Services in Pervasive Computing Environments: from Design to Delivery

par

Davide Carboni

theése présentée au Département d’informatique

en vue de l'obtention du grade de docteur és sciences (Ph.D.)

FACULTE DES SCIENCES
UNIVERSITE DE SHERBROOKE

Sherbrooke, Québec, Canada, janvier 2005

o fh\ﬂm
Pt
(}j . ‘{g L
(’fgz A M '
WA
J
(,‘< i u % Q{’Ld\ .

Summary

The work presented in this thesis is based on the assumption that modern computer
technologies are already potentially pervasive: CPUs are embedded in any sort of de-
vice; RAM and storage memory of a modern PDA is comparable to those of a ten years
ago Unix workstation; Wi-Fi, GPRS, UMTS are leveraging the development of the wire-
less Internet. Nevertheless, computing is not pervasive because we do not have a clear
conceptual model of the pervasive computer and we have not tools, methodologies, and
middleware to write and to seamlessly deliver at once services over a multitude of hetero-
geneous devices and different delivery contexts. Our thesis addresses these issues starting
from the analysis of forces in a pervasive computing environment: user mobility, user pro-
file, user position, and device profile. The conceptual model, or metaphor, we use to drive
our work is to consider the environment as surrounded by a multitude of services and
objects and devices as the communicating gates between the real world and the virtual
dimension of pervasive computing around us. Our thesis is thus built upon three main
“pillars”. The first pillar is an domain-object-driven methodology which allows developer
to abstract from low level details of the final delivery platform, and provides the user with
the ability to access services in a multi-channel way. The rationale is that domain objects
are self-contained pieces of software able to represent data and to compute functions and
procedures. Our approach fills the gap between users and domain objects building an
appropriate user interface which is both adapted to the domain object and to the end

user device. As example, we present how to design, implement and deliver an electronic

ii

mail application over various platforms.

The second pillar of this thesis analyzes in more details the forces that make direct
object manipulation inadequate in a pervasive context. These forces are the user profile,
the device profile, the context of use, and the combinatorial explosion of domain objects.
From the analysis of the electronic mail application presented as example, we notice that
according to the end user device, or according to particular circumstances during the
access to the service (for instance if the user access the service by the interactive TV
while he is having his breakfast) some functionalities are not compulsory and do not fit
an adequate task sequence. So we decided to make task models explicit in the design
of a service and to integrate the capability to automatically generate user interfaces for
domain objects with the formal definition of task models adapted to the final delivery
context.

Finally, the third pillar of our thesis is about the lifecycle of services in a pervasive
computing environment. Our solutions are based upon an existing framework, the Jini
connection technology, and enrich this framework with new services and architectures for
the deployment and discovery of services, for the user session management, and for the

management of offline agents.

1l

Acknowledgments

Now, the time has come for the acknowledgements'. This means that I made it, or
almost. Over the last two and a half years, I felt alternatively enthusiastic and discour-
aged, happy and irritated, involved and apathetic, determined and unsure, satisfied and
disappointed, tired and regenerated. At last I do not know whether I’ll feel happy and
releived, but I'll certainaly consider myself lucky. Lucky for having had the opportunity
to undertake this modest adventure which took me back and forth between Canada and
Sardinia, which gave me the opportunity to meet many new people, to know better people
I already knew, which gave me the opportuntity to receive the support of my colleagues,

of my friends, of my family, my parents and my in-laws.

Many thanks to Sylvain Giroux. Everything started on the day I met Sylvain while
he was getting ready to leave Sardinia to teach in a Canadian University. I was thinking
that it was a pity that he should leave and that it would be nice to continue collaborat-
ing with him, perhaps through a doctorate. I did not have to formulate my thought: he
offered me to prepare a PhD under his supervision. This spontaneous demonstration of
trust has always been one of the major factor which sustained me in this adventure and
a powerful incentive to go ahead. Thank you Sylvain, not only for guiding me through
-scientific and technical choices but also for treating me on an equal footing, generously

receiving me in his family, and sharing his life experience with me.

LA special thank you to Helga Wilson for having reviewed my use of English in this section.

v

Thank you to Pietro Zanarini and Gavino Paddeu because going back and forth between
Canada and Sardinia for this doctorate would have been much more difficult without the

support of CRS4, support that they obtained and sustained.

Thank you to Stefano Sanna and Andrea Piras, for their friendship and also for their
great help in implementing with me important parts of the architectures presented in

this thesis.

Thank you to Claude Moulin whom I have had the great pleasure to work with and
who has been a key person in the development of the E-Mate project.

Thank you to Marc Frappier, one of the most friendly and kind persons I met dur-
ing my brief experience at the Sherbrooke University, for having accepted to review this

dissertation.

Thank you to Jean Francois Perrot, whom I had the great plausure to meet at Crs4,

for having accepted to review this dissertation.

Thanks also to all the CRS4 colleagues involved in the E-Mate project, fighting against
an instable code, with ill-working libraries and undefined requisites. Thanks to them
because in the most intense moments of the E-Mate project, I had the rare and precious

feeling of being part of a team.

Thanks to Angela for her patience and her daily support, for her catchy optimism, in a

few words for her love.

At last, thanks to Riccardo, born during the first year of my PhD and who grants us a
great happiness each time he runs, laughs, speaks and does all those things children do

that remind us not to be afraid of the future.

vi

Ringraziamenti

Sono arrivato ai ringraziamenti e questo vuol dire che ce I’ho fatta, o quasi. In questi
ultimi due anni e mezzo mi sono sentito entusiasta e scoraggiato, contento e irritato, im-
pegnato e indolente, determinato e dubbioso, soddisfatto e deluso, affaticato e rigenerato.
Alla fine non so se mi sentiro felice e sollevato ma sicuramente mi riterro fortunato.
Fortunato per aver avuto lopportunita di vivere questa piccola avventura che mi ha por-
tato avanti ed indietro tra il Canada e la Sardegna, nella quale ho conosciuto tante nuove
persone, ho conosciuto meglio le persone che gid conoscevo e ho ricevuto I’appoggio dei

mies colleghi, dei miei amict, della mia famiglia, dei miei genitori e dei miei suoceri.

Grazie a Sylvain Girouzr. Tutto inizio il giorno che incontrai Sylvain mentre si
preparava o lasciare la Sardegna per il Canada ad insegnare all’universita. Pensai con
dispracere alla sua partenza e che sarebbe stato bello continuare a collaborare con lui, ma-
gari tramite un dottorato. Non feci in tempo a sviluppare lidea che lui, precedendo i mies
pensieri, mi propose appunto di iniziare un dottorato sotto la sua supervisione. Questa
manifestazione di fiducia spontanea é stata sempre uno degli stimoli pit importants per-
andare avanti in questa avventura. Grazie a Sylvain non solo per avermi guidato nelle
scelte tecniche e scientifiche, ma anche per avermi trattato alla pari, gemerosamente,

aprendomsi la sua casa, la sua famiglia e la sua esperienza di vita.

vii

Grazie o Pietro Zanarini e a Gavino Paddeu, perché obiettivamente questo dottorato
tra Canada e Sardegna sarebbe stato molto piu difficile da percorrere senza l’appoggio
del CRS/ che loro hanno ottenuto e difeso. Grazie a Stefano Sanna e ad Andrea Piras.
Amici soprattutto ma anche bravissimi colleghi che’ hanno implementato insieme a me

una parte importante delle architetture presentate in questa test.

