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The Grid has revolutionized the way computations are done on the Internet. Access to 

remote computational resources and ad hoc creation of virtual organizations across 

administrative domains opens new opportunities on the Grid. The newly developed web 

services based Open Grid Services Architecture makes the Grid more accessible by 

allowing the Grid to be constructed from distinct platform independent components. 

Together they provide an environment for application sharing (or trading), collaborations 

and access to remote data repositories. The application marketplace is a natural extension 

to this application sharing environment. The marketplace addresses the fact that the 

existing infrastructure is still incomplete without provisions for publishing and 

discovering applications and resources, including the application descriptors that must be 

moved between the market participants. This work demonstrates a web service instance-

based infrastructure, the application market that allows the sellers, the application and the 

CPU providers to publish their applications for the users to find and use.  



 

 

 

The application market uses a portal architecture built on top of Globus toolkit 3.0 

that interacts with the providers and the users. The market services provide distinct 

interfaces that allow providers to advertise applications and users to select, configure, and 

run these applications. The applications themselves are modeled as stateful objects 

represented using XML which can be exchanged between the providers and users when 

required. The marketplace, through its interfaces, effectively hides the compute resource 

and application complexity thus allowing end users to explore and use applications 

unfamiliar to them with ease. 
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CHAPTER I  
 

INTRODUCTION 
 

1.1 Role of grid computing 

The growing popularity of the Internet has changed the way computing is done. The 

Internet can be used to harness powerful computers from low cost desktops and portable 

devices. New Internet technologies enable clustering of geographically distributed 

resources such as supercomputers, storage systems, data sources and monitoring systems 

that can then be used as a unified resource and thus form what are popularly known as 

“Computational Grids.”  The Grid envisions that anyone with access to the Internet using 

a simple desktop or a pocket PC has the power of supercomputers at their finger tips by 

utilizing the compute and data resources on the Grid. The goal is to make the Grid the 

computing engine of the Internet the same way the Web is the information engine. It will 

provide an easy to use, yet dependable and secure access to high-end compute resources, 

data repositories, databases, and instruments. Such an infrastructure will facilitate better 

use of sharable resources and tools. It will revolutionize the way software is developed, 

distributed, and put to operation.  

 
Traditionally computational resources were accessed using a resource-based model 

wherein the users manually log into the resource of interest to run and monitor their 
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computation. Such a model is too tedious and inefficient as the users have to authenticate 

themselves every time they log into the resource. The Grid, in an attempt to solve this, 

uses a location-transparent services based model. In this model, the user delegates 

responsibilities to services provided by the Grid. In case of computational simulations, 

the Grid services then controls, monitors, and delivers outputs of jobs using mechanisms 

completely transparent to the user.  

  
The Grid is inherently very complicated. Factors that contribute to this complication 

include the many network types, incompatible hardware architectures, different operating 

system security mechanisms and deficient protocol support in many programming 

languages. Hence, the solution to create such a computational Grid is understandably 

complicated and is a nontrivial task. Many efforts have been made to construct a 

homogeneous view of this heterogeneous environment. One such popular effort is 

Globus.  

1.2 Globus and webservices 

Globus is a meta-computing toolkit that defines an “abstract computing machine on 

which can be constructed a range of alternative infrastructures, services and applications” 

[1]. The toolkit addresses common issues on the Grid like communication, authentication, 

system information and data/resource access [1]. It is intended that the common interface 

provided by Globus be used to construct higher level services. Though Globus was a 

revolution in the way Grids were constructed, its initial implementation was, 

unfortunately, not perfect. The initial implementation provided distinct basic services and 

well defined interfaces, but the communication protocols used were still custom designed 
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for Globus services [2]. Simultaneously, the web services specification drafted at the 

W3C and promoted by IBM, Microsoft, Sun and other major companies gained 

popularity.  

 

The web services are an evolution of the distributed component architecture. 

Conceptually, the web services are not much different from other distributed component 

architectures like the Object Management Group’s CORBA, Microsoft’s COM/DCOM or 

Sun’s Java RMI [3].  Like any other distributed component, a web service is a collection 

of operations accessible over an interface using messages: It is a component of a service-

oriented architecture. What makes a web service different is that it uses protocols based 

on the XML language. XML can describe all data in a platform independent manner: its 

ASCII format permits it to be freely exchanged across systems thus enabling creation of 

loosely-coupled applications. To make these web services possible, a whole suite of 

protocols to describe and interact with the services have been formulated. The best 

known among them are, Simple Object Access Protocol (SOAP) [4] that is used for 

messaging and Web Services Description Language (WSDL) [5] that is used to describe 

the service. These protocols are XML based and formulated by the W3C thus making 

them truly platform independent and non-proprietary [6].  

 

Another aspect in which the web service scores over other distributed component 

architectures is in its choice of transport protocols. SOAP describes the message format 

but it can be delivered in any transport protocol the web service supports. The choices 

include HTTP, IIOP, SMTP, etc. with HTTP being the most popular choice [6]. Use of 
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Internet transport protocols makes the web services truly Internet friendly too. With web 

services gaining popularity, the Globus group, attracted by its advantages, chose to move 

its toolkit to the web services age.  The result is the drafting of the Open Grid Services 

Architecture (OGSA) [7] and Open Grid Services Infrastructure (OGSI) [26] 

specifications which are still evolving documents. The OGSI specifies service semantics 

so that service interactions like errors and notifications can be standardized. OGSA, 

which builds on OGSI, specifies grid services, which have well defined interfaces for 

address discovery, dynamic service creation, lifetime management, notification and 

manageability: prime requirements for services on the Grid.  

 

Though the current web service specifications are suited for most service 

implementations on the web, they do not address all issues the grid services wish to 

accomplish. For instance, grid services needed to have the concept of a service “session”, 

where a grid service call would base itself on a previous grid service call. The limitation 

arises due to the fact that the earlier WSDL specifications were designed for stateless 

services where service invocations were essentially independent of each other. This 

limitation limits usability of the current WSDL specification to specify grid services 

because it poses restrictions on scalability of grid services. For example, a grid service 

that monitors running jobs will have to respond to events from a running job in the 

context of the particular job. In this case, a single service needs to listen to possible 

multiple notifications and notify different users of the same too. The code 

implementation to create a service could be too complicated and new job monitoring 

mechanisms cannot be added on the fly. These issues were recognized by the Global Grid 
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Forum (GGF) [8] which, along with many companies like IBM and Microsoft, is 

working to create a new extended WSDL specification for OGSI within W3C.  

1.3 Need for an application market 

The Grid attempts to create a heterogeneous view of the resources on the Web. The user 

is abstracted from the interfaces to access and manage jobs on computational machines: 

the Grid hides platform and machine architecture complexity from the user. Though the 

user is hidden from computational resource interfaces, application complexity is still 

something that is left to the user to handle himself. Application complexity refers to the 

nuances in setting up an application for its execution. For example, a complex application 

such as the Navy Costal Ocean Model [9] requires two parameter files, eighteen input 

files and more than seventy parameters (the actual numbers depend on the run conditions 

desired) [10]. In general, application complexity refers to tasks like setting up 

environment variables, location of libraries, input files, parameter files and arguments 

that differ from application to application: tasks that could baffle a user who is unfamiliar 

with the application. This work proposes an application market that seeks to hide 

application complexity from the user. The user interacts with the application market to 

obtain a convenient interface, a grid portal [11], to select, configure and run applications. 

The developers of the application and the computational resource providers describe the 

application for its use in the application market and “associate” their computational 

resource with the application respectively.  
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1.4 Hypothesis 

The application market should provide an intuitive interface that lets users manage jobs 

and access resources while hiding the intricacies without compromising on functionality. 

The application providers and computational resource providers need a mechanism to 

post the applications available to users. Such information about the application should 

capture all application information including machine specific information necessary to 

run the application. Such a captured application should be easily referable and accessible 

in the application market place. Thus, this work puts forth two hypotheses: 

1. It is possible to build an application marketplace using a service based 

infrastructure with notification. 

2. It is possible to capture a computational application in a portable format for it to 

be referenced in this market place. 

 

This work proposes that a computational application can be captured in an architecture 

independent portable format for it to be referenced in the application market. The market, 

in turn, could be constructed using the instance based grid services of Globus toolkit 3.0 

(A reference implementation of OGSA) [7] to create a scalable and extendable 

infrastructure. The important issues to be addressed by this design are related to the 

actual grid service instances that are created. The grid service instances are synonymous 

to dynamic objects that correspond to a particular class. Decisions need to be made on 

when the service instances are created and when they are disposed and the resources 

reclaimed. Other issues addressed include mechanisms to satisfy QOS requirements of 
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users in the grid architecture which has not been properly addressed by the current 

generation of grids and the security architecture of such a grid services system.  

 

The hypotheses, if proved, would provide a new view of the computational grid that truly 

realizes the grid vision that every user has the power of a super computer on his finger 

tips. The application providers and computational resource providers have mechanisms to 

“advertise” their applications and resources. The application market place constructed on 

top of the Grid would hide application and resource complexity from the user. The user 

need not be familiar with the applications any more and the user now has a wider choice 

of applications: applications he may not even be familiar with. The application 

marketplace would also be completely unconstrained on the number of users and jobs it 

can support, be extendable when new job management mechanisms are introduced and 

satisfy user QOS requirements for job submission without compromising on security. 

