
Services in Pervasive Computing Environments: from Design to Delivery

par

Davide Carboni

thèse présentée au Département d'informatique

en vue de l'obtention du grade de docteur ès sciences (Ph.D.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, janvier 2005

Surnmary

The work presented in this thesis is based on the assumption that modern computer

technologies are already potentially pervasive: CPU s are embedded in any sort of de-

vice; RAM and storage memory of a modern PDA is comparable to those of a ten years

ago Unix workstation; Wi-Fi, GPRS, UMTS are leveraging the development of the wire-

less Internet. N evertheless, computing is not pervasive because we do not have a clear

conceptual model of the pervasive computer and we have not tools, methodologies, and

middleware to write and to seamlessly deliver at once services over a multitude of hetero-

geneous devices and different delivery contexts. Our thesis addresses these issues starting

from the analysis of forces in a pervasive computing environment: user mobility, user pro-

file, user position, and device profile. The conceptual model, or metaphor, we use to drive

our work is to consider the environment as surrounded by a multitude of services and

abjects and devices as the communicating gates between the real world and the virtual

dimension of pervasive computing around us. Our thesis is thus built upon three main

"pillars". The first pillar is an domain-object-driven methodology which allows developer

to abstract from low level details of the final delivery platform, and provides the user with

the ability to access services in a multi-channel way. The rationale is that domain abjects

are self-contained pieces of software able to represent data and to compute fonctions and

procedures. Our approach fills the gap between users and domain abjects building an

appropriate user interface which is bath adapted to the domain abject and to the end

user device. As example, we present how to design, imple:-.i1ent and deliver an electronic

11

mail application over various platforms.

The second pillar of this thesis analyzes in more details the forces that make direct

object manipulation inadequate in a pervasive context. These forces are the user profile,

the device profile, the context of use, and the combinatorial explosion of domain abjects.

From the analysis of the electronic mail application presented as example, we notice that

according to the end user device, or according to particular circumstances during the

access to the service (for instance if the user access the service by the interactive TV

while he is having his breakfast) some functionalities are not compulsory and do not fit

an adequate task sequence. So we decided to make task models explicit in the design

of a service and to integrate the capability to automatically generate user interfaces for

domain objects with the formal definition of task models adapted to the final delivery

context.

Finally, the third pillar of our thesis is about the lifecycle of services in a pervasive

computing environment. Our solutions are based upon an existing framework, the Jini

connection technology, and enrich this framework with new services and architectures for

the deployment and discovery of services, for the user session management, and for the

management of offiine agents.

lll

Ackno-w ledgrnents

Now, the time has corne for the acknowledgements1 . This means that I made it, or

almost. Over the last two and a half years, I felt alternatively enthusiastic and discour-

aged, happy and irritated, involved and apathetic, determined and unsure, satisfied and

disappointed, tired and regenerated. At last I do not know whether I'll feel happy and

releived, but I'll certainaly consider myself lucky. Lucky for having had the opportunity

to undertake this modest adventure which took me back and forth between Canada and

Sardinia, which gave me the opportunity to meet many new people, to know better people

I already knew, which gave me the opportuntity to receive the support of my colleagues,

of my friends, of my family, my parents and my in-laws.

Many thanks to Sylvain Giroux. Everything started on the day I met Sylvain while

he was getting ready to leave Sardinia to teach in a Canadian University. I was thinking

that it was a pity that he should leave and that it would be nice to continue collaborat-

ing with him, perhaps through a doctorate. I did not have to formulate my thought: he

offered me to prepare a PhD under his supervision. This spontaneous demonstration of

trust has always been one of the major factor which sustained me in this adventure and

a powerful incentive to go ahead. Thank you Sylvain, not only for guiding me through

· scientific and technical choices but also for treating me on an equal footing, generously

receiving me in his family, and sharing his life experience with me.
1 A special thank you to Helga Wilson for having reviewed my use of English in this section.

IV

Thank you to Pietro Zanarini and Gavino Paddeu because going back and forth between

Canada and Sardinia for this doctorate would have been much more difficult without the

support of CRS4, support that they obtained and sustained.

Thank you to Stefano Sanna and Andrea Piras, for their friendship and also for their

great help in implementing with me important parts of the architectures presented in

this thesis.

Thank you to Claude Moulin whom I have had the great pleasure to work with and

who has been a key person in the development of the E-Mate project.

Thank you to Marc Frappier, one of the most friendly and kind persons I met dur-

ing my brief experience at the Sherbrooke University, for having accepted to review this

dissertation.

Thank you to Jean François Perrot, whom I had the great plausure to meet at Crs4,

for having accepted to review this dissertation.

Thanks also to all the CRS4 colleagues involved in the E-Mate project, fighting against

an instable code, with ill-working libraries and undefined requisites. Thanks to them

because in the most intense moments of the E-Mate project, I had the rare and precious

feeling of being part of a team.

Thanks to Angela for her patience and her daily support, for her catchy optimism, in a

few words for her love.

V

At last, thanks to Riccardo, born during the first year of my PhD and who grants us a

great happiness each time he runs, laughs, speaks and does all those things children do

that remind us not to be afraid of the future.

vi

Ringraziarnenti

Sono arrivato ai ringraziamenti e questo vuol dire che ce l)ho fatta) o quasi. In questi

ultimi due anni e mezzo mi sono sentito entusiasta e scoraggiato) contenta e irritato) im-

pegnato e indolente) determinato e dubbioso) soddisfatto e deluso) affaticato e rigenerato.

Alla fine non so se mi sentirà felice e sollevato ma sicuramente mi riterrà fortunato.

Fortunato per a ver avuto l) opportunità di vivere questa piccola avventura che mi ha por-

tato avanti ed indietro tra il Canada e la Sardegna) nella quale ho conosciuto tante nuove

persane) ho conosciuto meglio le persane che già conoscevo e ho ricevuto l)appoggio dei

miei colleghi) dei miei amici) della mia famiglia) dei miei genitori e dei miei suoceri.

Grazie a Sylvain Giroux. Tutto inizià il giorno che incontrai Sylvain mentre si

preparava a lasciare la Sardegna per il Canada ad insegnare all)università. Pensai con

dispiacere alla sua partenza e che sarebbe stato bello continuare a collaborare con lui) ma-

gari tramite un dottorato. Non feci in tempo a sviluppare Videa che lui) precedendo i miei

pensieri) mi propose appunto di iniziare un dottorato sotto la sua supervisione. Questa

manifestazione di fiducia spontanea è stata sempre uno degli stimoli più importanti per ·

andare avanti in questa avventura. Grazie a Sylvain non solo per avermi guidato nelle

scelte tecniche e scientifiche) ma anche per avermi trattato alla pari) generosamente)

aprendomi la sua casa) la sua famiglia e la sua esperienza di vita.

vii

Grazie a Pietro Zanarini e a Gavino Paddeu, perché obiettivamente questo dottorato

tra Canada e Sardegna sarebbe stato molto più difficile da percorrere senza l'appoggio

del CRS4 che loro hanno ottenuto e difeso. Grazie a Stefano Sanna e ad Andrea Piras.

Amici soprattutto ma anche bravissimi colleghi che hanno implementato insieme a me

una parte importante delle architetture presentate in questa tesi.

Grazie a Claude Moulin con il quale ho avuto il piacere di lavorare e che è stato uno

dei pilastri del nostro gruppo al Crs4 durante il progetto E-Mate.

Grazie a Marc Frappier, una delle persane più amichevoli e gentili che ho conosciuto

nella mia breve esperienza canadese, per aver accettato di far parte del jury.

Grazie a Jean François Perrot, che ho avuto il grande piacere di incontrare e conoscere

al Crs4, per aver accettato di far parte del jury.

Grazie a tutti gli altri colleghi del CRS4 che hanno lavorato agli scenari E-Mate, spesso

lottando con codice instabile, librerie mal-funzionanti e requisiti poco chiari. Grazie so-

prattutto perché nei momenti più intensi del progetto E-Mate ho avuto la rara e bella

sensazione di far parte di un gruppo.

Grazie ad Angela per la sua pazienza, per il suo sostegno quotidiano, per Fottimismo

che mi ha trasmesso. In una parola per il suo amore.

Infine, grazie a Riccardo che è nato durante il primo anno del mio dottorato e che oggi

ci regala immensa gioia agni volta che carre, che ride, che parla e che fa tutie quelle case

che i bambini fanno per ricordarci che non bisogna mai avere paura del futuro.

viii

List of Abbreviations

• API: Application Programming Interface. An interface defining methods/function

signatures that allows a client code to invoke functionalities on another piece of

code. The client has normally no access to the underlying implementation of the

invoked functionalities. An API builds an abstraction that new programs can use

to develop and extend existing programs.