Grazie o Claude Moulin con il quale ho avuto il piacere di lavorare e che € stato uno

dei pilastri del nostro gruppo al Crs4 durante il progetto E-Mate.

Grazie a Marc Frappier, una delle persone pit amichevoli e gentili che ho conosciuto

nella mia breve esperienza canadese, per aver accettato di far parte del jury.

Grazie a Jean Frangois Perrot, che ho avuto il grande piacere di incontrare e conoscere

al Crs4, per aver accettato di far parte del jury.

Grazie a tutti gli altri colleghi del CRS4 che hanno lavorato agli scenari E-Mate, spesso
lottando con codice instabile, librerie mal-funzionanti e requisiti poco chiari. Grazie so-
prattutto perché nei momenti pit intensi del progetto E-Mate ho avuto la rara e bella

sensazione di far parte di un gruppo.

Grazie ad Angela per la sua pazienza, per il suo sostegno quotidiano, per [’ottimismo

che mi ha trasmesso. In una parola per il suo amore.
Infine, grazie a Riccardo che é nato durante il primo anno del mio dottorato e che oggi

ci regala itmmensa gioia ognt volta che corre, che ride, che parla e che fa tutte quelle cose

che 1 bambini fanno per ricordarci che non bisogna mai avere paura del futuro.

Vviii

List of Abbreviations

API: Application Programming Interface. An interface defining methods/function
signatures that allows a client code to invoke functionalities on another piece of
code. The client has normally no access to the underlying implementation of the
invoked functionalities. An API builds an abstraction that new programs can use

to develop and extend existing programs.

CORBA: Common Object Request Broker Architecture. Distributed architecture
where object communication is mediated by a system called broker. It allows to
extend the object oriented paradigm to distributed system and in multi-platform

environments.

EJB: Enterprise Java Beans. A multi-tier architecure for enterprise applications
based on Java. Applications are deployed in servers which provide system services

such as security and transaction management.
HCI: Human Computer Interaction.

HTTP: Hyper Text Transfer Protocol[3] It is the protocol designed and imple-
mented in the early days of the Web which specifies requests and transmission of

HTML documents between a Web client and a Web server.

IDE: Integrated Development Environment. A program aimed at developers which

ix

integrates a suite of tools such as code editors, build tools, repository access, de-

bugging mode, library management, online documentation, class browsers and so

forth. Examples of IDEs are: Eclipse, IDEA, Netbeans.

J2ME: Java 2 Micro Edition. The Java platform for devices with small footprint.
It comprises a subset of the standard Java API and a new API for user interfaces,

network protocols, and application lifecycle.

MORE: Multi-channel Object REnderer. It is the system that automatically gen-
erates user interfaces for domain objects both adapted to the current platform and

to the domain object currently viewed by the user.

PLANES. Prototyping LANguage for Embedded Systems. A simple task models
definition tool used to generate user interface code for J2ME applications. The core
of PLANES has been extended to be integrated with MORE for the multi-channel

generation of user interfaces over multiple platforms.

POTS: Plain Old Telephony System. A traditional wired phone line that uses
analogic signal transmission between the user phone and the network exchange,
differently from the modern ISDN which is a digital subscriber line with two 64Kbps

channels for voice and data communications.

RMI: Remote Method Interface. The mechanism used in the Java Virtual Ma-
chine to implement an object oriented remote procedure system. Differently from

CORBA, both clients and servers must be written in Java.

SMS: Short Message Service. A relaying service for text based messages of maxi-

mum 160 characters availble in GSM networks.

WAP: Wireless Application Protocol. A protocol stack developed by mobile phone

vendors to deliver minimalist Web services to mobile phones.

o WIMP: Windows Icons Mouse Pointing. Abbreviation used in HCI literature to

indicate a diffuse paradigm for graphical user interfaces

ki

Table of Contents

Summary ii
Acknowledgments iv
Ringraziamenti vii
List of Abbreviations ix

Table of Contents

List of Figures

Introduction 1
0.1 Mobile, Personalized and Location-Based Services 1
0.1.1 Personalization T 2

0.1.2 Mobility . . . v\ v 3

0.1.3 User Position 4

0.2 Ubiquitous Computing at PARC e 4
0.3 Metaphor: Devices are Portals 6
04 Challenges e 11
0.5 Structure and Contribution of this Thesis. 11

0.5.2 Code Contribution 13

1 Domain Objects and User Interfaces 15
1.1 An Object-Driven Approach 17
1.2 Interacting with Objects 18

1.2.1 Reflection in Programming Languages 18
1.2.2 Exploiting Reflection, 19
1.2.3 Class Structure Requirements o 20
1.24 Reflectionin Java o o 22
1.2.5 The Javabeans API L. 23
1.3 Overview of the Automatic User Interface Generation 25
1.3.1 Example 1: A Trivial Calculator Machine 26
1.3.2 Coding Rules and Legacy Systems 30
1.3.3 Example 2: The Pocket Calculator 31
1.3.4 Delivery Architecture L 33
1.4 MORE: the Rendering Engine 33
1.4.1 Model 34
142 Session e 35
1.43 Abstract Viewo 36
144 Mate 39
1.4.5 Runtime Editor o oo 39
1.5 MORE architecture and Javabeans API. 41
1.6 The Maildemo Application 43
1.6.1 Introduction P 43
1.6.2 Design of the Model Classes 43

1.6.3 Multi-platform access to the MailDemo application 51

2 BEYOND OBJECT-DRIVEN INTERACTION 58

2.1 Limits of the Object-Driven Interaction 59
2.1.1 User Profile 59
2.1.2 DeviceProfile o 61
213 Contextofuse. oo 62
2.1.4 Towards a Combinatorial Explosion of Objects 62

22 OnTaskModels. 64

2.3 PLANES: Prototyping LANguage for Embedded Systems 65

2.4 PLANES and MORE Integrafed 68

2.5 PLANES: The Graphical Editor 69

2.6 Task Models for the Maildemo application 69
2.6.1 Delivery Context on PC 70
2.6.2 Delivery Context on a Cell Phone T4
2.6.3 Delivery Context on Voice Responder L 75

3 LIFECYCLE OF APPLICATIONS (o

3.1 Lifecycle 7
3.1.1 Deployment Service and Load Balancing 79
3.1.2 Service Discovery 80
3.1.3 Delivery 81

3.2 Implementation Details 82
3.2.1 Jini as Connection Technology for Pervasive Computing 82
3.2.2 Implementation of the Service Queue 86
323 ServiceModel 88
3.2.4 Example: Personal Agenda service deployment 90

