deep knowledge of their applications and the analysis
of the infrastructure. This approach is not new and researchers have extensively ex-
plored self-scheduling techniques during last two decades. A wide compilation of the
algorithms proposed for self-scheduling and their scope was already depicted in Sub-
sections 2.3.3 and 2.4.1, as well as in the last Subsection 2.4.3, because self-schedulers
can manage workflows [167]. However, the methods of estimation take special im-
portance due to the unfeasible characterisation provided by the IS deployed in the
infrastructures. Therefore, the use of heuristics [168], models [169], as well as the com-
pilation of statistics about aspects that influence on the concrete application [170] are
essential to these systems.

Moreover, other scheduling techniques have been used. For example, task replica-
tion can not be obviously considered as part of the Workload Division field, although
it is probably the most straightforward method to reduce final execution time of MC
calculations [171] and even it can improve the parameter sweep ones [172, 173], being

15http://www.shiwa-workflow.eu

30 Chapter 2. State of the Art

suitable for accomplishing urgent needs or deadlines. Replication can overcome the
needed of characterising the infrastructure because it removes the influence of failed
jobs, waiting queues or the hardware performance. Nevertheless, this technique is op-
posite to Green Computing, wasting many CPU hours in calculations that will finally
be discarded and therefore, it should be moderately used. Additionally, recovering
from failures on the infrastructure is an issue where there is still room for efficient
enhancements. In this sense, algorithms that predict failures can take advantage of
checkpointing [174]. In both cases, an issue is to find a balance between resource
consumption and desired reliability.

It is noteworthy to mention again that the objective of any self-scheduling fra-
mework is to reduce the makespan of a single calculation, composed by one or few
applications. In this thesis, only dynamic scheduling is considered. Thus ideally, the
framework must be able to predict the application consumption and the real availabi-
lity of resources to dynamically adjust the BoT size in a way that allows reducing the
overhead generated. Therefore it will support whole coordination of the workload (see
Subsection 2.3.6), dealing with the scheduling fields described in Subsection 2.3.3,
and implementing any other optimisation technique. In general, this is performed by
achieving the following phases in a reactive loop:

(1) Characterisation: Both infrastructure and application should be characterised.
This includes the typical resource discovery in dynamic scheduling, as well as the
benchmarking of every resource and the profiling of the application execution.
For this purpose, IS are used in first instance to obtain a list of providers, but
the benchmarking should be mainly based on real measurements or estimations
using the compiled information from point (3).

(2) Workload Scheduling algorithm: The Workload Division and Job Building,
including resource selection, are performed estimating the turnaround for every
possible match among BoTs and providers.

(3) Submission, monitoring and accounting statistics: Jobs are submitted
to providers following any of the computation approaches described in Subsec-
tion 2.3.6. Usually RBs are used as dispatchers. The execution of those jobs is
supervised compiling diverse information. Much of the characterisation procedu-
res of point (1) only can be achieved with the compilation of the final execution
times, errors and other aspects with influence on the application performance,
which are updated in every loop.

Nevertheless, the suitability of most of the scheduling algorithms proposed have
been tested with certain calculations on controlled environments or even using grid
and cloud simulators [175, 176, 177], which do not have to adjust to the real behaviour
of the production infrastructures. Additionally, the optimisation achieved by self-
schedulers is generally based on the deep knowledge of an application or certain
calculation, and consequently, the obtained results can not be extrapolated to other
fields.

2.4.5. Other tools
Science portals or science gateways (SG), such as they are called nowadays, are

user interfaces that hide the complexity of the underlying infrastructures and allow
researchers to perform calculations by simply pressing a click. In general, they consist

2.5. Pilot jobs 31

in web pages where the applications are embedded from scratch or directly use specific
frameworks such as GridSphere [178] or the Vine Toolkit [179]. In this sense, although
their libraries wrap some procedures, the approaches explained in Subsection 2.3.6 are
followed for computation. Thus, Job Scheduling is usually delegated to RBs. Therefore,
in their simplest form, SGs can be considered as applications, or as much, containers
of many applications. Examples of them are GENIUS [180] and the current Catania
SG [181].

Moreover, there are SGs with more scheduling attributions. For example the ones
masking WfEs, such as the e-BioInfra [182] portal, or the WS-PGRADE/gUSE [60],
where several users can build and manage multiple workflows. However, the main
examples are the production management systems (PMS) of large collaborations, es-
pecially those focused on the computation of the data generated by the Large Hadron
Collider (LHC16). These systems automatically perform advanced scheduling techni-
ques to improve the data allocation as well as support the monitoring of the scientific
production thorough long periods of time. Some of them [17, 18, 19] are explained
in Subsection 2.5.3 because make use of pilot jobs. In contrast to them, the CMS17

community has two PMS [16], one for data analysis [183] and one for Monte Carlo
production [184], which can submit tasks to Condor-G, gLite/UMD WMS, ARC [54]
and some LRMS through a connector called BOSSLite [185].

2.5. Pilot jobs

2.5.1. Overall vision and nomenclature
There is a large collection of literature on distributed master-slave applications

for scientific computation. In addition, the definition of a pilot job is commonly ex-
tended when the satellite program is being executed on resources belonging to other
types of DCIs than grid, such as clouds or even on multiple standalone clusters or
volunteer resources. For this reason and because of the wide plethora of topics that
have been covered, the systems that have been tested on, or are closely related to,
standard grid or cloud environments, are described in this section. This collection
is adequate to illustrate the method applied in this study. On the other hand, even
though there is a wide range of approaches and possible implementations, any pilot
system is conceptually composed of the following main components:

One (or several) user task queue (UTQ). It is usually a (priority) queue that is
accessed by means of a local command line interface (CLI), a web portal, a web
service or an API.

A master coordinator or pilot server (PiS). It is devoted to manage the running
pilots, their requests and the task-pilot relationship.

Pilot jobs (pilots) or agents. In addition to consecutively accomplishing user
tasks and enabling remote monitoring of these tasks and the assigned resource,
they perform other functions, such as checking and preparing the application
environment (downloading and configuring software), executing multiple tasks
(multi-task pilot jobs) or accepting tasks belonging to different users (multi-user
pilot jobs, MUPJ).

16http://public.web.cern.ch/public/en/LHC/LHC-en.html
17http://cms.web.cern.ch/news/computing-grid

32 Chapter 2. State of the Art

One or several pilot generators, suppliers (or provisioners), fabrics or factories
(PiF). They perform the submission of pilots to a certain computing infrastruc-
ture (local clusters, the grid or the cloud). These generators can be manually
executed by a user, but they are generally triggered by a daemon that locally
monitors the UTQ for pending tasks.

Other additional components that can form part of a pilot system to either facili-
tate the proper behaviour of the aforementioned modules or improve the performance
are the following:

Message accumulators (MAs) or customised proxies are often deployed to provi-
de a type of bidirectional outbound communication between the PiS and pilots
when firewalls or NAT are present.

The PiS can abandon the passive role and use the support of a scheduler module
that implements advanced algorithms to effectively coordinate the pilot-task
matchmaking. If only a simple first come first serve (FCFS) or a fit resource
first serve (FRFS) approach is considered for workload scheduling, this role is
usually assumed by the PiS.

The implementation of this type of system involves multiple design decisions. The
most important of these concerns the method of communication between server and
slaves, that is, whether the system adopts a pushing or a pulling behaviour. In the first
case, the server can initiate the communication with the slave, e.g., to submit tasks,
and in the second case, the slaves initiate all communications with the server. Addi-
tionally, the connections can be synchronous or asynchronous, state-less or state-full,
and they suppose overheads that the scheduling algorithms cannot overcome. Conse-
quently, these decisions determine the choice of completely implementing the Internet
application layer (i.e., directly sending information over sockets), using pure remo-
te procedure call (RPC) libraries (RMI, CORBA), coding embedded methods into
web pages (PHP, Python), delegating to external scripts (CGIs), or following a mo-
re standardised web services (WS) schema, where the specification of messages has
to be selected (XML-RPC, SOAP, WSDL, REST, WSRF), independently from the
common protocol (HTTP, SNMP, TCP) used. Furthermore, assuring the security in
these communications is necessary because some standard grid middleware will be by-
passed. In general, current pilot systems use SSL/TLS authentication and encryption
methods based on the user proxy delegated in the WNs, but additional mechanisms
may be necessary, especially in cloud, where these proxies are not delegated to VMs.
Additionally, a level of isolation in task execution should be considered, especially
when tasks are executed on behalf of other users [186].

Regarding all these aspects, a classification of existing design approaches with
their corresponding examples is described in the following subsections.

2.5.2. GS/LRMS embedded pilot systems
LRMS and GSs (to a lesser extent) have already incorporated advanced schedu-

ling policies and usually support the interfaces commonly used in HTC (see Subsec-
tion 2.3.6). Therefore, it would be a great advantage to include a pilot in their resource
pools and schedule tasks over this pilot pool as usual. In this way, ranking and selec-
tion of the best resources to meet the task requirements are permitted. This approach
was first introduced in grid environments in 2001 by the glidein technique [8], which

2.5. Pilot jobs 33

was developed using the Condor framework. Subsequently similar mechanisms were
incorporated into other systems, especially when cloud providers appeared.

GlideinWMS.

Glidein uses the condor_startd daemon, executed inside any computational node
and then monitored and managed by Condor using condor_sched. This binary file
can be wrapped in a script and submitted as a grid job to a remote resource; then,
the daemon connects to the Condor Collector and it is enrolled in the Condor re-
source pool. This technique is not suitable for being used by itself in production grid
infrastructures, and, for this reason, glidein was recently complemented with other
developments [187], resulting in glideinWMS [24].

Currently, this framework is being used to provision resources to high-level sys-
tems, such as workflow managers, e.g., Pegasus [188] (through Corral [189]), or it
is used directly through the Condor CLI by users allowed accessing core services in
OSG [190]. The main differences from a pure glidein system are an enhancement of
the grid job wrapper for condor_startd and the inclusion of a specialised PiF com-
pound of two principal modules: the VO (or Corral) Frontend and the glidein Factory.
Multiple instances of Frontends, Factories and their related software can be deployed
to provide load balancing or to access multiple VOs. In this sense, specific Factories
for cloud provisioning are implemented [113].

Alternatively, the powerful Classified Advertisements (ClassAds) language is used
for describing users, tasks, glideins and machines containing services, and, conse-
quently, it enables the Condor matching mechanism by means of the evaluation and
comparison of the attributes, expressions, preferences and constraints declared for
each actor. However, ClassAds has perhaps derived in a tool that is too complex for
conventional users. Additionally, to assure confidentiality, the system generates key
pairs for each ClassAd, even for the user’s data stored at web servers, increasing the
complexity.

The obvious drawbacks of this system are the need for bidirectional outbound con-
nectivity, the compatibility of the condor_startd binary, the difficulty of installation
and the customisation (inherited from Condor and the newly implemented modu-
les). The first drawback is overcome by using a general-purpose message accumulator
(the Generic Connection Brokering) or the specifically designed Condor Connection
Brokering to enable the communication between the glideins and the condor_sched,
although this approach creates a delay penalty because compiling messages in an
intermediate server cannot offer the same performance as LAN connectivity. The se-
cond drawback is usually masked by the similar configuration of the resources in the
large infrastructures. However, the latter two issues remain important drawbacks to
the general adoption of glideinWMS because installing a complete instance could be
daunting and difficult for a specific application. Therefore, many users that launch
their own applications cannot profit from the scheduling features provided by this
system.

Elastic virtual sites and clusters.

Independently of how the IaaS cloud is accessed (with suppliers, brokers or di-
rectly), when the issue of the VM creation is solved, the following main problem is
to offer the new provisioned cloud resources in a way compatible with the usual exe-
cution of HTC applications. Therefore, many earlier approaches were based on the

34 Chapter 2. State of the Art

set-up of virtual clusters with some specific services or even with a complete virtual
grid site. The simplest mechanism is to create virtual nodes at the cloud provider to
dynamically grow a private cluster [145, 191, 147, 146]. Other solution is to increase
the nodes of a local grid site [42] or even completely place the site at the cloud pro-
vider [43]. In such a case, the computational tasks can be directly scheduled by the
LRMS of the cluster, or by any grid scheduler, respectively.

The placement of cluster nodes in remote locations has multiple drawbacks any-
way. First, the high latency of WANs will prevent the normal behaviour of the cluster
and the achievement of some calculations. Besides the unfeasibility of these networks
to achieve tightly-coupled parallel applications, the LRMS usually requires shared file
systems that dramatically decrease their performance in these environments. Therefo-
re, data and software locality is a great obstacle. Second, the necessity of bi-directional
communication among nodes and master implies the assignation of public IPs for every
node, the use of message accumulators (MAs) or even setting up a VPN among nodes.
IPv4 pubic addressing is limited in cloud providers and can have an associated cost.
In addition, security issues must be considered. The use of MAs or VPNs increases
the latency of communications. On the other hand, to set several complete virtua-
lised grid sites implies the configuration of much middleware and their subsequent
management.

It is important to mention that several tools for automation and monitoring of
deployments are currently available for clouds [192], as well as several cloud brokers
perform similar procedures, and even VIMs such as OpenStack or OpenNebula can be
stacked to grow their resources [193]. However, although the work needed to set up a
virtual cluster or grid site has been reduced, the performance loss and the complexity
acquired, respectively, cannot be justified when other solutions are available.

Managing VMs through SSH.

Other possibility is making use of the contextualisation facilities to directly ma-
nage VMs as pilots through SSH commands and to perform the data staging through
SFTP. For example, ServiceSs [29] is an extension of COMPSs scheduler that makes
uses of the PMES broker to provision this type of VMs. The final intention is pro-
posing the system as a kind of platform-as-a-service (PaaS) cloud [194], focused on
offering an IDE (an Eclipse plug-in) and a new API based on code directives for the
automatic parallelization and orchestration of applications and services in cloud. The
approach is powerful and extensible, but not standardised, and legacy applications
will be incompatible with it.

Other example is the Service Manager [30], a cloud supplier that includes the
monitored VMs in the GridWay Host Pool. Subsequently, GridWay can schedule
tasks among these VMs and execute them when it makes use of its SSH driver.

Considerations.

Obviously, the main drawback of any pushing mechanism as the ones described
in this subsection is the need of direct accessing pilot services from the PiS. In ge-
neral, this approach implies added costs and overheads. Moreover, the creation of
virtual environments such as virtual clusters has not necessary entail a decrease in
the complexity. Besides the configuration issues, advanced Workload Scheduling al-
gorithms require the location of the appropriated resources to correctly manage the
computation.

2.5. Pilot jobs 35

2.5.3. Pilot systems related to LHC VOs
Condor-G is used directly in OSG and is the base of gLite/UMD WMS. All pre-

vious versions have been deployed on EGI and its preceding phases since the beginning
of the last decade. The glidein technology seems the obvious choice to introduce pilot
jobs into large infrastructures, especially for those devoted to grid computation from
the LHC18. However, this idea was only evaluated in recent years. As a result, on the
date of the debut of glideinWMS [24], three of the VO communities out of the four
main LHC experiments had already implemented their own pilot job techniques and
had integrated them into their legacy and centralised PMS for massive data produc-
tion and processing. These three were DIRAC [17] for LHCb, AliEn [18] for ALICE,
and PanDA [19] for ATLAS.

Moreover, the uncertainty of achieving better performance results or getting some
added value, compared to their own mature production systems, became a significant
drawback for glideinWMS. Since then, its adoption by LHC VOs has been irregular,
also because of the influence of OSG on each specific collaboration (mainly on CMS
and ATLAS). In this sense, unlike the other LHC collaborations, CMS has not imple-
mented their own pilot system and simply incorporated glideinWMS during the last
years. With this system, great results were obtained [195]. However, the use of pilot
jobs has played a collateral role and has been bound to OSG sites [196] because of
the policy of CMS collaboration. Efforts are being made to incorporate glideinWMS,
such that the whole CMS production is expected to pass through this technology very
soon.

DIRAC.

The DIRAC WMS [17] was the first pilot system to be deployed in production on a
large VO [197], and it continues to use the gLite/UMDWMS as the tool for submitting
its pilots to the grid. On the other hand, DIRAC (its VMDIRAC extension) is also
the best exponent of profiting cloud infrastructures in production with pilot jobs
nowadays.

The pilots (pilot agents) install DIRAC (and the VO software) from repositories
if it has not already been configured by VO managers in grid sites. They can adopt a
general or a specific role if configured to run either any task or to only accept tasks
from a certain user, calculation or specific requirement. This association is possible
because of a double-matching mechanism against the UTQ items based on the Clas-
sAd language. Thus, DIRAC can request gLite/UMD WMS the information about
resources that accomplish these requirements, filter them according to previous exe-
cutions and finally submit the pilots. This labour is performed by the Pilot Director
Agent, working as PiF. When these pilots contact with the server directly fetch the
first waiting task in the corresponding UTQ. Therefore, the system is following a
FRFS policy where the user fair-share is implemented to a small extent.

To perform cloud provisioning, a new VM Director is used instead of the con-
ventional Pilot Director. Thus, the architecture of DIRAC is maintained. Currently
VM Director is a cloud supplier that simply dispatches VMs to a pool of known pro-
viders [115]. However, it is expected that, following the DIRAC design, the double-
matching mechanism among requirements of tasks and the discovery of cloud resources
will be applied as they were used with grid sites. Moreover, its functionalities are ex-

18http://wlcg-public.web.cern.ch

36 Chapter 2. State of the Art

tended [198] with the advantages of the different types of contextualisation that allow
the specific configuration for physicists (HEPiX [199]) or external monitoring (e.g.
Ganglia [200]). However, pilots have software dependencies that make users not really
being able to choice among virtual environments.

It is noteworthy to mention that DIRAC is deeply described in Section 7.3, due
to it is used as one of the pilot systems to be compared with the new framework
proposed in this thesis, on a real grid environment.

PanDA.

A similar two-level scheduling concept [190] is proposed by the PanDA pilot fra-
mework [19], but based on Condor-G and datasets. Several PiFs (AutoPilot [201]) are
installed with Condor-G when it is deployed at central services to adjust the number
of pilots and tasks in such a way that computing elements (CEs) will not be overloa-
ded. This schedule is based on the input dataset of tasks and their expected output.
This is important because pilots have multitasking capabilities and can retain outputs
from previous executions to be reutilised or uploaded at a later time.

AliEn.

In 2004, a completely different pilot approach [25] was implemented for the AliEn
framework [18]. A daemon (Computer Agent) is installed in VO-Boxes at each grid
site to continuously monitor the state of its corresponding CE. It also has a PiF role
and submits pilots directly to the CE [202] when it detects that tasks have been as-
signed at UTQ to that resource. Central AliEn services schedule these tasks using the
information provided by Computer Agents; therefore, the Computer Agent (and not
the pilot) is triggering the task matching using a general characterisation of the re-
source. That is, the framework implements more advanced scheduling policies without
using the central IS of the infrastructure, avoiding a high percentage of monitoring
communications, but at the cost of certainty of a proper WN and the ability to control
the task behaviour. In this way, an approach based on site-allocated PiFs was also
proposed in DIRAC [203], but the utilisation was limited to standalone clusters [204].
Similarly, some PanDA developers [205] considered the creation of a new site-allocated
PiF that supplied glideins [206], but this solution did not seem to be feasible becau-
se it forced an unnecessary re-implementation of glideinWMS functionalities and the
infrastructure was overloaded with two pilot systems [190].

Considerations.

Notably, these three PMS act not only as a pilot system but also as a complete tool
that provides more services. They are frameworks specifically designed to compute
the great amount of data generated by the LHC experiments, and therefore, they are
composed of additional software mainly devoted to managing data access, allocation
and replication. The requirements of tasks processed are specific and they could only
accept regular user tasks collaterally. Consequently, PanDa and AliEn frameworks
only support High Energy Physics (HEP) experiments. The exception is DIRAC,
which is used in other types of initiatives, such as the biomed VO [207].

With respect to the communication mechanism utilised in the aforementioned fra-
meworks, all actors (user, CLI tools, pilots, core modules) in DIRAC, AliEn or PanDa

2.5. Pilot jobs 37

must use their own PKI/GSI protocol based on XML-RPC/HTTP [208], WSRF/-
SOAP or simple HTTP requests, respectively. For this reason, in addition to the
web portals offered by PMS, more common interfaces are provided to developers to
facilitate the integration with other systems or applications, although they are not
necessarily standardised. Examples are the Ganga [121] compatibility that is usually
offered or the REST interface recently added to DIRAC. With respect to the coding
language, Python is predominantly used. Additionally third-party open source tools
such as web servers are used.

2.5.4. Application-oriented overlays
HEP researchers involved in the four LHC experiments generally use the same

software for processing their data; therefore, it is feasible to make the effort to custo-
mise a common framework for them. Nevertheless, there are many users that employ
several types of applications not installed on remote sites. Thus, the development of
a PMS only makes sense for middle-large collaborations. Moreover, the deployment
of any type of centralised system for queuing and prioritising tasks may not be the
best approach to improve the performance of an individual application because only
its programmer knows its specific characteristics. For this reason, some approaches
have been proposed for providing a developer-oriented interface for distributed envi-
ronments, which tackles the implementation of master-worker applications. Initially
they focused on offering an API that simplifies the basic operations of the slave (mo-
nitoring, forking tasks, getting results, etc.). Two similar approaches were proposed:
AMWAT [209] for AppLeS [210] scheduler and M/W [211] for Condor. The former
is a collection of C/C++/Fortran functions and the latter implements a set of C++
template classes that the programmer must customise for his application. Both APIs
simply wrap the available message passing protocols (MPI, PVM, or Condor-PVM)
or the file sharing (Condor-Local I/O, Globus I/O or Nexus) mechanisms to enable
bidirectional communications in a distributed environment.

BigJob

Due to the high latency in wide area networks, these protocols are not suitable for
grid environments. For this reason, other approaches based on GridRPC [212] were
attempted [213], but all of these were lacking adoption when standard APIs for HTC
programming were proposed (DRMAA [214], SAGA [120]), which did not consider
a role for the programmer to manage the slaves. Related to this, an initiative called
BigJob [26] has been recently presented for adapting pilot jobs to SAGA, but charac-
terisation or scheduling tools are not included. Developers must explicitly indicate the
pilot job to execute a task, and usually indicate the provider (its URI) to run the pilot
too. Thus, the BJ-Manager assumes the UTQ, the PiS and (partially) the PiF roles
to facilitate developers the management of pilots (the BJ-Agents). The objective is to
maintain the freedom to implement any provisioning policy, but without the necessity
of directly implement SAGA code. However, due to the volume of resources belon-
ging to current grid infrastructures, provisioning is usually delegated to Condor-G.
Another component of BigJob is the Coordination Service which acts as a message
accumulator between the Manager and the Agents based on the Redis19 database
and protocol. This communication mechanism is always used although other methods

19http://redis.io

38
C

hapter
2.State

ofthe
A
rt

Table 2.2: Comparison of some distinguishing features of main pilot systems. This compilation is focused on their compatibility and their capacity
for interoperation in grids; their tools to adapt applications and their management by users; their default scheduling capacities; and how users can
influence the scheduling.

GS/LRMS embedded PMS Application-oriented
glideinWMS GWpilot DIRAC AliEn PanDA DIANE BigJob

Deploy-ability:
Pilot requirements Compiled binary

(condor_startd)
Python >= 2,4,3 Specific Python

release and
multiple binary
dependences

Executable locally
stored in shared
directory
(VO-boxes) or
proxy-cache
(CVMFS)

Python 2 (only if
generic pilot is
deployed, but
specific versions
and middleware
were need)

omniORB libraries Python 2.7

Connectivity
(Pull/push)

TCP sockets
(Push. MAs are
need: GCB/CCB)

HTTP/S (Pull) DISET, i.e.
XML-RPC/HTTP
(Pull)

WSRF/SOAP
(Pull)

HTTP/S (Pull) CORBA call-backs
(Pull)

Redis (Push.
BJ-Manager uses
the Coordination
Service as MA)

Grid
interoperation for
provisioning(a)

Integrated with
Condor-G: direct
submission to
GRAM2/4/5,
CREAM and ARC
resources (mainly
based in
middleware
libraries)

Integrated with
GridWay: direct
submission to
GRAM2/4/5,
CREAM,
OGSA-BES and
ARC resources
(mainly based in
middleware
libraries)

Submission
delegated to WMS.
Additionally,
allows direct
submission to
statically defined
GRAM2 and
CREAM resources
(based on
middleware
commands)

Site-allocated PiFs
perform local
submissions to
GRAM2, CREAM,
or ARC resources
(based on
middleware
commands)

Submission
delegated to
Condor-G

Relies on Ganga:
submission
delegated to
WMS, PanDA and
DIRAC or directly
to GRAM2,
CREAM (based on
middleware
commands).
SAGA backend
(deprecated)

Relies on
SAGA-python and
SSH: submission
delegated to
Condor-G
(potentially can be
extended or use
other SAGA
implementations
to handle grid
interfaces)

Usability / Interactivity:
Local CLI LRMS-like LRMS-like - - - Limited Limited
Remote CLI - SAM based

(through
OGSA-BES)

WMS-like
(extended)

UNIX-like prompt Few parameterised
commands

- -

Task description
(for CLI)

Proprietary JSDL, proprietary JDL JDL - - -

(Continue in next page.)

2.5.Pilot
jobs

39

(Table 2.2 continued.)

Task management
API

Proprietary (Perl,
SOAP). DRMAA
(C/C++)

DRMAA (Java,
C/C++, Perl,
Python),
OGSA-BES

Ganga. REST.
Proprietary
(Python)

Proprietary
(C/C++/Perl)

Ganga, REST Proprietary
(Python)

Proprietary
(Python)

Scheduling:
Default workload
policies

Condor
matchmaking

GridWay adaptive
scheduling

Classification of
tasks in UTQs,
subsequently
FRFS

Tasks in a priority
UTQ are assigned
to sites if their
local monitoring
shows free slots
and they fulfil
constraints

Classification of
tasks based on
their datasets.
Subsequently
FRFS

FCFS Developer must
explicitly indicate
the pilot to
execute tasks

User defined
policies

Free definition of
constraints or
ranking

Free definition of
constraints or
ranking

Few types of
constraints

Constraints related
to software
installed

Constraints related
to software, input
files or sites

Free definition of
constraints. It
allows dynamically
setting scheduling
options

-

Provisioning
policies

PiF dynamically
evaluates policies
defined in tasks
and static options
to generate pilot
descriptions.
Subsequently,
Condor performs
their scheduling
and submission

PiF dynamically
evaluates policies
defined in tasks
and static options
to generate pilot
descriptions.
Subsequently,
GridWay performs
their scheduling
and submission

For every UTQ,
PiF select
resources from a
list provided
statically or
dynamically by
WMS.
Subsequently
resources are
filtered by previous
pilot profiling and
static options

PiF discretionally
submits pilots if
tasks are assigned
to its hosting site
at central UTQ

Several sites are
selected to send
the inputs of tasks
with similar
datasets. Then,
PiFs discretionally
submits pilots to
these sites using
Condor-G

Only a type of
resource can be
selected.
Scheduling is
generally
delegated. If WMS
is used, PiF can
also perform a
limited scheduling
based on previous
executions

Developer must
explicitly indicate
the resource to
execute pilots (if it
is not delegated to
Condor-G)

Pilot
characterisation (b)

ClassAds (Not
customisable)

Unstructured
key-value pairs
(Customisable)

ClassAds (Not
customisable)

ClassAds (Not
customisable)

Key-data structure
pairs (Not
customisable)

Key-data structure
pairs (Limited(b))

Key-data structure
pairs (Not
customisable)

(a) SSH or cloud interfaces are not considered as grid interfaces. Accessing to LRMS is only considered if the motivation is to bind with grid interfaces, as in Condor-G.
(b) Characterisation by users without modifying pilot code. Special case is DIANE, since Worker Agent could be considered part of the user application,
due to CORBA model.

40 Chapter 2. State of the Art

are available, for example when pilots are started through SSH in VMs previously
provisioned in cloud [114].

DIANE

Unlike BigJob, DIANE [23] is an integrated framework with a UTQ and simple
scheduler (Task Scheduler), PiF (Agent Factory) and PiS (Run Master) that is written
as an importable API library for Python applications. The communication between
pilot jobs (worker agents) and the PiS is done by means of the CORBA free imple-
mentation omniORB20. However, it maintains a pull behaviour, where the exchange
of information is done via call-backs. The Agent Factory can use simple heuristics [68]
to fit resources by evaluating its error completion rate. Nevertheless, the resource dis-
covering is based on the statistical results obtained from the pilot submission to the
Ganga [121] library to a set of GSs, as is deeply explained in [68]. The Task Scheduler
implements a FCFS policy by default, although its code can be modified to incorpo-
rate other procedures. Additionally, the Agent Factory and the Task Scheduler can
work together to exchange information about the characterisation of resources and
tasks. Therefore, specialised developers can extend DIANE to allow ranking policies
and improve the resource provisioning with statistical data. The adaptive workload
balancing (AWLB) proposal [117, 215] is a good example.

Considerations.

The primary advantage with DIANE or BigJob is their library design, which pro-
vides an easy-to-use and standalone installation. In the case of DIANE there is an
added benefit because developers only have to divide the computational workload
into tasks and to format them into a set of simple abstract classes. Then, DIANE will
autonomously manage the necessary pilots and, through its own File Transfer service,
will make the stage-in and -out process. However, both APIs are not standardised, and
they even differ from the Ganga interface or SAGA standard, respectively. Moreover,
the programmer could be forced to modify the DIANE [216] or the BigJob code if
the existing one did not meet his needs. The performance data and characteristics of
resources can only be compiled for the current execution of the application; therefore,
this information can be shared neither with other users nor with other applications
of the same user that are being executed at the same time.

2.5.5. Other frameworks
In general, desktop grid approaches are similar to standalone pilot systems, but

they have been logically designed for Volunteer Computing. Therefore, they were
focused on exploiting idle CPU cycles from a large number of personal computers
variably configured and allocated around the world. This fact implies a great effort in
the development of compatible and secure Clients, which can run on heterogeneous
platforms, and also centralised services able to coordinate hundreds of thousands of
Clients while supporting high latency rates in their communications. In the case of
BOINC [217], significant segments of the Clients and the core server are implemented
in C++, in particular the communication that relies on XML/HTTP(S) requests from
the Clients. The rest of BOINC, e.g., the mechanism for downloading files, is based on

20http://omniorb.sourceforge.net

2.5. Pilot jobs 41

PHP web pages. Another example is XtremWeb [218], where Clients connect through
RMI or XML-RPC to Coordinators. The servers are published at an Advertisement
Service, also coded as an RPC. This enables a type of P2P load-balancing mechanism
because Clients can obtain inputs from and store outputs to different Coordinators.

There have been efforts to adapt XtremWeb and BOINC architectures to a grid
infrastructure, such as EDGeS [27] or GridBot [28], but legacy grid applications are
difficult to port to these frameworks. Nowadays, the recent 3G-Bridge [31] imple-
mentations are able to maintain a BOINC server with Clients (the pilots) running in
provisioned VMs. In similarity with grid, the work is focused on the customisation and
the contextualisation needed to accomplish the common user-tasks in the Clients. In
this case, a modified CREAM server which relies on 3G-Bridge can be deployed as a
facility for grid users. However, the scheduling among diverse cloud sites is relegated,
using suppliers to single providers.

Other initiatives have tried to solve this issue by implementing systems from
scratch that were immersed in the current grid middleware and its interfaces. This
is the case of Falkon [219], which was implemented as the Globus Toolkit 4 (GT4),
that is, a WS-oriented system to be deployed on existent GT4 infrastructures. Accor-
ding to its initial design, a PiF (Provisioner) directly manages the execution of pilots
(Executors) running on WNs, assuming a priori that GT4 supports brokered WS
notifications, i.e., the PiS (Dispatcher) must push WS notifications directly to Exe-
cutors running on a remote resource; however, this feature has not been implemented
in GT4.

Considerations.

Obviously, the library dependences of Clients will hinder: the deployment of these
systems, the adaptation of legacy applications and even the election of the VM confi-
guration in cloud environments. Furthermore, the technologies added with 3G-Bridge
are oriented to improve the compatibility with applications based on the UMD/gLite
middleware, but mainly to achieve interoperation among infrastructures, and not to
offer the necessary tools for customising scheduling capabilities.

Corollary.
To better understand the concepts described through these subsections, Table 2.2

summarises the distinguishing features of main pilot systems in relation to their
deploy-ability, usability and scheduling. The comparison is specially focused on the
mechanisms offered to users to adapt their legacy applications to these frameworks, as
well as to perform some type of customised monitoring and scheduling. Additionally
to this table, it is important to mention that DIRAC and DIANE frameworks are
deeper explained in Section 7.3 because they are used to be compared with GWpilot.

2.5.6. Limited support to Multilevel Scheduling
The considerations made in last section suggest that no pilot system fulfils all the

needs of the developers, users or institutions. In particular, they do not allow users
to modify their scheduling behaviour in a way compatible with legacy applications
or tools. However, there are diverse examples of specialised scheduling that make
use of those frameworks. In first place, systems that support a formalised execution
model [12, 116, 117] are the ones more suitable for incorporating advanced Workload

42 Chapter 2. State of the Art

Scheduling algorithms. In this sense, the improvement of MC codes is recurrent becau-
se of their wide use in grid environments and their mouldability. For example, in [220]
is shown how DIANE can be used to dynamically balance the MC payload among
available pilots, the procedures of which are an adaptation of the general workload ba-
lance explained in [216] based on the proportion of transfer time over execution time.
In [207], the MapReduce and checkpointing techniques are applied to the DIRAC fra-
mework. Additionally, MapReduce has been developed on BigJob [44]. Nevertheless,
these examples are also too simplified to be extrapolated to other algorithm types
that require more complex characterisations or features. This is the reason of the
implementation of proposals that disregard the current frameworks and implement
customised ones, such as the inclusion of data-cache pilots [81] in the MC production
system of CMS collaboration. Despite of these efforts, any legacy application should
be rewritten to use any of the described mechanisms.

A more ambitious approach is the possible inclusion of Moab scheduler into DI-
RAC framework [221]. It could contribute to improve the generality of this pilot
system by including the advanced scheduling algorithms present in LRMS such as
fair sharing rules or backfilling. However, Condor-G already provides these advanced
policies and its application in glideinWMS is very limited. This is so due to the im-
possibility of customising the characterisation of pilots. Moreover, currently there are
some approaches [145, 191, 147, 193, 192] to guide cloud provisioning to set virtual
clusters up, but application developers are unaware of the distributed nature of the
virtual environment.

Coupling external systems with scheduling capacities to pilot framework is difficult
with this lack of compatibility and characterisation, but some approaches have been
developed. For example, a WfM such as Pegasus makes use of glideins to face the
former problem. This approach achieves good results [189] with the drawback of the
local dependence on Condor, which limits its development. Other option is the one
followed by MOTEUR. Their developers have been used the Ganga library to become
the system in a pilot-enabled WfE that relies on DIRAC [222]. Both mechanisms allow
WfMs to straightforwardly use pilots, but not to characterise them. For this purpose,
other authors had again to adapt DIANE API to be used by MOTEUR [223], and
then to build a scientific portal [182] on the top of them.

2.6. Conclusions

Firstly, it can be said that there has been too much effort spent worldwide on
building advanced Workload Scheduling with early-binding techniques. New develop-
ments should take advantage of the tools already implemented. In this sense, tech-
nologies progress and the backward compatibility must be preserved. An example is
the research on the compatibility of workflow languages for the provenance. However,
the most suitable approach is following standardised APIs when the Application-level
Scheduling is implemented. In this sense, some algorithms included in self-schedulers
or WfMs are so specific that should not be part of a general-purpose scheduling system
such as the RBs (or a pilot framework); unlike, they should couple them making use
of those standards. Additionally, generic techniques should be tested on real environ-
ments before being incorporated into an established framework, and self-schedulers
are the first tool for this purpose.

Obviously, the lack of characterisation in early-binding limits the feasibility of

2.6. Conclusions 43

many scheduling approaches, so pilot jobs can be the solution. However, this affir-
mation is not clear for many authors, who persevere in the research without using
Provisioning, as well as for many communities, that continue relying on early-binding
mechanisms in their scientific production (such as some PMS). They trust a careful
selection of the resources and the size of BoTs to improve the performance in a si-
milar degree than pilot systems, especially when long jobs are used and the global
throughput is considered.

This is so because current pilot frameworks are not exploiting all the advantages
that the pilot job technique offers. Workload Scheduling and Provisioning do no work
together, and they cannot be easily modified for a specific calculation. To enable
Application layer to benefit of Multilevel Scheduling, pilot frameworks must allow
the:

1. compatibility with legacy applications and Workload Scheduling tools such as
WfMs and self-schedulers that use standards to bind to other systems;

2. fully characterisation of resources that results into a simple turnaround model
suitable for being used by other scheduling layers, this include:

a) predictable performance of the system based on its configuration;
b) dynamic customisation of monitoring, without modifying the code of the

framework;
c) tools to dynamically check the monitored characteristics;

3. communication among layers, transferring requirements, monitoring and guiding
from application to Provisioning and coming back.

These requirements are not fully achieved by current pilot systems. It is noteworthy
to mention again that some abstraction models of pilot jobs have been already propo-
sed [12, 116, 117]. These abstractions and formalisms undoubtedly result adequate to
describe scheduling algorithms based on pilots, but are succinct to detail the design
of some frameworks, which are constrained by some issues, such as the compatibility
or the deploy-ability, among other weaknesses explained through the Section 2.5. On
the other hand, the efficient pilot provisioning in cloud is a practically unexplored
field.

Therefore, to design a new pilot framework that will overcome all those issues, it
is necessary to detail its requirements, compiling the knowledge acquired through this
chapter, as well as to itemise the consecutive sub-objectives of the research, exten-
ding the main objectives stated in Section 1.2. These are the reasons for highlighting
following Chapter 3.

Chapter 3

Lessons Learned and
Objectives of the Research

3.1. Objectives

The main objective of this work is to research into a new framework that will
really enable users, institutions and communities to perform the specialised Multile-
vel Scheduling that fulfils their computational needs. For this purpose, the experience,
the tools and in special, the Workload Scheduling algorithms implemented for early-
binding should be preserved despite of their limitations. Moreover, some early-binding
mechanisms can be extended to be subsequently profited in a late-binding environ-
ment. Therefore, these approaches will be explored in the first part of this thesis by
means of:

Part I. Chapter 4.: Adapting a consistent set of applications from several (scientific
or industrial) areas with distinctive requirements and studying
the suitability of different procedures for their adaptation.

Part I. Chapter 5.: Looking into mechanisms that will increase and improve the avai-
lable amount of resources with the profiting of IaaS cloud provi-
ders in a way suitable for accomplishing the previously adapted
applications and preserving Workload Scheduling already imple-
mented.

Part I. Chapter 6.: Deploying specialised Workload Scheduling algorithms with self-
scheduling techniques and evaluate if they are valid to improve
the execution of those applications.

Through the second part, the new pilot framework that accomplishes the requi-
rements for building a Multilevel scheduler will be presented. For this purpose the
following steps will be performed:

Part II. Chapter 7.: Designing the new pilot system and comparing its basic features
and performance with other solutions by means of competitive
experiments.

45

46 Chapter 3. Lessons Learned and Objectives of the Research

Part II. Chapter 8.: Creating a consistent mechanism to straightforwardly run legacy
applications such as the ones adapted in Chapter 4, for which
they can profit from the advantages of Resource Provisioning,
even on cloud environments by using the approach developed in
Chapter 5.

Part II. Chapter 9.: Implementing new scheduling policies that improve the global
performance of several applications at the same time and de-
monstrating their inclusion does not modify the portability of
legacy codes.

Part II. Chapter 10.: Developing the needed techniques to fully enable the scheduling
customisation at user-level, allowing the effective communication
among scheduling layers.

Part II. Chapter 11.: Conceiving a feasible model suitable for being used by external
tools that works on Workload Scheduling, formulating a metho-
dology to incorporate them to the new system and, performing
a demonstration by stacking a self-scheduler as the one deployed
in Chapter 6.

To accomplish these steps, whole demonstrations must be performed on real en-
vironments, i.e. production infrastructures. Moreover, experiments described in the
Part II must stress the behaviour of the system when it faces the worst scenario, i.e.
dealing with variable short jobs. Both requirements are needed to evaluate the real
performance and suitability of the frameworks considered.

Collaterally, other important objective of this thesis is to demonstrate how cus-
tomary applications can directly benefit from the new pilot framework, providing
relevant results for their areas of knowledge. In particular, the fifty percent of cal-
culations are devoted to the study of transport in Nuclear Fusion. For this reason,
the related physics and the new results found are extensively explained through the
Appendix C of this thesis, while the description and achievements in other fields are
summarised in Appendix B.

3.2. Requirements for a new pilot system
The described pilot systems in Section 2.5 have some problems already explained

that do not only hinder their support of Multilevel Scheduling, but even can prevent
their deployment for simple computations. The orientation of these systems to certain
calculation is the reason of going away from a general-purpose and user-oriented Mul-
tilevel scheduler. Basing on the related work, there are a set of minimal requirements
that a pilot framework must accomplish to be considered as a general-purpose pilot
system. While other features finally provides system with the Multilevel capacity.

3.2.1. Minimal functionalities

Friendly interfaces.

First, a general-purpose pilot system should offer a friendly interface for users,
developers and administrators. For this reason, a new pilot system must provide

3.2. Requirements for a new pilot system 47

standardised APIs and LRMS-like CLIs that fulfil the needs of every role, and facilitate
the incorporation of external systems, such as upper scheduling layers.

Commonly used protocols and grid security.

Security, based on grid standards, is a must. Then, other implementations, different
from the ones provided by the middleware, must follow these specifications and general
infrastructure rules. New services or protocols should not be implemented if they
are correctly provided by the middleware, i.e., the system should avoid duplication;
this includes the mechanism to stage files [23, 24], which is already available using
GridFTP, SRM, etc.

Deploy-ability.

The platform and library dependencies of remote pilot software [17, 23, 24, 27, 28],
i.e. the pilot jobs, decrease the compatibility with heterogeneous resources. Moreover,
the constraints imposed by these software make users not really being able to choice
among virtual environments in cloud [115, 198, 31]. Therefore, it is better to use a
widely extended interpreted language [19, 26] so those future modifications will be
easier to be implemented as the system remains widely compatible. In addition, the
allocation of modules at remote sites (such as site-allocated PiFs [25, 203, 204, 205])
should be discarded because it implies external collaboration for their installations,
which is not suitable for standalone solutions. With respect to the local installation
of the pilot system, it is desirable that it were easy enough to be carried out even
by inexpert users [23, 26]. This feature will extend the suitability of the system for
individual calculations.

Pull approach.

The use of the pull mechanism and common protocols is the most suitable approach
for pilot communications. It facilitates passage through site firewalls and proxies.
Conventional RPC protocols and bidirectional implementations are not recommen-
ded. The use of message accumulators also increases the complexity and lag times in
communications [24, 26, 116]. The same reason makes the use of encrypted protocols
such as SSH or VPN inadvisable [29, 30]. However, the choice of a pull method can
influence the scheduling algorithms selected, as will be explained later. In any case,
it is necessary to reduce and maintain controlled the overheads introduced by the
system because they could constraint any scheduling decision.

Controlled overheads.

To reduce the overheads, the middleware layers must be limited to the minimum.
It is counterproductive to mix different pilot systems (as in [26, 205, 206]) or to com-
plicate the design in excess (as in [17, 24]). A high number of standalone modules in
the system does not only imply more difficulties in their deployment, but also mul-
tiplies the quantity and size of communications among these modules, increasing the
overhead. Well-defined WS message protocols are precisely proposed to easily integra-
te software from different providers and to improve the future extensibility of codes
by other developers [25, 208], in exchange for a high increase of the message size.
However, if the system complexity is low and the performance in communications

48 Chapter 3. Lessons Learned and Objectives of the Research

is a priority requirement, their use could be avoided [19, 28]. Although these sim-
plifications were made, the different pilot calls always introduce their own overhead,
which has to be measured and controlled because it has an especial impact on task
turnaround.

3.2.2. Multilevel support
In general, pilot systems should distinguish the three-level hierarchy already esta-

blished for scheduling in Subsection 2.3.1: the Application, the Task Scheduling and
the Resource Provisioning layers. To fully support a personalised scheduling at user-
level, the new pilot framework must provide the latter two layers with mechanisms
that permeate the user’s requirements. Thus, these requirements must influence on
the whole scheduling because applications properly run on a type of resource that
should be provisioned. However, it is difficult to guide Provisioning if the pilot execu-
tion is delegated to an external GS [17, 23, 201, 31]. Thus, to build a framework that
manages tasks and Provisioning together [24, 26, 116] is more feasible.

Customisable characterisation.

To really solve the characterisation problem of Grid and Cloud Computing, the
system must allow the free definition of constraints for every task, among a customi-
sable set of characteristics for every pilot. For this purpose, the language used can not
be complex as in [8]. Additionally, the customisation and characterisation of resources
is a typical role of the Provisioning phase [17, 19, 25], but will imply the modification
of the pilot system code for every calculation type. Therefore, the new pilot system
should also provide the mechanisms to properly characterise resources inside tasks.
Moreover, applications performing reactive scheduling need interfaces to dynamically
know the current task, pilot and resource assignation and characterisation.

Fair-sharing.

To satisfy the needs of institutions and VOs, the system should be multi-user and
multi-application. Thus, another desirable functionality is the ability to implement
fair-share and prioritisation policies [24] at Workload and Provisioning levels from the
start. It becomes a major drawback if they are need post-development actions [221].
It is also useful to have accounting generically provided to the scheduler to improve
the behaviour of current and future applications in the system. Therefore, a unique
application-oriented approach (such as [23, 26]) is not suitable for designing the new
framework.

Advanced scheduling, performance and modelling

In this sense, it is necessary to include advanced algorithms into the Task Sche-
duling and Provisioning layers to delegate as much as possible the implementation
of coordination from user-level applications to pilot system. Therefore, the new pi-
lot system must be able to implement more advanced algorithms than FRFS for
Task Scheduling. However, this requirement deserves a fuller explanation because is
different to the approach implemented in current pilot systems that make use of a
pull mechanism. This is so because in a pure pull scenario, the simple FRFS task-
pilot matchmaking policy has clear benefits. The technique has a small dispatch time

3.2. Requirements for a new pilot system 49

(below 1 second [23, 204]); it maximises the usage of assigned resources (CPU occu-
pancy); only one call type against PiS should be implemented, and it removes the
necessity of implementing a scheduler module. Nevertheless, the disadvantages are
also obvious. Although UTQ could prioritise tasks, the user fair-share is not really
performed [221]. Additionally, applications can experience large, variable completion
times because any task can uncontrollably fall into slow nodes. Then, this policy sup-
poses a large drawback from the user point of view and from the use policy of certain
VOs. Nevertheless, any algorithm different from FRFS has a variable time penalty
according to its computational complexity, arising from evaluating a large quantity
of possible pilot-task matches at every time. This could also have a negative influence
on the task dispatching time (when it wastes time on the order of minutes), especially
for short-duration tasks, and must be evaluated. In this sense, the execution models
available [12, 116, 117] do not take into account these issues and they are tied to the
pilot systems for which were formulated. Therefore, it is needed to propose a new
mathematical model that accurately compiles these overheads. Such a model must be
focused on estimating the task turnaround to allow the fine tuning of the new system
as well as the incorporation of third-party schedulers.

Part I

LIMITATIONS AND
ADVANTAGES OF
EARLY-BINDING
TECHNIQUES

Chapter 4

Adapting Applications

4.1. Introduction
Several applications belonging to different areas of knowledge have been adapted

to grid and cloud to be studied in this thesis. Tools for Chemical Physics, Evolu-
tionary Biology, HEP, Matter Interactions, Nuclear Fusion and Solid State Physics
have been chosen because of their differences on their computational behaviour and
to demonstrate the universality of the developments presented in this research.

In this chapter the objective is to evaluate the suitability of the different proce-
dures for their adaptation to highly distributed environments. For this purpose, it is
necessary to describe these processes and to perform experiments that measure the
performance of the available scheduling tools, in particular RBs because they are the
first mechanism to reduce the grid (and cloud) complexity.

Among all those applications, the Drift Kinetic Equation solver for Grids (DKEsG)
is excellent to illustrate the usual work on the adaptation of HTC codes to Grid
Computing, because it manages extensive parameter sweep calculations as well as
complex workflow executions. Furthermore, DKEsG is repeatedly used through this
thesis. For these reasons, the complete description of its adaptation has been included
in Section 4.4. Results obtained with other applications have been summarised in the
following section. Additionally, Section 4.3 describes the approach followed in the
adaptation of these codes when DRMAA is used.

4.2. Collection, mechanisms and summary of results
Fifteen applications have been adapted to distributed environments in this thesis.

A complete description and their usage context are included in Appendix B, but in this
section these applications were classified following the computational suitability types
from Subsection 2.3.2, namely: random numbers, parameter sweep and workflows. On
the other hand, to perform these adaptations, several approaches were followed making
use of:

1. Two RBs available for Grid Computing, WMS and GridWay, through their
remote and local CLI, respectively.

2. The standardised DRMAA API. For this purpose, a design pattern has been

53

54 Chapter 4. Adapting Applications

newly implemented to ease the adaptation.

3. A Visual WfM such as Taverna [153].

4. A self-scheduling framework, developed in Chapter 6.

Both classifications jointly to the maximum speedup obtained through several pu-
blished works are summarised in Table 4.1. It is noteworthy to mention that, although
some applications have been previously adapted by other authors to diverse grid midd-
leware releases, most of this work is not freely available. Therefore, the process has
been done again. Moreover, for most applications, such as ISDEP, the adaptation
was not done before relying on standardised API specifications. This achievement has
been performed in this thesis with the library described in the following Section 4.3.

However, the speedup does not offer a true vision of the real suitability of the
approaches implemented. On the one hand, it already demonstrates the calculation
can be distributed, but on the other hand, the scalability and performance are de-
ceptive. For example, the main component of the PhyloGrid workflow is MrBayes.
The used version is a tightly-coupled code that must be executed on clusters because
requires MPI. Thus, the speedup shows the maximum number of cores reserved in a
grid site, and the submission of different experiments to different sites is the only way
to perform some distribution. Other examples are DiVoS, jModelTest2 and ProTest3,
which do not scale linearly in distributed environments. These codes have an impor-
tant common portion of calculation that cannot be parallelised and every job must
execute it. Amdahl’s Law inevitably limits the speedup. Therefore, grids and clouds
can be used for small or medium tests, but for large calculations, shared-memory
architectures based on GPUs are more suitable for these codes because the sequential
part is only executed once. Therefore, these applications were discarded in favour of
the rest to perform the experiments analysed through this thesis. That is so because
the mouldability property of later ones will allow better exploiting and demonstrating
the achievements presented.

Moreover, the dependences and installation size of applications such as XMM-
Newton SAS, GAMOS and even FLUKA, hinder their deployment. Their workload is
mouldable, but their execution requires the installation of the software in every grid
site. For these cases, cloud features can be the solution and for this reason XMM-
Newton is used in Chapter 5.

Furthermore, as can be seen in Table 4.1 better results have been obtained with
WMS than GridWay in some cases. This seems to contradict previous conclusions
made through the related work [135], but it is not so. The status of the infrastructure
used or simply fate in the first election of sites influence on the final makespan.
Note that IS do not show an accurate characterisation of the providers and GridWay
blindly selects providers at first time. This has special incidence when very long jobs
are executed. Nevertheless, the probability of failures increases as the duration of
jobs does, and many jobs will be re-submitted, wasting excessive time. Therefore, it
is necessary an extensive analysis of the carried overheads to evaluate their influence
on makespan. With this study, any user can determine if RBs or self-schedulers are
enough to achieve the required performance levels for its calculations. For this purpose,
the first mechanism in Section 4.5 and both through Chapter 6 are evaluated. In
this sense, the experience on Visual WfMs obtained with PhyloGrid shows that it is
difficult to customise their scheduling behaviour. Consequently, as it is not possible
to easily improve the performance already achieved by RBs or by a self-scheduler,
WfMs have not been included in that study.

4.3. Standardised producer-consumer design pattern 55

Table 4.1: Maximum speedup over the sequential execution of the adapted applications
obtained in several works using an early-binding approach.

Type Application W
M
S
C
L
I

G
ri
dW

ay
C
L
I

D
R
M
A
A

pa
tt
er
n

W
fM

Se
lf
-s
ch
ed

ul
in
g

Random numbers BEAMnrc [67] 3.0b - 17.3b - 28.0b

FAFNER2 [224, 225, 226, 67] 22.9b - 28.9b - 76.0b

FLUKA [67] 22.5b - 10.7b - 31.1b

Grif [67] 83.5b - 37.2b - 79.2b

ISDEP [227] 58.0b 64.9b (!) - 78.3b

Nagano [67] 9.5b - 10.6b - 39.8b

Parameter sweep DiVoS [228, 229] - 22.0b - - -
DKES [230] - 29.7a (!) - -
jModelTest2 [231, 232] - - 12.9c - -
ProTest3 [231, 232] - - 16.4c - -
XMM-Newton SAS [233] - (!!) 29.6d - -

Workflows DKEsG [234] - 17.0a (!) - -
FastDEP [67] 2.3b - 2.1b - 2.8b

PhyloGrid [235, 236, 237, 238] - - - 20.0a -
GAMOS [239] - 75.4a (!) - -

aEELA-2/GISELA (small sized infrastructure, 10-16 grid sites; i.e. prod.vo.eu-eela.eu VO).
bEGEE-III/EGI (medium sized VO, 40 sites; e.g. fusion VO).
cEGEE-III/EGI (large sized VO, 120 sites; e.g. biomed VO).
dEGI FedCloud (medium sized VO, 40 sites, i.e. fedcloud.egi.eu VO).
(!)DRMAA version only used with late-binding [240, 241, 65, 242], see Chapters 9, 10 and 12.
(!!)CLI version used on a controlled environment, thus the speedups obtained should be discarded.

4.3. Standardised producer-consumer design pattern

The advantages of adapting distributed codes using libraries and specification
standards have been already commented in Section 2.3.6. However, developers do
not want to deal with the computation part and even with the coordination one if
they do not plan implementing a specific scheduling algorithm for their calculation.
Additionally, SAGA, DRMAA and BES can be embarrassingly, demanding to invest
time in learning and training.

These issues have motivated the creation of a library that follows a producer-
consumer design pattern and allows the straightforward adaptation of HTC applica-
tions with DRMAA. The producer-consumer library is written in Python and, unlike
similar tools that run on GridWay [243], the library is potentially compatible with
other GSs or LRMS that support DRMAA 1.0, and consequently, makes any distri-
buted application as a standard-enabled software that can straightforwardly run on
clusters and grids.

Developer implements only two abstract classes to adapt their calculation with
this library: the input pool, and the application, which is composed by the producer
and the consumer methods:

56 Chapter 4. Adapting Applications

The application class implements the common procedure to build a single job
and verify their outputs. For simplicity, the developer creates a Python dictio-
nary that describes the job as it were a GridWay template within the producer
method. In every application instantiation, producer is called with the corres-
ponding parameter combination, building the job. Finally, developer checks the
exit code of the job and its outputs with the consumer method.

With the input pool class, the developer creates the pool of parameter com-
binations to be computed, which is automatically stored in a local database.
Besides the input parameters, every element of the pool is composed by the
object class of the application and pointers to other elements to preserve prece-
dence constraints. As several application classes can be implemented, the library
can manage workflows.

The producer-consumer operation is the following:

1. User launches the application without any concern for the implementation, but
he must configure at least the following options with influence on performan-
ce and overload: the polling interval and the maximum number of jobs to be
managed at the same time.

2. The maximum number of jobs is selected from the pool to be submitted and
managed through the DRMAA API. For this purpose, the producer method is
called for every element selected. The resultant dictionary describing the job
is translated to DRMAA and subsequently monitored until their termination.
However, there is no function in the DRMAA 1.0 specification that returns all
the job states in a unique call. Then, the completion of these jobs is sequentially
checked in the polling interval set by user.

3. Completed jobs are continuously replaced by new ones, and failed jobs are re-
introduced into the pool. The verification of every completed job is done by
applying its corresponding consumer method.

Nonetheless, other program arguments allow user to benefit from GridWay-specific
improvements. For example, the configuration of the suspension timeout at the remote
batch system when grid resources are used. Additionally, requirements and ranking
can be added to the jobs without changing the ones set by the developer. However,
these last statements are set for all the jobs managed. Thus, the Workload Division
and Job Building performed can be considered as static and based on FCFS, but it
is valuable to obtain the performance obtained by RBs in Job Scheduling anyway.

4.4. Example: calculating NC transport coefficients

Neoclassical (NC) transport calculations are necessary for the complete simulation
cycle of the behaviour of plasmas inside both tokamaks and stellarators facilities. This
section presents the porting process to the grid and the computational optimisation of
the Drift Kinetic Equation solver code [244] (DKES), devoted to obtain the monoener-
getic diffusion coefficients of NC transport, as well as the design and implementation
of the DKEsG framework devoted to automatically manage the workflows needed to
estimate the final transport coefficients. The advantage of this framework over the
Monte Carlo approaches also ported in this work, such as ISDEP or FastDEP, is that

4.4. Example: calculating NC transport coefficients 57

DKEsG allows the estimation of all the transport coefficients, not only the diagonal
ones. However, the management of calculation is more complex due to the number of
parameters and their possible combinations. Physics related to transport, as well as
the physical results obtained in this work are compiled in Appendix C. In this sense,
to understand the implemented workflow, it is only needed to know that the final
objective of the calculation is to obtain a set of accurate NC transport coefficients,
Lij , given by:

Lij (n, T, φ) = −4,552878 [Ti]
3
2 [Mi]

1
2

(
Zi
dp

dr

)−2
×
[

2√
π

∫ ∞
0

Ki+je−KD̂ijdK

]
which can be used to estimate the physical fluxes. Moreover, the monoenergetic

diffusion coefficients D̂ij are obtained from DKES, which requires two parameters, as
is stated in [244] and [245]:

D̂ij = D̂ij

[
ν(K)
vT
√
K
,

Es

vT
√
K

]
= D̂ij [CMUL,EFIELD] (4.1)

Therefore, the calculation is structured as a workflow, which is composed of two
computationally intensive applications. The first one is the code derived from DKES,
(renamed as DKEsG-Mono, and independent of T and n), used to estimate the mo-
noenergetic coefficients, D̂ij . The second one is the program that calculates the final
NC transport coefficients, Lij , that had to be implemented from scratch and is called
as DKEsG-Neo.

4.4.1. Adapting DKES code to run on grid resources
The process described in this section illustrates the usual steps that a developer

perform to adapt codes to run on grid infrastructures, which resources usually have a
concrete configuration, but lacks required software. Therefore, developers should try
to generate application binaries with as less dependences as possible. However, this
effort cannot be needed on cloud if tools to set up a customised virtual environment
are available.

Original code

The variational version of DKES [244] is the code previously available at the
Spanish National Fusion Laboratory, where TJ-II is allocated. This application was
originally optimised to be run on HPC architectures already in use on the date when
the software was written in Fortran 77. These were CRAY-1 and CRAY X-MP since
the code date is 1989; similar information can be deduced for the libraries, e.g. LIN-
PACK [246]. Later, due to the natural evolution of the computational architectures,
these systems were replaced by more powerful machines, so the code was adapted to
run on an SGI Origin 3800, where it has been executed to simulate the kinetic trans-
port of several fusion devices until now. Moreover, because of its implementation for
old fashioned platforms, it is difficult to manage the application itself; thus, a manual
reconfiguration and recompilation of the main code is continuously necessary in order
to prepare every simulation.

However, the parametric and sequential nature of DKES theoretically allows the
division of the problem into independent subtasks, i.e. each parameter calculation can

58 Chapter 4. Adapting Applications

Table 4.2: Memory consumption and time spent by one task of DKEsG-Mono sorted by
number of Fourier/Legendre modes and radius (with a coupled order of 5).

TJ-II TJ-II Min. Num. Num. of Memory Xeon 5160 3 GHz
normalised index for Fourier Legendre Consumption (Launch date: 2006)
toroidal radius modes modes (KB)

flux ρ (0-1) (cm)
0.021 4 343 100 13,140 39.704 s
0.021 4 343 200 14,088 1 m 17.528 s
0.021 4 343 1000 21,684 6 m 22.112 s
0.050 8 470 100 23,600 1 m 41.408 s
0.079 12 708 100 51,684 7 m 38.699 s
0.107 16 1252 100 157,420 70 m 6.408 s
0.118 17.5 1751 100 305,232 192 m 51.545 s

be performed by one job that can be run on a grid environment. As an advantage,
DKES returns only normalised diffusion monoenergetic coefficients D̂ij , which are
independent of plasma temperature and density (T and n). So the results can be stored
in a unique file or database, indexed by the parameters described in Equation 4.1,
which are only functions of the considered magnetic surface. In this way, results can be
calculated once and re-utilised for many variations of K, ν and Es, saving computing
time in future simulations.

New x86 binary

In order to be able to execute DKES in most of current computing architectures
as possible, several modifications have been made. Thus, the first step has been to
port the code to the x86 Linux platforms, since this architecture is nowadays the
predominant in scientific environments and particularly in grid infrastructures such
as EGI. So, optimisation procedures implemented for old architectures and calls to
obsolete packages have been deleted and replaced by similar ones, adapted to the new
computational environment. For example, SCSL libraries for IRIX have been replaced
by the open source LAPACK/BLAS [247]. After this, as many libraries and software
optimisation tools related to the processors as possible have been included in the new
executable, in order to efficiently perform the calculations on the grid. This is so for
avoiding further incompatibilities and for reducing the number of versions that must
be produced, because even when a larger package to be submitted would be created,
its size is negligible in this case for the current wide-area networks.

As a result, it has been obtained better performance of the new software on x86
with a combination of compilation options and compilers. GCC 3.4 was used to com-
pile the 3.1.1 version of LAPACK/BLAS libraries and Intel Fortran 9.1 was used to
create a final executable file (1.3 MB), the so-called DKEsG-Mono module. The bi-
nary can be efficiently run on any Linux distribution from the kernel version 2.4 and
on any PIII processor or higher, 64 bits and AMD included. Technically, this module
can be executed with a maximum of 6,500 Legendre polynomials and 4,000 Fourier
modes. Its execution needs an input file of ∼ 5 KB and produces output files of ∼ 10
KB.

Verifying feasibility

Nevertheless, the memory size allocated by DKES for one single task depends
on the number of Fourier modes used to describe the magnetic configuration of the

4.4. Example: calculating NC transport coefficients 59

reactor. These data increase with the length of the considered plasma radius. However,
the size of variable arrays can not be dynamically allocated in Fortran 77, and this
was the main reason for the necessity to recompile the code for every simulation.

Porting DKES to Fortran 90 avoids continuous recompilations, nevertheless the
amount of memory required by some DKES calculations could become a serious li-
mitation. This is because grid sites have heterogeneous configurations in their worker
nodes, with different memory sizes, and there might be not enough resources that
meet the DKES requirements. For this reason, the memory consumption by a DKES
task has been empirically measured for a minimum number of Fourier modes per
radius in a reactor. Data related to typical radii in TJ-II are show in Table 4.2 and
consequently the suitability of common DKES calculations for their distribution can
be guaranteed on current production infrastructures. In particular, this affirmation
is obvious in those resources supporting the LHC experiments, since their processing
software requires at least 2GB per core and their virtual organizations are the most
widely extended in EGI.

It is noteworthy to mention that since 2012 [240] the DKEsG-Mono module is
actually derived from the most updated DKES code [245, 248]. Although this release
can run on x86, this feature only simplifies the process of code adaptation, which
had been performed again, resulting into an executable, inputs and outputs with
similar size, but achieving better performance while returning more accurate results
(see Table 10.2 in Chapter 10).

4.4.2. Implementing the transport coefficient calculation
The three final values of Lij were then obtained by integrating the new diffusion

coefficient function inside Equation 4.1. The accuracy of the result will depend on
how well the analytical function is fitted from the experimental data as well as on
the chosen method of the quadrature subroutine; the latter is based on Romberg
integration, which uses the generalised open formula of the midpoint rule to do the
numerical integration, together with the extrapolation of the function.

The newly implemented module has been called DKEsG-Neo since it returns Lij ,
the NC coefficients. Two types of meaningful results can be obtained by executing this
module. The lightweight one is to force it to calculate the NC transport coefficients
for different values of the electric field. For this purpose, less than 103 monoenergetic
coefficients (Dij) are usually needed, and DKEsG-Neo lasts 3 minutes to estimate
each Lij .

