1,647 research outputs found

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201

    MyPHRMachines : personal health desktops in the cloud

    Get PDF
    Personal Health Records (PHRs) should remain the lifelong property of patients, who should be enabled to show them conveniently and securely to selected caregivers and institutions. Current solutions for PHRs focus on standard data exchange formats and transformations to move data across health information systems. In this paper we present MyPHRMachines, a PHR system taking a radically new architectural solution to health record interoperability. In MyPHRMachines, health-related data and the application software to view and/or analyze it are separately deployed in the PHR system. After uploading their medical data to MyPHRMachines, patients can access them again from remote virtual machines that contain the right software to visualize and analyze them without any conversion. Patients can share their remote virtual machine session with selected caregivers, who will need only aWeb browser to access the pre-loaded fragments of their lifelong PHR. We discuss a prototype of MyPHRMachines applied to two use cases, i.e. radiology image sharing and personalized medicine. The first use case demonstrates the ability of patients to build robust PHRs across the space and time dimensions, whereas the second use case demonstrates the ability of MyPHRMachines to preserve the privacy of PHR data deployed in the cloud

    Services in pervasive computing environments : from design to delivery

    Get PDF
    The work presented in this thesis is based on the assumption that modern computer technologies are already potentially pervasive: CPUs are embedded in any sort of device; RAM and storage memory of a modern PDA is comparable to those of a ten years ago Unix workstation; Wi-Fi, GPRS, UMTS are leveraging the development of the wireless Internet. Nevertheless, computing is not pervasive because we do not have a clear conceptual model of the pervasive computer and we have not tools, methodologies, and middleware to write and to seamlessly deliver at once services over a multitude of heterogeneous devices and different delivery contexts. Our thesis addresses these issues starting from the analysis of forces in a pervasive computing environment: user mobility, user profile, user position, and device profile. The conceptual model, or metaphor, we use to drive our work is to consider the environment as surrounded by a multitude of services and objects and devices as the communicating gates between the real world and the virtual dimension of pervasive computing around us. Our thesis is thus built upon three main “pillars”. The first pillar is a domain-object-driven methodology which allows developer to abstract from low level details of the final delivery platform, and provides the user with the ability to access services in a multi-channel way. The rationale is that domain objects are self-contained pieces of software able to represent data and to compute functions and procedures. Our approach fills the gap between users and domain objects building an appropriate user interface which is both adapted to the domain object and to the end user device. As example, we present how to design, implement and deliver an electronic mail application over various platforms. The second pillar of this thesis analyzes in more details the forces that make direct object manipulation inadequate in a pervasive context. These forces are the user profile, the device profile, the context of use, and the combinatorial explosion of domain objects. From the analysis of the electronic mail application presented as example, we notice that according to the end user device, or according to particular circumstances during the access to the service (for instance if the user access the service by the interactive TV while he is having his breakfast) some functionalities are not compulsory and do not fit an adequate task sequence. So we decided to make task models explicit in the design of a service and to integrate the capability to automatically generate user interfaces for domain objects with the formal definition of task models adapted to the final delivery context. Finally, the third pillar of our thesis is about the lifecycle of services in a pervasive computing environment. Our solutions are based upon an existing framework, the Jini connection technology, and enrich this framework with new services and architectures for the deployment and discovery of services, for the user session management, and for the management of offline agents

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed people´s working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Web-IDE for Low-Code Development in OutSystems