3.3 Delivery to any Device o 93

3.3.1 Introduction R 93

3.3.2 Delivery Context Analysis 94

3.3.3 Exploitation of the Delivery Context 95
3.3.4 Issues Related to Java Classes and Code Mobility 98
3.3.5 Delivery Architecture 99

3.3.6 The Service Viewer 100
3.3.7 Position Analysis 106

4 E-MATE: MOBILE FRAMEWORK 109
4.1 A Travel Assistant: T-MATE 110
411 Introduction 110
41.2 User Profiling 110
4.1.3 Macro-Planning 111
414 Micro-Planningo 113
4.1.5 Implementation Details 113

4.2 Mobile Lesson 117
4.2.1 Experimentation I 117

4.2.2 The Technology 119

4.3 Evacuation Plan. 121
4.3.1 Application Description PR 121

4.4 FEvacuation Plan. oo 123
4.4.1 Scenario Description L 123
4.4.2 System Description o L 123

45 MKTS . . . 125
45.1 Featuresof MKTS 125
452 Lessons Learned 127

4.6

5 RELATED WORKS

5.1 GAIA and Active Spaces
5.2 Coupling Application Design and User Interface
5.3 Naked Objects
5.4 Task-Driven User Interface Design
5.5 W3C Standards and Device Independence Activity

5.5.1 CC/PP

5.5.2 XFOTIS . . o o oo o

6 Conclusion and Future Work
A Pocket Calculator Code

B XML Schemas
B.1 Schema for Response in Thin and HT'TP-only Client Architectures

C PLANES: Text Notation
C.1 Introduction e
C.2 PLANES Grammar o o o o

D PLANES:XML Output for the Agenda Task Model
E Layout

Bibliographie

132
132
133
134
136
137
137
138

140

148

154
154

162
162
163

166

172

174

List of Figures

1 Information and device UI personalization process 2
2 Tablet, board, and palm devices built at PARC

(Pictures from http://www.ubiq.com/hypertext/weiser/UbiHome.html). . 7
3 (A) Computing devices today: devices contain data and programs. (B) De-

vices in computing-pervaded environment are gates to another dimension:

the dimension of computing where software objects live and are accessed

through devices in the gate metaphor. 10

4 Areflective system used to inspect domain objects and generate a graphical

user interface L 20
5 The skeleton of rendering algorithm implemented in MORE. 25
6 Java code for the TrivialCalc example 28

7 Graphical user interface generated on-the-fly for a TrivialCalc object with

Java Swing widgets. 29
8 Three views automatically generated by the object renderer from the cal-

culator machine model. From left to right: a Swing view, an HTML view,

a WAP view. 32
9 A session displayed with the Java Swing library 36

10

11
12
13
14

15
16

17

18

19

20

21

22

23

The method render in the AbstractView class. In line 3 we obtain an
instance of Mate which contains all meta-information about a model. In
line 4 we get a sequence of member names and from line 5 to line 25 they
are laid out in the AbstractView by means of either renderFeature ()

or renderOperation () depending on we are rendering a field or a

method. The features of class Layout are described in E 38
MVC modified with Mate insertion 40
UML for class Message v v v i i i 44
A view for a message with pre-conditions and layout assigned 45

The auxiliary class MessageMate assigns pre-conditions to allow the in-
vocation of specific methods of the model class Message. 46
Precondition implementation for method send (). 47
The invokeMethod method overrides the default behaviour inserting the
instruction for closing the view when the invocation of send is successfull. 48
Definition and assignation of a Layout object in the body of MessageMate 49
UML diagram for classes MailBox, InBox and OutBox 50
An InBox instance as displayed by MORE on the J2SE platform with
Swing APL. 51
MailBoxMate code overrides the default setValue method. Initially,
a confirmation is expected from the user. When counter equals zero a
default mate, with no such a policy, is assigned to the model object. . . . 52
UML diagram for configuration classes 53
View for a Configurations instance containing the mail settings for
the J2SE platform with Swing user interfaces. 54
HTML pages generated by MORE. The generated Web pages are linked

to model objects of type Message and InBox. 55

24

25

26
27

28

29

30

31

32

33

34

HTML pages generated by MORE. The generated Web pages are linked
to model objects of type Preferences and PopPreferences

WML pages generated by MORE. (Top-left) Generated WML page for a
Message instance. (Top-right) The generate edit dialog for the recipient
field member of Message class. (Bottom-left) Generated WML page for
the Configurations instance. (Bottom-right) Generated WML page
for the PopConfigurationinstance.
Layers between the user and domain objects
Prototype of an Agenda application designed with PLANES for a J2ME
powered mobile phone. Lo
PLANES: the graphical tool in action. The task model in the picture (A)
defines tasks and subtasks for an Agenda application. In (B) and (C)
screenshots of the user interfaces related to tasks of the Agenda.
Task model for the Maildemo application delivered on a PC.

Task model for the Maildemo application delivered on a cell phone.

Task model for the Maildemo application delivered on a interactive voice

reSpOnder. e e e

A distributed queue contains service packs to be deployed by application
SEIVETS. . o v v v v v e e e e e e e e e P
Registration of an object in the Jini Lookup service. At time t1 the Ap-
plication server invokes register on the Lookup service. At time t2 the
Lookup service performs the registration and returns a lease object to the
Application server. At time t3, the Application server renews the lease. .
Tuple Matching in Javaspaces. At time t1, Application 1 writes a tuple
(a,b,c). At time t2, Application. 1 writes a second tuple (d, e, f). At time
t3, Application 2 fails to také a tuple. At time t4, Application 2 succeeds
totake a tuple.

56

71

73
75

85

35
36
37
38

39

40

41

42

43

Service components partitioned between locai and remote tiers.
Initialization of the server-side part of Agenda Service
MessageRelay interface o oL
Delivery architecture for fat clients. The arrow represents a push/pull
network connection and the Servicelet is the mobile code which moves at
run-time to the client. Lo
Delivery architecture for thin clients. The arrow represents a push/pull
network connection and the Servicelet is the mobile code which moves to
the remote tier of the Service Viewer.
Delivery architecture for HT'TP-only clients. Between the end user client
and the Service Viewer there is a Web server which computes the current
device profile and perform the appropriate XML to XML translation. In
our case, we provide three possible translation: XML to HTML, XML to
WML, and XML to VoiceXML.
Gipsy is a Java library based on JavaComm. It can run as daemon or can
linked as a library. Gipsy parses the output of a GPS device connected
to a serial port. Programs can receive GPS coordinates either by direct
method invocation, or by TCP/IP, or by file based data exchange

User interface of the t-MATE service accessed by a PC. The user builds a
trip plan submitting requirements like the maximum budget, the preferred
hour of departure and soon. oL

The TV-Log is an E-Mate service which is delivered in the digital TV

‘and registers information about user preferences. This spying activity is

used to populate a bayesian network which is the knowledge based used to
personalize service delivery to users. This architecture is simply a proof-

of-concepts and personalization issues are beyond the scope of this thesis.