When the study requires obtaining the NC coefficients that allow calculating the
final NC fluxes and currents of a fusion device, the calculation of every Lij requires a
large number of monoenergetic coefficients. This number is typically larger than 104

to correctly fit the integral and solve it. The time for calculating each Lij can be over
20 minutes in a machine with the characteristics mentioned in Table 4.2.

4.4.3. Combining jobs into a single workflow

The normalised collisionality (CMUL = ν(K)/vT
√
K) and electrical field (EFIELD

= Es/vT
√
K) pair represents a single calculation for DKEsG-Mono. The parameter

sweep variation will be based on calculating a high number of combinations of them
within two pre-established intervals. Moreover, DKEsG-Mono returns different results
per combination of magnitudes such as radius (r, normalised in ρ), Fourier and Le-

60 Chapter 4. Adapting Applications

gendre polynomials and other parameters, so the amount of input and output files
can grow dramatically up to 1012.

Thus, it was necessary to design a methodology for dividing the DKEsG-Mono
calculations and recompose all the collected output files in a coherent way to allow
the subsequently selection of the data input for the DKEsG-Neo module. For doing so,
auxiliary programs for the automatic generation of indexed inputs, output compiling,
recycling results and plotting were implemented in the DKEsG framework.

Furthermore, the computationally intensive parts of DKEsG must be completely
executed on the maximum number of grid resources to reduce the final simulation
time. As commented above, the calculation is performed by DKEsG framework in
two stages. The first one consists of a collection of jobs from which some of their
output values (D̂ij) are taken as inputs by other jobs for calculating a specific Lij in
a second stage. This means that the execution of the different DKEsG modules can be
considered as a directed acyclic graph (DAG) workflow. The complete flow chart of the
DKEsG framework is shown in Figure 4.1. The magnetic configuration of the reactor
is represented by different values of −→B per radius r, which should be provided as input
data by the user or by an external application as VMEC [249]. For each −→Br, a wide set
of values (lmax) of D̂ij is obtained by running several lmax/(m−n+1) DKEsG-Mono
module instances with different values of ν (collisionality) and Es (electric field).
As Kl is the concrete energy that determines the CMUL and EFIELD pair, the
[ln · · · lm] is the chunk interval to build the BoT to be submitted to the grid within
one DKEsG-Mono job to obtain the D̂ij coefficients. Thus, m−n+1 is the maximum
size of the BoT set by the user launching DKEsG.

The previously calculated and stored D̂ij coefficients are used by DKEsG-Neo mo-
dule for solving the Lij integration. T ,n, and φ could be directly provided or obtained
from other applications, devoted to heating plasma simulation, such as MaRaTra [250]
or FAFNER2 [67, 224, 225, 226] codes, that can also run on grid as well as VMEC.
Other sources can be used, for example, plasma transport evolution codes such as
ASTRA [251], but it has to be executed locally. In order to use the outputs from
other fusion applications, they must be previously adapted to the DKEsG format by
a parser tool.

It is noteworthy to mention again that a full description of the whole workflow
and the related physics can be found in Appendix C.

4.4.4. Managing jobs
The implementation of this workflow is not the final step in the porting process

to grid. To achieve this goal it is necessary to choose the most efficient and straight-
forward way to run DKEsG modules on grid and retrieve its results as long as their
inter-dependences keep preserved.

GridWay CLI and templates

Besides of its demonstrated performance [135] and compatibility, GridWay per-
forms a reliable and unattended execution of jobs, which it also includes handling
DAG based workflows [161]. Moreover, GridWay provides the programmer with some
functionality to trigger the migration of a job when its performance falls under a
specified threshold. For these reasons, the first release of DKEsG [230, 234] was based
on the generation of GridWay templates.

4.4.Exam
ple:calculating

N
C

transport
coeffi

cients
61

Figure 4.1: Formal workflow scheme for the DKEsG framework, where the functions r1 = 1 and rmax represent the order from the minor radius a
considered. −→Br is the magnetic configuration for a radius r provided by means of Fourier series. lmax is the number of DKE calculations performed
for a specific −→Br, and (m − n + 1) are the chunk interval of these calculations submitted to the grid within one job. D̂ij represent the normalised
diffusion coefficients for a concrete energy Kl and magnetic configuration and radius −→Br. Tp is the temperature and nq the density in a certain plasma
state q and p. The potential is represented by φ. See the text and Appendix C for further explanations.

62 Chapter 4. Adapting Applications

Therefore, two specific programs have been implemented to manage the DKEsG
execution on a grid environment, beside the one managing the workflow. The former
is executed on the user interface (GridWay machine), it performs the Job Building
and it checks the exit code and the output files retrieved by each DKEsG module
done on the grid. If any of them is not correct for a DKEsG-Mono task, the program
resubmits not only the failed job, but all DKEsG-Neo jobs that depend on it. Note
that GridWay maintains the workflow dependences when a job is migrated but not
when a job fails. In this sense, the time spent by a module running on a grid site is
also measured to satisfy a certain fixed threshold, if it exceeds this limit, the job is
forced to migrate.

The second program is a simple monitor that is executed jointly with either DKES-
Mono or DKES-Neo on the worker node at the remote grid site. It is in charge of
controlling the walltime, checking the generation of intermediate output files and
triggering a self-migration for performance reasons. It works independently to the first
program, being more able to quickly detect performance slowdowns than failures.

DRMAA

Nevertheless, the experience with long computations demonstrates that the me-
chanism based on the generation of templates is not sustainable over time. The wide
range of extra parameters of these modules and their combinations made the workflow
too complex to manage the inputs, the results and the precedence constraints among
DKEsG-Mono and -Neo jobs. Their volume requires storing them in a database that
must be exhaustively controlled. By means of this database, DKEsG can detect the
completion of a parameter scan for a certain plasma surface to trigger the submission
of the corresponding DKEsG-Neo job.

Therefore, the final release of DKEsG uses the standardised producer-consumer
library presented in Section 4.3. For this purpose, two application classes were im-
plemented, one for DKES-Mono and the other for DKEsG-Neo. The input pool only
guides the workflow, being the producers and consumers of the applications in charge
of getting the inputs from, and storing the results into the database. The remain-
der mechanisms to parse inputs or manage files are maintained and included in their
respective methods. This version is used in the experiments described in Chapters 9
and 10.

4.5. Executions on grid with DKEsG
The objective of performing these experiments is two-fold. The first one is to

evaluate the suitability of the adaptation of DKEsG to distributed environments,
being able to obtain meaningful physical results. Moreover, the main intention is to
evaluate the overheads introduced, the reliability obtained, the IS trustworthiness and
how the RB (in this case GridWay) deals with the unexpected issues.

As explained through the last Section and formally in Appendix C, the DKEsG-
Neo module needs the outputs of many DKEsG-Mono executions to calculate the NC
transport coefficients (Lij). Additionally, the outputs (D̂ij) from DKEsG-Mono can
be stored for further studies and have their own physical importance and subsequent
discussion. For these reasons, the DKEsG framework has two operation modes: stan-
dalone DKEsG-Mono executions and the workflow mode. Therefore, these options
will allow the study of the performance when parameter sweep and workflows are

4.5. Executions on grid with DKEsG 63

used relying on a RB such as GridWay.

4.5.1. Test bed and common parameters
The EELA-2 production grid facility, based on gLite middleware, was used for

performing the tests explained below. Resources belonging to this infrastructure as
those when this experiment was carried out are summarised in Table 4.3. It counted
on 12 grid sites supporting the prod.vo.eu-eela.eu VO. On the other hand, a dedicated
machine with GridWay 5.4 was deployed to perform the experiments.

The Heliac stellarator TJ-II standard magnetic configuration was selected for the
real calculation. Not only real values for the geometry of the TJ-II (represented with
their Fourier coefficients and radius of the magnetic surface) have been chosen, but al-
so some other parameters. Thus, a test for average plasma minor radius r = 4 cm has
been performed. Other magnitudes such as the temperature, the atomic mass and the
potential have all been set to the unity, i.e. T , n, φ variables in equation (8). Finally, a
set of 100 Legendre polynomials and 343 Fourier harmonics has been used to represent
the distribution function and the TJ-II configuration, respectively. In this configura-
tion each DKES execution only uses 14 MB of memory and lasts ∼ 40 s following the
data compiled in Table 4.2. Consequently, some grouping into BoTs should be per-
formed in both experiments to limit the influence of overheads. Furthermore, these
experiments will evaluate the user’s capacity to limit these overheads by statically fit-
ting their applications. For this purpose, the first experiment computed very sort jobs
and in the last one the BoT size was subsequently fitted. Additionally, the maximum
number of submitted jobs per provider (the MAX_RUNNING_RESOURCE option in
GridWay configuration) was reduced in the second experiment. The intention is to
show that more resources do not have to imply better speedups.

Other default values in GridWay configuration are maintained, with exception to
the number of jobs allowed to be scheduled at once, which was unlimited. With this
last option, the study of the Job Scheduling field can be performed without care of
the overheads related to the application, because GridWay has to deal with all the
jobs since the beginning of the experiments.

4.5.2. Parameter sweep calculations
The collisionality and electrical field pair represent a single calculus for DKEsG-

Mono. The parameter sweep variation will be based on calculating a high number
of collisionality values within an interval per electrical field. In this experiment, a
variation of 500 collisionalities per 5 electrical fields has been calculated. Thus, a
total number of 2,500 DKEsG-Mono executions has been performed, the physical
results of which are shown in Figure C.1 and explained in Appendix C.

For the sake of comparison with the grid execution, this calculation has been per-
formed by a unique DKEsG-Mono job using a single core of an Intel Xeon 5160 (with
3.00 GHz and 4 MB cache) such as the one used for building Table 4.2; on a free
machine it lasted for 26 h 7 m 35 s. This type of machine is the same as the resources
offered by the ce-eela.ciemat.es (see Table 4.3), and one of the most powerful offered
by the whole providers at the moment when our grid test was performed. Regar-
ding these issues, the adequate chunk size of DKEsG-Mono calculus was estimated to
be of 5 tasks, resulting into 500 jobs. This value was obtained considering that five
collisionality-field pairs (< 4 minutes in aforementioned machine) is the appropriate

64 Chapter 4. Adapting Applications

Table 4.3: DKEsG-Mono executions on every resource available on the EELA-2 infrastruc-
ture.

Site Status Total OK F Err P&S
axon-g01.ieeta.pt OK 43 25 18 13 5
ce01.eela.if.ufrj.br OK 121 118 3 1 2
ce01.macc.unican.es up/saturated 44 4 40 1 39
ce.eela.cesga.es OK 78 16 62 1 61
ce-eela.ceta-ciemat.es up/saturated 80 0 80 0 80
ce-eela.ciemat.es OK 269 248 21 0 21
ce.labmc.inf.utfsm.cl OK 78 62 16 0 16
grid001.cecalc.ula.ve maintenance 48 0 48 48 0
grid012.ct.infn.it up/saturated 74 0 74 0 74
gridgate.cs.tcd.ie up/saturated 55 5 50 22 28
kuragua.uniandes.edu.co OK 59 22 37 0 37
ramses.dsic.upv.es not matched Under the 1.4 GHz threshold

Total means the total number of submitted jobs, OK the successfully ended, F stands for failed,

Err for error and P&S for Performance and Suspension (deeper explanation through the text).

number to evaluate the feasibility of the distribution of our DKES version among
providers, as well as to compile information about the operation with the RB. Furt-
hermore, the appropriation of resources was only restricted to 40 slots per site and
GridWay was allowed managing the 500 jobs at the same time. The intention of these
aggressive criteria is to measure the performance obtained for the application, floo-
ding the infrastructure with very short jobs, which make use of the maximum number
of available resources.

The performance thresholds of DKEsG monitor programs have been set as follows:
the maximum real wall-time of a DKEsG-Mono job into a worker node to 25 minutes;
the maximum time spent at grid sites to 30 minutes; the suspension timeout for
dispatching the job by the remote LRMS to 5 minutes; and, the minimum usage
percentage of the CPU (core) assigned to a DKEsG-Mono job to 80%. Moreover, the
resource priority for every job was set relying on the CPU speed of providers following
the information given by the IS of the infrastructure, but ruling out resources lower
than 1.4 GHz. Therefore, this configuration of the application allows lower powered
resources to compute the jobs 7.5 times slower than the reference machine. Obviously,
none machine under the 1.4 GHz lasts so long in compute one job if the resource
are exclusively assigned. Thus, the monitors will detect inconsistencies of the IS or
overbooking of providers.

Table 4.3 shows where a DKEsG-Mono job was successfully executed (OK) and
where the a job was failed (F). It is important to bear in mind that these failed jobs
do not necessary indicate a misconfiguration at remote grid sites. These sites could be
temporary saturated of other jobs belonging to other users; or they could fail because
either an excessive suspension time was produced, or a lower CPU power than the
expected by the DKES monitor was observed. Then, due to the strict thresholds fixed
for this test, an increasing number of migrated and failed jobs is experimented. To
easily differentiate these jobs from the ones originated by other reasons (network cuts,
hanged worker nodes, misconfiguration...), such a kind of failures are declared sepa-
rately in Table 4.3 as ”P&S” (performance and suspension) and ”Err” respectively.

Time spent by the complete test on grid was 52 m 47 s. Therefore, it supposes
getting the final compiled output of DKES 29.7 times faster than its sequential version
running isolated on the most powerful worker node of the infrastructure.

Besides the impressive reduction on the processing time obtained in the perfor-

4.5. Executions on grid with DKEsG 65

med test, a key factor is important to be taken into account to really evaluate the
final improvement, i.e. the time lost by grid middleware operations. While the real
accumulated time in the test for DKEsG-Mono calculations was 45 h 6 m 33 s, the
accumulated time spent by successfully ended DKEsG-Mono task was 72 h 50 m 25
s. This represents an overhead of 61.48% respect the useful execution time.

Thus, to maximise the performance of the whole calculation, this previous per-
centage can be reduced by increasing the number of calculi by DKEsG-Mono job.
This reasoning can be easily deduced observing Figure 4.2, where the intrinsic over-
head (waiting queues and middleware) varies for the different sites due to their own
configuration and system load, but can become negligible when real execution time
rise to a certain level. The increase of the BoT size is discussed in the following
Subsection 4.5.3.

Despite of this, the scheduling configuration of GridWay (this is, the weight policy
assigned to the more used resources or from where the resources have been excessively
migrated) has effect on the accumulated time wasted in waiting for, detecting and
migrating failed jobs, which is compiled in 91 h 31 m 5 s. Although it can be a
specific fitting for the certain employed infrastructure, it will not change through the
time. Even more, if GridWay were shared among users, this fitting is performed by
administrators. Subsequently, it will be completely independent from the application
to be submitted because users cannot modify the scheduling configuration. For this
reason, fitting Job Scheduling for individual calculations is not feasible with RBs such
as WMS and Condor-G.

Moreover, P&S failures indicate that the real availability offered by providers are
not the one finally supplied. In Figure 4.2 only the resources where the production has
been more successfully executed are shown (the ones with the OK status in Table 4.3).
The impact of failures on these sites is indicated as ”fail overhead”. The variability
of the measurements of the weight of P&S on those failures implies two conclusions:
IS are not trustworthy and the overheads depends on the current status of every
provider, which only can be known with continuous tests.

4.5.3. Running in workflow mode
In this experiment, a variation of 500 collisionalities per 9 electric fields has been

performed. Therefore, a total number of 4,500 independent estimations of the D̂ij

coefficients have been carried out by the DKEsG-Mono module. The obtained nor-
malised monoenergetic diffusion coefficients were utilised by the DKEsG-Neo module
for calculating the three main Lij per electric field.

Regarding the issues mentioned in previous Subsection, the chunk of the DKEsG-
Mono calculations was set to 45; this value was obtained considering that these 45
collisionality-field pairs (∼ 29 minutes and 47 seconds in the machine type mentioned
in Table 4.2) can be the suitable lower execution time limit to evaluate if the speedup
is improved by only decreasing intrinsic overheads in a typical simulation on the grid.

Therefore, the whole DKES-Mono calculation is contained in 100 jobs. On the
other hand, the three DKEsG-Neo jobs that calculates the three Lij associated to
one electrical field spend ∼ 3 minutes each, and they sum up 27 jobs. They are
automatically submitted to providers by GridWay when its dependences have been
successfully achieved. Note that the DKEsG release based on the GridWay CLI is
used in this experiment.

Moreover, the performance thresholds on the monitoring programs have been fitted

66 Chapter 4. Adapting Applications

Figure 4.2: Real execution time of DKES compared with the associated middleware over-
head (intrinsic) of the successfully executed jobs, including staging-in and stage-out files.
Also the time spent by failed jobs is depicted (deeper explanation through the text).

for this new BoT size: the maximum real wall-time in a working node has been
limited to 90 minutes for DKEsG-Mono jobs and 5 minutes for DKEsG-Neo jobs; the
dispatching suspension timeout at the remote batch systems has been limited to 5
minutes in both cases; and, the maximum time spent at grid sites to 95 and 10 minutes
respectively. Therefore, the allowed execution time was reduced for lower powered
processors, being 3 times more than the one expected by the reference machine, but
the maximum waiting time in queues is maintained.

On the other hand, the ranking relying on the CPU speed published and the dis-
carding of those resources bellow 1.4 GHz have been maintained for this experiment.
However, the maximum resource allocation has been restricted to 10 slots per site.
Thus, the maximum number of nodes that GridWay can allocate is 4 times fewer than
the previous experiment.

Time spent by the complete test on grid was 2 h 51 m 53 s. This result demons-
trates a true distribution of jobs since 10 grid sites in the EELA-2 infrastructure have
processed more than 5 jobs each. For the sake of comparison with the grid execution,
if this test were performed by a unique DKEsG-Mono job and its results processed
sequentially by the DKEsG-Neo program using a single core of a free machine similar
to the one described in Table 4.2, it would have lasted for more than two days and
one hour. Therefore, it supposes getting the final 27 Lij coefficients 17 times faster
than its sequential version running isolated.

However, this speedup cannot be directly justified when the maximum number of
resources had not been reduced at the same degree. Moreover, the 27 DKEsG-Neo
jobs increase the makespan because they must wait for the completion of many other
jobs to be submitted. The suspension timeout (the main weight in intrinsic overhead)
is maintained, thus the intrinsic overhead of successful jobs are reduced to the ∼
10%. However, there have been many failures and this type of overhead depends on

4.6. Conclusions 67

the real availability of the providers at any time, and it is clear that GridWay cannot
correctly handle this issue with the data shown by IS, neither by the information
compiled in its accounting databases. It is needed more advanced tools that perform
the characterisation of providers with respect to the application, this is, benchmark
sites, profile executions and foreseen availability.

It is noteworthy to mention the physical results obtained from the DKEsG-Mono
module and the NC transport coefficients calculated by DKEsG-Neo module using
them are shown in Figures C.2 and C.3 in Appendix C.

4.6. Conclusions
The main objective of this chapter is to evaluate the available mechanisms and

tools for adapting an application to highly distributed environments. The conclusions
can be summarised in:

The use of CLI and even standardised APIs are embarrassingly for developers;
skeleton approaches are useful to overcome this issue.

WfMs can be useful to ease the adaptation of certain complex applications, but
do not allow users to modify the underlying Job Scheduling.

RBs are an excellent entry point to profit from DCIs, achieving important reduc-
tions on the final processing time of distributed applications with respect to the
serial ones, but they do not properly manage the associated overheads because
they only work on Job Scheduling and lack infrastructure characterisation.

Therefore, other tools that manage whole Workload Scheduling has to be evaluated
for early-binding. Optimising the overhead percentage with respect to the real execu-
tion time is in the scope of self-schedulers, an aspect that will be properly evaluated
in Chapter 6.

All these conclusions have risen as a result of a main achievement performed in this
chapter: the adaptation of several applications to highly distributed environments,
which will allow communities to face new challenges and uses. In particular, most
of applications have been adapted relying on the standardised DRMAA API, being
able to be run on LRMS or grid (and potentially on cloud, as will be explained in
next Chapter 5). In this sense, a distributed version derived from the DKES [244]
code, the DKEsG framework, has been successfully run on grid. This step opens new
possibilities for fusion community since, from now on, the NC transport coefficients
can also be calculated on the grid reducing the time consumption and increasing the
feasibility of the code use. This is a key factor for those researchers who do not have
an easy access to huge computational centres.

Chapter 5

Scheduling Straightforward
Executions in Clouds

5.1. Introduction

GridWay [10] is a meta-scheduler so flexible and “agnostic” enough to potentially
manage any kind of resource if it is extended with the necessary modules. Thus for a
cloud federation, GridWay could use the information that dynamically updates the IS
to select the most suitable cloud provider every time. For this purpose, the Scheduler
should take account of the requirements set in the description of common jobs, which
execution inside a controlled virtual environment, i.e. a VM, actually is the final
objective. Therefore, the approach is to create a VM per every job to be executed, as
well as grid sites enables an ephemeral chrooted environment to execute these jobs.

Perhaps the earliest approach that schedule jobs among remote resources as they
were cloud providers can be found in [233]. In this paper, a mechanism that makes
use of the existent grid middleware to schedule VMs that contain some software in
remote sites is proposed. GridWay takes account of the state and characteristics of
sites to submit a wrapper encapsulated into a regular grid job that is able to boot
a virtual machine. OS images were directly uploaded to sites or to storage elements
through protocols such as GridFTP. Obviously, this approach does not exploit all the
advantages that virtualisation offers, and only was justified by the absence of cloud
interfaces and middleware.

The standardisation process that makes possible the establishment of cloud fe-
derations also opens the door to GridWay to directly make use of cloud resources.
In consequence, the advanced scheduling features of GridWay, its usability and com-
patibility will really come into cloud. For this purpose it is necessary to implement
two new information and execution drivers able to manage cloud providers. The solu-
tion [242, 252] differentiates from other approaches based on GridWay cited through
the related work [233, 42, 43, 30] in its Scheduler, which takes the decisions of whe-
re VMs are started as well as GridWay manages the VMs with cloud middleware.
Benefits include:

a) Automatic discovering and monitoring of providers that belong to several cloud
federations.

69

70 Chapter 5. Scheduling Straightforward Executions in Clouds

b) Scheduling capabilities based on constraints, ranking, fair-sharing, deadlines, etc.,
to instantiate VMs at providers with certain characteristics, like:

specific VM image (e.g. by the appdb.egi.eu identifier);
available hardware, with advanced reservations;
associated costs and budgets, QoS, etc.

c) Grid security standards and protocols are preserved to enable compatibility with
external grid services.

d) Direct execution of jobs.

e) Minimal contextualisation, fully customisable by the user.

f) Compatibility with legacy applications.

However, time spent in every VM instantiation can represent an excessive added
overhead comparable to the waiting times in LRMS queues at grid sites. For this
reason, the suitability of the approach for short jobs is experimentally studied in
Section 5.4.

5.2. Early developments

The scheduling, deployment and execution management of single VMs are possible
in a grid infrastructure using the customary middleware installed in grid sites. The
approach presented in this section consists in encapsulating a virtual workspace in
a grid job managed by GridWay. It also incorporates the functionality offered by
a general purpose meta-scheduling system. So, the genuine characteristics of a grid
infrastructure (i.e. dynamism, high fault rate, heterogeneity) are naturally considered
in the proposed solution.

The description of the grid job must include all the requirements of the virtual
machine within. So, the job template used by GridWay must specify, for example, the
Xen Hypervisor version (that must be compatible with the Linux kernel needed by
the virtual machines), and other hardware requirements (e.g. free memory or CPU
load).

GridWay schedules a grid job as follows: the Information Manager (see Figure 2.3)
holds a list with the available resources in the grid and their characteristics. This list is
periodically updated by querying the information services to monitor and discover grid
hosts. The Dispatch Manager filters out those resources that do not offer the needed
hypervisor, or do not have free slots or do not meet any other job requirement. Then
it sorts the remaining hosts according to a user-supplied rank expression. The highest
ranked resource is used to dispatch the job.

5.2.1. Deployment of virtual machines
In general, the images could be downloaded, as any other input file, in the pro-

log phase from the client or from an image repository, using GridFTP or any other
grid protocol. Additionally, GridWay allows the definition of an optional pre-wrapper
phase to perform advanced job configuration routines. This process consists in an

5.2. Early developments 71

.

Remote Resource

Requested

(Optional)
by pre−wrapper

G
R

A
M

Stage out,
shutdown.

Creation,
monitoring,
stage in.

Prolog/Epilog steps

Wrapper control

Local Storage Physical Cluster Worker−Node

Virtual Workspace

Virtual Workspace

LRMS

G
ri

d
F

T
P

VM Image Repository

Wrapper / pre−wrapper

Physical Cluster Front−End

GridWay

Wrapper

Wrapper

Figure 5.1: Schematic representation of the job execution process within virtual machines
deployed in a grid site.

user defined program that is executed on the cluster front-end (the gatekeeper of grid
site). In our case, this program checks the availability of a given image, and transfers
it from a GridFTP repository if needed. Note also that higher level data services, like
the Replica Location Service (RLS), could be used.

Then, the Execution Manager interfaces the gatekeeper service (through GRAM2/
4/5, CREAM or BES) to submit the wrapper program, which performs the following
actions:

1. It checks the availability of the requested VM image in the cluster node.

2. The VM is started or restored with an unique identification and MAC address.
Then, the wrapper waits for the VM activation by periodically probing its ser-
vices.

3. The wrapper copies all the input files needed by the experiment to the VM, and
it executes the scientific application.

4. The output files are transferred back to the physical cluster file system to be
copied to the client host in the epilog phase.

5. Finally it shuts down (or suspends to disk) the VM.

The previous process is depicted in Figure 5.1.

5.2.2. Multiple weaknesses
This strategy does not require additional middleware to be deployed with excep-

tion to the virtualisation hypervisor, as it is based on well-tested procedures and
standard services. Moreover, it is not tied to a given virtualisation technology. Howe-
ver, it presents important drawbacks:

The underlying LRMS and middleware are not aware of the nature of the job
itself. Therefore, some of the potential benefits offered by the virtualisation
technology (e.g. server consolidation) are not fully exploited.

72 Chapter 5. Scheduling Straightforward Executions in Clouds

Administrators of remote grid sites have to allow grid users to gain enough
super-user privileges to boot VMs.

VMs should be pre-configured before their instantiation, i.e. they are not bene-
fited from the contextualisation mechanisms.

IS can include specific tags to advertise that the virtualisation capacity is allo-
wed, but they will not describe grid sites with the characterisation suitable for
cloud providers.

In any case, the presented design can be used to illustrate the questions derived
from following one-job per VM approach, as will be performed in Subsection 5.4.1.

5.3. The current approach on IaaS clouds
With the advent of cloud federations and their related protocols and mechanisms,

using the aforementioned techniques makes no sense. However, the previous approach
is not completely outdated, because the achievement in allowing VM scheduling
among providers can be applied on current cloud infrastructures. For this purpo-
se, two drivers have been developed to interface with cloud services. The first one is
devoted to filter and compile the specific data related to cloud characteristics from
the IS. The other manages the VM creation and the job execution. Both are fully
described through the following subsections.

5.3.1. The GWcloud Information Driver (ID)
This new driver looks up for cloud providers in top BDIIs of one or multiple

federations. The user can configure the search to constraint the matches to certain
characteristics published by providers. Currently, the driver supports the EGI Fed-
Cloud, but it can be modified to directly use OCCI or AWS interfaces to work on
a multi-cloud environment. Subsequently, the driver filters the information to dy-
namically notify GridWay about the characteristics of providers in which the user
is authorised. Every provider found is included as an independent resource in the
Host Pool. Thus, the information can be consulted by the user through the GridWay
commands and it is shown as:

The URI contact endpoint, the protocol, hypervisor and VIM release, the ma-
ximum number of available cores, etc.

Every OS template name (the os_tpl) and its appdb.egi.eu image identifier are
compiled in a list of pairs and included as a new tag.

Every resource template (resource_tpl) is shown as a different queue, with its
own characterisation: number of cores, memory, etc.

5.3.2. The GWcloud Execution Driver (ED)
This driver enables the direct execution of a conventional grid job in a VM exclu-

sively instantiated for this purpose. The driver can utilise the user’s proxy credentials
because it runs in the user-space mode. This allows using resources from federated
clouds based on X.509 and VOMS. Additionally, the proxy is contextualised to be

5.3. The current approach on IaaS clouds 73

remotely used by jobs to access grid services. To preserve its integrity, the contex-
tualisation file is encrypted, restricting the access only to secure OCCI services. On
the other hand, the rOCCI-client [253] is used to perform the operations against the
providers. Therefore, when the Scheduler chooses a cloud provider to execute the job,
the driver performs the following steps:

1. It gets and stores the match, i.e. the description of the job and the URI of the
OCCI service.

2. It interprets the job description to obtain the inputs, outputs and executable
URIs, the os_tpl, and the resource_tpl.

3. Contextualisation: It makes a Cloud-Init file that includes:

a) creation of a new user with sudo privileges;
b) creation of a file with the temporal user proxy;
c) inclusion of the EUGridPMA1 repositories;
d) pre-installation of certificates from CAs and minimal grid tools (globus-

url-copy);
e) shell lines needed to download inputs, execute the job and store the outputs

(i.e. through GridFTP or the Globus GASS protocols).

4. It builds and performs an OCCI create operation that includes the contextualisa-
tion file, the resource_tpl, the os_tpl and the URI of the provider. Subsequently,
the job is considered in a PENDING state.

5. It waits for the VM starting to change the job state to ACTIVE. To make this
periodically, it performs OCCI describe operations. If this circumstance does
not happen during the timeout set in the job description, the job is considered
as FAILED.

6. When the VM is running, the driver waits for the VM becoming into inactive;
subsequently, the job is considered DONE. However, if other VM condition is
reached, it returns FAILED.

7. Finally, it deletes the VM.

Note that a DONE state just only implies that the job was ended. It is the submitter
(i.e. the user, some application or the pilot factory) who should interpret the exit
status code or the outputs from the job.

5.3.3. Scheduling VMs and jobs
The process described through this subsection finally enables users to submit jobs

to GridWay, which are automatically executed in the VMs scheduled for this purpose
in the cloud federations. The sequence followed by Scheduler, drivers and providers
is shown in Figure 5.2 and summarised as follows:

1. GWcloud ID periodically searches for provider updates at top-BDIIs. When it
gets knowledge of changes, it notifies the GridWay Core, which includes the
updated data into the Host Pool.

1https://www.eugridpma.org

74 Chapter 5. Scheduling Straightforward Executions in Clouds

2. The GridWay Scheduler notices that some cloud provider fulfils the requirements
of certain job and it is free. Then, the Scheduler assigns this job from the Job
Pool to that provider and lately, a SUBMIT operation is sent to the GWcloud
ED.

3. The GWcloud ED stores the matching, interprets the job description and creates
the Cloud-Init file. Subsequently, it notifies the GridWay Core (and consequently
the Scheduler) that the job is in a PENDING state using the CALLBACK ope-
ration. Then, it performs the create operation against the OCCI service of the
provider.

4. The VIM running on the provider checks the os_tpl availability and the client’s
permissions and quotas to reserve the virtual workspace described in resour-
ce_tpl. If everything is correct, it creates the VM. Through the booting process,
the Cloud-Init contextualisation is performed and the job starts.

5. The GWcloud ED periodically tests the VM state through a describe operation
to the OCCI interface of the provider. Thus, it immediately notifies the GridWay
Core about any change in the VM state using the CALLBACK operation. If the
VM crashes, the job becomes FAILED for the Scheduler.

6. When the job is ended, the VM automatically shuts down and it is detected
by the GWcloud ED. The driver considers the job as DONE, it notifies the
GridWay Core (and Scheduler) and it finally performs the delete operation to
remove the virtual workspace from the cloud provider.

5.4. Analysing data from the XMM-Newton space-
craft on the cloud

The objective of the experiments performed is to evaluate the suitability of the
GWcloud drivers following an early-binding approach. It is of interest to demonstrate
that the advantages of creating a personal virtualised environment are preserved. In
this sense, applications with excessive dependencies and installation size are difficult to
deploy in grid. These applications imply a constant effort by VO managers, who have
to continuously re-build the code and install them in every grid site. This problem can
be easily solved by distributing virtual images with the latest release of the software.
Note also that this will improve the robustness of the software as is always executed
and developed on the same environment. However, this approach is not feasible for
individual users that make use of their personal applications. Cloud providers usually
only offer clean VM templates of certain OS, and they force users to contextualise.
The GWcloud approach allows developers to avoid dealing with contextualisation,
while they focus their efforts on the configuration and execution of their applications.

For these reasons, the software used for processing the data from the XMM-Newton
satellite is selected. A description of XMM-Newton SAS is in Subsection B.3.2 of the
Appendix B, but this section put the focus on their computational requirements.
Every SAS release increments their installation size, being the current one (14.0.0) of
1.8 GB, and additionally requires external software such as HEAsoft2(6.17, 202 MB).

2http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/

5.4. Analysing data from the XMM-Newton spacecraft on the cloud 75

BDII GWcloud ID Scheduler GWcloud ED Provider A

LDAP query

A is updated A is free SUBMIT (job, endpoint)

CALLBACK(job, PENDING)
store
matching

OCCI:create(os_tpl,
resource_tpl,CloudInit.cfg)

Create
VM

Context.
(run job)

OCCI:describe

startedCALLBACK(job, ACTIVE)

halt VM

VM
shuts down

OCCI:describe

stoppedCALLBACK(job, DONE)

delete

deleted

remove matching

Figure 5.2: Sequence of activities to accomplish any job in a cloud federation with the
GWcloud drivers.

Developers of SAS only create compiled versions for few OS releases. On the other
hand, besides to the observation data files (ODF, ∼600 MB), SAS needs the current
calibration files (CCF, another ∼ 600 MB). Depending on the calculation selected the
execution time ranges from few seconds to 30 minutes and the outputs can take more
than 500 MB. The sizes provided correspond to the decompressed ones, i.e. when the
files are transferred are compressed and they are ∼ 30% smaller.

Two types of experiments were performed. The first one measures the impact of
three virtualisation approaches on the application performance, but on an contro-
lled environment, the analysis of which will be used as an introduction of the costs
associated to booting a VM for a single job. The second experiment evaluates the
GWcloud approach on an infrastructure in production, i.e. the creation and configu-
ration overheads jointly with the capacity of scheduling VMs across several providers
in a federation.

76 Chapter 5. Scheduling Straightforward Executions in Clouds

5.4.1. Feasibility of the virtualisation mechanisms
The simplest deployment is to previously store VM images at cloud providers. This

approach is followed by many research communities when have a wide implantation
or influence on the cloud federation. Thus, although the tests performed are based
on the middleware developed in Section 5.2, results are still valid to illustrate the
performance loss when:

virtualising resources;

virtual clusters are deployed in standalone cloud providers;

VMs are started or restored to accomplish only a job.

Obviously, the measurements do not show the cost of the contextualisation, post-
configuration, virtual cluster elasticity or the scheduling among providers.

5.4.1.1. Test bed description

The behaviour of the previous deployment strategy was analysed on a research
test bed based on the Globus Toolkit 4.0.1 and GridWay 4.7. The test bed consists
of two resources: a client host, and a PBS cluster for processing purposes. The main
characteristics of these machines are described in Table 5.1. These hosts are connected
by a Fast Ethernet campus network.

The client host runs an instance of the GridWay meta-scheduler and holds the
input dataset (∼22 MB) with the ODF and the CCF to be analysed. It also receives
the analysis output files (∼13 MB) with the observation events to perform post-
processing tasks. The SAS jobs are dispatched to the front-end cluster, with two
Xen-capable worker nodes (WNs). Note that no virtual machines are started in the
cluster front-end. Every test consists in performing 100 times the analysis of the same
observation from the XMM-Newton satellite. Also, caching of the observation data is
avoided.

Implementation details

In the following experiments, the OS images are already stored in the front-end
and are accessed in the cluster nodes via NFS. Although this configuration could
impose significant overheads, they have not been experienced because of the small
size of the cluster used in this work.

The disk images have been obtained from a typical installation with the Fedora
Core 4 operating system and the XMM-Newton SAS 6.5 software. In addition, the VM
includes a RSH server for executing the remote commands requested by the wrapper
program. Finally, this disk image is split in three different files to save storage space
and ease its deployment (see Table 5.2):

The root file system, with read-write permissions to modify the virtual machine
configuration files at boot time. Two copies of this disk image are available to
be simultaneously used by the two cluster worker-nodes.

The usr file system, with the standard Linux applications and libraries. This
disk image is read-only and shared by all the cluster nodes.

5.4. Analysing data from the XMM-Newton spacecraft on the cloud 77

Table 5.1: Summary of characteristics of the test bed resources in first experiment.

Host CPU Memory OS Service Configuration
client host PIV HT 3.2 GHz 512 MB Fedora Core 4 GT4, GridWay 4.7
front-end PIV HT 3.2 GHz 512 MB Debian Etch GT4, PBS, NIS, NFS, DHCP
WNs PIV HT 3.2 GHz 2 GB Debian Etch Xen3.0 testing

The opt file system, with the XMM-Newton SAS installation. This disk image
is also read-only and shared by all the cluster nodes.

Additionally, a local disk image has been created in each WN. The virtual machine
mounts this image in the scratch directory, where the SAS program stores temporal
files and data. So, the input/output operations performed by analysis software are
always made in the local hard disk.

The VMs are configured with 512MB of main memory and a single virtual CPU.
The network of VMs is configured with a DHCP server, which dynamically assigns
private IP addresses different from the ones belonging to the physical cluster.

Table 5.2: Disk layout of the virtual machines in first experiment.

Mount point Size Contents
/ 500 MB Fedora Core 4 base system
/usr 650 MB Standard Linux applications
/opt 600 MB SAS 6.5.0
/scratch 2 GB Ext3 disk image

5.4.1.2. Results

The overhead induced by the virtualisation following an early-binding approach is
studied in this subsection. Additionally, application level metrics have been introduced
to analyse the results from the user’s point of view.

Execution without virtualisation (Test1)

The first experiment submits the 100 grid jobs through the GridWay meta-scheduler
with the standard wrapper program, i.e. without virtualisation. In this way, an upper-
bound performance is obtained that will be used to study the virtualisation alterna-
tives below. The average execution time of a SAS job with this configuration is 148
seconds.

Persistent virtual machines (Test2)

When a VM per job is instantiated, these VMs cannot be persistent at cloud
providers. However, virtual clusters or virtual sites can be deployed in a provider to
be accessed following the early-binding approach. Therefore, this experiment measures
their associated overheads. Moreover, it shows the inherent cost of virtualisation with
the technology available as that of the date when the experiments were performed,
which was roughly a 20% increment in execution time, as can be seen in Figure 5.3.

78 Chapter 5. Scheduling Straightforward Executions in Clouds

 0

 50

 100

 150

 200

 250

 300

Test 4Test 3Test 2Test 1

T
im

e
 (

s
e
c
o
n
d
s
)

Boot
Restore VM state
Save VM state
Shutdown
Execution

Figure 5.3: Average operation times obtained in the wrapper phase: without virtualisation
(Test1), with persistent virtual machines (Test2), pausing/restoring (Test3) and stopping/s-
tarting the virtual machine (Test4).

Saving and restoring the virtual machine state (Test3)

Unlike Test2, for the modified wrapper presented in Subsection 5.2, restoring VMs
is similar to booting one VM per job. Moreover, suspend VMs are allowed by OCCI
specification, thus including this test in the study is valuable for the comparison with
the real experiments performed in following Subsection 5.4.2.

The state of a VM includes, in addition to disk images and Xen configuration
files, a representation of its main memory and the CPU registers of all its virtual
processors. When the context of a VM is saved, it can be later restored, keeping its
configuration and resuming the execution of its processes.

This feature, which is efficiently implemented by Xen, can be used to keep the
system services in the VM memory, the SAS program, and the related shared libraries.
This is done without keeping it active, so system resources are saved. In this case,
when the execution of the SAS job ends , the wrapper program saves the context of
the VM, which is restored before executing another SAS job in that worker-node.

As expected, the execution time is similar to that obtained in the previous ex-
periment (Test2), see Figure 5.3. The additional overhead is mainly due to saving
the state of the VM, and implies an overall increment of 77% in the execution time
compared to Test1.

Stopping and starting the virtual machines (Test4)

Stopping the VM after the execution of each SAS job (and starting a new one
before executing it) allows a straightforward deployment of the virtual workspaces.
However, it adds an additional overhead to the boot/shutdown process of the VMs.
In particular, the average execution time is roughly twice that obtained in Test1 (see
Figure 5.3).

The problem size of the astronomical observations used in the above experiments
has been deliberately chosen small to ease the measurement process. However, in
general it will be considerably larger, increasing the total execution time to several
hours. As the boot/shutdown and save/restore times are independent of the problem

5.4. Analysing data from the XMM-Newton spacecraft on the cloud 79

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 20 40 60 80 100

P
e
rf

o
rm

a
n
c
e
 (

ta
s
k
s
 p

e
r

s
e
c
o
n
d
)

Jobs

Test 1
Test 2
Test 3
Test 4

Figure 5.4: Throughput (jobs per second) without virtualisation (Test1), with persistent
virtual machines (Test2), saving/restoring (Test3) and stopping/starting the virtual machine
(Test4).

size, the additional overhead of Test4 and Test3 will be negligible. Therefore, the
overall virtualisation overhead will tend to that obtained in Test2.

It is interesting to analyse the system behaviour from the application point of view.
The performance obtained in the execution of a HTC application can be studied using
the system throughput P (n), defined as usual:

P (n) = n

T
(5.1)

where T is the execution time of n SAS jobs. Note that the execution time includes
both file transfer times (29 seconds on average) and Globus overhead.

Figure 5.4 shows the system throughput in the execution of the previous tests.
The overhead induced by the virtualisation can be clearly seen in the difference in
the asymptotic throughput. In this case, the overall system performance is reduced
13% (from 0.011 jobs/second in Test1 to 0.0095 jobs/second in Test2). Also, it is
interesting to note that in all cases the system needs the same number of jobs to
achieve half of the peak performance (see [110]).

5.4.2. Scheduling executions in cloud federations
The intention now is to evaluate the suitability of the GWcloud drivers for schedu-

ling calculations among cloud providers following the early-binding approach. Moreo-
ver, the objective also is to demonstrate its features: the discovering and monitoring
of providers, the scheduling based on several policies, and overall, the possibility of
using the virtual environment that the legacy application requires.

For this purpose the EGI FedCloud infrastructure was used to perform real calcu-
lations with SAS. As that of May 2015, the infrastructure is considered in production
and it counts on more than 24 providers, which offer more than 15,000 cores under
the fedcloud.egi.eu virtual organisation. Presumably, the overheads obtained in this
experiment should be similar to previous Test3 or Test4, plus the contextualisation
and configuration time. Additionally, cloud providers should be much reliable and

80 Chapter 5. Scheduling Straightforward Executions in Clouds

Table 5.3: FedCloud IaaS providers actually used in experiments. Sites that do not accom-
plish minimal requirements (image, OCCI 1.1, encrypted endpoint) are omitted. Additionally,
the technology used in every resource is also shown.

Provider resource_tpl# Max.
(OCCI endpoint) ID GB Hyp. Cores VIM
https://carach5.ics.muni.cz:11443 small 2 Xen 960 OpenNebula
https://cloud.cesga.es:3202 small 2 Xen 432 OpenNebula
https://controller.ceta-ciemat.es:8787 m1-small 2 KVM 224 OpenStack
https://egi-cloud.pd.infn.it:8787 m1-small 2 KVM 96 OpenStack
https://fc-one.i3m.upv.es:11443 small 1 KVM 16 OpenNebula
https://fsd-cloud.zam.kfa-juelich.de:8787 small 1 KVM 600 OpenStack
https://head.cloud.cyfronet.pl:8787 m1-small 2 KVM 1,600 OpenStack
https://occi.cloud.gwdg.de:3100 small 1 KVM 768 OpenNebula
https://occi.nebula.finki.ukim.mk:443 small 1 KVM 360 OpenNebula
https://nebula-server-01.ct.infn.it:9000 small 1 KVM 600 OpenNebula
https://nova2.ui.savba.sk:8787 m1-small 2 KVM 408 OpenStack
https://prisma-cloud.ba.infn.it:8787 small 1 KVM 600 OpenStack
https://sbgcloud.in2p3.fr:8787 small 1 KVM 447 OpenStack
https://stack-server-01.ct.infn.it:8787 m1-small 2 KVM 600 OpenStack

available than grid sites. However, these two considerations are not accurate, as was
demonstrated through the following experiment.

5.4.2.1. Test-bed and scheduling configuration

A virtual machine with one Xeon X5560 (2.8 GHz) core and 4 GB of RAM was
configured with GridWay 5.14 and GWcloud drivers to act as client host. The appro-
priation of resources was unrestricted per every provider and GridWay was allowed
managing 500 jobs at the same time. The banning of providers was enabled with the
default configuration (providers are banned for a maximum of one hour).

The latest SAS 14.0.0 release was selected to be distributed into cloud. As com-
mented at the beginning of this Section, SAS supports few OS, in this case only four
Linux releases, from which, the Ubuntu 14.04 is the only one available in FedCloud.
Consequently, the GWcloud ID driver was configured to dynamically filter the pro-
viders discovered in FedCloud. First, the Basic Ubuntu Server 14.04 LTS image was
selected from the appdb.egi.eu repository. Therefore, it only notifies the IaaS pro-
viders that publish at least one os_tpl with the corresponding image identifier3 as
description. Subsequently, the hardware templates (resource_tpl) are constrained to
the ones offering one core and a minimum of 1 GB of RAM. Note that the driver
automatically filters resources supporting the 1.1 release of OCCI offered through an
encrypted endpoint.

To demonstrate the compatibility with legacy applications, the DRMAA library
described in Section 4.3 was used to manage the calculation. It managed 500 jobs,
which contain a script that installs and configures the SAS and HEAsoft software
and then performs a default complete analysis (camera, spectrometers and optical
monitor) based on the ODF provided. Obviously, ODF files can be directly downloa-
ded from the XSA repository by the job, but to preserve the comparison with other
experiments performed through this thesis, all the files were transferred through com-
mon protocols from the client host, in this case using GASS. (As the experiment is an
example, only the observation number 0144090201 was used, but always is transferred

3https://appdb.egi.eu/store/vo/image/de355bfb-5781-5b0c-9ccd-9bd3d0d2be06

5.4. Analysing data from the XMM-Newton spacecraft on the cloud 81

Table 5.4: Direct job executions in VMs deployed in EGI FedCloud.

Provider Status Total OK F Err Hung
https://carach5.ics.muni.cz:11443 OK 807 311 496 496 0
https://cloud.cesga.es:3202 up/saturated 10 0 10 10 0
https://controller.ceta-ciemat.es:8787 OK 244 164 80 80 0
https://egi-cloud.pd.infn.it:8787 up/saturated 10 0 10 10 0
https://fc-one.i3m.upv.es:11443 OK 21 10 11 11 0
https://fsd-cloud.zam.kfa-juelich.de:8787 up/saturated 31 0 31 31 0
https://head.cloud.cyfronet.pl:8787 up/saturated 10 0 10 10 0
https://occi.cloud.gwdg.de:3100 up/saturated 10 0 10 10 0
https://occi.nebula.finki.ukim.mk:443 misconfigured 14 0 14 10 4
https://nebula-server-01.ct.infn.it:9000 up/saturated 12 0 12 12 0
https://nova2.ui.savba.sk:8787 misconfigured 14 0 14 13 1
https://prisma-cloud.ba.infn.it:8787 up/saturated 13 0 13 13 0
https://sbgcloud.in2p3.fr:8787 up/saturated 10 0 10 10 0
https://stack-server-01.ct.infn.it:8787 misconfigured 19 0 19 9 10
Total 1225 485 740 725 15

as if were different inputs). Thus, SAS and HEAsoft software are transferred as inputs
of the job as well as the ODF and CCF files. Their decompressed sizes were already
commented at the beginning of the section. The compressed size of the former ones
results in 1.3 GB to transfer. Outputs, ODF and CCF files are 339, 582 and 600 MB
respectively, which take up 596 MB compressed for the staging processes.

Therefore, the configuration and the calculations described are similar to the ones
performed in Section 4.5, allowing the comparison. However, performance thresholds
have not set for jobs and the suspension timeout was selected deliberately higher (15
minutes) to avoid discarding jobs due slow building and contextualisation of the VM.

5.4.2.2. Results

The number of theoretically suitable providers (14) are around half of the available
ones (24) in FedCloud. This is mainly due to the fact that the required os_tpl is not
deployed in every site.

Table 5.4 shows similar information than the Table 4.3, but adapted to the cloud
behaviour. The status of providers, the jobs successfully executed (OK) and the total
number of failed jobs (F) maintain their meaning. However, the source of failures is
different. ”Err” stands now for the impossibility of creating the VM, i.e. the quotas
or the maximum occupation for the provider have been reached. As in grid, the num-
ber of submitted jobs to every provider demonstrates a correct distribution in the
infrastructure, but their real availability is far from considering the infrastructure as
reliable. Thus, the only way to know if a provider can instantiate a VM is periodically
testing its creation thanks to the banning feature. On the other hand, ”Hung” indi-
cates that a VM seems started, but neither ends and nor returns outputs. Therefore
these jobs are lost, being the reason of achieving a number of completed jobs under
500.

Time spent by the complete test on cloud was 8 h 27 m 26 s. Taking into account
that one analysis expends 31 minutes on a node with a Xeon X5365 processor and with
SAS software previously configured, and that the number of successfully ended jobs
are 485, the distribution of the calculation among cloud resources is ∼ 29.6 times faster
than the sequential execution. This is a great result if it is considered that only three
providers have contributed to the calculation. In any case, the objective of evaluating

82 Chapter 5. Scheduling Straightforward Executions in Clouds

Figure 5.5: Accumulated overheads classified according to cloud providers that have been
significantly contributed to the calculation. Additionally, the impact of hung VMs is included.

the suitability of the GWcloud drivers for enabling GridWay with scheduling capacities
in cloud environments is achieved.

Other issue is the overheads generated. Besides of the ones generated by failed
operations, mainly due to ”Err”, the accumulated time spent by successfully OCCI
operations was 64 h 14 m 47 s, while the configuration of software was 99 h 39 m 19 s,
the time in staging was 42 h 20 m 55 s and the effective execution time was 167 h 12
m 47 s. Thus, the overhead for ended jobs constitutes the ∼ 55.2% of the calculation.
These measurements do not include the time wasted by hung VMs.

To allow the comparison of these results with the performance obtained in grids
following the early-binding approach, a picture similar to Figure 4.2 is shown, but
now the ”intrinsic overhead” is split into the ones resulted from OCCI operations,
the configuration of SAS and transfers. As it can be seen in Figure 5.5, the impact of
failures on the accumulated overhead is similar to grid as well as the other overheads
are comparable to the waiting times due to grid queues and middleware. It is clear
that the latter assessment only fits to this experiment and other executions relying
on scientific software with fewer requirements will achieve better results. However, it
also illustrates the poor performance of executing short jobs when the customisation
of the virtual workspace is performed, being the capacity of customisation one of the
main features achieved. Therefore, the methodology presented in this chapter is only
suitable for accomplishing long jobs.

5.5. Conclusions

In this chapter, a new methodology to straightforwardly schedule and deploy vir-
tual machines in current cloud federations has been presented. The approach supports
the direct execution of jobs, being compatible with legacy applications. Moreover, it

5.5. Conclusions 83

allows users to select and build customised virtual environments for these applica-
tions. The system is suitable for long jobs such as bag of tasks (BoTs), it is able to
set up ephemeral services on-demand and to provision pilot jobs as will be shown in
Chapters 8 and 11. These capacities have been demonstrated adapting it to a large
sized application with specific requirements and dependencies, obtaining convincing
results.

However, this solution presents several drawbacks like a limited use of the poten-
tial benefits offered by the virtualisation technology (e.g. server consolidation), the
uncontrollable overheads during the VM creation, and the excessive transfer of com-
mon software and/or input files. These issues make it unfeasible for short calculations
or its direct utilisation in pay-per-use clouds.

Moreover, last experiments have shown that the IS deployed in cloud lack of cha-
racterisation, as happened with grid. The only way to know the quotas established,
the overheads and the hardware really provisioned is continuously testing the creation
of VMs in every cloud provider. However, the estimation of the duration of jobs, the
overheads and the influence of failures could be performed by means of some techni-
ques such as those described in Subsection 2.3.3 or 2.4.4. Therefore, specific Workload
Scheduling algorithms should be developed to improve the behaviour of the solution
if the early-binding approach is followed. Those scheduling mechanisms should be
similar to the ones developed in self-schedulers for grid environments. This aspect is
tackled in the following Chapter 6.

Chapter 6

Deploying Self-scheduling
Techniques

6.1. Introduction
In this chapter, the objective is to evaluate the effectiveness of advanced Workload

Scheduling algorithms following the early-binding approach. Dynamic self-schedulers
are the most feasible tools for this purpose because they are able to adapt the cal-
culation according to the estimation of the infrastructure status, but following their
own criteria and disregarding the information from the IS when needed. In this sense,
the mouldability supported by simple Monte Carlo (MC) codes makes them more
suitable for the study than the parameter sweep ones.

Therefore, a self-scheduling framework devoted to improve the execution of MC
codes is deployed. The system was firstly presented in [227] and substantially improved
through years [109, 67]. Thus, the framework introduced in this chapter is a complete
re-implementation that enhances its stability and robustness, while providing new
capabilities and reducing the overloads. It now employs a set of advanced techniques
and dynamic information gathering in order to optimise the size and distribution of
jobs into heterogeneous and changing environments. In this sense, the framework sup-
ports an improved version of DyTSS (Dynamic Trapezoid Self-Scheduling) algorithm
to perform the adaptive scheduling of MC applications. DyTSS requires knowing the
theoretical performance of the infrastructure for computing a concrete calculation
before assigning a number of samples to be computed by a certain resource. This
performance is estimated following a mathematical model that is continuously fitted
with the benchmarking information retrieved from ending jobs.

The system is properly explained though the following section and its behaviour is
studied by executing several MC applications with diverse requirements. Furthermore,
the improvements achieved are compared to the regular Job Scheduling performed by
RBs.

6.2. Resilient executions of MC codes
To make use of the self-scheduling framework, users must fill only a template that

includes typical statements (main executable, input and output location...), but also

85

86 Chapter 6. Deploying Self-scheduling Techniques

the number of desired samples, and the minimum and maximum samples for every
submitted job. The system will use these data to perform a resilient execution of the
application on dynamic, unreliable and heterogeneous distributed resources.

To better understand the processes performed by the self-scheduler the following
subsections are organised following the three loop phases stated in Subsection 2.4.4,
this is: characterisation; Workload Scheduling algorithm; and, submission, monitoring
and accounting.

6.2.1. Characterisation
The framework supports by default two characterisation modes: it estimates the

available number, power and bandwidth of the slots offered by the infrastructure at
a certain time, as well as the computational needs of the application. The main diffe-
rence among other frameworks is how those parameters are estimated. In particular,
the system:

Benchmarks every provider by means of submitting a testing job that measures
the CPU performance in manageable units (whetstones [254]) as well as the
bandwidth.

Then, averages the aforementioned benchmarks with every real execution of the
real application, taking also into account the time needed for staging its input
and output files.

Estimates also the slot availability and reliability of every site averaging the
queue times in remote queues, the number of failed attempts (suspension ti-
meouts) and the number of failed jobs.

It is noteworthy to mention that not only the number of slots is variable, even
the hardware provided by each resource is because it can be composed by different
kinds of nodes. Therefore, the characterisation is achieved relying on the following
innovative set of mechanisms that are focused on MC calculations.

Application profiling and resource benchmarking

The operation with a new MC code starts analysing its computational needs. To
do so, it is executed on a set of known grid sites progressively growing the number of
samples, so its requirements in terms of CPU consumption and data movement can be
profiled. The obtained parameters are the constant effort Ceff (the effort necessary to
execute the constant part of the application, like compiling code, input pre-processing,
output post-processing, etc.), and sample effort Seff (the effort necessary to simulate
a single sample). These efforts are measured in the performance units provided by
any general-purpose CPU benchmark tool to increase the suitability of the solution
for a wide range of computational requirements. For this purpose, Whetstone [254]
was selected.

Obviously, sites composing the distributed grid infrastructure are benchmarked
too with the previous procedure. However, the data related to a provider are its
performance (P) and its bandwidth (BW). To obtain the information, the benchmark
tool is executed and a big file is copied. Additionally, an analysis of the job log allows
obtaining the waiting time at the remote queues (Q). This analysis is performed when

6.2. Resilient executions of MC codes 87

a new site is detected, or even when a known one seems that it has been modified
(e.g., it is detected with different CPU or memory capacities).

Simplifying the Equation 2.1, these parameters are used to estimate the turna-
round time (T) of executing an arbitrary number of simulations (s) of a given ap-
plication on any remote resource (rj ∈ R), which calculation requires and generates
certain data (D) to transfer:

T (rj , s) = Tsched(rj) + Txfer(D) + Texec(s, rj)

' Qrj
+ D

BWrj

+ Ceff + s · Seff
Prj

(6.1)

However, this model is unreliable if benchmarking parameters are not updated
through the time. Thus, every successful execution of a MC task is analysed to re-
calculate them, so knowledge about the infrastructure is enhanced in real time with
minimum computational effort. The information about past executions is periodically
compiled in the submission and accounting phase, so their behaviour can be estimated
in any time.

Therefore, as the accurateness of the model is preserved through the changes in the
availability of resources, it can be used by the specialised Workload Scheduling algo-
rithm to determine the global performance of the infrastructure and to consequently
adapt the number of samples (s) to submit and where do it.

Slot availability and reliability

The determination of the exact slot availability and reliability of every provider
is obtained by their progressive overload with real executions, employing the simple
yet effective mechanism based on maintaining a 20% of queued jobs over the running
ones on every site. This procedure was performed in the submission and accounting
phase and it can be considered as a replication mechanism. However, the objective
is to improve the characterisation of providers, unlike other replication approaches
which are using this technique as the only way to reduce makespan. For this reason,
replication is limited with diverse techniques as will be explained in the corresponding
Section 6.2.3.

Therefore, the interest now is to describe the advantages of this mechanism to
improve the characterisation of providers. For this purpose the process has to be
somewhat introduced. First, a single job is submitted, when it starts running, this
20% indicates to submit another one. This overload continues until the number of
running jobs stops growing, indicating the real number of available resources on that
site. Thus, if this number grows or is reduced, the framework will detect this change
during the accounting phase, which modifies the subsequent characterisation and then
is used by the scheduling algorithm. Therefore, the framework is not taking into
account the available slots shown at the IS due to that number is not the real volume
available for a given user belonging to a certain VO.

Moreover, profiling is also retrieved in every job execution and compared with
the stored ones. Therefore, the approach is to benchmark the performance of the
provider as well as the reliability of the infrastructure. Obviously, samples calculated
are subtracted from remaining ones, having influence on the next sample distribution
performed by the scheduling algorithm.

88 Chapter 6. Deploying Self-scheduling Techniques

Algorithm 1: DyTSS: Dynamic Trapezoid Self-Scheduling.
Require: R ≡ [rmax...rmin] (list of estimated available resources)
Require: L (minimum sample-chunk)
Require: M (maximum sample-chunk)
Require: S (number of required samples)
task_list← {∅}
for rj ∈ R do

task_list← task_list ∪ {(rj , L)}
free_res_list← R
while S > 0 do

for i = 1→ 100 do
old_task_list← task_list
n1/2 ← linear_fit(old_task_list)
F ← S/4 · n1/2
task_list← {∅}
for rj ∈ R do

frel ← T (rmax, L)/T (rj , L)
s← minimum(M,F · frel + L)
task_list← task_list+ {(rj , s)}

if task_list ≡ old_task_list then break;
for rj ∈ free_res_list do

submit((rj , sj) ∈ task_list)
free_res_list← {∅}
for end(sj), (rj , sj) ∈ task_list do

if OK(sj) then
task_list← task_list− {(rj , sj)}
S ← S − {sj}
free_res_list← free_res_list ∪ {rj}

for new(r) do
if T (rmin) > T (r) then

R← R ∪ {r}
free_res_list← free_res_list ∪ {r}

6.2.2. Adaptive sample-based algorithm

DyTSS [227] is a kind of loop-based algorithm [20] that differentiates from other
approaches such as TSS [255] or GTSS [108] in its dynamic nature and in its focus
on managing MC codes. The enhanced version of DyTSS used in this thesis is descri-
bed in Figure 1. It shows the pseudo-code resultant of observing more properly the
mathematical basis stated in [227] and purging the functions without relation to the
algorithm itself. Moreover, the main advance is the inclusion of L andM limits as ex-
ternal configuration parameters. With them, users can adjust better its behaviour on
certain infrastructures, as well as configure the overload of the replication performed
during the submission and accounting phase, being of much importance the value set
for L, as will be explained in Section 6.3.

Dynamic algorithms usually need to continuously calculate the suitable execution
time in every provider to fit the workload partitioning to the estimated status of the
infrastructure. For this reason it is usually necessary to benchmark the infrastructure

6.2. Resilient executions of MC codes 89

performance and to profile the application. Some general-purpose algorithms [216],
and even ones devoted to MC [207], are based on calculating the minimal real exe-
cution time in every resource to reduce the overhead percentage of every job to a
certain threshold. All of them can be benefited from the accurate estimation proce-
dures mentioned through last subsection.

With DyTSS the approach is completely different. The minimum (L) and the
maximum chunk-size (M) are preset by the user. These values can be previously
calculated taking into account the mentioned overheads, but the algorithm will ne-
ver modify those values. The approach of DyTSS is to reduce overheads adjusting
first executions as much as possible to M , but straighten turnarounds. Then, it pro-
gressively decreases the chunk size to L, overcoming the influence of failed jobs in
makespan.

The algorithm calculates the number of samples (sj) to submit to every available
resource (rj) belonging to a characterised infrastructure (R). For this purpose, the
current power of the infrastructure is estimated by linear regression of the ordered
performances from (rj , sj) pairs. The ordinate in the origin (n1/2) of the obtained
straight-line corresponds to the half-performance of the infrastructure for this dis-
tribution of tasks [110]. This value determines the variable component (F) of the
maximum chunk size (F + L <= M) for the current loop stage. As commented, L
and M are constant, and consequently the number of samples is always within the
interval (L · · ·M), but the turnaround will be different for every match (rj , sj). Thus,
the procedure is repeated until no improvement is obtained for the sample distribu-
tion.

Note that (F) should decrease with the number of samples (S) as the simulation is
being accomplished (end(sj)) if not a new more powerful (new(r)) site is discovered.
This assures cutting final execution tail due to remaining and standalone jobs.

6.2.3. Submission, monitoring and accounting
To perform the low level steps of the Job Scheduling, i.e. job management and

resource discovering, the GridWay [10] meta-scheduler has been employed. This is
principally motivated by its better performance [135], its failure detection mechanisms
and its accessible monitoring and logging. These features are fundamental to build
reactive algorithms such as DyTSS. For doing this, the framework relies on GridWay
to properly manage jobs as well as to obtain the contact list of the sites belonging to
the infrastructure, but disregarding its other functionalities such as the site statistics,
automatic banning failing sites or even any other information shown for the sites
(CPU power, queues, etc.), which is compiled from the IS.

Therefore, GridWay only acts as an efficient dispatcher. The framework delegates
the computation to GridWay, building jobs through the DRMAA API. (Note that
the framework uses DRMAA, but it does not support DRMAA applications. MC
codes have to be adapted to the specific template of the framework). Additionally the
system uses CLI to monitor the jobs.

Replication

The main objective of this technique is the properly characterisation of providers,
as was commented in Subsection 6.2.1. Collaterally, there is a reduction of the execu-
tion makespan. By having some queued jobs at particular site, chances to start their

90 Chapter 6. Deploying Self-scheduling Techniques

execution when there is a free slot increase. However, the intention is not disrupt the
progressive Workload Division and matchmaking performed by DyTSS. Then, only L
samples are calculated by replicated jobs.

With this approach, an optimal number of jobs will be created for every site,
while keeping the number of replicas low: if the number of running jobs is reduced,
the framework detects it and will consequently reduce the number of waiting jobs,
cancelling those replicas still waiting so that no CPU time is lost. If the number of
running jobs increases, the framework will create more jobs until reaching the 20%
of excess again.

It is important to mention that the difference between the proposed overload and
pure replication algorithms is subtle, but highly relevant. In both approaches, the
number of jobs submitted is greater than what is needed, but their behaviour is
different. In the case of replication, the spare jobs running are cancelled, thus losing
the computational effort put into their execution. However, in the case of DyTSS
(given that in MC codes all results are equally valid) all the results are employed in
the simulation. The only non-useful jobs are those being executed when the desired
number of samples is reached. Moreover, as the execution time of these jobs is limited
by L, CPU wasted is minimal.