1.5 Organization of this document 

The rest of the document is presented as follows: 

Chapter 2 provides an overview of the Globus toolkit, a bag of services implemented by 

ANL/IBM that has been used to prove these hypotheses. It also describes the underlying 

web services technologies and tools used in this work. 

Chapter 3 describes the design requirements that should be satisfied to prove the 

hypotheses and brief descriptions of ways to accomplish those. 

Chapter 4 is a detailed implementation description of the application marketplace. 
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Chapter 5 validates the design and makes a decision about the acceptance or 

rejection of the hypothesis. 
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CHAPTER II  
 

LITERATURE REVIEW 
 

2.1 An introduction to Web services 

Web services are the solution to application to application communication on the Web 

[12]. They are referenced using their programmatic interfaces [12]. The services are 

located at different locations on the Internet and higher level services could use these 

loosely coupled software components as black-box services to produce more value added 

services. Web services enable information sources to be available on the web as reusable 

components which can be mixed and integrated to build high level services on the web.  

 

Fundamentally, web services are not much different from the traditional client server 

architectures. But, unlike current distributed component architectures like Java RMI, 

CORBA or DCOM that use object-model-specific protocols, web services chose to reuse 

Internet protocols. Using Internet protocols like Hyper Text Transfer Protocol[13] 

(HTTP) makes web services robust for its use on the ubiquitous Internet while at the 

same time making them friendly to almost all platforms and architectures. While HTTP 

with HTML is well suited for disseminating information on the web, it as such is not 

suited for machine-to-machine communication in web services. The solution is to use 

structured text messages (XML) [14] as parts of both the HTTP request and response. 

Currently, Simple Object Access Protocol (SOAP) is one of the most popular message
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 encoding mechanisms used with web services. Webservices.org [15] defines a protocol 

stack (Table 1) that web services ought to use. Traversing the protocol stack top to 

bottom, Service negotiation is the topmost layer, followed by workflow / discovery / 

registries, service description, messaging and transport [16].  Different protocols are 

suggested for use at these layers but the most popular ones use WSDL, SOAP and HTTP 

for their lower three layers.  

Table 1: Web service protocol stack 

 
Service layer Function Protocols 
Service negotiation Negotiate protocols used to 

aggregate web services, 
Process definition 

Trading Partner agreement 

Workflow, discovery, registries Establish workflow process, 
discover web services  

UDDI, BEPL 

Service description Describes the network service 
– operations supported, 
messages required etc. 

WSDL 

Messaging Message exchange format, 
data encoding, routing, 
message level security. 

SOAP 

Transport End-to-end connectivity. HTTP, HTTPS, HTTPR, FTP, 
SMTP, HTTPG 

 
 

If used, the SOAP request contains the name of the method and the arguments; the 

response contains the result of the invocation. A typical SOAP message (Figure 1) [4] is 

comprised of an enclosing envelope containing a mandatory body and an optional header. 

The optional header contains application specific information like user information and 

the body contains information meant for the ultimate recipient. 

 

 

 



    

 

11

<?xml version=”1.0”?> 

<soap:Envelope xmlns:soap=…> 

   <soap:Header>…</soap:Header> 

   <soap:Body> 

       <trade:GetLastTradePrice xmlns:trade=”…”> 

             <symbol>TWX</symbol> 

       </trade:GetLastTradePrice>  

   </soap:Body> 

</soap:Envelope> 

 

Figure 1: SOAP message skeleton 

 
A pair of SOAP messages – a request and a response, defines an operation. This 

operation is analogous to a method invocation in a component. A collection of these 

operations define an interface, a “portType” in web service terms and these web service 

interfaces are no different from Java or CORBA interface definitions. Currently, WSDL 

is the most popular standard to define a web service interface. Since WSDL is a web 

service interface, it is possible, for example, to generate WSDL definitions from a Java 

class interface that describes a Java service implementation [17]. Tools could be used to 

generate the interfaces as well as the SOAP messages automatically, thus, reducing the 

burden of the web service developer. Additionally, the toolkits could provide a hosting 

environment for the web services and take care of message or transport level security as 

well.  
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2.2 Globus services 

The Globus toolkit is the baseline of this work. It is an open-architecture and open-source 

software API and services to build grid applications. The API and the services are aimed 

at providing support for information discovery, resource management, data management, 

communication, fault detection and portability without compromising security. Of all the 

components provided by the Globus toolkit, the most important ones for this work are the 

Grid Resource Allocation Manager [18] (GRAM), Grid File Transfer Protocol [19] (Grid 

FTP), Meta Directory Service [20] (MDS) and Grid Security Infrastructure [21] (GSI).  

The initial implementation of the Globus toolkit (versions 1.0 through 2.4) was based on 

Globus specific protocols, which, though was widely accepted, still undermined its 

popularity. With the gaining popularity of web services, the Globus toolkit (version 3.0) 

was revamped to use web service protocols and concepts, thus improving the structure 

and design of these services. 

2.2.1 Globus Resource Allocation Manager (GRAM) 

GRAM is Globus's component responsible for remote application execution. It can 

allocate computational resources and manage submitted jobs. It can also update Resource 

information providers about availability of computational resources. The functionality 

Globus provides includes job status checking and cancellation of jobs. The most useful 

functionality for this project provided by GRAM is updating of job status using an event 

driven push model. In this model, the client can register a listener with GRAM to listen to 

job status changes. GRAM then notifies the listener of these events. The architecture of 

GRAM has undergone major changes from version 2.2 to 3.0. GRAM 3.0 features: 
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• An XML based Resource Specification Language (RSL) for job resource 

specification 

• A WSDL interface to access GRAM 

• A special user hosting environment to manage user jobs that run using the user 

credentials. 

2.2.2 Grid File Transfer Protocol (Grid FTP) 

Access to distributed data is an important requirement on the Grid. Scientific and 

engineering applications typically read large data sets and create new data sets. Grid FTP 

is Globus’s solution to accommodate all data storage and access models on the Grid. To 

be precise, Grid FTP provides a high performance, secure robust data transfer mechanism 

that is based on FTP. It aims at providing a common data transfer protocol for all 

customized data storage systems like DPSS, HPSS, DFS and SRB and avoiding 

customized clients for specific storage systems [22]. 

 

The current implementation provides the following features: 

• GSI security (user authentication and authorization based on GSI certificates) 

• Parallel data transfer using multiple TCP streams 

• Data transfer using third party control 

• Support for reliable file transfer (restarting failed transfers, fault recovery etc.) 
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2.2.3 Meta Directory Service (MDS) 

MDS is Globus’s grid information service, which is critical to operation of the grid. It is 

designed to provide scalable access to dynamic data, support multiple information 

sources and allow uniform access to information. MDS makes resource information 

available from LDAP or other directory protocols the resource could support. The initial 

implementation of MDS was based on a central organization server into which the 

resources “pushed” updated information. This implementation, understandably, does not 

scale well. The MDS-2 architecture makes resource information available using Grid 

Resource Information Service (GRIS) [23] servers that run on the resource or Grid Index 

Information Service (GIIS) [24] servers that provide collective information about 

cooperating resources [20]. The latest implementation of MDS (OGSA based) is based on 

web service factory architecture. The factory spawns an information provider at the 

user’s request [25].  

2.2.4 Globus Security Infrastructure (GSI) 

GSI is a mechanism that is built into Globus services for authentication and secure 

communication over the network. It additionally provides single sign-on, mutual 

authentication and delegation which are useful on the Grid. To provide these security 

services on the Grid, GSI uses X.509 certificates and the Secure Sockets Layer (SSL) 

communication protocol. The implementation features: 

• Certificates for all users and services on the Grid for authentication.  

• A channel for secure communication based on symmetric keys (established after 

authentication) if desired.  
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• Default message integrity using signed message digests. 

 

2.3 Open Grid Service Infrastructure (OGSI) and Open Grid Services 
Architecture (OGSA) specifications 

 
The OGSI specification, in short, defines a distributed component model that extends the 

current web service specifications, especially, the WSDL and XML schema 

specifications [26]. Its purpose is to introduce the concept of stateful web services, web 

service portType extension, asynchronous notification of state change and service state 

data. The new extended specification, popularly called GWSDL [27], is currently 

influencing the WSDL 1.2 specification. The specification also specifies a base set of 

common interfaces that grid services can implement. The Open Grid Services 

Architecture (OGSA) builds on OGSI to integrate grid technologies with OGSI-modified 

web services. 

2.3.1 Service state data 

 
The service state data represents the state of a stateful web service. When compared to 

object-oriented programming, the service data roughly parallels object attributes, which 

are specified as a part of class definition. Hence, OGSI specifies that the service state 

data definition too should be externally observable along with the service definition. The 

service data definitions are added along with port type definitions as shown in  

Figure 2. The service data distinguishes one grid service instance from another [26]. 
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<gwsdl:portType name=”someService”> 

    <wsdl:operation …> </wsdl:operation> 

   <sd:serviceData name=”jobStatus” type=”xsd:String”/> 

</gwsdl:portType> 

 

Figure 2:Example service data definition 

 

2.3.2 Grid service instances 

Instances of the same grid service are described by a single grid service description, but 

differ in their service data content. Going back to the object-oriented programming 

analogy, grid service descriptions parallel class definitions and grid service instances 

compare to objects. Grid service instances are referred to using one or more grid service 

handles (GSH). A GSH is just an instance name in the form of a URI. For it to be of any 

use to the client, the client should resolve the GSH into a Grid Service Reference (GSR), 

which describes the instance (the grid service description).   