108

114

44

45

46

47

48

49

50

51

User activities during T'V-watching are sent from the TV-Log to the Pro-
file Manager which populates a bayesian network. The Macro planning
module provides a GUI for creating trip plans. Trip plans are inserted in
the Agenda. During Micro planning, an Event Agent seeks new cultural
events co-located with the user. Events are filtered by the Personal Pro-
file manager and only those matching the user profile are inserted in the
Agenda. The Agenda is equipped with an Agenda Agent which notifies
imminent events to the user by means of SMS messages.
Hotspots chosen by teachers for the Nora mobile lesson
The right panel shows the lessons published in the system. Any lesson can
be selected and the set of hot spots is presented to the student. On the
field, the student can try to guess which hot spot he/she has reached. . .
Once the student has guessed the hot spot the system asks some questions
relevant to the hot spot. L
Communication in the case of distributed architecture. Notice how mobile
lesson maps to general delivery architecture for thin clients.
A Enterprise domain object presented to the user in a Web page (a). The
same domain object accessed from a mobile phone in (b) and (c).

Maps in three different modalities: (a) Web browser, (b) Java interface on
desktop PC, (c) and cellular phone.
If a device must communicate with a remote object (top) then the network
is used for any message from the user to the object. In a dynamically
partitioned architecture (bottom) objects are split into parts. Some part
runs on the remote server and some run on the user device minimizing the

number of messages sent from client-side to server-side and vice versa. . .

120

145

Introduction

The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from

it.[71]

0.1 Mobile, Personalized and Location-Based Ser-
vices

Hitherto, personal computing has been confined in a unique paradigm of interaction: the
user sitting in front of his screen eventually connected to the Internet by means of a
cable. The invention of laptop/palmtop computers and the development of wireless data
connections remove some technological constraints and leverage the use of computers in
domains different from the traditional office productivity such as business and leisure
on-the-road.

Nevertheless, hardware and network technologies are not sufficient for computing to
scale up to a new level of full interoperability of devices, programs, and data. There is the
need for organization, system architectures, and metaphors in order to make computing

aware of the user profile, mobility, and user location.

0.1.1 Personalization

Personalization enables the system to provide the right information at the right time
both in synchronous manner - i.e. when the user is connected and browsing between
services - and in asynchronous manner, i.e. some agents keep searching any relevant data

while the user is disconnected.

INFORMATION | |
PERSONALIZATION. [~

Profile. I

Figure 1: Information and device Ul personalization process

The personalization process (Figure 1) is a two steps process. First, it integrates
information from sources as diverse as localization technologies, user models, and GIS
systems. Then, the personalized information must be presented in such a way that the
human computer interacion is the easiest for the user. Thus, the personalization process

must be followed by a device-adaptation process based on the device-profile of the user

terminal.

User terminals may differ considerably from each other: some of them can load and
run mobile code from the network, other can be programmed to communicate with online
services exchanging data but not code, and many of them cannot be programmed but
can access to information by means of pre-installed micro-browser or via voice-interfaces.

A wide variety of applications can better serve users if they adapt to user wants
and needs. The key to enable the adaptation and personalization of services are the
user models. User models can be successfully applied in recommendation systems [57],

adaptive information retrieval systems [6] and systems for coaching/teaching users.

0.1.2 Mobility

In a pervasive computing environment the user will continuously switch from connected
to disconnected states and may use a wide variety of heterogeneous devices. The mobility
of users implies that services and information systems should be available from a number
of different channels. The same information should be accessible from a Web page,
from a WAP site or from an Interactive Voice Responder (IVR) machine. Besides, a
given channel can provide many interaction modalities. For instance, a Windows-Icons-
Mouse-Pointing (WIMP) desktop application can greatly improve usability by providing
text-to-speech and a voice recognizer system for text dictation.

With respect to these implications, a service supporting mobility of users should
be designed in a way such that the following principle will stand: design once, move
anywhere. Nevertheless, multi-modality and multi-channel access are only the first step
toward the result. In fact, even though a service is available for any device, the user can
feel the interaction with the system rather uncomfortable. This occurs when the network
is too slow, scarcely reliable and disconnections frequently occur. Moreover, some tasks
can take long before their completion and waiting on-line for the results is useless and
expensive. In such a situation the user experiences the system as a hostile environment

to work with.

To improve user-system interaction, one should be able to interact directly with the
service by means of an appropriate user interface in synchronous manner and to obtain
immediately a result. On the other hand, the user would appreciate the possibility to
schedule some kind of work, i.e. a search on the web, and to retrieve the results of such
a job in a later time. The latter is an asynchronous way to interact with the service
in which the user engages one or more agents to perform some tasks while the user is

off-line.

0.1.3 User Position

The user position is an important parameter in computing. In fact, this parameter can
be used to provide the right information at the right moment by location aware systems
[52]. The precision required may vary according to the objectives. In fact, if we are
designing an agent aimed to search cultural events such as concerts or football matches,
it is important to screen out all events that will not be held in the city where the user
is. So the precision required is at city-level. But if the agent task is to notify the user
whenever his position is nearby a monument or a museum the precision required should

be about 100 meters.

0.2 TUbiquitous Computing at PARC

Marc Weiser is the author of the seminal paper The computer of 21st century [71] and is
worldwide considered as the father of Ubiquitous Computing. According to his definition
Ubiquitous Computing is the third wave in computing after the main-frame era and the
invention of the personal computer.

The main purpose of Ubiquitous Computing is to go beyond the way people have
used computers till now. Today, a personal computer is basically a box which completely

absorbs attention distracting the user from the surrounding environment. If one thinks

4

of the computer as a tool to accomplish a given job, most of the time is spent trying to
using the tool rather than solving the problem.

On the other hand, a “profound” technology is one that does something useful with-
out drawing user’s attention too much. In terms of metaphors, people currently think of
personal computers as boxes containing a desktop. Such a metaphor is probably inad-
equate for computers of the future, and new metaphors should be devised. Weiser says
that a good tool is often invisible [70], not in a physical meaning, but in the sense that it
does not draw user’s attention letting people focus on the problem. An example of such
a tool are the eyeglasses, one use them to look around and not to look at the eyeglasses.

The Ubiquitous Computing era is still to come, but today technology has probably
the means to realize what only ten years ago appeared to be visions of a science fiction
writer. Today, most people use a computer at home and another at work, computers are
easier to use and not only for experts as in the past, moreover beside personal comput-
ers, most people own palm size computers, laptop computer and programmable cellular
phones. The problem here is that all these devices need a minimal set of configuration,
data need to be kept synchronized among several devices, batteries need to be recharged,
and different devices need to interact with each other through a large number of pos-
sible interfaces. The desktop metaphor still resists and we have many mini-desktop to
administrate. Once again, the tools we use draw part of our energies and of our atten-
tion, the more is complex the technology the larger is the amount of time we spend to
dominate such a complexity: this is not a “pervasive technology”, but rather a “invasive
technology”.