Thanks to configuring L, users can obtain better performance with a controlled
replication, while DyTSS takes advantage of the effective characterisation without
abusing of the resource usage.

Accounting

Every turnaround is compiled measuring the time needed for staging input and
output files. Additionally, the average queue times in remote queues, the number of
failed attempts (suspension timeouts) and the number of failed jobs are compiled.
Although the GridWay accounting performs similar procedures, it is not suitable for
the framework operation due to it compiles the information in bulk. Additionally,
application profiling and benchmarks have to be included. Moreover, job logs are
processed to obtain more information.

For this purpose a relational database is created to store all the processed infor-
mation regarding the remote execution of jobs. This is crucial to ensure persistence
of characterisation among executions, which is necessary to build adaptive algorithms
based on the behaviour and characteristics of the infrastructure along the time, over-
coming slowdowns and hang ups.

6.3. Experimental evaluation
To measure the suitability of the self-scheduling approach presented in this chap-

ter, a large comparison was performed: six applications from different areas of know-
ledge and computational needs were used for this task, namely BEAMnrc, FAFNER2,
FLUKA, Nagano, Grif and FastDEP. Their complete description are available th-
rough the Appendix B. The execution of these applications were performed on the
self-scheduling framework, an out-of-the-box installation of GridWay, and a remote
WMS provided by the infrastructure.

The intention is to evaluate the performance gain of self-schedulers over traditional
approaches relying on RBs. The inclusion of WMS in this comparative is motivated
by its extensive usage, becoming the de facto standard in many experiments based on

6.3. Experimental evaluation 91

Table 6.1: Scalability of the self-scheduling approach: walltime factor when problem size is
increased. N0 represents the size of the first experiment.

Code N0 Walltime N0 Walltimea·N0 / WalltimeN0
(samples) (seconds) a = 25 a = 50 a = 75 a = 100

BEAMnrc 1 · 106 1070 1.52 3.24 2.79 5.80
FAFNER2 5 · 103 1235 4.83 6.66 5.73 11.07
FLUKA(∗) 1 · 105 3515 4.89 8.45 15.13 16.69
Nagano 2 · 105 3066 7.56 10.00 21.45 49.88
Grif 2 · 105 6984 15.03 26.84 17.46 30.75

FastDEP 3 · 102 9564 6.42 17.70 48.06 76.46
(∗) 1 sample = 100 primary particles.

MC calculations. GridWay is included not only to be compared with WMS but also to
serve as a reference to improvements achieved: as the self-scheduling framework runs
on top of GridWay, this comparison allows determining how much of the performance
gain is due to GridWay and how much to self-scheduling. Then, this comparison is
not only useful for determining which of these approaches is more suitable for MC
codes, this allows knowing how much self-scheduling overcomes early-binding issues.

6.3.1. Test bed and simulations
The comparison between the self-scheduling and RB approaches was accomplished

on EGI. This is so because performing the calculations on a production infrastructure
and not on a controlled environment allows demonstrating how the framework is able
to overcome the issues that usually happen and are inherent to any grid execution [1].
This differs from the vast majority of studies in the area, where controlled, idealised
or even virtual environments are employed.

Three machines configured with EMI-UI 2.0.2 middleware were set up. The first
one was used for submitting jobs to a remote WMS endpoint; the latter two were
configured with GridWay 5.14; and one of them is used by the self-scheduler. The
WMS endpoint was chosen randomly at the beginning of every calculation among the
available ones in the EGI infrastructure. No limits on the number of running jobs or
any other parameter were set on WMS, using the default resources as provided by
the remote service.

However, GridWay was configured with a maximum number of 50 running jobs
and a scheduling interval of 25 seconds. This number of jobs allows testing the fea-
sibility of the proposed approaches. As the self-scheduler runs on top of a GridWay
installation, it has been configured with these same limits to avoid any distortion. It
is important to bear in mind that, with this particular configuration, the number of
resources employed at a given moment is potentially much higher with WMS than
with both GridWay-based alternatives. Therefore, any modification of those limits
would actually benefit the presented work compared with WMS.

On the other hand, applications had to be adapted to the three systems compa-
red. For this purpose six scripts that make use of the WMS remote CLI have been
developed for every application. The adaptation to GridWay was straightforwardly
performed with the DRMAA producer-consumer library described in Section 4.3. Fi-
nally, templates required by the self-scheduler have been created.

The six applications have been executed with a set of 5 input sizes, so 30 different
problems were carried out. For every code, an initial size (N0) was selected that
progressively grows (a ·N0 , a ∈ [1, 25, 50, 75, 100]). As was previously commented,

92 Chapter 6. Deploying Self-scheduling Techniques

Figure 6.1: Speedup obtained with respect to GridWay (top) and WMS (bottom). Please
note that the latter is in logarithmic scale.

in the characterisation phase the applications are profiled to be able to accurately
predict their computational demands. As this information is previously known due to
other executions, it has been also used to set the L parameter to the minimum number
of samples that constraints the overhead of Ceff to 30%, while M was unlimited.
Whole data are summarised in the first columns of Table 6.4.

The division of the simulations into jobs has been done in the same way for WMS
and GridWay: 50 jobs to execute N0, and 125, 250, 375 and 500 jobs for 25 · N0 to
100·N0. The number of samples to simulate in every job has been adjusted accordingly.

To avoid any distortion due to the infrastructure status or workload, the compa-
rison was performed on a competitive way: every day at the same time, same problem
on each platform (self-scheduler, WMS, and GridWay) was calculated.

6.3.2. Results

Improved execution time

Table 6.1 shows the walltime of the experiments performed with the self-scheduling
framework. Its scalability is demonstrated because the execution time gradually grows
as the size of the problem (a) is greatly increased. Thus it indicates an improved
distribution of jobs and number of samples in the grid. It is important to remark

6.3. Experimental evaluation 93

that, while the size of the problems varies in two orders of magnitude, their precise
sizes have been chosen so they make sense from a physical and a computational point
of view. For every application, at least the largest case (a = 100) corresponds to a
real experiment.

Therefore, the makespan depends on the size of the problem to simulate, although
the relationship is not directly proportional, and varies from every experiment. This
is the reason for including the walltime factor in Table 6.1. In the smallest cases
for BEAMnrc, FAFNER2 and FLUKA, the inferior limit L affects their execution
time, as the number of samples submitted is greater than the real needed ones, so
their execution takes longer. However, as the simulation size grows, this overload is
reduced and the execution times should be closer to the expected ones. This aspect
will be deeply explained later. On the other hand, an increment on the number of
samples to simulate leads to a smaller increase on the total walltime because more
jobs are distributed, and consequently, more middleware overheads related to job
submission are overlapped.

The analysis of the proposed solutions has been completed with the comparison
among GridWay, WMS and the self-scheduling approach. Fig. 6.1 and Table 6.2 com-
piles the results on two different ways. Fig. 6.1 shows the speedup obtained with
self-scheduling, while Table 6.2 allows the comparison of walltimes. In general, the
execution time with WMS is much larger than the others. The main WMS drawback
is not its throughput on stable environments, but its lack of adaptability to dynamic
ones: due to an unreliable error control, it is unable to detect hung or lost jobs in many
cases. This is of importance because just a small group of jobs not being correctly
executed will need to be resubmitted and will dramatically increase makespan.

On the other hand, the behaviour of WMS improves as the problem size increases.
This is due to the greater number of resources allowed, which is limited to 50 in the
case of the other tests, but unlimited in WMS as has been stated in Subsection 6.3.1.
In the best scenario, this difference only leads to a superior performance over the
self-scheduling approach of about 20%, as it can be seen in four executions of Grif
and one of FastDEP. This situation is however unlikely to happen, as the failure rate
is about 9%, and the submitted experiments are composed by 50 to 500 jobs.

For certain experiments, the employment of the self-scheduling approach instead
of a standalone GridWay does not imply a significant improvement. As commented,
when executing small experiments it simulates too many samples due to the inferior
limit L, and consequently makespan is negatively affected. On the other side, if the
number of jobs to execute is smaller or equal to the maximum limit established on
GridWay, all of them should immediately start their execution. If they are all assig-
ned to free and fast resources, the result is a fast and reliable execution. Of course,
when the number of jobs to execute or their chunk-size is increased, the advanced
self-scheduling techniques impressively reduce the makespan. Therefore, in large exe-
cutions the overheads (queue time, data transfer and constant time of the application)
are minimised by the self-scheduling framework and represent only a small fraction
of the total wasted time in the experiments only performed by GridWay.

In conclusion, the proposed solution reduces the execution time to a third on
average with respect to GridWay, being more than 30 times smaller on the best case
with respect to WMS. On the other hand, self-scheduling offers important advantages
besides its efficiency: an automatic and unattended Workload Division, Job Building,
and a fully functional fault tolerant mechanism. However, the main achievement for
the user’s point of view is the speedup obtained in real simulation cases, for this

94
C

hapter
6.D

eploying
Self-scheduling

Techniques

Table 6.2: Time saved by self-scheduling with respect to GridWay and WMS. (Speedup is shown in Fig 6.1).

Code walltimeGridW ay − walltimeself−scheduling

N0 25 ·N0 50 ·N0 75 ·N0 100 ·N0
BEAMnrc - 00 h 11 m 20 s + 00 h 09 m 10 s + 01 h 28 m 43 s + 00 h 17 m 05 s + 01 h 03 m 54 s
FAFNER2 - 00 h 07 m 49 s + 01 h 29 m 36 s + 01 h 06 m 34 s + 02 h 09 m 21 s + 06 h 11 m 59 s
FLUKA + 00 h 55 m 01 s + 01 h 37 m 21 s + 34 h 50 m 35 s + 28 h 12 m 57 s + 31 h 14 m 53 s
Nagano + 00 h 48 m 32 s + 15 h 38 m 45 s + 25 h 51 m 17 s + 44 h 34 m 28 s +117 h 14 m 53 s
Grif + 00 h 12 m 06 s - 11 h 15 m 21 s - 02 h 27 m 19 s + 37 h 13 m 58 s + 67 h 25 m 02 s

FastDEP + 03 h 40 m 12 s + 30 h 51 m 18 s + 42 h 50 m 24 s + 01 h 16 m 36 s + 65 h 00 m 04 s

Code walltimeW MS − walltimeself−scheduling

N0 25 ·N0 50 ·N0 75 ·N0 100 ·N0
BEAMnrc + 07 h 34 m 47 s + 13 h 11 m 24 s + 05 h 33 m 44 s + 14 h 02 m 49 s + 14 h 10 m 37 s
FAFNER2 + 09 h 43 m 10 s + 24 h 24 m 27 s + 01 h 56 m 54 s + 33 h 19 m 36 s + 08 h 47 m 43 s
FLUKA + 05 h 18 m 47 s + 08 h 06 m 34 s + 15 h 27 m 01 s + 13 h 55 m 57 s + 06 h 13 m 22 s
Nagano + 01 h 48 m 51 s + 11 h 54 m 41 s + 15 h 45 m 03 s +141 h 45 m 42 s +136 h 21 m 52 s
Grif + 00 h 55 m 50 s - 10 h 12 m 29 s - 31 h 27 m 10 s - 13 h 40 m 47 s - 03 h 06 m 14 s

FastDEP + 08 h 57 m 21 s + 09 h 39 m 31s - 21 h 02 m 31 s +150 h 38 m 58 s + 42 h 39 m 25 s

6.3. Experimental evaluation 95

Table 6.3: Speedups obtained in real calculation cases (a = 100).

Code Serial execution time Speedups in 100 ·N0
Xeon E5620 2.4GHz
(Launch date: 2012) self-scheduling GridWay WMS

BEAMnrc 002 d 00 h 12 m 37 s 27.97 17.29 3.03
FAFNER2 012 d 00 h 43 m 21 s 76.03 28.88 22.93
FLUKA 021 d 03 h 19 m 56 s 31.13 10.67 22.52
Nagano 070 d 12 h 53 m 04 s 39.85 10.60 9.47
Grif 196 d 18 h 13 m 20 s 79.16 37.16 83.50

FastDEP 023 d 11 h 24 m 51 s 2.77 2.10 2.29

purpose the Table 6.3 is shown. As the number of usable slots is limited to 50 for
the GridWay-based approaches, higher values indicate that infrastructure is offering
better resources than the hardware model.

Reliability

Regarding WMS reliability, performed experiments show a job failure rate of 1.5%.
Besides that, an additional 2% was considered as done but returned an exit status
different from zero (so had to be resubmitted), and nearly a 5% of the jobs were
cancelled by the user after staying for more than 24 hours on a submitted state but
not starting their execution. All together, they represent approximately a 9% of fai-
led jobs. This value is consistent with past experiences [227] from different research
teams [136]. It is important to regard that this failure rate is not only important by
itself, but for the influence on makespan: if no replication mechanism or other con-
trol technique is employed, the failure or slowdown of a single job can have a direct
influence on the overall walltime.

In the case of GridWay no jobs were incorrectly marked as ended, and all the failed
ones were correctly resubmitted. However, GridWay itself hung five times during the
execution of this set of applications, and only in two of them the job status could be
recovered after restarting it. It did not also detect the missed work of a given remote
site that was accepting as many jobs as possible but did not execute them, so it had
to be manually banned. Additionally, about 0.5% of the jobs remained in a wrong
active state forever. In conclusion, while its performance regarding on fault tolerance
is much better than WMS one, it does not provide the complete security that all
the desired simulations will be seamlessly carried out, no matter the status of the
infrastructure or the problems of a particular site.

During the experiments, the self-scheduling framework did not have to face any
GridWay instability. However, due to its site profiling and analysis mechanism, no
site had to be manually banned. Of course, some of the jobs were lost or assigned
to unreliable resources, but the resilient design of the framework allowed overcoming
these issues, by redistributing the workload and finally achieving the desired number
of simulations on a completely unattended way.

Replication overload

In this work neither GridWay nor WMS impose an overload on the infrastructure
in terms of additional samples or jobs. However, both approaches have a non-negligible
failure rate, which was explained in previous subsections.

On the other hand, the self-scheduler framework described in this chapter uses

96 Chapter 6. Deploying Self-scheduling Techniques

Table 6.4: Replication overload performed by the self-scheduling framework in terms of
non-necessary submitted samples. It includes samples in either executed, waiting or cancelled
jobs. Selected L is included to understand their influence on replication.

Code profiling (whetstones) submitted / required simulations
Ceff Seff L N0 25 ·N0 50 ·N0 75 ·N0 100 ·N0

BEAMnrc 13034.10 0.89 44379 13622.68 248.82 125.10 105.37 199.65
FAFNER2 30370.02 1066.01 86 642.54 3795.77 38.25 21.84 43.21
FLUKA 975.60 93.66(∗) 32 59.42 6.21 6.15 5.67 7.98
Nagano 375.07 156.26 7 33.30 110.93 113.01 32.87 45.65
Grif 2779.38 435.88 19 86.81 12.18 4.41 13.67 0.3

FastDEP 81018.90 34670.25 7 69.33 9.31 4.64 2.86 1.13
(∗) 1 sample = 100 primary particles.

replication, not really to directly improve makespan, but to characterise the providers.
Note that, DyTSS algorithm is based on submitting a manageable number of samples
and replication cannot exceed certain limit. To measure the overload introduced,
Table 6.4 compiles the average overload generated in every experiment as a proportion
of the needed samples to be calculated.

In general, smaller experiments (with lower a) generate a bigger overload rates.
This is due again to the nature of the scheduling algorithm, which imposes the lower
limit L on the task size to reduce the grid-related overheads and the influence of Ceff
in the total execution time. As there are few samples, they are quickly distributed
among resources and many jobs usually compute a number of samples close to L. As
the replication mechanism also uses the limit L, it proportionally increases the number
of samples submitted in smaller experiments. In contrast, when the experiment size
is large, this low threshold is not reached for the regular jobs built by DyTSS until
the calculation ends. Consequently, the overload rate is progressively reduced as the
experiment size grows.

It is important to notice that not all of those jobs need to start their execution
as the framework cancels them once it detects that is exceeding the established 20%
rate or it receives the notification of completion of the desired number of partial
simulations. This way the wasted computation on the infrastructure is kept as reduced
as possible while profiting from the fast execution time and robustness provided by
DyTSS. Therefore, although the overload on the smaller cases is quite large, it is
measured as a percentage of the submitted samples, not of the started jobs. This
means that the CPU wasted is actually much reduced. For large experiments (i.e. the
real case ones, 100 · N0) the wasted computation remains under 10%, what can be
considered as an acceptable rate. This rate was measured compiling all the samples
included into running jobs that were cancelled due to their uselessness at the end of
calculation.

In any case, the lower limit L can be adjusted to balance the reduction of makespan
and the overload generated in the infrastructure.

6.4. Conclusions
The main achievement of this chapter is the development of a new self-scheduling

framework that enables users to perform resilient executions of their MC codes. Ho-
wever, the main objective was the evaluation of self-scheduling techniques for suppor-
ting Workload Scheduling algorithms while solving the early-binding issues. In this

6.4. Conclusions 97

sense, the framework deploys diverse mechanisms to characterise the infrastructure,
implements an adaptive algorithm to fit the Workload Division to the status of every
provider and properly controls the executions submitted. The result is a robust and
fault tolerant system under any condition that overcomes problems both on local and
remote resources. These facts are demonstrated through a comparative study against
the regular performance achieved by RBs. The conclusions are summarised as follows:

Self-scheduling techniques are able to improve the performance through the time
using early-binding approaches, but not are suitable for calculations shorter than
few hours.

Improvements over other approaches are demonstrated, but they are variable.
Although self-scheduling deal with the dynamism of the infrastructure, it is
equally subject to the changes, being the exact performance unpredictable in
any way.

Self-scheduling frameworks are usually incompatible with legacy applications
based on standardised APIs, but they also usually support skeleton facilities (see
Subsection 2.3.6) to ease the adaption and to release developers to implement
the coordination of jobs.

First two items are due to a deficient characterisation. Although the self-scheduling
framework strongly improves this aspect, the complete forecast is not achievable. Des-
pite the Workload Scheduling algorithm is designed to deal with this issue, overheads
related to queues continue having a high weight in the computation. However, these
aspects can lack importance if pilot jobs are used. Queues are overcome and the com-
plete monitoring of provisioned resources should be achieved by pilots. Thus, with
a pilot framework that allows the customisation of characterisation and supports
stacking legacy third-party tools, the self-scheduler deployed in this chapter should
properly improve the execution of MC codes. This goal is precisely one of the main
objectives of this thesis and it is demonstrated in Chapter 11.

Part II

MULTILEVEL
SCHEDULING WITH

PILOT JOBS

Chapter 7

The GWpilot Framework

7.1. Introduction

As it has been demonstrated in Chapters 4 and 5, makespan of some calculations
can be strongly reduced by following early-binding approaches on grids and clouds.
The use of standardised APIs and RBs reduce the complexity of dealing with a hu-
ge volume of resources. The methodology for this purpose has been clearly stated.
Additionally, a new technology has been deployed to enable resource brokering for
distributed applications in clouds. Nevertheless, these brokering approaches only can
achieve a limited performance due to the lack of characterisation of the infrastructu-
res. High (and unexpected) overheads and the unknown availability of resources make
early-binding only suitable for distributing long jobs. On the other hand, unpredic-
table failures increase the final makespan. To improve this behaviour, more advanced
scheduling has to be performed in other aspects different to Job Scheduling. In this
sense, self-schedulers as the one deployed in Chapter 6 implement their own charac-
terisation to perform the Workload Division and Job Building. This approach can
improve the reliability of calculations, but it is not enough. Characterisation conti-
nue being insufficient to fit the calculation to the real availability of resources and
overheads are too high to assure an efficient profiting of them.

Therefore, it is necessary to make use of a late-binding approach to overcome these
issues. However, this project cannot be undertaken with the current tools available
because they do not allow customising their scheduling, or they lack of adaptability or
compatibility, as it has been clarified through Section 2.5. To really support the legacy
technologies and to enable users to manage the Multilevel Scheduling layers, a new
framework has to be designed taking into account the objectives listed in Chapter 3.

GWpilot is designed to accomplish the requirements enumerated in Section 3.2
and to profit from the numerous GridWay advantages [256], while maintaining a
simple design and implementing new functionalities that result in measurable and
valuable improvements in several performance aspects of computing scientific appli-
cations. GWpilot acts as a GS-embedded pilot system, where pilots are included in
the GridWay Host Pool as any other resource. Thus, user tasks will be included in
the GridWay Job Pool and subsequently scheduled among pilots as if they were com-
mon grid jobs. Accordingly, the GridWay Scheduler module is used to perform the
task-pilot and pilot-resource matchmaking. Therefore, the user fair-share and priori-
tisation capabilities can be incorporated into the pilot system if a careful design is

101

102 Chapter 7. The GWpilot Framework

Figure 7.1: GWpilot components in GridWay architecture.

constructed. Similarly, the advanced scheduling capabilities of GridWay are improved
by the proper characterisation and the online monitoring of resources and tasks that
pilots provide, particularly the task migration, the checkpointing functionality and
the matchmaking decisions based on statistical data obtained from previous execu-
tions, per user and per resource. Additionally, the incorporation of pilots makes new
features possible, such as reservation, data-allocation awareness and caching. The user
can easily implement specific scheduling policies if the necessary tools for declaring
customised characteristics of tasks and of the pilot environments are available. In con-
sequence, the new framework will allow users, developers and administrators to build
every scheduling level (Application, Task Scheduling and Provisioning) accordingly
to their specific needs in a unified and standardised way.

The main design and implementation of GWpilot that make all these features
possible are described in this chapter. Additionally a functional and experimental
study is carried out to compare the design and performance of the new framework with
other two pilot systems, DIANE and DIRAC. On the other hand, the adaptability of
legacy applications and the improved management of scheduling are deeply explained
through Chapters 8 to 11.

7.2. Architecture
As it has been previously commented, GWpilot acts as a GS-embedded pilot sys-

tem, where pilots are included in the GridWay Host Pool as any other resource. The
GridWay Job Pool conceptually corresponds to the UTQ in the framework. Because
of it, any user or developer can use the available interfaces from GridWay to manage
tasks. As mentioned above, another benefit is to make use of GridWay Scheduler to

7.2. Architecture 103

incorporate its algorithms to Workload Scheduling. The inclusion of every pilot in
the GridWay Host Pool is the mechanism that allows this feature, which would have
not been possible if the friendly interfaces had not been available or the language
to describe resources had been difficult. In this sense, every resource (either pilot or
the remote site) is described by means of unstructured label-value pairs. Users can
easily inspect these values through CLI and set constraints into their descriptions
of tasks. Subsequently, Scheduler calculates the best matches between the elements
of two pools. In addition, the selection of resources for every pilot is visible for the
users, who can influence on Provisioning. The advantages of this unified vision of the
Workload Scheduling and Provisioning will be described later.

To preserve the performance and deploy-ability levels of GridWay, GWpilot must
maintain its modular architecture [10]. Thus, the new elements of the system must
be implemented like any other pluggable driver in the framework. For this reason,
the system contains two main components in addition to the pilots: the GWpilot
Server (GW PiS), which is implemented as a middleware access driver (MAD), and
the GWpilot Factory (GW PiF), which acts as a common application at user-level
and can be started by GW PiS. Subsequently, no communication will be performed
between these components, and the system will run in a standalone way for submitting
pilots wrapped inside grid jobs as needed. To perform this action, GW PiF uses
other MADs (GRAM 2/4/5, ARC, CREAM, OGSA-BES, SSH, GWcloud), to obtain
resources from multiple DCIs.

The code used for both components, PiS and PiF, is Python 2.4.3 compatible
and, as any other MAD or user application within the framework, its installation
is straightforward over a previously configured GridWay server. It only requires the
copy of few source files to a basic GridWay installation and the deployment as Pyt-
hon module of a (third-party) generic open source HTTPS server framework1. GW
PiS options are fully configured by editing the same line in the configuration file.
These parameters are then propagated to GW PiF and, consequently, to the sub-
mitted pilots, so no more actions must be performed by inexpert users. Additionally,
administrators can modify default parameters to tune general aspects of scheduling.
On the other hand, MADs are generally executed in the user-space, which offers the
following benefits: they can be independently instantiated by multiple users and they
can directly use their grid proxy certificates for encoding communications. As GW
PiF is executed by PiS, it profits from the same advantages.

Pilots communicate with the PiS through simple HTTP requests. A pilot will
periodically pull PiS for a description of the task to run. This includes environment
variables, the GridWay wrapper and the task options, as they were any remote Grid-
Way job. Pilot translates these items and performs the necessary file staging to execute
the wrapper. Subsequently, the wrapper performs the execution of the task as usual,
assuring backward compatibility. Therefore, the stage-in and stage-out mechanism is
established by the user as usual, i.e., by means of defining the source and destination of
every file with local names or URIs through any standard grid protocol supported on
the remote resource, e.g., GridFTP or SRM. On the other hand, HTTP requests are
used to periodically advertise PiS about pilot characteristics and the statuses of tasks.
In addition, tasks can communicate with pilots to arbitrarily include customised tags
in its characteristics. As these items will be notified to PiS, and subsequently will be
included in the Host Pool, the mechanism enables the personalised characterisation
of the pilot.

1 http://www.cherrypy.org

104 Chapter 7. The GWpilot Framework

The implementation of pilots is fully compatible with Python 2.4.3 and its stan-
dard modules and can run, for example, on any Red Hat 5 minimal installation. Ad-
ditionally, the code requires less than 1,000 lines and only uses approximately 40 KB
and can be manually executed. Thus, GWpilot is potentially suitable for deployment
on any currently distributed platform type such as the cloud, or even on a desktop
computer, and for establishing network overlays among them, at least running in its
insecure mode (i.e. without using grid certificates).

The design allows GWpilot to incorporate the following features that accomplish
the requirements outlined in Subsection 3.2:

Friendly user, administrator and developer interfaces from GridWay, such as
the CLI, the submission mechanism based on templates, and the DRMAA and
OGSA-BES standard interfaces. The latter also allows the use of remote com-
mands through external implementations [257]. GridWay also provides DRMAA
bindings to different languages such as Java, C/C++, Python and Perl.

The security in communications and the file staging mechanisms, based on grid
standards.

The capacity to extend the pilot overlay to multiple DCIs, such as the grid,
the cloud or even local resources, because PiF can use the current and future
GridWay plug-ins (MADs) for Provisioning and pilots allow manual execution

An easy and standalone deployment on a unique server, independent of other
middleware instances in these DCIs. Currently, GridWay is available through
.deb and .rpm packages and their local dependences (of grid middleware) are
managed by official repositories (from Linux distributions and IGE2).

Pilot communications based on minimal HTTP pull requests. Overheads are
controlled by reducing the number and size of messages among system modules.

Management of Workload Scheduling and Provisioning capabilities in a box.
Accounting from both layers (users, tasks, pilots and resources) is available.

Mechanisms to properly characterise resources at user-level, based on a simple
description language compatible with the friendly interfaces provided.

The possibility of performing a personalised scheduling by every user, becau-
se independent PiS and PiF can be instantiated for all of them. Additionally
users can run manually PiFs or even substitute them by new developed ones to
customise Provisioning.

Management of multiple users and applications with fair-share and prioritisation
policies. Potentially, PiS and PiF can be shared among users to share their
managed pilot jobs and therefore, to carry on scientific production of a specific
project or VO.

Supporting the Workload and Provisioning layers with a default set of scheduling
capabilities inherited from GridWay but powered by the pilot characterisation.

2http://www.ige-project.eu

7.2.A
rchitecture

105

Figure 7.2: State machine diagrams representing pilot internal behaviour (left) and task management (right).

106 Chapter 7. The GWpilot Framework

However, as mentioned in Section 3.2, overheads introduced constraints about
what scheduling algorithms can be actually implemented on the pilot system. In par-
ticular, it is desirable that these overheads were predictable and even configurable.
Consequently, beyond this overall description of GWpilot, a more complete explana-
tion of its components is outlined below, paying special attention to the performance
issues, but also to implementation details that make their advanced features possible.

7.2.1. Pilots
Communication with the PiS is a pull mechanism via simple HTTP requests from

pilots. Due to the tag-based language used in GWpilot all the information interchanged
is specific enough to be represented as a set of unstructured label-value pairs, although
their significance is crucial for some of them, as will be explained below. Additionally,
few request types are needed. Therefore, formatting the information in XML and using
complex message protocols is unnecessary. Instead, the tags are set into variables of
GET methods or received as plain text in their responses. Despite the similarity with
the remote execution mechanisms and to differentiate from pure RPC protocols, the
pilot requests are referred to as pilot operations throughout the remainder of this
thesis.

The internal states are simple: a pilot can be idle or busy, and a task can be active
or ended (done or failed). There are no pending tasks inside a pilot because whenever
one is fetched from GW PiS, the pilot immediately tries to run it. As a consequence,
there are only five operation types that the pilots request to the GW PiS:

Notify Pilot: pilot advertises itself to PiS by sending its identification code and
static characteristics.

Update Pilot Status: when pilot considers itself enrolled to a specific PiS, it
periodically sends its dynamic tags to that PiS.

Get Task: when the pilot is in idle state, it asks PiS for a new task.

Update Task Status: it is used to notify PiS of an active state when a task is
going to be executed or the final state if the task has ended.

Get Task Signal: it asks PiS for a POSIX signal to be passed to an active task.
It is periodically performed when a task is being executed.

The last four operations are immediately triggered after a state change, thus re-
ducing the turnaround. When no state change occurs, these operations are looped in
a time interval with a limited number of retries, after which the pilot ends, either
because PiS are not accessible or, in general cases, because there are no more tasks
that can be assigned to the pilot. To better illustrate these state transitions two state
machine diagrams extended with pseudo code are depicted in Figure 7.2.

Usually, parameters such as PiS port number, deactivation of SSL security, pulling
frequency against the Server, and number of retries (T) are propagated by GWpilot
configuration to pilots. However, pilots also allow manual execution, and they can be
launched by customised factories relying on other GS or LRMS. Furthermore, these
parameters do not only enable the communication with the Server. Retries determi-
nate the Provisioning policy, i.e. how often pilots are discarded and interchanged by
new ones. On the other hand, pulling interval (PI) is responsible of an important
overhead component in task turnaround. Thanks to the simple design of pilot, this

7.2. Architecture 107

Figure 7.3: The GWpilot PiS internal modules, procedures, information workflow and its
relation to external operations.

overhead is maintained roughly constant for every task, as will be demonstrated expe-
rimentally. The implications of both aspects will be explained through the following
chapters, but especially in Chapter 11, where a statistical study is performed.

Secured communications are allowed using the delegated user proxy stored in the
WN as a certificate for encrypting calls. Although SSL authentication is enough to
distinguish the pilot owner, the pilot must identify itself with a unique code whenever
an operation is performed against the Server. This identifier is formed by the WN
hostname, the site name, the user name and a hash number, which is created when
a pilot starts running and is maintained until its end. This method is performed to
allow the proper consistency check of requested operations and to reject failing pilots.
The exact identification of the remote and assigned resource will allow GWpilot to
individually account performance statistics from each pilot. Such identification could
be reutilised later if any other pilot is allocated in the same resource (this mechanism
and its advantages will be explained in next subsection and Chapter 10, respectively).

Identification code is sent to PiS as any other property. Other tags have also
special significance. LRMS_NAME = ”jobmanager-pilot” is the type identifier that will
differentiate pilots from other resources in the GridWay Host Pool; thus, it is always
statically published when a pilot is enrolled in the system. On the other hand, queue
tags dynamically show the number of available slots to accomplish tasks by the pilot.
Scheduler will discard those pilots without free slots published in the Host Pool.

108
C

hapter
7.T

he
G
W
pilot

Fram
ew

ork

Figure 7.4: State machine diagrams representing the management of tasks (left) and pilots (right) by the GWpilot Server.

7.2. Architecture 109

To assure the backward compatibility with previous GridWay developments, its
remote execution wrapper is utilised in pilots. The execution of user task is actually
performed by the wrapper in the specific directory where the wrapper is downloaded.
Pilot receives the location (URI) of wrapper, the final locations of their output streams
(its logs), and the necessary environment variables. These outputs are retrieved by
the system, enabling the possibility of fine troubleshooting. The pilot also gets the
complete description of the task because it is a parameter of the wrapper. Thus, the
pilot is able to translate the description of every task to cache its executable, input,
output and restart (for checkpointing) files. These files are retained according to their
size and their local path. Subsequently, their MD5 are published. Additionally, pilot
creates a named pipe on which the user task will can write pilot the customised tags.
Subsequently, the pilot tries to run the wrapper and monitor it to trigger the status
changes and to fill some specific tags about the execution (see Table 7.1). The wrapper
also enables the capacity of checkpointing the task execution. The possibilities that
those features offer are explained in Chapter 10.

7.2.2. The GWpilot Server (GW PiS)
The GW PiS is the most important module inside the GWpilot system, and its

responsibilities go beyond simply putting GridWay in contact with pilot jobs. In this
sense, PiS performs an active role by checking, filtering and caching operations from
GridWay Core and pilots to improve the scalability and performance of the whole
system. For this purpose, PiS must communicate with two GridWay managers: the
Execution Manager (EM), that performs generic operations for tasks; and, the In-
formation Manager (IM), that includes the characteristics of pilots in the GridWay
Host Pool. This determinates the PiS internal design (see Figure 7.3), which is mainly
composed of an EM and an IM adapter, the Task and Pilot Pool lists, and the imple-
mentation of necessary procedures embedded in a (third-party) generic open source
HTTPS server framework1 for Python.

PiS behaviour

The pilot and GridWay Core operations against PiS modules have associated in-
ternal procedures that imply changes in the task or pilot states and, consequently,
trigger more operations to other modules and again, doing it outside PiS. Main pro-
cedures used by adapters and the information workflow are shown in Figure 7.3, while
the state machine diagrams that depict the internal behaviour of the Server are de-
picted in Figure 7.4. In addition, there are other mandatory functions devoted to
checking the validity of the task, the pilot or the match performed in an operation.
It is relatively common that pilots perform invalid operations against the PiS HTTP
server due to network overloads or cuts.

To better understand the behaviour of the Server, a simplified sequence of steps
followed by the actors of the system to accomplish a task is described in Figure 7.5
which is explained as follows:

1. A pilot advertises itself by sending its identification code and static characteris-
tics to the PiS. If the pilot is accepted, it begins running for the Server, which
notifies the GridWay Core through the IM adapter. After that, the pilot perio-
dically sends monitoring information, which is filtered by the PiS to only inform
the IM about updated data.

110 Chapter 7. The GWpilot Framework

Scheduler IM EM PiS pilot

Advertise(pilot)DISCOV ER(pilot)

Update(characteristics)MONITOR(idle)

Get

void

matching task-pilot SUBMIT (task,pilot)

pending store matching

GetMONITOR(busy)

task execute

Update(task,active)CALLBACK(active)

POLL(task)

active

endedUpdate(task,ended)

remove matching

CALLBACK(ended)ended

MONITOR(idle)

Figure 7.5: Sequence of activities performed by the actors of GWpilot to accomplish any
task. They correspond to the steps 1-6 described in Subsection 7.2.2.

2. The GridWay Scheduler notices that the pilot is idle, so the Scheduler assigns a
task from the pool to the pilot whenever its monitored characteristics fulfil the
requirements of the task. Then, the GridWay EM sends the SUBMIT operation
to the PiS through the EM adapter.

3. The PiS performs some additional checks and stores the matching. Thus, the
description of the task can be only downloaded by its corresponding pilot.

4. When the pilot is idle, it asks the PiS for a new task. Whenever a task is fetched,
the pilot immediately tries to run it and notifies the PiS.

5. The Server, through the EM adapter, immediately notifies the GridWay Core
about any change in task status using the CALLBACK operation. Additionally,
through the IM adapter, it also sends an unrequested response of the MONITOR

operation. In doing so, the pilot becomes busy and the task becomes active for
the Scheduler.

6. When the task is ended, the pilot notifies that either it was successfully done
or that it failed. The matching is removed, and the pilot becomes idle again for
the Scheduler.

Therefore, task states are slightly different from the aforementioned states in the
pilot implementation because they must provide more information. Now, a task intro-
duced in the Task Pool can also adopt a pending state, which will not change if this

7.2. Architecture 111

task is not fetched by any pilot and it updates its status. However, the description
of the task (i.e., the wrapper, streams, grid paths, as environmental variables and
parameters) provided through the SUBMIT operation is only maintained in the Pool
until a successful Update Task Status is performed by a pilot, saving memory.

However, the significance of pilot states is completely different for PiS. Pilots
contained in their Pilot Pool can be inactive or running. These states stand for a
pilot that is discarded by the system or accepted for processing tasks, respectively.
This is so because the determination of a busy state in a pilot is of interest to the
Scheduler, not to the PiS, which only stores the task-pilot matches from the former.
The PiS only needs to know if the pilot has no tasks assigned or does not successfully
update its status for a certain period of time, so it should be discarded. This deadline
corresponds to the multiplication of the pulling frequency by the number of retries
configured in pilots (PI · T). The IM adapter is in charge of automatically changing
the pilot state to inactive and updating the virtual queue tags to indicate Scheduler
that no slots are available for this pilot.

Consequently, there are other situations that modify the behaviour of the GWpilot
Server, such as the following:

a. If the user or the Scheduler aborts the task, the GridWay EM sends a CANCEL
operation to the PiS, and the PiS removes the matching. Then, when the pilot
tries to update the status of the task, it receives an error that is interpreted as
the task being discarded.

b. When a pilot exceeds a certain number of retries for obtaining a task or reaches
the queue execution limit at the remote resource, the pilot ends.

c. If the Server does not receive updates from the pilot for a time interval, it dis-
cards the pilot. Then, it informs the GridWay Core that the pilot is permanently
busy and notifies the failed status if there were some task assigned to it.

Reducing overheads

In general, GridWay Core uses its manager modules (EM and IM) for sending
common operations to the MADs, and then it waits for asynchronous responses. To
reduce the turnaround overhead, all of them immediately respond, although some
processes related to SUBMIT (sends a task description to certain pilot), RECOV ER
(claims for a task after a system restart) and CANCEL (removing a task execution
request from PiS and killing it if it is being executed on a pilot) operations are
performed in the background. However, GridWay Core also fills its overload with un-
requested responses, so PiS uses this feature not only to later inform of submission
and cancellation results but, more importantly, to improve the performance. Thus,
the majority of responses for POLL (returns task state), DISCOV ER (returns name
identifications of active pilots) and MONITOR (returns pilot status) operations are
originated by the PiS module adapters. It is not possible to perform the overloading
technique for the other MAD operations. These responses are not arbitrarily retrieved
by GridWay managers because the EM adapter immediately notifies only the task
state modifications with a CALLBACK message, and the IM adapter caches the tag
updates from running pilots in order to only periodically report their information
changes. These un-requested CALLBACK, DISCOV ER and MONITOR responses are
the ones mentioned in the step 5.

112 Chapter 7. The GWpilot Framework

Table 7.1: Some characteristics notified by pilots to GW PiS and subsequently published
into GridWay Host Pool.

Characterisation Tag name Description

Identification PILOT_HASH_NAME Pilot identification code.
LRMS_NAME = ”jobmanager-pilot”

Generic ARCH, OS_NAME, OS_V ERSION ,
CPU_MODEL,
CPU_MHZ,SIZE_MEM_MB,
SIZE_DISK_MB,
CPU_FREE,FREE_MEM_MB,
FREE_DISK_MB

Real hardware of the assigned
node and generic monitoring.

GLUE-style and
middleware tags

DEFAULT_SE, SW_DIR,
SCRATCH_DIR, DFLT_SE_FREE,
SCRATCH_FREE

close-SE and scratch directory
configured. Additionally, pilot
shows the vailable MB in
these storages.

Virtual queue QUEUE_NODECOUNT ,
QUEUE_FREENODECOUNT ,
QUEUE_ACCESS,
QUEUE_MAXTIME,
QUEUE_MAXCPUTIME

Number of virtual slots,
available slots, accessing
restrictions (VO, user
distinguished name), and
remaining wall and CPU time

Task PILOT_TASK_MEM_MB,
PILOT_TASK_MEM_USED,
PILOT_TASK_CPU_USED

MB resident and the memory
and CPU (%) usage by the
task.

Basic network
profile

PILOT_LAG, PILOT_XFER_BW ,
PILOT_XFER_SE_BW

Average lag in pilot operations
and periodical bandwidth test
against PiS and close-SE.

Caching CKPT_FILE_TASK,
LAST_EXECUTABLE,
LAST_INPUT_FILES,
LAST_OUTPUT_FILES

Name and MD5 of the
checkpointing, staged and
produced files in last
execution.

User defined PILOT_${GW_USER}_V AR_<number> Key-Value written on pilot
pipe.

With relation to pilot characteristics monitored, the information related to the
host, site and user name from a discarded pilot is maintained in the Pilot Pool to be
compared if another pilot is allocated in the same WN (or type in the same site) and
tries to be enrolled in GWpilot. This correspondence is advised by the comparison
with the identification code provided by the new pilot. However, the correspondent
identifier name passed to GridWay Core through the DISCOV ER response will al-
ways be the same, enabling system to gather performance statistics from each pilot
individually.

On the other hand, the system will usually initialise one PiS on behalf of each
user in order to use his certificate and to encrypt his communications. Therefore, the
system can support several PiSs listening to different TCP ports and their belonging
pilots are private. However, a PiS can be shared among users if their IM and EM
operations pass through the same stream (the implications of this configuration are
commented in Subsection 10.5).

All these processes are extensively described in this subsection because they could
become an important bottleneck that usually is not analysed in other systems. In
general, users perceive this overhead as an increase in the dispatching time of every
task. In the case of GWpilot, the simplified design of the PiS and the streaming
mechanism to communicate with GridWay Core implies that this overhead will be
manageable, as will be demonstrated with the experiments from Chapter 9 to 11.

7.3. Functional comparison 113

7.2.3. The GWpilot Factory (GW PiF)
The Factory is an efficient DRMAA-enabled program that follows a producer-

consumer model to generate and replace pilots in a continuous flow. For this purpose,
it makes the most of the producer-consumer library pattern developed in Section 4.3.
To improve its performance and features, it makes use of the CLI to check the statuses
of tasks and pilots. In general, a GW PiF dynamically calculates the number of neces-
sary pilots in the system by checking if the LRMS_NAME = ”jobmanager-pilot” sentence
is set in the requirements of the tasks belonging to its particular user. Moreover, any
specific characteristic notified by pilots (or even published by GIS), can also be taken
into consideration for submitting pilots. This feature improves the scheduling capabi-
lities of GWpilot in a heterogeneous environment due to it is able to distinguish the
type of pilots (architecture, middleware or software installed...) running at particular
sites and constraint the submission of new ones to these sites. Additionally, users do
not need to worry about Provisioning because GW PiF will take account of task re-
quirements to select suitable resources. This advanced feature and the configuration
of PiF are deeply explained in Section 10.4.

7.3. Functional comparison
Two frameworks have been selected as representatives of two different approaches

in the design of pilot systems: DIANE, which is perhaps the most used application-
oriented framework on EGI-related infrastructures; and DIRAC as the PMS most
adapted to other fields different to HEP calculations. The intention is two-fold: to
compare GWpilot with other systems that propose different solutions, and to go in-
to detail about technical issues not described in Section 2.5. These aspects are of
importance if users and developers want to adapt their calculations to these frame-
works and also to emphasise the advantages of GWpilot, but to properly introduce
the significance of results obtained through the following Section 7.4 as well.

7.3.1. DIANE
In first place, DIANE is a small pilot system conceived to integrate the user’s

application into a Python framework. In addition, it is implemented to be easily
configured and managed by final users. For this purpose, a short script is provided
to facilitate the installation. However, although DIANE is written in Python, the
mechanism also downloads binaries of external software, and even Python libraries
that are not included in default OS installations. Additionally, some of them are also
required by pilots (worker agents), and they have to be downloaded into WNs before
their execution. As mentioned in Subsection 2.5.4, its most important dependence is
on omniORB, because CORBA is the basis of master-worker architecture of DIANE.
Moreover, the pilot submission relies on Ganga, which has its own dependencies. Thus,
a complete installation requires ∼150MB, ∼70 MB out of which are external binaries
(beside of basic grid middleware). These issues do not constitute a serious problem for
users if they compute on CERN related operating systems, i.e. Scientific Linux (SL) 5-
6, where DIANE deployment is straightforward (for example on EGI infrastructures).
Additionally, an experienced user can easily compile these dependencies and modify
the installation script to adapt them to other platforms.

Getting started on grid only requires an elementary configuration of Ganga, i.e.

114 Chapter 7. The GWpilot Framework

editing some parameters in ∼/.gangarc file. Nevertheless this implies the background
use of gLite/UMD commands to remotely connect to a central WMS to perform the
pilot provision. Agent Factory sequentially performs these operations. Additionally,
there are few options to customise the Provisioning behaviour, as it can be seen in
Table 7.2. Users can only perform some control on pilot scheduling if they modify
the ∼/.gangarc file for every application. These issues seriously limit the Provisioning
capacity of the system, as will be depicted in Subsection 7.4.3.

Worker agents actually notify a complete set of characteristics to Run Master, but
this feature is not completely used in the framework. For example, ranking expres-
sions are not available. In this sense, extensions of DIANE have been implemented
to take advantage of this characterisation to incorporate some generic self-scheduling
algorithms into the Workload Scheduling layer. In particular, AWLB [117, 215] is able
to find sub-optimal distributions of variable sized bags of tasks (BoTs) among the cha-
racterised pilots, according to a CPU and bandwidth consumption profile previously
determined for the application. Nevertheless, the development of this type of approa-
ches is restricted to advanced Python programmers. Moreover, they can expend many
efforts in modifying DIANE code (the Master, Scheduler, Factory and worker agents)
to accomplish the needs of certain legacy applications, which perhaps, were already
implemented following a distributed computing standard (such as DRMAA or SA-
GA), or even following other extended specifications (such as Ganga). Additionally,
task requirements can be set if worker agents are again modified. That is, it is nee-
ded to maintain a specific pilot by every special application. Other weakness is the
impossibility of sharing pilots or statistics among running applications.

Therefore, the available Workload Scheduling for conventional users is based on
FCFS. The advantages of this approach were commented in Subsection 3.2.2: maximi-
ses the usage of resources and maintains task overheads under minimum possible. For
these purposes, DIANE allows the customisation of policies through config.WorkerAgent,
config.RunMaster and input.scheduler variables (see Table 7.2). All of them can be dy-
namically set into the code, but due to their generality, only the related to the ma-
nagement of tasks ones are suitable to be modified during one calculation.

7.3.2. DIRAC

DIRAC is a PMS that provides an installation script following the DIANE fas-
hion, i.e. compiled dependencies are downloaded together with the DIRAC software.
However, external dependencies expend now ∼700 MB, while DIRAC software only
∼230 MB (v6r8p14 release). This implies continuous upgrades to maintain compati-
bility. Moreover, although the software related to LHCb can be omitted, any basic
DIRAC server requires ∼40 modules (Agents and Services) running associated to a
set of ten databases. Every module runs as a system daemon that continuously fills
its database and generates logs which exponentially increase the disk usage. All of
them must be taken into account during the installation, requiring ∼400 parameters.
Many of these options have not default values and the administrator must search
about their significance. The ones related to the acknowledgement of failed tasks or
pilots are measured in hours or days. Some scheduling functionalities are fixed. Those
options related to the comparison performed in this work are depicted in Table 7.2,
and clearly demonstrate that DIRAC is only oriented to constitute a platform for
multi-project production, where some skilled administrators and VO managers have
the role of maximizing the throughput of long jobs.

7.3. Functional comparison 115

However, the main obstacle to customise some scheduling in DIRAC is that its
components are designed and optimised to efficiently accomplish workloads similar to
the ones generated by the LHC experiments. As a result, its design tightly couples
Task Scheduling and Provisioning to optimise these calculations, and does not tac-
kle the possibility of setting different requirements for tasks. For example, DIRAC
offers compatibility with applications based on JDL templates. That is, it provides
users with commands like the gLite/UMD WMS ones. Unlike JSDL (which is used
with OGSA-BES), JDL is not standardised but it is widely extended and allows the
inclusion of pseudo-scripts and ClassAd expressions. Nevertheless, most of the JDL
parameters related to scheduling are overlooked: users can not perform any ranking
and can only constraint resources with four types of requirements (see Table 7.2).
Besides JDL, DIRAC also provides developers the REST and Ganga interfaces, and
its specific Python library. Nevertheless, they do not also allow the specification of
more requirements.

Therefore, the scheduling is summarised in two levels: first, the system classi-
fies tasks according to their CPUTime but also to other specific requirements not
set by user. Subsequently, it places tasks into a queue specifically created for this
classification. Posteriorly, TaskQueueDirector Agent requests any gLite/UMD WMS
the information about resources that accomplish these common requirements. Then,
the system filters those obtained resources according to benchmarks compiled during
previous executions of pilots. Finally, one pilot per task is submitted to a concrete
resource, if enough resources are listed. That is, the WMS performs the grid match-
making, while DIRAC performs a parallel scheduling and takes the final decision
about where pilots will run.

Consequences are far away from being tied to UMD middleware. First, their sche-
duling parameters are not really configurable by administrators. The depicted double-
matching mechanism is based on specific GLUE tags and local measurements. Thus,
to change the Rank is not recommendable to inexpert administrators because it has
influence on other processes. Second, pilots can only host one task because the match-
making is optimised for jobs whose duration approaches the maximum wall time at
remote resources. One solution can be to run the JobAgent together with the pilot
to fetch short tasks. Nevertheless, the maximum number of tasks that a pilot can
accomplish is 100 (MaxJobsInF illMode parameter), and includes the number of retries
when the corresponding queue is empty. Third, besides TaskQueueDirector, many other
DIRAC modules participate in the scheduling process and they generate overheads. In
this sense, WMS commands are relatively slow and sandboxing files in DIRAC server
increases the penalty in task turnaround. These circumstances will be explained with
the comparative results obtained in Subsection 7.4.3.

7.3.3. Comparison

Besides other features mentioned in Section 7.2, GWpilot differentiates among
these systems by its installation (which is mainly based on OS packets and requires ∼5
MB); its configuration (which only requires ∼30 lines in two completely customisable
files and some sudo tips); its remote compatibility and lightweight (since pilot is a
short script file that only requires Python 2.4.3 as minimum release in WNs); and
its management of user data (that allows staging files locally and through standard
protocols). In addition, GWpilot is multiuser, allows MUPJ (opposite to DIANE) and
compiles general execution statistics (opposite to DIRAC).

116 Chapter 7. The GWpilot Framework

However, the main differences from user’s and developer’s point of view are that
GWpilot allows them to directly run their legacy applications (written in diverse lan-
guages and following accepted standards), and fully supports the customisation of the
whole scheduling at user-level, guiding both Task Scheduling and Provisioning. Thus,
developers can dynamically include customised policies in these legacy applications
basing them on a complete characterisation of resources without the need of modif-
ying GWpilot code. Therefore, GWpilot is so flexible that is possible to incorporate
personalised schedulers on top of the system.

Obviously, DIRAC and DIANE frameworks have advantages over GWpilot. The
former has been used during years in production and can support hundred thousands
of jobs and thousands of users, which has not been tested with GWpilot, neither with
GridWay. Additionally it offers a complete web page that shows detailed statistics
and facilitates users with different roles for their common procedures: to control site
availability, to inspect tasks and pilot logs, to list statuses of tasks and cancel them,
etc. In particular, the possibility of permanently banning a resource is not available
in GWpilot without restart their daemons. DIANE offers the highest performance in
terms of overhead in Task Scheduling when the default FCFS was used. An evidence
of this affirmation is that the option PULL_REQUEST_DELAY must be set to avoid
the overload of Master.

7.4. Reproducible comparison with other pilot sys-
tems

The aim of the experiments is to demonstrate the viability and suitability of GW-
pilot, as well as its performance as an improvement achieved in comparison with other
pilot systems, when common scientific applications are executed on resources belon-
ging to large production DCIs. For this purpose, GWpilot must be tested on a real
infrastructure and measured with applications that create non-ideal conditions for a
computational distributed environment, i.e., filling the system with a high volume of
variable-duration short tasks in a continuous flow, which must be dispatched indivi-
dually. This approach is of enormous importance because centralised pilot systems
usually validate their performance only with long tasks. This methodology is well
founded for the specific calculations for which these systems were initially implemen-
ted, i.e. the LHC production. However many user applications are composed of short
tasks that should profit from their extensive distribution.

The objective is not to expose the advantages of certain complex scheduling algo-
rithms that GWpilot can incorporate but to show how the default GWpilot functio-
nalities result in a valuable improvement over other systems.

Thus, the behaviour of two representative frameworks (DIANE and DIRAC) is
compared with GWpilot. To better analyse the results obtained, and because DIANE
only can run in this mode, one-user and one-task pilot jobs over a unique grid VO
will be utilised. Additionally, general issues on their configuration and adaptation are
commented, not only to be contrasted with GWpilot capabilities, but also to establish
the same scheduling requirements to perform equivalent tests among them. Thus, the
basic performance of GWpilot is properly measured with respect to some existing
approaches, and therefore an important performance gain is expected for any other
feature of GWpilot to be used.

7.4.R
eproducible

com
parison

w
ith

other
pilot

system
s

117

Table 7.2: Scheduling policies with similar significance for the pilot systems compared in this work. Values set to accomplish the experiments are
shown.

GWpilot DIANE DIRAC
Provisioning new pilots:
Max. amount PiS option (gwd.conf), Agent Factory or diane-submitter Same as number of tasks and adds:
and overload PiF params. (manually) (diane− worker − number) param. (manually) TaskQueueDirector/extraPilots(= 2)
Max. suspension PiS option (gwd.conf), Agent Factory or diane-submitter ExpireTime is not set in the pilot JDL,
in LRMS or GS PiF param. (manually) (pending − timeout) param. (manually) then remote WMS waits its default

timeout (typically 1 day)
Submission DISPATCH_CHUNK(= 100) It is secuential, but Agent Factory TaskQueueDirector/pilotsPerIteration(= 100)
limits (sched.conf) and diane-submitter limit with

(diane−max− pending) param. (manually)
Ranking PiS option (gwd.conf), Rank option (∼ /.gangarc), or Agent Factory TaskQueueDirector/glite/Rank

resources PiF param. (manually), (square− fitness) param. (manually set, but (Expression based in GLUE descriptions
or collected from any it is a fixed policy, based on completion rate: of CEs obtained from top-BDII)
RANK in tasks (dynamic) [(running + completed)/total])

Constrainting PiS option (gwd.conf), Requirement option (∼ /.gangarc), or Fixed in code and based on Rank expression and
Resources PiF param. (manually), Agent Factory or diane-submitter param. HepSpec06 of CEs also obtained from top-BDII.

or collected from any (manually, but only allows list Additionally, only 4 requirements are also
REQUIREMENT of CEs, i.e. round-robin) collected from task JDLs to generate constraints:
in tasks (dynamic) CPUTime, Site, BannedSites, and Platform

External broker — glite_wms.conf TaskQueueDirector/glite/ResourceBrokers

Pilot behaviour:
Pulling Inmediately, and then PI(= 30s) config.WorkerAgent. JobAgent/SubmissionDelay(= 10s),
new task .PULL_REQUEST_DELAY (= 0.2s) and then 120s

An idle T · PI(= 20 · 30s) One attempt every: JobAgent/StopAfterFailedMatches(= 10)
pilot ends config.WorkerAgent.HEARTBEAT_DELAY (= 10s) failed attempts, or when the number of

Pilot ends if an attempt last more than: completed tasks and failed attempts
config.WorkerAgent. reachs to: TaskQueueDirector/
.HEARTBEAT_TIMEOUT (= 30s) glite/MaxJobsInFillMode(= 100)

(Continue in next page.)

118
C

hapter
7.T

he
G
W
pilot

Fram
ew

ork

(Table 7.2 continued.)

Policies to discard pilots:
Outage T · PI(= 20 · 30s) config.RunMaster. P ilotStatusAgent/PilotStalledDays(= 3d)

.LOST_WORKER_TIMEOUT (= 60s)

Idles T · PI(= 20 · 30s) config.RunMaster. —
IDLE_WORKER_TIMEOUT (= 600s)

Task Immediately input.scheduler.policy.REMOV E_ JobAgent/StopOnApplicationFailure(= true)
failure _FAILED_WORKER_ATTEMPTS(= 1) (on first task failure, pilot ends)
Policies to manage tasks:
Execution RESCHEDULE_ON_FAILURE input.scheduler.policy. Reschedule fixed in 3 retries
attepms (= no) , .FAILED_TASK_MAX_ASSIGN(= 3)

NUMBER_OF_RETRIES (= 3) .LOST_TASK_MAX_ASSIGN(= 3)
in tasks (dynamic)

Avoid REQUIREMENT = input.scheduler.policy. JobAgent compares CPUTime requirement
ending ”QUEUE_MAXTIME > (30m)” .WORKER_TIME_LIMIT (= 0s) set in task JDL and the remaining
pilots in tasks (dynamic) (max. time in execution) time notified by pilot before matchig. B
Matching SCHEDULING_INTERV AL Inmediately TaskQueueDirector/ListMatchDelay(= 10s)
time (= 10s) (gwd.conf)
Avoid SUSPENSION_TIMEOUT config.RunMaster. StalledJobAgent/StalledT imeHours(= 6h)
overloaded (= 61s) in tasks (dynamic) .LOST_WORKER_TIMEOUT (= 60s) StalledJobAgent/FaledT imeHours(= 2h)
or failing pilots

7.4. Reproducible comparison with other pilot systems 119

7.4.1. Test bed setup
The fusion VO has been used for the calculations because it offers a large, hete-

rogeneous and overloaded number of resources shared with other highly demanding
VOs. When the tests were performed, the fusion VO counted on more than 40 com-
puting elements (23 sites), and up to 29,464 slots. Of course, few of them are actually
available, but every framework should obtain 1,000 slots. This value is used as the
minimum amount of pilots that every system will request during the experiments.

To perform accurate comparisons among frameworks, three identical virtual ma-
chines (4-cores, 24 GB RAM; SL 6.3; UMD UI 2.0.2-1) are configured with DIRAC
(v6r8p14 release), DIANE (2.4) and GWpilot (on GridWay 5.14), running on a dual
Xeon X5560 (16 cores, 2.8 GHz). Every instance stores their logs, user data and
databases on virtual disks created on RAM. This is done to avoid the interference
among pilot systems on servers’performance, because only one framework is started
in every virtual machine booted, and the intensive I/O operations are isolated in
every reserved memory. Additionally, three different user certificates are used during
the experiments. This is to assure a fair-share between tests at remote queues, a key
point that is indispensable to achieve accurate results on an overloaded infrastructure
such as the fusion VO in EGI.

To ensure the accuracy of the results obtained, tests are run in parallel and con-
figuration options are set as similar as possible. Table 7.2 shows these configuration
equivalencies which are also taken as a model for later experiments. In this sense GW-
pilot parameters are adapted to be as the default policies used in DIANE. However,
the default options are maintained for DIRAC with the exception of the activation of
filling mode, because no comparison would be possible without it. Therefore, this is
the configuration found by any user at central DIRAC servers.

To eliminate the impact of Provisioning policies, resource ranking and filteri-
ng capabilities are disabled on GWpilot for these experiments. PiFs (GW PiF and
Agent Factory) have been restricted to create a maximum of 1,000 running pilots. The
maximum suspension timeout, before cancelling a pilot job whenever it is queued at
the remote LRMS for a long time, has been set to 30 minutes. This value is con-
sidered reasonable according to the duration of tests (i.e. 3-10 hours). Additionally,
it provides a level playing field with DIANE’s Provisioning mechanism, even though
GWpilot could work better with lower timeouts [135, 227]. However, banning feature
is enabled (set to 1 hour) in GWpilot. This is necessary to avoid sending pilots again
to the same failing resources (the suspension timeout is considered as a failure in the
experiments). Thus, to improve in a similar way the Provisioning in DIANE execu-
tions, the square-fit option is passed to Agent Factory. This implies that DIANE will
guide the Provisioning process for some tasks. Moreover, DIRAC will also perform
by default the profiling of every site and will use statistics to select resources. The-
refore, GWpilot is a priori put at a disadvantage in the Provisioning phase. Finally,
caching files is also disabled in GWpilot, while DIANE and DIRAC perform staging
operations as usual.

However, other GWpilot parameters must also be set to perform any calculation,
although they effectively limit the usage of the infrastructure. They were configured
to allow the submission of a maximum of 100 pilots per site (which is defined with
the MAX_RUNNING_RESOURCE statement). Additionally, GWpilot is allowed to
schedule a maximum of 100 tasks (to pilots) and pilots (to sites) every 10 seconds.
These values are set for similarity with DIRAC, although they limit the capacity of
GWpilot to access resources with respect to the other frameworks.

120 Chapter 7. The GWpilot Framework

Table 7.3: Time complexity of long multiplication and real time measurements.

<Number Xeon X5365 Xeon E5620
of task> Θ(n2) 3 GHz (Launch 2.4 GHz (Launch
mod 10 date: 2007) date: 2012)
Very short tasks: < lower limit >= 3 (n = 30, 000 · · · 75, 000)

0 Θ((3 · 104)2) 66.97 s 84.50 s
1 Θ((3.5 · 104)2) = (1.16)2 ·Θ((3 · 104)2) 91.18 s 115.03 s
6 Θ((6 · 104)2) = 22 ·Θ((3 · 104)2) 269.64 s 338.31 s
8 Θ((7 · 104)2) = (2.3)2 ·Θ((3 · 104)2) 369.03 s 459.81 s
9 Θ((7.5 · 104)2) = (2.5)2 ·Θ((3 · 104)2) 419.43 s 529.27 s

Short tasks: < lower limit >= 9 (n = 90, 000 · · · 135, 000)
0 Θ((9 · 104)2) 605.21 s 761.04 s
1 Θ((9.5 · 104)2) = (3.16)2 ·Θ((3 · 104)2) 672.86 s 851.62 s
6 Θ((12 · 104)2) = 42 ·Θ((3 · 104)2) 1,074.32 s 1,354.96 s
8 Θ((13 · 104)2) = (4.3)2 ·Θ((3 · 104)2) 1,262.12 s 1,587.38 s
9 Θ((13.5 · 104)2) = (4.5)2 ·Θ((3 · 104)2) 1,360.91 s 1,713.19 s

Finally, the last two parameters in the GWpilot configuration determine the pilot
turnaround overhead and the pilot discarding rate of the pilot system, respectively:
the pulling interval (PI) for GWpilot, which is established to 30 seconds, and the ma-
ximum retries number (T), which is set to 20. These values are selected to be similar to
the discarding timeout for DIANE’s idle worker agents (IDLE_WORKER_TIMEOUT).

The shorter duration of tasks implies a higher impact of overheads on the compu-
tation performance and on the load supported by systems. In addition, most users
do not want to deal with grouping their tasks. Developers are also aware of how the
failure rate increases when big BoTs are used, and would rather massively distribute
minimal tasks to reduce the final makespan. For these reasons the comparison among
pilot systems is made with short tasks. Additionally, the intention is to simulate the
typical behaviour pattern of a user that submits a daily calculation, for example, ca-
rried in background during the night. Therefore, tests with a maximum wall time of
5-10 hours are selected for these experiments.

7.4.2. Simple calculation
For the experiments, long (or standard) multiplication is selected to be easily

measurable and reproducible. The time complexity of multiplying two n-digit num-
bers using long multiplication is Θ(n2). Thus, task duration can be easily controlled
modifying n as shown in Table 7.3. To obtain these data, long multiplication was
implemented in C language and compiled with gcc 4.4, resulting in a binary of 13KB.
The executable requires the n-digit as a parameter to randomly generate two numbers
of that size. Then, it multiplies both of them, and stores the result in a file of ∼ 6 · n
Bytes.

To generate an effect similar to a real user calculation (but also controlled for
further analysis), tasks are submitted with different n values along the tests following
this pattern:

< lower limit > · 104 + (5 · 103 · (< number of task > mod 10))

Thus, setting < lower limit > to 3 assures that the duration of task ranges
between ∼ 67 s and ∼ 420 s on the first machine mentioned in Table 7.3, which is

7.4. Reproducible comparison with other pilot systems 121

taken as a lower reference machine of the infrastructure due to their manufacture
date. However, significantly lower execution times are not expected in this case due
to long multiplication only depends on the velocity of the processor.