2.3.3 Predefined grid service port types 

OGSI has identified common functionality that would be required by many services and 

provides these as port types to ease the burden on the developer. The developer just needs 

to extend these port types to obtain desired functionality.  Notable port types include: 

• GridService portType: All grid services extend this port type. It provides 

operations to find, query, set and delete instance service data. 

• HandleResolver portType: Resolves a GSH into a GSR. 
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• NotificationSource portType: Allows grid service instances to send notifications. 

It provides operations to manage clients that subscribe to these notifications. 

• NotificationSink portType: Provides operations to receive notifications from 

notification sources. 

• Factory portType: This port type spawns grid services. It defines the 

createService operation to create grid service instances.  

2.4 Globus toolkit 3.0 – a reference implementation of OGSI 

One of the major motivations for the Globus group to move to this new architecture was 

that the earlier implementation had all services isolated: development of one service 

rarely contributed to another. The new OGSI based toolkit provides a framework for 

building and deploying services that makes development of grid services straight 

forward. The toolkit, in addition to all the standard Globus services, provides tools to 

generate GWSDL interfaces and web service stubs using modified Apache AXIS tools. 

The toolkit also supports an Apache Tomcat [28] or Microsoft .NET [29] based web 

server to serve as the service hosting environment. It could optionally interface with IBM 

Websphere [30] as well as Jboss [31] EJB servers. This toolkit is also refereed to as the 

OGSA toolkit. 

 

2.4.1 Support for J2EE 

One of the interesting features of the toolkit is its ability to expose Enterprise Java Beans 

[32] (EJB) hosted in an EJB container as a web service. The EJB container managed 

persistence architecture simplifies coding of database oriented services – services that 
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largely interact with a database. Writing the grid services as EJBs also lets the user take 

advantage of the features offered by the reasonably mature J2EE technology; describing 

instance service data in this case is still an unresolved issue though.  

 

Web services based application market services can be created if an intermediate 

component that can convert web service invocations into Java RMI is used on top of 

J2EE [32]. Tools provided with the toolkit generate web service “redirection” stubs from 

the EJBs. The Globus toolkit stubs (one stub per EJB service) that are hosted in the web 

service container relay web service invocations from the users as RMI calls to the EJB 

container.  

 

In a typical usage scenario (Figure 3) the client initially creates a remote interface, an 

instance of the stateless service (if one does not already exist). Once an instance of the 

service is created, the client makes its service invocations and the OGSA service stub 

hosted in the web service container receives the user request.  The stub converts this 

invocation into an RMI call and forwards this request to the EJB container that hosts the 

business logic session beans. The session beans that provide data oriented services make 

use of the data objects that are entity EJBs to access the database to process the user 

request. The result of the invocation is sent back to the client through the OGSA stubs.  
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Figure 3: EJB based web services 

 
 
It is worth noting that the EJBHomeSkeleton itself implements the OGSA factory 

specification, thus permitting it to create remote skeleton service instances. 

2.5 XML tools 

XML is a self –describing data format. Its ability to encode rich data formats enables it to 

be used for data transfers between dissimilar systems [33]. This ubiquitous data format 

can be produced by and used in all languages and databases including legacy COBOL 

systems, which is the major motivation for its use in this work [33]. Since the induction 

of XML into computer science, many technologies have been developed to use XML 

from programs: the major technologies include SAX, DOM, XSLT and JDOM [34]. 
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2.5.1 Simple API for XML (SAX) 

SAX is an API to work with XML. It is designed to handle large XML files without 

being a memory hogger and is well suited to performance sensitive code. SAX’s 

approach to XML parsing is event based. It generates an event for every feature found in 

the XML document being parsed. Thus the program operates by responding to events 

based on the XML data [33].  

 

2.5.2 Document Object Model (DOM) 

The W3C Document Object Model is a "platform- and language-neutral interface that 

will allow programs and scripts to dynamically access and update the content, structure 

and style of documents. The document can be further processed and the results of that 

processing can be incorporated back into the presented page." It defines a programmatic 

interface for XML manipulation. It is an object-model based API in which the DOM 

parsers create an in-memory object model of the XML document. The memory now 

contains a tree of the DOM object that represents the structure and content of XML. 

DOM is a feature rich and powerful API, but its in-memory representation could become 

a memory hogger for large XML documents [33].  

2.5.3 Java Document Object Model (JDOM) 

The JDOM is an API that is tuned towards XML manipulation from within Java. It builds 

on top of SAX and DOM and is a more convenient replacement for DOM to build an 

XML document [35, 34]. The JDOM API gained popularity a considerable time after this 

work began and consequently has not been used in this work.  
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2.6 Quality of Service 

Quality of service using Resource reservation is an area of research on its own and is 

expected to be incorporated into emerging distributed services. Various resource 

reservation mechanisms are available for different types of resources. For example, 

• CPU reservation using DSRT [36], Start Time Fair Queuing [37] 

• Network bandwidth using RSVP [38] 

• Disk IO bandwidth scheduling using Cello [39] 

While tools based on these mechanisms directly control the resource, they do not provide 

a convenient interface to be actuated from the Grid. GARA [40] is an architecture for 

advanced reservations that addresses this issue. It provides a convenient API to reserve 

resources on the Grid. Unfortunately GARA’s supported list of resources that can be 

reserved is still preliminary. An alternative work around is to use GRAM with native 

resource reservation mechanisms and that is the approach used in this work.  

2.7 Grid Economic Services Architecture (GESA) 

GESA [41] is a part of GGF that aims at defining protocols and service interfaces to 

charge for OGSA based grid services usage. The goal is to create an infrastructure to 

facilitate organizations to be financially compensated for providing resources. GESA 

services defined for this infrastructure will add new service data elements and extend the 

OGSA specifications but are not allowed to change it. Two new services are expected to 

be defined by GESA – Grid Banking service (GBS) (to record financial transactions) and 

Chargeable Grid Service (CGS). Of these, CGS, which is most relevant to this work, 

extends the Grid Service port type defined by OGSA [42]. Additional operations and 
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service data elements allow the CGS to negotiate transaction mechanisms, define 

acceptable GBSs to validate and implement transactions etc. The GESA specification is a 

work in progress and is not complete as of this writing.  

2.8 Related work 

2.8.1 Grid port toolkit 

The gridport toolkit [44] is a portal (A single comprehensive interface to access multiple 

services on the web [43]) based on the older Globus toolkit to access computational 

resources. It started as means to construct a web based interface to provide resource 

status information and a way to access HPC accounts at remote resources; it was later 

expanded to take full advantage of the features offered by the Globus toolkit. It currently 

supports five functions – management of user accounts and portal space, user 

authentication based on certificate repositories, job submission using Globus GRAM, 

simple command execution and file transfer between compute resources and portal user 

file space [44]. The toolkit was implemented using Perl/CGI and was designed to be 

accessible using a simple web browser (a browser that does not support client-side XML 

processing or applets). 

2.8.2 Distributed Marine Environment Forecast System (DMEFS) 

DMEFS [45] is a research project to develop and remotely access climate, weather and 

ocean models. The goal was to construct a collaborative environment that permits diverse 

users (model developers, operational users and portal administrators) to develop, share 

and validate computational models, thus, resulting in faster times to transition a model 

into operational use from development.  The DMEFS project, which was based on 
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Enterprise Computational Services (ECS) [45], was designed to abstract a common user 

from model intricacies by using the application metadata [45] to describe models and to 

permit sharing of model data. The DMEFS supported two interfaces – a web browser 

based client that was developed using Java servlets and a Java swing based GUI client 

that supported a multi-protocol architecture (Section 4.4). The author was originally a 

part of the DMEFS development team and made significant contributions to metadata 

processing, model configuration, web based submission and the multi-transport 

architecture. This work reuses the Java swing based front end that was developed for the 

DMEFS project. 

 

The DMEFS project, though a significant effort in the field of grid computing, suffered 

from the limitations of WSDL 1.1 (implemented by Wasp 4.0 [46] web services toolkit) 

that was used to build the services: the submission service was static and a single instance 

had to manage all user job requests. A second attempt was made to produce a better 

implementation by using a web service factory [17]. The submission service factory 

could now spawn service instances that managed user jobs, but the implementation still 

lacked support for service instance lifetime management and job status notifications. 
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CHAPTER III 
 

DESIGN REQUIREMENTS 
 

3.1 Definition 

The application marketplace is defined as an environment where the providers and the 

customers interact. The providers are the class of marketplace users who “sell” 

applications and computational power. The customers are the end users of the 

marketplace who utilize and “pay” for applications and the CPU they use. It is envisioned 

that different classes of users will see a different facet of the marketplace: The providers 

should see an interface that allows them to advertise application and resource information 

and the users require interfaces to browse and utilize these applications and resources.  

3.2 Comparison to a conventional marketplace  

The marketplace for applications, in many ways, is similar to the conventional market. It 

embodies the two important aspects of any market, namely, 

1. It has a means of payment in some form. 

2. It has actors who interact with the market – the providers and the users 

3.2.1 Means of remuneration 

A means of payment is essential in the application marketplace: the providers expect to 

be compensated for the services they provide. In this case, the payment may be in various 
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forms: It could be in terms of allocated hours on a computational resource or CPU leased 

to be paid for time used. Negotiation of payments and its implementation in the Grid is 

the subject of research of the GESA (Section 2.7) group. Attempting to redefine the 

requirements and architecture for payments is considered beyond the scope of this work. 