According to [71] the Ubiquitous computer must have three characteristics:

e pervasiveness, it must be composed by a big number of hardware and software
elements cooperating each other and small enough to be embedded in every day

objects or in the human body;

e mobility, users must be able to move when using the computer, thus some elements

of the Ubiquitous computer must move with the user;

e invisibility, the computer need to be invisible in order to draw our attention as less

as possible.

Of course, pioneers researcher in Ubiquitous Computing were at PARC: Weiser and
his colleagues. Their implementation consisted in a set of applications and devices to
be used in work group environments. They built small palm sized computers to be used
instead of notes and post-it, tablet computers to be used instead of paper and notebook,
and board computers to be used instead of traditional writing boards (Figure 2). The
device was ‘in a infrared network. Their results was more or less satisfactory, they got a

certain degree of pervasiveness, a certain degree of invisibility and mobility.

0.3 Metaphor: Devices are Portals

A device is a portal into an application/data space, not a repository of custom
software managed by the user. An application is a means by which a user
performs a task, not a piece of software that is written to exploit a device’s

capabilities. [2]

Computer technology is already a pervasive technology: processors, memories, displays
and communication networks are massively deployed around us. Twenty years ago the
only CPU in our house was probably the one inside our Commodore 64 or Sinclair
Spectrum. Today one is likely to use a PC at home and one at office, a laptop or/and a
PDA, a mobile phone with Java and so forth. Besides, domestic appliances have evolved:
washing machines have embedded processors, the interactive digital TV is a new channel
to access on-line services, a photo camera can build a Web site in its internal memory

card, and so forth. There is rather a lack of ubiquity in software applications: a processor

6

Figure 2: Tablet, board, and palm devices built at PARC
(Pictures from http://www.ubiq.com/hypertext/weiser/UbiHome.html).

is dedicated to a specific goal, and the whole set of computers around us do not perform
as one personal, ubiquitous and inter-operable computing environment. In other words,
there is a lack of organization and synergy.

It is desirable to evolve from an environment where dozens of computers around
us have their own small computing context, to an environment where all computing
devices are simply gates to a shared computing space (Figure 3). Interactions with
computers, where computers are no longer boxes but gates to a pervasive computation,
can be both explicit: the user sends a command and waits for feedback; and implicit,
input/output devices disseminated in the real world gather information about our habits
by means of sensors and such information are used to infer new behaviors and new tasks
to accomplish. One must no longer think of computers as computing devices containing
data and programs, but rather as part of an environment where users live and move
around.

The old hype slogan “The Net is the Computer”[60] could be rewritten as “The
World is the Computer”. Thus, the Ubiquitous computer components, such as software
and hardware, must follow users in move. Actual computing devices will simply become
temporary hosts for whole or parts of Ubiquitous applications. The end user must be
allowed to start a given task in a device and seamlessly migrate its work to another
as soon he finds more serviceable to change. Thus, applications must be available from
several channels such as web browsers, mobile phones and old Plain Old Telephone System
(POTS) via voice interaction.

Applications enhance physical surroundings giving the user the perception to move
in an empowered environment: the computing environment is the user’s information-
enhanced physical surroundings, not a virtual space that exists to store and run software
[2]. So, virtual spaces can coincide with physical spaces.

According to this vision, phones, printers, and sensors become simply applications

and services available from any device the user wants to use like a terminal. Moreover,

the surroundings can provide more powerful terminals to access ambient applications -
for instance, a broadband-wired connection instead of a wireless narrow-band one. Thus,
terminals should be considered as any other services: they are subject to discovery and
their availability should be notified whenever the task carried out with the actual device
requires them. These requirements emphasize, among the others, the concept of position
and the techniques to get the user position inside and outside buildings: Ubiquitous

computers must know where they are [71].

(A)

DEVICE

DEVICE
USER
ENVIRONMENT
1\ | |
DEVICE
USE
ENVIRONMENT

Figure 3: (A) Computing devices today: devices contain data and programs. (B) Devices
in computing-pervaded environment are gates to another dimension: the dimension of
computing where software objects live and are accessed through devices in the gate
metaphor.

10

0.4 Challenges

Building applications in computing-pervaded environments requires efforts at various

levels [56]:

e wireless connectivity as indispensable support to obtain the mobility;

e network protocols able to handle user mobility seamlessly, the actual IP and TCP
were implemented for a network model in which nodes were always connected and

they could be inadequate to handle billions of mobile elements;

e mobile code and interactive elements able to adapt themselves to the device. Port-
ing user interfaces code from a platform to another is hard, there are problems
related both to the physical capabilities of devices (the presence of a keyboard and
a mouse, screen size etc.) and to computational capabilities (yet there is no means

to get code that can run on any device, even if it is written in Java);

0.5 Structure and Contribution of this Thesis

This thesis is built on three pillars addressing three main issues:
e how to provide user interfaces enabling users to manipulate objects from any device?

e how to provide a means to synchronize and constrain the interactions between a

user and many objcets?

e how to deliver services to the “gates” of the pervasive space?

e Chapter 1 addresses multi-channel delivery from the viewpoint of user interfaces.
First, it describes an object-driven methodology for the design of application ob-

jects that allows programmers to disregard low-level details about the delivery of

11

application to the end-users. The chapter proceeds with the details of the MORE

framework which supports this methodology then we describe step-by-step the im-

plementation of an example application and its deployment on different platforms:

more precisely from a desktop computer to a voice browser?;

e Chapter 2 addresses the limits in object-driven interaction in the context of per-
vasive computing, then it proposes solutions to go beyond such limits enabling
constrained interactions with many objects to perform a specific task. PLANES

implements a framework to do so and an example is presented.

e Chapter 3 focus is on service life-cycle. It contains an analysis of deployment, dis-
covery and delivery issues. Then architectures to address these issues are presented:
the deployment architecture deals with how a new service becomes available in the
environment; discovery deals with how users can locate services; finally, delivery

deals with how services become accessible from the end user device.

e Chapter 4 describes how the results of this work have been inserted in larger re-
search project called E-Mate, whose objective is the realization of a framework for
the design, deployment and delivery of services which are platform independent,
geo-referenced and user-tailored. This chapter sketches four applications used as
test beds of the whole architecture: a ubiquitous travel assistant (Section 4.1), a
mobile lesson management and deployment system (Section 4.2), a crisis manage-
ment system (Section 4.4), and finally an investor decision support system called

MKTS (Section 4.5).

e Chapter 5 compares our results to related works on Ubiquitous Computing, in-

teraction models and design methodologies for pervasive computing;

2The term woice browser includes a range of systems which allow a voice-based interaction such as
Interactive Voice Responders (IVR), answering machines, and VoiceXML enabled browsers

12

e Chapter 6 closes this work sketching promising future research directions.

0.5.1 Topics Beyond the Scope of this Dissertation

This work covers only few of the challenges reported in Section 0.4. Thus, all software,
methods and solutions proposed here assume the availability of appropriate bandwidth,
appropriate network protocols and appropriate distributed systems and frameworks for

the construction of network distributed applications.