• CORBA: Common Object Request Broker Architecture. Distributed architecture

where object communication is mediated by a system called broker. It allows to

extend the object oriented paradigm to distributed system and in multi-platform

environments.

• EJB: Enterprise Java Beans. A multi-tier architecure for enterprise applications

based on Java. Applications are deployed in servers which provide system services

such as security and transaction management.

• HCI: Human Computer Interaction.

• HTTP: Hyper Text Transfer Protocol[3) It is the protocol designed and imple-

mented in the early days of the Web which specifies requests and transmission of

HTML documents between a Web client and a Web server.

• IDE: Integrated Development Environment. A program aimed at developers which

lX

integrates a suite of tools such as code editors, build tools, repository access, de-

bugging mode, library management, online documentation, class browsers and so

forth. Examples of IDEs are: Eclipse, IDEA, Netbeans.

• J2ME: Java 2 Micro Edition. The Java platform for devices with small footprint.

It comprises a subset of the standard Java API and a new API for user interfaces,

network protocols, and application lifecycle.

• MORE: Multi-channel Object REnderer. It is the system that automatically gen-

erates user interfaces for domain objects both adapted to the current platform and

to the domain object currently viewed by the user.

• PLANES. Prototyping LANguage for Embedded Systems. A simple task models

definition tool used to generate user interface code for J2ME applications. The core

of PLANES has been extended to be integrated with MORE for the multi-channel

generation of user interfaces over multiple platforms.

• POTS: Plain Old Telephony System. A traditional wired phone line that uses

analogie signal transmission between the user phone and the network exchange,

differently from the modern ISDN which is a digital subscriber line with two 64Kbps

channels for voice and data communications.

• RMI: Remote Method Interface. The mechanism used in the Java Virtual Ma-

chine to implement an object oriented remote procedure system. Differently from

CORBA, both clients and servers must be written in Java.

• SMS: Short Message Service. A relaying service for text based messages of maxi-

mum 160 characters availble in GSM networks.

• WAP: Wireless Application Protocol. A protocol stack developed by mobile phone

vendors to deliver minimalist Web services to mobile phones.

X

• WIMP: Windows Icons Mause Painting. Abbreviation used in HCI literature to

indicate a diffuse paradigm for graphical user interfaces

Table of Contents

Summary

Acknowledgments

Ringraziamenti

List of Abbreviations

Table of Contents

List of Figures

Introduction

0.1 Mobile, Personalized and Location-Based Services

0.1.1 Personalization

0.1.2 Mobility ...

0.1.3 User Position

0.2 Ub_iquitous Computing at PARC

0.3 Metaphor: Devices are Portals .

0 .4 Challenges

0.5 Structure and Contribution of this Thesis .

0.5.1 Tapies Beyond the Scope of this Dissertation .

ii

iv

vii

ix

1

1

2

3

4

4

6

11

11

13

0.5.2 Code Contribution 13

1 Domain Objects and User Interfaces 15

1.1 An Object-Driven Approach 17

1.2 Interacting with Objects .. 18

1.2.l Reflection in Programming Languages 18

1.2.2 Exploiting Refl.ection 19

1.2.3 Class Structure Requirements 20

1.2.4 Reflection in Java . . 22

1.2.5 The Javabeans API . 23

1.3 Overview of the Automatic User Interface Generation 25

1.3.l Example 1: A Trivial Calculator Machine 26

1.3.2 Coding Rules and Legacy Systems . 30

1.3.3 Example 2: The Pocket Calculator 31

1.3.4 Delivery Architecture . 33

1.4 MORE: the Rendering Engine 33

1.4.1 Mo del 34

1.4.2 Session . 35

1.4.3 Abstract View. 36

1.4.4 Mate 39

1.4.5 Runtime Editor 39

1.5 MORE architecture and Javabeans API . 41

1.6 The Maildemo Application . 43

1.6.1 Introduction 43

1.6.2 Design of the Model Classes 43

1.6.3 Multi-platform access to the MailDemo application 51

2 BEYOND OBJECT-DRIVEN INTERACTION 58

2.1 Limits of the Object-Driven Interaction . 59

2.1.1 User Profile 59

2.1.2 Device Profile 61

2.1.3 Context of use . 62

2.1.4 Towards a Combinatorial Explosion of Objects . 62

2.2 On Task Models 64

2.3 PLANES: Prototyping LAN guage for Embedded Systems . 65

2.4 PLANES and MORE Integrated . 68

2.5 PLANES: The Graphical Editor . 69

2.6 Task Models for the Maildemo application (39

2.6.1 Delivery Context on PC 70
2.6.2 Delivery Context on a Cell Phone 74

2.6.3 Delivery Context on Voice Responder . 75

3 LIFECYCLE OF APPLICATIONS 77
3.1 Lifecycle •••••• 1 77

3.1.1 Deployment Service and Load Balancing 79

3.1.2 Service Discovery 80

3.1.3 Delivery 81

3.2 Implementation Details . 82

3.2.1 Jini as Connection Technology for Pervasive Computing 82

3.2.2 Implementation of the Service Queue 86

3.2.3 Service Model 88

3.2.4 Example: Persona! Agenda service deployment . 90

3.3 Delivery to any Device 93

3.3.1 Introduction . . 93

3.3.2 Delivery Context Analysis 94

3.3.3 Exploitation of the Delivery Context 95

3.3.4 Issues Related to Java Classes and Code Mobility 98

3.3.5 Delivery Architecture . 99

3.3.6 The Service Viewer 100
3.3.7 Position Analysis 106

4 E-MATE: MOBILE FRAMEWORK 109

4.1 A Travel Assistant: T-MATE 110
4.1.1 Introduction . 110
4.1.2 User Profiling 110
4.1.3 Macro-Planning . 111
4.1.4 Micro-Planning 113

4.1.5 Implementation Details . 113
4.2 Mo bile Lesson 117

4.2.1 Experimentation 117
4.2.2 The Technology . 119

4.3 Evacuation Plan 121
4.3.1 Application Description 121

4.4 Evacuation Plan 123

4.4.1 Scenario Description 123
4.4.2 System Description 123

4.5 MKTS 125
4.5.1 Features of MKTS 125

4.5.2 Lessons Learned . 127

4.6 Composition of Services 128

5 RELATED WORKS

5.1 GAIA and Active Spaces

5.2 Coupling Application Design and User Interface

5.3 Naked Objects

5.4 Task-Driven User Interface Design .

5.5 W3C Standards and Device Independence Activity

5.5.1 CC/PP

5.5.2 XForms

132

132

133

134

136

137

137

138

6 Conclusion and Future Work 140

A Pocket Calculator Code 148

B XML Schemas 154

B.1 Schema for Response in Thin and HTTP-only Client Architectures 154

C PLANES: Text Notation 162

C.l Introduction 162

C.2 PLANES Grammar . 163

D PLANES:XML Output for the Agenda Task Model 166

E Layout 172

Bibliographie 17 4

List of Figures

1

2

Information and device UI personalization process

Tablet, board, and palm devices built at PARC

(Pictures from http://www.ubiq.com/hypertext/weiser/UbiHome.html) ..

3 (A) Computing devices today: devices contain data and programs. (B) De-

vices in computing-pervaded environment are gates to another dimension:

the dimension of computing where software abjects live and are accessed

2

7

through devices in the gate metaphor. 10

4 A reflective system used to inspect domain abjects and generate a graphical

user interface . 20

5 The skeleton of rendering algorithm implemented in MORE. 25

6 Java code for the TrivialCalc example 28

7 Graphical user interface generated on-the-fly for a TrivialCalc abject with

Java Swing widgets. 29

8 Three views automatically generated by the abject renderer from the cal-

culator machine model. From left to right: a Swing view, an HTML view,

a WAP view. ; 32

9 A session displayed with the Java Swing library 36

10 The method render in the AbstractView class. In line 3 we obtain an

instance of Mate which contains all meta-information about a model. In

line 4 we get a sequence of member names and from line 5 to line 25 they

are laid out in the AbstractView by means of either renderFeature ()

or renderOperation () depending on we are rendering a field or a

method. The features of class Layout are described in E 38

11 MVC modified with Ma te insertion 40

12 UML for class Message 44

13 A view for a message with pre-conditions and layout assigned 45

14 The auxiliary class MessageMate assigns pre-conditions to allow the in-

vocation of specific methods of the model class Mess age.