The specification of GESA, when complete, can be used to create chargeable grid 

services for the application marketplace. 

3.2.2 Marketplace actors and their responsibilities 

The application marketplace actors are composed of the sellers, the application and CPU 

(or computational resource) providers and the buyers, the application users. The 

providers – application and CPU providers publish their applications in the application 

market. To be precise, the application providers code the application on target machine 

architecture(s). They collaborate with the CPU providers to install their application on the 

computational resource. The application and CPU providers are together responsible for 

publishing this application along with CPU specific options in the application market. 

This process is called application registration. The users browse, select and run the 

applications of their interest (Figure 4). 

 

The CPU providers own the compute resource on which the application is installed; they 

are the administrators. Once the application is installed on a compute resource and the 

application is registered in the application market, the users directly interact with the 

CPU provider to submit their jobs. Though, in general, there may be three entities – the 

application developers, the CPU providers and the users, in practice, the application and 
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CPU providers could be the same and hence this work considers the difference between 

the two categories subtle and insignificant for the purposes of this work. The rest of this 

document would refer to both categories as just an application provider and the term 

“CPU provider” would be used only when it is necessary to emphasize the owner of the 

resource. 

 

Figure 4: Application marketplace interaction 

 

3.2.3 User authorization 

Similarities apart, there are some stark differences between an application market and an 

ordinary market that makes its realization non trivial. One such difference is that the 

computational resources are partitioned between different administrative domains. The 
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user who wants to consume CPU time in the application market can only do so if he/she 

is authorized to access the resource. Consequently, the application market is responsible 

for establishing the identity of each user to the resource administrator. It should be noted 

that application market with the help of the underlying Grid can prove the authenticity of 

the user, but the CPU provider decides what the user is authorized to do. 

 

3.3 User requirements 

3.3.1 Ease of use 

The user should be shielded from inherent characteristics of this distributed application 

marketplace like authentication mechanisms, machine heterogeneity and application 

complexity. Multiple authentication mechanisms and machine heterogeneity stem from 

the multifarious hardware architectures and platforms the CPU providers could choose to 

associate with the marketplace. Understandably, these are some of the issues addressed 

by the computational grids [47]. Different research groups have adopted various solutions 

to provide uniform authentication and access mechanisms to geographically distributed 

computational resources; solutions ranging from a web portal architecture used by 

websubmit [48] to the bag of services architecture developed by the Globus [49] group. 

Hence, resource authorization and access could be easily handled if the application 

marketplace were implemented as a services-based three-tier portal architecture (a single 

entry point to access multiple resources) operating on top of the grid. Such an 

architecture would allow: 

• Single point sign-on for users. 
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• Easy to use interface to access applications on geographically distributed 

machines. 

• Secure data transfer to and from applications for file stage-in and stage-outs. 

Additionally, the portal architecture could also be used to handle application complexity. 

 

To better understand application complexity, it is necessary to recognize the processes 

involved in running an application. Before running an application, the application is 

typically setup by creating or transferring the input files and setting up the parameter 

files. This process could be tedious and/or baffling to the user depending on the expertise 

of the user and his acquaintance with the application. To make this process an ease for 

any user, the application market should provide help with configuring an application. The 

application market should offer descriptions of the various application configuration 

components in a language understandable to the user. Specifically, it should provide 

uniform interfaces to specify: 

• input file locations, 

• parameter files and parameters, 

• and application arguments. 

Additionally, it should automatically transfer input files as required by the application 

from locations configured by the user.  

 

The next step is job submission followed by job monitoring. These processes are so 

tightly coupled to the machine architecture that it is of real value to provide a uniform 
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user interface to perform these functions in an application market. Specifically, the 

application market should: 

• Manage all chores related to job submission: It should be able to gather command 

line arguments, setup the application execution environment, create batch 

submission scripts if necessary and submit the job. 

• Notify user regarding job status changes. 

• Reserve resources according to QOS requirements. 

• Handle the IO produced by the application. 

 

3.3.2 Quality of Service (QOS) 

In general, QOS requirements could be specified for any resource including CPU, 

network bandwidth and disk activity bandwidth. But CPU QOS requirement is most 

relevant to the application market and hence will be the focus of this work. Such QOS 

user requirements address the issue of value that an application result poses to the user. 

Computational CPU users who “pay” for their CPU time cannot accept an indefinite 

waiting time for their job to start. There are some approximate and worst case algorithms 

and mechanisms proposed to calculate the waiting time of a job in a queue. 

Unfortunately, such algorithms only provide an estimate of the start time of the job and 

do not guarantee the actual start time. While such estimation would suffice on a 

computational grid, the application market should provide more than an estimate. An 

application market should be able to guarantee the job start time and should keep the 

CPU(s) reserved for the time period it would take for the job to complete. 
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Understandably, the only solution available at this time to guarantee such a QOS is CPU 

reservation. Hence, an application market should be able to publish a list of the current 

reservations available and make reservations on computational resources as requested by 

the user. In general, the QOS requirements should allow the user to specify 

• The architecture dependent memory requirements of the application – the 

minimum and maximum memory requirements. 

• The CPU requirements of the application – the minimum and maximum wall 

clock times. 

• The last acceptable start or end time of the application. 

• The Bandwidth requirements of the application. 

 

Hence, the design of this system would be to have an extendable, scalable QOS oriented 

application market grid computing system that can reserve resources on computational 

machines as required by the user (if such an allocation is possible).  

3.4 Provider requirements 

3.4.1 Capturing applications 

 
While most of the requirements of the application market are defined from the user’s 

perspective, the application providers also need a mechanism to publish their applications 

in the application market. Each application in the application market needs to be 

“captured” so that it can be referenced and accessed by the market users. Haupt [50] has 
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identified the following aspects of an application that need to be registered by the 

application developer to capture the application: 

• Name and description of the application. 

• Syntax, order and value of command line arguments. 

• Location and names of parameter files, the parameter names and corresponding 

values. 

• Location and names of input and output files 

• Architecture independent and architecture dependent QOS requirements.  

• List of machines on which the application is installed. 

• Access mechanisms and batch systems (if any) installed on those machines.  

• Location of the executables, input and output files for each machine. 

• The user's scratch working directory for an application. 

Since each user could have a different hardware and operating system to interact with the 

marketplace, the “captured application” should be expressed in a portable format that is 

understood by all user platforms. Such a “captured application” would allow all users to 

configure, locate and run the application. 

3.5 Marketplace services and application life cycle 

The marketplace services outline the interfaces through which the providers and the users 

interact with the marketplace and the application lifecycle along with the user 

requirements define these services. The application lifecycle refers to the string of events 

starting with the induction of an application into the marketplace through its consumption 

by the users to its finale with the archival of results produced by the application job run. 
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Clearly, the actions of the marketplace actors move the application through its lifecycle 

and the marketplace services provide the means for these actors to move the application 

through its lifecycle. Thus, each application can be treated as an object that is acted upon 

by the services (on behalf of the actors). To better understand the application object and 

what these marketplace services should be, the application lifecycle has been divided into 

four stages [17]: 

1. Abstract state: The state when the application is installed on the backend machine. 

The executable has been put in place and is ready to go as soon as the execution 

environment has been created. The application, at this state, can run with just 

default information. 

2. Ready state: The application reaches this state when all configuration files have 

been created and the input files are in place. The application just needs to be 

started. It should be noted that one abstract state application can create multiple 

ready state applications: it is a one to many relation. 

3. Active state: A configured application (from ready state) enters active state when 

it is submitted for a run. Here too, there is a one-to-many relationship between the 

ready and active state applications. The active state applications have runtime 

information appended like application start time, batch submission queue name 

etc. 

4. Ghost state: Once a job is complete, it enters the ghost state. At this state, the 

output files and configuration are captured and archived for future reference. Each 

active application produces exactly one ghost application. 
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Figure 5: Application lifecycle 

 

The providers start the application at its first stage (Figure 5), the abstract state, which 

marks the initiation of the application into the marketplace. When the application is 

selected and configured by a user, it moves to the ready state. Subsequent submission of 

the application (by the user) causes the application to become active.  Finally, the 

application becomes a ghost when it completes execution. 

3.6 Other requirements 

It is essential that these marketplace services be accessible to a large population of users. 

Users could prefer some architecture based native protocol implementations that are 

faster or considered more secure by the client. While the need for machine architecture 

independence is an important consideration for selecting a Remote Procedure Call (RPC) 
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available through multiple RPC protocols and the client be allowed to use a protocol of 

its choice.  

 

Additionally, the application market should be extendable and scalable. CPU 

providers should be able to join the application market when they desire. This also means 

that many unknown machines and architectures may need to be supported as the 

application market grows. Support for new mechanisms should be introduced without 

requiring that the entire application market be shutdown. A scalable architecture also 

requires that resource selection and job management chores continue to function 

seamlessly even when the number of users increases. In short, the application market 

should be able to grow without affecting current market place activity. 
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CHAPTER IV  
  

IMPLEMENTATION DETAILS 
 
 

4.1 Architecture Overview 

For the marketplace implementation, this work follows the suggestions made in section 

3.3.1. Implementing the marketplace using a portal architecture (three tier architecture) 

satisfies the marketplace requirements. The marketplace is hosted as a group of services 

by a third entity that interacts with both the application providers and the users. As a 

result, the client and backend components interact through a middle tier responsible for 

business logic and process management. The marketplace services that function on top of 

a Globus grid cater to the needs of both the application providers and the users.  