Perhaps, processing tasks that last less than five minutes has not much sense in
a distributed environment (with the exception to of real-time applications). The sole
purpose to carry on this type of calculation is to perform a stress test of the pilot
systems. For this reason, a second test that contains an input set that guarantees task
duration above 10 minutes is also performed, i.e. setting < lower limit > to 9.

The number of tasks of both tests can be determined according to the lower
reference machine. 3 · 104 tasks would last approximately 1 hour and 51 minutes on
1,000 X5365 cores, and would generate 8.8 GB as output if a < lower limit >= 3 is
selected, while the same volume of tasks would last 8 hours and generate 18.86 GB
when a < lower limit >= 9 is set. However, these calculations will last much more
due to the real availability of resources in grid.

A script that creates JDLs and makes use of commands was implemented to port
long multiplication to DIRAC. This script is as simple as any conventional user will
implement. It sequentially submits and checks the statuses of tasks. If ended tasks
are detected, outputs are checked before to submit new tasks. Else the script waits
60 s. However, unlike the other approaches that directly store the outputs in a local
user directory, DIRAC is based on the sandboxing of these outputs to be downloaded
later by the user. It is noteworthy to mention that DIRAC provides commands for
searching for text in the output files without having to download them. Nevertheless,
they can last minutes due to the volume of tasks managed in this experiment. These
delays avoid any comparison with the other pilot systems and they are not used.
Additionally, every task should be deleted after downloading its outputs and checking
if they are correct. Every operation requires 1.2-1.5 s despite of the script is launched
on the same machine that runs DIRAC to remove network overhead. This behaviour
is unfeasible because only checking the statuses of 1,000 tasks would last more than
2 minutes. For this reason, every command launched will manage up to 100 tasks
together.

To make a more proper comparison and to measure the performance of GWpilot
CLI, a similar script was implemented to generate templates and manage the long
multiplication tasks through GWpilot. However, with DIANE, there is no other possi-
bility than to wrap long multiplication into DIANE libraries, and so it was performed.
Naturally, both implementations will check the outputs of every task to ensure the
completeness of results. The maximum number of managed tasks is limited to 1,000
in the three implementations. With respect to the basic policies for managing tasks
in GWpilot, the same approach for Provisioning is followed: neither ranking, nor re-
quirements were dynamically set on tasks by the application, with exception of the
necessary ones to avoid ended or failing pilots (see Table 7.2). The task suspension ti-
meout has to be set slightly above the pilot pulling interval in order to quickly remove
tasks from pilots that could be failing.

7.4.3. Results

Both short (< lower limit >= 3) and long (< lower limit >= 9) tests were carried
out three times to assure accurateness. Makespan obtained with every pilot system
is listed in Table 7.4, which must be provided as the principal speedup measurement
from a user point of view. However, to allow a proper comparison among systems and

122 Chapter 7. The GWpilot Framework

(a) n = 30, 000 · · · 75, 000 (d) n = 90, 000 · · · 135, 000

(b) n = 30, 000 · · · 75, 000 (e) n = 90, 000 · · · 135, 000

(c) n = 30, 000 · · · 75, 000 (f) n = 90, 000 · · · 135, 000

Figure 7.6: Difference between the number of running pilots and active tasks (blue repre-
sents GWpilot, red represents DIRAC, and yellow represents DIANE). There is an upper
limit of 1,000 managed tasks per application run on every pilot system. Left (right) column
cases a, b and c (d, e and f) corresponds to three different tests with n = 30, 000 · · · 75, 000
(n = 90, 000 · · · 135, 000).

7.4. Reproducible comparison with other pilot systems 123

Table 7.4: Results obtained in the comparative experiment. Values of pilots submitted
between parenthesis correspond to the number of pilots guided by DIANE Agent Factory to
a specific site. Values for mean up and filling rate are measured before the last 1,000 tasks
were remaining in the systems due to the end of calculation is not representative of the usual
utilisation of resources.

Test System Makespan Tasks Pilots
failed submitted enrolled mean up filling rate

Short tests (very short tasks): < lower limit >= 3 (n = 30, 000 · · · 75, 000)
DIANE 4 h 06 m 49s 466 2,563 1,381 525.08 99.76

(a) DIRAC 7 h 56 m 54s 4 2,165 1,874 518.73 63.50
GWpilot 3 h 13 m 32s 82 2,490 1,011 797.72 86.85
DIANE 5 h 22 m 26s 1991 3,431 2,797 428.90 99.80

(b) DIRAC 9 h 03 m 01s 8 2,726 1,751 460.91 62.98
GWpilot 3 h 27 m 01s 135 2,996 1,054 785.62 86.99
DIANE 4 h 50 m 42s 608 3,323 1,570 421.98 99.75

(c) DIRAC 8 h 21 m 56s 6 2,049 1,297 461.74 68.50
GWpilot 4 h 06 m 42s 62 4,655 954 648.23 87.80

Long tests (short tasks) < lower limit >= 9 (n = 90, 000 · · · 135, 000)
DIANE 13 h 16 m 02s 522 1,989(932) 1,531 893.99 98.63

(d) DIRAC 13 h 24 m 00s 486 4,226 3,454 968.97 87.29
GWpilot 11 h 33 m 32s 183 9,032 3,687 1,001.63 94.49
DIANE 15 h 29 m 36s 3,140 6,435(2330) 4,137 588.45 99.93

(e) DIRAC 16 h 06 m 03s 650 12,888 3,095 953.03 85.43
GWpilot 15 h 08 m 36s 589 16,369 2,213 670.16 95.18
DIANE 12 h 16 m 17s 2,322 3,919(1393) 3,295 774.32 99.62

(f) DIRAC 15 h 19 m 22s 822 3,135 2,537 894.35 88.58
GWpilot 12 h 34 m 49s 151 9,444 2,645 880.0 94.61

against other approaches, other performance metrics used in previous works [204, 258,
201, 195] are considered. Thus, in addition to the final makespan parameter, Table 7.4
compiles the number of pilots submitted and effectively enrolled as a measurement
of the efficiency in Provisioning. Additionally, the average number of pilots actually
running and the filling rate of these pilots with tasks are provided. These values are
measured before the last 1,000 tasks were remaining in the systems because the end of
calculation is not representative of the usual utilisation of resources in any experiment.
The number of failed tasks is also added.

To complement this information and illustrate the evolution of the tests, Figures
7.6-(a, b, c, d, e, f), show the difference between the number of running pilots and
the number of active tasks in every framework. These figures have been obtained by
processing DIANE (master.j), DIRAC (Matcher and (JobStateUpdate), and GWpilot
logs.

First observable issue in the figures is the improved capacity of GWpilot for Provi-
sioning. It is able to obtain and retain the requested resources one or two hours before
than the other systems. Performance achieved by GridWay in early-binding scheduling
is known, and results obtained in GWpilot tests should be better than the ones using
gLite/UMD WMS, according to previous works [135, 227] or the analysis performed
in Chapter 6. However, this deserves a deeper explanation because most of the sche-
duling advantages of GWpilot have been disabled in this experiment and the overload
generated by pilots is added. This capability is consequence of the modular design of
GWpilot. MAD in charge of controlling job execution in CREAM sites conceptually

124 Chapter 7. The GWpilot Framework

follows a similar implementation to GW PiS: both manage the continuous data flow
from and to system core and remote sites. Additionally, it uses minimal middleware
libraries, unlike middleware commands. However, the Scheduler is always performing
the match-making among pilots and resources, and among tasks and pilots. For this
purpose the system maintains the Scheduler aware of the data flow coming from GW
PiS, CREAM and IM MADs. With this information Scheduler performs its match-
making algorithm over a limited number of pilots and tasks (DISPATCH_CHUNK),
once per interval (SCHEDULING_INTERV AL). Therefore, due to its modular ar-
chitecture, CREAM driver and PiS can potentially manage thousands of pilots and
tasks more quickly and concurrently than DIRAC or DIANE solutions. In fact, it is
mainly limited by the computational complexity of the algorithm implemented in the
Scheduler, as will be explained (and improved) in Chapter 9.

Unlike GWpilot, the other frameworks use gLite commands to submit pilots (or
even to perform match-making requests in the case of TaskQueueDirector). Every con-
tact with the WMS spends above 3 s. DIRAC implements such capability by a multi-
threaded engine and is less exposed to these overheads. Nevertheless, it offers a similar
performance to DIANE if the number of failed tasks is observed. Every failed task
triggers the discarding of its hosting pilot (see Table 7.2) in DIANE. Submission per-
formed by Agent Factory is completely sequential, and subsequently the maximum
number of slots provisioned is limited to approximately 1,000 per hour for DIANE.
On the other hand, GWpilot is able to submit this volume of pilots in 100 seconds,
according to the configuration selected in this work. Thus, GWpilot can immediately
start the replacement of failing or suspended pilots. However, this feature can not be
enough in certain situations as the one presented in test (e), where the infrastructure
is overloaded. This circumstance has already observed for early-binding in Chapters 4
and 6: in some cases, allowing large suspension times at remote queues can improve
the Provisioning (see DIRAC behaviour in Figure 7.6 -(e)).

In view of the results, GWpilot is clearly more adequate to accomplish short dura-
tion experiments, as the ones described in Figures 7.6-(a, b, c). In experiments longer
than 15 hours, the benefit is slightly lower. However, when many pilots end due to
reaching the maximum wall time at remote queues (usually 24 hours running), the
improved Provisioning capacity of GWpilot will maintain the number of resources
appropriated unlike other solutions.

Despite of the drawback, it seems that DIANE progressively trims the advantage
that GWpilot holds in some tests (f, a, c), although not in others (d). That is because
its task completion rate is higher than the one achieved by GWpilot when it reaches a
similar number of pilots (a, c) and because Agent Factory could be appropriating more
powerful resources. It is noteworthy to mention again that DIANE performs such a
type of guided Provisioning (see Table 7.4) only on long tests (with < lower limit >=
9). That is so because Agent Factory needs time to compile enough data about running
pilots in order to start submitting new ones to certain resources. DIRAC is always
evaluating performance of pilots to select suitable resources. However, these features
do not seem to be an effective advantage over GWpilot through the tests. Other
reason could be the existence of overheads, which will be discussed in the following
paragraphs.

The effective resource utilisation is a clear indication of how overheads decrease
overall performance. This is usually measured using the area between running pilots
and active tasks graphs [258]. DIANE execution is plotted as a line, with the exception
of the end of computation when many pilots are still up, but there are no more

7.4. Reproducible comparison with other pilot systems 125

tasks to execute. That is so because DIANE reaches average filling rates of about
99%, i.e. it performs the highest pilot utilisation, as expected: with DIANE, any
ended task is immediately detected by the user application because the application
itself is embedded in DIANE. Thus, a new task that substitutes the previous one is
immediately generated, and subsequently dispatched. This process takes less than 0.4
s for every task because it has no scheduling overhead associated. The FCFS approach
does not require expending time in solving match-making algorithms.

The jagged shape of the displayed active tasks line in GWpilot and DIRAC exe-
cutions is due to their arbitrary termination. It is justified by the alternation of light
tasks with heavy ones proposed as test input. Although this behaviour could be atte-
nuated by decreasing the pulling (PI) and the scheduling interval, or increasing the
dispatching chunk, it is also determined by the implementation of the script that ma-
nages the execution of the application. This script is not able to process and supply
new tasks to GWpilot when their duration is very short (these overheads will be pro-
perly described in Subsection 11.2.2). On the other hand, match-making complexity
is so simple in this experiment that it takes the Scheduler less than one second to
solve it. Thus, the overhead originated by Scheduler is an issue to be analysed through
other type of experiments (see Chapters 9 and 11), where ranking is extensively used.
However, other overheads have influence on the task turnaround time in this experi-
ment and reduce the task completion rate. One of them is file staging, but another
one is the number of failed tasks that trigger the banning of pilots by a period of
time (see Table 7.4). However, overheads are actually appreciable with task duration
below five minutes. Results obtained in other cases seem to be comparable with those
of a FRFS scheduling approach [258], or even in [195], as shown in Figures 7.6-(d, e,
f). This is indicative of the design and implementation feasibility of GWpilot.

Other added overheads are hindering fill the pilots in DIRAC executions. In short
tests (a, b, c), the slowness of CLI commands dramatically decreases the number
of tasks submitted. That is due to the great number of DIRAC modules that are
working together to process the amount of requests coming from the application.
These processes maintain the 4 CPU cores of virtual machine above 60% of usage.
Consequently, commands take up to 20 seconds to return the results. This is the
reason for the pronounced jagged shape of running tasks in these tests. The drawback
is clearly attenuated in long tests (d, e, f), however scheduling and pilot overheads still
prevent reaching filling rates similar to the other approaches. Explanation is simple:
although Matcher is able to dispatch most of the tasks in milliseconds [204], tasks
queues are empty many times. Then, many pilots must wait 120s to try again getting a
task. To classify tasks in queues is not an immediate mechanism, as well as the process
in which the tasks are considered completed. Thus, there is a delay between accepting
a task and dispatching it; and there is another delay between the task being done and
its output being available for download. In the case of long tests (d, e, f), commands
do not have influence on the filling rate because the script always maintain 1,000
tasks in the DIRAC system without problems. Nevertheless, the script can not detect
finished tasks although their hosting pilots had completed the work. Additionally,
the sandboxing mechanism delays the processing of ended tasks. Consequently, many
tasks in long experiments are in unproductive states.

Therefore, the underutilisation of pilots and the delay on obtaining results is a
problem for individual users that plan to use DIRAC to execute applications compo-
sed by short tasks. However, this issue is not a drawback for the managers of large
collaborative projects where many clients use PMS at the same time, because pi-

126 Chapter 7. The GWpilot Framework

lots can always be filled with other user’s tasks if the MUPJ capability is enabled.
Thus, DIRAC will maintain the appropriate throughput and resource utilisation to
accomplish its associated projects.

7.5. Conclusions
In this chapter, a general-purpose pilot framework created to accomplish require-

ments listed in Subsection 3.2 has been presented: the GWpilot framework. Its com-
plete design, internal operation and features have been detailed. Furthermore, the
framework was functionally compared with two representative and customary pilot
systems. In this sense, a first step has been performed by comparing the basic per-
formance of GWpilot with these two systems. With both functional and experimental
comparison, these GWpilot functionalities have been demonstrated:

Achievement of better performance in Provisioning.

Accomplishment of the basic Task Scheduling of short tasks with minimum
overheads.

Support of a friendly CLI without delays.

Easy deployment without requiring modifying its code.

Complaining with grid security and protocols.

In particular, the performance achievements gains significance when the experi-
ments were performed without enabling the advanced scheduling features of GWpilot.
However, to fully support Multilevel Scheduling the system must allow users to cha-
racterise resources as well as to build Workload Scheduling algorithms that influence
on Provisioning. For this purpose, an advanced Task Scheduling are provided. Moreo-
ver, the system supports legacy applications and observes fair-share rules in multiuser
environments. It is also desirable that the framework can profit from resources be-
longing to several grid and cloud federations. All these aspects have been considered
in the design of the framework, but require a wide explanation and demonstration,
which are performed through the following chapters of this thesis.

Chapter 8

Simple Provisioning for
Legacy Applications

8.1. Introduction

GWpilot is designed to profit from the numerous advantages of GridWay; among
them, it incorporates interfaces for some of the few established standards in Distribu-
ted Computing to implement applications [47], such as DRMAA, JSDL and OGSA-
BES. Additionally, the user-friendly CLI from GridWay is available, and therefore,
any user can discretionally submit tasks to pilots through the gwsubmit command, as
has been shown through the previous experiments. It is important to note this aspect
because not only the applications already running on GridWay, but also any applica-
tion that observes those standards can profit from GWpilot. This way, the impact of
the solution proposed in this work is even higher.

The aim now is to show how any legacy application can be straightforwardly adap-
ted to GWpilot and consequently will make use of grid, but also of cloud resources
if the GWcloud drivers described in Chapter 5 are configured. The intention is to fo-
cus on this last feature, because the advantages of combining GWpilot and GWcloud
have not been achieved before by other systems and they constitute a step forward
in the use of IaaS clouds for accomplishing HTC calculations. Therefore, although
the compatibility with legacy applications is a distinguishing advance by itself, other
features are demonstrated such as decentralisation, middleware independence, easy
configuration, and lower overheads that allow local installations, even on the PC of
the user. Moreover, the capacity for accomplishing short tasks on resources geographi-
cally distributed and provisioned on-demand from cloud federations is a fundamental
achievement because the dynamic cloud brokering is very limited in practice, as was
shown in Chapter 2. The compatibility with grid standards or protocols is another
feature that increases the adaptability among infrastructures.

Legacy applications are benefited from these features almost without performing
modifications in their codes as few parameters have to be set in the configuration
of GWpilot. To achieve this goal, the application scope and the Task Scheduling
and Provisioning must be clearly differenced from the user’s and developer’s point of
view. Legacy applications rely on the Task Scheduling supported by the framework to
straightforwardly distribute the computation (see Subsection 2.3.6). However, users

127

128 Chapter 8. Simple Provisioning for Legacy Applications

should be aware of the used resources that are being provisioned, and can be constrai-
ned for their specific needs, especially when a special virtual environment is required.
These issues are tackled through the following sections.

8.2. Straightforward adaptation of legacy applica-
tions

To understand the mechanism, any developer or user should have in mind that
pilots actually execute the same wrapper as that used by GridWay for the regular
submission of grid jobs. This wrapper downloads the necessary files to execute the
user task, manage its execution, and subsequently store the outputs in the Grid-
Way host or somewhere in the grid. Therefore, the significance of any file or variable
declaration in the task description is maintained with pilots. This implies that the
file staging is also performed through the standard GridFTP or the GASS proto-
cols. Thus, the only condition to adapt any application to GWpilot is to simply add
LRMS_NAME = ”jobmanager-pilot” in the requirement statement of every task because
it indicates to the Scheduler that these tasks must be submitted to a pilot. This sta-
tement distinguish pilots from other type of resources in the GridWay host pool, but
it is one out of many tags that pilots publish that can be used to introduce specialised
Workload Scheduling policies.

All of these aspects are shown in the examples for JSDL, DRMAA and Grid-
Way templates in Figures 8.1-(a, b, c), respectively. The three codifications declare
the same task. They specify the location of a text file, which has to be taken as
the input of a tail command, and also where its output must be stored. However,
there are three additional statements that are important to correctly understand for
the adaptation of applications to the system. The REQUIREMENT statement has
to be used as previously commented to constraint the task execution to pilots, but
obviously, it can be used to restrict the execution to some of them. For example, it
is desirable that tasks will not fall into pilots near to end. This aspect is important
for grid executions due to the wall time limitations of batch queues, even for cloud
when providers follow a pay-per-use policy. Thus, as the QUEUE_MAX tag shows the
remaining wall time of every pilot, a minimum value can be set as an additional requi-
rement. Moreover, RANK and SUSPENSION_TIMEOUT are newly introduced. They
have been deliberately included in the examples shown in Figures 8.1-(a, b, c) because
they are repeatedly used in the experiments performed in this thesis, although any
other statement allowed in templates can be declared by similar translations in JDSL
and DRMAA. It is noteworthy that these scheduling features are only provided by
GridWay, but their declaration is allowed as extensions of the DRMAA and JSDL
specifications. Therefore, the compatibility of the applications with other systems is
guaranteed.

Therefore, including any constraint or ranking policies in the description of tasks
is indispensable to preserve any Workload Scheduling already implemented in the
application. Furthermore, it is useful to build a new specialised scheduling for the
adapted application. As these pilot tags are visible through the gwhost command,
developers can easily select the adequate ones for this purpose. For example, ranking
pilots is very simple because it only requires setting a numerical tag in the rank
parameter, that is, writing in the task template the sentence RANK =< tag_name > or
their equivalent statements in JSDL or DRMAA. This is the case of the examples of

8.3. Customised Provisioning 129

Figures 8.1-(a, b, c), where the ranking relies on the CPU speed (i.e., the CPU_MHZ

tag).
Alternately, the SUSPENSION_TIMEOUT is the maximum waiting time at the

remote batch system that GridWay allows before cancelling a regular job. However,
the suspension timeout acquires a new significance when pilots are used. No batch
queues are in pilots (although GridWay manages them as queues), and tasks are
immediately executed. Thus, this waiting time is the one needed by a pilot to fetch
a task and update its state, which is related to pilot pulling interval (PI). For this
reason, the configuration of the pulling interval is very important: it determines the
overhead introduced in the Task Scheduling, which allows developers to estimate
the better size of BoTs. Furthermore, if the banning feature is enabled, a pilot that
repeatedly ignores tasks beyond the timeout set will be ignored for future scheduling.
In general, users must set the SUSPENSION_TIMEOUT slightly higher than the
pulling interval established to effectively discard failing pilots.

Obviously, the tag mechanism can be used for implementing complex scheduling
algorithms to coordinate both Workload Scheduling and Provisioning. However, it is
out of scope of this chapter to thoroughly explain the possibilities that GWpilot can
offer to build those schedulers. The intention is to present how the basic features can
allow tuning the applications straightforwardly adapted to the framework. It is worth
mentioning anyway that in addition to the generic characteristics notified by pilots,
such as bandwidth, CPU type or usage, users can customise new ones. These tags
can be also obtained on-demand through the gwhost command, and developers can
use them to implement dynamic schedulers that select the adequate pilots for their
tasks, and even their own pilot factories. The possibilities and the tools offered for
these purposes will be deeply explained in Chapters 10 and 11.

8.3. Customised Provisioning

8.3.1. Provisioning in grid federations
The basic Provisioning capabilities of GWpilot on grids were extensively demons-

trated in the previous Chapter 7. Thus, the support of legacy applications can be easily
inferred from them. Moreover, experiments detailed through the following Chapters 9
and 10 are performed on grid making use of several legacy applications. However,
the configuration options that allow correctly profiting from these features must be
clarified to any user or developer, because there are concepts that sound similar to
the ones used in Task Scheduling, which meaning changes for Provisioning.

First, system counts on several drivers to obtain resources from several types of
infrastructures relying on different grid middleware (GRAM, CREAM, ARC and so
on). It is out of the scope of this thesis explains their peculiarities, but how the
selection of their resources can be constrained for a specific calculation. In this sense,
it is customary to constraint the visibility of IM to providers that support certain VO
or protocol. This is performed by setting the corresponding GLUE expression in the
configuration of the IM, which will be used for querying the IS of the infrastructures.

However, the main mechanism to guide the selection or providers is introduced
by the GWpilot PiF. In this chapter, only the basic features needed to straightfor-
wardly run applications are commented. In this sense, users must take in mind that
pilots created by the PiF are regular grid jobs, which are scheduled as usual by Grid-
Way. Through the static configuration of the PiF, any user can establish preferences

130 Chapter 8. Simple Provisioning for Legacy Applications

...
<jsdl:Application>

<jsdl:ApplicationName>TAIL_example</jsdl:ApplicationName>
<jsdl-posix:POSIXApplication>

<jsdl-posix:Executable>/usr/bin/tail</jsdl-posix:Executable>
<jsdl-posix:Argument>-n</jsdl-posix:Argument>
<jsdl-posix:Argument>100</jsdl-posix:Argument>
<jsdl-posix:Argument>file.txt</jsdl-posix:Argument>
<jsdl-posix:Output>stdout.${JOB_ID}</jsdl-posix:Output>

</jsdl-posix:POSIXApplication>
</jsdl:Application>
<jsdl:Resources>

<gw:GridWay xmlns: gw="http://www.gridway.org/gridway">
<gw:RANK>CPU_MHZ</gw:RANK>
<gw:LRMS_NAME>jobmanager-pilot</gw:LRMS_NAME>
<gw:SUSPENSION_TIMEOUT>200</gw:SUSPENSION_TIMEOUT>

</gw:GridWay>
</jsdl:Resources>
<jsdl:DataStaging>

<jsdl:FileName>file.txt</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Source>

<jsdl:URI>gsiftp://hostname/path/file1.txt</jsdl:URI>
</jsdl:Source>

</jsdl:DataStaging>
<jsdl:DataStaging>

<jsdl:FileName>stdout.${JOB_ID}</jsdl:FileName>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination>
<jsdl:Target>

<jsdl:URI>gsiftp://hostname/path/stdout.${JOB_ID}</jsdl:URI>
</jsdl:Target>

</jsdl:DataStaging>
...

(a) JSDL

(result, error) = drmaa_set_attribute(jt, DRMAA_REMOTE_COMMAND, ’/usr/bin/tail’)
(result, error) = drmaa_set_vector_attribute(jt, DRMAA_V_ARGV, ["-n", "100", "file.txt"])
(result, error) = drmaa_set_attribute(jt, DRMAA_OUTPUT_PATH, ":stdout."+DRMAA_GW_JOB_ID)
(result, error) = drmaa_set_attribute(jt, DRMAA_GW_RANK, ’CPU_MHZ’)
(result, error) = drmaa_set_attribute(jt, DRMAA_GW_REQUIREMENT, ’LRMS_NAME="jobmanager-pilot"’)
(result, error) = drmaa_set_attribute(jt, DRMAA_GW_SUSPENSION_TIMEOUT, 200)
(result, error) = drmaa_set_vector_attribute(jt, DRMAA_V_GW_INPUT_FILES, ["file.txt"])

(b) DRMAA (Python)

NAME = TAIL_example
EXECUTABLE = /usr/bin/tail
ARGUMENTS = -n 100 file.txt
STDOUT_FILE = stdout.${JOB_ID}
REQUIREMENTS = LRMS_NAME="jobmanager-pilot"
RANK = CPU_MHZ
SUSPENSION_TIMEOUT = 200
INPUT_FILES = file.txt

(c) GridWay template

Figure 8.1: Description of a task with the different approaches offered by GWpilot.

8.3. Customised Provisioning 131

DRMAA

Legacy
Application

GWpilot
Factory

pilots

GridWay Core

CLI

tasktask

GWcloud
Execution

Driver

GWpilot
Server

tasktask

HTTPS
pull

task

IaaS Federation abstraction

Scheduler

troubleshooting

launching applications

Federated
IaaS Cloud

GWcloud
Information

Driver

LDAPOCCI

Top BDII

Provider A Provider B

BES

Figure 8.2: GridWay ecosystem architecture for cloud federations.

(RANK) and constraints (REQUIREMENTS) for all the pilots to dynamically select
the proper resources in federations, but with the drawback of relying also on the IS.

Moreover, users can set a SUSPENSION_TIMEOUT for the pilot. In this case, its
meaning concurs with the original one when the early binding approach is followed:
the maximum waiting time allowed at remote queues. This aspect and the maximum
number of pilots managed are the main parameters to be configured. However, PI, T
and the maximum banned time are also important. Their influence on Task Scheduling
was previously explained, and it is similar to Provisioning but considering that the
discarded executions are pilots and the banned resources are the providers. Thus, T
can be fitted to modify the discarding rate and to improve the suitability of resources
selected, banning unreliable providers. On the other hand, PI always determines the
task turnaround and it should not be modified due to Provisioning criteria unless
GWpilot would be working on overloaded networks.

To improve understanding of differences between configuration parameters and
similar statements used in tasks as well as their mutual influence, explanations are
compiled in Table 8.1.

8.3.2. Provisioning in cloud federations
Provisioning in IaaS clouds can be easily achieved by means of the GWcloud dri-

vers. The behaviour of the GWpilot PiS and PiF as well as the features introduced
with GWcloud (see Chapter 5) are maintained when cloud resources are used. On the
other hand, the implementation of pilots is lightweight and without library depen-
dencies, i.e. they can run on any kind of Linux OS. So, no especial configurations are
needed to deploy the pilot overlay on cloud federations, allowing users to choose their

132
C

hapter
8.Sim

ple
Provisioning

for
Legacy

A
pplications

Table 8.1: Differentiation between the meaning of basic task statements and configuration options as well as the effects on Workload Scheduling
and Provisioning.

Task statements Provisioning configuration
- It has influence in the Tapp and Tsched -n < unsig. int > Maximum number of pilots
- PI determines overhead in task dispatching and

Tapp

-i < PI > Pilot pulling interval against PiS

- PI · T determines when a task is killed by pi-
lot because it does not communicate with PiS.
Additionally, PI · T determines when the Sche-
duler considers a task as failed if no suspension
timeout has been set for this task

-t < T > Number of retries to communicate with PiS. PI·
T determines when pilot ends because it does
not communicate with PiS

SUSPENSION_TIMEOUT At least sightly higher than PI to avoid failing
pilots. Sightly higher than PI ·T to recover run-
ning tasks on unreliable network environments

-w < unsig. int > Maximum waiting time in grid queues or for VM
creation. (It is the SUSPENSION_TIMEOUT

that PiF will set in pilot job declaration)
REQUIREMENT At least = LRMS_NAME = ”jobmanager-

pilot” to run task on pilots only. Additionally
other constraints can be set from Table 7.1, e.g.
setting QUEUE_MAXTIME greater than the
expected execution time of the task

-c <REQUIREMENT> Expression to constraint pilot submission to cer-
tain providers. (It is the REQUIREMENT that
PiF will set in pilot job declaration)

RANK Preference sets with numerical tags from Ta-
ble 7.1

-r <RANK> Expression to select more suitable providers for
pilot submission. (It is the RANK that PiF will
set in pilot job declaration).

- At least PI ·T to force the end of an unfeasible
running pilot

FR_MAX_BANNED At least sightly higher than the -w option to
discard unreliable providers

8.3. Customised Provisioning 133

virtual environment. This distinguishing feature has not been achieved by the current
pilot systems that follow a pulling mechanism [115, 31].

The approach followed is similar to the one used in grid, as can be seen in Figu-
re 8.2. According to the number and requirements of the tasks created by any user
or application, the PiF automatically submits the necessary pilots as usual, which
are also stored in the Job Pool. Thus, the Scheduler is in charge of the matchmaking
among cloud providers and pilots, the management of which is delegated to the GW-
cloud ED. This module works with pilots as common jobs. It wraps the execution of
the pilots into the contextualisation files and performs the OCCI commands needed
to boot the corresponding VMs. The started pilots will be continuously pulling PiS
for tasks.

The basic configuration for Provisioning is the same than grid but with two excep-
tions. The existence of a contextualisation file, which is not needed to be modified for
a straightforward adaptation, and the meaning of the −w option, that is now related
to the maximum allowed time to start the VM. Additionally, the banning feature is
the only way to know the quotas set at providers, as has been previously commented
in Chapter 5.

Therefore, users can run their legacy codes on GridWay as usual. The tasks created
by these applications are scheduled among the pilots enrolled and within the virtual
environment selected. To better understand how the Task Scheduling and Provisioning
are coordinated in a cloud federation, the sequence of steps that compiles the ones
described in Figures 5.2 and 7.5 is explained as follows and in Figure 8.3:

1. GWcloud ID works as in Subsection 5.3.3. It periodically searches for cloud
provider updates at top-BDIIs, which are included into the Host Pool.

2. The GridWay Scheduler notices that some cloud provider is free and fulfils the
requirements of certain pilot waiting in the Job Pool. Consequently, the SUBMIT

operation is sent to the GWcloud ED.

3. The GWcloud ED processes the operation as in Subsection 5.3.3, sending back
a CALLBACK operation and performing the create operation against the OCCI
service of the provider.

4. The provider creates the VM following the provided os_tpl and resource_tpl.
Through the booting process, the Cloud-Init contextualisation starts the pilot
job.

5. The pilot advertises the PiS and updates their characteristics. Therefore the
Provisioning phase is completed and begins the Task Scheduling as usual (see
Subsection 7.2.2). GridWay Scheduler continuously dispatches tasks to the pilot
if they are waiting in the Job Pool.

6. When the pilot is idle during the T · PI interval, it ends, and as any other job,
the VM automatically shuts down.

7. The GWcloud ED periodically tests the VM state through OCCI operations. If
the VM shuts down, the driver performs the deletion of the virtual workspace
because the pilot has ended its execution.

134 Chapter 8. Simple Provisioning for Legacy Applications

BDII GWcloud ID Scheduler PiS Provider A GWcloud ED

LDAP query

A is updated A is free SUBMIT (pilot job, endpoint)

OCCI:create(os_tpl, resource_tpl, CloudInit.cfg)
Create
VM

Context.
(start pilot)

Advertise(pilot)

SUBMIT (task1, pilot) store matching

Get()

task1
execute
task1

endedUpdate(task,ended)

remove
matching

CALLBACK

(task1, ended)

SUBMIT (task2, pilot) store matching

Get()

task2
execute
task2

endedUpdate(task2,ended)

remove
matching

CALLBACK

(task2, ended)

Get()

void

stop

VM
halted

OCCI:delete()

deleted

CALLBACK(pilot job, ended)

Figure 8.3: Sequence of activities performed by the actors of GWpilot to accomplish any
task in clouds. They correspond to the steps 1-7 described in Subsection 8.3.2.

8.4. On-demand radiotherapy simulations on the cloud 135

8.4. On-demand radiotherapy simulations on the cloud

The objective of this Section is to show a simple, but real use case that focused
on customising cloud provision, also profits from federated clouds. The proposed ex-
periments will demonstrate the basic capabilities of the solution that differentiates
from other approaches, such as decentralisation, middleware independence, capacity
for accomplishing short tasks, on-demand Provisioning, compatibility with legacy ap-
plications, dynamic brokering, etc.

For this purpose, a real application that should be managed in a personal worksta-
tion is distributed and executed on-demand in the FedCloud resources. Additionally,
the idea is not to set up a pre-configured VM or a VM similar to the worker nodes
used in the EGI grid infrastructure, i.e. Scientific Linux with gLite/UMD. Therefore,
a clean Debian-based template image will be chosen from appdb.egi.eu repositories.

8.4.1. Legacy application and configuration
BEAMnrc [71] is a general-purpose Monte Carlo code to simulate the radiation

beams from radiotherapy units. Since the outcome of Monte Carlo simulations is
based on random sampling, typically ∼ 108 particle histories are needed for good
accuracy, taking weeks of computation on a ∼ 2 GHz processor. This remains the main
hindrance in clinical implementation of Monte Carlo simulations. For this experiment
it has been used a typical calculation of 4 · 108 particles and a rectangular geometry,
which represents a use case that can be approached in a hospital environment. The
workload was divided into 2,000 tasks, which lasts between 150-280 s on current
processors (2.4-3.2 GHz).

The idea is that the specialist in radiotherapy will launch the simulation on his
own workstation before starting any treatment. Therefore, a machine with one i3-530
(2 cores, 2.93 GHz) and 4 GB of RAM was configured with GridWay, GWpilot and
GWcloud drivers. Additionally, to avoid the necessity of host certificates, the system
will use GASS as transference protocol. The fedcloud.egi.eu VO belonging to the EGI
FedCloud infrastructure is used to perform the tests.

To ease the comparison with the previous experiments, and because one of the
objectives is to create Debian-based VMs in FedCloud, the configuration of GWcloud
is maintained, being Table 5.3 valid again to describe the suitable providers. For the
same reason, the configuration options set for GWpilot in Section 7.4 are maintained,
except those related to cloud Provisioning. In this sense, the PiF is allowed for ma-
naging a maximum of 200 pilots (running on VMs), but the Scheduler only will wait
600 s for the creation of every VM. On the other hand, the dispatching chunk, i.e.
the number of tasks and VMs managed during a scheduling cycle of 10 s, is set to 20.
However, the submission is also limited to dispatch one VM per suitable provider in
every cycle.

Obviously, the resource banning feature of GridWay is enabled, so whenever a pilot
fails, its hosting provider is banned for a variable period of time. This last feature
will be of importance in the experiments, because the only way to currently know the
quotas established at providers is by continuously testing the creation of VMs.

Note that BEAMnrc was already adapted using the DRMAA producer-consumer
library described in Section 4.3. Thus, to enable application to profit from Task Sche-
duling supported by GWpilot, only setting the requirement argument to LRMS_NAME

= ”jobmanager-pilot” is needed.

136 Chapter 8. Simple Provisioning for Legacy Applications

Therefore, any unskilled user can easily perform all those configurations.

8.4.2. Results

Three identical tests as previously described have been performed in different days
to avoid the influence of unusual infrastructure statuses.

First outcome is the noteworthy limitation of the amount of available resources.
The number of reliable providers is really smaller (7) than the number of theoretically
suitable providers (14), as it is shown in Table 8.2. These results demonstrate the two
affirmations done in this work: as grid sites, cloud providers are not immune from
errors produced by the middleware, network outages or misconfiguration; the other
issue is the illusion of the fully availability of the resources, because user quotas are
not currently shown in information systems. Therefore, experiments demonstrate the
suitability of proposed Provisioning based on continuously checking the real availabi-
lity and reliability of every resource. Scheduler always dispatches a VM to providers
until it gets a failure from the GWcloud Execution driver. Consequently it bans the
provider during 3,600·(1− e∆t/650) s, i.e. according to the elapsed time ∆t from last
failure, the banning time can be set to a maximum of one hour. These are the reasons
for the number of failed creations in every reliable resource as they correspond to the
times that the driver has failed to create a VM because any quota has been reached.
In the case of unreliable resources, this number really means the number of failed VM
creations and OCCI errors.

Same aspects can be seen in Figures 8.4-(a, b, c). They show the evolution of Pro-
visioning through the three tests from the user’s point of view. The number of VM
requests is higher at the beginning because all suitable resources are tested. Then,
some of them are actually started. Scheduler progressively takes account of failed at-
tempts, and the gap between requested and running VMs is progressively reduced.
However, not all started VMs correctly perform the contextualisation or provide net-
work connectivity (at least through NAT). Additionally, VMs last in creation (bear
in mind that 600 s are allowed) and booting (starting services and contextualisation),
so pilots try to connect to GWpilot server (20 tries · 30 s = 600 s) until they end.
Moreover, VMs can unexpectedly crash. These are the reasons of the difference bet-
ween pilots registered and the VMs running, in special for the Figure 8.4-(b), where
some VMs fail on the 76th, 90th and 108th minute, but the system last in discarding
the pilots the corresponding 600 s.

The slope in the appropriated resources is pronounced as expected [65]. This capa-
bility differentiates among other mechanisms of provision in pilot systems that are not
able to manage together several Provisioning requests. In this sense, nearly the maxi-
mum of provisioned VMs is reached in around 20 m and the half before 10 m. These
measurements are mainly related to the VM creation time limit of 600 s. Therefore,
it is reasonable to obtain the most provisioned resources after the first failed creation
interval. From this 20th minute point on, the number of VMs remains roughly stable.
Thus, it can be concluded that the maximum usage limits of the cloud infrastructure
is reached by the user launching the application.

It is important to mention how the system makes the most of the provisioned
resources. For this reason, the filling rate of pilots with execution tasks is added to
Figures 8.4-(a, b, c). The average is above 85%, which is a great result that guarantees
an efficient profiting when short tasks are scheduled.

8.4. On-demand radiotherapy simulations on the cloud 137

(a) Test 1. (b) Test 2.

(c) Test 3.

Figure 8.4: Resource Provisioning during the execution of the BEAMnrc application on
the EGI FedCloud infrastructure. Additionally, the filling rate is included for every test.

Table 8.2: Number of VM instances successfully set up and failed at every provider. Addi-
tionally, the number of failed requests at unreliable sites is shown.

Test 1 Test 2 Test 3
Provider set up failed set up failed set up failed
https://carach5.ics.muni.cz:11443 18 6 11 5 10 4
https://controller.ceta-ciemat.es:8787 5 7 15 4 27 3
https://egi-cloud.pd.infn.it:8787 30 13 24 5 24 4
https://fc-one.i3m.upv.es:11443 4 4 - - 13 8
https://nova2.ui.savba.sk:8787 30 3 19 3 19 6
https://prisma-cloud.ba.infn.it:8787 2 3 22 10 0 8
https://stack-server-01.ct.infn.it:8787 12 3 11 6 10 4
Unreliable (7) 104 92 109

138 Chapter 8. Simple Provisioning for Legacy Applications

8.5. Conclusions
The achievements introduced in this chapter consolidate GWpilot as a general-

purpose pulling pilot system that successfully works on grid and cloud environments.
Among the demonstrated features compiled there are a set that differentiates the
framework from other approaches:

Friendly interface and compatibility with legacy applications.

Efficient execution of very short tasks.

Independent and easy configuration.

Lower overheads that allow decentralised and local installations, even on the
PC of the user.

Discovery and selection of providers according to preferences and constrains,
even on cloud federations.

Personalised virtual environments.

Post-configuration of VMs on demand.

Therefore, through GWpilot and their drivers, any legacy application can improve
its performance by the straightforward use of the late-binding design. Unlike other
approaches, this framework can be easily deployed and customised and it is able
to perform a dynamic Provisioning based on the specific status of grid and cloud
federations at any time.

Although the basic support of Task Scheduling and Provisioning has been shown,
the performance when these layers are combined has not been evaluated yet. Addi-
tionally, the configuration options described makes Provisioning too static and tied
to IS and to individual calculations.

Furthermore, as the use of GWpilot includes all the advantages summarised in
the beginning of Section 7.2, the system can potentially support the customisation of
whole scheduling at user-level, allowing among other features:

Personalised monitoring of new configurations, performed either in provisioned
grid WNs or in VMs from the cloud.

Advanced Task Scheduling and Provisioning techniques, preserving the fair-
share and making use of several infrastructures.

Capacity of support other scheduling tools such as self-schedulers.

These achievements jointly with their experimental demonstration are performed
through the following chapters.

Chapter 9

Improved Scheduling and
Provisioning Techniques

9.1. Introduction

The GWpilot design provides users with high levels of performance as was de-
monstrated through the previous Chapters. First, the GWpilot Server uses its MAD
role to notify and receive GridWay messages about pilot and task statuses in a con-
tinuous stream. Second, the size of messages was reduced to a minimum in all the
communication stages. Thus, the message protocol used is a simple HTTP request
from the pilot, which is less complex than the one used in web services, for example.
Additionally the information is formatted in the tag-based mechanism of GridWay,
which is simpler than other specification formats, such as the ClassAds [259] langua-
ge used in Condor. With these decisions, the objective is two-fold: the reduction of
the task turnaround time through the limitation of overheads, and the possibility of
adapting the behaviour of the system by introducing customised policies to perform
a specialised scheduling for applications with certain computational needs.

Furthermore, the GWpilot system is multi-application and multi-user, maintaining
the fair-share policies of GridWay. These features allow better profiting from remote
resources appropriated by pilots because different task types can be scheduled to
reduce the number of idle nodes. Additionally, statistics from pilots, resources and
users are dynamically compiled and can be subsequently used in other executions.
These are important advantages over application-oriented pilot frameworks, such as
DIANE or BigJob. Moreover, GWpilot is able to concurrently provision resources
belonging to different DCIs.

However, when the users, tasks, providers, pilots and characteristics taking in-
to account for scheduling exceed certain volume, the performance achieved by the
GridWay Scheduler falls into unfeasible values. It is noteworthy to mention only one
instance of the Scheduler performs whole matchmaking. This is so due to GridWay
has initially developed for early-binding scheduling in a grid environment, where the
number of resources is fewer than the ones managed with pilots. Moreover, cloud pro-
viders increase the complexity by adding different characterisation and behaviours.
Additionally, the capacity of overloading grid queues was not implemented because
this feature is usually counterproductive in early-binding. On the other hand, mana-

139

140 Chapter 9. Improved Scheduling and Provisioning Techniques

ging whole scheduling at the same box as was required in Subsection 3.2.2, will enable
the system to perform Multilevel Scheduling. This achievement will be properly jus-
tified in Chapter 10, but they are consequence of the work performed through this
one.

To solve these issues, modifications in the algorithm of Scheduler, but also in the
GridWay core and the Information Manager (IM) have been performed to improve
its performance to the levels required. Additionally, it was implemented a smarter
method for queuing pilots at remote grid sites, meanwhile the generality needed for
an efficient cloud Provisioning is preserved. Therefore the objectives of this chapter
are to:

1. describe the matchmaking algorithm of the Scheduler and the improvements
made;

2. demonstrate that multiple applications can run together on the system and can
implement more advanced Workload Scheduling than FCFS.

3. show the multi-DCI capacity with the use of multiple execution drivers at same
time;

4. prove overload introduced does not induce added overheads that modify turna-
round.

9.2. Improved matchmaking

A common execution with GWpilot demands a performance level from GridWay
that has never been tested before. First, the number of pilots that can be provisioned
from current DCIs clearly exceeds several thousands. As an example, the experiments
performed in Chapter 7 demonstrated the capacity of GWpilot for Provisioning more
than one thousand pilots from a medium-sized VO belonging to the EGI federation.
The GridWay core was originally designed to support high loads and can easily ma-
nage multiple MADs and these volume of jobs, but its Scheduler module does not
response in the time order required to accomplish short-tasks.

The evaluation of this new volume of pilots and the corresponding tasks create
a computational complexity that is infeasible for the Scheduler if its original algo-
rithm [10] is used. The algorithm is composed by two main loops, where the first one
evaluates the suitability of every resource for every job, and the last one performs the
job dispatching following the classification previously performed, but observing the
fair-share rules configured.

In general, the first main loop compares the constraints of every job (j) with the
characteristics of every queue (q) to select an adequate one. Subsequently, it performs
the ranking of these filtered queues following the description of the job. Thus, the
complexity of this procedure is close to Θ(Q · J), where Q is the set of queues offered
by resources (i.e., hosts: H), and J is the number of jobs waiting to be scheduled.
The number of parameters evaluated also influences this estimation, but its order of
magnitude is incomparable with Q and J and can be discarded for the estimation.

In the case of GWpilot, J is the addition of the tasks and the pilots waiting in
the system because both types are considered at the same time by the Scheduler.
On the other hand, Q also comprises the virtual queues offered by the pilots already

9.2. Improved matchmaking 141

provisioned. Therefore, if GWpilot maintains 2 · N = Q + J = 10, 000 items, the
complexity is close to Θ(N2), and the scheduling will last on the order of minutes.

To guarantee the performance of the system, the part of the Scheduler that per-
forms the initial matching of tasks-pilots-resources is modified to achieve a complexity
of Θ(log(Q) · log(J)), as it is shown in Algorithm 2. The suitability of this solution
will be demonstrated in Section 9.5.

Algorithm 2: More efficient selection of resources, avoiding to evaluate the
similar jobs twice (i.e. tasks and pilots for GWpilot case), and based on the new
estimation of slot availability at remote queues.
Q←− {h.q (∀h ∈ H) }; S ←− {∅};
for j ∈ J do

j.Q←− {∅};
if @(q′′.requirements ∈ S = j.requirements) then

for q′ ∈ Q do
if Fulfil(j.requirements, q′.characteristics) then

if q′ /∈ S then
q ←− (copy)q′
max_job_running ←− mı́n(q.maxrunningjobs, q.nodecount)
max_jobs←−
máx(mı́n(q.maxjobs, q.nodecount · 2)),max_job_running)
q.max_wait←− max_jobs−max_job_running
q.queueable←−
máx(0,max_jobs− q.jobrun− q.jobwait− h.used_slots)
gwfreenc←−
mı́n((max_job_running − h.used_slots), q.queueable)
q.slots←− mı́n(gwfreenc, q.freenodecount)
q.requirements←− j.requirements
q.rank ←− ComputeRank(q.characteristics, j.rank);

else
if ∃(q′′.rank ∈ S = j.rank) then

q ←− (copy)q′′

else
q ←− (copy any)q′′ ∈ S
q.rank ←− ComputeRank(q.characteristics, j.rank);

S ←− S ∪ {q}
j.Q←− j.Q ∪ {q}

else
for q′ ∈ S do

q ←− (copy)q′
if j.rank 6= q.rank then

q.rank ←− ComputeRank(q.characteristics, j.rank);
S ←− S ∪ {q}

j.Q←− j.Q ∪ {q}

142 Chapter 9. Improved Scheduling and Provisioning Techniques

9.3. Overloading queues

Alternately, pilot systems should benefit from the slot appropriation to obtain bet-
ter resources, although pilots have to wait long times at remote queues. This aspect
was not fully explored in previous GridWay releases because it was not needed for the
scheduling based on an early-binding approach. Therefore, a new improvement is ne-
cessary to properly fill remote queues with waiting pilot jobs, but without overloading
them with unproductive pilots that will never be executed.

Nevertheless, IS do not completely publish all the information related to the usage
of remote LRMS queues. Following the GLUE [5] scheme, IS only show the total capa-
city (NODECOUNT), free slots (FREENODECOUNT), running jobs (JOBRUN), wai-
ting jobs (JOBWAIT), the maximum available slots per VO (MAXRUNNINGJOBS),
and the number of jobs that will fill the queue (MAXJOBS) if they are completely
free. Note that this information could be even erroneous. No information about user
priority or the number of remaining jobs per VO is given. Obviously, the number of
jobs that a specific user should submit to a queue is neither the maximum queue ca-
pacity nor the published free slots because the LRMS fair-share policies usually imply
that only a few of these nodes are really available for a non-privileged VO user. All of
them constitute a problem for any Provisioning algorithm because it is impossible to
assure the slot availability in any site. The use of pilot jobs can reduce the influence
of this problem because a bunch of pilots can be launched to every remote queue.
However, the number of pilots must be limited to avoid overloads and the possibility
of being banned from sites. To attenuate this issue, pilot systems usually take into
account only the free slots or implement their own Provisioning algorithms but do
not provide users with mechanisms to customise this behaviour.

For this purpose, the GLUE tags are monitored and included as generic variables in
GridWay to be used in scheduling decisions. Because these GLUE tags could contain
inaccurate information, two separate estimations are made: the maximum number
of jobs allowed in the waiting state (max_wait), and the number of jobs that are
allowed to queue (queuable) at that moment. They are included in Algorithm 2,
which evaluates the resources with respect to the description of tasks.

Nevertheless, these estimations will not be absolutely correct because any estima-
ted value will most likely be higher than the correct one, even more so in a highly
dynamic environment such as a grid. For this reason, a new configuration parame-
ter was introduced into the GridWay configuration that indicates the percentage (σ)
of the maximum number of waiting jobs (max_wait). Additionally, foreseeing an
over-estimation, the scheduler will now use usable_slots as a global prediction at the
moment of dispatching pilots to resources. This procedure is depicted in Algorithm 3.

9.4. Scheduling configuration and performance

Items belonging (J) are ordered according to the initial priority given by the
user, the weight of which progressively increases as j remains waiting. However, alt-
hough it is not expressed in Algorithms 2 and 3, every user (u) and resource (h) has
assigned some priority that is used to build the final priority of either the task or
the pilot (j). Thus, algorithms summarise how the fair-share is performed in GWpi-
lot and how the limitations set (DISPATCH_CHUNK, MAX_RUNNING_USER and
MAX_RUNNING_RESOURCE) has influence on task and pilot dispatching. For indi-

9.5. A more reliable mechanism to perform transport calculations 143

Algorithm 3: New dispatching algorithm improved for filling queues. It is per-
formed every SCHEDULING_INTERV AL.
dispatched←− 0
for j ∈ J (ordered by j.priority) and dispatched < dispatch_chunk do

u←− j ↑ user
running_user ←− u.used_slots+ u.dispatched
if (running_user ≤ max_running_user) then continue;
for q ∈ j.Q (ordered by q.rank) do

h←− q ↑ hostname
running_host←− h.used_slots+ h.dispatched
if (running_host ≥ max_running_resource) then continue;
free_slots←− q.slots− h.dispatched
queueable_slots←− q.queueable− h.dispatched
usable_slots←− mı́n(q.max_wait · σ · 0,01 + free_slots, queueable_slots)
if usable_slots ≥ j.np then

dispatched←− dispatched+ 1
h.dispatched←− h.dispatched+ 1
u.dispatched←− u.dispatched+ 1
gw_scheduler_job_dispatch(j, q)
break

h.used_slots←− h.used_slots+ h.dispatched
u.used_slots←− u.used_slots+ u.dispatched

vidual users, the interest is in the possibility of prioritising some task over others. This
feature is used in the experiments described in Subsection 9.5.3 to enable scheduling
polices among applications.

9.5. A more reliable mechanism to perform trans-
port calculations

The intention is to show how the GWpilot configuration and the parameters of a
legacy application can be adjusted to improve the final performance and reliability of a
real calculation, in this case, the DKEsG and ISDEP codes adapted in Chapter 4. For
this purpose, the validity of the assumed ordering of DKEsG in low collisional plasmas
was explored. The importance for the fusion community, the underlying physics and
the interpretation of the physical results obtained from the executions performed in
this section are fully explained in the Appendix C.

Furthermore, for the computational field, the objectives of the calculations are
multiple. First, the aim is to demonstrate that several legacy applications can straight-
forwardly run on GWpilot at same time and profit from its advantages, in particular,
implementing Workload Scheduling different to FCFS without experiencing perfor-
mance losses due to the Scheduler. Another main interest is to introduce the signi-
ficance of the measurements performed in this thesis and to subsequently show the
reduction of queue waiting times and middleware overheads when GWpilot is used.
For the sake of comparison, the results obtained in Chapter 4 will be taken into con-
sideration, especially those regarding the turnaround overhead and job failures. With
relation to this, another objective is to demonstrate that important overheads can
be estimated based on the selected configuration, especially the ones generated by

144 Chapter 9. Improved Scheduling and Provisioning Techniques

Scheduler. Additionally, it is important to show how GWpilot can establish a network
overlay among different type of resources, for example, the accesses by CREAM and
the GRAM middleware.

9.5.1. Test bed

The calculations have been performed on resources belonging to the GISELA/S-
CALAC infrastructure. For this purpose, GWpilot on a GridWay 5.8 with the im-
provements described through previous sections was configured on a Scientific Linux
5.7 that contains the default Python modules for the distribution and the gLite 3.2
client middleware. Thus, GWpilot schedules all the generated pilot jobs on the gisela
VO (i.e. prod.vo.eu-eela.eu). It is noteworthy to mention that GISELA is the exten-
sion of the EELA-2 project and its grid infrastructure is similar to the one studied
in the Section 4.4. To make the most of the newly implemented scheduling features
and the pilot jobs, in this experiment the maximum resource allocation is restricted
to MAX_RUNNING_RESOURCE=100 slots per site, discarding CEs that offer 32 bit
WNs. Additionally, the backup CEs and CERN resources are also discarded. The re-
sulting available computational power measured in slots for this VO is shown in two
last rows of third column in Table 9.1. GridWay is also configured to allow submitting
σ = 15% more jobs than the estimated free slots (but not over the established limit of
100 jobs). While GWpilot is configured to create a maximum of 550 active pilots, the
dispatching suspension timeout (the maximum time spent at the remote LRMS) for
these pilot jobs is set to 5 hours, and the pulling interval is established in 45 seconds
with a maximum number of retries of 20.

Despite ISDEP and DKEsG already has been adapted to use CLI and both run on
GridWay, the work presented in Chapter 4 only demonstrates that users can perform
executions in a grid following the early-binding mechanisms, but not with pilots. To
properly benefit from GWpilot, these programs have been straightforwardly adapted
according to the Subsection 8.2 to provide another parameter option that automati-
cally includes the LRMS_NAME = ”jobmanager-pilot” requirement when BoTs are sub-
mitted. This allows users to choose using the pilot system. Additionally, they allow
declaring any ranking or requirement expression as a parameter to benefit from the
reliable characterisation of pilots. It is important to explain again that the suspension
timeout acquires a new significance when pilots are used, i.e., it is the response time
from the pilot when a BoT is scheduled to it. Therefore, the user has control of the
important configuration aspects that influence the performance of the computation,
as will be shown in the test described through this Section.

Moreover, as the intention is to improve the compatibility with legacy applications,
DKEsG and ISDEP have been adapted to DRMAA following the producer-consumer
library described in Section 4.3. In this sense, the following configuration has been set
for DKEsG and ISDEP: the maximum number of submitted BoTs has been limited
to 500; the SUSPENSION_TIMEOUT (the maximum time for fetching the task by
the pilot, as commented in Subsection 8.2) has been set to 60 seconds; the resource
allocation priority has also been set relying on the CPU speed, as GWpilot does (not
regarding the corresponding IS, but the real characteristics notified by pilots using
the RANK = PILOT_CPU_MHZ expression); and the polling time has been set to a
quarter of a second.

Therefore, it is worth mentioning that the number of DKEsG instances in the
GridWay queue will not reach the maximum number of pilots that could be available

9.5. A more reliable mechanism to perform transport calculations 145

in a certain time. This is done to improve the resource usage as time goes by: the
best pilots will be selected, and the rest will die whenever no work is assigned to
them. Additionally, this over-submission of pilot instances is set to allow a certain
error margin in the estimation of usable slots, especially when queues are overloaded.
This circumstance is shown in Table 9.1, where the maximum number of usable slots
for these 550 pilots is only 500.

9.5.2. Preliminary test
DKEsG-Mono executions have highly variable completion times depending on one

parameter under consideration, the plasma radii. Additionally, other input parame-
ters, such as the selected Legendre and Fourier polynomials, also influence the dura-
tion of the task, which is affected by an exponential order. Therefore, it is mandatory
to run a lightweight test to subsequently obtain adequate DKEsG-Mono parameters
in the ranges that successfully ensure the accurateness of the final results because
the main computation can last for weeks. This preliminary work is not necessary for
ISDEP because the particle trajectories are independently calculated in a much lower
time, as will be explained below. Subsequently, the main calculation is performed
to compare the accuracy of the ISDEP and DKEsG results and it is described in
Subsection 9.5.3.

For accomplishing a superficial calculation with DKEsG, a typical parameter scan
range corresponding to the TJ-II fusion device [260] was selected for DKEsG-Mono.
This implies a broad variation of three input parameters: the collisionality (ν); the
radial electric field (E); and the radial position of the plasma (ρ). The two first
parameters are included in CMUL and EFIELD parameters, as was explained in
Section 4.4. The ranges of these parameters are finally set for this work as follows:

ρ[0.00714, 0.0143 · · · , 0.993, 1], EFIELD[-250 · · · 250:10],
CMUL[log(1 · · · 9)10(−7···0)]

resulting in 140 radial positions, 51 values of the radial electric field and 72 values
of the collisionality.

This input parameter combination results in 514,080 independent calculations,
whose CPU consumption is directly proportional to the plasma radii considered. No-
te that the most updated DKES [245, 248] code is used now. In this sense, that
consumption ranges from 58 to 751 seconds on an old 64-bit processor Intel Xeon
X5365 3 GHz and from 40 to 523 s on a recent Xeon E5-2667 2.9 GHz. The first
machine is taken as a lower reference of the performance required by the application
for enabling comparisons with previous experiments performed in Section 4.5. Addi-
tionally, to perform a similar test with respect to the one in Subsection 4.5.2, five
calculations were grouped in a unique BoT.

Subsequently, the resulting output data are used by the DKEsG-Neo module to
calculate the Neoclassical transport coefficients. The objective now is to obtain NC
coefficients that allow the calculation of fluxes. Thus, the average time spent for
any of these 420 new tasks is approximately 20 minutes and 12 minutes on the afo-
rementioned machines, respectively. Therefore, they could be directly added to the
whole computation without any chunking. Thus, the experiment is finally composed
of 103,236 independent BoTs, the submission of which will be ordered from inner to
outer radial positions in the plasma, i.e., the farther outward the radial position, the
longer the execution time.

146 Chapter 9. Improved Scheduling and Provisioning Techniques

Table 9.1: Executions of DKEsG bags of tasks in pilots and the corresponding grid jobs
containing pilots on GISELA infrastructure.

Resources Executions
Type Max. num. Max. usable slots Submitted Total OK Failed Err. Susp.
Pilots 550 500 BoTs 103,628 103,236 392 177 215

CREAM 15(a) 672(b) Pilots 3,479 1,146 2,333 882 1451
GRAM 5(a) 402(b) Pilots 1,957 938 1,019 621 398

(a) Discarded 32 bits WNs, backup CEs from the same site and CERN resources.
(b) Limited to 100 slots per resource.

Results

The time spent by the preliminary test was 94 h 27 m 31 s. For the sake of
comparison, if this calculation were performed sequentially on the selected machines
described in the previous section, it would have lasted for approximately 6.58 and
4.54 years, respectively, i.e., 610 and 420 times slower than this GWpilot-enabled
test, where usage is limited to 500 pilots.

Table 9.1 shows the comparison between the resultant executions of BoTs using
pilot jobs and the corresponding grid jobs utilised for wrapping these pilots. The
column labels stand for the ones also set in Table 4.3 to allow the comparison: BoTs
(or pilot jobs) successfully executed, which are grouped under the OK column, and
for the total number of failed BoTs (or pilot jobs), which appear under the Failed

column. The last two columns depict the failures due to an exceeded suspension time
at remotes resources (Susp.) and the ones produced by any other error (Err.). Note
that neither performance thresholds that would stop pilots or tasks nor migration is
allowed, unlike the experiments in Section 4.5. However, the suspension timeout for
pilots and tasks have been set.

First, a distribution of jobs (the pilots) among CREAM and GRAM resources
can be appreciated with a high incidence of failed jobs with respect to the grouped
tasks executed by pilots. The higher number of suspension errors in CREAM sites
are related to their overload: there are many resources that offer few slots (< 100).
This implies more queue waiting time, so many jobs were discarded before the 5-hour
threshold. It should be noticed that although the accumulated time wasted by sus-
pended pilots was 1 year and 20 days, the total time wasted at remote queues by
successfully executed pilots was 14 days. Additionally, the number of waiting pilots
has been maintained roughly constant at a value slightly less than 50, with the ex-
ception of the moments in which GridWay overhead is increased. These exceptional
circumstances will be explained below, but the remaining results indicate that the
new mechanisms described in Section 9.3 are suitable for Provisioning pilots. Thus,
GWpilot masks the negative influence of these overheads, which are not appreciable
by the user.

The number of failed BoTs in the pilots’ execution deserves a fuller explanation. As
the reader can appreciate, although GWpilot is much more stable than the traditional
early-binding methods, it is not immune from errors produced by the middleware,
network outages or any other typical problem related to the grid. This is the case
of the 392 failed executions shown in Table 9.1, which are the consequence of pilots
dying when a BoT is running inside (Err.) or are produced whenever a group of tasks
has been dispatched to a dead pilot that has not been discarded yet. Nevertheless,
both sources of error only represent four per mil of the total submitted executions.

9.5. A more reliable mechanism to perform transport calculations 147

Figure 9.1: Turnaround average times per hour of BoTs submitted by DKEsG to GWpilot
system. It is compound of the real consumed CPU time at remote resources, the GridWay
scheduling time and the added pilot overhead. The time for generating BoTs and their
completion rate are also displayed.

However, one objective of the test carried out is to demonstrate better performance
than that offered by traditional submission mechanisms for the grid. For this reason,
the real turnaround time of each BoT is measured, i.e., the time difference between
when a BoT is queued for dispatch in GridWay and the GridWay acknowledgement
that the BoT is completed. This value can be decomposed in the real consumed CPU
time at the remote resource, the overhead produced by the pulling interval performed
by pilots, and the overhead primarily produced by the incapacity of the GridWay
scheduler to dispatch BoTs due to the inexistence of free resources (in this case, idle
pilots). These three average values per hour are represented in Fig. 9.1.

Although it is not concerned with GWpilot, the DKEsG overhead is also displayed
in the figure because it influences the final makespan of the calculation if not enough
DKEsG instances are provided to fill all the available pilots. This circumstance is
shown during the first hours of the test, when more successful BoTs than those that
DKEsG can manage are returned because they have very short duration (250 to
650 seconds). Later, for the remaining calculation, DKEsG overhead remains stable.
Pilot overhead is always between 41 and 43 seconds because it only depends on its
configured pulling interval, thus demonstrating the scalability of the GWpilot system,
which is not influenced by the number of pilots running.

Because the maximum number of usable pilots is limited to the same maximum
volume of BoTs, an increase of the GridWay overhead indicates that the number of
running pilots is less than 500. This fact explains the high values compiled for the
test intervals from 23 to 28 hours, from 52 to 68 hours and from 89 hours to the end
of the calculation, where many pilot jobs were ended because of the remote queue
limitation time (mostly 24 or 48 hours of consumed CPU time). In this final interval,
more pilots were also submitted, although most of them were queued, waiting to be

148 Chapter 9. Improved Scheduling and Provisioning Techniques

executed.
The blue line in Fig. 9.1 shows the number of completed BoTs per hour, and its

value decreases as time passes because the time consumed by each BoT increases as
the test progresses due to the submission of BoTs being ordered from inner to outer
radius. Dales also indicate that the number of available pilots decreases. These two
circumstances are especially relevant beyond the 89 hours of the calculation: in this
case, the duration of a BoT is longer than one hour, and the system can only run a
number of pilots below 500.

As an additional conclusion to the previous commented makespan value, it can be
mentioned that the accumulated turnaround overhead only represents 6.21% of the
return time of every completed BoT. This value supposes an impressive performance
improvement from 61.48% compiled in Subsection 4.5.2 because it does not also
comprise failed jobs.