15 Precondition implementation for method send ()

16 The invokeMethod method overrides the default behaviour inserting the

46

47

instruction for closing the view when the invocation of send is successfull. 48

17 Definition and assignation of a Layout object in the body of MessageMate 49

18 UML diagram for classes MailBox, InBox and OutBox 50

19 An InBox instance as displayed by MORE on the J2SE platform with

Swing API. 51

20 MailBoxMate code overrides the default setValue method. Initially,

a confirmation is expected from the user. When counter equals zero a

default mate, with no such a policy, is assigned to the model object. 52

21 UML diagram for configuration classes 53

22 View for a Configurations instance containing the mail settings for

the J2SE platform with Swing user interfaces. 54

23 HTML pages generated by MORE. The generated Web pages are linked

to model abjects of type Message and InBox. 55

24 HTML pages generated by MORE. The generated Web pages are linked

to model abjects of type Preferences and PopPreferences 56

25 WML pages generated by MORE. (Top-left) Generated WML page for a

Message instance. (Top-right) The generate edit dialog for the recipient

field member of Message class. (Bottom-left) Generated WML page for

the Configurations instance. (Bottom-right) Generated WML page

for the PopConfiguration instance. . . . 57

26 Layers between the user and domain abjects 63

27 Prototype of an Agenda application designed with PLANES for a J2ME

powered mobile phone. 71

28 PLANES: the graphical tool in action. The task model in the picture (A)

defines tasks and subtasks for an Agenda application. In (B) and (C)

screenshots of the user interfaces related to tasks of the Agenda. 72

29 Task model for the Maildemo application delivered on a PC. . . 73

30 Task model for the Maildemo application delivered on a cell phone. 75

31 Task model for the Maildemo application delivered on a interactive voice

· responder. 76

32 A distributed queue contains service packs to be deployed by application

servers. 81

33 Registration of an object in the Jini Lookup service. At time tl the Ap-

plication server invokes register on the Lookup service. At time t2 the

Lookup service performs the registration and returns a lease object to the

Application server. At time t3, the Application server renews the lease. . 85

34 Tuple Matching in Javaspaces. At time tl, Application 1 writes a tuple

(a, b, c). At time t2, Application.1 writes a second tuple (d, e, f). At time

t3, Application 2 fails to take a tuple. At time t4, Application 2 succeeds

to take a tuple. 87

35

36

37

Service components partitioned between local and remote tiers.

Initialization of the server-side part of Agenda Service .

MessageRelay interface

90

91

93

38 Delivery architecture for fat clients. The arrow represents a push/pull

network connection and the Servicelet is the mobile code which moves at

run-time to the client. 102

39 Delivery architecture for thin clients. The arrow represents a push/pull

network connection and the Servicelet is the mobile code which moves to

the remote tier of the Service Viewer. 104

40 Delivery architecture for HTTP-only clients. Between the end user client

and the Service Viewer there is a Web server which computes the current

device profile and perform the appropriate XML to XML translation. In

our case, we provide three possible translation: XML to HTML, XML to

WML, and XML to VoiceXML. 106

41 Gipsy is a Java library based ori JavaComm. It can run as daemon or can

linked as a library. Gipsy parses the output of a GPS device connected

to a serial port. Programs can receive GPS coordinates either by direct

method invocation, or by TCP /IP, or by file based data exchange 108

42 User interface of the t-MATE service accessed by a PC. The user builds a

trip plan submitting requirements like the maximum budget, the preferred

hour of departure and so on. 112

43 The TV - Log is an E-Mate service which is delivered in the digital TV

. and registers information about user preferences. This spying activity is

used to populate a bayesian network which is the knowledge based used to

personalize service delivery to users. This architecture is simply a proof-

of-concepts and personalization issues are beyond the scope of this thesis. 114

44 User activities during TV-watching are sent from the TV-Log to the Pro-

file Manager which populates a bayesian network. The Macro planning

module provides a GUI for creating trip plans. Trip plans are inserted in

the Agenda. During Micro planning, an Event Agent seeks new cultural

events co-located with the user. Events are filtered by the Personal Pro-

file manager and only those matching the user profile are inserted in the

Agenda. The Agenda is equipped with an Agenda Agent which notifies

imminent events to the user by means of SMS messages.

45 Hotspots chosen by teachers for the Nora mobile lesson .

46 The right panel shows the lessons published in the system. Any lesson can

be selected and the set of hot spots is presented to the student. On the

116

119

field, the student can try to guess which hot spot he/she has reached. . . 120

4 7 Once the student has guessed the hot spot the system asks some questions

relevant to the hot spot. 121

48 Communication in the case of distributed architecture. Notice how mobile

lesson maps to general delivery architecture for thin clients. 122

49 A Enterprise domain object presented to the user in a Web page (a). The

same domain object accessed from a mobile phone in (b) and (c). 127

50 Maps in three different modalities: (a) Web browser, (b) Java interface on

desktop PC, (c) and cellular phone. 131

51 If a device must communicate with a remote object (top) then the network

is used for any message from the user to the object. In a dynamically

partitioned architecture (bottom) abjects are split into parts. Sorne part

runs on the remote server and some run on the user device minimizing the

number of messages sent from client-sicle to server-side and vice versa. . . 145

Introduction

The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from

it.{71}

0.1 Mobile, Personalized and Location-Based Ser-
. vices

Hitherto, personal computing has been confined in a unique paradigm of interaction: the

user sitting in front of his screen eventually connected to the Internet by means of a

cable. The invention of laptop/palmtop computers and the development of wireless data

connections remove some technological constraints and leverage the use of computers in

domains different from the traditional office productivity such as business and leisure

on-the-road.

Nevertheless, hardware and network technologies are not sufficient for computing to

scale up to a new level of full interoperability of devices, programs, and data. There is the

need for organization, system architectures, and metaphors in order to make computing

aware of the user profile, mobility, and user location.

1

0.1.1 Personalization

Personalization enables the system to provide the right information at the right time

both in synchronous manner - i.e. when the user is connected and browsing between

services - and in asynchronous manner, i.e. some agents keep searching any relevant data

while the user is disconnected.

lNf'C)RMATION
PERSONALlZAJiON:

Rlght tnfortnâtion
,------ af t.hefrghttime

D<EV!CE.LJT
,ADAPTATl.bN

an,çl_ 9çi9pte.9Jq
the ~evice

Figure 1: Information and device UI personalization process

The personalization process (Figure 1) is a two steps process. First, it integrates

information from sources as diverse as localization technologies, user models, and GIS

systems. Then, the personalized information must be presented in such a way that the

human computer interacion is the easiest for the user. Thus, the personalization process

must be followed by a device-adaptation process based on the device-profile of the user

terminal.

2

User terminals may differ considerably from each other: some of them can load and

run mobile code from the network, other can be programmed to communicate with online

services exchanging data but not code, and many of them cannot be programmed but

can access to information by means of pre-installed micro-browser or via voice-interfaces.

A wide variety of applications can better serve users if they adapt to user wants

and needs. The key to enable the adaptation and personalization of services are the

user models. User models can be successfully applied in recommendation systems [57],

adaptive information retrieval systems [6] and systems for coaching/teaching users.

0.1.2 Mobility

In a pervasive computing environment the user will continuously switch from connected

to disconnected states and may use a wide variety of heterogeneous devices. The mobility

of users implies that services and information systems should be available from a number

of different channels. The same information should be accessible from a Web page,

from a WAP site or from an Interactive Voice Responder (IVR) machine. Besicles, a

given channel can provide many interaction modalities. For instance, a Windows-Icons-

Mouse-Pointing (WIMP) desktop application can greatly improve usability by providing

text-to-speech and a voice recognizer system for text dictation.

With respect to these implications, a service supporting mobility of users should

be designed in a way such that the following principle will stand: design once, move

anywhere. Nevertheless, multi-modality and multi-channel access are only the first step

toward the result. In fact, even though a service is available for any device, the user can

feel the interaction with the system rather uncomfortable. This occurs when the network

is too slow, scarcely reliable and disconnections frequently occur. Moreover, some tasks

can take long before their completion and waiting on-line for the results is useless and

expensive. In such a situation the user experiences the system as a hostile environment

to work with.

3

To improve user-system interaction, one should be able to interact directly with the

service by means of an appropriate user interface in synchronous manner and to obtain

immediately a result. On the other hand, the user would appreciate the possibility to

schedule some kind of work, i.e. a search on the web, and to retrieve the results of such

a job in a later time. The latter is an asynchronous way to interact with the service

in which the user engages one or more agents to perform some tasks while the user is

off-line.

0.1.3 User Position

The user position is an important parameter in computing. In fact, this parameter can

be used to provide the right information at the right moment by location aware systems

[52]. The precision required may vary according to the objectives. In fact, if we are

designing an agent aimed to search cultural events such as concerts or foot ball matches,

it is important to screen out all events that will not be held in the city where the user

is. So the precision required is at city-level. But if the agent task is to notify the user

whenever his position is nearby a monument or a museum the precision required should

be about 100 meters.