This work does not try to introduce new metaphors for blurring computers in the
background and get them “invisible” to the user. This work only tries to implement
the metaphor “device are portals” described in Section0.3 The focus of this work is on
explicit user-computer interaction and not on unconscious interaction where user needs
are anticipated by collecting data and inferencing habits. This research topic is investi-
gated and addressed in other research Vprojects, for instance in Intelligent Habitats [49]

at Sherbrooke University.

This work does not deal with issues related to security of data, privacy of users, and

ergonomics and usability of produced systems.

0.5.2 Code Contribution

The main code contributions related to this thesis are:

¢ MORE: a multi-channel Object REnderer system which generates views for Java
objects allowing direct method invocation and object manipulation in several plat-
forms such as Java Swing, Web pages, WAP pages, Voice XML browsers and J2ME

phones.
e PLANES: a graphical tool and a language specification for task models definition.

13

e Libraries for shared data structures, service lookup, and application life-cycle man-

agement in application servers.

14

Chapter 1

Domain Objects and User Interfaces

Nowadays information systems have to spread on a wide variety of devices. Networks
have enabled their deployment on very heterogeneous devices. Thus the design and
implementation of interactive software in a platform neutral way have become a central
concern. The application should be deployable in any device even those unknown at
design time. The main issue is then how to generate user interfaces at runtime adapted
to the end user device. Our solution relies on an object-driven design of fhe application
domain based on some coding conventions. The reflective capabilities of the language
are used to retrieve, from the code, any relevant information useful to build on-the-fly a
user interface for objects of the application domain. Thus, one needs to focus only on
the business logic while the user interface will be generated when needed.

As users are freed from technology concerns, designers should be able to design soft-
ware abstracting from any technology details and to focus only on application domain
concepts and their relations.

Some frameworks address general aspects of distributed applications development
but none addresses aspects specific to pervasive computing environments. For instance,
the Enterprise Java Beans (EJB) framework [63] aims to build applications by compos-

ing reusable. software components which share a common runtime environment called

15

“application server”. The EJB architecture faces the management of transactions and
provides data persistency. Although EJB have proven their efficiency in the development
of back-end systems for many commercial Web applications, they do not address the
issues related to mobility of users and adaptation to the end user device.

In general programmers must still deal with the details of the final delivery of their
applications. Current Integrated Development Environments (IDE) aim to build appli-
cations whose delivery context is known a priori. For example, IBM Visual Age makes
available a number of tools such as Java libraries, user interface visual composition, and
stubs generation for Remote Method Invocation [59], but it assumes that the deployment
will take place in a desktop environment or in a enterprise server. IDEs like Visual Age
have not been devised for the development of applications for the J2ME profile, so the
programmer must not use classes unloadable in small devices.

Although Java is aimed to be a platform-independent language the number of devices
able to host a Java Virtual Machine is really small. Therefore, the slogan “Write once
run anywhere” seems too optimistic, fails in its literal intent, and is meaningful only for
classes of devices: an application written for the Java Standard Edition (J2SE) can be
executed on Windows2K, Linux, or MacOS but cannot run on a palm-top or on a mobile
phone. Thus, there is a need for languages and environments for device independent
application development.

If we look under the hood of a software application we can notice that some parts such
as the data/object model and the functions can be considered device neutral, while other
parts such as the user interface are strictly device dependent. Abstracting the design
from the device means allowing developers to focus solely on the device neutral part
of the whole, spending the minimum effort for device dependent details. This chapter
shows how to free the programmer from issues related to user interfaces for applications
delivered in heterogeneous devices. The main idea is to extract information from the

code of the application and to generate a user interface according to the device used.

16

In Section 1.1 we present the rationale of our approach, in Section 1.2 we show how
reflection is useful for interacting with domain objects, in Section 1.3 we show, with some
examples, how to write domain objects and the resulting user interfaces, and finally in
Section 1.4 we describe the details of domain objects introspection and multi-channel

user interface rendering.

1.1 An Object-Driven Approach

Objects are building blocks able to react and therefore to interact. Thus, if a system pro-
vides a viewing/controlling mechanism to automatically fill the gap between the users and
the application objects allowing the direct interaction between them, and if this bridge
is implemented for any type of terminal used by the user, then we can put in practice a
design based solely on the definition of domain related objects and their relations.

Our first contribution is the definition of an object-driven approach for developing
interactive applications in a platform-independent and device-independent manner. In
Section 1.3 and Section 1.4 the details of such a mechanism and how it is implemented
in Java are described.

The rationale behind this approach [8] is based upon the following considerations: any
application refers to a set of domain object classes. Further on in the text, such objects are
called “models”, borrowing the naming from the object oriented design pattern Observer
[24] based on the “Model View Control” [37] architecture. Examples of models for an
application in the tourism domain are: person, address, calendar, travel, event, etc.
Among these classes there are several relations such as: which addresses are relevant to
a given person; an event is something which happens in a given place and at a given
moment; an appointment is a subclass of event which involves two or more persons and

so forth. In the object oriented paradigm any object is an instance of a given class’

IThe concept of class has been introduced by Simula [16] and reimplemented by Smalltalk [35],

17

Objects are reactive entities which are activated whenever their methods are invoked.
The reaction of an activated object is to produce a result object and, as a side effect, to

change its internal state.

1.2 Interacting with Objects

In real world, interacting with an unknown object requires us to perform an inspection
using our senses. This may be also true for software objects instantiated and running in
a computer process.

Our goal is to allow users to interact with the domain objects which are in general
not known beforehand. Thus, it is necessary to explore the domain objects in order to
understand how they are done and what they can do for the user. Then, a user interface
must be provided to allow users to manipulate and interact with such domain objects.

Objects are units of code loaded and running in the context of a computer program.
If such a program wants to inspect how objects are made and wants to interact with

their methods, then the program must be a reflective system.

1.2.1 Reflection in Programming Languages

A reflective system is a system which incorporates a self-representation. This self-

representation makes it possible for the system to answer questions about itself and

and expresses the behavior of a set of objects which share the same semantics operating on the same
attributes.

A class defines the internal structure and the behavior of its instances. The internal structure is
defined by their instance variables and by their instance methods. Not all object oriented languages
are built around the concept of class. In some languages such as ACT1 [39] and ThingLab [5] new
objects are created cloning existing individuals and classes are not a language construct but only the
result of grouping objects with similar characteristics. Further on, it is assumed for simplicity that an
object-oriented language is a language where classes are a construct and where the concept of data type
is uniformed to the concept of class. Notice that this last statement is not true for many languages.
For instance, in Java or C4++ data of type int are not instances of any class. To address this lack of
uniformity, the Java API provides the class Integer which is a wrapper for a data of type int. Similar
wrapper classes are available for other primitive types.