9.5.3. Main computation
Maintaining the same configuration for the GWpilot framework, the interest now

is to accomplish a computation that allows the comparison between the resultant
DKES and ISDEP fluxes but reduces overheads to a minimum. To ensure accurate
results in DKEsG, the number of nonzero Fourier coefficients has been increased, and
as consequence, the consumption times of the DKEsG-Mono task ranges now from 20
minutes to 27 hours. Meanwhile, every ISDEP task calculates 10 trajectories and lasts
approximately 100 s each. Both time measurements have been done on the reference
Xeon X5365 machine because it is again necessary to know how suitable the execution
of these calculations on the lowest hardware is. However, a modern processor such
as the powerful reference would halve the execution time. Thus, the task grouping
is not necessary for the DKEsG-Mono tasks because the minimal duration of a task
is longer than 750 s, and therefore, the application overhead will be fixed to the
minimum. Additionally, the maximum wall-time of one task is expected not to exceed
48 hours. However, ISDEP tasks must be grouped into BoTs, i.e., a chunk of 20 tasks
is performed for this calculation.

To compare the results provided by DKEsG and ISDEP, it is only necessary to
select a set of ρ. This will noticeably reduce the entire makespan but not the variability
of the execution times of every task. Then, the new DKEsG-Mono parameter scan
range was set to the following:

ρ[0.00714, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95],
EFIELD[log(1 · · · 9)·10(−2···2)], CMUL[log(1 · · · 9)·10(−5···0)]

Thus, for the DKEsG case, and taking into account the corresponding 30 DKEsG-
Neo calculations, there are 25,630 independent BoTs composed by one task, 30% of
which have a duration that exceeds 5 hours. For the ISDEP case, 104 trajectories must
be calculated per ρ value, resulting in a total of 500 BoTs (105 ISDEP tasks). Thus,
task submissions should not be randomly performed because the maximum duration
of pilot jobs is usually 24 or 48 h (depending on the wall-time of the remote queue
where the pilot falls). Then, it is necessary to establish a mechanism to prevent the
system from idle pilots when many long tasks are waiting and when they exceed the
remaining pilot lifetime. This can be performed by prioritising longer executions over
the rest, i.e., following a longest job first (LJF) policy that allows filling pilots with
shorter tasks when longer tasks cannot be executed because of their duration. For this

9.5. A more reliable mechanism to perform transport calculations 149

experiment, a higher priority is set for every task that should be run first using the
DRMAA_GW_PRIORITY parameter. Thus, three DRMAA applications have been
executed at a time: one for prioritised DKEsG tasks calculating surfaces ρ[0.75, 0.85,
0.95] that last more than 5 hours and two other applications, which manage ISDEP
and the remaining DKEsG tasks. All of them are configured with the same options
used for the application executed in the initial test, but with exceptions. The former
adds the prioritised requirement to their tasks and constrains the submissions to only
pilots with more than 23 hours of life left. The other two applications only constrain
the submission to pilots with more than 2 hours of life left. Those is done by setting
accordingly the QUEUE_MAXTIME as additional requirement, as has been explained
in Chapter 8 and Section 4.3.

To maintain the Provisioning policy established in the initial test, i.e., to only
use 500 pilots from the 550 submitted, the MAX_RUNNING_USER = 500 option was
set in the GridWay configuration of the Scheduler. Then, the three applications used
in this work can queue their tasks in GridWay for scheduling without limitation,
but only a sum up to 500 tasks from these three applications will be maintained as
running on pilots. These will be the ones with the highest priority, as explained with
Algorithm 3. Nevertheless, the maximum value previously configured will also limit
the number of pilots to 500, not only the number of tasks. To solve this issue, two
GWpilot Factories are configured using different UNIX accounts, but in shared mode
and with the same user certificate. These Factories will manage a maximum of 250
and 300 pilots, respectively.

Results

The LJF policy hinders from showing a chart similar to Figure 9.1 due to GridWay
overheads for short tasks are very high and they make it illegible. However, these
high overheads are without importance for makespan because of their low priority.
In contrast, the GridWay overheads for long tasks suffer smaller variations than the
preliminary test due to their wall-time, that is, GridWay does not frequently schedule
a high volume of this type of tasks. However, this overhead continues to be tied to
the availability of pilots. On the other hand, the pilot and the application overheads
are maintained constant at ∼41 s and ∼53 s during the calculation, as expected.

Therefore, the interest now is to measure the influence of failing pilots on the
accomplishment progress of long tasks and especially of ended pilots on the wasted
time by cancelled short tasks. The time spent on failing tasks can be considered
another type of overhead now related to the overall computation and makespan. In
this sense, the accumulated wasted time due to this reason is as long as 101 d 7 h 41 m.
Additionally, to correctly evaluate this overhead (∼2.2%), it is noteworthy to know
that the accumulated time spent by tasks in execution was 13.14 years. A sequential
execution on the E5-2667 machine would have lasted approximately 10.3 years. This
indicates that most of the resources from gisela VO are closer to the performance of
Xeon X5365 because the calculation would have lasted for ∼14.93 years on such a
machine. Additionally, the final makespan of the complete test was 9 d 19 h 25 m,
that is, ∼562 times faster than a sequential execution on the Xeon X5365 machine or
∼388 times faster than that on the Xeon E5-2667 machine.

150 Chapter 9. Improved Scheduling and Provisioning Techniques

9.6. Conclusions
In this chapter, the original scheduling algorithm of GridWay has been redesigned

to better support the load excess from pilot processes. The result achieves the perfor-
mance needed to allow users to implement advanced Workload scheduling techniques.
Additionally, new methodologies to improve Provisioning have been devised. These
features can be properly exploited in a multi-application or multi-user environment
and even with multiple infrastructures or federations.

To demonstrate these facts, a real physics study that requires results from two
legacy applications was performed. Thus, as a first conclusion, the new features im-
plemented have demonstrated an impressive performance improvement in terms of
makespan for the selected applications (DKEsG and ISDEP). However, the makes-
pan reduction was not performed by simply increasing the throughput with a larger
number of resources. GWpilot makes the most of the infrastructures by improving
Provisioning and reducing overheads, as those directly influence the task turnaround.
The measurements presented demonstrate this affirmation because these types of
calculations are very representative, i.e., they are composed of short and long jobs
managed at the same time. Additionally, the Application layer better profits from the
resources by implementing their own policies, in this case, long jobs are prioritised
in a shared environment. Therefore, the scalability of GWpilot and its suitability for
other types of codes was guaranteed.

The features and experiments presented constitute a first step to customise the
scheduling with GWpilot. The combination of ranking (in Task Scheduling) and over-
loading the infrastructure with unused pilots improve the appropriation of resources
through the time, but with no communication between both layers. To describe how
Workload Scheduling and Provisioning can actually work together, the tools availa-
ble for characterisation have to be extensively explained. Additionally, the study of
turnaround should originate such a formalism that allows other systems to stack over
GWpilot. These aspects are achieved in Chapters 10 and 11.

As an additional result of this work, all the necessary tools for performing an effi-
cient and extensive parameter scan of DKEsG are ready to be placed into production.
ISDEP also counts now, with a standardised management for distributed platforms.
This is because GWpilot avoids the performance and compatibility limitations of ot-
her techniques previously used for these applications. Furthermore, new interesting
results related to the Neoclassical ordering violation in fusion plasmas have been ob-
tained by comparing the results provided by both codes (see Subsection C.4.2 in the
Appendix C).

Chapter 10

Customising the Whole
Scheduling at User-level

10.1. Introduction

The features listed in Section 7.2 accomplish a set of requirements (see Section 3.2)
that other systems do not. The main benefit of the tools presented is that they can
be combined to build a broad range of scheduling algorithms. In particular, the main
added advantage of GWpilot over other pilot systems is the capacity offered to users
and developers to dynamically build their own scheduling policies, but assisted by the
framework. With GWpilot, the scheduling is actually simplified into the three-level
hierarchy logically established in Subsection 2.3.1: the User or Application layer, where
the applications dynamically perform their Workload Division and Job Building; the
Task Scheduling layer, where the pilot system performs the task-pilot matchmaking
following the user-defined requirements; and, the Provisioning layer, where the system
search in the federations for resources that fit those requirements. Thus, one main
objective of GWpilot is to facilitate the exercise of dynamically propagating down the
requirements of any application from the user-level to the lower layers.

For this purpose two new mechanisms are needed, which are not shown through
previous chapters and are also required for Multilevel Scheduling: the capacity of fully
characterisation (and monitoring) of resources, and the communication among layers.
However, users are not alone. Communities demand to improve specific aspects such
as the global throughput or the fair-share. The generic configuration of Workload
and Provisioning layers supports their requirements, but also implies a new world of
possibilities.

10.2. Dynamic and customisable characterisation
The level of scheduling customisation of any pilot system depends on the language

used to characterise resources and tasks running, as well as on how the users can
establish preferences or constraints for the execution of their tasks based on this
language.

Every member of the Host Pool is described by means of unstructured label-
value pairs. With the exception of the identifier of every member, they can operate

151

152 Chapter 10. Customising the Whole Scheduling at User-level

as un-typed variables, i.e. they can dynamically take a numerical value or turn into
an arbitrary string. Additionally, the number of tags is not limited. Therefore, the
characterisation of any resource from any DCI can be fully stored. GWpilot also
performs this action with the information supplied by the enrolled pilots (see Table
7.1).

In this sense, the framework actually gives the possibility to users to directly
customise some tags. The mechanism does not imply the modification of pilot imple-
mentation by the user. Tasks running can communicate with pilot through a named
pipe, the path of which is unique for each task and it is stored in an environment va-
riable (${PILOT_PIPE}). Subsequently, tasks can write on that pipe customised tags
declared as PILOT_${GW_USER}_V AR_ < number >=< arbitrary value >. These tags
will be published in the Host Pool and are maintained among task executions. Thus,
the user only has to submit tasks which push the needed information (an integer,
float or string) into the supplied path in order to specify that any other intermediate
file was stored in a scratch directory, any specific profile has been performed or any
configuration has been done at the remote resource.

Any user can select multiple tags from resource descriptions to formulate a Boolean
expression as a requirement, which can be combined with a numerical expression to
rank every candidate host (those pilots for which the requirement expression is true).
In addition, users can include the supplementary tags dynamically customised as the
Scheduler fully supports the resolution of these expressions. Thus, those pilots with
higher ranks are first used to execute his tasks (and to submit his pilots, as will be
explained in Subsection 10.4).

Therefore, as a result of the integration of GWpilot framework, users and develo-
pers count on tools to really build a personal scheduling. Particularly, they can:

dynamically inspect and filter those tags through the gwhost command;

notify any custom characteristic from their running tasks inside pilots;

dynamically establish requirements and ranking expression based on these tags
in their task descriptions to fit their computational needs.

However, the GWpilot also offers some other useful tools that allow users to dy-
namically know:

what tasks are running in certain pilots (through gwps command) and how
many tasks were successfully executed or failed in these pilots, as well as their
accumulated transfer and execution times (through the gwacct command);

what pilots have been submitted to real sites and which are really running in
them (also with gwps). Same accounting is performed with pilots, so users can
know the same accumulated registers than the ones provided for tasks (with
gwacct).

These tools facilitate the tuning of GWpilot configuration for a specific calcula-
tion. They also allow users to select pilots that are effectively accomplishing tasks
faster than others. Additionally, wrapper and middleware logs are stored in a simple
tree structure based on the task and pilot numerical identifier, which facilitates the
troubleshooting.

10.3. Feasible Workload Scheduling 153

10.3. Feasible Workload Scheduling
Through last section the simple tag-based language and the tools to personalise

requirements have been introduced. However, the reader only get a glimpse of the
possibilities those mechanisms offer.

First, the meaning and classification of the tags to be notified to the PiS and, con-
sequently, published into the Host Pool deserve a more complete explanation because
they enable more advanced scheduling mechanisms than those that are associated
with a typical characterisation of the resource. In this sense, in addition to the gene-
ric static and dynamic characteristics of a resource, such as the CPU type or the CPU
consumption, pilots can specifically notify specific tags. For example, the real memory
and CPU usage of the running tasks allow the Scheduler to properly detect perfor-
mance losses and consequently to initiate the checkpoint of task and subsequently its
migration.

Moreover, GLUE-style tags can be notified not only to describe the configured
middleware (such as the close-SE available) but also to describe a virtual queue
description that could be customised to provide the Scheduler with a number of
fictitious or virtual free slots and the distinguished names of allowed users. By doing
so, not only the multi-task and the multi-user (MUPJ) capabilities are enabled, but
also resources composed by multiple cores or GPUs can be managed by the Scheduler.
Additionally, the remaining wall time in the remote resource (i.e. how many time
remains for the end of pilot) is included in this virtual queue. Thus, Scheduler can fill
pilots with tasks of adequate duration.

Furthermore, some files related to a task, i.e. executables, inputs, and outputs, are
declared with their MD5 code to be cached for later reutilisation by other tasks. Any
tag declared is directly visible by either the user or the developer, who could include
it as a requirement to build complex workflows based on file dependences, which will
be fully supported by the Scheduler.

The pilot implementation goes beyond offering the default tags contained in Ta-
ble 7.1 to the user, which are feasible for a broad range of calculation types, but
they could not be used to accomplish some concrete problems. The proposed mecha-
nism to customise the characterisation of pilots facilitates the software deployment to
VO administrators or even temporarily to unprivileged users. This characterisation
methodology also allows the inclusion of advanced scheduling algorithms belonging to
the Application layer, especially those usually provided by third-party self-schedulers,
which can now be added to the system without re-implementing the functionality of
a resource broker. The provided possibility of direct profiling and monitoring on the
WN (properly estimating outbound bandwidth or the application performance, for
example) is essential for improving and reactivating the task chunking. Additionally,
advertising the availability of some files facilitates the data-allocation policies. Moreo-
ver, an effective virtual type of advanced resource reservation, based on pre-emption,
could be allowed in long-term GWpilot systems if this mechanism of file awareness is
combined with the checkpointing features provided. This can be very useful for sup-
porting some complex scheduling algorithms [32], MPI, and very long executions, or
enabling on-demand prioritisation of some calculations over others, such as real-time
applications.

154 Chapter 10. Customising the Whole Scheduling at User-level

10.4. User-guided Provisioning
The capacity of the GW PiF to inspect the requirement and rank expressions of

tasks enables such type of user-guided Provisioning. These preferences are dynami-
cally taken in consideration when a pilot is submitted to progressively improve the
quality of appropriated resources. The difference with approaches such as [215], is that
this mechanism is directly managed and customised by any user without requiring
the modification of the pilot system code. In addition, it is more generic than other
approaches [204] because does not constraint the submission of one pilot to accom-
plish a concrete task. Moreover, the guidance in Provisioning is completely refined
because the PiF is able to distinguish among the customised characteristics of pilots
to properly select resources.

The requirement expression of every pilot is simply built with the logical disjun-
ction of the requirements of every task. However, the following formula builds the
rank expression for user-guided pilots:

RANK =
∑
pi ·RKi · ni/n

where n is the total amount of tasks in the system, ni is the number of identical
tasks with the same (RKi) rank expression and pi is their current priority given by the
Scheduler. Thus, the GW PiF maintains the fair-share among running applications.
Moreover, as the PiF can be configured to deal with several users, it allows such a
type of user fair-share in Provisioning. Additionally, the number of guided pilots can
be limited to a percentage. This mechanism provides great results and has been used
in the tests shown in Subsection 10.6.

10.5. Effects of configuration on the scheduling la-
yers

Despite of the advantages provided to the users with dynamic scheduling poli-
cies, configuration parameters are not suitable for being dynamically modified. This
is justified by the need of control by an administrator when GWpilot is used by mul-
tiple users and by the request of communities to improve certain metric, such as the
throughput or the resource utilisation.

Some of these parameters are specific to the PiS or have been mentioned as pilot
parameters. For scheduling, the pilot pulling interval, the number of tries and the
maximum number of pilots are more important. These options have been already
explained through Chapters 8 and 9. In addition to them, requirement and rank ex-
pressions are allowed as configuration option of the PiF. However, it could be desirable
to partially perform the Provisioning guidance in some types of calculations. For this
reason, the number of guided pilots can be limited to a percentage in the configuration.
Another powerful feature is its capacity to perform a flooding of the infrastructures
with a limited number of pilots, but above the real need. Therefore, administrators
can effectively control the pilot production of the system.

However, as GWpilot is an embedded system, the options inherited from GridWay
must be also included in this category because they have obvious implications on the
GWpilot behaviour. Thus, the configuration options described in Table 2.1 take new
meanings that must be clarified.

For example, the maximum number of hosts limits the volume of resources (i.e.

10.5. Effects of configuration on the scheduling layers 155

Table 10.1: Static options for GWpilot configuration.

Scheduler loop options:

SCHEDULING_INTERV AL
Interval to perform a new scheduling of pending tasks
and pilots

DISPATCH_CHUNK
Maximum number of tasks and pilots dispatched in
every scheduling interval

MAX_RUNNING_RESOURCE
Maximum number of pilots concurrently submitted to
same site (or task to same pilot)

MAX_RUNNING_USER
Maximum number of simultaneous running task and
pilots per user

Dispatch priority of a pilot or task (j):
Pj =

∑
i
wi · pij , where w is the weight and p the priority contribution of every

i = {FP, SH,WT,DL}
FP_USER,FP_GROUP Fixed priority per user or group (default 0)

SH_USER,SH_GROUP
Ratio of submissions of a user or group over the rest
(default 1)

SH_WINDOW_SIZE
Timeframe over which user submissions are evaluated
(in days)

SH_WINDOW_DEPTH Numer of frames (present frames are most relevant)

DL_HALF
When pilot or task should get half of the maximum
priority assigned by this policy (in days)

Suitable priority of a resource (h):
Ph = f ·

∑
i
wi · pih, where w is the weight and p the priority contribution of

every i = {RP,RA}. f is 1 when resource h is not banned. (Note that UG policies
should be disabled)

RP_HOST , RP_IM
Fixed priority per site or per every resource discovered
by an IM

FR_MAX_BANNED

T∞ · (1− e∆t/C), where T∞ is the maximum time
that a resource can be banned, ∆t is the time since
last failure, and C is a constant that determines how
fast the T∞ limit is reached

FR_BANNED_C The value of the C constant in the above equation
GWpilot parameters:
-i < PI >, -t < T > Pilot pulling interval and number of tries
-n < unsig. int > Maximum number of pilots

-w < unsig. int >
Maximum waiting time in grid queues or for VM
creation

-o < unsig. int > Over-submission of pilots
-c <REQUIREMENT> Expression to constraint pilot submission
-r <RANK> Expression to rank resources for pilot submission
-g < unsig. short > % of guided pilots
-nosec, -s Unsecure mode and shared mode of PiS

sites and pilots) that the system can manage. Other options limit the number of
clients (application calls), users, tasks or pilot jobs in the system. Those options
with a special significance were summarised in Table 10.1. In this sense, fair-share
policies, i.e. fixed (FP), share (SH), deadline (DL) and waiting-time (WT) policies,
could negatively impact on the effective dispatching time of certain pilots and tasks.
In addition, resource (RP) policies constraint the use of resources and are mainly
related to Provisioning. In any case, they allow the management of the system in a
way more close to a PMS service [17, 202].

Many of the fair-share policies will be disabled if pilots cannot be shared among
different users. For this reason, PiS and PiF sharing were allowed to enable MUPJs.
Running in this mode, if the PiS is owned and initialised for a specific user, for exam-

156 Chapter 10. Customising the Whole Scheduling at User-level

ple, the production manager of a VO, the other users must allow its distinguished
name (DN) into the local grid-map file to correctly stage-in and stage-out their fi-
les through the GridFTP. Nevertheless, although this procedure is feasible, it is an
insecure method that cannot accommodate the policies of some infrastructures [261]
because the pilots do not isolate users who are executing codes with the same DN
role of the pilot owner. This mechanism is allowed under the responsibility of the ad-
ministrator or the VO manager, and because the user-identity-switching tools (e.g.,
gLExec [186]) are not widely installed and they are currently only required by large
production VOs.

Other parameters are fundamental for both Task Scheduling and Provisioning.
For example, the weight of rank (RA) expression in the task or pilot jobs should be
enabled (i.e. set to one). Nevertheless, the usage (UG) statistics prioritise resources
with shorter execution times per job; consequently, they are counter-productive for
pilots and should be disabled. The failure rate (FR) policies allow users and admi-
nistrators to automatically discard pilots and sites that accumulate persistent task
failures. The dispatch chunk and the scheduling interval determinate the volume of
the tasks and pilots dispatched, that is, the productivity. However, pilot submission
should be lesser frequent than task generation. Subsequently, these last parameters
and the pilot pulling interval mainly determinate the task turnaround overhead as
has been demonstrated in Chapter 9.

10.6. Experimental demonstration
Through the experiments performed in previous chapters the performance of GW-

pilot was compared with other two pilot frameworks as well as a set of distinguishing
features have been demonstrated, such as: its capacity of provisioning resources in
cloud federations, its compatibility with legacy applications or its support for imple-
menting more advanced scheduling policies.

However, those tests only provide with a measurement of the performance gain of
GWpilot and several advantages with respect to other systems, but they do not show
how users or developers can dynamically personalise and guide whole scheduling. That
is, users should be able to customise the characterisation of resources and subsequently
to direct the task distribution as well as the Provisioning. Therefore the objective of
the experiments performed in this section is to demonstrate that these actions can
be straightforwardly performed, without modifying either the code of GWpilot or the
applications.

10.6.1. Proposed calculation
The interest is to perform real calculations as any user usually does, i.e. customi-

sing requirements of his legacy applications and starting several calculations at the
same time. The approach is to remark the importance of scheduling variable short
tasks (with an execution time shorter than 20 minutes) in an overloaded infrastructu-
re because this is the worst potential scenario that a pilot system (and any scheduler)
can face. Thus, the features introduced should demonstrate that they improve the
execution of user applications while not overloading the GWpilot system with exces-
sive overheads. This will be demonstrated through this section executing again the
long multiplication used in Chapter 7, but also several instances of a legacy applica-
tion such as DKEsG at the same time, simulating a multi-application and multi-user

10.6. Experimental demonstration 157

environment.
A real example of calculation with DKEsG-Mono is the determination of the

effective ripple in a fusion device (see Section C.3 for further information). For this
purpose, 24 variations of the standard configuration of the TJ-II [260] device, 72
variations of the plasma collisionality, and 140 radius indexes have been selected, while
the electrical field is considered constant. Therefore, this input parameter combination
results in 24 · 72 · 140 = 241, 920 tasks.

In this case, every independent DKEsG-Mono instance is a short-duration task
whose CPU consumption is directly proportional to only one parameter, the plasma
radius index (i.e. the toroidal flux, ρ). Therefore, DKEsG-Mono is a common para-
meter sweep application with a controlled CPU time variability that can be used to
demonstrate the feasibility of the mechanism to customise scheduling at user-level.
This is so due to it allows a specialised characterisation based on the execution pro-
filing.

Moreover, to show an effect similar to that found in a competitive multi-application
environment (but also controlled for further analysis), the calculation of the effective
ripple is split in three parts to be carried out by three different DKEsG instances.
Tasks with a lower weight are interspersed along the test. For this purpose, tasks are
ordered for later individual submission in a numerical sequence of radius as:

Slice 1: (2,47,92;3,48,93;... 16,61,108) + (139,140,141)
Slice 2: (17,62,107;18,62,108;... 31,76,121) + (137,138)
Slice 3: (32,77,122;33,78,123;... 46,91,136)

Furthermore, tests are mainly composed by the DKEsG-Mono tasks needed for
the calculation of the effective ripple, but long multiplication is also executed at the
same time. The purpose is to use long multiplication as a competitive application in
the system and to subsequently analyse its interference on scheduling, because it has
different computational requirements.

Naturally, those three DKEsG applications will be started at the same time as
the long multiplication. Additionally, the radius order assures that the CPU time
requirement is increased along the experiment. Every application (long multiplication
included) is limited to 250 tasks, and then the maximum number of tasks in the
system is 1,000.

Finally, estimating the duration of both executions is necessary. If calculation
of the ripple were performed sequentially on the first selected machine described in
Table 10.2, it would take approximately 3 years and 45 days, while it would last 36
hours and 30 minutes if 750 cores of that machine were used. On the other hand, long
multiplication on 250 cores would take approximately 32 hours if the input set that
assures tasks above 10 minutes (< lower limit >= 9) were selected.

10.6.2. Customising characterisation and scheduling

Profiling the calculation

To introduce any accurate scheduling policy, DKEsG-Mono execution must be
profiled. Unlike long multiplication, which is entirely based on integer arithmetic,
DKEsG-Mono execution time depends also on floating point performance, cache size
and other hardware parameters. Thus, latest processors should compute DKEsG-
Mono faster. This issue, far from being a drawback, will be used in this experiment to
show how different policies can be enabled for several applications at the same time.

158 Chapter 10. Customising the Whole Scheduling at User-level

Table 10.2: Average DKEsG-Mono execution times obtained from reference machines for
some indexed radius in the standard TJ-II configuration. The updated release of DKES [245,
248] is used.

TJ-II TJ-II Xeon X5365 3 GHz Xeon E5620 2.4 GHz
index for normalised (Launch date: 2007) (Launch date: 2012)
radius toroidal
(cm) flux ρ (0-1)
2 0.00714 58.10 s 48.33 s
25 0.171 179.54 s 150.21 s
48 0.336 297.33 s 247.80 s
71 0.500 348.14 s 291.28 s
94 0.664 523.58 s 439.59 s
117 0.829 624.92 s 524.07 s
141 1 751.05 s 631.95 s

Figure 10.1: Linear fitting of the values in Table 10.2 for the he X5365 processor. This is
the suggested profile of DKEsG-Mono on that processor.

These applications will be concurrently managed by GWpilot, resulting in performan-
ce improvements for all of them.

In the case of the calculation proposed, DKEsG-Mono execution time ranges from
58 to 751 seconds on a Xeon X5365 3 GHz, but it is lower on a Xeon E5620 2.4
GHz (see the third and fourth columns in Table 10.2). As shown in Fig. 10.1, these
data can be fitted into a polynomial function. Then, the speedup obtained running
DKEsG-Mono on any other processor can be expressed by drawing a parallel line
above (less performance) or below (better performance) that function. Additionally,
the speedup for every normalised flux (ρ) can be calculated with the following formula:

speedup(ρ) = <wall time>
59 + ρ · 692

Characterisation allows scheduling guidance

Now, the objective is to perform a simple customization of the GWpilot schedu-
ling capability based on the personal profiling of the application previously performed.
This purpose motivates the election of a real application such as DKEsG. As com-
mented through previous chapters, advanced policies can be dynamically included in
GWpilot by simply including specific pilot tags in the rank expression. For example, if

10.6. Experimental demonstration 159

the long multiplication is used in this experiment, only including a ranking expression
based on the CPU speed in templates will be enough to obtain a valuable performance
improvement:

RANK = PILOT_CPU_MHZ

However, the intention is to go beyond this, showing how users and developers can
introduce their personal tags since they are who really know the behaviour of their
applications.

Therefore, the PILOT_${GW_USER}_V AR_1 tag will publish the profiling esta-
blished for DKEsG-Mono, i.e. the speedup obtained by every execution. This also mo-
nitors the performance of the appropriated resource, allowing the reactiveness against
performance losses due to overloads or overbooking. However, the PILOT_${GW_
USER}_V AR_1 has to be filled by the task whenever it ends its execution. For this
purpose, a script that wraps DKEsG-Mono execution at WNs will calculate speedup
and publish it with this statement:

echo "PILOT_${GW_USER}_VAR_1 = ${speedup}" > ${PILOT_PIPE}

On the other hand, the following DRMAA statements must be introduced into
the code section of task creation: the former to set a ranking policy based on the
customised tag and the latter to indicate that such a task has to be scheduled to a
pilot:

drmaa_set_vector_attribute(<task description id>,
DRMAA_GW_RANK, ’PILOT_${GW_USER}_VAR_1’)

drmaa_set_vector_attribute(<task description id>,
DRMAA_GW_REQUIREMENT,’LRMS_NAME="jobmanager-pilot"’)

Thus, any unskilled developer can perform these actions, and does not need to
modify any code of the GWpilot system, including the pilot itself.

Moreover, these modifications are only shown as an illustration of the usual pro-
cedure with legacy applications. DKEsG is adapted following the producer-consumer
library described in Section 4.3 and consequently, these requirement and ranking ex-
pressions actually are arguments of the application.

10.6.3. Competitive tests
The benefit of guiding Provisioning and Task Scheduling together, and not simply

guiding the latter, is the key achievement that this experiment is trying to demons-
trate.

For this purpose, three virtual machines with GWpilot are booted. These instan-
ces are configured with the static options for GWpilot enumerated in Table 7.2. This
assures the comparison with the other systems. Moreover, for the sake of comparison
with the experiments performed in Section 7.4, a GWpilot instance must act as a
control test, i.e. supporting DKEsG and long multiplication without the aforementio-
ned ranking and without enabling the GW PiF Provisioning guidance. On the other
hand, custom characterisation and ranking policies are enabled by the user applica-
tions running on the other two virtual machines. Finally, Provisioning guidance is
also configured in one of these two. With this differentiation, the performance gain

160 Chapter 10. Customising the Whole Scheduling at User-level

obtained by each scheduling technique can be measured. Thus, those three deploy-
ments are called along this experiment as control test (ct), standalone ranking (sr),
and guided Provisioning (gp).

All tests will rely on the IS to find free resources to immediately distribute pilots.
However, the user-ranked approach enabled in sr and gp differentiates the Resource
Provisioning from the Task Scheduling. Both approaches expect more WNs to be
obtained, the best ones of which will be retained if pilots wait a certain time in
low overloaded queues. It was commented through the experiment in Section 7.4
that application instances (tasks) in the system usually do not reach the maximum
number of pilots that are available in a determined time. This behaviour is especially
noticeable with DKEsG, because it relies on the producer-consumer library described
in Section 4.3. Then, the execution state of their tasks is sequentially checked in
the polling interval, in this case, 0.1 s. However, GWpilot takes advantage of this
underutilisation when workload policies are enabled as in experiments in Section 9.5,
although with less efficiency because the over-submission of pilots are not enabled now.
That is, GWpilot achieves an improvement in the quality of resources as a function
of time: the best pilots will be selected to run a task and the rest will die when no
work is assigned to them.

Besides, gp tests finally connect user policies to Provisioning. The PiF will include
the preferences defined in the task descriptions when pilots are submitted (see Sec-
tion 10.4). This scheduling mechanism considers that there is no characteristic that
the IS could provide, including the published number of free slots from every resour-
ce. That is so because the IS does not assure that these slots are actually available
for a specific VO user. However, the GW PiF can safely use the characterisation of
pilots to improve future Provisioning, even if this characterisation was customised by
the user. Additionally, the PiF will use the ranking sentences included in the task
descriptions, but in a limited way. The PiF is configured to only guide half of pilot
submissions. That is so to allow GWpilot to better explore the whole infrastructure
in order to search for more suitable resources, but assuring the suitability of resources
in a 50% at least. In addition, it is of interest that the influence of these ranking
statements on the scheduling mechanism was unbalanced. The intention is to create
an experiment close to reality, where there will always be more tasks of some type
than other. Additionally the tests have been performed three times to assure accurate
results.

10.6.4. Results

The time spent by the tests is a good introduction to the advantage offered by
GWpilot over other solutions, because control test (ct) relies on the same configuration
parameters used in the experiments described in Section 7.4. Now, the experiments
are composed of several applications with variable completion times. Additionally,
different user policies are applied on long multiplication and on DKEsG executions.
Consequently, differences between the ct and guided Provisioning (gp) tests range
from 56 minutes (Test 1) to 8 hours (Test 2). Table 10.4 shows the makespan of each
application and their accumulated spent time.

According to these data, an important reduction (from 11% to 20%) of accumu-
lated spent time in the ct tests is achieved by the gp tests. However, the standalone
ranking (sr) tests do not achieve an averaged improvement as it could be expected.
This behaviour demonstrates one of the motivations of this thesis, i.e. it is necessary

10.6. Experimental demonstration 161

(a) Test 1. Execution time average of DKEsG-
Mono per normalised flux (ρ).

(b) Test 2. Execution time average of DKEsG-
Mono per normalised flux (ρ).

(c) Test 3. Execution time average of DKEsG-
Mono per normalised flux (ρ).

(d) Task execution time average per hour (in
seconds) of long multiplication in the three gui-
ded Provisioning (gp) tests (with n = 90, 000).

Figure 10.2: Average times obtained in the competitive tests that demonstrate the impro-
vement through the time with guided approaches.

Table 10.3: Results obtained in the competitive tests that evaluate the renovation of pilots
and performance. Values for tasks done per minute, pilots discarded per minute and the
number of calls per second of every pilot are measured after the system had enrolled at least
800 pilots and before the last 1,000 tasks were remaining to be representative of the usual
behaviour of GWpilot.

Test Type Tasks Pilots
failed done/m max. done/m submitted enrolled discarded/m calls/s

ct 5,140 104.41 241 30,882 9,107 2.95 62.09
(1) sr 5,307 122.03 271 24,844 5,973 1.96 64.78

gp 4,625 124.96 268 22,631 6,049 2.05 67.05
ct 6,322 100.05 238 27,421 8,134 2.59 65.76

(2) sr 4,962 121.30 254 26,041 7,080 2.53 67.31
gp 8,663 132.72 294 27,631 9,049 3.01 66.84
ct 4,718 89.68 216 21,572 6,227 2.36 59.20

(3) sr 8,726 91.82 231 13,295 6,698 2.37 61.26
gp 3,954 126.05 276 15,497 7,055 2.88 68.05

162
C

hapter
10.C

ustom
ising

the
W

hole
Scheduling

at
U
ser-level

Table 10.4: Makespan values obtained through the competitive tests that compare guided and not guided scheduling.

Test Type Makespan
long multiplication DKEsG-Mono Slice 1 DKEsG-Mono Slice 2 DKEsG-Mono Slice 3 accumulated

ct 1 d 20 h 54 m 23 s 1 d 12 h 09 m 07 s 1 d 19 h 16 m 32 s 1 d 20 h 23 m 50 s 7 d 00 h 43 m 52 s
(1) sr 1 d 21 h 29 m 12 s 1 d 09 h 41 m 16 s 1 d 12 h 11 m 35 s 1 d 12 h 59 m 43 s 6 d 08 h 21 m 46 s

gp 1 d 19 h 58 m 07 s 1 d 08 h 36 m 55 s 1 d 11 h 46 m 01 s 1 d 13 h 49 m 22 s 6 d 06 h 10 m 25 s
ct 1 d 21 h 56 m 13 s 1 d 19 h 50 m 51 s 1 d 21 h 07 m 36 s 1 d 21 h 43 m 34 s 7 d 12 h 38 m 14 s

(2) sr 1 d 18 h 08 m 21 s 1 d 17 h 32 m 11 s 1 d 18 h 54 m 07 s 1 d 16 h 40 m 27 s 6 d 23 h 15 m 06 s
gp 1 d 13 h 51 m 20 s 1 d 09 h 18 m 16 s 1 d 10 h 56 m 42 s 1 d 12 h 01 m 03 s 5 d 22 h 07 m 21 s
ct 1 d 21 h 34 m 02 s 1 d 18 h 23 m 14 s 1 d 20 h 56 m 40 s 1 d 21 h 29 m 42 s 7 d 10 h 23 m 38 s

(3) sr 1 d 20 h 23 m 52 s 1 d 17 h 47 m 48 s 1 d 20 h 08 m 49 s 1 d 20 h 03 m 18 s 7 d 06 h 23 m 47 s
gp 1 d 15 h 49 m 48 s 1 d 08 h 17 m 00 s 1 d 10 h 51 m 06 s 1 d 11 h 46 m 44 s 5 d 22 h 44 m 38 s

10.6. Experimental demonstration 163

the guidance of Provisioning because resources finally provided by remote sites could
not fit the needs of the applications or they could even arbitrarily fail. The GW PiF
in the ct and sr tests does not perform any selection of resources where pilots will
be submitted with exception of avoiding busy and banned sites. Therefore, when a
pilot is discarded, it is arbitrary replaced by a new one. Even, this new pilot can be
in the same WN than the replaced one if the holding site was not banned. Therefo-
re, the chance to obtain improved resources is based on multiple attempts, but they
are better retained in the sr tests. This circumstance is especially evident in Test
1, where resources with high speedups profiled are appropriated at the beginning of
the calculation. Paradoxically, the complete Test 1-(sr) was slower than Test 1-(ct).
That is because pilots more suitable for long multiplication executions (higher CPU
speeds) are less retained if they do not entail an improved profile for DKEsG-Mono
application.

In any case, the algorithm presented in this study devoted to firstly utilise the
more powerful pilots in the pool has resulted in a continuous improvement of the
resources offered to the user in a ratio proportional to the discarding rate. This fact
is supported by the number of tasks per minute considered done by the applications,
which is increased from ct to gp. Naturally, values for both rates written in Table 10.3
were registered when the system maintained the four application running to assure
accurateness.

To illustrate how the continuous improvement of resources impacts on the accom-
plishment of tasks, averaged execution times are shown in Figures 10.2. However,
to differentiate the influence on every application, two types of graphs are included.
First, the execution time average of DKEsG-Mono tasks per normalised flux is depic-
ted in Figures 10.2-(a, b, c). To compare the speedup obtained, the data belonging to
every test are fitted into a polynomial function. Additionally, the line representing the
performance of the reference machine is drawn. A supplementary fourth Figure 10.2-
(d) shows the evolution of the execution times of long multiplication for n = 90, 000
through the gp tests. This latter graph is included only to demonstrate that, despite
of pilots are preferably submitted to sites with resources suitable for DKEsG, the ran-
king approach in Provisioning also assures an improvement for long multiplication.
Thus, this approach achieves a progressive reduction of the average CPU consumed
by their consecutively submitted tasks. These conclusions are supported by the ma-
kespan obtained by every application and compiled in Table 10.4. In particular, the
calculation time of every DKEsG slice is reduced from 11.2% to 25% and the long
multiplication from 3.4% to 13.4% in gp tests.

Nevertheless, approximately 25% of the discarded pilots is consequence of grid
job errors, so the improvement translated to a reduction in the makespan is sma-
ller. Additionally, the number of failed tasks in the pilots’ execution deserves a deeper
explanation. Although GWpilot is more stable than the traditional early-binding met-
hods, it cannot avoid errors produced by the middleware, network cuts or any other
typical problem related to the remote execution of pilots. This is the case for the failed
executions shown in Table 10.3, which are primarily the consequence of a pilot dying
while a task was running in it or a task being dispatched to a dead pilot that has
not been discarded yet. However, they represent less than 4% of the total submitted
executions in every test, while the aforementioned percentage of failed pilots rises to
75% (note that many pilot jobs were discarded before the 30-minute threshold set in
the PiF configuration).

164 Chapter 10. Customising the Whole Scheduling at User-level

10.7. Conclusions
In this chapter, the needed techniques to allow customising scheduling at user-level

have been presented. They consist in the combination of the user’s capacity to fully
characterise pilots and to guide both Task Scheduling and Provisioning. Moreover,
this feature is complemented by the configuration options that allow administrators
to preserve fair-share and global throughput as well as improve other global aspects.
Furthermore, the approach enables developers to build a wide range of advanced
Workload Scheduling techniques that are completely unfeasible for other pilot systems.

To demonstrate the benefits of the communication between Application, Task
Scheduling, and Provisioning layers, three competitive experiments were performed
in a multi-application environment. One performs a customised characterisation and
also guides the provisioning, other only performs the characterisation, and the latter
none. Results show that characterisation improves the calculation through the time,
but the performance gap is achieved with a guided Provisioning.

The proposed mechanisms and abstractions described through this chapter are
adequate to simplify the scheduling from the user’s, developer’s and administrator’s
points of views. It is noteworthy that they constitute a step forward on the achieve-
ment of a platform that fully supports the Multilevel Scheduling. However, although
developers count now on tools to perform a customised scheduling, a formalism to
adapt advanced scheduling or even to stack self-scheduling tools represent a clear
asset. How this feature has been designed is addressed in the following Chapter 11.

Chapter 11

Modelling and Stacking
Scheduling Tools

11.1. Introduction
The makespan of any application depends on the turnaround time of every task,

as was explained in Subsection 2.3.4. Turnaround is very sensible with regard to
overheads when short-duration tasks are scheduled. In contrast, long-duration tasks
suffer from more failures that waste computational time. In general, developers of
Workload Scheduling algorithms should estimate the time required by stage-in and
-out operations but not the overheads produced by the pilot system. However, due to
the performance stability of GWpilot, these overheads can be known a priori because
they coincide with the intervals used by pilots for their operations against the GW
PiS and with the time used by GridWay to dispatch tasks. For this reason, the ma-
ximum number of pilots, the pulling interval time against the GW PiS, the number
of retries for getting a task or updating its state and the scheduling interval can be
fully configured by the user. Additionally, the suitability of these values can only be
obtained due to the troubleshooting mechanisms that GWpilot provides. The whole
execution process can be followed by the user by either reading logs or typing com-
mands. Users can use the compiled data of previous executions through the supported
accounting. Therefore, these tools allow the fine tuning of the GWpilot configuration
and the applications.

Furthermore, the capacity of completely characterise the overhead is a key fea-
ture to formulate a trustworthy model for task turnaround. This model jointly to
the GWpilot support for Task Scheduling allow stacking specialised scheduling tools
to GWpilot such as self-schedulers which can properly now run on grid and cloud
infrastructures.

In this chapter a simplified task turnaround model is presented. Its suitability will
be demonstrated through the statistical analysis of the executions performed in other
chapters. Additionally, a methodology to incorporate external scheduling is explained.
Whole suitability will be proved staking the self-scheduler framework developed in
Chapter 6.

165

166 Chapter 11. Modelling and Stacking Scheduling Tools

11.2. Modelling task turnaround with GWpilot

11.2.1. Simple turnaround model
The real turnaround time of each completed task is defined as the time difference

between the moment when the task is queued in the UTQ (the GridWay Job Pool)
for being dispatched and the moment when the system notifies that it is completed.
This value represents the CPU time consumed by the application when it is execu-
ted on remote resources plus the transfer times and the overhead introduced by the
middleware in Task Scheduling and Provisioning.

Unlike other pilot systems, related middleware overheads can be known a priori
with the GWpilot configuration. Thus, when no failures are produced and enough
amounts of pilots are available, the idealised turnaround (τ) is:

T = Tsched + Txfer + Texec ' tsi/2 + tpi + tx + te = τ (11.1)

te and tx maintains the same significance than Texec and Txfer in Equation 2.1.
Texec depends on the power of the resource selected, while Txfer principally depends
on the network and the amount of data transferred. Thus te as well as tx should be
estimated by a self-scheduler, but now GWpilot provides the characterisation of every
pilot for this purpose. This is, the bandwidth, latency and power are published for
every pilot. In addition, the tools needed to publish any specialised benchmarking of
these or other performance aspects (for example, the disk throughput) are available
in GWpilot.

On the other hand, the Tsched is the overhead related to the Task Scheduling
mechanisms. It is split into two types of process (tsi/2 + tpi), with different modelling
behaviour. First, tpi is the overhead related to pilot notifications and the capacity of
the GWpilot Server to process them. When no failures are registered, tpi coincides
with the pilot interval (PI) set in the GWpilot configuration.

tsi/2 stands for the time needed to obtain a suitable pilot to execute the task.
GridWay Scheduler will prioritise some tasks over others and then will dispatch these
tasks to pilots that accomplish their requirements (see Chapter 9). When tasks have
identical requirements and enough amounts of pilots are already appropriated by the
pilot system, tsi/2 only depends on the elapsed time between schedules set in the
GWpilot configuration (the half of SCHEDULING_INTERV AL).

Several algorithms can be improved only with this definition. However, this ideali-
sation is far away from reality and it can be counterproductive for certain calculations
as commented in Subsection 2.3.4.

To complete the simplified task turnaround without failures, the dispatching time
has to be complemented with the availability of the resources. tpi + tsi/2 always is
wasted in the process although there would be enough pilots for a number of tasks
(η(t)) in the system (running or waiting) at certain time (t). However, a task must
wait to be scheduled when the (expected) number of pilots (ξ(t)) is lower than η(t).
Then, the additional dispatching time when the task is included in the pilot system
is:

Υ[t, tsi/2] =
{

ξ(t) >= η(t) : 0
ξ(t) < η(t)

∑∞
t′=t+tsi/2

(1− ξ(t′)
η(t′)) · tsi/2

The expected number of pilots (ξ(t)) can be estimated by any model for Provi-

11.2. Modelling task turnaround with GWpilot 167

sioning described through the related work [136, 12, 117]. They offer approximate
results to the real ones achieved by the GWpilot PiF. Formulating a specific model
fitted to PiF is extensive and it is postponed for a future work. In any case, ξ(t′)
will be generally based on the maximum number of pilots (n) and on a cumulative
distribution function (CDF), being ξ(t′) = n · CDF (t′), which will take values into
(0, n] because t′ = t0 + tsi/2 > 0. On the other hand, for single applications η(t) tends
to 0 over time due to the end of calculation approaches. Therefore Υ will be content.
Finally, the task turnaround without failures is:

τ(t0) = tsi/2 + Υ[t0, tsi/2] + tpi + tx + te (11.2)

11.2.2. Statistical validation of the model

The accurateness of the fixed overheads (tsi/2 and tpi) as well as the correctness
of estimations (Υ) have to be demonstrated to validate the model formulated in this
section. Experiments performed in this thesis, mainly in Chapter 9, indicate their
suitability, but a mathematical proof was not shown. Therefore, an analysis using
different approaches that comprises performance, scalability and overheads is made
in this subsection. It is clear that these items can be only demonstrated increasing ex-
perimentally the stress of the system. Thus, statistics from the data obtained through
the tests done in Chapters 7 and 10 were used because these experiments performed
larger overloads. Collaterally, the study is useful to validate the design affirmations
commented in Section 7.2 in comparison to other frameworks.

Performance, scalability and reliability

Firstly, the total number of processed user tasks in the experiments is an achieve-
ment itself if we have in mind that other systems consider these volumes [202, 196, 262]
as the optimum throughput for months. In relation to Provisioning, the number of
effectively enrolled pilots presented in Tables 7.4 and 10.3 is also important. There
were tests with more than 9,000 successfully enrolled pilots [201], achieving maxima
of above 200 pilots per minute [195]. However, it is interesting to provide the average
number of enrolled pilots and the percentage of discarded pilots per hour [262], which
are between 200-300 and above 5%, respectively. Note that a discarded pilot does not
imply that its hosting grid job has failed and vice versa. In any case, these values also
show how the enrolment and discarding processes in GWpilot are faster and more ef-
fective than the mechanisms to provision resources used in other systems [202] which
are based on middleware CLI.

The dispatch capacity is another productivity and scalability aspect that must be
examined. In the experiments, the time spent by the Scheduler was maintained below
one second. Then GWpilot can effectively dispatch more than 500 tasks per minute.
Other systems usually provide equivalent or lower rates. In any case, it is noteworthy
that this dispatching aspect is indicative of the future scalability of GWpilot and
its suitability for a wide range of calculations. In addition, Table 10.3 compiles the
processing rate of pilot operations, whose values are easily manageable by any HTTP
server (PiS is based on a lightweight HTTP framework). Therefore, the number of
pilots can be potentially increased to greater orders of magnitude.

168 Chapter 11. Modelling and Stacking Scheduling Tools

(a) Real execution time of tasks at remote re-
sources (te).

(b) Pilot overhead (tpi) and transfer times
(tx).

(c) Dispatching overhead, i.e. time spent in
dispatching a task whenever it is included in
the system (tsi/2 + Υ[t0, tsi/2], it depends on
the number of pilots up).

(d) Time spent in generating and monitoring
tasks for the applications (it is included even
when it is not properly part of the task turna-
round).

Figure 11.1: Box plots of the different turnaround times obtained with every completed
task grouped by experiment. Every box stand for: [Exp. 1-(a, b, c)], i.e. the 3 short tests
(a, b, c) of long multiplication corresponding to experiments performed in Chapter 7; [Exp.
1-(d, e, f)], i.e. the 3 long tests (d, e, f) of long multiplication corresponding to experiments
also performed in Chapter 7; [Exp. 2-(gp)], i.e. the 3 tests with guided Provisioning (gp)
performed in Chapter 10. Stars represent the average.

Turnaround and controlled overhead

Figures 11.1-(a, b, c) show three turnaround time values in the experiments pre-
sented in Chapters 7 and 10. They describe the turnaround of every task done, thus
failure rates are not compiled. Tasks are grouped by experiment and subsequently
decomposed in the three categories: CPU time (te), dispatching (tsi/2 + Υ[t0, tsi/2]),
and pilot and transfer overhead (tpi + tx).

Pilot operations have been extracted from Tsched to properly evaluate the over-
heads related to internal operations necessary to accept, classify, dispatch and consider
the task as ended. Time wasted by internal operations is negligible compared with the
time spent by the Scheduler, which is maintained below one second when there are

11.2. Modelling task turnaround with GWpilot 169

enough pilots. This fact is supported by the measurements previously made. Nevert-
heless, the turnaround increases when the Scheduler is unable to dispatch tasks due
to the inexistence of idle pilots. Additionally, other experiments composed of higher
volumes of tasks with complex requirements could increase this time. Therefore, Fig.
11.1-(c) allows demonstrating the accurateness of tsi/2 and the influence of Υ.

Usually, staging files are considered as part of the internal operations of the sys-
tem [117] or even a separate overhead in other works [116]. In this study transfer
times (tx) are shown jointly to the pilot overhead (tpi) to group the overheads related
to the network in Fig. 11.1-(b).

Although it is neither concerned with the turnaround measurement nor with the
GWpilot performance, the application overhead (Tapp) is also displayed in Fig 11.1-
(d) because it influences the final makespan of the calculation if there are not enough
tasks provided to fill all the available pilots. This circumstance was described in
Subsection 7.4.3, where a brief explanation was provided. Now, box plots indicate that
the script that wraps the long multiplication application gives the similar performance
when it supplies very short (< lower limit >= 3) or short (< lower limit >= 9)
tasks. However, this overhead, along with the one originated in pilots (Fig. 11.1-(b))
and the configured SCHEDULING_INTERV AL, results in an important percentage
with respect to CPU time in the first experiments. Therefore, running pilots are not
completely filled.

CPU time (te) plotted in Fig. 11.1-(a) shows similar values for short experiments
and the ones that together perform DKEsG and long multiplication calculations. The
explanation is that the volume of multiplication tasks only represents approximately
11% of all tasks in these experiments. Additionally, DKEsG-Mono tasks are shorter
than very short multiplication tasks (< lower limit >= 3). Thus, the question is
translated to the dispatching overhead shown in Fig. 11.1-(c). The maximum number
of usable pilots is limited to the same maximum quantity of tasks in every experi-
ment. An increase in the scheduling overhead indicates that either the number of
running pilots is lower than 1,000, or some of these pilots are banned. Both cir-
cumstances explain the high values compiled for the short experiments and how they
decrease when the duration of experiments is larger up to a median of 7 s (note that
the SCHEDULING_INTERV AL is set to 10 seconds in every experiment). Thus, the
dispatching overhead is actually describing the cost of Provisioning resources, but re-
mains statistically stable if the number of tasks is adjusted to the number of running
pilots. This is precisely one of the main performance measurements that should be
analysed in this work: the variability of this overhead has not necessarily been taken
into account by a self-scheduler that will use the GWpilot framework. tsi/2 can be
enough to enable many algorithms to profit from the system.

The other important aspect is the pilot and transfer overhead (tpi + tx), whose
medians are always close to 30 seconds because it mainly depends on its configured
pulling interval (PI). Nevertheless, transferring files have influence on this overhead
because the average values are higher in the experiments that deal with greater output
sizes. This fact demonstrates the scalability of the GWpilot system, which is not
influenced by the number of pilots running.

It is noteworthy to mention how the arithmetic average values of the corresponding
measured parameters behave. In the figure describing the CPU time (Fig. 11.1-(a)),
it can be seen almost a symmetric box with a higher weight in the distribution of
the higher values, what can be appreciated in the average values (stars) and in the
corresponding longer whiskers. Unlike the dispatching and pilot overheads, where the

170 Chapter 11. Modelling and Stacking Scheduling Tools

averages lie outside the third quartile in the long first (< lower limit >= 9) and
gp tests and even are outliers in the dispatching overhead, i.e. there have been some
specific values of these overheads which deeply exceed the median and produce a non-
symmetric average. This fact is not of importance if the median is symmetric inside
the box, since it means that the distribution is almost homogenous and only some few
tasks have produced a major overhead (pilot overhead case). However, it is noticeable
an asymmetric distribution in the long first (< lower limit >= 9) and gp boxes of
the scheduling overhead. In these cases, not only the average is an outlier, but also
the lower values of the overhead are much concentrated around a value, i.e. most of
the tasks (close to 50%) have a low dispatching overhead.

11.3. Methodology to incorporate third-party sche-
dulers

With the model presented and the GWpilot features, it is possible to easily separate
the characterisation, the Application level scheduling, the Task Scheduling and the
Provisioning, while maintaining the control over the pilot submission and removing
the penalties originated by self-made estimations. However, it could be of interest for
the developer to keep some of his implemented procedures to better fit the needs of his
application. On the contrary, some users may not like to modify legacy codes to take
advantage of pilots. Thus, a developer that plans to adapt any third-party scheduler
to GWpilot should follow the following steps:

1. To identify the algorithm requirements (pre-conditions) that are related to cha-
racterisation, i.e. what qualifiers are necessary and what type of resources should
be prioritised.

2. To check if GWpilot already offers procedures to accomplish these requirements
and to value if they should substitute the possible legacy ones by:

Making a simple procedure to submit characterisation or customisation
tasks to pilots whenever they were newly enrolled to the system.
Configuring the GWpilot Factory or to modify the legacy mechanism to
submit pilot jobs.
Removing the compilation of statistical data from tasks (or even pilots) if
accounting performed by the system is enough.

3. To purge the Workload Scheduling from useless procedures those have been
achieved by the previous techniques and reformulate the proposed algorithm if
needed.

4. To adjust the algorithm to establish equilibrium between spent time and profi-
table execution time taking into account the turnaround model and accordingly
setting the GWpilot configuration.

Subsequent approaches

According to the decisions taken following the methodology, different possibilities
appear. However, they can be grouped into the three main approaches set out below.

11.4. Stacking self-schedulers on the cloud 171

Each option progressively requires more work on adaptation of the personal scheduler
code:

a) Straightforward method: Provisioning is automatically handled by the GWpilot
Factory while the third-party tool is running as any other legacy application on
the system, although the tool only submits tasks to pilot resources. In general, as
pilots are stored as any other provider in the Host Pool, this methodology only
requires some few modifications in the legacy code, similar to the ones explained
in Chapter 8. The third-party tool will use its characterisation techniques in every
pilot as if it was any provider. However, if some early-binding techniques are not
invalidated, they will be applied on pilots and can impact the performance, resul-
ting in overheads (for example, tasks with long suspension timeouts for inexistent
batch queues).

b) Personal Provisioning: pilot jobs are submitted by the third-party tool making use
of its own early-binding techniques. In this case, the tool must distinguish between
providers and pilots by checking the LRMS_NAME tag. Moreover, as the selection
of better providers is usually associated with a customised characterisation of the
resource, the tool must take into account the pilot-provider relationship. For this
purpose, pilots also publish their provider identifier into the SITE_NAME tag.

c) Totally-guided mechanism: GWpilot features are fully configured to satisfy all Pro-
visioning matters with a similar or improved way from the ones offered by the
third-party tool. This implies to purge the scheduler code from any early-binding
or characterisation technique that can be replaced by a mechanism already offered
by GWpilot. Therefore this option is the most expensive in terms of coding effort
if a legacy scheduler is adapted, but it is specially recommended for incorporating
new algorithms to the pilot system from scratch.

In general, these three approaches are combined to accomplish concrete needs.

11.4. Stacking self-schedulers on the cloud

To demonstrate how the proposed model and methodologies are suitable for in-
corporating external scheduling algorithms, even for those already included in legacy
software, a good example should be the adaptation of a self-scheduler to GWpilot. For
this purpose, the self-scheduling framework developed in Chapter 6 has been used.
Therefore, the DyTSS algorithm will be utilised as a proof of concept to show how a
loop-scheduler can be adapted to GWpilot.

It could seem that as the framework relies on GridWay, the procedure presen-
ted is only bounded to frameworks that use this platform [20, 132]. However, the
computation is mainly based on DRMAA and other applications implemented with
standards should be straightforwardly adapted too. Moreover, other frameworks that
use different GSs or batch managers can be also easily adapted by substituting some
commands, because getting information about resources and managing jobs is very
simple with GWpilot.

Furthermore, the totally-guided approach was selected because it is the theoreti-
cally most expensive, but it allows profiting from all the GWpilot features.

172 Chapter 11. Modelling and Stacking Scheduling Tools

11.4.1. Adaptation approach
DyTSS algorithm requires the profiles of the MC application and the updated

benchmarks of every resource as well as its real availability (number of slots and
reliability).

The characterisation mechanisms implemented in the self-scheduler are oriented to
submit jobs directly to grid sites. For this purpose, replication was used for testing the
slot availability, and an exhaustive accounting is performed by inspecting job outputs.
However, these techniques are unnecessary in the network overlay created over the
cloud resources. GWpilot features can be fully configured to satisfy all provisioning
matters without replication, as well as characterisation tasks can be submitted to
pilots and the accounting of GridWay can be finally used, avoiding the necessity of
compiling statistics. In this sense, the benefits of continuously testing the providers
can now be achieved by the correct configuration of GWpilot Factory and the banning
feature, as has been explained in previous chapters.

Pilots provisioned are seen by the self-scheduler as suitable resources. However,
these pilots have to be characterised before being profited. On the other hand, the
application has to be profiled according to the benchmarks used for the latter to
enable the matchmaking among them. For this purpose, the self-scheduler creates a
set of profiling tasks that only require be executed in pilots. Consequently, GWpilot
Factory detects these tasks and submits the necessary pilots. When tasks end, Ceff
and Seff are obtained.

To benchmark pilots and to force the Provisioning of certain volume of them,
characterisation tasks are submitted. For this reason, self-scheduler maintains a set
of active or pending characterisation tasks in the GWpilot framework to obtain the
maximum number of pilots as possible, which is limited by the configuration of the
Factory. Unlike the profiling tasks, the interest is now focused on the performance (P)
and the bandwidth (BW) of every pilot. To obtain the information, the benchmark
tool is executed again, but the big file does not copied, because pilots already publish
information about bandwidth and latency. The analysis is always performed when a
new pilot is detected and it publishes the results as an additional tag in the pilot.
To preserve the accurateness of the monitoring, the values published are updated as
any conventional task that belongs to the real calculation ends, as will be explained
below. Moreover, characterisation tasks only will be executed in pilots that were not
previously benchmarked, while conventional tasks only will run in pilots that publish
the corresponding tag. This was performed setting the corresponding constraint in
the task description.

It is noteworthy to mention that not only the allowed number of VMs in every
cloud provider is variable, even the hardware provided by each resource is also so
because it can be composed by different kinds of nodes and the provider can be
overbooked. Therefore, the basis of the characterisation should rely on the same mat-
hematical basis used for grid, but adapted to the turnaround model proposed for pilot
jobs.

However, to adapt DyTSS it is not needed to take into account the variability in
dispatching (i.e. Υ[t0, tsi/2] ' 0). Therefore, combining the Equations 6.1 and 11.1,
the aforementioned parameters are used to estimate the turnaround time (τ(pj , s))
that substitutes the one (T (rj , s)) stated in Section 6.2.1:

T (rj , s) ' τ(pj , s) = tsi/2 + tpi + D

BWpj

+ Ceff + s · Seff
Ppj

(11.3)

11.4. Stacking self-schedulers on the cloud 173

Figure 11.2: Overhead with respect to expected turnaround (Equation 11.3) according to
the number of Nagano’s samples per task and the GWpilot configuration (tsi/2 = 5 s, tpi =
30 s). An idealised infrastructure with D/BWpj = 2 s and without failures is considered, but
cloud providers offer resources with benchmarked power (P) from 1,000 to 2,000 whetstones
(w).

However, this model is unreliable if benchmarking parameters are not updated
through the time. This is the reason for which every successful execution of a MC task
is analysed to re-calculate them, so knowledge about the infrastructure is enhanced in
real time with minimum computational effort. Moreover, DyTSS can receive now the
exact benchmark of every slot effectively appropriated with the GWpilot system. This
increases the efficiency of the algorithm. Additionally, the overheads introduced are
reduced because DyTSS has to wait neither for benchmarks, nor for storing statistical
data.

Therefore, as the accurateness of the model is preserved through the changes in
the availability of resources, it can be used by the adaptive algorithm to determine
the global performance of the virtual infrastructure provisioned and to consequently
adapt the number of samples (s) to submit and where to do it.

11.4.2. Proposed tests
To evaluate the effectiveness of the model to incorporate advanced scheduling

algorithms into the late-binding approach offered by GWpilot and to show how this
incorporation is beneficial to calculations, even on cloud, the execution of Nagano [72]
is selected to be carried out by the stacked framework in FedCloud.

As is explained in the Section B.3.1 of the Appendix B, the code is devoted to
simulate fluorescence emissions and the energy deposited by electrons inside an obser-
vation volume of the desired proportions. The calculation for a single electron takes
only a fraction of second, but for a real world use case, a complete simulation com-
prises several millions of electrons, for example 2 · 107. In this sense, its execution can
be characterised following the profiling obtained in experiments in Subsection 6.3.2,
resulting in Ceff =375.07 w and Seff =156.26 w, being w whetstone units. The in-
puts and the application itself take 500 KB, while output requires only few KB, then
the stage-in and -out process is really ballasted by the negotiation of the connection,
lasting less than 2 seconds in current research or business networks.

Figure 11.2 shows the estimation of the overhead evolution for a task when it

174 Chapter 11. Modelling and Stacking Scheduling Tools

Figure 11.3: Nagano production using tasks with fixed size E of 6,000 particles (without
DyTSS).

is executed on certain provisioned pilot, using the turnaround model proposed in
this work and taking into account that resources offered by current cloud providers
usually ranges from 1,000 w to 2,000 w. Each number of samples used coincides with
the ones selected for the proposed tests. These are the limits L and M for DyTSS
and the fixed number of samples E for an equal-sample-size distribution. As can be
seen, these values are not arbitrary chosen. The overheads of the calculation based on
equal-sized tasks are theoretically bounded into a 4-7%, according to the turnaround
model. In addition, the calculation should be few influenced by the failures of tasks
due to their short duration (between 10 and 20 minutes). On the other hand, DyTSS
has to reduce the makespan by dealing with very short and long tasks, i.e. achieving
equilibrium among overheads, failures and turnaround to increase the production of
samples.

Currently, the real availability of resources is very limited in FedCloud. Although
a virtual image widely deployed in providers were used such as in the experiments
in Section 8.4, the maximum number of VMs provisioned varying from few tens to
hundred fifty, distributed among about seven reliable providers. This issue constraints
the tests performed and the comparison to the results obtained in Chapter 6 following
the early-binding approach. Consequently, two types of tests have been performed.
The first one is the calculation of 2 · 107 samples divided in 3,333 tasks with fixed E
size. The experiment is repeated three times to study the sample production according
to the number of pilots provisioned without staking the self-scheduler. For the last one,

11.4. Stacking self-schedulers on the cloud 175

Figure 11.4: Nagano production with DyTSS algorithm.

the self-scheduler was stacked to GWpilot/GWcloud to perform the same calculation
another three times, but using the aforementioned limits L and M . The idea is use
the conclusions made in first experiment to analyse the reliability added by DyTSS to
the calculation, independently of the number of pilots. These experiments have been
launched at the same hour in different days.

11.4.3. Results
Regarding how the system behaves when the self-scheduler is not stacked, it can

be seen in Figure 11.3 that the number of calculated samples increases as the number
of pilots do, as expected. Slopes are shown during the longer interval in which the
number of pilots is maintained constant in the experiment. In this sense, a conclusion
can be found if how the slope (i.e. number of calculated samples) increases with the
number of pilots is analysed. Fitting to a new linear curve the number of pilots and
the slope, it is found that the number of calculated samples increases in a factor of
∼ 32 as the number of pilots do (this fitting presents a correlation factor r of 0.999
and a R2 coefficient of 0.998). On the other hand, the linear regression between the
interval points where the pilots remain stable coincides with the performance of the
provisioned infrastructure using this sample distribution [110]. The heuristic of DyTSS
is based on calculating this performance for different distributions, and therefore it
can be used to verify if the self-scheduler achieves better results than a fine equal-sized
choice. It is noteworthy to mention that the type provisioned resources vary among
experiments, but the slopes are similar when the number of pilots is maintained stable.