0.2 Ubiquitous Computing at PARC

Marc Weiser is the author of the seminal paper The computer of 21st century [71] and is

worldwide considered as the father of Ubiquitous Computing. According to his definition

Ubiquitous Computing is the third wave in computing after the main-frame era and the

invention of the personal computer.

The main purpose of Ubiquitous Computing is to go beyond the way people have

used computers till now. Today, a personal computer is basically a box which completely

absorbs attention distracting the user from the surrounding environment. If one thinks

4

of the computer as a tool to accomplish a given job, most of the time is spent trying to

using the tool rather than solving the problem.

On the other hand, a "profound" technology is one that does something useful with-

out drawing user's attention too much. In terms of metaphors, people currently think of

personal computers as boxes containing a desktop. Such a metaphor is probably inad-

equate for computers of the future, and new metaphors should be devised. Weiser says

that a good tool is often invisible [70], not in a physical meaning, but in the sense that it

does not draw user's attention letting people focus on the problem. An example of such

a tool are the eyeglasses, one use them to look around and not to look at the eyeglasses.

The Ubiquitous Computing era is still to corne, but today technology has probably

the means to realize what only ten years ago appeared to be visions of a science fiction

writer. Toda y, most people use a computer at home and another at work, computers are

easier to use and not only for experts as in the past, moreover beside personal comput-

ers, most people own palm size computers, laptop computer and programmable cellular

phones. The problem here is that all these devices need a minimal set of configuration,

data need to be kept synchronized among several devices, batteries need to be recharged,

and different devices need to internet with each other through a large number of pos-

sible interfaces. The desktop metaphor still resists and we have many mini-desktop to

administrate. Once again, the tools we use draw part of our energies and of our atten-

tion, the more is complex the technology the larger is the amount of time we spend to

dominate such a complexity: this is not a "pervasive technology" , but rather a "invasive

technology" .

According to [71] the Ubiquitous computer must have three characteristics:

• pervasiveness, it must be composed by a big number of hardware and software

elements cooperating each other and small enough to be embedded in every day

abjects or in the human body;

5

• mobility, users must be able to move when using the computer, thus some elements

of the Ubiquitous computer must move with the user;

• invisibility, the computer need to be invisible in order to draw our attention as less

as possible.

Of course, pioneers researcher in Ubiquitous Computing were at PARC: Weiser and

his colleagues. Their implementation consisted in a set of applications and devices to

be used in work group environments. They built small palm sized computers to be used

instead of notes and post-it, tablet computers to be used instead of paper and notebook,

and board computers to be used instead of traditional writing boards (Figure 2). The

device was in a infrared network. Their results was more or less satisfactory, they got a

certain degree of pervasiveness, a certain degree of invisibility and mobility.

0.3 Metaphor: Devices are Portais

A device is a portal into an application/ data space, not a repository of custom

software managed by the user. An application is a means by which a user

performs a task, not a piece of software that is written to exploit a device 's

capabilities. [2}

Computer technology is already a pervasive technology: processors, memories, displays

and communication networks are massively deployed around us. Twenty years ago the

only CPU in our house was probably the one inside our Commodore 64 or Sinclair

Spectrum. Today one is likely to use a PC at home and one at office, a laptop or/ and a

PDA, a mobile phone with Java and so forth. Besicles, domestic appliances have evolved:

washing machines have embedded processors, the interactive digital TV is a new channel

to access on-line services, a photo camera can build a Web site in its internal memory

card, and so forth. There is rather a lack ofubiquity in software applications: a processor

6

Figure 2: Tablet, board, and palm devices built at PARC
(Pictures from http://www.ubiq.com/hypertext/weiser/UbiHome.html).

7

is dedicated to a specific goal, and the whole set of computers around us do not perform

as one personal, ubiquitous and inter-operable computing environment. In other words,

there is a lack of organization and synergy.

It is desirable to evolve from an environment where dozens of computers around

us have their own small computing context, to an environment where all computing

devices are simply gates to a shared computing space (Figure 3). Interactions with

computers, where computers are no longer boxes but gates to a pervasive computation,

can be both explicit: the user sends a command and waits for feedback; and implicit,

input/ output devices disseminated in the real world gather information about our habits

by means of sensors and such information are used to infer new behaviors and new tasks

to accomplish. One must no longer think of computers as computing devices containing

data and programs, but rather as part of an environment where users live and move

around.

The old hype slogan "The Net is the Computer" [60] could be rewritten as "The

World is the Computer". Thus, the Ubiquitous computer components, such as software

and hardware, must follow users in move. Actual computing devices will simply become

temporary hosts for whole or parts of Ubiquitous applications. The end user must be

allowed to start a given task in a device and seamlessly migrate its work to another

as soon he finds more serviceable to change. Thus, applications must be available from

several channels such as web browsers, mobile phones and old Plain Old Telephone System

(POTS) via voice interaction.

Applications enhance physical surroundings giving the user the perception to move

in an empowered environment: the computing environment is the user's information-

enhanced physical surroundings, nota virtual space that exists to store and run software

[2]. So, virtual spaces can coincide with physical spaces.

According to this vision, phones, printers, and sensors become simply applications

and services available from any device the user wants to use like a terminal. Moreover,

8

the surroundings can provide more powerful terminals to access ambient applications -

for instance, a broadband-wired connection instead of a wireless narrow-band one. Thus,

terminals should be considered as any other services: they are subject to discovery and

their availability should be notified whenever the task carried out with the actual device

requires them. These requirements emphasize, among the others, the concept of position

and the techniques to get the user position inside and outside buildings: Ubiquitous

computers must know where they are [71].

9

(A)

USER

ENVIRONMENT

(B)

DEVI CE

ENVIRONMENT

Figure 3: (A) Computing devices today: devices contain data and programs. (B) Devices
in computing-pervaded environment are gates to another dimension: the dimension of
computing where software abjects live and are accessed through devices in the gate
metaphor.

10

0.4 Challenges

Building applications in computing-pervaded environments requires efforts at various

levels [56]:

• wireless connectivity as indispensable support to obtain the mobility;

• network protocols able to handle user mobility seamlessly, the actual IP and TCP

were implemented for a network model in which nodes were always connected and

they could be inadequate to handle billions of mobile elements;

• mobile code and interactive elements able to adapt themselves to the device. Port-

ing user interfaces code from a platform to another is hard, there are problems

related both to the physical capabilities of devices (the presence of a keyboard and

a mouse, screen size etc.) and to computational capabilities (yet there is no means

to get code that can run on any device, even if it is written in Java);

0.5 Structure and Contribution of this Thesis

This thesis is built on three pillars addressing three main issues:

• how to provide user interfaces enabling users to manipulate abjects from any device?

• how to provide a means to synchronize and constrain the interactions between a

user and many objcets?

• how to deliver services to the "gates" of the pervasive space?

• Chapter 1 addresses multi-channel delivery from the viewpoint of user interfaces.

First, it describes an object-driven methodology for the design of application ob-

j ects that allows programmers to disregard low-level details about the delivery of

11

application to the end-users. The chapter proceeds with the details of the MORE

framework which supports this methodology then we describe step-by-step the im-

plementation of an example application and its deployment on different platforms:

more precisely from a desktop computer to a voice browser2 ;

• Chapter 2 addresses the limits in object-driven interaction in the context of per-

vasive computing, then it proposes solutions to go beyond such limits enabling

constrained interactions with many abjects to perform a specific task. PLANES

implements a framework to do so and an example is presented.

• Chapter 3 focus is on service life-cycle. It contains an analysis of deployment, dis-

covery and delivery issues. Then architectures to address these issues are presented:

the deployment architecture deals with how a new service becomes available in the

environment; discovery deals with how users can locate services; finally, delivery

deals with how services become accessible from the end user device.

• Chapter 4 describes how the results of this work have been inserted in larger re-

search project called E-Mate, whose objective is the realization of a framework for

the design, deployment and delivery of services which are platform independent,

geo-referenced and user-tailored. This chapter sketches four applications used as

test beds of the whole architecture: a ubiquitous travel assistant (Section 4.1), a

mobile lesson management and deployment system (Section 4.2), a crisis manage-

ment system (Section 4.4), and finally an investor decision support system called

MKTS (Section 4.5).

• Chapter 5 compares our results to related works on Ubiquitous Computing, in-

teraction models and design methodologies for pervasive computing;
2 The tenn voice browser includes a range of systems which allow a voice-based interaction such as

Interactive Voice Responders (IVR), answering machines, and VoiceXML enabled browsers

12

• Chapter 6 closes this work sketching promising future research directions.

0.5.1 Topics Beyond the Scope of this Dissertation

This work covers only few of the challenges reported in Section 0.4. Thus, all software,

methods and solutions proposed here assume the availability of appropriate bandwidth,

appropriate network protocols and appropriate distributed systems and frameworks for

the construction of network distributed applications.