 

4.2 Application lifecycle and the application market services 

4.2.1 Introduction 

 
The operations required in the marketplace are closely coupled to the application 

lifecycle (Section 3.5). As a result, the implementation will prepare the functions required 

in the marketplace and then group the same as services later in the implementation. To 

transition the application lifecycle into an implementation, the application itself can be 

formulated as a stateful object that transitions from one state to another during its
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 lifecycle. Such a stateful application object is too complex to be expressed as simple 

state variables. It also needs to be passed to the marketplace actors when required. Hence, 

this work uses the XML based application object definition developed for the DMEFS 

project (Section 2.8.2). The XML based object definition document can be represented 

using a single state variable and it also keeps the object definition decoupled from the 

service implementation.  

 

To elaborate, XML is a markup language, thus its hierarchical structure can be used to 

store marked up categorized application information in this work. Such marked up XML 

content makes the information captured about the application self explanatory. The 

captured application, also called metadata (an XML document), divides data collected 

into many categories. Each category is marked by an XML tag and sub categories are 

marked by sub-tags. For the application XML object, the following categories are 

captured: 

1. The application signature. Information captured in this category includes the 

name, keywords, version and authors of the application. 

2. Description and documentation information. 

3. Registration information: Information about who registered it, when it was 

registered and when it was last modified. 

4. Command line arguments: Each argument to the application is captured for its 

syntax and order. 

5. Parameter files: Each parameter file forms a sub category. The parameter files 

themselves have the file parameters as their sub category.  
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6. Input files: Encompasses the symbolic file name, a description about the file and 

description of the file format. 

7. Output files: 

8. Custom GUI 

9. QOS information 

10. Information specific to a target host which includes the runtime information for 

the application. 

 

Such a captured application object (Example shown in Appendix II) grows in its 

information content as it proceeds in its lifecycle. In its initial stage, abstract state, the 

application object contains all default values and information necessary to customize 

them. The next stage, ready state, represents a customized application object suited to the 

user needs; it includes runtime information necessary including batch queue names, 

actual locations of input files and run specific parameter values. The active state 

application is an application that is currently being run. Finally, when the application run 

is complete, the ghost state application object is a “record” of the run time configuration 

in addition to locations of the application outputs.  

 

Correspondingly, at each application state, the marketplace provides a different set of 

services for the marketplace actors to use. The provider using his interface (Figure 6) 

creates the initial abstract application object. The other interfaces allow the end user to 

transition the application to active, ready and ghost states. The accessories and operations 

required at each state of the application are discussed in the following sections. 
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Figure 6: Application lifecycle alongside marketplace services 
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provides a GUI for the developer to use to create this XML metadata. The requirements 

for this GUI include: 

Table 2: Application registration GUI requirements 

 
1. A very intuitive interface that the developer can understand and use without any 

knowledge of the underlying XML format. 

2. Support for extension of the XML metadata schema without requiring any change 

to the GUI code. 

3. Generic support for XML generation from different GUI input mechanisms. For 

example, the GUI could be a HTML form filled out using the web browser or a 

Java Swing application.  

 
 
To fulfill these requirements, the XML generation module should be reusable and 

decoupled from any GUI: separating processing from presentation. Consequently, this 

process is divided into two parts – the GUI module and the XML generator module. The 

GUI module converts the information entered by the developer as a series of name value 

pairs and delivers it to the XML generator. The XML generator interprets these name 

value pairs in the context of the XML schema and generates the XML metadata.  
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Figure 7:Metadata generation 

 

For XML processing, the XML technologies, DOM and XSLT were used. XSLT is used 

to generate the GUI from the skeleton thus requiring a different technology dependent 

XSL stylesheet for each GUI mechanism supported. XML DOM processing is used to 

create the XML document from the name value pairs returned by the GUI.  

 

The XML document, thus generated, is introduced into the marketplace. Application 

providers use the newModel operation to add new applications to the marketplace 

database. Users, on the other hand, use getModelList and getModelInfo operations to get a 

list of applications and get more information about a particular application respectively.  
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4.2.3 Ready state 

 
An abstract application contains information that describes configurable options of the 

application. Specifically, such configurable options include 

• Command line arguments (order, syntax, datatype and default value describe 

them) 

• Parameters in parameter files (datatype and default value describe them) 

• Values of environment variables 

• Actual location of input and output files. 

 

Configurable options need to be tuned for each run of the application before the 

application can be executed. Thus each abstract application needs to be configured before 

it becomes “ready” for submission.  

 

Application configuration is done by users who are more interested in the outcome of the 

application and are typically not the application developers themselves. Hence, to make 

the application configuration more understandable to people who are not very familiar 

with the application themselves, the configuration process is presented using an 

application configuration wizard ( 

Figure 8).  

 

The software design requirements for creating the ready application are not much 

different from creating the abstract application XML document metadata in the first place 
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(Table 2). Hence, the software design of the configuration GUI (to create the ready 

application) follows the same software patterns used to create the abstract application 

(Figure 7).  The only difference being that the GUI is created from the abstract 

application metadata (thus filling the GUI with default values) rather than a template 

metadata. Once, all the information about the application run has been captured, and the 

ready application created, the application configuration is complete. 

At this stage, all information necessary for a particular run have been captured. Such a 

configured application is now termed as the “ready application,” is ready to be submitted.  

 

Figure 8: Configuration GUI 
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At this state, the user could optionally save the application in his workspace using the 

newApplication operation.  

 

4.2.4 Active state 

 
An application becomes active when it starts executing. The operation, submit, is used in 

the marketplace to submit a ready application. The job submission service is the heart of 

a computational grid. Its responsibilities include support for job monitoring and control, 

automatic job status update and if necessary, job output and error stream forwarding. The 

input to the submit operation for job submission service is the metadata proxy in its ready 

state with all configuration necessary to run the application. The job submission service, 

then, submits such an application to the job queue taking care of service QOS 

requirements, if necessary. The proxy is now “Active”. The current status of the job and 

the job properties can be obtained on demand by retrieving the submit service service-

data, SubmitData. The user could optionally subscribe to job status change notifications 

by subscribing to the SubmitUpdate notification topic provided by the submit service. 

The user could also cancel his running job by invoking the cancel operation of the submit 

service. Section [4.5.2] discusses the submission service implementation. 

4.2.5 Ghost state 

 
The running application becomes a “ghost” when it completes execution. The resources 

that were used by the application are freed but the outputs produced by the application 

are still in place. The Job service stores the configuration of this completed application. It 
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additionally has the links to the outputs produced and the inputs used by the application 

and are available to the user when he/she desires to view them. The job service is another 

database oriented service (Section 4.5.1). It provides newJob, getJobListByUser and 

getJobInfo operations to add a new job entry, get all user jobs and to get the application 

configuration used for a particular job. 

 

4.3 Marketplace services 

Based on the expected interaction between the application providers, the users and the 

application market (Figure 6), this work identifies a number of services essential for its 

success. The major services include: 

1.Metadata service: This service serves as the entry point to the application lifecycle. 

The application providers interact with the metadata service to register their 

applications and the application users access this service to browse and select 

applications. The abstract state application object is stored in this service. 

2.Workspace services: Ready applications (configured from abstract applications) are 

preserved by this service. The service provides personal space for each user to store 

their configurations. The applications are now ready to be submitted. 

3.Submission and file transfer services: The submission service is transient and 

receives a ready application with runtime parameters. The application now 

transitions to its active state. The application is submitted and managed on behalf of 

the user. The file transfer service is used by the submission service as needed. 
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4.Persistence service: The ghost application is preserved by the persistence service. 

This application state is created by the submission service so as to preserve the 

application run long after submission is complete and the submission service has 

been removed from the system. 

Of these services, metadata, workspace and persistence are database oriented services – 

the services primarily concerned with database store, search and retrieve operation. The 

submission service, the most important service of all, directly interacts with the backend 

machine.  

 

Of these services, the metadata service is accessed by both the application providers and 

the users (Figure 9). It stores captured applications from the application providers and 

makes these captured applications available to the users. The persistence services store 

information about all the user job runs along with their run configuration thus saving the 

user the burden of manually maintaining a job journal. The workspace services provide 

user space to store a user’s personal job configuration in a convenient hierarchical 

directory-like structure. The last service, the submission service is responsible for a user’s 

job submissions. It interacts with the backend machines on behalf of the user. 
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Figure 9: CPU Market middleware 

 

4.4 The Multi-transport architecture 

4.4.1 Service implementation 

 
The application marketplace requirements mandate that services be offered using many 

RPC based mechanisms. For this reason, the application market reuses the multi protocol 

architecture that was developed for the DMEFS project. Such an implementation ensures 

that the same services are accessible using multiple protocols. It also ensures that newer 

and better RPC mechanisms formulated in future could be readily incorporated into the 

marketplace.  
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The multi-protocol architecture permits the same service to be accessed using different 

protocols ( 

Figure 10). Best effort is made to ensure that the same source base is used and different 

packaging tools are applied to package the services to their respective hosting 

environments. For example, a client who prefers to access the application market using 

OGSA services contacts and interacts with the OGSA server using GWSDL, SOAP 1.1 

and HTTPG. In this case, just the service stubs generated from the service interfaces is 

hosted in the OGSA container. These stubs then forward service requests to the business 

logic implementation. The service business logic and database connectivity beans are 

hosted as EJBs on a separate container and these EJBs interact with the database.  