176 Chapter 11. Modelling and Stacking Scheduling Tools

As can be seen in Figure 11.4, when the self-scheduling framework is stacked,
the coupled tool outperforms the simple GWpilot/GWcloud system in the long term,
although the latter had provisioned whole pilots previously the experiment starts.
To found this conclusion, the productivity of the experiment with fixed size E has
been estimated by calculating the slope for a number of pilots equivalent to the real
average of pilots provisioned when the self-scheduler is used. In the beginning, the
former experiment executes better as its lineal behaviour starts calculating samples
more quickly. During those initial hours, the stacked system presents an exponential
behaviour as the proper provision takes longer, but from one point on (around 3 hours
and 45 minutes), it is able to calculate more samples. The result is that experiments
without the self-scheduler would last ∼ 8-13% more.

Figure 11.4 also shows the behaviour of the DyTSS algorithm. First tasks are
bigger than last ones. This is done to reduce the overheads during the most part of
the calculation and limits the influence of failed tasks at the end. However, this fact
decreases the productivity at the beginning, because many tasks continue running
without returning results. The only way to describe this issue is drawing the sample
production as the system were working with a task size between L andM , for example
E. As the number of pilots and their benchmark average have been monitored every
minute, the turnaround model can be used for this purpose. Thus, in Figure 11.4 it
is also depicted the proposed mathematical model (red line). Using this reference it
can be seen that DyTSS works first under that line and then above it. Furthermore,
it clearly demonstrates that the proposed model fits the real execution of the pilots
in a real cloud infrastructure as FedCloud is. This fact is key to foresee the behaviour
of a cloud infrastructure for scheduling and provisioning resources in advance.

11.5. Conclusions
The last requirement stated in Subsection 3.2.2 for the fully profiting from the

Multilevel Scheduling has been achieved in this chapter. That is, a simplified turna-
round model, which can be used by third-party schedulers, has been formulated based
on a statistical study of the overheads generated by GWpilot carrying out real calcu-
lations on production infrastructures. Moreover, a methodology to incorporate these
third-party tools into GWpilot has been presented. Therefore, unlike other systems,
the new pilot framework is capable of including diverse scheduling algorithms such
as the ones compiled in Subsection 2.3.3. Doing so, the personalised characterisation
that those scheduling algorithms require becomes feasible, a fact that overcomes their
lack of trustworthiness in the information provided by the grid and cloud services.

The suitability of the approach has been demonstrated by stacking the legacy
self-scheduler developed in Chapter 6 to the pilot framework. For this purpose, the
execution of Nagano application relying on this coupled system has been compared
with the standalone use of GWpilot on the EGI FedCloud infrastructure. The accurate
characterisation of overheads and resources allows self-scheduler to properly perform
a reliable MC execution based on its Workload Scheduling algorithm, which results
in an improved makespan. Furthermore, the proposed model perfectly matches the
real production of the legacy self-scheduler stacked to the pilot system. The overhead
produced with respect to the expected turnaround has been analysed as well.

Chapter 12

Main Contributions and
Future Work

12.1. Contributions and expected impact

The main intellectual contribution of this research is the bestowed capacity to
fully exploit the Multilevel Scheduling advantages to users, developers and institu-
tions. This achievement allows them to actually overcome their real computational
challenges on distributed environments. This fact has been extensively demonstra-
ted performing numerous meaningful calculations for different knowledge areas and
computational needs, which have required making the most of a huge volume of re-
sources belonging to real grid and cloud infrastructures in production.

The main expression of the previous contribution is the proposed design of a new
framework, GWpilot, which fully profits from the advantages of pilot jobs to build
a usable and adaptable Multilevel Scheduling architecture, suitable for improving
the execution of a wider range of distributed applications on grids and clouds. This
constitutes a remarkable step forward in the profiting of large distributed compu-
ting infrastructures, which had not really been achieved before by any other pilot
system due to lack of adaptability, compatibility and deploy-ability. In addition, the
extensive study performed to design GWpilot has resulted in a complete taxonomy of
pilot systems that can be used as a guideline for future researches, developments and
deployments.

The success of the new approach is based on the solutions provided by the diverse
new technologies and methodologies that have been developed through this thesis.
First, the system properly tackles the persistent problem of characterisation that tra-
ditionally has prevented the deployment of complex scheduling algorithms or policies
on grid and cloud environments. It provides users with the needed tools to arbitrarily
incorporate a customised monitoring of resources and their running applications into
the system. Thus, the user can easily take advantage of this feature to perform a
specialised scheduling of his application workload without the need of modifying any
code in the pilot system. Moreover, few changes in their applications are needed to
manage the monitoring and scheduling, because the framework supports legacy appli-
cations, basic scheduling policies based on the description of every task, and fairness
in a shared and competitive environment.

179

180 Chapter 12. Main Contributions and Future Work

Users can also automatically manage the Resource Provisioning among different
grid and cloud providers without the need of explicitly indicating one resource or ma-
nually submitting pilots. Moreover, the post-configuration of the provisioned workspa-
ces is allowed, especially in cloud, without the need of dealing with contextualisation.
For this purpose, the compatibility and security with different infrastructures have
been preserved and extended. In this sense, a new brokering approach was propo-
sed for the dynamic Provisioning of virtual workspaces in clouds that is suitable for
distributed calculations and allows users to select the virtual environment that their
application requires. These distinguishing features are not offered by other pilot sys-
tems. Moreover, the lack of feasible cloud brokering mechanisms for High Throughput
Computing has been overcome with this approach, constituting another important
contribution.

Furthermore, the capacity to customise whole scheduling layers in the proposed
Multilevel architecture is raised to the user-level. Additionally, a new and simplified
mathematical model has been formulated to accurately estimate the turnaround of
every task. These achievements benefit skilled developers and administrators, who
can now build complex scheduling policies, a capacity that was not actually provi-
ded by either other pilot systems or with early-binding mechanisms. Even more, the
combination of advances presented in this thesis allows the easy adaptation of legacy
third-party scheduling tools to the pilot framework such as self-schedulers and work-
flow managers. This goal was not registered before and it enables profiting from the
compiled knowledge and previous work done on grid environments for fifteen years.

To demonstrate these achievements, the new pilot framework has been implemen-
ted and tested with different legacy applications and scheduling policies and systems,
performing meaningful calculations on cloud and grid infrastructures in production.
For this purpose, customary applications belonging to different knowledge areas have
been adapted to run on distributed environments. Additionally, the support of cloud
brokering is achieved. Moreover, a self-scheduling framework has been developed to
demonstrate the advantages of stacking third-party schedulers onto the pilot system.
The new proposed technologies have been previously tested following the early-binding
approach to enable the subsequent comparison with the pilot framework. Therefore,
these developments implied an extensive study of early-binding techniques and their
limitations that has been compiled in Part I of this thesis, and which constitutes
another intellectual contribution.

Moreover through the Part II of this thesis, it has been experimentally demonstra-
ted that the new framework outperforms the performance of other pilot systems due
to its design, even if its advanced scheduling capacities were disabled. Such a result
has been demonstrated on real infrastructures and performing real calculations. In
addition, the fully support of legacy applications has been illustrated as well as the
transparent profiting of brokering in cloud federations. Experiments have been perfor-
med to show how any user can straightforwardly make the most of the power of cloud
with GWpilot. The framework also maintains its performance and scalability when
multiple users and applications are being scheduled, independently of their volume or
the short duration of the tasks, even when complex scheduling policies are performed.
In this sense, the methodologies to customise the Multilevel Scheduling architecture
have been extensively described and tested with competitive applications scheduled at
the same time. The validity of the proposed mathematical model has been statistically
demonstrated via measurements of real executions; its suitability for being used as
the basis of the adaptation of third-party schedulers has been demonstrated as well.

12.2. Future work 181

For the latter, the developed self-scheduler has been stacked on GWpilot, obtaining
an improved performance.

The research performed in this thesis is focused on solving the real problems of
more quickly obtaining much accurate scientific results by means of grid and cloud
approaches. Thus, the experiments carried out have also provided valuable biological
and physical results. The main ones are the study of the relation between rotational
transform scaling and Neoclassical transport in stellarators (Section C.4.3) and the
comparison of Neoclassical fluxes (Section C.4.2) in the TJ-II device. Additionally,
other contributions to other fields have been done (Appendix B). For example, the
comparison among genotypes of several human viruses has allowed to know their
relationship and mutations. New studies on superconducting vortex dynamics have
been also achieved with the experiments performed in this thesis.

The new pilot framework is available to be profited by the scientific and industrial
communities. As it has been demonstrated through this thesis, the framework can
be easily deployed and improved. Therefore, the impact of this thesis on Computer
Science as well as on any other field is guaranteed by the practicality, extensibility,
and the multiple possibilities of scheduling that the proposed approach allows.

12.2. Future work

The demonstrated usability, adaptability, and compatibility of the proposed fra-
mework and, overall, its capacity to really support complex scheduling in real distri-
buted environments, opens the door to novel approaches that were difficult or even
impossible to be carried out with previous technologies.

First, Cloud Computing and Big Data are experiencing a fast development and
expansion. Through the next years, federations and public computational markets
based on both paradigms will become the most powerful platforms available at the
expense of grid infrastructures. Consequently, many customary distributed applica-
tions have to be adapted to these environments and GWpilot is the way of achieving
this challenge. For this purpose, some applications adapted as part of this thesis, such
as FLUKA and GAMOS, are currently being exploited on cloud [242], but others
may be adapted too. In this sense, the simulation of fusion reactors continues to be
an important scientific challenge and several studies are being carried on cloud with
other kind of codes.

However, additional scopes are being considered. The recently incorporation of
CIEMAT as full member of the Latin American Giant Observatory (LAGO) Collabo-
ration allows opening new lines of research. In LAGO, it is necessary to access great
amount of data, which have to be processed taking into account their much different
geographical locality. Thus, technologies close to Big Data have to be developed. It
will be easier to deploy the required Big Data services and algorithms into clouds
with GWpilot.

It is noteworthy to mention again that a great percentage of future providers will
follow a pay-per use policy, despite of the scientific federations established. Therefore,
the incorporation of cloud resources into the framework is being evaluated conside-
ring the economical questions that arise in an environment with multiple commercial
providers. Moreover, the scheduling based on QoS, budgets and deadlines, taking into
account the consumed CPU, I/O and network operations or wasted storage as well
as the performance obtained will be a must.

182 Chapter 12. Main Contributions and Future Work

Other research area with projection is the Autonomous Computing field. In this
thesis, some advances have been presented to enable resilient scheduling algorithms
in clouds. However, to make progress on the self-optimisation of systems implies the
creation of novel scheduling algorithms based on advanced heuristics, Soft Compu-
ting and other approaches such as machine learning, which allow foreseeing the future
failures and consequently adapting the execution in advance. Moreover, these schedu-
ling can be improved with the management of checkpoints. The capacity to suspend,
migrate and restart a calculation composed by a huge volume of processes before fai-
lures happen or due to priority reasons is one of the main objectives of the Exascale
challenge in the next decade. For this reason, the GWpilot support of checkpointing
is being tested to assure the compatibility with the future Exascale platforms.

Furthermore, there is room to extend the framework with many other functio-
nalities and purposes. For example the usability can be improved by implementing
a graphical interface, by coupling a science gateway or by using a workflow mana-
ger that should be remotely accessed. In this sense, several approaches for remotely
accessing GWpilot through OGSA-BES standard have been tested with workflow ma-
nagers [263, 264] and only the consolidation of the work performed is still needed.

The framework it is also being currently extended to fully enable pilots with the
multi-task capacity. This feature will allow profiting from several processors in the
same provisioned virtual machine or even in commodity hardware to build a cluster
without the need of managing a complex LRMS. Moreover, the access to underlying
hardware of accelerators such as GPUs or Xeon Phis, as well as their future support by
virtualisation hypervisors, will increase the computational power and versatility of the
proposed solution. Thus, the future work will be mainly focused on mixed distributed
and parallel calculations. In this sense, workflows of fusion applications that require
strong communication among their tasks, like those used in turbulence simulations,
are being explored. They include calculations based upon Gyrofluid or Gyrokinetic
Theory, which are challenging in the sense of being able to simulate real transport
time scales. In any case, the incorporation of any other complex scheduling algorithm
to accomplish the requirements of specific workload problems will be explored on-
demand to achieve the computational challenges of the scientific projects involved.

Therefore, the future suitability and sustainability of the approach presented in
this thesis are granted as well as the continuity of the research.

Part III

APPENDICES

Appendix A

Dissemination

The whole scientific contribution of this thesis can be summarised in a set of
publications and dissemination activities that have to be classified in order to provide
a clear view of the quality of the performed research. This classification is shown
in this appendix with the customary impact and quality measurements used by the
scientific community.

A.1. JCR publications
The research performed in this thesis has resulted in eight articles published in

journals indexed in Journal Citation Reports (JCR): two in quartile 1 (Q1), one in
quartile 2 (Q2), three in quartile 3 (Q3) and two in quartile 4 (Q4). Three out of total
(Q1, Q3 and Q4) are in different reviewing phases.

1. A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “Scheduling multiple
virtual environments in cloud federations for distributed calculations,” Future
Generation Computer Systems, p. (Under Review), 2016.

JCR (2014) IF: 2.786. 5-year IF: 2.464. 8/102 (Q1) in COMPUTER SCIENCE,
THEORY & METHODS.
Number of pages: 15, double column.
References: 52.

2. A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “A simple
model to exploit reliable algorithms in cloud federations,” Soft Computing, p.
(Under Review), 2016.

JCR (2014). IF: 1.271. 5-year IF: 1.635. 65/123 (Q3) in COMPUTER SCIEN-
CE, ARTIFICIAL INTELLIGENCE and 58/102 (Q3) in COMPUTER SCIENCE,
INTERDISCIPLINARY APPLICATIONS

Number of pages: 13, double column.
References: 50.

3. F. Castejón, A. J. Rubio-Montero, A. López-Fraguas, E. Ascasíbar, and R. Mayo-
García, “Neoclassical transport and iota scaling in the TJ-II stellarator,” Fusion
Science and Technology, p. (Accepted), 2016.

185

186 Appendix A. Dissemination

JCR (2014). IF: 0.486. 5-year IF: 0.480. 28/34 (Q4) in NUCLEAR SCIENCE
& TECHNOLOGY.
Number of pages: 35, single column.
References: 34.

4. A. J. Rubio-Montero, F. Castejón, E. Huedo, and R. Mayo-García, “A novel pilot
job approach for improving the execution of distributed codes: application to the
study of ordering in collisional transport in fusion plasmas,” Concurrency and
Computation: Practice & Experience, vol. 27, no. 13, pp. 3220–3244, September
2015. doi : 10.1002/cpe.3301

JCR (2014) IF: 0.997. 5-year IF: 0.958. 47/104 (Q2) in COMPUTER SCIEN-
CE, SOFTWARE ENGINEERING, and 46/102 (Q2) in COMPUTER SCIENCE,
THEORY & METHODS.
Number of pages: 25, single column.
References: 44.
Cited by: 1 (Google Scholar)

5. A. J. Rubio-Montero, E. Huedo, F. Castejón, and R. Mayo-García, “GWpilot:
Enabling multi-level scheduling in distributed infrastructures with GridWay and
pilot jobs,” Future Generation Computer Systems, vol. 45, pp. 25–52, April 2015.
doi : 10.1016/j.future.2014.10.003

JCR (2014) IF: 2.786. 5-year IF: 2.464. 8/102 (Q1) in COMPUTER SCIENCE,
THEORY & METHODS.
Number of pages: 28, double column.
References: 81.
Cited by: 5 (Google Scholar)

6. M. Rodríguez-Pascual, A. Gómez, R. Mayo-García, D. P. de Lara, E. M. Gon-
zález, A. J. Rubio-Montero, and J. L. Vicent, “Superconducting Vortex Lattice
Configurations on Periodic Potentials: Simulation and Experiment,” Supercon-
ductivity and Novell Magnetism, vol. 25, no. 7, pp. 2127–2130, October 2012.
doi : 10.1007/s10948-012-1636-8

JCR (2014) IF: 0.909. 5-year IF: 0.759. 112/144 (Q4) in PHYSICS, APPLIED
and 53/67 (Q4) in PHYSICS, CONDENSED MATTER.
Number of pages: 4, double column.
References: 14.
Cited by: 1 (Google Scholar).

7. A. J. Rubio-Montero, F. Castejón, M. A. Rodríguez-Pascual, E. Montes, and
R. Mayo, “Drift Kinetic Equation Solver for Grid (DKEsG),” IEEE Transac-
tions on Plasma Science, vol. 38, no. 9, pp. 2093–2101, September 2010. doi :
10.1109/TPS.2010.2055164

JCR (2014) IF: 1.101. 5-year IF: 1.089. 21/31 (Q3) in PHYSICS, FLUIDS &
PLASMAS.

http://dx.doi.org/10.1002/cpe.3301
http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1007/s10948-012-1636-8
http://dx.doi.org/10.1109/TPS.2010.2055164

A.2. Book chapters and other journals 187

Number of pages: 9, double column.
References: 25.
Cited by: 6 (Google Scholar).

8. M. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M. Llo-
rente, and R. Mayo, “Improvements on the Fusion Code FAFNER2,” IEEE
Transactions on Plasma Science, vol. 38, no. 9, pp. 2102–2110, September 2010.
doi : 10.1109/TPS.2010.2057450

JCR (2014) IF: 1.101. 5-year IF: 1.089. 21/31 (Q3) in PHYSICS, FLUIDS &
PLASMAS.
Number of pages: 9, double column.
References: 24.
Cited by: 8 (Google Scholar).

A.2. Book chapters and other journals
This section compiles the peer-reviewed contributions that are not indexed in JCR.

1. M. Rodríguez-Pascual, C. Kanellopoulos, A. J. Rubio-Montero, D. Darriba,
O. Prnjat, D. Posada, and R. Mayo-García, “Adapting reproducible research
capabilities to resilient distributed calculations,” International Journal of Grid
and High Performance Computing, p. (Accepted), 2016.

Number of pages: 13, single column.
References: 23.

2. R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, State-of-Art with Phylo-
Grid: Grid Computing Phylogenetic Studies on the EELA-2 Project Infrastruc-
ture, in Grid Computing: Towards a Global Interconnected Infrastructure, ser.
Computer Communications and Networks. Springer London / Heidelberg New
York, 2011, pp. 277–291. doi : 10.1007/978-0-85729-676-4_11

Acceptation rate: 17.6% (27/153).
Number of pages: 15, single column.
References: 30.

A.3. Proceedings
Manuscripts presented in conferences and published in proceeding books are listed

in this section, ordered by year. The core CORE/ERA ranking1 is mainly used by the
scientific community and certification authorities to know the quality and possible
impact of conferences on Computer Science. Every conference is ranked by: (A*)
flagship conference, (A) excellent conference, (B) good conference and, (C) conference
that meets minimum quality standards. In this sense, the research performed in this

1http://www.core.edu.au/index.php/conference-rankings

http://dx.doi.org/10.1109/TPS.2010.2057450
http://dx.doi.org/10.1007/978-0-85729-676-4_11

188 Appendix A. Dissemination

thesis has resulted in fourteen proceedings, of which one is classified as A, four as B
and three as C. The quality of the remaining six is supported by the publisher and/or
editor/committee or by other measurements as citations.

1. A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “User-Guided Provisio-
ning in Federated Clouds for Distributed Calculations,” in Adaptive Resource
Management and Scheduling for Cloud Computing (ARMS-CC 2015), ser. Lec-
ture Notes in Computer Science, vol. 9438. San Sebastián, Spain: Springer,
20th July 2015, pp. 60–77. doi : 10.1007/978-3-319-28448-4_5

Number of pages: 18, single column.
References: 37.

2. A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “Evalua-
tion of an adaptive framework for resilient Monte Carlo executions,” in 30th AC-
M/SIGAPP Symposium On Applied Computing (SAC’15). Salamanca, Spain:
ACM New York, 13–17 April 2015, pp. 448–455. doi : 10.1145/2695664.2695890

ERA/CORE: B (Field Of Research: 0804 - Data Format).
Number of pages: 8, double column.
References: 29.

3. M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo-García, C. Kanellopou-
los, O. Prnjat, D. Darriba, and D. Posada, “A fault tolerant workflow for re-
producible research,” in Annual Global Online Conference on Information and
Computer Technology (GOCICT 2014). Louisville, Kentucky, USA: IEEE CS
Press, 3–5 December 2014, pp. 70–75. doi : 10.1109/GOCICT.2014.10

Number of pages: 6, double column.
References: 15.

4. A. J. Rubio-Montero, F. Castejón, E. Huedo, M. Rodríguez-Pascual, and R. Mayo-
García, “Performance improvements for the neoclassical transport calculation
on Grid by means of pilot jobs,” in Int. Conf. on High Performance Comput.
and Simulation (HPCS 2012). Madrid, Spain: IEEE CS Press, 2–6 July 2012,
pp. 609–615. doi : 10.1109/HPCSim.2012.6266981

ERA/CORE: B (Field Of Research: 0805 - Distributed Computing).
Number of pages: 7, double column.
References: 31.
Cited by: 1 (Google Scholar).

5. M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo, A. Bustos, F. Castejón,
and I. Llorente, “More Efficient Executions of Monte Carlo Fusion Codes by
Means of Montera: The ISDEP Use Case,” in 19th Euromicro Int. Conf. on Pa-
rallel, Distributed and Network-Based Processing (PDP 2011). Ayia Napa, Cy-
prus: IEEE CS Press, 9–11 February 2011, pp. 380–384.doi:10.1109/PDP.2011.46

ERA/CORE: C (Field Of Research: 0805 - Distributed Computing).

http://dx.doi.org/10.1007/978-3-319-28448-4_5
http://dx.doi.org/10.1145/2695664.2695890
http://dx.doi.org/10.1109/GOCICT.2014.10
http://dx.doi.org/10.1109/HPCSim.2012.6266981
http://dx.doi.org/10.1109/PDP.2011.46

A.3. Proceedings 189

Number of pages: 5, double column.
References: 15.
Cited by: 8 (Google Scholar).

6. A. J. Rubio-Montero, L. Flores, F. Castejón, E. Montes, M. Rodríguez-Pascual,
and R. Mayo, “Executions of a Drift Kinetic Ecuation solver on Grid,” in 18th
Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP 2010). Pisa, Italy: IEEE CS Press, 17–19 February 2010, pp. 454–459.
doi : 10.1109/PDP.2010.40

ERA/CORE: C (Field Of Research: 0805 - Distributed Computing).
Number of pages: 6, double column.
References: 14.
Cited by: 2 (Google Scholar).

7. M. Rodíguez-Pascual, D. P. de Lara, E. M. González, A. Gómez, A. J. Rubio-
Montero, R. Mayo, and J. Vicent, “Grid computing simulation of superconduc-
ting vortex lattice in superconducting magnetic nanostructures,” in Proceedings
of the 4th Iberian Grid Infrastructure Conference, vol. 4. Braga, Portugal:
NETBIBLO S.L. (Sta. Cristina, La Coruña, Spain), 24–27 May 2010, pp. 97–
109. ISBN 978-84-9745-549-7

Number of pages: 12, single column.
References: 14.

8. M. A. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M.
Llorente, and R. Mayo, “A Grid version of the Fusion code FAFNER,” in 18th
Euromicro Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP 2010). Pisa, Italy: IEEE CS Press, 17–19 February 2010, pp. 449–453.
doi : 10.1109/PDP.2010.37

ERA/CORE: C (Field Of Research: 0805 - Distributed Computing).
Number of pages: 5, double column.
References: 10.

9. R. Isea, E. Montes, A. J. Rubio-Montero, J. D. Rosales, M. A. Rodríguez-
Pascual, and R. Mayo, “Characterization of antigenetic serotypes from the den-
gue virus in Venezuela by means of Grid Computing,” in Healthgrid Applications
and core Technologies. Proceedings of HealthGrid 2010, ser. Studies in Health
Technology and Informatics, vol. 159. Paris, France: IOS Press, 28–30 June
2010, pp. 234–238. doi : 10.3233/978-1-60750-583-9-234

Number of pages: 5, single column.
References: 22.
Cited by: 2 (Google Scholar).

http://dx.doi.org/10.1109/PDP.2010.40
http://dx.doi.org/10.1109/PDP.2010.37
http://dx.doi.org/10.3233/978-1-60750-583-9-234

190 Appendix A. Dissemination

10. M. Rodríguez-Pascual, F. Castejón, A. J. Rubio-Montero, R. Mayo, and I. M.
Llorente, “FAFNER2: A comparison between the Grid and the MPI versions of
the code,” in Int. Conf. on High Performance Comput. and Simulation (HPCS
2010). Caen, France: IEEE CS Press, 28 June–2 July 2010, pp. 78–84. doi :
10.1109/HPCS.2010.5547146

ERA/CORE: B (Field Of Research: 0805 - Distributed Computing).
Number of pages: 7, double column.
References: 19.
Cited by: 2 (Google Scholar).

11. R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, “Computational Cha-
llenges on Grid Computing for Workflows Applied to Phylogeny,” in Distributed
Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Am-
bient Assisted Living. 10th Int. Work-Conference on Artificial Neural Networks
(IWANN 2009), ser. Lecture Notes in Computer Science, vol. 5518. Salamanca,
Spain: Springer-Verlag, 10–12 June 2009, pp. 1130–1138. doi : 10.1007/978-3-
642-02481-8_171

ERA/CORE: B (Field Of Research: 0801 - Artificial Intelligence and Image
Processing).
Number of pages: 9, single column.
References: 21.
Cited by: 8 (Google Scholar).

12. A. J. Rubio-Montero, P. Arce, J. I. Lagares, Y. P. Ivanov, D. A. Burbano,
G. Díaz, and R. Mayo, “Performance Tests of GAMOS Software on EELA-
2 Infrastructure,” in Proceedings of the Second EELA-2 Conference. Choroní,
Venezuela: Editorial CIEMAT (Madrid, Spain), 25–27 November 2009, pp. 379–
385. ISBN 978-84-7834-627-1

Number of pages: 7, single column.
References: 16.
Cited by: 2 (Google Scholar).

13. R. Isea, J. Chaves, E. Montes, A. J. Rubio-Montero, and R. Mayo, “The evolu-
tion of HPV by means of a phylogenetic study,” in Healthgrid Research, Innova-
tion and Business Case. Proceedings of HealthGrid 2009, ser. Studies in Health
Technology and Informatics, vol. 147. Berlin, Germany: IOS Press, 29 June–1
July 2009, pp. 245–250. doi : 10.3233/978-1-60750-027-8-245

Number of pages: 6, single column.
References: 13.
Cited by: 1 (Google Scholar).

14. A. J. Rubio-Montero, R. S. Montero, E. Huedo, and I. M. Llorente, “Manage-
ment of Virtual Machines on Globus Grids using GridWay,” in 21st IEEE Int.
Parallel and Distributed Processing Symposium (IPDPS 2007). Long Beach,
USA: IEEE CS Press, 27–30 March 2007, pp. 1–7.doi:10.1109/IPDPS.2007.370548

http://dx.doi.org/10.1109/HPCS.2010.5547146
http://dx.doi.org/10.1007/978-3-642-02481-8_171
http://dx.doi.org/10.1007/978-3-642-02481-8_171
http://dx.doi.org/10.3233/978-1-60750-027-8-245
http://dx.doi.org/10.1109/IPDPS.2007.370548

A.4. Other contributions 191

ERA/CORE: A (Field Of Research: 0805 - Distributed Computing).
Number of pages: 7, double column.
References: 16.
Cited by: 29 (Google Scholar).

A.4. Other contributions
This section includes a selection of the contributions to highly respected confe-

rences in their discipline area, such as oral presentations and posters, which have not
resulted in proceedings and are usually included in books of abstracts. In this sen-
se, EGI and EGEE forums were the main venue organised in Europe for researchers
working on Grid Computing, being usually co-located with the Open Grid Forum
standardisation meetings. On the other hand, the International Conference on Nume-
rical Simulation of Plasmas (ICNSP) is a bi-annual meeting that started in 1967 with
the aim to highlight major advances in computational Plasma Physics and related
areas. While the IEEE Nuclear Science Symposium & Medical Imaging Conference
(NSS-MIC) is one of the world’ s leading multidisciplinary conferences focused on
advancements in the fields of Nuclear Science and Software Engineering, such as ra-
diation detection, data acquisition, or medical imaging applications. On the other
hand, the International Society for Computational Biology (ISCB) is a scholarly so-
ciety with nearly 2,000 members from over 50 countries, which has emerged as leader
in the field of Computational Biology. Therefore, the following contributions increased
the visibility of the research performed in this thesis.

1. A. J. Rubio-Montero, M. Plociennik, I. Marín-Carrión, T. Zok, M. Rodríguez-
Pascual, R. Mayo-García, M. Owsiak, E. Huedo, F. Castejón, and B. Palak,
“Advantages of adopting late-binding techniques through standardised interfa-
ces for workflow managers,” Poster. BoA of EGI Technical Forum 2013, Madrid,
Spain, 16–20 September 2013.

2. M. Plociennik, A. J. Rubio-Montero, T. Zok, I. Marín-Carrión, M. Rodríguez-
Pascual, R. Mayo-García, F. Castejón, E. Huedo, M. Owsiak, and B. Palak,
“OGSA-BES connector for Kepler to remotely use the GridWay meta-scheduler,”
Poster. BoA of EGI Community Forum 2013, Manchester, United Kingdom, 8–
12 April 2013.

3. M. Rodríguez-Pascual, A. J. Rubio-Montero, and R. Mayo-García, “An unat-
tended, fault-tolerant approach for the execution of distributed applications,”
Oral presentation. BoA of EGI Community Forum 2013, Manchester, United
Kingdom, 8–12 April 2013.

4. A. J. Rubio-Montero, E. Huedo, F. Castejón, J. Velasco, and R. Mayo-García,
“New computational methodology for the execution of massive distributed cal-
culations: Its application to the neoclassical transport in nuclear fusion plas-
mas,” Poster. IEEE Nuclear Science Symposium and Medical Image Conference
(NSS-MIC 2012), Anaheim, USA, 27 October – 03 November 2012.

5. A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “GWpilot: a personal
(or institutional) pilot system ,” Oral presentation. 3rd EGI Technical Forum,
Contributions Book, Prague, Czech Republic, 18–20 September 2012.

192 Appendix A. Dissemination

6. M. Rodríguez-Pascual, A. J. Rubio-Montero, and R. Mayo, “Adaptive Sche-
duling,” Oral presentation. International Society for Computational Biology
(ISCB), Latin America 2012 Conference on Bioinformatics, (ISCB-LA 2012),
Santiago de Chile, Chile, 17–21 March 2012.

7. M. Rodríguez-Pascual, A. J. Rubio-Montero, and R. Mayo, “More efficient Mon-
te Carlo Grid Executions with Montera Framework,” Oral presentation. IEEE
Nuclear Science Symposium and Medical Image Conference. (NSS-MIC 2011),
Valencia, Spain, 23 –29 October 2011.

8. A. J. Rubio-Montero, M. Rodríguez-Pascual, F. Castejón, E. Montes, and R. Ma-
yo, “The Drift Kinetic Ecuation solver for Grid (DKEsG),” Oral presentation.
21st International Conference on Numerical Simulation of Plasmas (ICNSP
2009), Lisbon, Portugal, 6–9 October 2009.

9. M. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M. Llo-
rente, and R. Mayo, “NBI heating simulations of fusion plasmas on the Grid
(FAFNER2),” Poster. 21st International Conference on Numerical Simulation
of Plasmas (ICNSP 2009), Lisbon, Portugal, 6–9 October 2009.

10. A. J. Rubio-Montero, E. Montes, M. Rodríguez, F. Castejón, and R. Mayo, “A
Grid fusion code for the Drift Kinetic Equation solver,” Poster. BoA of 4th
EGEE User Forum, Catania, Italy, 2–6 March 2009.

11. M. Rodríguez, J. Guasp, F. Castejón, I. Llorente, A. J. Rubio-Montero, and
R. Mayo, “Improvements on the EGEE fusion code FAFNER-2,” Oral presen-
tation. BoA of 4th EGEE User Forum, Catania, Italy, 2–6 March 2009.

Appendix B

Applications

Science and engineering have tremendously evolved in the last decades thanks to
the application of numerical methods to the problems these fields were facing. In this
way, not only the achievement of new solutions has become feasible, the problems
themselves have turned more ambitious as new more powerful computing infrastruc-
tures were available. In this appendix, some and much different examples are outlined
in which the solutions proposed in this thesis have been cornerstone for obtaining new
scientific results.

B.1. Chemical Physics
As it is well known, Chemical Physics covers a wide range of phenomena that

are in between the molecular and atomic levels. In such a scenario in which Ther-
modynamics, Quantum Mechanics, Kinetics and Statistical Mechanics play different
roles, only computing simulations can approach the huge amount of particles that are
involved. In a world in which the Avogadro constant (6.023·1023mol−1) is key, HPC
and HTC are crucial.

B.1.1. Grif
Grif [265] code studies the speed of chemical reactions from the physical pheno-

mena that rule the movement of atoms and molecules along the collision process. In
this case, every simulation is on the range of seconds, requiring several millions for a
single experiment.

Grif is devoted to simulate a chemical reaction of outmost importance for the life
in Earth. It studies a chemical reactions happening in the atmosphere, OH + CO →
H +CO2, which is the most important reaction on the removal of CO and OH from
the atmosphere. It removes 90% of the CO and 70% of the OH and, as a result,
about 20% of the CO2 of the atmosphere is produced. It also heavily affects other
atmospheric species, with OH being critical in many other reactions.

Grif code studies the speed of chemical reactions from the physical phenomena that
rule the movement of atoms and molecules along the collision process by employing
Schrödinger’s equation. It is specially suitable for grid environments as it has a high
demand of CPU resources, does not have many memory requirements, and the data
transfer is kept to a minimum.

193

194 Appendix B. Applications

B.2. Evolutionary Biology
The determination of the evolution history of different species is nowadays one of

the most exciting challenges that are currently emerging in Computational Biology.
The following three tools that are customary used by the scientific community have
been adapted in this thesis to distributed environments.

B.2.1. jModelTest2
ModelTest (and its Java version jModelTest) [266] is a tool to carry out statisti-

cal selection of best-fit models of nucleotide substitution. It implements five different
model selection strategies: hierarchical and dynamical likelihood ratio tests (hLRT
and dLRT); Akaike and Bayesian information criteria (AIC and BIC); and a Deci-
sion Theory (DT) method. It also provides estimates of model selection uncertainty,
parameter importances and model-averaged parameter estimates, including model-
averaged tree topologies. jModelTest2 [267] includes HPC capabilities and additional
features like new strategies for tree optimisation, model-averaged phylogenetic trees
(both topology and branch length), heuristic filtering, and automatic logging of user
activity.

jModelTest2, as well as its predecessors, makes use of PhyML [268], a phylogeny
software based on the maximum-likelihood principle that implements new algorithms
to search the space of tree topologies with user-defined intensity.

The calculations made with jModelTest2 can demand vast computational resour-
ces, especially in terms of processing power, so three parallel algorithms for model
selection are available: a multithreaded implementation for shared memory architec-
tures; a message-passing implementation for distributed memory architectures, such
as clusters; and, a hybrid shared/distributed memory implementation for clusters of
multicore nodes, combining the workload distribution across cluster nodes with a mul-
tithreaded model optimisation within each node. The second version with DRMAA
capabilities instead of MPI ones has been used in this thesis.

B.2.2. MrBayes and PhyloGrid
MrBayes [269] is a program for doing Bayesian phylogenetic analysis. The program

uses Markov Chain Monte Carlo (MCMC) techniques to sample from the posterior
probability distribution. By default, MrBayes uses Metropolis-coupling to accelerate
convergence; specifically, three heated chains are run in parallel with each regular cold
chain. The heated chains sample from distributions obtained by raising the poste-
rior probability with some factor smaller than 1, resulting in flattening (melting) of
the peaks in the landscape defined by the posterior distribution. At specified inter-
vals, the parameter values (the locations in the landscape) are swapped between cold
and heated chains, which makes it possible for the cold chain to escape local peaks.
This comes at the cost of increased computational complexity, but can really help
convergence for difficult problems.

By default, MrBayes runs two independent analyses in parallel and calculates
convergence diagnostics on the fly. This helps the user determine when to stop the
analysis.

PhyloGrid [238] is a workflow based on Taverna [153] that makes use of MrBayes.
It is able to execute MrBayes on grid resources and to be profited from a web service

B.3. High Energy Physics 195

interface. With the framework, some scientific results has been achieved [237, 236, 235]
in understanding the relationship and differences among some regional genotypes of
the human papillomavirus (HPV), human immunodeficiency virus (HIV) and Dengue
virus (DENV).

B.2.3. ProtTest3
ProtTest [270] is a bioinformatics tool for the selection of best-fit models of ami-

noacid replacement for the data at hand. ProtTest makes this selection by finding the
model in the candidate list with the smallest Akaike and Bayesian information crite-
ria (AIC, BIC) score or Decision Theory (DT) criterion. At the same time, ProtTest
obtains model-averaged estimates of different parameters (including a model-averaged
phylogenetic tree) and calculates their importance [271]. ProtTest differs from its nu-
cleotide analogue jModelTest in that it does not include likelihood ratio tests, as not
all models included in ProtTest are nested.

ProtTest is written in Java and also uses the program PhyML [268] for the ma-
ximum likelihood (ML) estimation of phylogenetic trees and model parameters. The
current version of ProtTest (3.2) [272] includes 15 different rate matrices that result
in 120 different models when we consider rate variation among sites (+I: invariable
sites; +G: gamma-distributed rates) and the observed amino acid frequencies (+F).

From the computational point of view, ProtTest3 is the High Performance Com-
puting enabled version of ProtTest that can be executed in parallel in multi-core
desktops and clusters. It also presents several parallel strategies as distinct execu-
tion modes in order to make an efficient use of the different computer architectures
that a user might encounter: a Java thread-based concurrence for shared memory
architectures (e.g., a multi-core desktop computer or a multi-core cluster node); an
message-passing (MPJ Express library) parallelism for distributed memory architec-
tures (e.g., HPC clusters); and, a hybrid implementation MPJ-OpenMP to obtain
maximum scalability in architectures with both shared and distributed memory (e.g.,
multicore HPC clusters).

B.3. High Energy Physics
High Energy Physics has made lots of advances in the near past. Most of them, as

the very well-known experimental evidence of the Higgs boson, have been possible due
to the development of grid infrastructures and federations. This distributed environ-
ment was mainly promoted by CERN in order to simulate, process, and analyse the
measurements of the Large Hadron Collider. However, the platform can be profited
to obtain results for other type of studies in the same field, for example the cosmic
radiation.

B.3.1. Nagano

The flux of cosmic rays at the highest energies (> 1018 eV) is very small, and
therefore, detectors with very large aperture have to be used. Among the different
possible techniques, fluorescence telescopes arise as a very powerful alternative. This
technique however still presents some open problems, such as a limited accuracy due
to technological and atmospherical factors [273]. This obliges to interpenetrate the

196 Appendix B. Applications

obtained data to extract the relevant information, a task far from being immediate.
For this sake, Nagano [72] is devoted to simulate fluorescence emissions and the energy
deposited by electrons inside an observation volume of the desired proportions. This
allows a thorough interpretation of available experimental data on the fluorescence
yield and other related parameters.

Thus, Nagano lies on the area of Astroparticle Physics, helping on the research of
the origin and propagation of ultra-high-energy cosmic rays.

Nagano [72] is a MC application based on the experiments of Nagano et. al [274,
274]. The calculation for a single electron takes only a fraction of second, but for a
real world use case, a complete simulation comprises several millions of electrons.

B.3.2. XMM-Newton SAS software

XMM-Newton is the most sensitive X-ray satellite ever built and the largest sate-
llite ever launched by ESA. It has been operating as an open observatory [275] since
the beginning of 2000, providing X-ray scientific data through three imaging cameras
and two spectrometers, as well as visible and UV images through an optical telesco-
pe. The large amount of data collected by XMM-Newton is due to its unprecedented
effective area in the X-ray domain in combination with the simultaneous operation of
all its instruments. All the data taken by this satellite are kept in the XMM-Newton
Science Archive (XSA).

The Scientific Analysis System (SAS) [276] is a software suite for the interactive
analysis of all the XMM-Newton data, making possible the tailoring of the data
reduction to the scientific goal. In addition it makes possible a re-calibration of the
data whenever new calibration files have been released. Due to XMM-Newton operates
as open observatory, SAS is freely available and a large number of people are still
working to improve it, although it is considered a fully mature package.

The large amount of data available makes necessary to optimise the management
of hardware resources to prevent a data processing slow down. In this context, grid
technology offers the capability of managing not only the user queries retrieving data
from the archive, but also the online processing of that data. The execution of the SAS
software on a grid has been successfully studied in [277]. However, the deployment
of the new versions of the SAS software in grid infrastructures is not trivial, and
requires an important effort from the VO administrators. This problem can be easily
solved by storing virtual machine images at cloud repositories or making use of the
contextualisation features to distribute the latest release. These approaches are the
ones tackled in this thesis.

B.4. Matter Interactions

The effects of the radiation on either human tissues or materials are of great
importance, mainly if radiation is able to produce ionization. In this sense, the target
can be simulated by water molecules or solid lattices respectively. The described
system presents multiscale components as fluid or molecular dynamics that must be
simulated both in space and time. Such a numerical simulation can only be approached
via HPC and HTC due to the great amount of particles to be taken into account and
the physical laws to be calculated per step.

B.4. Matter Interactions 197

B.4.1. BEAMnrc
BEAMnrc [71] is a system for modelling radiotherapy sources, devoted to work on

3D treatment planning for radiotherapy, that is, it is devoted to simulate the radiation
beams from radiotherapy units.

BEAMnrc is a general purpose Monte Carlo code that can simulate high-energy
electron and positron beams, 60Co beams and ortho-voltage units handling a variety
of geometries entities that can even be put together by the user. Since the outcome
of Monte Carlo simulations is based on random sampling, typically ∼ 108 particle
histories are needed for good accuracy, taking weeks of computation on a ∼ 2GHz
processor. This remains the main hindrance in clinical implementation of Monte Carlo
simulations.

Selection of input parameters can be very complex. In this thesis, we have used
real examples > 108 particles and rectangular geometry, which represents use cases
that can be approached in a hospital environment. Basically, two main factors must
be considered: the lowest total energy for the production of secondary electrons and
the desired residual range to the lowest energy for which an electron is transported.
Both parameters usually range from 0.5 to 0.7 MeV and have a direct influence on
the computing time, which can vary by even a factor of three.

B.4.2. FLUKA
FLUKA [278] is a general purpose tool for calculations of particle transport and

interactions with matter. FLUKA can simulate with high accuracy the interaction and
propagation in matter of about 60 different particles, including photons and electrons
from 1 KeV to thousands of TeV, neutrinos, muons of any energy, hadrons of energies
up to 20 TeV (up to 10 PeV by linking FLUKA with the DPMJET code) and all the
corresponding antiparticles, neutrons down to thermal energies, and heavy ions. The
program can also transport polarised photons (synchrotron radiation) and optical
photons. Time evolution and tracking of emitted radiation from unstable residual
nuclei can be performed online.

FLUKA can handle even very complex geometries, using an improved version of
the well-known Combinatorial Geometry (CG) package. The FLUKA CG has been
designed to track correctly also charged particles (even in the presence of magnetic
or electric fields).

For most applications, no programming is required from the user. However, a
number of user interface routines (in Fortran 77) are available for users with special
requirements. In this thesis, up to a million particles have been simulated, each taking
less than a second, for making studies on radiation interaction with matter. Materials
can be simple elements or compounds, where an element can have either natural com-
position or consist of a single nuclide; and compound indicates a chemical compound
or a mixture or an alloy (or an isotopic mixture) of known composition. An element
can be either predefined defined giving its atomic number, atomic weight, density,
name, and a material identification number.

B.4.3. GAMOS
The GAMOS [74] framework is based on GEANT4 [279] and is specialised in the

simulation of the radiation with the body, i.e. medical applications in both fields of me-
dical image (PET/SPECT) and radiation therapy (teletherapy and brachytherapy).

198 Appendix B. Applications

It also can simulate the needed doses to calibrate medical apparatus.
GAMOS offers a simple user interface covering the most common needs of a medi-

cal application, so that simulations with GEANT4 can be carried out without having
to code in C++. At the same time, if the user has a special request, it permits to
add new functionalities in a simple way, thanks to the utilization of the technology of
plugins. GAMOS is compatible with the so-extended medical image format DICOM,
so the calculation of doses in patients is a straightforward calculus. It also comes with
an extensive set of tools that allows the user to get a detailed understanding of the
simulation with a minimal effort.

B.5. Nuclear Fusion

Fusion energy aim is to become a commercial and viable source of energy by
means of a clean, secure and long-term energy supply. Its work regime raise up to
temperatures of T ' 40 KeV and, virtually, all of the atoms present in the gas are in an
ionised stage, with electrons becoming separated from their nuclei. The resulting ions
and electrons then form two intermixed fluids that become in an ionised gas, which
remains almost neutral throughout, and it is called a plasma. Magnetic confinement
is a promising possibility to contain materials at this plasma state, with two main
confinement devices designs: stellarators and tokamaks. The research presented in
this thesis is focused on the stellarator existing in the National Fusion Laboratory of
Spain: the flexible Heliac TJ-II.

Plasmas are complex systems with a lot of non-linear processes and where tem-
poral and spatial scales are represented by self-similarities and self-organization pro-
cesses. The research in Plasma Theory can therefore help to advance in Chaos and
Self-organization Theory. And vice versa, this kind of disciplines can provide tools
for Plasma Physics and Fusion research. Thus, beyond the obvious interest that Plas-
ma Physics has for commercial fusion development, it is connected with some of the
present challenging disciplines in Physics such as Statistical Physics, Thermodyna-
mics, or Fluid and Kinetic Theories. All these disciplines have still open problems
whose solutions can help in commercial fusion achievement. Due to the complex na-
ture of these open problems, computing is a key element for solving them. It could
be mentioned for example that one millisecond plasma simulation will be performed
within several days on a 50-100 TFlops machine like Mare Nostrum [280]. In 2014,
one transport-time-scale simulation (i.e. one second in the energy confinement time
scale) will take several weeks on a 4 PFlops machine, assuming that computer power
doubles every 18 months.

This thesis is focused on the Neoclassical transport calculations for Nuclear Fu-
sion, i.e. transport derived from the particle collisions and from the magnetic field
inhomogeneities, which is always present in the fusion reactors. Its study can be done
in several ways and can lead to know, for example, the efficiency for confining of a
certain coil configuration. For the TJ-II stellarator case, it has been mainly calcula-
ted by means of two approaches: MC methods [281, 282] and Drift Kinetic Equation
(DKE) solvers [244]. MC approaches only can offer an estimation of the diagonal part
of the transport matrix. On the other hand, DKE solvers provide correct quantitative
results of the complete transport matrix, with the drawback of high computation time
and memory consumption. Both approaches are studied in this thesis.

B.5. Nuclear Fusion 199

B.5.1. DKES and DKEsG

The physical problem is to obtain the lowest energy flux to the plasma wall, so
the transport produced must be obtained. The Neoclassical transport approximates
the phenomenon by taking into account in a three-dimensional space the collisions
and the slow and static behaviour of the electric field, so the diffusive and anisotropic
system is a slightly non-equilibrium one.

DKES code [244, 245, 248] has been developed under a variational principle for
the linearised drift-kinetic Fokker-Planck equation, which describes the transport in
three-dimensional toroidally confined plasmas.

The code solves the entropy production and the residual function by using trun-
cated Fourier and Legendre series to represent the dependencies of the magnetic field
on the two angle variables, which correspond to the straight magnetic field line flux
coordinates (so the geometry of the device is included) and on the pitch angle for
collisions, respectively. The monoenergetic diffusion coefficients that DKES calcula-
tes are related to the diffusion of heat and particles, the bootstrap current, and the
resistivity enhancement. All of these coefficients depend on the energy, the collision
frequency, and the radial electric field, so the code obtains a wide set of values of
coefficients by running the code with different values of the latter.

However, the monoenergetic diffusion coefficients obtained by DKES do not allow
calculating the Neoclassical transport fluxes. In this thesis, an application was im-
plemented to obtain the final Neoclassical transport coefficients form the DKES out-
puts. Moreover, both applications have been orchestrated by means of a computatio-
nal workflow called DKEsG. This framework allows researchers to perform extensive
transport calculations on distributed environments such as grid.

B.5.2. FAFNER2, ISDEP and FastDEP

FAFNER2 [226] performs the modelling of fast neutral beam injection (NBI) into
three-dimensional toroidal plasmas, and calculates the trajectory of the resultant fast
ions until they get lost or are absorbed by the system. For this purpose it follows a MC
approach which, depending on the desired precision and problem, requires between
103 and 105 short simulations or samples.

The ISDEP code [283] is a MC application that calculates the distribution function
of a minority population of ions in a magnetised plasma. It solves the ion equations
of motion taking into account the complex 3D structure of fusion devices, the confi-
ning electromagnetic field, and collisions with other plasma species. The Monte Carlo
method used is based on the equivalence between the Fokker-Planck and Langevin
equations. This allows ISDEP to run on distributed computing platforms without
communication between nodes with almost linear scaling.

With FastDEP [73], the birth positions of the fast ions in the fusion plasma can
be calculated and, lately, ion trajectories in the plasma background can be followed,
i.e. FastDEP is a workflow that couples FAFNER2 and ISDEP. In general, a typical
calculation is composed of several thousands of tasks that last from 1 to 3 CPU
hours. As an additional particularity, the large requirements in terms of input data
make FastDEP to employ storage elements to download the required data and to save
results when runs in remote grid sites.

200 Appendix B. Applications

B.6. Solid State Physics
There is a plethora of problems related to Solid State Physics that only can be

tackled with computational simulations. In this way, theory, experimental facilities,
and HPC/HTC are essential in this area: accelerators, Lattice Field Theory, Lattice
Gauge Theory, Molecular Dynamics, or Soft Condensed Matter Physics are some
examples. In this way, methods like density functional or ab initio theories are the
based on which the computing codes rely.

B.6.1. DiVoS
The vortex lattice dynamics close to critical temperatures is a topic of interes in

the Superconducting field. Superconducting vortex lattice pinning and vortex lattice
dynamics are strongly modified by arrays of nanodefects embedded in superconducting
films [284]. Magnetoresistance measurements are a perfect tool to study these effects,
since resistance versus applied magnetic fields shows deep minima when the vortex
lattice matches the unit cell of the array, due to geometric matching occurs when the
vortex density is an integer multiple of the pinning centre density. These phenomena
are ruled by the balance among different interactions, (i) vortex-vortex, (ii) vortex-
artificially induced pinning centre (array of nanodefects), (iii) vortex-intrinsic and
random pinning centres. However, the large roughness of the sample surface precludes
the use of standard local probe methods to detect experimentally the vortex position
and symmetry of the vortex lattice.

The DiVoS code [228] explores the possibility to simulate the commensurability
experiments in the framework of the Langevin equation of motion, but without any
initial conditions neither constraints and using only as input the vortex-vortex inter-
action and the periodic pinning sites (array unit cell). Thus, this code can calculate
different values and positions for different lattices in size, matching field values and
geometry of the pinning sites, which allows having a picture of the different vortex
lattices which develop for the main and upper order matching conditions as well as an
estimated magnitude of their interactions. Additionally, the calculation can be perfor-
med on grids in a reasonable amount of time. As consequence, some new results have
been achieved [229] for different vortex lattice configurations on periodic potentials.

Appendix C

Physics of Transport Codes
and Physical Results

The magnetic field used to confine the plasma in stellarators is generated by exter-
nal coils. The cost of fusion power depends on how efficient the magnetic configuration
to confine the plasma pressure is, and on the fraction of power that must be used to
maintain the plasma and the magnetic field, i.e. the recirculating power fraction.
Then, to construct new stellarator devices as much efficient as possible, a rigorous
study of the Neoclassical (NC) transport that occurs in the confined plasma is a key
factor. The physical problem is to obtain the lowest energy flux to the plasma wall,
so the transport must be estimated and understood in order to find strategies to re-
duce it. The NC Theory approximates the phenomenon by taking into account the
three-dimensional structure of the magnetic field, the collisions and long-time average
electric field, so this diffusive and anisotropic system is a slightly non-equilibrium one.

C.1. Introduction

The calculation of NC transport in three-dimensional stellarator systems is difficult
because of the complex structure of the field. However, it can give us valuable insights
into the transport properties. Analytical methods, when applied to real stellarators,
seem to be impractical because of the large number of magnetic-field components that
have to be retained in the calculations, and this problem is especially severe for the
TJ-II stellarator [260] due to its very broad magnetic field spectrum. Numerically,
NC transport in stellarators can be calculated by means of two methods: The Drift
Kinetic Equation (DKE) solvers; and Monte Carlo methods. Meanwhile the latter
only produce the diagonal part of the transport matrix, DKE solvers allow computing
the whole matrix starting from the monoenergetic diffusion coefficients. Thus, if the
bootstrap current and the parallel resistivity are required, DKE solvers must be used.
Nevertheless, the numerical implementation of such codes scales unfavourably with
the required number of magnetic-field modes (harmonics) and presents uncertainties
in the calculations for the low collisionality regime. With the advent of more powerful
computational architectures such as grids, the complete calculation can be executed
in a reasonable time once the code has been adapted and optimised to be run on
them.

201

202 Appendix C. Physics of Transport Codes and Physical Results

First calculations of NC transport for the TJ-II stellarator [285] were made using
the DKES code [244] just for one magnetic surface r = a/2. Several conclusions of
interest can be found in that work and they demonstrated the feasibility and interest
of using DKE solver on a flexible Heliac stellarator with a rich magnetic-field struc-
ture. These studies with the same magnetic surface at r = a/2 were complemented
with more calculations [286] considering several configurations and plasma pressu-
res. Using the DKES code and some analytical approximations [287] the bootstrap
current and its effect on the rotational transform were also addressed. Both studies
were performed before TJ-II started operation, so they were mainly devoted to ob-
tain general dependencies with only zero-dimensional estimations. Thus, starting from
their conclusions, Tribaldos [281] increased the study of Neoclassical transport in TJ-
II by means of Monte Carlo techniques. Later, this work was complemented with the
ISDEP code [283]. It is important to bear in mind in this point that sometimes it
is necessary to introduce approximated expressions for NC coefficients, which is the
case of the PROCTR [288] and PRETOR [289] stellarator codes. The PRETOR co-
de, which was developed at JET for allowing the simulation of the radial variation
and the temporal evolution of the main physical magnitudes of fusion plasmas, and
its adoption to the stellarator case has been also used [290, 291] for similar studies
in TJ-II. These results were compared with the previously obtained ones using the
PROCTR code. In addition, the reader can also find calculations that could be ap-
plied for TJ-II by means of guiding centre and bounce-averaged MC simulations [282]
and numerical solutions of the linearised Drift Kinetic Equation [292]. These methods
can offer accurate results depending on the numerical considerations that are taken
into account when calculated, i.e. the considered approximations to make the problem
tractable.

To the date, DKE solvers have been usually executed on shared memory systems.
Examples can be found in the work from Ogawa et al. [293], where the Neoclassical
transport in the banana regime has been analysed with the DKES code [244] for the
Large Helical Device, or in the calculation of the plasma local diffusion coefficients
[294]. Lately, flux-surface averages and plots of the two-dimensional structure of the
ion flow velocity for different stellarator configurations, such as that of QPS, have been
obtained by means of the Moments Method [245, 248]. This method calculates the
components of the above flow velocity that are necessary for its determination, i.e. the
average flux-surface (weighted magnetic field), parallel flow velocity and the ambipolar
electric field. These are obtained by using the Neoclassical transport matrix from
[295] that relates the Neoclassical radial fluxes of particles and heat to the gradients
of density, temperature, and potential for electrons and ions. The elements of this
transport matrix are written in terms of energy integrals over the three monoenergetic
transport coefficients obtained by running the DKES code. Nevertheless, this DKES
version proposed by Spong, in order to better address the physics of particle drifts
at low collisionality, is extended first to 4 dimensions (three spatial ones and one in
the velocity space) and eventually 5 dimensions (three spatial ones and two in the
velocity space). Thus, it utilises OpenMP parallelization and maps the 3D model
across multiple symmetric multi-processor (SMP) nodes, i.e., each node contains a
diagonal block matrix that looks like a separate 3D model. This calculation is then
appropriate for very dense nodes of tightly coupled processors and, at the same time,
is not suitable for grid infrastructures, so the old van Rij & Hirshman execution mode
has been used on distributed platforms.

As a conclusion, all these previous works have shown the necessity and interest

C.2. Flux calculation 203

of having at researchers’disposal a tool for performing extensive NC transport calcu-
lations. Since Grid Computing can offer solutions for many of the computationally
intensive problems coming from the complex simulation of fusion devices, one aim
of this work is then to offer a new optimised version of DKE solvers. To do so, it
is important to point out that the parametric and sequential nature of the problem
makes possible its division in minimal tasks that can run on clusters and grid envi-
ronments, so the use of shared memory computers can be avoided. The adaptation
process to the grid of the variational releases of the Drift Kinetic Equation solver
code [244, 245, 248], the implementation of a new module to calculate the transport
coefficients, and a workflow who efficiently and automatically rules the execution of
jobs and their dependences, resulted in the Drift Kinetic Equation solver for Grid
(DKEsG) framework described in Section 4.4. It has been possible to compare DKE
with Monte Carlo approaches with this new tool and the adaptation of ISDEP, the
performance of which have been improved using the GWpilot framework (see Chap-
ters 9 and 10). For this purpose, plasma fluxes have been calculated from the outputs
of both approaches for the TJ-II device. Moreover, the relationship between NC trans-
port and rotational transform has been evaluated calculating the effective ripple with
DKEsG and GWpilot.

C.2. Flux calculation
Although turbulent transport can be dominant in some specific regimes and plasma

zones, there is always a background transport provoked by collisions, electric field
and inhomogeneity of the background magnetic field. This is called Neoclassical (NC)
transport and is present both in tokamaks and stellarators, although it is larger in the
latter. The NC transport is driven by the gradients of thermodynamic quantities, and
its computation is based on the so-called Neoclassical ordering, which implies a small
radial orbit size, a conservation of kinetic energy and an infinite parallel transport
along field lines. Moreover, NC calculations assume that the transport has a diffusive
nature and that the vector of fluxes is given by the product of the matrix of transport
coefficients times the vector of gradients. Even considering these assumptions, the NC
calculations require a huge computation effort.

NC transport is calculated by solving the Drift Kinetic Equation (DKE), which is
the kinetic master equation for magnetically confined plasmas. The DKE Solver code
(DKES) is customarily used by the fusion community [244] to obtain the so-called
mono-energetic transport coefficients, which are then convoluted with the plasma velo-
city distribution function. This code solves the linearised drift-kinetic Fokker-Planck
equation by using a variational principle, which describes the transport in three-
dimensional toroidally confined plasmas. In addition, the effect of magnetic drifts on
the orbits of the perturbed distribution function is neglected, so the study of resonant
superbanana orbits is precluded. These drifts have small values for toroidal devices
with large aspect ratio A = R/a (being R the major radius and a the minor one), but
could be significant at very low collision frequencies for radial electric fields satisfying
eΦ/T > A−1. Therefore the problem can be approached by reducing the drift-kinetic
equation phase-space from five to three dimensions while leaving its conservative and
symmetry properties invariable.

Thus, these properties are used to build a variational function that represents
the entropy production, i.e. a maximizing and minimizing principle for the entropy
production rate which also implies upper and lower bounds on the transport coef-

204 Appendix C. Physics of Transport Codes and Physical Results

ficients. The code solves the entropy production and the residual function by using
truncated Fourier and Legendre series to represent the dependencies on the two angle
variables which correspond to the straight magnetic field line flux coordinates (so the
geometry of the device is included) and on the pitch angle, respectively. The mono-
energetic diffusion coefficients that DKES calculates are related to the diffusion of
heat and particles, the bootstrap current and the resistivity enhancement. All the-
se coefficients depend on the energy, the collision frequency and the radial electric
field, so the code obtains a wide set of values of coefficients by running the code with
different values of the latest.

However, this code assumes that the typical orbits of the particles are radially
narrow enough to neglect the plasma variations, so that particle transport depends
only on the local characteristics of the plasma. Nevertheless, there are cases in which
this condition is not fulfilled. Thus, a Monte Carlo code, such as ISDEP [283], can
be used because it does not require any assumption on either orbit widths or energy
conservation or on the diffusive nature of transport. In the case of the TJ-II stellarator,
a violation of NC ordering in the low collisionality regime is expected [296]. Therefore,
the comparison of the results of DKES with a global transport code such as ISDEP
is necessary to assure the validity of the assumed ordering in such a regime.

The comparison of the results given by ISDEP and DKES implies the calculation of
fluxes rather than of transport coefficients because ISDEP provide the fluxes without
the assumption of diffusive transport. Thus, it will be necessary to estimate the NC
fluxes to be compared with the ones given by ISDEP. The estimation of the fluxes
requires that consideration be given to the plasma profiles, from which the gradients
of density, temperature and electric potential must be estimated. These profiles are
taken from the TJ-II experimental results [283].

The NC fluxes are given by the following equation:

Γ
Q
j

 = L

n′

n + 3
2 −

eE
T

T ′

T

−e
T
〈
−→
E
−→
B 〉

〈B2〉

 (C.1)

where the left hand side is the vector of radial fluxes of particles, heat and charge
average over the magnetic surface (top to bottom). Prime denotes radial derivative,
n is the plasma density, T is the temperature, E is the electric field, and B is the
magnetic field. These fluxes are given in terms of the thermodynamic force vector and
the symmetric matrix of transport coefficients L. The calculation implies one equation
for every different species of the plasma.

C.2.1. Determination of fluxes from NC transport
The calculation of NC transport is a basic task in stellarators and three-dimensional

systems in general but is considered one-dimensional because it is assumed that the
transport parallel to the magnetic field is infinite, and therefore, only the fluxes per-
pendicular to the surfaces generated by the magnetic field lines make sense.

The fluxes given in Equation C.1 can be written as:

Γi =
∑
j=1,3

LijAj (C.2)

C.2. Flux calculation 205

where Aj are the thermodynamic forces that appear in Equation C.1, and the
transport coefficients for every species present in the plasma (electrons, ions and
impurities) are given by:

Lij = 2n
π

∫ ∞
0

dK
√
Ke−Kgi(K)gj(K)Dij(K) (C.3)

where g1 = g3 = 1, g2 = K = mv2/2T = (v/vT)2, with v being the particle
speed, K the kinetic energy normalised to the temperature and Dij the so called
monoenergetic diffusion coefficients. L is a symmetric matrix (Lij = Lji), so only
six independent coefficients appear. These i, j indexes correspond to the ones of the
transport matrix in [244], where i = 1 coincides with the particle transport, while
i = 2 is related to heat transport and i = 3 corresponds to charge transport. The
mixed i 6= j indexes of the transport matrix represent the contribution to the fluxes
of the gradients of other thermodynamic forces. The monoenergetic coefficients are
estimated by DKEsG-Mono separately as functions of collisionality, electric field and
the kinetic energy of the particle:

D11 = D12 = D21 = D22 = −1
2vT

[
BvT

Ω

(
dp

dr

)−1
]−2

K
3
2 D̂11 (C.4)

for the diffusion of heat and particles (related to temperature T and density n),

D31 = D32 = −D13 = −D23 = −1
2vT

[
BvT

Ω

(
dp

dr

)−1
]
KD̂13 (C.5)

for the bootstrap current and thermo-diffusion,

D33 = −1
2vTK

1
2 D̂33 (C.6)

for the resistivity enhancement.
In these expressions, the dependence of D̂ij on the kinetic energy K, the collision

frequency ν and the radial electric field E is determined by just two parameters:

D̂ij = D̂ij

[
ν(K)
vT
√
K
,

Es

vT
√
K

]
(C.7)

with vT being the thermal velocity of the considered species. The two variables
that appear in Equation C.7 are the above ones referred to as CMUL = ν(K)/vT

√
K

and EFIELD = Es/vT
√
K. Because K plays the parametric role in the resolution

of Equation C.3, a wide variation of these two input parameters is necessary for
obtaining accurate NC transport coefficients, and it is valuable to build an extensive
database. Such a database would include parameters for a large variety of particle
energies, collisionalities, electric fields and radial positions and could be filled in for
a variety of magnetic configurations and devices. Additionally, the determination of
a vast database compiling monoenergetic and transport coefficients is very useful for
coupling DKES to a transport evolution code, which can use those values as input
data.