This work does not try to introduce new metaphors for blurring computers in the

background and get them "invisible" to the user. This work only tries to implement

the metaphor "device are portals" described in Sectionü.3 The focus of this work is on

explicit user-computer interaction and not on unconscious interaction where user needs

are anticipated by collecting data and inferencing habits. This research topic is investi-

gated and addressed in other research projects, for instance in Intelligent Habitats [49]

at Sherbrooke University.

This work does not deal with issues related to security of data, privacy of users, and

ergonomies and usability of produced systems.

0.5.2 Code Contribution

The main code contributions related to this thesis are:

• MORE: a multi-channel Object REnderer system which generates views for Java

abjects allowing direct method invocation and abject manipulation in several plat-

forms such as Java Swing, Web pages, WAP pages, Voice XML browsers and J2ME

phones.

• PLANES: a graphical tool and a language specification for task modèls definition.

13

• Libraries for shared data structures, service lookup, and application life-cycle man-

agement in application servers.

14

Chapter 1

Domain Objects and User Interfaces

Nowadays information systems have to spread on a wide variety of devices. Networks

have enabled their deployment on very heterogeneous devices. Thus the design and

implementation of interactive software in a platform neutral way have become a central

concern. The application should be deployable in any device even those unknown at

design time. The main issue is then how to generate user interfaces at runtime adapted

to the end user device. Our solution relies on an object-driven design of the application

domain based on some coding conventions. The reflective capabilities of the language

are used to retrieve, from the code, any relevant information useful to build on-the-fly a

user interface for abjects of the application domain. Thus, one needs to focus only on

the business logic while the user interface will be generated when needed.

As users are freed from technology concerns, designers should be able to design soft-

ware abstracting from any technology details and to focus only on application domain

concepts and their relations.

Sorne frameworks address general aspects of distributed applications development

but none addresses aspects specific to pervasive computing environments. For instance,

the Enterprise Java Beans (EJB) framework [63] aims to build applications by compos-

ing reusable .. software components which share a common runtime envfronment called

15

"application server". The EJB architecture faces the management of transactions and

provides data persistency. Although EJB have proven their efficiency in the development

of back-end systems for many commercial Web applications, they do not address the

issues related to mobility of users and adaptation to the end user device.

In general programmers must still deal with the details of the final delivery of their

applications. Current Integrated Development Environments (IDE) aim to build appli-

cations whose delivery context is known a priori. For example, IBM Visual Age makes

available a number of tools such as Java libraries, user interface visual composition, and

stubs generation for Remote Method Invocation [59], but it assumes that the deployment

will take place in a desktop environment or in a enterprise server. IDEs like Visual Age

have not been devised for the development of applications for the J2ME profile, so the

programmer must not use classes unloadable in small devices.

Although Java is aimed to be a platform-independent language the number of devices

able to host a Java Virtual Machine is really small. Therefore, the slogan "Write once

run anywhere" seems too optimistic, fails in its literal intent, and is meaningful only for

classes of devices: an application written for the Java Standard Edition (J2SE) can be

executed on Windows2K, Linux, or MacOS but cannot run on a palm-top or on a mobile

phone. Thus, there is a need for languages and environments for device independent

application development.

If we look under the hood of a software application we can notice that some parts such

as the data/object model and the fonctions can be considered device neutral, while other

parts such as the user interface are strictly device dependent. Abstracting the design

from the device means allowing developers to focus solely on the device neutral part

of the whole, spending the minimum effort for device dependent details. This chapter

shows how to free the programmer from issues. related to user interfaces for applications

delivered in heterogeneous devices. The main idea is to extract information from the

code of the application and to generate a us,er interface according to the device used.

16

In Section 1.1 we present the rationale of our approach, in Section 1.2 we show how

reflection is useful for interacting with domain abjects, in Section 1.3 we show, with some

examples, how to write domain abjects and the resulting user interfaces, and finally in

Section 1.4 we describe the details of domain abjects introspection and multi-channel

user interface rendering.

1.1 An Object-Driven Approach

Objects are building blacks able to react and therefore to internet. Thus, if a system pro-

vides a viewing/ controlling mechanism to automatically fill the gap between the users and

the application abjects allowing the direct interaction between them, and if this bridge

is implemented for any type of terminal used by the user, then we can put in practice a

design based solely on the definition of domain related abjects and their relations.

Our first contribution is the definition of an object-driven approach for developing

interactive applications in a platform-independent and device-independent manner. In

Section 1.3 and Section 1.4 the details of such a mechanism and how it is implemented

in Java are described.

The rationale behind this approach [8) is based upon the following considerations: any

application refers to a set of domain abject classes. Further on in the text, such abjects are

called "models", borrowing the naming from the abject oriented design pattern Observer

[24) based on the "Model View Control" [37) architecture. Examples of models for an

application in the tourism domain are: persan, address, calendar, travel, event, etc.

Among these classes there are several relations such as: which addresses are relevant to
- .

a given persan; an event is something which happens in a given place and at a given

moment; an appointment is a subclass of event which involves two or more pe,rsons and

so forth. In the abject oriented paradigm any abject is an instance of a given class1

1The concept of class has been introduced by Simula [16] and reimplemented by Smalltalk [35],

17

Objects are reactive entities which are activated whenever their methods are invoked.

The reaction of an activated object is to produce a result object and, as a sicle effect, to

change its internal state.

1.2 Interacting with Objects

In real world, interncting with an unknown object requires us to perform an inspection

using our senses. This may be also true for software abjects instantiated and running in

a computer process.

Our goal is to allow users to internet with the domain abjects which are in genernl

not known beforehand. Thus, it is necessary to explore the domain abjects in order to

understand how they are clone and what they can do for the user. Then, a user interface

must be provided to allow users to manipulate and internet with such domain abjects.

Objects are units of code loaded and running in the context of a computer progrnm.

If such a progrnm wants to inspect how abjects are made and wants to internet with

their methods, then the progrnm must be a reflective system.

1.2.1 Reflection in Programming Languages

A reflective system is a system which incorporntes a self-representation. This self-

representation makes it possible for the system to answer questions about itself and

and expresses the behavior of a set of objects which share the same semantics operating on the same
attributes.

A class defines the internal structure and the behavior of its instances. The internal structure is
defined by their instance variables and by their instance methods. Not all object oriented languages
are built around the concept of class. In some languages such as ACTl [39] and ThingLab [5] new
objects are created cloning existing individuals and classes are not a language construct but only the
result of grouping objects with similar characteristics. Further on, it is assumed for simplicity that an
object-oriented language is a language where classes are a construct and where the concept of data type
is uniformed to the concept of class. Notice that this last statement is not true for many languages.
For instance, in Java or C++ data of type int are not instances of any class. To address this lack of
uniformity, the Java API provides the class Integer which is a wrapper for a data of type int. Similar
wrapper classes are available for other primitive types.

18

support actions on itself [40]. In other words, it performs a computation on a program.

The definition above does not assume a particular programming paradigm: refiec-

tive systems can be written in procedure-oriented, function-oriented, or rule-oriented

languages. Nonetheless, object-oriented languages have been a rich2 field of experimen-

tation for refiective systems. Smalltalk80 [26] introduced the concept of meta-class and

the unification of the concept of class and abject: any class is an instance of a given

meta-class, in this case met a-classes are the core of the self-representation for refiective

systems. They allow the self-analysis of a system and any dynamic self-modification.

Further improvements towards complete refiection in programming languages are

achieved in PLASMA [58], and OBJVLISP[14] where any element of the language is

an abject: classes, meta-classes, methods, variables and messages are all abjects. This

helps to remove boundaries between refiective code and application code.

1.2.2 Exploiting Reflection

The runtime generation of a graphical user interface can be described as follows: a class

unknown at compile time, is loaded and instantiated. This instance is the abject with

whom the user wants to internet. Another abject in this system performs an inspection

of the first abject in order to extract all the information relevant to the interaction: the

names of the fields, the names of the methods, the type of the fields and the signature

of the methods. Among other things, a third abject which is the graphical user interface

is instantiated by virtue of the information gathered from the abject inspection.

The first abject is the model, the second one acts as inspector and the third is the

view (Figure 4). The system is refiective according to the definition because it collects

information on itself, more precisely on a part of it, and performs some actions according

to this information.
2Lisp has been the privileged language to experiment reflection however.

19

REFLECTIVE SYSTEM a--i
1

1

~--·

Figure 4: A refl.ective system used to inspect domain abjects and generate a graphical
user interface

1.2.3 Class Structure Requirements

It is not possible to generate an effective user interface for an arbitrary abject without a

set of rules and naming conventions. Rules and naming conventions [28] are the grammar

and the syntax for a system to gather a minimal amount of information from an object.