    Get PDF
    Due to the growing popularity of cloud computing and its numerous benefits, many desktop applications have been, and will continue to be, migrated into the cloud and made available through the web. These applications can then be accessed through any device that has access to a browser and internet connection, eliminating the need for installation or managing dependencies. Moreover, the process of introduction to the product is much simpler, faster and collaboration aspects are facilitated. OutSystems is a company that provides software that enables, through an Integrated Development Environment (IDE) and a specific Low-Code language, users to securely and rapidly build robust applications. However, there are only available desktop versions of this IDE. For this reason, the objective of the proposed thesis is to understand what would be the best path for developing a Web-based version of the IDE. To achieve this, it is important not only to understand the OutSystems Platform and, more specifically, the architecture of the Service Studio IDE, which is the component IDE provided by the product, but also to explore the state-of-the-art technologies that could prove to be beneficial for the development of the project. The goal of this work is to debate different architectural possibilities to implement the project in question and present a conclusion as to what the adequate course of action, given the context of the problem. After distinguishing what are the biggest uncertainties and relevant points, a proof of concept is to be presented accompanied with the respective implementation details. Finally, this work intends to determine what would be a viable technological architecture to build a Web-based IDE that is capable of maintaining an acceptable performance, similarly to Service Studio IDE, while also insuring that the this system is scalable, in order to be able to provide the service to a large amount of users. That is to say, to present a conclusion regarding the feasibility of the project proposed.Devido ao aumento de popularidade de tecnologias de computação cloud e as suas inúmeras vantagens, aplicações desktop estão e vão continuar a ser migradas para a cloud para que possam ser acedidas através da web. Estas aplicações podem ser acedidas através de qualquer dispositivo que tenha acesso à internet, eliminando a necessidade de instalação e gestão de dependências. Além disso, o processo de introdução ao produto é simplificado, mais rápido e a colaboração é facilitada. A OutSystems é uma empresa que disponibiliza um software que faz com que utilizadores, através de um IDE e uma linguagem de baixo nível, possam criar aplicações robustas de forma rápida e segura. No entanto, atualmente só existem versões deste IDE para desktop. Como tal, o objetivo da tese proposta é perceber qual será a melhor forma de desenvolver uma versão do IDE sobre a Web. Para alcançar isto, é importante não só compreender a Plataforma OutSystems e, mais especificamente, a arquitetura do Service Studio IDE, que é o principal componente disponibilizado pelo produto, mas também explorar as tecnologias estado de arte que podem ser benéficas para o desenvolvimento do projeto. O objetivo deste trabalho é debater diferentes arquiteturas possíveis para a implementação do projeto e concluir qual será o curso de ação adequado, dado o contexto do problema. Após distinguir quais são os maiores pontos de incerteza, uma prova de conceito é apresentada juntamente com os respetivos detalhes de implementação. Finalmente, este trabalho tem como intenção detalhar uma arquitetura tecnológica viável para construir um IDE na web capaz de manter uma performance aceitável, semelhante à do Service Studio IDE, e garantir a escalabilidade do sistema, de forma a conseguir oferecer o serviço a um número elevado de utilizadores. Por outras palavras, apresentar uma conclusão em relação à viabilidade do projeto proposto

    A multi-agent system for on-the-fly web map generation and spatial conflict resolution