With Ti measured in KeV and Mi measured in atomic mass units,

vT = 4,392825× 105
[
Ti
Mi

] 1
2

(C.8)

206 Appendix C. Physics of Transport Codes and Physical Results

BvT
Ω = 4,552878× 10−3 [TiMi]

1
2

Zi
(C.9)

where Zi = ei/e is the ion charge.
Substitution from C.8 and C.9 in Equation C.3 gives:

Lij = −4,552878 [Ti]
3
2 [Mi]

1
2

(
Zi
dp

dr

)−2
×
[

2√
π

∫ ∞
0

Ki+je−KD̂ijdK

]
(C.10)

What the original DKES code [244] performs is the calculation of a wide set of
values of D̂ij by running with different values of K, ν and Es as input data. Equiva-
lently, the electrostatic potential φ can be provided. Then, an analytical function can
be fit for

Lij = Lij (v, φ) (C.11)

and a Maxwellian distribution in terms of

Lij = Lij (n, T, φ) (C.12)

is obtained; in this way the transport coefficients Lij can be calculated as functions
of the plasma parameters. Of course, they can also be written directly as functions
of the collisionality and the electric field. This latter part is the one that has been
additionally implemented in this work. The integration in Equation C.3 is performed
with a chosen quadrature routine together with interpolation of the function.

The way that these calculations can be performed depends on the physical regime
under study, i.e. the collision frequency value in the plasma. Depending on it -the high
(low) number of collisions represents a lower (higher) plasma temperature or a higher
(lower) plasma density- the user must select the number of Fourier and Legendre
polynomials and provide physical parameters of the plasma regime to reproduce the
system, so the computational load is directly affected.

C.2.2. The Monte Carlo approach
The use of ISDEP was motivated by the violation of NC ordering for low collisio-

nality ion transport in TJ-II, as has been shown in [283] and [296]. In these plasmas,
the radial width of orbits is large in comparison with the typical plasma lengths, and
the electric field is strong enough to violate the conservation of ion kinetic energy.
Due to these facts, collisional transport is not diffusive even when no turbulence is
included in the calculations; thus, the fluxes cannot be written in terms of transport
coefficients as in Equation C.1. To compute the fluxes in such conditions, the Monte
Carlo method must be used to calculate the trajectories of a huge number of particles
(typically 106) in the 3D geometry of the devices. Therefore, particles suffer colli-
sions with the background plasma and the effect of the electric field. Additionally, the
particles are launched following the experimental profiles, and their trajectories are
estimated using the guiding centre approximation, i.e., ignoring the fast gyro motion
around the magnetic field lines. These techniques are not only used in TJ-II or similar
complex devices but they must also be used in tokamaks when the collisionality is
so low that ions are in the so-called banana regime and the typical orbit widths are
large. This is the case for the thermal ion transport in the ITER device [297].

C.3. The effective ripple 207

C.3. The effective ripple

Hinton and Hazeltine [298], and more recently Belli and Candy [299], obtained the
NC transport coefficients semi-analytically for a large aspect ratio tokamak, showing
an explicit dependence on the rotational transform (ι/2π), which drives one to believe
that this parameter has influence on the NC properties of the device. Thus, in a toka-
mak, the NC transport coefficients vary with ι/2π for a given effective collisionality
as:

Dij ∝ q2 = (ι/2π)−2 (C.13)

This predicts an improvement of the confinement with the inverse of the safety
factor (q). Therefore, NC transport and turbulent one diminish with the rotational
transform in tokamaks.

The main configuration ingredient that originates NC transport is the magnetic
ripple. In an axisymmetric tokamak the ripple comes from the poloidal variation of
the magnetic field, therefore it is related to the rotational transform. In a stellarator
no such a clear dependence can be extracted, since there is more freedom to design the
magnetic configuration. In any case, the NC transport properties of a configuration
are summarised in a single parameter, the effective ripple [300], given by:

εeff = ĺım
ν∗→0

(
2
[(

3π
4

)1/2
ν∗D̂11

])
(C.14)

Where ν∗ is the effective collisionality:

ν∗ = qRν(K)
vT

= Rν(K)
ιvT
√
K

= R

ι
CMUL (C.15)

being R the major radius.
To check the possible relation between the ι/2π scaling and the NC transport in

stellarators, the effective ripple must be calculated because it provides a clear idea of
the quality of the magnetic configuration for NC confinement, without the necessity
of exploring different collisional regimes.

C.4. A summary of the results

When running DKEsG-Mono, a large number of tests varying the number of Fou-
rier and Legendre polynomials must be performed in order to find the optimal ratio
between computational time and accurate physical results for every concrete study.
However, how well the Fourier-Legendre series approximate the exact distributions
is determined by an analysis of the convergence of the diffusion coefficients as the
number of polynomials is varied, so this factor is more critical. Besides, the variation
of this ratio is not totally free since it must deal with the geometry of the device to
be simulated, the heliac stellarator TJ-II in the case of the results presented through
this section.

Even more, not only real values for the geometry of the TJ-II (represented with
their Fourier coefficients and radius of the magnetic surface) have been selected, but
also some other parameters.

208 Appendix C. Physics of Transport Codes and Physical Results

(a) Diffusion of n and T (D11). (b) Bootstrap current (D13).

(c) Resistivity enhancement (D33).

Figure C.1: Evolution of the diffusion coefficients as a function of collisionality (represented
as CMUL) for different values of the electric field (eΦ/T).

C.4.1. First plasma results from DKEsG
Thus, a test for average plasma minor radius r = 4 cm (ρ = 0.021) has been

performed. Other magnitudes such as the temperature, the atomic mass and the
potential have all been set to the unity, i.e. T , n, φ variables in Equation C.10.
Finally, a selected set of 100 Legendre polynomials and 343 Fourier harmonics has
been used to represent the TJ-II configuration and the distribution function. This
approximation ensures reliable physical results.

C.4.1.1. Monoenergetic diffusion coefficients

Figure C.1 is the plot of the three independent monoenergetic coefficients (D11,
D13 and D33) as a function of collisionality (represented as the input parameter
CMUL) for different values of the electric field. These values correspond to the ones
obtained from the calculation described in Subsection 4.5.2.

In the plots, different convergence behaviour can be seen; this is indicative of the
suitability that the Fourier-Legendre representation has with respect to the experi-
ment carried out, namely, if the near constancy of the distribution along a field line in
the low-collision-frequency regime is well represented or not [244]. In addition to this,

C.4. A summary of the results 209

(a) Normalised (D̂11) diffusion of n and T . (b) Normalised bootstrap current (D̂13).

(c) Normalised resistivity enhancement (D̂33).

Figure C.2: D̂ij normalised diffusion coefficients calculated by DKEsG-Mono in the per-
formed test. They are independent of T , and n, but proportional to the D̂ij ones.

there is a similar evolution of the diffusion coefficients as a function of collisionality
between our results and those provided in [244] for common axis scales and electric
field values. This fact is of outmost importance as it has been previously mentioned
about the goal of this work, i.e. provide new DKES executions on grids in a better
computational performance way, but physically valid accurate too.

To obtain more accurate plasma results, a parameterization with a lower increment
in the collisionality values (horizontal axis in Figure C.1), i.e. lower granularity, can be
considered. However, the current scan of CMUL values will guarantee the necessary
precision to allow solving the Equation C.3, as it is performed in next subsection.
Moreover, if the CMUL interval is carefully selected, ∼ 60 values are enough to just
achieve minimal significant results, as have been demonstrated in Subsection C.4.2.

C.4.1.2. NC transport coefficients

To automatically solve Equation C.3, DKEsG framework should be run in work-
flow mode as has been performed in Subsection 4.5.3. With the results obtained,
Figure C.2 is plotted. In contrast to previous figures, Figure C.2 shows the three in-
dependent coefficients D̂ij that DKEsG-Mono has calculated on the grid as functions
of collisionality for different values of the electric field. These parameters are conver-

210 Appendix C. Physics of Transport Codes and Physical Results

0.10 0.12 0.14 0.16 0.18
-1
0
1
2
3
4
5

200000

225000

250000

 L 11
 L 13
 L 33

Tr
an

sp
ort

 C
oe

ffic
ien

ts
[m

2 s-1
]

E/v [eVsm -1]

Figure C.3: Neoclassic transport coefficients Lij calculated by the DKEsG framework.

ted into the monoenergetic coefficients Dij by multiplying by constants associated to
the particular coefficient and dependent on plasma state.

Figure C.3 shows the NC transport coefficients calculated by DKEsG-Neo module
from previous ones. It can be seen how the monoenergetic transport coefficients vary
with the collisionality for different values of the electric field. As it is usual in this
theory, it is seen that the electric field tends to reduce the transport and to improve the
confinement. The behaviour with respect to the collisionality is much more complex,
depending on the collisionality regime (long or short mean free path, LMFP or SMFP)
and on the coefficient under study. These results change drastically when studying
different confinement devices or configurations and will be of importance in next
subsection.

It has been shown in previous works that the dependence of NC transport on the
TJ-II magnetic configuration is small, provided that the size of the configuration is
similar, so in this work only the so-called standard configuration of TJ-II has been
considered. It is important to bear in mind that the suitability that the Fourier-
Legendre representation of the distribution function refers to the near constancy of
the distribution along a field line in the low-collisionality regime, so it can be inferred
if it is well represented or not [244]. For the sake of comparison, a similar evolution of
the diffusion coefficients as functions of collisionality between the results of this work
and those provided in [244] for common axis scales and electric field values can be
found.

Some results related to the transport coefficients are also shown in Figure C.3.
As it was mentioned in the Subsection 4.5.3, integrations over the energy space ha-
ve been also carried out for obtaining them. The previous fittings for the diffusion
coefficients which an analytical function inside Equation C.10 showed good quality
for the regression coefficient not lower than 0.9991. As can be seen, a possible reso-
nance phenomenon can be found for the L33 coefficient. This figure also shows that
the influence of the electric field in the average is very small for particle transport,
which is an effect to be attributed to the fact that the electric field effect changes
drastically with the collisionality, thus compensating the variations of the coefficient
when the average on the collisionality is performed. On the other hand it is possible
to observe a reduction of heat transport when the field is increased together with an
enhancement of the bootstrap current.

C.4. A summary of the results 211

(a) Diffusion of n an T (D̂11) (b) Bootstrap current (D̂13)

(c) Resistivity enhancement (D̂33)

Figure C.4: Normalised monoenergetic coefficients of the outer radial plasma position in
TJ-II. To accomplish the representation of these surfaces, 3,672 DKEsG-Mono tasks and
approximately 663 CPU hours from the grid have been consumed.

C.4.2. Comparison of fluxes

In some preliminary tests similar to the commented above, different parameter
variations for a unique TJ-II configuration has been performed to determine the ac-
curacy of the DKEsG results with respect to the fluxes obtained by ISDEP. In this
sense, one important DKEsG-Mono parameter is the number of Legendre polynomials
used to describe the distribution function, which must be large enough to represent
the pitch angle scattering in the long mean free path (LMFP). It has been checked
that the result converges for 200 polynomials even under the LMFP condition. Thus,
the number of Legendre polynomials was fixed to 200 for the calculations devoted to
the comparison. Additionally, the fluxes must be calculated for a set of radial positions
(normalised as ρ parameter). Obviously, now the temperature and the atomic mass
should take real values for the calculation. In this sense, a plasma composed only by
protons is considered, and consequently Ti = 100 eV constant and Mi = 1.007276 u
are selected.

212 Appendix C. Physics of Transport Codes and Physical Results

(a) D̂11(ρ = 0.0786). (b) Comparison of ion particle fluxes

Figure C.5: D̂11 representation of an inner radial plasma position (ρ = 0.0786) in TJ-II
(figure (a), left) and final comparison of ion particle fluxes obtained by DKEsG and ISDEP
(figure (b), right).

C.4.2.1. Determining the accuracy of coefficients

The experiments performed in Subsection 9.5.2 are motivated by the needed of
verifying the accuracy of DKEsG-Mono calculations for the comparison of fluxes. The
three independent monoenergetic coefficients obtained are shown in Figure C.4 and
illustrate the necessity of performing a dense parameter scan for correctly analysing
the data. As expected, the plotted functions are even in the electric field, and lar-
ger uncertainties appear in the LMFP regime. Note that the axis in Figure C.5-(a)
does not exactly represent the CMUL and EFIELD values but ν/vT and E/vT ,
respectively, instead.

It is seen in Figure C.4-(a) that the particle diffusivity quickly increases for low
values of the electric field, showing that this quantity has a strong influence on NC
transport. It is seen also that this coefficient strongly increases as collisionality de-
creases, which is an intrinsic property of NC transport. Figure C.4-(b) shows that the
bootstrap current tends to zero as the collisionality is increased and that the colli-
sionless asymptotic value is recovered [301]. Figure C.4-(c) shows the dependence of
the conductivity on both the electric field and the collisionality: it shows a very weak
dependence on electric field and increases strongly for low values of the collisionality,
as could be expected considering that the driven current is larger for low collisionality.

The coefficients shown in the figures are symmetric with respect to the Y axis,
which corresponds to the electric field. Note also that the three coefficients D̂ij obtai-
ned from DKEsG-Mono executions have different parity (positive or negative); a fact
that is related to the bound limits for the convergence, i.e., their difference represents
the error bar of the calculation. This is important and is directly stored for later use,
as a source for the calculation of the resulting normalised Lij and their propagated
errors. In this sense, despite the whole Legendre polynomials set, the error at low co-
llisionalities continues being too high to ensure an accurate calculation of Lij . Thus,
the main computation must be calculated with both EFIELD and CMUL values
fitted to a logarithmic scale into a range closer to zero.

C.4. A summary of the results 213

Figure C.6: Representation of the effective ripple (εeff), as a function of volume and
rotational transform in TJ-II. The lines show the different values at different radial positions,
where different values of the rotational transform appear.

C.4.2.2. Comparison between ISDEP and DKEsG

The comparison between the fluxes calculated from the results of DKEsG and
ISDEP allow evaluating what extend NC ordering can be applied in TJ-II plasmas as
well as its influence.

To obtain ISDEP outputs and the change in the parameter scan of EFIELD
and CMUL justify the experiments performed in Subsection 9.5.3. Now, the particle
diffusion coefficient (D̂11) estimated with DKEsG-Mono is presented in Figure C.5-
(a) in a correct range of collisionalities and electric fields that successfully allows the
integration of Equation C.3 to obtain the transport coefficient L11 and subsequently
the particle flux. The integration in K of Equation C.3 is solved assuming that both
CMUL and EFIELD parameters decrease monotonically as K increases. Then, the
previously calculated D̂ij selected for every K depend on the ν and E values initially
considered, thus varying the obtained Lij values. These ν and E values are based on
the experimental profiles of TJ-II. Their profiles are calculated from the experimental
data and can also be seen in [283]. As a consequence, there is a continuous reutilisation
of the data included in the database, which must be previously selected and submitted
to the grid as an input file together with DKEsG-Neo.

The ion fluxes normalised by the particle density, calculated by DKEsG (assuming
the NC ordering) and ISDEP for the same density, electric field and temperature
profiles, are shown in Figure C.5-(b) as a function of the normalised radius, which is
the main physical result of this subsection. Important differences can be appreciated in
the two flux profiles. The ion flux estimated by ISDEP is monotonic and increases with
the radius. The maximum value of the flux is located at outer radial positions because
the magnetic ripple is high at those positions, thus enhancing the particle transport.
In contrast, the flux estimated by DKEsG is non-monotonic and presents a maximum
around the radial position of 0.3, which is due to the combination of the values of the
magnetic ripple, the collisionality and the electric field. Interestingly, this flux presents
negative values for radial positions about r/a = 0.77. This means that the particle

214 Appendix C. Physics of Transport Codes and Physical Results

Figure C.7: Representation of the effective ripple (εeff), as a function of volume and
rotational transform in TJ-II for ρ = 0.007. The lines extract the dependence of the effective
ripple with ι/2π for constant volume and with volume for constant ι/2π.

flux is inwards there, which is astonishing but can be explained as follows: despite
the fact that transport coefficients are positive and the density gradient is negative,
which push the ions outwards, the electrostatic potential presents a strong gradient at
those positions that overcomes the density gradient driven flux and pushes particles
inwards. This strong electric field is created in the experiment by the balance between
the ion and electron fluxes. It is important to note here that electron transport is not
considered in this work.

The value of the outermost point of the flux estimated by DKEsG is doubtful.
The negative value is too large and might be due to the uncertainties of the plasma
profiles at those points. In particular, the ion temperature is considered flat, thus
not contributing to the flux. Additionally, why the electric field does not affect the
ion flux in the case of ISDEP could be questioned. Indeed it does, but not strongly
enough to reduce the flux and to make it negative because the ion orbits are wide
enough to average the zone of strong electric field at those outer positions of TJ-II.
As a final conclusion, it can be noted that for low densities and strong radial electric
field, NC ordering is violated in a device with a high magnetic ripple, such as TJ-II,
thus giving inaccurate results for the particle and heat fluxes. In such a case, more
accurate calculations can be obtained using a global Monte Carlo code like ISDEP.

C.4.3. Relation between rotational transform scaling and NC
transport in stellarators

Given the flexibility of TJ-II, independent scans of rotational transform (ι/2π)
and volume can be performed. The magnetic ripple rises with the volume since the
plasma is closer to the coils in the larger configurations, being more sensitive to the
variation of the magnetic field. So it is possible to explore the effect of both quantities

C.4. A summary of the results 215

Figure C.8: Representation of the effective ripple (εeff), as a function of volume and
rotational transform in TJ-II for ρ = 0.650.

on the effective ripple.
5 different volumes have been taken, with similar values of the rotational trans-

form, and 6 different values of the rotational transform for approximately constant
volume. In this way, 30 configurations that scan volume and rotational transform have
been considered. The effective ripple εeff given by Eq. C.14 is calculated for every
radial position of these configurations. For this purpose, the DKEsG-Mono outputs
obtained from the experiments performed in Section 10.6 are used, with exception of
6 configurations that had previously calculated.

For the evaluation, only 23 radial points are considered for every configuration,
and consequently, with slightly different values of ι/2π. The effective ripple is shown
in Figure C.6 for all the configurations and radii, as a function of volume and ι/2π.
As the rotational transform is not constant along the minor radius, a curve of εeff is
shown as a function of ι/2π for a given volume. As can be seen, ι/2π is negative in
TJ-II since the magnetic field lines twist in the clock-wise direction, but the absolute
value of ι/2π must be taken in the above shown scaling laws [302, 303].

To explore the variation of εeff at different radial positions and, hence, how the
NC transport depends on those two parameters, the effective ripple at ρ =0.007,
0.650, 1.000 is plotted. Figure C.7 shows the variation of εeff as a function of the
rotational transform and the volume at the position ρ = 0. The effective ripple increa-
ses slightly with the volume at this radial position, which is not surprising, given the
characteristics of the TJ-II stellarator and the larger excursion of the magnetic axis
for larger magnetic configurations. The dependence with the rotational transform is
not monotonic and depends on the configuration that is considered.

Figure C.8 shows the same as Figure C.7 for ρ = 0.650 ≈ 2/3, located in the
pressure gradient zone of the plasma, hence having more influence on transport. Again,
an increase of the effective ripple with the volume is shown and a less pronounced
non-monotonic behaviour with ι/2π appears. In fact, the effective ripple almost rises

216 Appendix C. Physics of Transport Codes and Physical Results

Figure C.9: Representation of the effective ripple (εeff), as a function of volume and
rotational transform in TJ-II for ρ = 1.

with the rotational transform, which should provide a dependence with rotational
transform opposite to the one observed in the scaling laws and in the semianalytical
calculations for tokamaks.

Finally, εeff is plotted as a function of ι/2π and the volume in Figure C.9 for
ρ = 1, with the same tendency with volume and a non-monotonic variation with ι/2π
for the larger volumes and an increasing ripple for small volumes. The behaviour is
opposite to what it is expected form the scaling laws [302, 303] and the semi-analytical
estimates for tokamaks [298, 299].

Discussion

The dependence of the confinement with the rotational transform cannot be ex-
plained in terms of the NC properties of the device, as calculations for TJ-II show. On
the opposite, a global increase of the effective ripple with ι/2π could be extracted for
small volumes in TJ-II discharges that goes against the scaling laws that have been
obtained up to know. All these facts mean that the NC optimisation helps to the
reduction of turbulent transport, but it is not the only ingredient to be considered
in the turbulent optimisation of the stellarators. The positive rotational transform
dependence of confinement must be attributed to a turbulent mechanism and open
new doors to stellarator optimisation.

It has been demonstrated that the NC properties of one device are not necessarily
related to the rotational transform profile. In fact, TJ-II characteristics show that the
NC transport properties, given by the effective ripple, depend on the volume and not
on the rotational transform, since the former is related to the ripple of the magnetic
configuration. The point is that the latter parameter is coupled to the poloidal ripple
in an axisymmetric tokamak, hence showing influence on the NC transport, while it
is decoupled in a stellarator, since the magnetic configuration is created by external

C.4. A summary of the results 217

coils and not by the plasma current. Torsatrons present also some relation between
the aspect ratio and the rotational transform, which implies some relation between
NC optimisation and increasing ι/2π.

Therefore, the explanation for the improvement of confinement with the rotational
transform cannot be given by NC transport. It is necessary to explore the turbulence
properties of the configuration in relation with such a parameter. This assessment
implies that the reduction of turbulent transport in a stellarator cannot be performed
only by optimising the NC transport, since there are other phenomena that must be
considered.

Bibliography

[1] I. Foster, “What Is the Grid? A Three Point Checklist,” GRID-today, vol. 1, no. 6,
2002. [Online]. Available: http://www.gridtoday.com

[2] I. Foster, Y. Zhao, I. I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-
Degree Compared,” in Grid Computing Environments Workshop (GCE ’08). Austin,
TX, USA.: IEEE, 12–16 November 2008, pp. 1 – 10. doi : 10.1109/GCE.2008.4738445

[3] M. Garey and D. Johnson, Computers and Intractibility: A guide to the Theory of
NP-completeness. New York: W. H. Freeman&Co, 1979.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid information servi-
ces for distributed resource sharing,” in 10th IEEE International Symposium on High
Performance Distributed Computing, San Francisco, USA, 07–09 August 2001, pp.
181–194. doi : 10.1109/HPDC.2001.945188

[5] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath, P. Millar,
and J. P. Navarro, “GLUE Specification v. 2.0,” March 2009, GFD 147. [Online].
Available: http://www.ogf.org/documents/GFD.147.pdf

[6] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling. Wiley- Interscience, April
1991.

[7] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor: A Hunter of Idle Worksta-
tions,” in 8th International Conference on Distributed Computing Systems, San José,
California, June 1988, pp. 104–111. doi : 10. 1109/DCS. 1988. 12507

[8] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G : A Compu-
tation Management Agent for Multi-Institutional Grids,” Cluster Computing, vol. 5,
no. 3, pp. 237–246, July 2002. doi : 10.1023/A:1015617019423

[9] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini, M. Cecchi, V. Ciaschini,
A. Dorise, F. Giacomini, A. Gianelle, U. Grandinetti, A. Guarise, A. Krop, R. Lops,
A. Maraschini, V. Martelli, M. Marzolla, M. Mezzadri, E. Molinari, S. Monforte et al.,
“The gLite workload management system,” Journal of Physics : Conference Series,
vol. 119, no. 6, p. 062007, 2008. doi : 10.1088/1742-6596/119/6/062007

[10] E. Huedo, R. S. Montero, and I. M. Llorente, “A modular meta-scheduling architec-
ture for interfacing with pre-WS and WS Grid resource management services,” Fu-
ture Generation Computer Systems, vol. 23, no. 2, pp. 252–261, February 2007. doi :
10.1016/j.future.2006.07.013

[11] J. Montes, A. Sánchez, J. J. Valdés, M. S. Pérez, and P. Herrero, “Finding order in
chaos: a behavior model of the whole grid,” Concurrency and Computation: Practice
and Experience, vol. 22, no. 11, August 2010. doi : 10.1002/cpe.1490

[12] T. Glatard and S. Camarasu-Pop, “A model of pilot-job resource provisioning on pro-
duction grids,” Parallel Computing, vol. 37, no. 10–11, pp. 684–692, October–November
2011. doi : 10.1016/j.parco.2011.04.001

219

http://www.gridtoday.com
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1109/HPDC.2001.945188
http://www.ogf.org/documents/GFD.147.pdf
http://dx.doi.org/10. 1109/DCS. 1988. 12507
http://dx.doi.org/10.1023/A:1015617019423
http://dx.doi.org/10.1088/1742-6596/119/6/062007
http://dx.doi.org/10.1016/j.future.2006.07.013
http://dx.doi.org/10.1002/cpe.1490
http://dx.doi.org/10.1016/j.parco.2011.04.001

220 Bibliography

[13] R. M. Piro, A. Guarise, G. Patania, and A. Werbrouck, “Using historical accounting
information to predict the resource usage of grid jobs,” Future Generation Computer
Systems, vol. 25, no. 5, pp. 499–510, May 2009. doi : 10.1016/j.future.2008.11.003

[14] Z. Yu, “Toward Practical multi-workflow Scheduling in Cluster and Grid Environ-
ments,” Ph.D. dissertation, Wayne State University, Detroit, USA, 2009.

[15] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Com-
puting,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 171–200, Jaunary 2006. doi :
10.1007/s10723-005-9010-8

[16] D. Spiga, “CMS workload management,” Nuclear Physics B - Proceedings Supplements,
vol. 172, pp. 141–144, October 2007. doi : 10.1016/j.nuclphysbps.2007.08.061

[17] A. Tsaregorodtsev, M. Bargiotti, N. Brook, A. C. Ramo, G. Castellani, P. Charpentier,
C. Cioffi, J. Closier, R. G. Diaz, G. Kuznetsov, Y. Y. Li, R. Nandakumar, S. Paterson,
R. Santinelli, A. C. Smith, M. S. Miguelez, and S. G. Jimenez, “DIRAC: A Community
Grid Solution,” Journal Physics : Conference Series, vol. 119, no. 6, p. 062048, 2008.
doi : 10.1088/1742-6596/119/6/062048

[18] P. Saiz, L. Aphecetche, P. Bunčić, R. Piskać, J. E. Revsbech, and V. Šego, “AliEn–
ALICE environment on the GRID,” Nuclear Instruments and Methods in Physics Re-
search A, vol. 502, pp. 437–440, 2003. doi : 10.1016/S0168-9002(03)00462-5

[19] P. Nilsson, J. Caballero, K. De, T. Maeno, M. Potekhin, and T. Wenaus, “The Pan-
DA System in the ATLAS Experiment,” in XII Advanced Computing and Analysis
Techniques in Physics Research (ACAT’08). Erice, Italy: SISSA PoS, Nov. 2008, pp.
27–1–27–8.

[20] J. Díaz, S. Reyes, A. Niño, and C. Muñoz-Caro, “Derivation of self-scheduling algo-
rithms for heterogeneous distributed computer systems: Application to internet-based
grids of computers,” Future Generation Computer Systems, vol. 25, no. 6, pp. 617–626,
June 2009. doi : 10.1016/j.future.2008.12.003

[21] F. Xhafa and A. Abraham, “Computational models and heuristic methods for Grid
scheduling problems,” Future Generation Computer Systems, vol. 26, no. 4, pp. 608–
621, April 2010. doi : 10.1016/j.future.2009.11.005

[22] Y. Gao, H. Rong, and J. Z. Huang, “Adaptive grid job scheduling with genetic algo-
rithms,” Future Generation Computer Systems, vol. 21, no. 1, pp. 151–161, January 1
2005. doi : 10.1016/j.future.2004.09.033

[23] J. T. Mościcki, “Distributed analysis environment for HEP and interdisciplinary ap-
plications,” Nuclear Instruments and Methods in Physics Research Section A: Acce-
lerators, Spectrometers, Detectors and Associated Equipment, vol. 502, no. 2–3, pp.
426–429, 2003. doi : 10.1016/S0168-9002(03)00459-5

[24] I. Sfiligoi, “glideinWMS - A generic pilot-based Workload Management System,” Jour-
nal of Physics: Conference Series, vol. 119, p. 062044, 2008. doi : 10. 1088/1742-
6596/119/6/062044

[25] P. Buncic, J. F. Grosse-Oetringhaus, A. Peters, and P. Saiz, “The Architecture of
the AliEn System,” in Computing in High Energy and Nuclear Physics conference
(CHEP’04). Interlaken, Switzerland: A. Aimar et al. CERN, Geneva 2005. CERN-
2005-02, 27th September - 1st October 2004, pp. 951–954.

[26] A. Luckow, L. Lacinski, and S. Jha, “Saga big job: an extensible and interoperable
pilot-job abstraction for distributed applications and systems,” in 10th IEEE/ACM
Int. Symp. on Cluster, Cloud and Grid Computing (CCGrid). Melbourne, Australia:
IEEE Computer Society, 17–20 May 2010, pp. 135–144. doi : 10.1109/CCGRID.2010.91

[27] E. Urbah, P. Kacsuk, Z. Farkas, G. Fedak, G. Kecskemeti, O. Lodygensky, and et al.,
“EDGeS: Bridging EGEE to BOINC and XtremWeb,” Journal of Grid Computing,
vol. 7, no. 3, pp. 335–354, September 2009. doi : 10.1007/s10723-009-9137-0

http://dx.doi.org/10.1016/j.future.2008.11.003
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.061
http://dx.doi.org/10.1088/1742-6596/119/6/062048
http://dx.doi.org/10.1016/S0168-9002(03)00462-5
http://dx.doi.org/10.1016/j.future.2008.12.003
http://dx.doi.org/10.1016/j.future.2009.11.005
http://dx.doi.org/10.1016/j.future.2004.09.033
http://dx.doi.org/10.1016/S0168-9002(03)00459-5
http://dx.doi.org/10. 1088/1742-6596/119/6/062044
http://dx.doi.org/10. 1088/1742-6596/119/6/062044
http://dx.doi.org/10.1109/CCGRID.2010.91
http://dx.doi.org/10.1007/s10723-009-9137-0

Bibliography 221

[28] M. Silberstein, A. Sharov, D. Geiger, and A. Schuster, “GridBot: execution of bags of
tasks in multiple grids,” in Conference on High Performance Computing Networking,
Storage and Analysis (SC’09). Portland, Oregon, USA: ACM New York, Nov. 2009,
pp. 1–12. doi : 10.1145/1654059.1654071

[29] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi,
R. Sirvent, D. Talia, and R. M. Badia, “ServiceSs: An Interoperable Programming
Framework for the Cloud,” J. Grid Computing, vol. 12, no. 1, pp. 67–91, March 2014.
doi : 10.1007/s10723-013-9272-5

[30] A. Lorca, J. Martín-Caro, R. Núnéz-Ramírez, and J. Martínez-Salazar, “Merging on-
demand HPC resources from Amazon EC2 with the grid: a case study of a Xmipp
application,” Computing and Informatics, vol. 31, no. 1, pp. 17–30, 2012.

[31] J. Kovács, A. C. Marosi, A. Visegrádi, Z. Farkas, P. Kacsuk, and R. Lovas, “Boos-
ting gLite with cloud augmented volunteer computing,” Future Generation Computer
Systems, vol. 43–44, pp. 12–23, 2015. doi : 10.1016/j.future.2014.10.005

[32] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed. Springer, 2012.

[33] G. M. Amdahl, “Validity of the single processor approach to achieving large sca-
le computing capabilities,” in AFIPS Conference Proceedings. Spring Joint Compu-
ter Conference, vol. 30, Atlantic City, USA, 18–20 April 1967, pp. 483–485. doi :
10.1145/1465482.1465560

[34] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud Computing: From Pa-
rallel Processing to the Internet of Things, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011. ISBN 0123858801, 9780123858801

[35] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599 – 616, June 2009.
doi : 10.1016/j.future.2008.12.001

[36] R. Bolze and E. Deelman, Exploiting the Cloud of Computing Environments: an ap-
plication’s Perspective, in Cloud Computing and Software Services. Theory and Tech-
niques. CRC Press. Taylor & Francis Group, 2011, ch. 8. ISBN 978-1-4398-0316-5

[37] A. Shawish and M. Salama, “Cloud computing: Paradigms and technologies,” in Inter-
cooperative Collective Intelligence: Techniques and Applications, ser. Studies in Compu-
tational Intelligence. Springer Berlin Heidelberg, 2014, vol. 495, pp. 39–67. doi :
10.1007/978-3-642-35016-0_2

[38] E. Christoforou, A. F. Anta, C. Georgiou, M. A. Mosteiro, and A. Sánchez, “Applying
the dynamics of evolution to achieve reliability in master–worker computing,” Con-
currency and Computation: Practice and Experience, vol. 25, no. 17, pp. 2363–2380,
December 2013. doi : 10.1002/cpe.3104

[39] J. Vazquez-Poletti, R. Moreno-Vozmediano, R. Montero, E. Huedo, and I. Llorente,
“Solidifying the foundations of the cloud for the next generation software engineering,”
Journal of Systems and Software, vol. 86, no. 9, pp. 2321 – 2326, September 2013. doi
: 10.1016/j.jss.2013.05.063

[40] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Lar-
ge Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, January 2008. doi :
10.1145/1327452.1327492

[41] K. Laskey, P. Brown, J. A. Estefan, F. G. McCabe, and D. Thornton, “Reference Ar-
chitecture Foundation for Service Oriented Architecture 1.0,” 04 December 2012, soa-
ra-v1.0-cs0. [Online]. Available: http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/
soa-ra-v1.0-cs01.html

http://dx.doi.org/10.1145/1654059.1654071
http://dx.doi.org/10.1007/s10723-013-9272-5
http://dx.doi.org/10.1016/j.future.2014.10.005
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://dx.doi.org/10.1002/cpe.3104
http://dx.doi.org/10.1016/j.jss.2013.05.063
http://dx.doi.org/10.1145/1327452.1327492
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html

222 Bibliography

[42] M. Rodríguez, D. Tapiador, J. Fontan, E. Huedo, R. Montero, and I. Llorente, “Dyna-
mic provisioning of virtual clusters for grid computing,” in 3rd Workshop on Virtua-
lization in High-Performance Cluster and Grid Computing (VHPC08), ser. Euro-Par
2008 Workshops - Parallel Processing. Lecture Notes in Computer Science, vol. 5415,
2009, pp. 23–32. doi : 10.1007/978-3-642-00955-6_4

[43] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente, “On the use of clouds for
Grid resource provisioning,” Future Generation Computer Systems, vol. 27, no. 5, pp.
600–605, 2011. doi : 10.1016/j.future.2010.10.003

[44] S. Sehgal, M. Erdelyi, A. Merzky, and S. Jha, “Understanding application-level in-
teroperability: Scaling-out MapReduce over high-performance grids and clouds,” Fu-
ture Generation Computer Systems, vol. 27, no. 5, pp. 590–599, May 2011. doi :
10.1016/j.future.2010.11.001

[45] J. Conejero, O. Rana, P. Burnap, J. Morgan, B. Caminero, and C. Carrión, “Analy-
zing Hadoop power consumption and impact on application QoS,” Future Generation
Computer Systems, p. (Available Online), 2015. doi : 10.1016/j.future.2015.03.009

[46] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “Grid services for distribu-
ted system integration,” Computer, vol. 35, no. 6, pp. 37–46, June 2002. doi :
10.1109/MC.2002.1009167

[47] M. Riedel, E. Laure, T. Soddemann, L. Field, and et al., “Interoperation of world-wide
production e-Science infrastructures,” Concurrency Computat.: Pract. Exper., vol. 21,
no. 8, pp. 961–990, June 2009. doi : 10.1002/cpe.1402

[48] A. Kertesz, Characterizing Cloud Federation Approaches, in Cloud Computing (Cha-
llenges, Limitations and R&D Solutions), ser. Computer Communications and Net-
works. Springer, Oct. 2014, ch. 12, pp. 277–296. doi : 10.1007/978-3-319-10530-7_12

[49] N. Grozev and R. Buyya, “Inter-Cloud architectures and application brokering: taxo-
nomy and survey,” Softw: Pract. Exper., vol. 44, pp. 369–390, 2014. doi : 10.1002/s-
pe.2168

[50] I. Foster and C. Kesselman, “Globus: a Metacomputing Infrastructure Toolkit,” In-
ternational Journal of High Performance Computing Applications, vol. 11, no. 2, pp.
115–128, June 1997. doi : 10.1177/109434209701100205

[51] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke, “A Resource Management Architecture for Metacomputing Systems,” in
Job Scheduling Strategies for Parallel Processing(IPPS/SPDP ’98), ser. Lecture No-
tes in Computer Science, vol. 1459. Orlando, USA: Springer, 1998, pp. 62–82. doi :
10.1007/BFb0053981

[52] W. Allcock, J. Bresnahan, R. K. M. Link, C. Dumitrescu, I. Raicu, and I. Foster,
“The Globus Striped GridFTP Framework and Server,” in Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (SC’05). Washington, USA: IEEE CS
Press, 12–18 November 2005, pp. 54–64. doi : 10.1109/SC.2005.72

[53] B. Jones, “An Overview of the EGEE Project,” in Peer-to-Peer, Grid, and Service-
Orientation in Digital Library Architectures. 6th Thematic Workshop of the EU Net-
work of Excellence DELOS, June 24-25, 2004., ser. Lecture Notes in Computer Science,
Cagliari, Italy, 2005, vol. 3664, pp. 1–8. doi : 10.1007/11549819_1

[54] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson, J. L.
Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen, “Advanced Resource Con-
nector middleware for lightweight computational Grids,” Future Generation Computer
Systems, vol. 23, no. 2, pp. 219–240, February 2007. doi : 10.1016/j.future.2006.05.008

[55] D. W. Erwin, “UNICORE-a Grid computing environment,” Concurrency and Compu-
tation: Practice and Experience, vol. 14, no. 13-15, pp. 1395–1410, November 2002. doi
: 10.1002/cpe.691

http://dx.doi.org/10.1007/978-3-642-00955-6_4
http://dx.doi.org/10.1016/j.future.2010.10.003
http://dx.doi.org/10.1016/j.future.2010.11.001
http://dx.doi.org/10.1016/j.future.2015.03.009
http://dx.doi.org/10.1109/MC.2002.1009167
http://dx.doi.org/10.1002/cpe.1402
http://dx.doi.org/10.1007/978-3-319-10530-7_12
http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1177/109434209701100205
http://dx.doi.org/10.1007/BFb0053981
http://dx.doi.org/10.1109/SC.2005.72
http://dx.doi.org/10.1007/11549819_1
http://dx.doi.org/10.1016/j.future.2006.05.008
http://dx.doi.org/10.1002/cpe.691

Bibliography 223

[56] C. Aiftimiei, P. Andreetto, S. Bertocco, S. Fina, A. Dorigo, E. Frizziero, and et al.,
“Design and implementation of the gLite CREAM jobmanagement service,” Futu-
re Generation Computer Systems, vol. 26, no. 4, pp. 654–667, Apr. 2010. doi :
10.1016/j.future.2009.12.006

[57] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles,
D. Pulsipher, C. Smith, and M. Theimer, “OGSA basic execution service version
1.0,” Global Grid Forum, Tech. Rep., 2007, GFD 108. [Online]. Available: http:
//www.ogf.org/documents/GFD.108.pdf

[58] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl, “Scienti-
fic Cloud Computing: Early Definition and Experience,” in 10th IEEE International
Conference on High Performance Computing and Communications (HPCC’08), Da-
lian, China, 25-27 September 2008, pp. 825–830. doi : 10.1109/HPCC.2008.38

[59] A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson, “Toward an open
cloud standard,” IEEE Internet Computing, vol. 16, no. 4, pp. 15–25, 2012. doi :
10.1109/MIC.2012.65

[60] G. S. P. Kacsuk, “Multi-Grid, Multi-User Workflows in the P-GRADE Grid Por-
tal,” Journal of Grid Computing, vol. 3, no. 3–4, pp. 221–238, September 2005. doi :
10.1007/s10723-005-9012-6

[61] M. A. ao, R. Buyya, and S. Venugopal, “InterGrid: A Case for Internetworking Islands
of Grids,” Concurrency and Computation: Practice & Experience, vol. 20, no. 8, pp.
997–1024, 10 June 2008. doi : 10.1002/cpe.1249

[62] D. Petcu and J. L. V.-P. (Eds.), European Research Activities in Cloud Computing.
The address of the publisher: Cambridge Scholars Publishing, 2012. ISBN 1-4438-3507-
2, 978-1-4438-3507-7

[63] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente, R. Montero,
Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Ga-
lan, “The Reservoir model and architecture for open federated cloud computing,”
IBM Journal of Research and Development, vol. 53, no. 4, pp. 1–11, July 2009. doi
: 10.1147/JRD.2009.5429058

[64] A. Simón, E. Freire, R. Rosende, I. Díaz, A. Feijóo, P. Rey, J. López-Cacheiro, and
C. Fernández, “EGI FedCloud Task Force,” in 6th Grid Iberian Infrastructure Confe-
rence (IBERGRID’12), Lisbon, Portugal, Nov. 7th-9th 2012, pp. 183–194.

[65] A. J. Rubio-Montero, E. Huedo, F. Castejón, and R. Mayo-García, “GWpilot:
Enabling multi-level scheduling in distributed infrastructures with GridWay and pi-
lot jobs,” Future Generation Computer Systems, vol. 45, pp. 25–52, April 2015. doi :
10.1016/j.future.2014.10.003

[66] A. Gómez-Iglesias, M. A. Vega-Rodríguez, and F. Castejón, “Distributed and asyn-
chronous solver for large CPU intensive problems,” Applied Soft Computing, vol. 13,
pp. 2547–2556, 2013. doi : 10.1016/j.asoc.2012.11.031

[67] A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “Evaluation of
an adaptive framework for resilient Monte Carlo executions,” in 30th ACM/SIGAPP
Symposium On Applied Computing (SAC’15). Salamanca, Spain: ACM New York,
13–17 April 2015, pp. 448–455. doi : 10.1145/2695664.2695890

[68] J. T. Mościcki, “Understanding and Mastering Dynamics in Computing Grids: Pro-
cessing Moldable Tasks with User-Level Overlay,” Ph.D. dissertation, Universiteit van
Amsterdam, Nederlands, April 2011.

[69] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, ser. Monographs
of Applied Probability and Statistics. London: Chapman and Hall, 1964. doi :
10.1007/978-94-009-5819-7

http://dx.doi.org/10.1016/j.future.2009.12.006
http://www.ogf.org/documents/GFD.108.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://dx.doi.org/10.1109/HPCC.2008.38
http://dx.doi.org/10.1109/MIC.2012.65
http://dx.doi.org/10.1007/s10723-005-9012-6
http://dx.doi.org/10.1002/cpe.1249
http://dx.doi.org/10.1147/JRD.2009.5429058
http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1016/j.asoc.2012.11.031
http://dx.doi.org/10.1145/2695664.2695890
http://dx.doi.org/10.1007/978-94-009-5819-7

224 Bibliography

[70] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. Germany: WILEY-VCH,
2008, 2nd Edition.

[71] D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie,
“BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys.,
vol. 22, pp. 503–524, 1995. doi : 10.1118/1.597552

[72] J. R. Vélez., “Analysis of the air fluorescence induced by electrons for application
to cosmic ray detection,” Ph.D. dissertation, Universidad Complutense de Madrid,
Madrid, Spain, 2011.

[73] M. Rodríguez-Pascual, A. Bustos, F. Castejón, I. M. Llorente, M. Tereshchenko, and
R. Mayo-García, “Simulations of fast ions distribution in stellarators based on coupled
monte carlo fuelling and orbit codes,” Plasma Physics and Controlled Fusion, vol. 55,
no. 8, p. 085014, June 2013. doi : 10.1088/0741-3335/55/8/085014

[74] P. Arce, J. I. Lagares, L. Harkness, D. Pérez-Astudillo, M. Cañadas, P. Rato, M. de Pra-
do, Y. Abreu, G. de Lorenzo, M. Kolstein, and A. Díaz, “GAMOS: A framework to
do Geant4 simulations in different physics fields with an user-friendly interface,” Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spectro-
meters, Detectors and Associated Equipment, vol. 735, pp. 304–313, Jaunary 2014. doi
: 10.1016/j.nima.2013.09.036

[75] E. Huedo, R. S. Montero, and I. M. Llorente, “Experiences on Adaptive Grid scheduling
of Parameter Sweep Applications,” in Proc. 12th Euromicro Conference on Parallel,
Distributed and Network-based Processing. Washington: IEEE CS Press, 2004, pp.
28–33. doi : 10.1109/EMPDP.2004.1271423

[76] M. A. Iverson and F. Özgüner, “Hierarchical, competitive scheduling of multiple DAGs
in a dynamic heterogeneous environment,” Distributed Systems Engineering, vol. 6,
no. 3, p. 112, September 1999. doi : 10.1088/0967-1846/6/3/303

[77] K. Jensen, An introduction to the theoretical aspects of Coloured Petri Nets, in A
Decade of Concurrency Reflections and Perspectives, ser. Lecture Notes in Computer
Science. Springer, 1994, vol. 803, pp. 230–272. doi : 10.1007/3-540-58043-3_21

[78] R. David and H. Alla, “Petri nets for modeling of dynamic systems: A survey,” Auto-
matica, vol. 30, no. 2, pp. 175–202, February 1994. doi : 10.1016/0005-1098(94)90024-8

[79] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Callahan, G. C. JR.,
B. Clifford, S. Cohen, S. Cohen-Boulakia, S. Davidson, E. Deelman, L. Digiampietri,
I. Foster, J. Freire, J. Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble et al., “Special
Issue: The First Provenance Challenge,” Concurrency and Computation: Practice &
Experience, vol. 20, no. 5, pp. 409–418, April 2008. doi : 10.1002/cpe.1233

[80] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A taxonomy of Data Grids for
distributed data sharing, management, and processing,” ACM Computing Surveys,
vol. 38, no. 1, p. 3, 2006. doi : 10.1145/1132952.1132955

[81] K. Hasham, A.D.Peris, A. Anjum, D. Evans, S. Gowdy, J. Hernandez, E. Hue-
do, D. Hufnagel, F. van Lingen, R. McClatchey, and S. Metson, “CMS Work-
flow Execution Using Intelligent Job Scheduling and Data Access Strategies,” IEEE
Transactions on Nuclear Science, vol. 58, no. 3, pp. 1221–1232, June 2011. doi :
10.1109/TNS.2011.2146276

[82] L. Ilijašić and L. Saitta, “Characterization of a Computational Grid As a Complex
System,” in Proceedings of the 6th International Conference Industry Session on Grids
Meets Autonomic Computing (GMAC ’09). Barcelona, Spain: ACM New York, 2009,
pp. 9–18. doi : 10.1145/1555301.1555303

[83] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring: A
survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, June 2013. doi :
10.1016/j.comnet.2013.04.001

http://dx.doi.org/10.1118/1.597552
http://dx.doi.org/10.1088/0741-3335/55/8/085014
http://dx.doi.org/10.1016/j.nima.2013.09.036
http://dx.doi.org/10.1109/EMPDP.2004.1271423
http://dx.doi.org/10.1088/0967-1846/6/3/303
http://dx.doi.org/10.1007/3-540-58043-3_21
http://dx.doi.org/10.1016/0005-1098(94)90024-8
http://dx.doi.org/10.1002/cpe.1233
http://dx.doi.org/10.1145/1132952.1132955
http://dx.doi.org/10.1109/TNS.2011.2146276
http://dx.doi.org/10.1145/1555301.1555303
http://dx.doi.org/10.1016/j.comnet.2013.04.001

Bibliography 225

[84] M. Sheikhalishahi, R. Wallace, L. Grandinetti, J. L. Vázquez-Poletti, and F. Guerriero,
“A multi-dimensional job scheduling,” Future Generation Computer Systems, 2015. doi
: 10.1016/j.future.2015.03.014 Available Online.

[85] M. Pinedo, Planning and Scheduling in Manufacturing and Services, ser. Springer Se-
ries in Operations Research. New York: Springer, 2005. doi : 10.1007/b139030

[86] R. B. Cooper, Introduction to Queueing Theory, 2nd ed. New York: Elsevier Nord
Holland, 1981.

[87] I. Adan and J. Resing, Queueing Theory. Eindhoven University of Technology. De-
partment of Mathematics and Computing Science, 2001.

[88] R. Diestel, Graph Theory, 4th ed., ser. Graduate Texts in Mathematics. Berlin:
Springer-Verlag, 2010, vol. 173. ISBN 978-3-642-14278-9

[89] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications.,
2nd ed., ser. Springer Monographs in Mathematics. London: Springer-Verlag, 2009.
doi : 10.1007/978-1-84800-998-1

[90] A. K. Erlang, “Solution of some problems in the theory of probabilities of signicance
in automatic telephone exchanges,” The Post Office Engineer’s Journal, vol. 10, pp.
189–197, 1917.

[91] V. E. Beneš, General Stochastic Processes in the Theory of Queues. Massachusetts,
USA: Addison Wesley, 1963.

[92] T. G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, vol. 36,
no. 5, pp. 63–68, May 2003. doi : 10.1109/MC.2003.1198238

[93] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible Load Theory: A New Pa-
radigm for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1,
pp. 7–17, January 2003. doi : 10.1023/A:1020958815308

[94] S. Viswanathan, B. Veeravalli, and T. Robertazzi, “Resource-Aware Distributed Sche-
duling Strategies for Large-Scale Computational Cluster/Grid Systems,” IEEE Tran-
sactions on parallel and Distributed Systems, vol. 18, no. 10, pp. 1450–1461, October
2007. doi : 10.1109/TPDS.2007.1073

[95] C. Yu and D. C. Marinescu, “Algorithms for Divisible Load Scheduling of Data-
intensive Applications,” Journal of Grid Computing, vol. 8, no. 1, pp. 133–155, March
2010. doi : 10.1007/s10723-009-9129-0

[96] M. Abdullah and M. Othman, “Cost-based Multi-QoS Job Scheduling Using Divisible
Load Theory in Cloud Computing,” in International Conference on Computational
Science (ICCS 2013), ser. Procedia Computer Science, vol. 18. Barcelona, Spain:
Elsevier, June 2013, pp. 928–935. doi : 10.1016/j.procs.2013.05.258

[97] M. Moges and T. Robertazzi, “Divisible Load Scheduling and Markov Chain Mo-
dels,” Computers & Mathematics with Applications, vol. 52, no. 10–11, pp. 1529–1542,
November–December 2006. doi : 10.1016/j.camwa.2006.05.016

[98] Y.-K. Kwoka and I. Ahmadb, “Benchmarking and Comparison of the Task Graph
Scheduling Algorithms,” Journal of Parallel and Distributed Computing, vol. 59, no. 3,
pp. 381–422, December 1999. doi : 10.1006/jpdc.1999.1578

[99] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph reduction
techniques,” Information Systems, vol. 25, no. 2, pp. 117–134, April 2000. doi :
10.1016/S0306-4379(00)00012-0

[100] W. M. P. V. der Aalst, “The application of Petri nets to workflow management,”
Journal of Circuits, Systems and Computers, vol. 8, no. 1, p. 21, February 1998. doi :
10.1142/S0218126698000043

http://dx.doi.org/10.1016/j.future.2015.03.014
http://dx.doi.org/10.1007/b139030
http://dx.doi.org/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1109/MC.2003.1198238
http://dx.doi.org/10.1023/A:1020958815308
http://dx.doi.org/10.1109/TPDS.2007.1073
http://dx.doi.org/10.1007/s10723-009-9129-0
http://dx.doi.org/10.1016/j.procs.2013.05.258
http://dx.doi.org/10.1016/j.camwa.2006.05.016
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1016/S0306-4379(00)00012-0
http://dx.doi.org/10.1142/S0218126698000043

226 Bibliography

[101] J. M. Schopf, Ten Actions When Grid Scheduling, in Grid Resource Management, ser.
International Series in Operations Research & Management Science. Springer US,
2004, vol. 64, ch. 2, pp. 15–23. doi : 10.1007/978-1-4615-0509-9

[102] D. G. Feitelson and A. M. Weil, “Utilization and predictability in scheduling the
IBM SP2 with backfilling,” in Proceedings of the First Merged International Pa-
rallel Processing Symposium and Symposium on Parallel and Distributed Proces-
sing. Orlando, USA: IEEE CS Press, 30 March–3 April 1998, pp. 542 – 546. doi
: 10.1109/IPPS.1998.669970

[103] T. Casavant and J. Kuhl, “A taxonomy of scheduling in general-purpose distributed
computing systems,” IEEE Transactions on Software Engineering, vol. 14, no. 2, pp.
141–154, Feb 1988. doi : 10.1109/32.4634

[104] F. Dong and S. G. Akl, “Scheduling Algorithms for Grid Computing:State of the Art
and Open Problems,” School of Computing, Queen’s University, Kingston, Ontario,
USA, Tech. Rep. 2006-504, January 2006.

[105] J. Yu, R. Buyya, and K. Ramamohanarao, Workflow Scheduling Algorithms for Grid
Computing, in Metaheuristics for Scheduling in Distributed Computing Environments,
ser. Studies in Computational Intelligence. Springer Berlin Heidelberg, 2008, vol. 146,
ch. 7, pp. 173–214. doi : 10.1007/978-3-540-69277-5_7

[106] I. J. Taylor, E. Deelman, D. Gannon, and M. S. (Eds.), Workflows for e-Science:
Scientific Workflows for Grids. London: Springer-Verlag, 2007. doi : 10.1007/978-1-
84628-757-2

[107] S. Smanchat and K. Viriyapant, “Taxonomies of workflow scheduling problem and
techniques in the cloud,” Future Generation Computer Systems, vol. 52, pp. 1–12,
November 2015. doi : 10.1016/j.future.2015.04.019

[108] J. Herrera, “Programming Model for Grid Computing Infrastructures. (in Spanish),”
Ph.D. dissertation, Universidad Complutense de Madrid, Madrid, Spain, 2009.

[109] M. Rodríguez-Pascual, R. Mayo-García, and I. M. Llorente, “Montera: a framework
for efficient execution of Monte Carlo codes on grid infrastructures,” Computing and
Informatics, vol. 32, no. 1, pp. 113–144, 2013.

[110] R. Montero, E. Huedo, and I. Llorente, “Benchmarking of high throughput computing
applications on Grids,” Parallel Computing, vol. 32, no. 4, pp. 267–279, April 2006.
doi : 10.1016/j.parco.2005.12.001

[111] S. Zanikolas and R. Sakellariou, “A taxonomy of grid monitoring systems,” Futu-
re Generation Computer Systems, vol. 21, no. 1, pp. 163–188, January 2005. doi :
doi:10.1016/j.future.2004.07.002

[112] A. Ciuffoletti, “A Simple and Generic Interface for a Cloud Monitoring Service,” in
CLOSER 2014 Proceedings of the 4th International Conference on Cloud Computing
and Services Science. Barcelona, Spain: SCITEPRESS – Science and Technology
Publications, 3 - 5 April 2014, pp. 143–150.

[113] P. Mhashilkar, A. Tiradani, B. Holzman, K. Larson, I. Sfiligoi, and M. Rynge, “Cloud
Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for
Scientific Workflows,” in 20th International Conference on Computing in High Energy
and Nuclear Physics (CHEP2013), ser. Journal of Physics: Conference Series, vol. 513.
IOP Publishing, 2014, p. 032069. doi : 10.1088/1742-6596/513/3/032069

[114] A. Luckow, M. Santcroos, A. Zebrowski, and S. Jha, “Pilot-Data: An abstraction
for distributed data,” Journal of Parallel and Distributed Computing, 2014. doi :
10.1016/j.jpdc.2014.09.009 Available online.

[115] R. Graciani, A. Casajús, A. Carmona, T. Fifield, and M. Sevior, “Belle-DIRAC Setup
for Using Amazon Elastic Compute Cloud,” Journal of Grid Computing, vol. 9, no. 1,
pp. 65–79, 2011. doi : 10.1007/s10723-010-9175-7

http://dx.doi.org/10.1007/978-1-4615-0509-9
http://dx.doi.org/10.1109/IPPS.1998.669970
http://dx.doi.org/10.1109/32.4634
http://dx.doi.org/10.1007/978-3-540-69277-5_7
http://dx.doi.org/10.1007/978-1-84628-757-2
http://dx.doi.org/10.1007/978-1-84628-757-2
http://dx.doi.org/10.1016/j.future.2015.04.019
http://dx.doi.org/10.1016/j.parco.2005.12.001
http://dx.doi.org/doi:10.1016/j.future.2004.07.002
http://dx.doi.org/10.1088/1742-6596/513/3/032069
http://dx.doi.org/10.1016/j.jpdc.2014.09.009
http://dx.doi.org/10.1007/s10723-010-9175-7

Bibliography 227

[116] A. Luckow, M. Santcroos, A. Merzky, O. Weidner, P. Mantha, and S. Jha, “P*: A
model of pilot-abstractions,” in 8th IEEE International Conference on E-Science (e-
Science 2012), Chicago, USA, 8–12 October 2012, pp. 1–10. doi : 10.1109/eScien-
ce.2012.6404423

[117] J. T. Mościcki, M. Lamannaa, M. Bubak, and P. M. A. Sloot, “Processing mol-
dable tasks on the Grid: Late job binding with lightweight user-level overlay,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 725–736, 2011. doi :
10.1016/j.future.2011.02.002

[118] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton frameworks: high-
level structured parallel programming enablers,” Software: Practice and Experience,
vol. 40, no. 12, pp. 1135–1160, November/December 2010. doi : 10.1002/spe.1026

[119] P. Troger, H. Rajic, A. Haas, and P. Domagalski, “Standardization of an API for
Distributed Resource Management Systems,” in 7th IEEE International Symposium
on Cluster Computing and the Grid (CCGRID 2007). Rio de Janeiro, Brazil: IEEE
CS Press, 14–17 May 2007, pp. 619–626. doi : 10.1109/CCGRID.2007.109

[120] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. V. Laszewski, C. Lee,
A. Merzky, H. Rajic, and J. Shalf., “SAGA: A simple API for Grid Applications. High-
Level Application Programming on the Grid,” Computational Methods in Science and
Technology, vol. 12, no. 1, pp. 7–20, 2006.

[121] J. T. Mościcki, F. Brochu, J. Ebke, U. Egede, J. Elmsheuser, K. Harrison, R. Jones,
H. Lee, D. Liko, A. Maier, A. Muraru, G. Patrick, K. Pajchel, W. Reece, B. Samset,
M. Slater, A. Soroko, C. Tan, D. van der Ster, and M. Williams., “GANGA: A tool for
computational-task management and easy access to Grid resources,” Computer Physics
Communications, vol. 180, no. 11, pp. 2303–2316, 2009. doi : 10.1016/j.cpc.2009.06.016

[122] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Cur-
bera, M. Ford, Y. Goland, G. A, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu, “Web Services Business
Process Execution Language Version 2.0,” 11 April 2007, wsbpel-v2.0-OS. [Online].
Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[123] S. Krishnan, P. Wagstrom, and G. von Laszewski, “Gsfl: A workflow framework for
grid services,” Argonne National Laboratory, Argonne, USA, Tech. Rep., 2002.

[124] T. Fahringer, S. Pllana, and A. Villazon, “A-gwl: Abstract grid workflow language,”
in Computational Science - ICCS 2004. 4th International Conference, Part II, ser.
Lecture Notes in Computer Science, Kraków, Poland, 6-9 June 2004, vol. 3038, pp.
42–49. doi : 10.1007/978-3-540-24688-6_7

[125] Y. Huang, “JISGA: A Jini-Based Service-Oriented Grid Architecture,” International
Journal of High Performance Computing Applications, vol. 17, no. 3, pp. 317–327,
August 2003. doi : 10.1177/1094342003173001

[126] D. Cybok, “A Grid workflow infrastructure,” Concurrency and Computation: Practice
& Experience, vol. 18, no. 10, pp. 1243–1254, August 2006. doi : 10.1002/cpe.998

[127] W. van der Aalst and A. ter Hofstede, “YAWL: yet another workflow language,” Infor-
mation Systems, vol. 30, no. 4, pp. 245–275, June 2005. doi : 10.1016/j.is.2004.02.002

[128] M. Alt, A. Hoheisel, H.-W. Pohl, and S. Gorlatch, “A Grid Workflow Language Using
High-Level Petri Nets,” in Parallel Processing and Applied Mathematics, 6th Interna-
tional Conference (PPAM 2005), ser. Lecture Notes in Computer Science, vol. 3911.
Poznań, Poland: Springer Berlin Heidelberg, 11-14 September,2005 2006, pp. 715–722.
doi : 10.1007/11752578_86

[129] Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and Y. Liu,
“Grid-Flow: a Grid-enabled scientific workflow system with a Petri-net-based inter-
face,” Concurrency Computat.: Pract. Exper., vol. 18, no. 10, pp. 1115–1140, August
2006. doi : 10.1002/cpe.988

http://dx.doi.org/10.1109/eScience.2012.6404423
http://dx.doi.org/10.1109/eScience.2012.6404423
http://dx.doi.org/10.1016/j.future.2011.02.002
http://dx.doi.org/10.1002/spe.1026
http://dx.doi.org/10.1109/CCGRID.2007.109
http://dx.doi.org/10.1016/j.cpc.2009.06.016
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1007/978-3-540-24688-6_7
http://dx.doi.org/10.1177/1094342003173001
http://dx.doi.org/10.1002/cpe.998
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1007/11752578_86
http://dx.doi.org/10.1002/cpe.988

228 Bibliography

[130] J. Qin, T. Fahringer, and S. Pllana, UML based Grid Workflow Modeling under ASKA-
LON, in Distributed and Parallel Systems. From Cluster to Grid Computing. Springer,
2007, pp. 191–200. doi : 10.1007/978-0-387-69858-8_19

[131] J. K. Nilsen, X. Cai, B. Hoyland, and H. P. Langtangen, “Simplifying the paralleli-
zation of scientific codes by a function-centric approach in Python,” Computational
Science & Discovery, vol. 3, no. 1, p. 015003, September 2010. doi : 10.1088/1749-
4699/3/1/015003

[132] L. Tomás, A. C. Caminero, O. Rana, C. Carrión, and B. Caminero, “A GridWay-
based autonomic network-aware metascheduler,” Future Generation Computer Sys-
tems, vol. 28, no. 7, pp. 1058–1069, July 2012. doi : 10.1016/j.future.2011.08.019

[133] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of grid resource
management systems for distributed computing,” Software: Practice and Experience,
vol. 32, no. 2, pp. 135–164, February 2002. doi : 10.1002/spe.432

[134] A. Kertész and P. Kacsuk, A Taxonomy of Grid Resource Brokers, in Distributed and
Parallel Systems. Springer US, 2007, pp. 201–210. doi : 10.1007/978-0-387-69858-8_20

[135] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and I. M. Llorente, “A Comparison
Between two Grid Scheduling Philosophies: EGEE WMS and GridWay,” Multiagent
and Grid Systems, vol. 3, no. 4, pp. 429–439, 2007.

[136] D. Lingrand, J. Montagnat, J. Martyniak, and D. Colling, “Optimization of jobs sub-
mission on the egee production grid: Modeling faults using workload,” Journal of Grid
Computing, vol. 8, no. 2, pp. 305–321, June 2010. doi : 10.1007/s10723-010-9151-2

[137] E. Huedo, R. S. Montero, and I. M. Llorente, “The GridWay Framework for Adaptive
Scheduling and Execution on Grids,” Scalable Computing-Practice and Experience,
vol. 6, pp. 1–8, 2005.