 

Implementing the application market services as OGSA services has many advantages. 

The advantages include: 

1.Ability to authenticate the user using his secure grid certificate and provide a 

secure channel at the same time.  

2.Ability to create web service instances which is a requirement for an extendable 

submission service. 

 

Needless to say, providing the application market services as OGSA services is the 

preferred implementation and the major contribution of this work. The rest of this 

chapter, with the exception of the digression regarding multi protocol support on the 

client side, is primarily concerned with OGSA services.  
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Figure 10: Multi-protocol architecture for database oriented services 
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4.4.2 Client implementation 

 
The client implementation is at liberty to use any of the protocols supported by the 

application market. While it is not a requirement for a single client to support multiple 

protocols, this work chose to use a client that could use different protocols to access the 

application market. The user selects the actual protocol that would be used by the client 

to interact with the application market.  

 

Figure 11: Client multi-protocol implementation 
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interface. The ServiceClient defines the getServiceHandle operation that takes the name 

of the service as an argument and returns a reference to the stub that implements the 

protocol and has the same interface as the service. This is a modified implementation of 

the Proxy software design pattern [51]. Since different protocol stubs for a service 

implementation provide the same service interface, the client is hidden from the actual 

protocol differences. Once a service stub is bound to the service interface, the client 

invokes operations on the service using its well defined interface oblivious of the actual 

mechanisms used to implement the operations. At present, this architecture supports three 

different transport mechanisms 

1.GWSDL/HTTPG implementation using Globus toolkit 3.0 

2.WSDL 1.1/HTTPS implementation using Wasp toolkit 4.0. 

3.Java RMI/HTTPS implementation using Orion 1.6 [52]. 

4.5 CPU Market services implementation 

One of the goals of this work is to produce an implementation that is not tied to any 

specific container or service provider environment. Hence, as far as possible, services are 

written such that they confirm to a specification such as the EJB or the OGSA and they 

can be used on any container that confirms to these specifications.  

4.5.1 Database oriented services 

Though database-oriented services and non-database oriented services are provided using 

the same protocols, differences between the services they provide require fundamentally 

different implementations. The differences stem from the fact that the database-oriented 
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services are essentially stateless, whereas the submission service, a non-database oriented 

service requires stateful services.  

 

Database-oriented services have two components or tiers – the business logic tier and the 

database tier. The database tier has two subcomponents – the data objects and the 

database [2]. Such an implementation confirms to proper software design by using 

reusable components. Moreover, all three components can be hosted on physically 

different machines, thus making the services scalable, shifting the burden across multiple 

machines. In this design, the components could be implemented as standalone processes 

or as packages hosted by a container. This work chose to follows the second approach 

and implements the business tier and the data objects as packages hosted by a J2EE 

container (the database is still a separate process though). The business tier has stateless 

services; hence, this tier is implemented using stateless session EJBs.  The session beans 

interact with the data objects, which are implemented using entity EJBs. The entity EJBs 

use container-managed persistence to operate on the database. Since the J2EE container 

that hosts the business logic mandates that the services be accessed using Java RMI, this 

design cannot be used “as such” to create web services. Fortunately, the Globus 3.0 

toolkit provides tools to project services hosted in an EJB container as web services, 

which is the approach used in this work (Section 2.4.1). 

4.5.2 The submission service 

The submission service is the most important component of the application market. The 

functions it provides includes: 
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• Support for job submission 

• Support for reservation 

• Job management 

• Job status notification 

• Automatic user job history updating. 

The marketplace uses a web service factory to implement the submission service. Each 

job submission is handled by a new submission service instance that is created “on 

demand” by the factory. Using a factory to create job service instances has multiple 

advantages: 

• The user proxy or credentials can be cached by the service instance to act on 

behalf of the user. 

• The user can directly contact the service instance for his control requests. 

• Properties of the current job that is being executed can be stored as the state of the 

submission service instance. 

• Each submission instance handles its own notifications. 

 

Many implementations have been suggested to create such a factory and instances. For 

example, the instances could be implemented as new operating system processes or 

threads. This work uses the factory service implementation included with the Globus 3.0 

toolkit. In this implementation, a new grid service instance request spawns a grid service 

with a uniquely locatable GSH. It which comes into existence when a job needs to be 

submitted by the user and it goes out of existence when the job is complete. During its 
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lifetime, the instance does all functions on behalf of the user. The submission instance 

additionally requires notification mechanisms to notify the user regarding job status 

changes.  

 

Figure 12: Submission service implementation 

 
Thus, the current application market service implementation uses the factory and 

notificationsource port types to implement the submission service. The factory is used to 
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notification porttype to notify listeners regarding job status changes (Figure 12). 
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Additionally, complete job information (including its status) is available as service data 

of the submission instance.  

 
 

In a typical usage scenario, the client first requests that the submission factory 

create a new submission service for the user’s request. Once a new submission service 

instance is created, the client sends the user request which includes the job configuration 

information, batch parameters as well as QOS requirements along with a user proxy (his 

credentials). The submission instance determines the type of job control mechanisms 

(currently globus 2.x and globus 3.x) to use depending on the job configuration and 

selects one for handling the current job. Once this selection is made, it makes reservations 

to satisfy user QOS requirements (if possible). Next, the job request is submitted by 

constructing the older Globus 2.x based RSL or the newer XML based RSL for Globus 

3.x and invoking submission mechanisms as required. 
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CHAPTER V 
 

RESULTS 
 
 

5.1 Separation of concerns in the marketplace 

The marketplace combines the requirements of two classes of individuals – the providers 

and the users, and creates an environment that is beneficial to both. The providers needed 

an infrastructure to publish their applications and computational resources, and the users 

needed a simple interface to browse, configure, run and maintain journals of applications. 

The requirements of these two classes of individuals are independent and the marketplace 

caters to the needs of both by providing a different interface to these classes of users 

(Figure 13).  

 

The providers now have an interface to publish and modify applications that they want to 

“advertise” on the market place. They are responsible for keeping application information 

up-to-date and that all information necessary to configure and run the application are 

included as a part of the flexible metadata that describes the application. The user, on the 

other hand, is relieved from knowing the application intricacies, which is a concern of the 

provider. 
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Figure 13: Separate interfaces for providers and users 

 
The user (who interacts using the client), in turn, receives the application metadata that 

describes all applications in a single uniform format. It can be introspected to know all 

information necessary to configure and run the application. The uniform format of the 

metadata also permits a GUI to be built to automate configuration and submission tasks, 

thus, allowing the client to present an easy-to-use interface to the user. The steps the user 

follows to run his application are now reduced to the following: 

1. Select an application from the list of applications 

2. Use the simple interface to configure the application: provide application 

arguments, parameters, input/output file locations and parameters for batch 

submission. The interface remains simple irrespective of the complexity of the 

application. If the provider chooses to provide his own GUI, it can be 

accommodated too. 
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3. Save the configuration, submit it to the batch queue or run the application 

interactively. 

 

5.2 Application provider’s view 

 
The application provider (along with the CPU provider) is responsible for the description 

of his applications in the marketplace. The description was required to contain all 

information necessary to locate, configure and run the application. It additionally had to 

be represented in a format that is friendly to all possible platforms and architectures the 

user could possibly choose. Hence, this work chooses the web friendly text based XML 

format to capture the application description. The schema (grammar, Appendix 1) of this 

XML format is designed to capture all necessary information about the application, 

which includes the components shown in Table 3. 

Table 3: Application description components 

 
1.A textual description of the application which includes references to 

application support (if necessary). 

2.Machine specific and independent arguments. 

3.Names and location of the input, parameter and output files  

4.Environment variables required by the application. 

5.Default QOS parameters for the application. 

6.Names of the computational machines that host the application and 

corresponding application location information.  
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Such an application description (An example shown in Appendix II) can be “viewed” by 

a user or interpreted by a client to know details about the application. The description 

was, in part (the QOS section of the description was enhanced for this work), used in the 

DMEFS project to describe and consequently run renowned “complex” applications like 

COAMPS [53] and NCOM [54]. The DMEFS project was demonstrated at the DMEFS 

workshop (March 2003).  

 

 

Figure 14: Application registration GUI 
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The XML application description, though human readable, is too tedious and error prone 

to be scripted by hand. Hence, this work provides a GUI (originally a part of DMEFS) to 

collect application information from the providers, convert it to XML and add it to the 

marketplace. The GUI (Figure 14) conveniently hides the newModel and newHost grid 

web service invocations that are used to add the application description to the 

marketplace. Thus, the provider, who is responsible for the description of his 

applications, uses the easy-to-use interface to add his applications and keep them updated 

at the marketplace.  

 

5.3 User view 

 
The user, on the other hand, can access the application description that contains all 

information necessary to configure and run the application. The user requirements 

included: 

1.Mechanisms to conveniently browse and access application descriptions. 

2.Uniform mechanisms (that hide application and computational resource 

intricacies) to configure and submit applications. 

3.A “personalized” web service to manage his/her job. 

Consequently, this work provides four services – metadata, workspace, persistence and 

submission. All services provide convenient GUIs (initially a part of the DMEFS project) 

to present an intuitive interface to the user. The metadata service (which also servers the 

application providers) supports getAllModelsList, getModelInfo and getHostInfo grid 

service functions to browse and retrieve application descriptions. The application object, 
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now in its abstract state, needs to be customized for the user requirements. Once an 

application is selected, the generality and XML format of the application description, 

along with XML tools (Section 2.5), is used to create a GUI to configure (or customize) 

the application.  