    Get PDF
    Résumé Internet est devenu un moyen de diffusion de l’information géographique par excellence. Il offre de plus en plus de services cartographiques accessibles par des milliers d’internautes à travers le monde. Cependant, la qualité de ces services doit être améliorée, principalement en matière de personnalisation. A cette fin, il est important que la carte générée corresponde autant que possible aux besoins, aux préférences et au contexte de l’utilisateur. Ce but peut être atteint en appliquant les transformations appropriées, en temps réel, aux objets de l’espace à chaque cycle de génération de la carte. L’un des défis majeurs de la génération d’une carte à la volée est la résolution des conflits spatiaux qui apparaissent entre les objets, essentiellement à cause de l’espace réduit des écrans d’affichage. Dans cette thèse, nous proposons une nouvelle approche basée sur la mise en œuvre d’un système multiagent pour la génération à la volée des cartes et la résolution des conflits spatiaux. Cette approche est basée sur l’utilisation de la représentation multiple et la généralisation cartographique. Elle résout les conflits spatiaux et génère les cartes demandées selon une stratégie innovatrice : la génération progressive des cartes par couches d’intérêt. Chaque couche d’intérêt contient tous les objets ayant le même degré d’importance pour l’utilisateur. Ce contenu est déterminé à la volée au début du processus de génération de la carte demandée. Notre approche multiagent génère et transfère cette carte suivant un mode parallèle. En effet, une fois une couche d’intérêt générée, elle est transmise à l’utilisateur. Dans le but de résoudre les conflits spatiaux, et par la même occasion générer la carte demandée, nous affectons un agent logiciel à chaque objet de l’espace. Les agents entrent ensuite en compétition pour l’occupation de l’espace disponible. Cette compétition est basée sur un ensemble de priorités qui correspondent aux différents degrés d’importance des objets pour l’utilisateur. Durant la résolution des conflits, les agents prennent en considération les besoins et les préférences de l’utilisateur afin d’améliorer la personnalisation de la carte. Ils améliorent la lisibilité des objets importants et utilisent des symboles qui pourraient aider l’utilisateur à mieux comprendre l’espace géographique. Le processus de génération de la carte peut être interrompu en tout temps par l’utilisateur lorsque les données déjà transmises répondent à ses besoins. Dans ce cas, son temps d’attente est réduit, étant donné qu’il n’a pas à attendre la génération du reste de la carte. Afin d’illustrer notre approche, nous l’appliquons au contexte de la cartographie sur le web ainsi qu’au contexte de la cartographie mobile. Dans ces deux contextes, nous catégorisons nos données, qui concernent la ville de Québec, en quatre couches d’intérêt contenant les objets explicitement demandés par l’utilisateur, les objets repères, le réseau routier et les objets ordinaires qui n’ont aucune importance particulière pour l’utilisateur. Notre système multiagent vise à résoudre certains problèmes liés à la génération à la volée des cartes web. Ces problèmes sont les suivants : 1. Comment adapter le contenu des cartes, à la volée, aux besoins des utilisateurs ? 2. Comment résoudre les conflits spatiaux de manière à améliorer la lisibilité de la carte tout en prenant en considération les besoins de l’utilisateur ? 3. Comment accélérer la génération et le transfert des données aux utilisateurs ? Les principales contributions de cette thèse sont : 1. La résolution des conflits spatiaux en utilisant les systèmes multiagent, la généralisation cartographique et la représentation multiple. 2. La génération des cartes dans un contexte web et dans un contexte mobile, à la volée, en utilisant les systèmes multiagent, la généralisation cartographique et la représentation multiple. 3. L’adaptation des contenus des cartes, en temps réel, aux besoins de l’utilisateur à la source (durant la première génération de la carte). 4. Une nouvelle modélisation de l’espace géographique basée sur une architecture multi-couches du système multiagent. 5. Une approche de génération progressive des cartes basée sur les couches d’intérêt. 6. La génération et le transfert, en parallèle, des cartes aux utilisateurs, dans les contextes web et mobile.Abstract Internet is a fast growing medium to get and disseminate geospatial information. It provides more and more web mapping services accessible by thousands of users worldwide. However, the quality of these services needs to be improved, especially in term of personalization. In order to increase map flexibility, it is important that the map corresponds as much as possible to the user’s needs, preferences and context. This may be possible by applying the suitable transformations, in real-time, to spatial objects at each map generation cycle. An underlying challenge of such on-the-fly map generation is to solve spatial conflicts that may appear between objects especially due to lack of space on display screens. In this dissertation, we propose a multiagent-based approach to address the problems of on-the-fly web map generation and spatial conflict resolution. The approach is based upon the use of multiple representation and cartographic generalization. It solves conflicts and generates maps according to our innovative progressive map generation by layers of interest approach. A layer of interest contains objects that have the same importance to the user. This content, which depends on the user’s needs and the map’s context of use, is determined on-the-fly. Our multiagent-based approach generates and transfers data of the required map in parallel. As soon as a given layer of interest is generated, it is transmitted to the user. In order to generate a given map and solve spatial conflicts, we assign a software agent to every spatial object. Then, the agents compete for space occupation. This competition is driven by a set of priorities corresponding to the importance of objects for the user. During processing, agents take into account users’ needs and preferences in order to improve the personalization of the final map. They emphasize important objects by improving their legibility and using symbols in order to help the user to better understand the geographic space. Since the user can stop the map generation process whenever he finds the required information from the amount of data already transferred, his waiting delays are reduced. In order to illustrate our approach, we apply it to the context of tourist web and mobile mapping applications. In these contexts, we propose to categorize data into four layers of interest containing: explicitly required objects, landmark objects, road network and ordinary objects which do not have any specific importance for the user. In this dissertation, our multiagent system aims at solving the following problems related to on-the-fly web mapping applications: 1. How can we adapt the contents of maps to users’ needs on-the-fly? 2. How can we solve spatial conflicts in order to improve the legibility of maps while taking into account users’ needs? 3. How can we speed up data generation and transfer to users? The main contributions of this thesis are: 1. The resolution of spatial conflicts using multiagent systems, cartographic generalization and multiple representation. 2. The generation of web and mobile maps, on-the-fly, using multiagent systems, cartographic generalization and multiple representation. 3. The real-time adaptation of maps’ contents to users’ needs at the source (during the first generation of the map). 4. A new modeling of the geographic space based upon a multi-layers multiagent system architecture. 5. A progressive map generation approach by layers of interest. 6. The generation and transfer of web and mobile maps at the same time to users