[138] I. Marín, E. Huedo, and I. M. Llorente, “Interoperating Grid Infrastructures with
the GridWay Metascheduler,” Concurrency and Computation: Practice & Experience,
vol. 27, no. 9, pp. 2278–2290, June 2015. doi : 10.1002/cpe.2971

[139] C. Vázquez, E. Huedo, R. S. Montero, and I. M. Llorente, “Federation of TeraGrid,
EGEE and OSG infrastructures through a metascheduler,” Future Generation Compu-
ter Systems, vol. 26, no. 7, pp. 979–985, July 2010. doi : 10.1016/j.future.2010.04.004

[140] B. B. P. Rao, S. Ramakrishnan, M. R. R. Gopalan, C. Subrata, N. Mangala, and
R. Sridharan, “e-Infrastructures in IT: A case study on Indian national grid computing
initiative – GARUDA,” Computer Science - Research and Development, vol. 23, no.
3–4, pp. 283–290, June 2009. doi : 10.1007/s00450-009-0079-3

[141] E. Huedo, R. Montero, and I. Llorente, “Evaluating the reliability of computational
grids from the end user’s point of view,” Journal of Systems Architecture, vol. 52,
no. 12, pp. 727–736, December 2006. doi : 10.1016/j.sysarc.2006.04.003

[142] P. Tröger and A. Merzky, “Towards Standardized Job Submission and Control
in Infrastructure Clouds,” J. Grid Computing, vol. 12, pp. 111–125, 2014. doi :
10.1007/s10723-013-9275-2

[143] G. F. Anastasi, E. Carlini, M. Coppola, and P. Dazzi, “BROKAGE: A Genetic Ap-
proach for QoS Cloud Brokering,” in 7th IEEE International Conference on Cloud
Computing (IEEE CLOUD 2014), Alaska. USA, June 27-July 2 2014, pp. 304–311.
doi : 10.1109/CLOUD.2014.49

[144] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “CompatibleOne: The Open Source
Cloud Broker,” J. Grid Computing, vol. 12, no. 1, pp. 93–109, March 2014. doi :
10.1007/s10723-013-9285-0

[145] G. Juve and E. Deelman, “Automating Application Deployment in Infrastructu-
re Clouds,” in Third International Conference on Cloud Computing Technology and
Science (CloudCom), Nov. 29 2011-Dec 1 2011, pp. 658–665. doi : 10.1109/Cloud-
Com.2011.102

http://dx.doi.org/10.1007/978-0-387-69858-8_19
http://dx.doi.org/10.1088/1749-4699/3/1/015003
http://dx.doi.org/10.1088/1749-4699/3/1/015003
http://dx.doi.org/10.1016/j.future.2011.08.019
http://dx.doi.org/10.1002/spe.432
http://dx.doi.org/10.1007/978-0-387-69858-8_20
http://dx.doi.org/10.1007/s10723-010-9151-2
http://dx.doi.org/10.1002/cpe.2971
http://dx.doi.org/10.1016/j.future.2010.04.004
http://dx.doi.org/10.1007/s00450-009-0079-3
http://dx.doi.org/10.1016/j.sysarc.2006.04.003
http://dx.doi.org/10.1007/s10723-013-9275-2
http://dx.doi.org/10.1109/CLOUD.2014.49
http://dx.doi.org/10.1007/s10723-013-9285-0
http://dx.doi.org/10.1109/CloudCom.2011.102
http://dx.doi.org/10.1109/CloudCom.2011.102

Bibliography 229

[146] E. Walker, J. P. Gardner, V. Litvin, and E. L. Turner, “Personal adaptive clusters as
containers for scientific jobs,” Cluster Computing, vol. 10, no. 3, pp. 339–350, 2007.
doi : 10.1007/s10586-007-0028-5

[147] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Multi-Cloud Deployment
of Computing Clusters for Loosely-Coupled MTC Applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 6, pp. 924–930, June 2011. doi :
10.1109/TPDS.2010.186

[148] J. Buck, S. Ha, A. E. Lee, and A. E. . D. G. Messerschmitt, “Ptolemy: A Frame-
work for Simulating and Prototyping Heterogeneous Systems,” International Journal
of Computer Simulation, vol. 4, pp. 155–182, August 1994.

[149] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-Science: An
overview of workflow system features and capabilities,” Future Generation Computer
Systems, vol. 25, no. 5, pp. 528–540, May 2009. doi : 10.1016/j.future.2008.06.012

[150] G.Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, A. Balasko, and Z. Farkas, “Enabling
scientific workflow sharing through coarse-grained interoperability,” Future Generation
Computer Systems, vol. 37, pp. 46–59, 2014. doi : 10.1016/j.future.2014.02.016

[151] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee, J. Tao,
and Y. Zhao, “Scientific workflow management and the Kepler system,” Concurrency
and Computation: Practice & Experience, vol. 18, no. 10, pp. 1039–1065, August 2006.
doi : 10.1002/cpe.994

[152] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz, “Pegasus: A Framework for
Mapping Complex Scientific Workflows onto Distributed Systems,” Scientific Program-
ming, vol. 13, no. 3, pp. 219–237, 2005. doi : 10.1155/2005/128026

[153] T. Oinn, M. Greenwood, M. Addis, M. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe, “Taverna: lessons in creating a workflow environment for the
life sciences,” Concurrency and Computation: Practice & Experience, vol. 18, no. 10,
pp. 1067–1100, August 2006. doi : 10.1002/cpe.993

[154] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor,
and I. Wang, “Programming scientific and distributed workflow with Triana services,”
Concurrency and Computation: Practice & Experience, vol. 18, no. 10, pp. 1021–1037,
August 2006. doi : 10.1002/cpe.992

[155] C. Jin and R. Buyya, “A dataflow system with a local optima-based scheduling for
enterprise grids,” Grid Computing and Distributed Systems Laboratory, University of
Melbourne, Melbourne, Australia, Tech. Rep., November 2007.

[156] P. Kacsuk and G. Sipos, “Multi-Grid, Multi-User Workflows in the P-GRADE Grid
Portal,” Journal of Grid Computing, vol. 3, no. 3–4, pp. 221–238, September 2006. doi
: 10.1007/s10723-005-9012-6

[157] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H.-L. Truong,
“ASKALON: A Tool Set for Cluster and Grid Computing,” Concurrency and Compu-
tation: Practice & Experience, vol. 17, no. 2-4, pp. 143–169, February – April 2005. doi
: 10.1002/cpe.929

[158] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and Efficient Work-
flow Deployment of Data-Intensive Applications On Grids With MOTEUR,” Inter-
national Journal of High Performance Computing Applications, vol. 22, no. 3, pp.
347–360, August 2008. doi : 10.1177/1094342008096067

[159] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, S. Mei-Hui, and K. Vahi, “Cha-
racterization of scientific workflows,” in Third Workshop on Workflows in Support of
Large-Scale Science (WORKS 2008). Austin, USA: IEEE CS Press, 17-17 November
2008, pp. 1–10. doi : 10.1109/WORKS.2008.4723958

http://dx.doi.org/10.1007/s10586-007-0028-5
http://dx.doi.org/10.1109/TPDS.2010.186
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1016/j.future.2014.02.016
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1002/cpe.992
http://dx.doi.org/10.1007/s10723-005-9012-6
http://dx.doi.org/10.1002/cpe.929
http://dx.doi.org/10.1177/1094342008096067
http://dx.doi.org/10.1109/WORKS.2008.4723958

230 Bibliography

[160] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A. Laz-
zarini, A. Arbree, R. Cavanaugh, and S. Koranda, “Mapping Abstract Complex Work-
flows onto Grid Environments,” Journal of Grid Computing, vol. 1, no. 1, pp. 25–39,
March 2003. doi : 10.1023/A:1024000426962

[161] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and I. M. Llorente, “Workflow Manage-
ment in a Protein Clustering Application,” in Proc. 5th Intl. Workshop on Biomedical
Computations on the Grid (BioGrid’07) on the 7th IEEE Intl. Symp. on Cluster Com-
puting and the Grid (CCGrid 2007), Rio de Janeiro, 14–17 May 2007, pp. 679–684.
doi : 10.1109/CCGRID.2007.122

[162] M. Wieczorek, R. Prodan, and T. Fahringer, “Comparison of Workflow Scheduling
Strategies on the Grid,” in Parallel Processing and Applied Mathematics.6th Interna-
tional Conference, (PPAM 2005), ser. Lecture Notes in Computer Science, Poznań, Po-
land, 11-14 September, 2005 2006, vol. 3911, pp. 792–800. doi : 10.1007/11752578_95

[163] M. A. S. M. M. López, E. Heymann, “Sensitivity Analysis of Workflow Scheduling
on Grid Systems,” Scalable Computing: Practice and Experience, vol. 8, no. 3, pp.
301–311, 2007.

[164] Y. C. Lee, H. Han, A. Y. Zomaya, and M. Yousif, “Resource-efficient workflow sche-
duling in clouds,” Knowledge-Based Systems, vol. 80, pp. 153–162, May 2015. doi :
10.1016/j.knosys.2015.02.012

[165] R. Tolosana-Calasanz, J. A. Bañares, C. Pham, and O. F. Rana, “Enforcing QoS
in scientific workflow systems enacted over Cloud infrastructures,” Journal of Com-
puter and System Sciences, vol. 78, no. 5, pp. 1300–1315, September 2012. doi :
10.1016/j.jcss.2011.12.015

[166] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges for workflow
scheduling approaches in cloud computing environments: Taxonomy and opportuni-
ties,” Future Generation Computer Systems, vol. 50, pp. 3–21, September 2015. doi :
10.1016/j.future.2015.01.007

[167] C.-C. Hsu, K.-C. Huang, and F.-J. Wang, “Online scheduling of workflow applications
in grid environments,” Future Generation Computer Systems, vol. 27, no. 6, pp. 860–
870, June 2011. doi : 10.1016/j.future.2010.10.015

[168] M. Gendreau and J.-Y. P. (Eds.), Handbook of Metaheuristics, 2nd ed., ser. Interna-
tional Series in Operations Research & Management Science. Springer US, 2010, vol.
146. doi : 10.1007/978-1-4419-1665-5

[169] A. B. Downey, “A model for speedup of parallel programs,” Computer Science Division
(EECS), University of California, Berkeley, USA, Tech. Rep., January 1997.

[170] S. Jang, X. Wu, V. Taylor, G. Mehta, K. Vahi, and E. Deelman, “Using performan-
ce prediction to allocate grid resources,” Texas A&M University, GriPhyN, College
Station, Texas, USA., Tech. Rep., 2004.

[171] Y. Li and M. Mascagni, “Grid-based monte carlo application,” in Grid Computing –
GRID 2002, ser. Lecture Notes in Computer Science, Baltimore, USA, November 2002,
vol. 2536, pp. 13–24. doi : 10.1007/3-540-36133-2_2

[172] D. . P. da Silva, W. Cirne, and F. V. Brasileiro, “Trading cycles for information: Using
replication to schedule bag-of-tasks applications on computational grids,” in Euro-Par
2003 Parallel Processing. 9th International Euro-Par Conference, ser. Lecture Notes
in Computer Science, Klagenfurt, Austria, 26-29 August 2003, vol. 2790, pp. 169–180.
doi : 10.1007/978-3-540-45209-6_26

[173] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and I. M. Llorente, “CD-HITWorkflow
Execution on Grids Using Replication Heuristics,” in 8th IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGRID)., Lyon, France, 19–22 May 2008,
pp. 735–740. doi : 10.1109/CCGRID.2008.37

http://dx.doi.org/10.1023/A:1024000426962
http://dx.doi.org/10.1109/CCGRID.2007.122
http://dx.doi.org/10.1007/11752578_95
http://dx.doi.org/10.1016/j.knosys.2015.02.012
http://dx.doi.org/10.1016/j.jcss.2011.12.015
http://dx.doi.org/10.1016/j.future.2015.01.007
http://dx.doi.org/10.1016/j.future.2010.10.015
http://dx.doi.org/10.1007/978-1-4419-1665-5
http://dx.doi.org/10.1007/3-540-36133-2_2
http://dx.doi.org/10.1007/978-3-540-45209-6_26
http://dx.doi.org/10.1109/CCGRID.2008.37

Bibliography 231

[174] J. Chen and Y. Yang, “Activity Completion Duration Based Checkpoint Selection for
Dynamic Verification of Temporal Constraints in Grid Workflow Systems,” Internatio-
nal Journal of High Performance Computing Applications, vol. 22, no. 3, pp. 319–329,
August 2008. doi : 10.1177/1094342007086229

[175] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and simulation of
distributed resource management and scheduling for Grid computing,” Concurrency
and Computation: Practice & Experience, vol. 14, no. 13-15, pp. 1175–1220, November
- December 2002. doi : 10.1002/cpe.710

[176] D. Klusáček, L. Matyska, and H. Rudová, “Alea - grid scheduling simulation environ-
ment,” in Parallel Processing and Applied Mathematics. 7th International Conference
(PPAM 2007), ser. Lecture Notes in Computer Science, Gdansk, Poland, 9-12 Septem-
ber, 2007 2008, vol. 4967, pp. 1029–1038. doi : 10.1007/978-3-540-68111-3_109

[177] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, and
I. M. Llorente, “Journal of Grid Computing,” iCanCloud: A Flexible and Scalable Cloud
Infrastructure Simulator, vol. 10, no. 1, pp. 185–209, March 2012. doi : 10.1007/s10723-
012-9208-5

[178] M. R. J. Novotny and O. Wehrens, “GridSphere: a portal framework for building
collaborations,” Concurrency and Computation: Practice & Experience, vol. 16, no. 5,
pp. 503–513, April 2004. doi : 10.1002/cpe.829

[179] D. Szejnfeld, P.Dziubecki, P. Kopta, M. Krysinski, T. Kuczynski, K. Kurowski, B. Lud-
wiczak, T. Piontek, D. Tarnawczyk, M. Wolniewicz, P. Domagalski, J. Nabrzyski, and
K. Witkowski, “Vine ToolkitÑTowards portal based production solutions for scientific
and engineering communities with grid-enabled resources support,” Scalable Compu-
ting: Practice and Experience, vol. 11, no. 2, pp. 161–172, 2010.

[180] A. Andronico, R. Barbera, A. Falzone, P. Kunszt, G. L. Re, A. Pulvirenti, and A. Ro-
dolico, “GENIUS: a simple and easy way to access computational and data grids,”
Future Generation Computer Systems, vol. 19, no. 6, pp. 805–813, August 2003. doi :
10.1016/S0167-739X(03)00061-X

[181] V. Ardizzone, R. Barbera, A. Calanducci, M. Fargetta, E. Ingrà, I. Porro, G. L. Rocca,
S. Monforte, R. Ricceri, R. Rotondo, D. Scardaci, and A. Schenone, “The DECIDE
Science Gateway,” Journal of Grid Computing, vol. 10, no. 4, pp. 689–707, December
2012. doi : 10.1007/s10723-012-9242-3

[182] S. Shahand, M. Santcroos, A. H. C. van Kampen, and S. D. Olabarriaga, “A Grid-
Enabled Gateway for Biomedical Data Analysis,” Journal of Grid Computing, vol. 10,
no. 4, pp. 725–742, December 2012. doi : 10.1007/s10723-012-9233-4

[183] G. Codispoti, C. Mattia, A. Fanfani, F. Fanzago, F. Farina, C. Kavka, S. Lacapra-
ra, V. Miccio, D. Spiga, and E. Vaandering, “CRAB: A CMS application for distri-
buted analysis,” IEEE Trans. Nucl. Sci., vol. 56, no. 5, pp. 2850–2858, 2009. doi :
10.1109/TNS.2009.2028076

[184] D. Evans, A. Fanfani, C. Kavka, F. van Lingen, G. Eulisse, W. Bacchi, G. Codis-
poti, D. Mason, N. D. Filippis, J. M. Hernández, and P. Elmer, “The CMS Monte
Carlo Production System: Development and Design,” Nuclear Physics B - Proceedings
Supplements, vol. 177-178, pp. 285–286, 2008. doi : 10.1016/j.nuclphysbps.2008.02.001

[185] A. Fanfani, A. Afaq, J. A. Sanches, J. Andreeva, G. Bagliesi, L. Bauerdick, S. Belforte,
P. Bittencourt, K. Bloom, B. Blumenfeld, and et al, “Distributed Analysis in CMS,”
Journal of Grid Computing, vol. 8, no. 2, pp. 159–179, 2010. doi : 10.1007/s10723-010-
9152-1

[186] D. Groep, O. Koeroo, and G. Venekamp, “gLExec: gluing Grid computing to the Unix
world,” Journal of Physics : Conference Series, vol. 119, no. 6, p. 062032, 2008. doi :
10.1088/1742-6596/119/6/062032

http://dx.doi.org/10.1177/1094342007086229
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1007/978-3-540-68111-3_109
http://dx.doi.org/10.1007/s10723-012-9208-5
http://dx.doi.org/10.1007/s10723-012-9208-5
http://dx.doi.org/10.1002/cpe.829
http://dx.doi.org/10.1016/S0167-739X(03)00061-X
http://dx.doi.org/10.1007/s10723-012-9242-3
http://dx.doi.org/10.1007/s10723-012-9233-4
http://dx.doi.org/10.1109/TNS.2009.2028076
http://dx.doi.org/10.1016/j.nuclphysbps.2008.02.001
http://dx.doi.org/10.1007/s10723-010-9152-1
http://dx.doi.org/10.1007/s10723-010-9152-1
http://dx.doi.org/10.1088/1742-6596/119/6/062032

232 Bibliography

[187] I. Sfiligoi, “CDF computing,” Computer Physics Communications, vol. 177, no. 1–2,
pp. 235–238, July 2007. doi : 10.1016/j.cpc.2007.02.055

[188] E. Deelman, G. Singh, M. H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus: A frame-
work for mapping complex scientific workflows onto distributed systems,” Scientific
Programming, vol. 13, no. 3, pp. 219–237, 2005. doi : 10.1155/2005/128026

[189] G. Juve, E. Deelman, K. Vahi, and G. Mehta, “Experiences with resource provisioning
for scientific workflows using Corral,” Scientific Programming, vol. 18, no. 2, pp. 77–92,
2010. doi : 10.3233/SPR-2010-0300

[190] M. Altunay, P. Avery, K. Blackburn, B. Bockelman, M. Ernst, D. Fraser, R. Quick,
R. Gardner, S. Goasguen, T. Levshina, and et al., “A Science Driven Production
Cyberinfrastructure – the Open Science Grid,” Journal of Grid Computing, vol. 9,
no. 2, pp. 201–218, 2011. doi : 10.1007/s10723-010-9176-6

[191] E. Michon, J. Gossa, S. Genaud, M. Frincu, and A. Burel, “Porting Grid Applications
to the Cloud with Schlouder,” in IEEE 5th International Conference on Cloud Com-
puting Technology and Science (CloudCom), Bristol, United Kingdom, 2–5 Dec. 2013,
pp. 505–512. doi : 10.1109/CloudCom.2013.73

[192] K. Torberntsson and Y. Rydin, “A Study of Configuration Management Systems. So-
lutions for Deployment and Configuration of Software in a Cloud Environment,” June
2014, B.S. Thesis. Uppsala University. Sweden.

[193] R. S. Montero, R. Moreno-Vozmediano, and I.M.Llorente, “An elasticity model for
High Throughput Computing clusters,” J. Parallel Distrib. Comput., vol. 71, no. 6,
pp. 750–757, June 2011. doi : 10.1016/j.jpdc.2010.05.005

[194] V. Méndez, A. Casajús, V. Fernández, R. Graciani, and G. Merino, “Rafhyc: an Ar-
chitecture for Constructing Resilient Services on Federated Hybrid Clouds,” J. Grid
Computing, vol. 11, pp. 753–770, 2013. doi : 10.1007/s10723-013-9279-y

[195] D. Bradley, O. Gutsche, K. Hahn, B. Holzman, S. Padhi, H. Pi, D. Spiga, I. Sfiligoi,
E. Vaandering, and F. Würthwein, “Use of glide-ins in CMS for production and analy-
sis,” Journal of Physics : Conference Series, vol. 219, no. 7, p. 072013, 2010. doi :
10.1088/1742-6596/219/7/072013

[196] M. Cinquilli, A. F. G. Codispoti, F. Fanzago, F. Farina, S. L. J. Hernández, H. Riahi,
D. Spiga, E. Vaandering, and S. Wakefield, “Tools to use heterogeneous Grid schedulers
and storage system,” in 13th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research, (ACAT2010). Jaipur, India: SISSA PoS,
February 22–27 2010, pp. 29–1–29–13.

[197] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, “DIRAC: A scalable lightweight
architecture for high throughput computing,” in 5th IEEE/ACM International Works-
hop on Grid Computing (GRID’04). Pittsburgh, USA: IEEE CS Press, Nov. 2004,
pp. 19–25. doi : 10.1109/GRID.2004.22

[198] V. M. Muñoz, R. V. F. Albor, A. Casajús, T. F. Pena, G. Merino, and J. J. Sabo-
rido, “The Integration of CloudStack and OCCI/OpenNebula with DIRAC,” Jour-
nal of Physics: Conference Series, vol. 396, p. 032075, 2012. doi : 10.1088/1742-
6596/396/3/032075

[199] P. Buncic, C. Aguado, J. Blomer, A. Harutyunyan, and M. Mudrinic, “A practical
approach to virtualization in HEP,” The European Physical Journal Plus, vol. 126,
no. 1, p. 13, January 2011. doi : 10.1140/epjp/i2011-11013-1

[200] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience,” Parallel Computing, vol. 30, no. 7,
pp. 817–840, July 2004. doi : 10.1016/j.parco.2004.04.001

http://dx.doi.org/10.1016/j.cpc.2007.02.055
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.3233/SPR-2010-0300
http://dx.doi.org/10.1007/s10723-010-9176-6
http://dx.doi.org/10.1109/CloudCom.2013.73
http://dx.doi.org/10.1016/j.jpdc.2010.05.005
http://dx.doi.org/10.1007/s10723-013-9279-y
http://dx.doi.org/10.1088/1742-6596/219/7/072013
http://dx.doi.org/10.1109/GRID.2004.22
http://dx.doi.org/10.1088/1742-6596/396/3/032075
http://dx.doi.org/10.1088/1742-6596/396/3/032075
http://dx.doi.org/10.1140/epjp/i2011-11013-1
http://dx.doi.org/10.1016/j.parco.2004.04.001

Bibliography 233

[201] X. Zhao, J. Hover, T. Wlodek, T. Wenaus, J. Frey, T. Tannenbaum, and M. Livny,
“PanDA Pilot Submission using Condor-G: Experience and Improvements,” Journal
of Physics : Conference Series, vol. 331, no. 7, p. 072069, 2011. doi : 10.1088/1742-
6596/331/7/072069

[202] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, F. Furano, A. Grigoras, C. Grigoras,
P. M. Lorenzo, A. J. Peters, and P. Saiz, “The ALICE Workload Management System:
Status before the real data taking,” Journal of Physics : Conference Series, vol. 219,
no. 6, p. 062004, 2010. doi : 10.1088/1742-6596/219/6/062004

[203] E. Carona, V. Garonne, and A. Tsaregorodtsev, “Definition, modelling and simula-
tion of a Grid computing scheduling system for high throughput computing,” Futu-
re Generation Computer Systems, vol. 23, no. 8, pp. 968–976, November 2007. doi :
10.1016/j.future.2007.04.008

[204] S. K. Paterson and A. Tsaregorodtsev, “DIRAC Optimized Workload Management,”
Journal of Physics : Conference Series, vol. 119, no. 6, p. 062040, 2008. doi :
10.1088/1742-6596/119/6/062040

[205] P. Nilsson, “Experience from a pilot based system for ATLAS,” Journal of Phy-
sics : Conference Series, vol. 119, no. 6, p. 062038, 2008. doi : 10.1088/1742-
6596/119/6/062038

[206] P.-H. Chiu and M. Potekhin, “Pilot factory – a Condor-based system for scalable Pilot
Job generation in the Panda WMS framework,” Journal of Physics : Conference Series,
vol. 219, no. 6, p. 062041, 2010. doi : 10.1088/1742-6596/219/6/062041

[207] S. Camarasu-Pop, T. Glatard, R. F. da Silva, P. Gueth, D. Sarrut, and H. Benoit-
Cattin, “Monte Carlo simulation on heterogeneous distributed systems: A compu-
ting framework with parallel merging and checkpointing strategies,” Future Ge-
neration Computer Systems, vol. 29, no. 3, pp. 728–738, March 2013. doi :
10.1016/j.future.2012.09.003

[208] I. Stokes-Rees, A. Tsaregorodtsev, and V. Garonne, “DIRAC Lightweight Information
and Monitoring Services using XML-RPC and Instant Messaging,” in Computing in
High Energy and Nuclear Physics conference (CHEP’04). Interlaken, Switzerland:
A. Aimar et al. CERN, Geneva 2005. CERN-2005-02., 27th September - 1st October
2004, pp. 788–791.

[209] G. Shao, “Adaptive Scheduling of Master/Worker Applications on Distributed Compu-
tational Resources,” Ph.D. dissertation, University of Califorina, San Diego, USA,
2001.

[210] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Za-
gorodnov, “Adaptive Computing on the Grid Using AppLeS,” IEEE Transactions
on Parallel and Distributed Systems, vol. 14, no. 4, pp. 369–382, April 2003. doi :
10.1109/TPDS.2003.1195409

[211] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth., “Master–Worker: An Enabling
Framework for Applications on the Computational Grid,” Cluster Computing, vol. 4,
pp. 63–70, 2001. doi : 10.1023/A:1011416310759

[212] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova, “A
GridRPC Model and API for End-User Applications,” June 29 2007, GFD-R.052.
[Online]. Available: http://www.ogf.org/documents/GFD.52.pdf

[213] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, “Ninf-G: A Refe-
rence Implementation of RPC-based Programming Middleware for Grid Computing,”
Journal of Grid Computing, vol. 1, pp. 41–51, 2003. doi : 10.1023/A:1024083511032

[214] H. Rajic, R. Borbst, W. Chan, F. Fersti, J. Gardiner, A. Haas, B. Nitzberg, D. Tem-
pleton, J. Tollefsrud, and P. Tröger, “Distributed Resource Management Application

http://dx.doi.org/10.1088/1742-6596/331/7/072069
http://dx.doi.org/10.1088/1742-6596/331/7/072069
http://dx.doi.org/10.1088/1742-6596/219/6/062004
http://dx.doi.org/10.1016/j.future.2007.04.008
http://dx.doi.org/10.1088/1742-6596/119/6/062040
http://dx.doi.org/10.1088/1742-6596/119/6/062038
http://dx.doi.org/10.1088/1742-6596/119/6/062038
http://dx.doi.org/10.1088/1742-6596/219/6/062041
http://dx.doi.org/10.1016/j.future.2012.09.003
http://dx.doi.org/10.1109/TPDS.2003.1195409
http://dx.doi.org/10.1023/A:1011416310759
http://www.ogf.org/documents/GFD.52.pdf
http://dx.doi.org/10.1023/A:1024083511032

234 Bibliography

API Specification 1.0,” June 2008, GFD 133. [Online]. Available: http://www.ogf.org/
documents/GFD.133.pdf

[215] V. V. Korkhov, V. V. Krzhizhanovskaya, and P. M. A. Sloot, “A Grid-Based
Virtual Reactor: Parallel performance and adaptive load balancing,” Journal of
Parallel and Distributed Computing, vol. 68, no. 5, pp. 596–608„ 2008. doi :
10.1016/j.jpdc.2007.08.010

[216] V. V. Korkhov, J. T. Mościcki, and V. V. Krzhizhanovskaya, “Dynamic workload
balancing of parallel applications with user-level scheduling on the Grid,” Futu-
re Generation Computer Systems, vol. 25, no. 1, pp. 28–34, Jaunary 2009. doi :
10.1016/j.future.2008.07.001

[217] D. P. Anderson., “BOINC: A System for Public-Resource Computing and Storage,”
in 5th IEEE/ACM Int. Workshop on Grid Computing (GRID’04). Pittsburgh, USA:
IEEE CS Press, 8 November 2004, pp. 4–10. doi : 10.1109/GRID.2004.14

[218] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Néri, and O. Lodygensky,
“Computing on large-scale distributed systems: XtremWeb architecture, programming
models, security, tests and convergence with Grid,” Future Generation Computer Sys-
tems, vol. 21, no. 3, pp. 417–437, March 2005. doi : 10.1016/j.future.2004.04.011

[219] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a Fast and
Light-weight tasK executiON framework,” in ACM/IEEE Conference on Supercom-
puting (SC’07). Reno, Nevada, USA: ACM New York, 2007, pp. 1–12. doi :
10.1145/1362622.1362680

[220] S. Camarasu-Pop, T. Glatard, J. T. Mościcki, H. Benoit-Cattin, and D. Sarrut, “Dy-
namic Partitioning of GATE Monte-Carlo Simulations on EGEE,” Journal of Grid
Computing, vol. 8, no. 2, pp. 241–259, June 2010. doi : 10.1007/s10723-010-9153-0

[221] G. Castellani and R. Santinelli, “Job Prioritization and Fair Share in the LHCb expe-
riment,” Journal of Physics : Conference Series, vol. 119, no. 7, p. 072009, 2008. doi :
10.1088/1742-6596/119/7/072009

[222] S. Camarasu-Pop, T. Glatard, and H. Benoit-Cattin, “Simulating Application Work-
flows and Services Deployed on the European Grid Infrastructure,” in 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Delft,
Netherlands, 13–16 May 2013, pp. 18–25. doi : 10.1109/CCGrid.2013.13

[223] S. Madougou, S. Shahand, M. Santcroos, A. B. B. van Schaik and, A. van Kam-
pen, and S. Olabarriaga, “Characterizing workflow-based activity on a production e-
infrastructure using provenance data,” Future Generation Computer Systems, vol. 29,
no. 8, pp. 1931–1942, October 2013. doi : 10.1016/j.future.2013.04.019

[224] M. A. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M. Llorente,
and R. Mayo, “A Grid version of the Fusion code FAFNER,” in 18th Euromicro Int.
Conf. on Parallel, Distributed and Network-Based Processing (PDP 2010). Pisa, Italy:
IEEE CS Press, 17–19 February 2010, pp. 449–453. doi : 10.1109/PDP.2010.37

[225] M. Rodríguez-Pascual, F. Castejón, A. J. Rubio-Montero, R. Mayo, and I. M. Llorente,
“FAFNER2: A comparison between the Grid and the MPI versions of the code,” in Int.
Conf. on High Performance Comput. and Simulation (HPCS 2010). Caen, France:
IEEE CS Press, 28 June–2 July 2010, pp. 78–84. doi : 10.1109/HPCS.2010.5547146

[226] M. Rodríguez-Pascual, J. Guasp, F. Castejón, A. J. Rubio-Montero, I. M. Lloren-
te, and R. Mayo, “Improvements on the Fusion Code FAFNER2,” IEEE Tran-
sactions on Plasma Science, vol. 38, no. 9, pp. 2102–2110, September 2010. doi :
10.1109/TPS.2010.2057450

[227] M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo, A. Bustos, F. Castejón, and
I. Llorente, “More Efficient Executions of Monte Carlo Fusion Codes by Means of
Montera: The ISDEP Use Case,” in 19th Euromicro Int. Conf. on Parallel, Distributed

http://www.ogf.org/documents/GFD.133.pdf
http://www.ogf.org/documents/GFD.133.pdf
http://dx.doi.org/10.1016/j.jpdc.2007.08.010
http://dx.doi.org/10.1016/j.future.2008.07.001
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1016/j.future.2004.04.011
http://dx.doi.org/10.1145/1362622.1362680
http://dx.doi.org/10.1007/s10723-010-9153-0
http://dx.doi.org/10.1088/1742-6596/119/7/072009
http://dx.doi.org/10.1109/CCGrid.2013.13
http://dx.doi.org/10.1016/j.future.2013.04.019
http://dx.doi.org/10.1109/PDP.2010.37
http://dx.doi.org/10.1109/HPCS.2010.5547146
http://dx.doi.org/10.1109/TPS.2010.2057450

Bibliography 235

and Network-Based Processing (PDP 2011). Ayia Napa, Cyprus: IEEE CS Press,
9–11 February 2011, pp. 380–384. doi : 10.1109/PDP.2011.46

[228] M. Rodíguez-Pascual, D. P. de Lara, E. M. González, A. Gómez, A. J. Rubio-Montero,
R. Mayo, and J. Vicent, “Grid computing simulation of superconducting vortex lattice
in superconducting magnetic nanostructures,” in Proceedings of the 4th Iberian Grid
Infrastructure Conference, vol. 4. Braga, Portugal: NETBIBLO S.L. (Sta. Cristina,
La Coruña, Spain), 24–27 May 2010, pp. 97–109. ISBN 978-84-9745-549-7

[229] M. Rodríguez-Pascual, A. Gómez, R. Mayo-García, D. P. de Lara, E. M. González, A. J.
Rubio-Montero, and J. L. Vicent, “Superconducting Vortex Lattice Configurations on
Periodic Potentials: Simulation and Experiment,” Superconductivity and Novell Mag-
netism, vol. 25, no. 7, pp. 2127–2130, October 2012. doi : 10.1007/s10948-012-1636-8

[230] A. J. Rubio-Montero, L. Flores, F. Castejón, E. Montes, M. Rodríguez-Pascual, and
R. Mayo, “Executions of a Drift Kinetic Ecuation solver on Grid,” in 18th Euromicro
Int. Conf. on Parallel, Distributed and Network-Based Processing (PDP 2010). Pisa,
Italy: IEEE CS Press, 17–19 February 2010, pp. 454–459. doi : 10.1109/PDP.2010.40

[231] M. Rodríguez-Pascual, A. J. Rubio-Montero, R. Mayo-García, C. Kanellopoulos,
O. Prnjat, D. Darriba, and D. Posada, “A fault tolerant workflow for reproducible
research,” in Annual Global Online Conference on Information and Computer Tech-
nology (GOCICT 2014). Louisville, Kentucky, USA: IEEE CS Press, 3–5 December
2014, pp. 70–75. doi : 10.1109/GOCICT.2014.10

[232] A. J. Rubio-Montero, M. A. Rodríguez-Pascual, and R. Mayo-García, “A simple model
to exploit reliable algorithms in cloud federations,” Soft Computing, p. (Under Review),
2016.

[233] A. J. Rubio-Montero, R. S. Montero, E. Huedo, and I. M. Llorente, “Management
of Virtual Machines on Globus Grids using GridWay,” in 21st IEEE Int. Parallel and
Distributed Processing Symposium (IPDPS 2007). Long Beach, USA: IEEE CS Press,
27–30 March 2007, pp. 1–7. doi : 10.1109/IPDPS.2007.370548

[234] A. J. Rubio-Montero, F. Castejón, M. A. Rodríguez-Pascual, E. Montes, and R. Mayo,
“Drift Kinetic Equation Solver for Grid (DKEsG),” IEEE Transactions on Plasma
Science, vol. 38, no. 9, pp. 2093–2101, September 2010. doi : 10.1109/TPS.2010.2055164

[235] R. Isea, J. Chaves, E. Montes, A. J. Rubio-Montero, and R. Mayo, “The evolution
of HPV by means of a phylogenetic study,” in Healthgrid Research, Innovation and
Business Case. Proceedings of HealthGrid 2009, ser. Studies in Health Technology and
Informatics, vol. 147. Berlin, Germany: IOS Press, 29 June–1 July 2009, pp. 245–250.
doi : 10.3233/978-1-60750-027-8-245

[236] R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, “Computational Challenges
on Grid Computing for Workflows Applied to Phylogeny,” in Distributed Computing,
Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living.
10th Int. Work-Conference on Artificial Neural Networks (IWANN 2009), ser. Lecture
Notes in Computer Science, vol. 5518. Salamanca, Spain: Springer-Verlag, 10–12 June
2009, pp. 1130–1138. doi : 10.1007/978-3-642-02481-8_171

[237] R. Isea, E. Montes, A. J. Rubio-Montero, J. D. Rosales, M. A. Rodríguez-Pascual, and
R. Mayo, “Characterization of antigenetic serotypes from the dengue virus in Vene-
zuela by means of Grid Computing,” in Healthgrid Applications and core Technologies.
Proceedings of HealthGrid 2010, ser. Studies in Health Technology and Informatics,
vol. 159. Paris, France: IOS Press, 28–30 June 2010, pp. 234–238. doi : 10.3233/978-
1-60750-583-9-234

[238] R. Isea, E. Montes, A. J. Rubio-Montero, and R. Mayo, State-of-Art with PhyloGrid:
Grid Computing Phylogenetic Studies on the EELA-2 Project Infrastructure, in Grid
Computing: Towards a Global Interconnected Infrastructure, ser. Computer Communi-
cations and Networks. Springer London / Heidelberg New York, 2011, pp. 277–291.
doi : 10.1007/978-0-85729-676-4_11

http://dx.doi.org/10.1109/PDP.2011.46
http://dx.doi.org/10.1007/s10948-012-1636-8
http://dx.doi.org/10.1109/PDP.2010.40
http://dx.doi.org/10.1109/GOCICT.2014.10
http://dx.doi.org/10.1109/IPDPS.2007.370548
http://dx.doi.org/10.1109/TPS.2010.2055164
http://dx.doi.org/10.3233/978-1-60750-027-8-245
http://dx.doi.org/10.1007/978-3-642-02481-8_171
http://dx.doi.org/10.3233/978-1-60750-583-9-234
http://dx.doi.org/10.3233/978-1-60750-583-9-234
http://dx.doi.org/10.1007/978-0-85729-676-4_11

236 Bibliography

[239] A. J. Rubio-Montero, P. Arce, J. I. Lagares, Y. P. Ivanov, D. A. Burbano, G. Díaz, and
R. Mayo, “Performance Tests of GAMOS Software on EELA-2 Infrastructure,” in Pro-
ceedings of the Second EELA-2 Conference. Choroní, Venezuela: Editorial CIEMAT
(Madrid, Spain), 25–27 November 2009, pp. 379–385. ISBN 978-84-7834-627-1

[240] A. J. Rubio-Montero, F. Castejón, E. Huedo, M. Rodríguez-Pascual, and R. Mayo-
García, “Performance improvements for the neoclassical transport calculation on Grid
by means of pilot jobs,” in Int. Conf. on High Performance Comput. and Simulation
(HPCS 2012). Madrid, Spain: IEEE CS Press, 2–6 July 2012, pp. 609–615. doi :
10.1109/HPCSim.2012.6266981

[241] A. J. Rubio-Montero, F. Castejón, E. Huedo, and R. Mayo-García, “A novel pilot job
approach for improving the execution of distributed codes: application to the study
of ordering in collisional transport in fusion plasmas,” Concurrency and Computation:
Practice & Experience, vol. 27, no. 13, pp. 3220–3244, September 2015. doi : 10.1002/c-
pe.3301

[242] A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “Scheduling multiple virtual en-
vironments in cloud federations for distributed calculations,” Future Generation Com-
puter Systems, p. (Under Review), 2016.

[243] A. Lorca, E. Huedo, and I. Llorente, “The Grid[Way] Job Template Manager, a tool for
parameter sweeping,” Computer Physics Communications, vol. 182, no. 4, pp. 1047–
1060, April 2011. doi : 10.1016/j.cpc.2010.12.041

[244] W. I. van Rij and S. P. Hirshman, “Variational bounds for transport coefficients in
three-dimensional toroidal plasmas,” Phys. Fluids B, vol. 1, no. 3, pp. 563–569, March
1989. doi : 10.1063/1.859116

[245] D. A. Spong, “Generation and damping of neoclassical plasma flows in stellarators,”
Physics of Plasmas, vol. 12, no. 5, pp. 056–114, May 2005. doi : 10.1063/1.1887172

[246] J. H. Wilkinson and C. Reinsch, Linear Algebra II, in Handbook for Automatic Compu-
tation. Berlin: Springer-Verlag, 1993.

[247] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche, “Self adapting software for numerical
linear algebra and LAPACK for clusters,” Parallel Computing, vol. 29, pp. 1723–1743,
2003. doi : 10.1016/j.parco.2003.05.014

[248] D. Spong, S. Hirshman, J. Lyon, L. Berry, and D. Strickler, “Recent advances in quasi-
poloidal stellarator physics issues,” Nuclear Fusion, vol. 45, no. 8, pp. 918–925, Aug.
2005. doi : 10.1088/0029-5515/45/8/020

[249] A. Gómez-Iglesias, M. A. Vega-Rodríguez, F. Castejón, E. Morales-Ramos,
M. Cárdenas-Montes, and J. M. Reynolds, “Grid-based metaheuristics to improve a
nuclear fusion device,” Concurrency Computat.: Pract. Exper., vol. 22, no. 11, pp.
1476–1493, Aug. 2010. doi : 10.1002/cpe.1497

[250] A. Cappa, D. López-Bruna, F. Castejón, M. Ochando, J. Vázquez-Poletti, and et al.,
“Dynamic Simulation of the Electron Bernstein Wave Heating under NBI Conditions
in TJ-II Plasmas,” Contributions to Plasma Physics, vol. 51, no. 1, pp. 83–91, January
2011. doi : 10.1002/ctpp.200900060

[251] G. Pereverzev and P. Yushmanov, “ASTRA: Automated System for Transport Analy-
sis,” IPP 5/98, Garching, Garching, Germany, Tech. Rep., February 2002.

[252] A. J. Rubio-Montero, E. Huedo, and R. Mayo-García, “User-Guided Provisioning in
Federated Clouds for Distributed Calculations,” in Adaptive Resource Management and
Scheduling for Cloud Computing (ARMS-CC 2015), ser. Lecture Notes in Computer
Science, vol. 9438. San Sebastián, Spain: Springer, 20th July 2015, pp. 60–77. doi :
10.1007/978-3-319-28448-4_5

[253] B. Parák, Z. Šustr, F. Feldhaus, P. Kasprzakc, and M. Srbac, “The rOCCI Project: Pro-
viding Cloud Interoperability with OCCI 1.1,” in International Symposium on Grids
and Clouds (ISGC), ser. SISA PoS, Taipei, Taiwan, 23–28 March 2014, pp. 1–15.

http://dx.doi.org/10.1109/HPCSim.2012.6266981
http://dx.doi.org/10.1002/cpe.3301
http://dx.doi.org/10.1002/cpe.3301
http://dx.doi.org/10.1016/j.cpc.2010.12.041
http://dx.doi.org/10.1063/1.859116
http://dx.doi.org/10.1063/1.1887172
http://dx.doi.org/10.1016/j.parco.2003.05.014
http://dx.doi.org/10.1088/0029-5515/45/8/020
http://dx.doi.org/10.1002/cpe.1497
http://dx.doi.org/10.1002/ctpp.200900060
http://dx.doi.org/10.1007/978-3-319-28448-4_5

Bibliography 237

[254] H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,” The Computer Journal,
vol. 19, no. 1, pp. 43–49, 1976. doi : 10.1093/comjnl/19.1.43

[255] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme
for parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, vol. 4,
no. 1, January 1993. doi : 10.1109/71.205655

[256] E. Huedo, R. S. Montero, and I. M. Llorente, “Grid Architecture from a Metascheduling
Perspective,” Computer, vol. 43, no. 7, pp. 51–56, July 2010. doi : 10.1109/MC.2010.91

[257] A. S. McGough, W. Lee, and S. Das, “A standards based approach to enabling legacy
applications on the Grid,” Future Generation Computer Systems, vol. 24, no. 7, pp.
731–743, July 2008. doi : 10.1016/j.future.2008.02.004

[258] C. Germain-Renaud, C. Loomis, J. T. Mościcki, and R. Texier, “Scheduling for Res-
ponsive Grids,” Journal of Grid Computing, vol. 6, no. 1, pp. 15–27, 2008. doi :
10.1007/s10723-007-9086-4

[259] R. Raman, M. Solomon, M. Livny, and A. Roy, “The classads language,” in Grid
Resource Management. State of the Art and Future Trends, ser. International Series in
Operations Research & Management Science. Springer US, 2004, vol. 64, ch. 17, pp.
255–270. doi : 10.1007/978-1-4615-0509-9_17

[260] C. Alejaldre, J. J. Alonso, J. Botija, F. Castejón, J. R. Cepero, and et al., “TJ-II
project: A flexible Heliac stellarator,” Fusion Technology, vol. 17, no. 1, pp. 131–139,
1990.

[261] D. Kelsey, “Policy on Grid Multi-User Pilot Jobs. EGI-SPG-PilotJobs-V1_0,” 2010,
EGI Document 84-v6. [Online]. Available: https://documents.egi.eu/document/84

[262] J. T. Mościcki, M. Woś, M. Lamanna, P. de Forcrand, and O. Philipsen, “Lattice QCD
thermodynamics on the Grid,” Computer Physics Communications, vol. 181, no. 10,
pp. 1715–1726, October 2010. doi : 10.1016/j.cpc.2010.06.027

[263] A. J. Rubio-Montero, M. Plociennik, I. Marín-Carrión, T. Zok, M. Rodríguez-Pascual,
R. Mayo-García, M. Owsiak, E. Huedo, F. Castejón, and B. Palak, “Advantages of
adopting late-binding techniques through standardised interfaces for workflow mana-
gers,” Poster. BoA of EGI Technical Forum 2013, Madrid, Spain, 16–20 September
2013.

[264] M. Plociennik, A. J. Rubio-Montero, T. Zok, I. Marín-Carrión, M. Rodríguez-Pascual,
R. Mayo-García, F. Castejón, E. Huedo, M. Owsiak, and B. Palak, “OGSA-BES con-
nector for Kepler to remotely use the GridWay meta-scheduler,” Poster. BoA of EGI
Community Forum 2013, Manchester, United Kingdom, 8–12 April 2013.

[265] E. . García, A. Saracibar, S. Gómez-Carrasco, and A. Lagana, “Modeling the global
potential energy surface of the n + n2 reaction from ab initio data,” Physical Chemistry
Chemical Physics, vol. 10, pp. 2552–2558, March 2008. doi : 10.1039/B800593A

[266] D. Posada and K. A. Crandall, “MODELTEST: testing the model of DNA substitu-
tion.” Bioinformatics, vol. 14, no. 9, pp. 817–818, October 1998. doi : 10.1093/bioin-
formatics/14.9.817

[267] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “jModelTest 2: more models,
new heuristics and parallel computing,” Nature Methods, vol. 9, no. 8, p. 772, July
2012. doi : 10.1038/nmeth.2109

[268] S. Guindon and O. Gascuel, “A Simple, Fast, and Accurate Algorithm to Estimate
Large Phylogenies by Maximum Likelihood,” Systematic Biology, vol. 52, no. 5, pp.
696–704, October 2003. doi : 10.1080/10635150390235520

[269] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under
mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, August 2003. doi :
10.1093/bioinformatics/btg180

http://dx.doi.org/10.1093/comjnl/19.1.43
http://dx.doi.org/10.1109/71.205655
http://dx.doi.org/10.1109/MC.2010.91
http://dx.doi.org/10.1016/j.future.2008.02.004
http://dx.doi.org/10.1007/s10723-007-9086-4
http://dx.doi.org/10.1007/978-1-4615-0509-9_17
https://documents.egi.eu/document/84
http://dx.doi.org/10.1016/j.cpc.2010.06.027
http://dx.doi.org/10.1039/B800593A
http://dx.doi.org/10.1093/bioinformatics/14.9.817
http://dx.doi.org/10.1093/bioinformatics/14.9.817
http://dx.doi.org/10.1038/nmeth.2109
http://dx.doi.org/10.1080/10635150390235520
http://dx.doi.org/10.1093/bioinformatics/btg180

238 Bibliography

[270] F. Abascal, R. Zardoya, and D. Posada, “ProtTest: selection of best-fit models of
protein evolution,” Bioinformatics, vol. 21, no. 9, pp. 2104–2105, May 2005. doi :
10.1093/bioinformatics/bti263

[271] D. Posada and T. R. Buckley, “Model Selection and Model Averaging in Phylogenetics:
Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood
Ratio Tests,” Systematic Biology, vol. 53, no. 5, pp. 793–808, October 2004. doi :
10.1080/10635150490522304

[272] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “ProtTest 3: fast selection of
best-fit models of protein evolution,” Bioinformatics, vol. 27, no. 8, pp. 1164–1165,
April 2011. doi : 1093/bioinformatics/btr088

[273] J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, D. Allard, I. I. Allekotte, J. Allen, and
e. a. P. Allison, “Observation of the Suppression of the Flux of Cosmic Rays above
4 × 1019eV,” Phys. Rev. Lett., vol. 101, p. 061101, Aug 2008. doi : 10.1103/PhysRe-
vLett.101.061101

[274] M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, “Photon yields from nitrogen
gas and dry air excited by electrons,” Astroparticle Physics, vol. 20, no. 3, pp. 293 –
309, December 2003. doi : 10.1016/S0927-6505(03)00192-0

[275] F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi,
P. Gondoin, R. Much, R. Muñoz, M. Santos, N. Schartel, D. Texier, and G. Vacanti,
“XMM-Newton observatory (I. The spacecraft and operations),” Astronomy & As-
trophysics, vol. 365, no. 1, January 2001.

[276] C. Gabriel, M. D. andD. J. Fyfe, J. Hoar, A. Ibarra, and E. Ojero, “The XMM-Newton
SAS - Distributed Development and Maintenance of a Large Science Analysis System:
A Critical Analysis,” in Astronomical Data Analysis Software and Systems (ADASS)
XIII, ser. ASP Conference Proceedings, vol. 314, Strasbourg, France, 12-15 October,
2003 2004, pp. 759–763.

[277] A. Ibarra, D. Tapiador, E. Huedo, R. Montero, C. Gabriel, C. Arviset, and I. Llo-
rente, “On-the-fly XMM-Newton Spacecraft Data Reduction on the Grid,” Scientific
Programming, vol. 14, no. 2, pp. 141–150, Jaunary 2006. doi : 10.1155/2006/739583

[278] T. Böhlen, F. Cerutti, M. Chin, A. Fassò, A. Ferrari, P. Ortega, A. Mairani, P. Sala,
G. Smirnov, and V. Vlachoudis, “The FLUKA Code: Developments and Challenges for
High Energy and Medical Applications,” Nuclear Data Sheets, vol. 120, pp. 211–214,
June 2014. doi : 10.1016/j.nds.2014.07.049

[279] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,
D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia,
A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek et al., “Geant4 - a
simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp.
250 – 303, July 2003. doi : 10.1016/S0168-9002(03)01368-8

[280] C. Nührenberg, R. Hatzky, S. Sorge, F. Castejón, and J. Nührenberg, “Global itg
turbulence in screw-pinch geometry,” in 15th Stellarator Workshop and the IAEA-TM
on Stellarator Theory and Innovative Concepts, Madrid, Spain, 10–11, October 2005.

[281] V. Tribaldos, “Monte Carlo estimation of neoclassical transport for the TJ-
II stellarator,” Physics of Plasmas, vol. 8, pp. 1229–1239, 2001. doi :
http://dx.doi.org/10.1063/1.1353812

[282] J. S. Tolliver, “Bounce-averaged Monte Carlo energy and pitch angle scattering ope-
rators,” Phys. Fluids, vol. 28, pp. 1083–1089, 1985.

[283] F. Castejón, L. A. Fernández, J. Guasp, V. Martin-Mayor, A. Tarancón, and J. L.
Velasco, “Ion kinetic transport in the presence of collisions and electric field in TJ-
II ECRH plasmas,” Plasma Phys. Control. Fusion, vol. 49, p. 753, April 2007. doi :
10.1088/0741-3335/49/6/005

http://dx.doi.org/10.1093/bioinformatics/bti263
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/1093/bioinformatics/btr088
http://dx.doi.org/10.1103/PhysRevLett.101.061101
http://dx.doi.org/10.1103/PhysRevLett.101.061101
http://dx.doi.org/10.1016/S0927-6505(03)00192-0
http://dx.doi.org/10.1155/2006/739583
http://dx.doi.org/10.1016/j.nds.2014.07.049
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/http://dx.doi.org/10.1063/1.1353812
http://dx.doi.org/10.1088/0741-3335/49/6/005

Bibliography 239

[284] M. Vélez, J. I. Martín, J. E. Villegas, A. Hoffmann, E. M. González, J. L. Vicent, and
I. K. Schuller, “Superconducting vortex pinning with artificial magnetic nanostructu-
res,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 21, pp. 2547 – 2562,
November 2008. doi : 10.1016/j.jmmm.2008.06.013

[285] E. Solano, J. A. Rome, and S. P. Hirshman, “Study of transport in the flexible
heliac TJ-II,” Nucl. Fusion, vol. 28, no. 1, pp. 157–168, 1988. doi : 10.1088/0029-
5515/28/1/013

[286] A. Rodríguez-Yunta, “Neoclassical Studies in Heliac TJ-II,” in 8th International Ste-
llarator Workshop. Kharkov, USSR: International Atomic Energy Agency (IAEA),
Vienna, May 1991, pp. 69–73.

[287] K. C. Shaing and S. A. Hoking, “Neoclassical transport in a multiple-helicity torsatron
in the low-collisionality (1/ν) regime,” Phys. Fluids, vol. 26, pp. 2136–2139, 1983.

[288] H. Howe, “Physics models in the toroidal transport code proctr,” Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, Tech. Rep., August 1990.

[289] D. Boucher, “Études et modelisation du transport de l’énergie et des particules dans
un plasma de fusion thermonucléaire contrôlée. Aplication au transport anormal et aux
conditions de fonctionnement du tokamak,” Ph.D. dissertation, École Polytechnique,
Paris, France, 1992.

[290] J. García-Olaya, “Study of electron heat transport in LHD and TJ-II,” Ph.D. disser-
tation, Universidad Politecnica de Cataluña, 2006.

[291] J. Fontanet-Sáez, “Simulación de plasmas de dispositivos de fusión por confinamiento
magnético tipo tokamak y stellarator. Validación experimental y aplicación al estudio
del Heliac Flexible TJ-II,” Ph.D. dissertation, Universidad Politecnica de Cataluña,
2001.

[292] S. P. Hirshman, K. C. Shaing, W. I. van Rij, C. O. Beasley Jr., and E. C. Crume Jr.,
“Plasma transport coefficients for nonsymmetric toroidal confinement systems,” Phys.
Fluids, vol. 29, pp. 2951–2959, 1986.

[293] Y. Ogawa et al., “Analysis of neoclassical transport in the banana regime with the
DKES code for the large helical device,” Nuclear Fusion, vol. 32, pp. 119–132, 1992.

[294] S. P. Hirshman, K. C. Shaing, and W. I. van Rij, “Consequences of time-reversal
symmetry for the electric field scaling of transport in stellarators,” Pys. Rev. Lett.,
vol. 56, pp. 1697–1699, 1986.

[295] H. Sugama and S. Nishimura, “How to calculate the neoclassical viscosity, diffusion,
and current coefficients in general toroidal plasmas,” Phys. Plasmas, vol. 9, p. 4637,
2002. doi : 10.1063/1.1512917

[296] J. L. Velasco, F. Castejón, and A.Tarancón, “Finite orbit width effect in ion co-
llisional transport in TJ-II,” Phys. Plasmas, vol. 16, p. 052303, May 2009. doi :
10.1063/1.3126583

[297] A. Bustos, F. Castejón, L. Fernández, J. García, V. Martin-Mayor, J. Reynolds, R. Seki,
and J. Velasco, “Impact of 3D features on ion collisional transport in ITER,” Nucl.
Fusion, vol. 50, p. 125007, 2010. doi : 10.1088/0029-5515/50/12/125007

[298] F. L. Hiton and R. D. Hazeltine, “Theory of plasma transport in toroidal confine-
ment systems,” Reviews of Modern Physics, vol. 48, pp. 239–308, April 1976. doi :
10.1103/RevModPhys.48.239

[299] E. A. Belli and J. Candy, “Kinetic calculation of neoclassical transport including self-
consistent electron and impurity dynamics,” Plasma Physics and Controlled Fusion,
vol. 50, no. 9, p. 095010, July 2008. doi : 10.1088/0741-3335/50/9/095010

http://dx.doi.org/10.1016/j.jmmm.2008.06.013
http://dx.doi.org/10.1088/0029-5515/28/1/013
http://dx.doi.org/10.1088/0029-5515/28/1/013
http://dx.doi.org/10.1063/1.1512917
http://dx.doi.org/10.1063/1.3126583
http://dx.doi.org/10.1088/0029-5515/50/12/125007
http://dx.doi.org/10.1103/RevModPhys.48.239
http://dx.doi.org/10.1088/0741-3335/50/9/095010

240 Bibliography

[300] C. Beidler, K. Allmaier, M. Isaev, S. Kasilov, W. Kernbichler, G. Leitold, H. Maaß-
berg, D. Mikkelsen, S. Murakami, M. Schmidt, D. Spong, V. Tribaldos, and A. Wakasa,
“Benchmarking of the mono-energetic transport coefficients – results from the Inter-
national Collaboration on Neoclassical Transport in Stellarators (ICNTS),” Nuclear
Fusion, vol. 51, no. 7, p. 076001, June 2011. doi : 10.1088/0029-5515/51/7/076001

[301] J. L. Velasco, K. Allmaier, A. López-Fraguas, C. D. Beidler, H. Maassberg, and et al.,
“Calculation of the bootstrap current profile for the TJ-II stellarator,” Plasma Phys.
Control. Fusion, vol. 53, no. 11, pp. 115 014–115 029, Oct. 2011. doi : 10.1088/0741-
3335/53/11/115014

[302] H. Yamada, J. Harris, A. Dinklage, E. Ascasibar, F. Sano, S. Okamura, J. Talmadge,
U. Stroth, A. Kus, S. Murakami, M. Yokoyama, C. Beidler, V. Tribaldos, K. Watanabe,
and Y. Suzuki, “Characterization of energy confinement in net-current free plasmas
using the extended International Stellarator Database,” Nuclear Fusion, vol. 45, no. 12,
p. 1684, November 2005. doi : 10.1088/0029-5515/45/12/024

[303] E. Ascasíbar, T. Estrada, F. Castejón, A. López-Fraguas, I. Pastor, J. Sánchez,
U. Stroth, J. Qin, and the TJ-II Team, “Magnetic configuration and plasma parame-
ter dependence of the energy confinement time in ECR heated plasmas from the TJ-II
stellarator,” Nuclear Fusion, vol. 45, no. 4, p. 276, March 2005. doi : 10.1088/0029-
5515/45/4/009

http://dx.doi.org/10.1088/0029-5515/51/7/076001
http://dx.doi.org/10.1088/0741-3335/53/11/115014
http://dx.doi.org/10.1088/0741-3335/53/11/115014
http://dx.doi.org/10.1088/0029-5515/45/12/024
http://dx.doi.org/10.1088/0029-5515/45/4/009
http://dx.doi.org/10.1088/0029-5515/45/4/009

	Tesis Antonio Juan Rubio Montero
	Title page
	Dedication

	Acknowledgements
	About this Document
	Abstract
	Resumen (Spanish)
	Indices
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms

	Chapter 1 Overview
	1.1 Motivation
	1.2 Objective, methodology and structure

	Chapter 2 State of the Art
	2.1 Distributed Computing paradigms
	2.2 The grid and IaaS cloud approaches
	2.2.1 Interfacing with grid and cloud providers
	2.2.2 Multiple providers versus federations
	2.2.3 Federations established

	2.3 Scheduling in large infrastructures
	2.3.1 Definitions
	2.3.2 HTC workloads feasible to be distributed
	2.3.3 Workload Scheduling
	2.3.4 Turnaround model and characterisation for scheduling
	2.3.5 Resource Provisioning with pilot jobs
	2.3.6 The developer's point of view

	2.4 Instruments to perform early-binding scheduling
	2.4.1 Scheduling domains and tools
	2.4.2 Resource brokering in grids and clouds
	2.4.3 Workflow managers
	2.4.4 Self-schedulers
	2.4.5 Other tools

	2.5 Pilot jobs
	2.5.1 Overall vision and nomenclature
	2.5.2 GS/LRMS embedded pilot systems
	2.5.3 Pilot systems related to LHC VOs
	2.5.4 Application-oriented overlays
	2.5.5 Other frameworks
	2.5.6 Limited support to Multilevel Scheduling

	2.6 Conclusions

	Chapter 3 Lessons Learned and Objectives of the Research
	3.1 Objectives
	3.2 Requirements for a new pilot system
	3.2.1 Minimal functionalities
	3.2.2 Multilevel support

	PART I LIMITATIONS AND ADVANTAGES OF EARLY-BINDING TECHNIQUES
	Chapter 4 Adapting Applications
	4.1 Introduction
	4.2 Collection, mechanisms and summary of results
	4.3 Standardised producer-consumer design pattern
	4.4 Example: calculating NC transport coefficients
	4.4.1 Adapting DKES code to run on grid resources
	4.4.2 Implementing the transport coefficient calculation
	4.4.3 Combining jobs into a single workflow
	4.4.4 Managing jobs

	4.5 Executions on grid with DKEsG
	4.5.1 Test bed and common parameters
	4.5.2 Parameter sweep calculations
	4.5.3 Running in workflow mode

	4.6 Conclusions

	Chapter 5 Scheduling Straightforward Executions in Clouds
	5.1 Introduction
	5.2 Early developments
	5.2.1 Deployment of virtual machines
	5.2.2 Multiple weaknesses

	5.3 The current approach on IaaS clouds
	5.3.1 The GWcloud Information Driver (ID)
	5.3.2 The GWcloud Execution Driver (ED)
	5.3.3 Scheduling VMs and jobs

	5.4 Analysing data from the XMM-Newton spacecraft on the cloud
	5.4.1 Feasibility of the virtualisation mechanisms
	5.4.2 Scheduling executions in cloud federations

	5.5 Conclusions

	Chapter 6 Deploying Self-scheduling Techniques
	6.1 Introduction
	6.2 Resilient executions of MC codes
	6.2.1 Characterisation
	6.2.2 Adaptive sample-based algorithm
	6.2.3 Submission, monitoring and accounting

	6.3 Experimental evaluation
	6.3.1 Test bed and simulations
	6.3.2 Results

	6.4 Conclusions

	PART II MULTILEVEL SCHEDULING WITH PILOT JOBS
	Chapter 7 The GWpilot Framework
	7.1 Introduction
	7.2 Architecture
	7.2.1 Pilots
	7.2.2 The GWpilot Server (GW PiS)
	7.2.3 The GWpilot Factory (GW PiF)

	7.3 Functional comparison
	7.3.1 DIANE
	7.3.2 DIRAC
	7.3.3 Comparison

	7.4 Reproducible comparison with other pilot systems
	7.4.1 Test bed setup
	7.4.2 Simple calculation
	7.4.3 Results

	7.5 Conclusions

	Chapter 8 Simple Provisioning for Legacy Applications
	8.1 Introduction
	8.2 Straightforward adaptation of legacy applications
	8.3 Customised Provisioning
	8.3.1 Provisioning in grid federations
	8.3.2 Provisioning in cloud federations

	8.4 On-demand radiotherapy simulations on the cloud
	8.4.1 Legacy application and configuration
	8.4.2 Results

	8.5 Conclusions

	Chapter 9 Improved Scheduling and Provisioning Techniques
	9.1 Introduction
	9.2 Improved matchmaking
	9.3 Overloading queues
	9.4 Scheduling configuration and performance
	9.5 A more reliable mechanism to perform transport calculations
	9.5.1 Test bed
	9.5.2 Preliminary test
	9.5.3 Main computation

	9.6 Conclusions

	Chapter 10 Customising the Whole Scheduling at User-level
	10.1 Introduction
	10.2 Dynamic and customisable characterisation
	10.3 Feasible Workload Scheduling
	10.4 User-guided Provisioning
	10.5 Effects of configuration on the scheduling layers
	10.6 Experimental demonstration
	10.6.1 Proposed calculation
	10.6.2 Customising characterisation and scheduling
	10.6.3 Competitive tests
	10.6.4 Results

	10.7 Conclusions

	Chapter 11 Modelling and Stacking Scheduling Tools
	11.1 Introduction
	11.2 Modelling task turnaround with GWpilot
	11.2.1 Simple turnaround model
	11.2.2 Statistical validation of the model

	11.3 Methodology to incorporate third-party schedulers
	11.4 Stacking self-schedulers on the cloud
	11.4.1 Adaptation approach
	11.4.2 Proposed tests
	11.4.3 Results

	11.5 Conclusions

	Chapter 12 Main Contributions and Future Work
	12.1 Contributions and expected impact
	12.2 Future work

	PART III APPENDICES
	A Dissemination
	A.1 JCR publications
	A.2 Book chapters and other journals
	A.3 Proceedings
	A.4 Other contributions

	B Applications
	B.1 Chemical Physics
	B.1.1 Grif

	B.2 Evolutionary Biology
	B.2.1 jModelTest2
	B.2.2 MrBayes and PhyloGrid
	B.2.3 ProtTest3

	B.3 High Energy Physics
	B.3.1 Nagano
	B.3.2 XMM-Newton SAS software

	B.4 Matter Interactions
	B.4.1 BEAMnrc
	B.4.2 FLUKA
	B.4.3 GAMOS

	B.5 Nuclear Fusion
	B.5.1 DKES and DKEsG
	B.5.2 FAFNER2, ISDEP and FastDEP

	B.6 Solid State Physics
	B.6.1 DiVoS

	C Physics of Transport Codes and Physical Results
	C.1 Introduction
	C.2 Flux calculation
	C.2.1 Determination of fluxes from NC transport
	C.2.2 The Monte Carlo approach

	C.3 The effective ripple
	C.4 A summary of the results
	C.4.1 First plasma results from DKEsG
	C.4.2 Comparison of fluxes
	C.4.3 Relation between rotational transform scaling and NC transport in stellarators

	Bibliography