 

The configuration step allows the user to customize all options (Table 3) that the 

providers choose to reveal about the application. The GUI conveniently hides XML 

processing from the user, while, at the same time, providing an interface with 

configuration options and descriptions originally “described” by the provider. Once 

configured, the application object, now in its ready state, could be optionally stored with 

the workspace service or be submitted.  

 

Since the user requires constant control over his job with optional notification regarding 

job status changes, submission is handled by a grid service factory. The submission 

service which implements the factory port type spawns transient submission instances 

that are responsible for job control and notification. The submission instance analyzes the 

QOS requirements of the user and performs any necessary reservations to satisfy the 

same (at preset, CPU reservation is the only QOS supported). If the QOS requirements 

are satisfied, the job is submitted and the application object is now “active.” The 

submission instance web service provides functions for job control including submission 

and termination. It can notify the user regarding job status changes and will automatically 

be destroyed when the job is complete.  
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Before the submission instance exits, it updates the job information at the persistence 

service that stores a journal of the user’s job runs. The pedigree of the application with 

configuration and links to the input/output files is available with the persistence service 

for reference at a later date.  

 

 

Figure 15: Application list 
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Figure 16: Application configuration with CPU time QOS 

 

5.4 Hypothesis validation 

The application market place is an infrastructure that caters to the requirements of 

application providers, CPU providers and users. Its services, all based on OGSA (Globus 

toolkit 3.0 implementation), provide an Internet-friendly, secure, architecture independent 

mechanism to provide distinct interfaces to the providers and the users. The providers and 

the users play distinct roles in the marketplace – the providers advertise and update 

information about applications and the users use these application descriptions to select, 

configure and run applications. 
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The application providers and the CPU providers use the market place metadata service 

and the convenient GUI service access to “advertise” all qualities of the application 

pertinent to the user. The application description thus obtained from the user is 

transparently encoded to XML, the “universal format for data on the web” [55] for it to 

be stored in the metadata service and introspected on any client. The schema of the 

application description was verified to be capable of describing complex applications 

(Section 5.2). Consequently, the second hypothesis that it is possible to capture a 

computational application in a portable format can be claimed proven. 

 

The marketplace provides a variety of services that revolve around the lifecycle of 

the application to satisfy the user requirements. The metadata service originates the 

application lifecycle by providing a list of applications and their descriptions. The 

uniform schema used to describe applications permits the user to configure the 

application using an intuitive GUI wizard. Once configured, the application can be 

submitted using a generic submission service factory that creates transient submission 

grid service instances to manage user jobs. The instance submission services are 

themselves driven by the configuration information and provide job control and 

notification after submission. Thus, the claim of the first hypothesis that the users can 

have a convenient market place to select, configure and run applications using the 

instance service based infrastructure with notification can be proclaimed proven. 
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CHAPTER VI 
 

FUTURE WORK 
 
 
The application marketplace is still a concept in its formulation stage. Aspects that 

require enhancements include 

• Support for chargeable grid services 

• Enabling Kerberos as an authentication mechanism 

 

Current support for compensating the providers is based on the “project” specified as a 

part of batch submission. The CPU time requested is charged against the project. The 

marketplace does not take part in actual mechanisms used to translate the project CPU 

usage to remuneration. Using GESA (Section 2.7) enabled grid services could enable the 

marketplace to broker financial compensations for resource providers. It would also 

increase the user’s choice of applications. 

 

The GSS API used by the submission service for authentication and encryption uses 

globus credentials for its current implementation. This limits the accessibility of 

submission service instances to globus enabled resources. GSS API inherently supports 

Kerberos [56] and enabling Kerberos authentication would increase the variety of 

resources accessible through the marketplace. 
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Though the concept of marketplace could support multiple services provided by different 

(distributed) portals, the current implementation demonstrates just a single set of 

centralized services. The current implementation could be extended to support distributed 

services with provision for finding and accessing applications across portals. 

 

 The current work is based on a pre release of Globus 3.0. This restricts usable security 

mechanisms to access to EJB services to transport level security (and not message level 

security). Upgrading implementation to the latest release should enable message level 