18

support actions on itself [40]. In other words, it performs a computation on a program.
The definition above does not assume a particular programming paradigm: reflec-
tive systems can be written in procedure-oriented, function-oriented, or rule-oriented
languages. Nonetheless, object-oriented languages have been a rich? field of experimen-
tation for reflective systems. Smalltalk80 [26] introduced the concept of meta-class and
the unification of the concept of class and object: any class is an instance of a given
meta-class, in this case meta-classes are the core of the self-representation for reflective
systems. They allow the self-analysis of a system and any dynamic self-modification.
Further improvements towards complete reflection in programming languages are
achieved in PLASMA [58], and OBJVLISP[14] where any element of the language is
an object: classes, meta-classes, methods, variables and messages are all objects. This

helps to remove boundaries between reflective code and application code.

1.2.2 Exploiting Reflection

The runtime generation of a graphical user interface can be described as follows: a class
unknown at compile time, is loaded and instantiated. This instance is the object with
whom the user wants to interact. Another object in this system performs an inspection
of the first object in order to extract all the information relevant to the interaction: the
names of the fields, the names of the methods, the type of the fields and the signature
of the methods. Among other things, a third object which is the graphical user interface
is instantiated by virtue of the information gathered from the object inspection.

The first object is the model, the second one acts as inspector and the third is the
view (Figure 4). The system is reflective according to the definition because it collects
information on itself, more precisely on a part of it, and performs some actions according

to this information.

2Lisp has been the privileged language to experiment reflection however.

19

REFLECTIVE SYSTEM

Figure 4: A reflective system used to inspect domain objects and generate a graphical
user interface

1.2.3 Class Structure Requirements

It is not possible to generate an effective user interface for an arbitrary object without a
set of rules and naming conventions. Rules and naming conventions [28] are the grammar
and the syntax for a system to gather a minimal amount of information from an object.
For instance, it can be inferred that an object encapsulates a field called balance of
type Number by observing that the object has a method Number getBalance(). This is
a straightforward consequence of a naming convention followed by both who writes the
class and who inspects the code.

Many languages are provided with tools for the easy introspection of the running
code. This thesis refers in all cases, unless declared differently, to the Java programming
language. Although Java was not the first language to implement reflective tools, nor its
reflective capabilities are the most interesting or the most developed, Java is the language
choosen for the implementation of the code related to this thesis.

The reasons for the choice of Java can be summarized as follows:

e general relevance reasons

20

availability of best commercial and open source development environment
availability of testing and project management tools

huge availability of open source libraries for a large range of problems
code portability in different operating systems

excellent documentation

unified framework for application development

better performances if compared to fully interpreted languages such as Smalltalk i

Python [64], et al.

e reasons relevant to distributed systems and pervasive computing

availability of a remote methods invocation (RMI) model

availability of a connection technology for the discovery, lookup and deploy-

ment of objects in a network (JINT)
availability of XML parsers and other XML related libraries

availability of Java Virtual Machine for small and embedded devices (J2ME)

and personal digital assistants (Personal Java)

mobility of the code which allows objects to be serialized and deserialized in
different running virtual machines with remote class loading performed via

HTTP
robust and scalable security model based on policies

interface to legacy and non Java system via Java Native Interface (JNI).

In Java, the state of an object is the set of values of its instance variables that are

normally encapsulated in the object and therefore not accessible. Nevertheless, such

variables may cften be accessed by means of specific access methods, called “accessors”,

21

when such methods exist. Accordin to naming conventions, accessors have the form:
xtype getX()and void setX(xtype newX). The former returns the actual value of the
variable x of type xtype, the latter assigns newX as new value for this variable. In some
cases, a variable can be accessed even if no accessors are provided. Moreover, acccess
to instance variables may also be precisely controlled: in a Java class, a variable can be
declared with private access, and therefore accessible only from the object code; with
package protected access, which extends the access to any class belonging to the same
package; with protected access, which extends the previous access to any other object
whose class is a subclass; and finally with public access, which is extended to any other
object. Further on, it is assumed that an object has a variable x if there exists an accessor
getX() which returns a xtype object, and that a variable x is writable if there exists an
accessor setX(xtype newX). From a client-code point of view it is not relevant whether
the result of getX() is the value of a real variable or it is computed on the fly. In both

cases, for the client code it is the value of an internal property of the object.

1.2.4 Reflection in Java

The Java Reflection API is a part of the core definition of Java. It implements the

following functionalities for reflective code:
e construct new class instances and new arrays;
e access and modify fields of objects and classes;
e invoke methods on objects and classes;
e access and modify elements of arréys;

Such functionalities are exploited in sophisticated applications that need to discover
at runtime methods and fields of an object. Among these applications, there are object

inspectors, interpreters and class browsers. The Java Reflection API is affected by some

22

important limitations. In fact, although classes such as Class, Field, Constructor,
Array, Method and Modifier are defined to manipulate the metalevel concepts, the
metalevel is not modifiable by user code. The only metaclass is the class Class which is

declared final and thus cannot be extended.

public final class Class
extends Object

implements Serializable

public Object invoke(Object obj,
Object[] args)
throws IllegalAccessException,
IllegalArgumentException,

InvocationTargetException

Given that neither Class nor Method can be extended, the user code cannot change
the core method invocation mechanism. In other words, the Java Reflection API allows
user code to inspect and to use dynamic invocation but it does not allow to modify the
default implementation of such mechanisms. The reasons behind this design are related
to security.

The constraints in Java reflection described here have no serious impact on the im-
plementation of the code related to this dissertation. The simple “passive” reflection is

sufficient for our requirements.

1.2.5 The Javabeans API

The Java Development Kit includes a library called the “Javabeans API”[28]. A Javabean

is a class which conforms against a given set of rules and naming conventions but, apart

23

from that, it is a simple user-defined class and it does not extend any special-purpose
system class.

The Javabean framework has beed devised to define classes that can be manipulated
by automatic tools, for instance, builder tools that compose Javabeans at design-time
and runtime environments for Javabeans instances.

An automatic builder tool is able to infer from a Javabean code field names, field
types, method signatures, and the events fired by the bean. In this way, a builder
tool can generate the code of an application by the composition of a certain number of
Javabeans.

Thus on the one hand, the Javabeans API allows systems to be flexible enough to
gather information about the intimate structure of running object instances in order to
invoke methods, read/write fields, and to listen to events; on the other hand, the Jav-
abeans API allows programmers to specify additional information for reflective systems
by means of special purpose classes called BeanInfo(s).

For instance, if one wants a precise enumeration order of methods for a given class,
then the bean developer can implement a Beanlnfo class where the enumeration of meth-
ods is explicitely coded and not dependent to the actual implementation of the Java
Virtual Machine.

The code related to this dissertation largely exploits the reflective capabilities of
the Java programming language and of the Javabeans API for the implementation of a
reflective system for the automatic generation of user interfaces called MORE (Multi-

platform Object REnderer).

24

1.3 Overview of the Automatic User Interface Gen-
eration

MORE builds on-the-fly a graphical user interface for any given object. Widgets such as
text fields, radio buttons, and more sophisticated controls, are deployed as placeholders
for the data they refer to: strings, numbers, boolean and more complex data types like
object arrays and collections. Complex models are viewed as composite graphical objects
and the rendering process is applied recursively till atomic interactors are obtained. The
process of inspecting composite models to generate a graphical user interface can be

summarized by the algorithm described in the Figure 5.