For instance, it can be inferred that an object encapsulates a field called balance of

type Number by observing that the object has a method Number getBalance (). This is

a straightforward consequence of a naming convention followed by both who writes the

class and who inspects the code.

Many languages are provided with tools for the easy introspection of the running

code. This thesis refers in all cases, unless declared differently, to the Java programming

language. Although Java was not the first language to implement refl.ective tools, nor its

refl.ective capabilities are the most interesting or the most developed, Java is the language

choosen for the implementation of the code related to this thesis.

The reasons for the choice of Java can be summarized as follows:

• general relevance reasons

20

- availability of best commercial and open source development environment

- availability of testing and project management tools

- huge availability of open source libraries for a large range of problems

- code portability in different operating systems

- excellent documentation

- unified framework for application development

- better performances if compared to fully interpreted languages such as Smalltalk,I

Python [64] , et al.

• reasons relevant to distributed systems and pervasive computing

- availability of a remote methods invocation (RMI) model

- availability of a connection technology for the discovery, lookup and deploy-

ment of abjects in a network (JINI)

availability of XML parsers and other XML related libraries

availability of Java Virtual Machine for small and embedded devices (J2ME)

and personal digital assistants (Personal Java)

- mobility of the code which allows abjects to be serialized and deserialized in

different running virtual machines with remote class loading performed via

HTTP

- robust and scalable security model based on policies

- interface to legacy and non Java system via Java Native Interface (JNI).

In Java, the state of an abject is the set of values of its instance variables that are

normally encapsulated in the abject and therefore not accessible. Nevertheless, such

variables may 0ften be accessed by means of specific access methods, called "accessors",

21

when such methods exist. Accordin to naming conventions, accessors have the form:

xtype getXOand void setX(xtype newX). The former returns the actual value of the

variable x of type xtype, the latter assigns newX as new value for this variable. In some

cases, a variable can be accessed even if no accessors are provided. Moreover, acccess

to instance variables may also be precisely controlled: in a Java class, a variable can be

declared with private access, and therefore accessible only from the abject code; with

package protected access, which extends the access to any class belonging to the same

package; with protected access, which extends the previous access to any other abject

whose class is a subclass; and finally with public access, which is extended to any other

abject. Further on, it is assumed that an abject has a variable x if there exists an accessor

getX () which returns a xtype abject, and that a variable x is writable if there exists an

accessor set X (xtype newX). From a client-code point of view it is not relevant whether

the result of getX () is the value of a real variable or it is computed on the fi.y. In bath

cases, for the client code it is the value of an internal property of the abject.

1.2.4 Reflection in Java

The Java Reflection API is a part of the core definition of Java. It implements the

following functionalities for reflective code:

• construct new class instances and new arrays;

• access and modify fields of abjects and classes;

• invoke methods on abjects and classes;

• access and modify elements of arrays;

Such functionalities are exploited in sophisticated applications that need to discover

at runtime methods and fields of an abject. Among these applications, there are abject

inspectors, interpreters and class browsers. The Java Reflection API is affected by some

22

important limitations. In fact, although classes such as Class, Field, Constructor,

Array, Method and Modifier are defined to manipulate the metalevel concepts, the

metalevel is not modifiable by user code. The only metaclass is the class Class which is

declared final and th us cannot be extended.

public final class Class

extends Object

implements Serializable

public Object invoke(Object obj,

Ob j ect [] args)

throws IllegalAccessException,

IllegalArgumentException,

InvocationTargetException

Given that neither Class nor Method can be extended, the user code cannot change

the core method invocation mechanism. In other words, the Java Reflection API allows

user code to inspect and to use dynamic invocation but it does not allow to modify the

default implementation of such mechanisms. The reasons behind this design are related

to security.

The constraints in Java reflection described here have no serious impact on the im-

plementation of the code related to this dissertation. The simple "passive" reflection is

sufficient for our requirements.

1.2.5 The Javabeans API

The Java Development Kit includes a library called the "Javabeans API" [28]. A Javabean

is a class which ,conforms against a given set of rules and naming conventions b,u~, apart

23

from that, it is a simple user-defined class and it does not extend any special-purpose

system class.

The Javabean framework has beed devised to define classes that can be manipulated

by automatic tools, for instance, builder tools that compose Javabeans at design-time

and runtime environments for J avabeans instances.

An automatic builder tool is able to infer from a Javabean code field names, field

types, method signatures, and the events fired by the bean. In this way, a builder

tool can generate the code of an application by the composition of a certain number of

Javabeans.

Thus on the one hand, the J avabeans API allows systems to be flexible enough to

gather information about the intimate structure of running abject instances in order to

invoke methods, read/write fields, and to listen to events; on the other hand, the Jav-

abeans API allows programmers to specify additional information for refiective systems

by means of special purpose classes called Beaninfo(s).

For instance, if one wants a precise enumeration order of methods for a given class,

then the bean developer can implement a Beaninfo class where the enumeration of meth-

ods is explicitely coded and not dependent to the actual implementation of the Java

Virtual Machine.

The code related to this dissertation largely exploits the refiective capabilities of

the Java programming language and of the J avabeans API for the implementation of a

refiective system for the automatic generation of user interfaces called MORE (Multi-

platform Object REnderer).

24

1.3 Overview of the Automatic User Interface Gen-

eration

MORE builds on-the-fi.y a graphical user interface for any given abject. Widgets such as

text fields, radio buttons, and more sophisticated controls, are deployed as placeholders

for the data they refer to: strings, numbers, boolean and more complex data types like

abject arrays and collections. Complex models are viewed as composite graphical abjects

and the rendering process is applied recursively till atomic interactors are obtained. The

process of inspecting composite models to generate a graphical user interface can be

summarized by the algorithm described in the Figure 5.

Render(Domain Object) --> View

Create a container for the actual platf orm
//e.g. a JFrame in Java Swing toolkit.
//e.g. a Web page in HTML
//e.g. a form in J2ME

For each "displayable" field of the model object:
Look-up for a run-time editor for the field.
If found: add the editor to the container.
Else: add a link (e.g. a hypertext link, a button, etc.)

to the field

For each method of the object:
Add a trigger, e.g. a button, to execute the
corresponding method.

Return the container

Figure 5: The skeleton of rendering algorithm implemented in MORE.

A run-time editor is a component aimed to write/read the value of an abject field. For

25

instance, if our model contains a field of type java. lang. String, the above algorithm

looks up a run-time editor for such a type, that will likely be a text field graphie compo-

nent. To foster the development of new applications, MORE provides run-time editors for

main basic Java types: java.lang.String, java.util.Number, java.lang.Boolean,

and java. util. Calendar. Besicles, it provides run-time editors for composite types like

java. util. Collection, and java. lang. Obj ect []. For those types, the editor allow

users to select, display, modify, remove, and add elements to the collection or to the abject

array. Finally, during the development of multi-media and geo-referenced applications

[4], emerged the need for some new Java types: Si tuated and Mul timediaResource.

Si tuated is a Java interface that provides information about the physical position of

an abject either in a Cartesian format (latitude and longitude) or in a topological format

(city, street, number, etc.). A Situated[] component is displayed as a map centered on

the barycentre3 of the array, in which the user can zoom in, zoom out, select an abject

and display it in a separate view. The Mul timediaResource type is basically a wrapper

to a multimedia file; supported types are JPEG, GIF, MP3, wav, and mpeg.

1.3.1 Example 1: A Trivial Calculator Machine

To provide a better grasp of how generating a user onterface on-the-fly for a given abject,

we use a trivial calculator machine as illustration. The calculator is implemented in Java

and it is able to perform basic numerical operations (Figure 6).

The following code snippet computes 5*6 using this abject:

TrivialCalc c=new TrivialCalc();

c.setA(new Double(5.0));

c.setB(new Double(6.0));

Double result=c.multiplication();
3The barycentre of the points

(lat1, lon1), (lat2, lon2), .. ., (latn, lonn)·

26

defined by geographic coordinates

In general, a human programmer easily figures out how to use a given object by the

structure of its code. Similarly, a refiective system which loads a TrivialCalc instance,

infers the existence of two numerical fields, A and B, and of two operations sum and

multiplication, since Javabeans coding conventions are respected. After this simple

analysis, it is possible to build a user interface for inserting numerical values and for

invoking operations. Figure 7 shows the graphical user interface generated on-the-fiy for

a PC.