security for all services. 
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APPLICATION DESCRIPTOR XML SCHEMA 
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<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSPY v2004 rel. 2 U (http://www.xmlspy.com) by Anand (K) --
> 
<!--W3C Schema generated by XMLSPY v2004 rel. 2 U 
(http://www.xmlspy.com)--> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
 <xs:element name="AD"> 
  <xs:annotation> 
   <xs:documentation>Application Descriptor root 
Element</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="application"/> 
    <xs:element ref="target"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="QOS"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="cpu"/> 
    <xs:element ref="memory"/> 
    <xs:element ref="adaptionrule"/> 
    <xs:element name="environment" type="envdef"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="adaptionrule" type="xs:anyType"/> 
 <xs:element name="application"> 
  <xs:annotation> 
   <xs:documentation>Machine independent information regarding 
application</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
              <xs:sequence> 
    <xs:element ref="signature"/> 
    <xs:element ref="description"/> 
    <xs:element ref="documentation"/> 
    <xs:element ref="support"/> 
    <xs:element ref="reginfo"/> 
    <xs:element ref="arguments"/> 
    <xs:element ref="parameterfiles"/> 
    <xs:element ref="inputfiles"/> 
    <xs:element ref="outputfiles"/> 
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    <xs:element ref="gui"/> 
    <xs:element ref="QOS"/> 
    <xs:element ref="source"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="argument"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="name"/> 
    <xs:element ref="description"/> 
    <xs:element ref="type"/> 
    <xs:element ref="restrictions"/> 
    <xs:element ref="value"/> 
    <xs:element ref="order"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
   <xs:attribute name="multiplicity" type="xs:boolean" use="required"/> 
   <xs:attribute name="syntax" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="arguments"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="argument" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="author"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="name"/> 
    <xs:element ref="institution"/> 
    <xs:element ref="contact"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="build" type="xs:string"/> 
 <xs:element name="class" type="xs:string"/> 
 <xs:element name="contact" type="xs:string"/> 
 <xs:element name="count" type="xs:integer"/> 
 <xs:element name="cpu"> 
  <xs:complexType> 
   <xs:sequence> 
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    <xs:element name="min" type="xs:duration"/> 
    <xs:element name="max" type="xs:duration"/> 
    <xs:element name="endtime" type="xs:dateTime"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="created" type="xs:dateTime"/> 
 <xs:element name="credit"> 
  <xs:annotation> 
   <xs:documentation>Application provider's 
information</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="author" minOccurs="0" maxOccurs="unbounded"/> 
    <xs:element ref="institution" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="cvsroot" type="xs:token"/> 
 <xs:element name="description" type="xs:string"/> 
 <xs:element name="order" type="xs:string"/> 
 <xs:element name="destmachine" type="xs:string"/> 
 <xs:element name="destname" type="xs:string"/> 
 <xs:element name="destpath" type="xs:string"/> 
 <xs:element name="documentation" type="xs:anyURI"/> 
 <xs:element name="dryrun"> 
  <xs:simpleType> 
   <xs:restriction base="xs:token"> 
    <xs:enumeration value="yes"/> 
    <xs:enumeration value="no"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:complexType name="envdef"> 
  <xs:sequence> 
   <xs:element ref="variable" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="envval"> 
  <xs:sequence> 
   <xs:element ref="value"/> 
  </xs:sequence> 
  <xs:attribute name="idref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
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 <xs:element name="executable" type="xs:string"/> 
 <xs:complexType name="fileparam"> 
  <xs:sequence> 
   <xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="idref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="fileoutput"> 
  <xs:sequence> 
   <xs:element ref="srcpath" minOccurs="0"/> 
   <xs:element ref="srcname" minOccurs="0"/> 
   <xs:element ref="destpath" minOccurs="0"/> 
   <xs:element ref="destname" minOccurs="0"/> 
   <xs:element ref="destmachine" minOccurs="0"/> 
  </xs:sequence> 
  <xs:attribute name="idref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="fileinput"> 
  <xs:sequence> 
   <xs:element ref="srcpath" minOccurs="0"/> 
   <xs:element ref="srcmachine" minOccurs="0"/> 
   <xs:element ref="srcname" minOccurs="0"/> 
   <xs:element ref="destpath" minOccurs="0"/> 
   <xs:element ref="destname" minOccurs="0"/> 
  </xs:sequence> 
  <xs:attribute name="idref" type="xs:IDREF" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="filedef"> 
  <xs:sequence> 
   <xs:element ref="name"/> 
   <xs:element ref="metadata"/> 
   <xs:element ref="description"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="xs:ID" use="required"/> 
 </xs:complexType> 
 <xs:element name="grammyjob"> 
  <xs:simpleType> 
   <xs:restriction base="xs:token"> 
    <xs:enumeration value="collective"/> 
    <xs:enumeration value="independent"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="gui"> 
  <xs:complexType> 
   <xs:sequence> 
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    <xs:element ref="jsp"/> 
    <xs:element ref="class"/> 
    <xs:element ref="url"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="host" type="xs:token"/> 
 <xs:element name="hostcount" type="xs:integer"/> 
 <xs:element name="inputfiles"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="file" type="filedef" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="inputs"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="file" type="fileinput" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="institution" type="xs:string"/> 
 <xs:element name="jsp" type="xs:anyURI"/> 
 <xs:element name="keywords" type="xs:NMTOKENS"/> 
 <xs:element name="label" type="xs:string"/> 
 <xs:element name="lastModified" type="xs:dateTime"/> 
 <xs:element name="max" type="xs:time"/> 
 <xs:element name="maxcputime" type="xs:integer"/> 
 <xs:element name="maxmemory" type="xs:integer"/> 
 <xs:element name="maxtime" type="xs:integer"/> 
 <xs:element name="maxwalltime" type="xs:integer"/> 
 <xs:element name="memory"> 
  <xs:annotation> 
   <xs:documentation>Specified in MB</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="min" type="xs:long"/> 
    <xs:element name="max" type="xs:long"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="metadata" type="xs:anyType"/> 
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 <xs:element name="min" type="xs:time"/> 
 <xs:element name="minmemory" type="xs:integer"/> 
 <xs:element name="mintime" type="xs:integer"/> 
 <xs:element name="name" type="xs:string"/> 
 <xs:element name="outputfiles"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="file" type="filedef" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="outputs"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="file" type="fileoutput" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="parameter"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="name"/> 
    <xs:element ref="description"/> 
    <xs:element ref="label"/> 
    <xs:element ref="type"/> 
    <xs:element ref="restrictions"/> 
    <xs:element ref="value"/> 
    <xs:element ref="order"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="parameterfiles"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="file" type="fileparam" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="path" type="xs:token"/> 
 <xs:element name="project" type="xs:string"/> 
 <xs:element name="queue" type="xs:token"/> 
 <xs:element name="reginfo"> 
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  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="registeredBy"/> 
    <xs:element ref="created"/> 
    <xs:element ref="lastModified"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="registeredBy" type="xs:string"/> 
 <xs:element name="restrictions" type="xs:anyType"/> 
 <xs:element name="run"> 
  <xs:annotation> 
   <xs:documentation>Machine specific runtime 
information</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="argument" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element name="environment" type="envval" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element ref="inputs"/> 
    <xs:element ref="outputs"/> 
    <xs:element ref="executable"/> 
    <xs:element ref="workdir"/> 
    <xs:element ref="maxtime"/> 
    <xs:element ref="mintime"/> 
    <xs:element ref="maxwalltime"/> 
    <xs:element ref="maxcputime"/> 
    <xs:element ref="maxmemory"/> 
    <xs:element ref="minmemory"/> 
    <xs:element ref="queue"/> 
    <xs:element ref="hostcount"/> 
    <xs:element ref="count"/> 
    <xs:element ref="grammyjob"/> 
    <xs:element ref="dryrun"/> 
    <xs:element ref="project"/> 
    <xs:element ref="stdin"/> 
    <xs:element ref="stdout"/> 
    <xs:element ref="stderr"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="signature"> 
  <xs:complexType> 
   <xs:sequence> 
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    <xs:element ref="name"/> 
    <xs:element ref="keywords"/> 
    <xs:element ref="version"/> 
    <xs:element ref="credit"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="source"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="host"/> 
    <xs:element ref="cvsroot"/> 
    <xs:element ref="path"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="srcmachine" type="xs:string"/> 
 <xs:element name="srcname" type="xs:string"/> 
 <xs:element name="srcpath" type="xs:string"/> 
 <xs:element name="stderr" type="xs:anyURI"/> 
 <xs:element name="stdin" type="xs:anyURI"/> 
 <xs:element name="stdout" type="xs:anyURI"/> 
 <xs:element name="support" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Application support information</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="target"> 
  <xs:annotation> 
   <xs:documentation>Machine dependent information regarding 
application</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="build"/> 
    <xs:element ref="run"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="type" type="xs:QName"/> 
 <xs:element name="url" type="xs:anyURI"/> 
 <xs:element name="value" type="xs:string"/> 
 <xs:element name="variable"> 
  <xs:complexType> 
   <xs:sequence> 
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    <xs:element ref="name"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:ID" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="version" type="xs:string"/> 
 <xs:element name="workdir" type="xs:string"/> 
</xs:schema>
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<?xml version="1.0" encoding="UTF-8"?> 
<AAD> 
    <application id="0"> 
        <signature> 
            <name>Bio Modeller</name> 
            <keywords>Heart rate</keywords> 
            <version>1.0</version> 
            <credit> 
                <author> 
                    <name>John Doe</name> 
                    <institution>MSU</institution> 
                    <contact></contact> 
                </author> 
                <institution></institution> 
            </credit> 
        </signature> 
        <description/> 
        <documentation/> 
        <support/> 
        <reginfo> 
            <registeredBy>anand</registeredBy> 
            <created>2002.Oct.30, 12:16 PM</created> 
            <lastModified>2002.Oct.30, 12:16 
PM</lastModified> 
        </reginfo> 
        <arguments> 
            <argument>modelarg1</argument> 
                <name>arg2</name> 
                <description/> 
                <type/> 
                <restrictions/> 
                <value>def2</value> 
            </argument> 
        </arguments> 
        <parameterfiles> 
            <file idref="infile1"> 
                <parameter id="param-1-1"> 
                    <name>param1</name> 
                    <description>desc1</description> 
                    <label>label1</label> 
                    <type/> 
                    <restrictions/> 
                    <value>def1</value></parameter> 
                <parameter id="param-1-2"> 
                    <name>param2</name> 
                    <description>desc2</description> 
                    <label/> 
                    <type/> 
                    <restrictions/> 
                    <value>def2</value> 
                </parameter> 
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            </file> 
        </parameterfiles> 
        <inputfiles> 
            <file id="infile1"> 
                <name>ifile1</name> 
                <metadata>mdata-ifile1</metadata> 
                <description>desc1</description> 
            </file> 
            <file id="infile2"> 
                <name>ifile2</name> 
                <metadata>mdata-ifile2</metadata> 
                <description>desc2</description> 
            </file> 
        </inputfiles> 
        <outputfiles> 
            <file id="outfile1"> 
                <name>ofile1</name> 
                <metadata>mdata-ofile1</metadata> 
                <description>desc1</description> 
            </file> 
            <file id="outfile2"> 
                <name>ofile2</name> 
                <metadata>mdata-ofile2</metadata> 
                <description>desc2</description> 
            </file> 
        </outputfiles> 
        <gui> 
            <jsp/> 
            <class/> 
            <url/> 
        </gui> 
        <QOS> 
            <cpu> 
                <min/> 
                <max/> 
                <endtime/> 
            </cpu> 
            <memory> 
                <min/> 
                <max/> 
            </memory> 
            <adaptionrule/> 
            <environment> 
                <variable id="modelenviron2"> 
                    <name>DATA_HOME</name> 
                </variable> 
                <variable id="modelenviron1"> 
                    <name>JAVA_HOME</name> 
                </variable> 
            </environment> 
        </QOS> 
        <source> 
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            <host/> 
            <cvsroot/> 
            <path/> 
        </source> 
    </application> 
    <target id="titan.erc.msstate.edu"> 
        <build>build</build> 
        <run> 
            <argument id="hostarg1" multiplicity="1" 
syntax=""> 
                <name>mach-arg1</name> 
                <description/> 
                <type/> 
                <restrictions/> 
                <value>def1</value> 
            </argument> 
            <environment idref="modelenviron2"> 
                <value>/var/data</value> 
            </environment> 
            <environment idref="modelenviron1"> 
                <value>/opt/java/jdk</value> 
            </environment> 
            <inputs> 
                <file idref="infile1"> 
                    <srcpath>/vulcan/var/data</srcpath> 
                    <srcmachine>vulcan.erc</srcmachine> 
                    <srcname>ifile-23.1</srcname> 
                    <destpath>/var/data</destpath> 
                    <destname>ifile-23.2</destname> 
                </file> 
                <file idref="infile2"> 
                    <srcpath>/vulcan/var/data</srcpath> 
                    <srcmachine>vulcan.erc</srcmachine> 
                    <srcname>ifile2-23.1</srcname> 
                    <destpath>/var/data</destpath> 
                    <destname>ifile2-23.2</destname> 
                </file> 
            </inputs> 
            <outputs> 
                <file idref="outfile2"> 
                    <srcpath>/var/data</srcpath> 
                    <srcname>ofile2-34.4</srcname> 
                    <destpath>/vulcan/var/data2</destpath> 
                    <destname>ofile2-34.5</destname> 
                    <destmachine>vulcan</destmachine> 
                </file> 
                <file idref="outfile1"> 
                    <srcpath>/var/data</srcpath> 
                    <srcname>ofile-34.4</srcname> 
                    <destpath>/vulcan/var/data</destpath> 
                    <destname>ofile-34.5</destname> 
                    <destmachine>vulcan</destmachine> 
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                </file> 
            </outputs> 
            <executable>exec</executable> 
            <workdir>wd</workdir> 
            <maxtime>36h</maxtime> 
            <mintime>12h</mintime> 
            <maxwalltime>48h</maxwalltime> 
            <maxcputime>8h</maxcputime> 
            <maxmemory/> 
            <minmemory/> 
            <queue>titan-q1</queue> 
            <hostcount>4</hostcount> 
            <count>4</count> 
            <grammyjob/> 
            <dryrun>no</dryrun> 
            <project/> 
            <stdin>/data/input</stdin> 
            <stdout>/data/output</stdout> 
            <stderr>/data/error</stderr> 
        </run> 
    </target> 
</AAD> 
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