Render (Domain Object) --> View

Create a container for the actual platform
//e.g. a JFrame in Java Swing toolkit.
//e.g. a Web page in HTML

//e.g. a form in J2ME

For each '"displayable" field of the model object:
Look-up for a run-time editor for the field.
If found: add the editor to the container. ’
Else: add a link (e.g. a hypertext link, a button, etc.)
to the field

For each method of the object:
Add a trigger, e.g. a button, to execute the
corresponding method.
Return the container

Figure 5: The skeleton of rendering algorithm implemented in MORE.

A run-time editor is a component aimed to write/read the value of an object field. For

25

instance, if our model contains a field of type java.lang.String, the above algorithm
looks up a run-time editor for such a type, that will likely be a text field graphic compo-
nent. To foster the development of new applications, MORE provides run-time editors for
main basic Java types: java.lang.String, java.util.Number, java.lang.Boolean,
and java.util.Calendar. Besides, it provides run-time editors for composite types like
java.util.Collection, and java.lang.Object[]. For those types, the editor allow
users to select, display, modify, remove, and add elements to the collection or to the object
array. Finally, during the development of multi-media and geo-referenced applications
[4], emerged the need for some new Java types: Situated and MultimediaResource.
Situated is a Java interface that provides information about the physical position of
an object either in a Cartesian format (latitude and longitude) or in a topological format
(city, street, number, etc.). A Situated[] component is displayed as a map centered on
the barycentre® of the array, in which the user can zoom in, zoom out, select an object
and display it in a separate view. The MultimediaResource type is basically a wrapper

to a multimedia file; supported types are JPEG, GIF, MP3, wav, and mpeg.

1.3.1 Example 1: A Trivial Calculator Machine

To provide a better grasp of how generating a user onterface on-the-fly for a given object,
we use a trivial calculator machine as illustration. The calculator is implemented in Java
and it is able to perform basic numerical operations (Figure 6).

The following code snippet computes 5*6 using this object:

TrivialCalc c=new TrivialCalc();
c.setA(new Double(5.0));
c.setB(new Double(6.0));

Double result=c.multiplication();

3The barycentre of the points defined by geographic coordinates
(laty,lony), (latg, long), ..., (laty, lony,).

26

In general, a human programmer easily figures out how to use a given object by the
structure of its code. Similarly, a reflective system which loads a TrivialCalc instance,
infers the existence of two numerical fields, A and B, and of two operations sum and
multiplication, since Javabeans coding conventions are respected. After this simple
analysis, it is possible to build a user interface for inserting numerical values and for
invoking operations. Figure 7 shows the graphical user interface generated on-the-fly for

a PC.

27

package crs4d.more.testobjects;

public class TrivialCalc {
Double a=new Double(0.0);
Double b=new Double(0.0);

public Double getA() {
return a;

}

public void setA(Double a) {
this.a = a;

}

public Double getB() {
return b;

¥

public void setB(Double b) {
this.b = b;
}

public Double sum(){
return new Double(a.doubleValue() + b.doubleValue());
}

public Double multiplication(){
return new Double(a.doubleValue() * b.doubleValue());

+

public String toString() {
return "I’m a trivial calc";

X

Figure 6: Java code for the TrivialCalc example

28

Figure 7: Graphical user interface generated on-the-fly for a TrivialCalc object with Java
Swing widgets.

29 |

1.3.2 Coding Rules and Legacy Systems

The TrivialCalc code (Figure 6) is not the most intuitive that a programmer could

write. In fact, a client program would expect methods with parameters:

TrivialCalc c=new TrivialCalc(); // (1)

Double result=c.multiplication(5,6); //(2)

Furthermore, the parameters makes the internal registers A and B inside the object
useless. Then in this case, instantiation (1) is also useless, and in fact a waste of space.
The code could be redesigned to be fully procedural and class methods used instead of

instance methods:
Double result=TrivialCalc.multiplication(5,6);

From the code above one can raise the question whether or not it is possible to
generate a user interface from the sole knowledge of the signature of a static method
with parameters. The answer is yes for a code as simple as the example. But more in
general, given arbitrary legacy code written with no naming conventions, no fixed idioms,
and no style rules, is it possible to write a reflective system able to provide the user with
a proper user interface in order to effectively interact with the code?” We do not answer
this, but we suppose that the cost of implementing such a system would be really big*.
On the other hand, a more pragmatic approach is to rule code-writing with few simple
guidelines. The resulting code becomes easily interactive in a reflective system with only
a reasonable burden put on programmers’ shoulders.

The rules MORE is relying on are the following:

4There are some commercial products which provide a semi-automatic integration of legacy systems
such as IHC [33]. In most cases the integration of legacy system is a manual task which requires the
design and implementation of a middleware to wrap the legacy system to be incorporated in a Web
based service architecture.

30

o If a field X is expected to be visible to the user then write an read accessor

public getX()

e If a field X is expected to be writable by the user then write a write accessor

public setX(XType x)

e If a method is expected to be directly invoked by the user then the method must

Dbe public and without parameters

The last rule sets a strong constraint, but the example of TrivialCalc shows that the
state of an object can be used instead of parameters to perform the computation. If we
remove the last rule, at the moment of the invocation of a method the system should ask
the user to insert the parameter values. This task is quite simple for strings or numerical
values but could be more complicated for object references.

As final consideration, legacy code could be wrapped inside a well-written code in

order to become directly manipulable by the user.

1.3.3 Example 2: The Pocket Calculator

The TrivialCalc (Figure 1.3.1) does not fit the usual mental model of pocket calculators.
We can easily write a class Calc (Appendix A) which is a closer metaphor for real world
pocket calculators. It contains a field display of type String, ten methods (one for
each digit) which append the corresponding digit to the display, one method for each
operator, and one to show the result.

The class Calc is not a user interface, but rather a model for which it is possible
to attach a view generated in an automatic manner by a rendering mechanism. This
model of calculator performs the same interactions as real world calculators does, with
no use of graphical components and thus, implementing the interactions with platform

independent code. Figure 8 shows the pocket calculator in various platforms.

31

8 Inare < &
S =

il ! ' C NOKIA

Figure 8: Three views automatically generated by the object renderer from the calculator
machine model. From left to right: a Swing view, an HTML view, a WAP view.

The client program using a Calc instance to compute the sum 34 + 33 would be as

follows:

Calc c=new Calc();

c..3_0);
c._4_0;
c.sum();
8._3_(J3
c..3_0);

32

c.result();

String result=c.getOperand();

It is like a macro where any single instruction corresponds to an action on the actual

user interface.

1.3.4 Delivery Architecture

Application delivery is a fundamental aspect in the life cycle of a software application.
The complete description of deployment, discovery, lookup and delivery of software ob-
jects in a pervasive computing environment is detailed in Chapter 3. In this section only
the delivery concepts strongly related to the automatic generation of user interfaces are
introduced.

At this stage, we make a rough classification of devices according to the respective
location of models and views. The architectur