27

package crs4.more.testobjects;

public class TrivialCalc {
Double a=new Double(O.O);
Double b=new Double(O.O);

}

public Double getA() {
return a;

}

public void setA(Double a) {
this.a = a;

}

public Double getB() {
return b;

}

public void setB(Double b) {
this.b = b;

}

public Double sum(){
return new Double(a.doubleValue() + b.doubleValue());

}

public Double multiplication(){
return new Double(a.doubleValue() * b.doubleValue());

}

public String toString() {
return "I'm a trivial cale";

}

Figure 6: Java code for the TrivialCalc example

28

Figure 7: Graphical user interface generated on-the-fi.y for a TrivialCalc abject with Java
Swing widgets.

29

1.3.2 Coding Rules and Legacy Systems

The Tri vialCalc code (Figure 6) is not the most intuitive that a programmer could

write. In fact, a client program would expect methods with parameters:

TrivialCalc c=new TrivialCalc();

Double result=c.multiplication(5,6);

//(1)

//(2)

Furthermore, the parameters makes the internal registers A and B inside the abject

useless. Then in this case, instantiation (1) is also useless, and in fact a waste of space.

The code could be redesigned to be fully procedural and class methods used instead of

instance methods:

Double result=Trivia1Calc.multiplication(5,6);

From the code above one can raise the question whether or not it is possible to

generate a user interface from the sole knowledge of the signature of a static method

with parameters. The answer is yes for a code as simple as the example. But more in

general, given arbitrary legacy code written with no naming conventions, no fixed idioms,

and no style rules, is it possible to write a reflective system able to provide the user with

a proper user interface in order to effectively interact with the code? We do not answer

this, but we suppose that the cost of implementing such a system would be really big4 .

On the other hand, a more pragmatic approach is to rule code-writing with few simple

guidelines. The resulting code becomes easily interactive in a reflective system with only

a reasonable burden put on programmers' shoulders.

The rules MORE is relying on are the following:
4There are some commercial products which provide a semi-automatic integration of legacy systems

such as IHC [33]. In most cases the integration of legacy system is a manual task which requires the
design and implementation of a middleware to wrap the legacy system to be incorporated in a Web
based service architecture.

30

• If a field X is expected to be visible to the user then write an read accessor

public getX()

• If a field X is expected to be writable by the user then write a write accessor

public setX(XType x)

• If a method is expected to be directly invoked by the user then the method must

be public and without parameters

The last rule sets a strong constraint, but the example of TrivialCalc shows that the

state of an object can be used instead of parameters to perform the computation. If we

remove the last rule, at the moment of the invocation of a method the system should ask

the user to insert the parameter values. This task is quite simple for strings or numerical

values but could be more complicated for object references.

As final consideration, legacy code could be wrapped inside a well-written code in

order to become directly manipulable by the user.

1.3.3 Example 2: The Pocket Calculator

The TrivialCalc (Figure 1.3.1) does not fit the usual mental model of pocket calculators.

We can easily write a class Cale (Appendix A) which is a doser metaphor for real world

pocket calculators. It contains a field display of type String, ten methods (one for

each digit) which append the corresponding digit to the display, one method for each

operator, and one to show the result.

The class Cale is not a user interface, but rather a model for which it is possible

to attach a view generated in an automatic manner by a rendering mechanism. This

model of calculator performs the same interactions as real world calculators does, ~ith

no use of graphical components and thus, implementing the interactions with platform

independent code. Figure 8 shows the pocket calculator in various platforms.

31

a more elaborate Cale ...

Figure 8: Three views automatically generated by the object renderer from the calculator
machine model. From left to right: a Swing view, an HTML view, a WAP view.

The client program using a Cale instance to compute the sum 34 + 33 would be as

follows:

Cale e=new Cale();

e._3_();

e._4_();

e.sum();

e._3_();

e._3_();

32

c . result () ;

String result=c.getOperand();

It is like a macro where any single instruction corresponds to an action on the actual

user interface.

1.3.4 Delivery Architecture

Application delivery is a fondamental aspect in the life cycle of a software application.

The complete description of deployment, discovery, lookup and delivery of software ab-

jects in a pervasive computing environment is detailed in Chapter 3. In this section only

the delivery concepts strongly related to the automatic generation of user interfaces are

introduced.

At this stage, we make a rough classification of devices according to the respective

location of models and views. The architecture where models and views are both instance

running in the same virtual machine is denoted as Fat Client; the architecture where

models are instances running in a remote host and views are instances running in the

user device is denoted as Thin Client; the architecture where both models and views are

instances running in a remote host and the user device is simply a browser for HTML,

WML, VoiceXML documents is denoted as HTTP-only Client.

Next section describes the implementations of MORE for these three architectures:

Fat Client, Thin Client, e HTTP-only Client.

1.4 MORE: the Rendering Engine

This section describes the main elements of MORE. Further on, the following terminology

is used:

33

• the user is the human who interacts with objects by means of appropriate user

interfaces generated by MORE.

• the developer is the human who writes the domain-objects (also called models), and

other classes relevant in the application such as preconditions, layouts and mates

which will be explained later in the text.

• the system is the set of classes performing models introspection, user interfaces

generation and interaction events handling. The word "system" here does not

include all other mechanisms such as deployment, discovery, and delivery needed

to handle the entire lifecycle of applications (see Chapter 3 for details).

The classes and the concepts introducted here are: Model (Section 1.4.1), Session

(Section 1.4.2), AbstractView (Section 1.4.3), Mate (Section 1.4.4),

and RuntimeEdi tor (Section 1.4.5).

1.4.1 Madel

Models are the domain objects involved in the interaction with users at runtime. They

are self-contained bunches of data and code. Their code does not deal with user interface

aspects. The code is organized in methods returning values which can be either void,

other models or basic types values such as strings, dates, numbers and so forth.

A model class is not required to extend some framework superclass, it simply must

conform to coding conventions explained in Section 1:

• If a field X is expected to be visible to the user .then write an read accessor

public Xîype getX()

• If a field X is expected to be writable by the user then write an accessor

public setX(XType x)

34

• If a method is expected to be directly invoked by the user then make the method

public and without parameters5 .

Model classes are neither required to extend any framework class nor to fire any kind

of framework event. This is a vital feature to avoid event handling code in domain abject

classes.

1.4. 2 Session

In this section the term session is used to denote the interaction session. More precisely

a session is instantiated in the end user device when the user starts interacting with

models. Such session is transient and not persistent over devices and connections6 .

The functionalities provided by the interaction session are:

• to create views and controllers for a given model;

• to maintain a model-view mapping;

• to maintain a register of instantiated models;

• to allow user to instantiate new models or to retrieve already existing models;

• to allow developers to register in the session the classes the user will instantiate;

• to allow the developer to associate specialized mates to domain abject classes;

A session often takes the form of a desktop with a toolbar for creating new instances

of registered model classes. The instances are showed to the user by means of views.

Figure 9 shows a session in the JVM J2SE platform where user interfaces are made of

Swing components.
5In Section 1.3.2 we explain why methods must be parameter-less.
6It should be not confused with the session described in Section 3 which is called User Session and is

a server-side container which stores user related abjects when the user is offiine.

35

Figure 9: A session displayed with the Java Swing library

1.4.3 Abstract View

MORE is built on top of acore implementing basic features common to all possible de-

livery context and user platforms. For instance, the algorithm in Section 1.3 is platform-

independent and its implementation relies on method invocation on abstract classes.

The AbstractView class defines and implements the rendering algorithm in the

render () method which is a template [24]. It is up to subclasses to implement the

platform-dependent steps inside the render () operation. The appropria te subclass is

loaded depending on the information collected from the delivery context. The rendering

algorithm is reported in the Figure 10

36

The AbstractView is a container of user interface components which are indepen-

dent from GUI toolkits or mark-ip languages. At runtime the concrete view is finally

instantiated from the most appropriate library for the actual delivery context. Con-

crete components are deployed for displaying fields and methods of the model. The

AbstractView is a system abject so application developers are not expected to extend

this class. System implementations are already provided for Java Swing, J2ME, AWT

and markup languages clients such as Web browsers, VoiceXML browsers and WAP

phones. New implementations of this class are necessary only in the case one wants to

port the system to a new platform, but in this case it is the system developer task and

not the application developer one.

Usually, when speaking of MVC, views are expected to be components belonging to

a given library such as Swing, SWT, or AWT in the case of Java. Such components

delimitate a portion of the screen and contain other components such as panels, but-

tons, labels and so forth. In terms of design, this is exactly a Composite pattern where

containers and components are defined and where the following relations are assumed:

a container is a component; a container contains zero, one or more components. In the

case of an platform independent MVC implementation, one cannot assume at design time

that components belong to a given library, in fact at runtime they could be implemented

in Swing, AWT, WAP, HTML or other component families. Thus the AbstractView is

a graphical container abstraction where one can add new abstract components placed

according to a given layout. Whether or not this component will appear as a desktop

frame, as a Web page, or as a Wap card is a fact depending of the actual Delivery Context

(Section 3.3).