    Service Based Marketplace for Applications

    Get PDF
    The Grid has revolutionized the way computations are done on the Internet. Access to remote computational resources and ad hoc creation of virtual organizations across administrative domains opens new opportunities on the Grid. The newly developed web services based Open Grid Services Architecture makes the Grid more accessible by allowing the Grid to be constructed from distinct platform independent components. Together they provide an environment for application sharing (or trading), collaborations and access to remote data repositories. The application marketplace is a natural extension to this application sharing environment. The marketplace addresses the fact that the existing infrastructure is still incomplete without provisions for publishing and discovering applications and resources, including the application descriptors that must be moved between the market participants. This work demonstrates a web service instance-based infrastructure, the application market that allows the sellers, the application and the CPU providers to publish their applications for the users to find and use. The application market uses a portal architecture built on top of Globus toolkit 3.0 that interacts with the providers and the users. The market services provide distinct interfaces that allow providers to advertise applications and users to select, configure, and run these applications. The applications themselves are modeled as stateful objects represented using XML which can be exchanged between the providers and users when required. The marketplace, through its interfaces, effectively hides the compute resource and application complexity thus allowing end users to explore and use applications unfamiliar to them with ease

    On component-oriented access control in lightweight virtualized server environments

    Get PDF
    2017 Fall.Includes bibliographical references.With the advancements in contemporary multi-core CPU architectures and increase in main memory capacity, it is now possible for a server operating system (OS), such as Linux, to handle a large number of concurrent services on a single server instance. Individual components of such services may run in different isolated runtime environments, such as chrooted jails or related forms of OS-level containers, and may need restricted access to system resources and the ability to share data and coordinate with each other in a regulated and secure manner. In this dissertation we describe our work on the access control framework for policy formulation, management, and enforcement that allows access to OS resources and also permits controlled data sharing and coordination for service components running in disjoint containerized environments within a single Linux OS server instance. The framework consists of two models and the policy formulation is based on the concept of policy classes for ease of administration and enforcement. The policy classes are managed and enforced through a Lightweight Policy Machine for Linux (LPM) that acts as the centralized reference monitor and provides a uniform interface for regulating access to system resources and requesting data and control objects. We present the details of our framework and also discuss the preliminary implementation and evaluation to demonstrate the feasibility of our approach
    • …
    corecore