37

1: public void render() throws Exception {
2: String last = null;
3: Mate mate= getSession().getMate(getModel());
4: Iterator sequence = mate.getLayout().layoutiterator();
5: while (sequence.hasNext()) {
6: String memberName = (String) sequence.next();
7: if (mate.isVariable(memberName)) {
8: Object value= mate.getValue(memberName);
9: if (value != null &&
10: mate.isRenderableFeature(memberName)) {
11: renderFeature(value,
12: mate.getDescriptor(memberName));
13: last = memberName;
14: }
15: } else if (mate.isMethod(memberName) &&
16: mate.isRenderableFeature(memberName)) {
17: renderüperation
18: (mate.getDescriptor(memberName).getOperationPane());
19: last = memberName;
20: } else if (memberName == Layout.NEWLINE) {
21: if (mate.isVariable(last))
22: getFieldsPane().addNewLine();
23: else if (mate.isMethod(last))24:
24: getOperationPane().addNewLine();
25: }
26: }
27:
28: getOperationPane().addNewLine();
29: }

Figure 10: The method render in the Abs tractView class. In line 3 we obtain an
instance of Mate which contains all met a-information about a model. In line 4 we get a
sequence of member names and from line 5 to line 25 they are laid out in the Abstract View
by means of either renderFeature () or renderOperation (), depending on we are
rendering a field or a method. The features of class Layout are described in E

38

1.4.4 Mate

In MVC the view keeps a reference to the model for reading model status and invoke

model methods. This is a straightforward architecture when views are tailored by hand

for a given model. In the case of automatic generation of views some issues arise:

• if an application requires a given method to be invoked only if a pre-condition is met

where is defined the pre-condition? Who evaluates the pre-condition at runtime?

• If an application requires an abject to be displayed with a specific layout who stores

the layout information?

• If the view requires a field to be displayed with a phrase like "Please, insert your

PIN" the developer should define a field with a name "pleaseinsertYourPIN" which

is not exactly an solution. Alternatively, who can store alias for methods names

and field names?

• Last, assuming that method invocation or value setting must be somehow filtered

for a special purpose in your application, who perform as filter?

The solution is to place a mediator (called mate) between the view and the model

and that such mediator are "stackable" in a way that their filtering fonctions can be

combined, juxtaposed or superposed recalling the idea of Decorator [24] pattern.

The resulting architecture is showed in Figure 11.

1.4.5 Runtime Editor

Section 1.4.3 describes the AbstractView as a container of user interface components

which are independent from GUI toolkits or mark-ip languages. At runtime the concrete

view is finally instantiated from the most appropriate library for the actual delivery

39

Figure 11: MVC modified with Mate insertion

context. Concrete components are deployed for displaying fields and methods of the

model.

Concrete components are instances of Java classes extending the superclass

RuntimeEdi tor which in turn extends the class AbstractComponent. At runtime, the

system loads a table where types are associated to the appropria te editor. For instance,

if the user is running the application in a J2SE platform on a desktop computer, then

for a field of type Number the appropriate NumberEdi tor is loaded and instantiated.

The table is structured as a simple Java property file and contains entries such as the

following:

field type = runtime editor class type

The mapping between editor types and value types follows the inheritance rules such

that if the system needs the editor for a value of type T and no editor is available then

the editor for the superclass of T is searched and so forth up on the inheritance tree until

the class Obj ect. If no editor is found the value is represented by a navigable link to

40

another abject.

The editor table is loaded at the beginning of the interaction session, and if one wants

to change it at runtime it should be clone by means of mate classes.

For instance, if an application requires that in model M1 fields of type Number are

mapped to editors of type E1 and in model M2 fields of type Number are mapped to

editors of type E2, then the developer must implement the mate classes in order to specify

that. At coding level, it means overriding the Mate. getRuntimeEdi torO method.

MORE provides runtime editors for different platforms and for the basic types listed

below:

java.lang.Number

java. lang. String

java.lang.Boolean

java.util.Calendar

java. util .Date

java.util.Collection

java.lang.Object[]

It is up to application developers to implement new runtime editors for other types

relevant to applications. For instance, in the E-Mate project (Chapter 4) additional

editors have been implemented for geo-referenced abjects and other multi-media resources

that are shared by most of services developed within the E-Mate framework.

1.5 MORE architecture and Javabeans API

The entire MORE API could be indeed considered as an extension of the Javabeans API

aimed at the multi-channel delivery of services. For instance, the information contained

in a Mate is similar to the additional information a Beaninfo stores for a Javabean.

Nonetheless, a Mate covers other aspects not fully addressed by a Beanlnfo:

41

• The mapping between beans and infos is at class level, i.e. for a given bean class we

have a Beaninfo class. In MORE, instances of the same model can have as mates

instances of different Mate classes. Moreover, a Mate can be coupled and decoupled

to a model at runtime changing dynamically the behaviour of the application.

• The Mate programming interface is richer than the Beaninfo one. It directly han-

dles pre-conditions, layouts and it simplifies the access to fields values and the

invocation of model methods.

• J avabeans are reusable software component that can be manipulated visually in a

builder tool, while models are domain abjects involved in the interaction with the

user at runtime by means of an appropriate user interface generated automatically.

So the aim of the two is quite different: Javabeans define a complete component

model for software application in general with a special focus on visual composition

at design time while MORE API implements an architecture for the delivery of

services on any device. N onetheless, the J avabeans API could be exploited to

provide some of the features described in this section. For instance, the class

Introspector is used by MORE classes to get abjects metadata at runtime.

• In the MORE architecture, a Mate is an intermediate layer between the view and the

model. Any action on the view triggers a method of the Mate which filters the user

action in the most convenient way. In other words, if a view wants to read/write a

given model variable, or invoke a model method, or gather meta information about

which methods and which fields are available in the model, all this information is

conveyed by the Mate.

42

1.6 The Maildemo Application

1.6.1 Introduction

This section shows how to develop a simple application for reading and writing mail

messages and that make them available on multiple heterogeneous platforms. First,

model classes are designed and implemented against coding conventions defined in Section

1.3.2. Then, their implicit information is used to generate the user interface for a desktop

computer, a Web browser, and a cellular phone. We show also how auxiliary abjects such

as mates, pre-conditions, and layouts may be integrated in the application to provide a

better user experience and a better control to preserve model integrity.

1.6.2 Design of the Model Classes

The Maildemo application relies on the following classes: Message, MailBox, InBox,

OutBox, Configurations, PopConfiguration, SmtpConf iguration. In this section we

will describe each of them.

The Message Class

The class Message (Figure 12) defines abjects that are created, read, modified, and

processed in the application.

A glance through the code shows that, apart from set/ get accessors, the class

Message declares methods: toString, send, forward and reply. They are all parameter-

less and the method toString is redefined to allow the system to display a frame title

containing the subject of the message.

• send () appends the message to the OutBox (a message in the OutBox is considered

as sent)

43

Message
(tram crs4::more::mai/demo)

+READY TO SEND:String=11 RTS 11

+SENT:String=11S"
+RECEIVED:String=11 R11

Nstatus:String=READY_TO_SEND
Nrecipient:String= 1111

Nsender:String= SmtpConfiguration.getlnstance().getldentity()
Nmessage:String= 1111

Nsubject:String= 1111

Ndate:String= new Date().tolocaleString()

+getStatus() :String
+setStatus(status :String) :void
+getSender() :String
+setSender(sender:Stri ng) :void
+toString() :String
+getDate() :String
+getSubject() :String
+setSubject(subject:String) :void
+getRecipient() :String
+setRecipient(recipient:String):void
+getMessage() :String
+setMessage(message:String):void
+send():void
+forward():Message
+reply() :Message

Figure 12: UML for class Message

• forward() returns a new message whose subject is the result of prepending the

literal 'Fw:' to the current this. subject

• reply() returns a new message whose subject is the result of prepending the literal

'Re:' to the current this. subject. Furthermore, the recipient of the new message

is set equal to the sender of the Message. this.

With no further information, MORE would render a message instance with all meth-

ods exposed at the same time. However, for a brand-new message, it is a nonsense to

invoke reply and/ or forward. They should be disabled. For a message coming from

the InBox queue is a nonsense to invoke the method send(). Methods expected to be

44

enabled should be reply () and f orward () only. This is a typical situation where a

pre-condition can be defined on methods in order to constraint their activation according

to the state of the message object.

Figure 13: A view for a message with pre-conditions and layout assigned

The first step to define a pre-condition on a method is to extend the class Mate with

a new class MessageMate. Let us assume that the field member status may only assume ·

one of the following values:

,.·1 • ••

45

status E {READYTOSEND, SENT, RECEIVED}

The MessageMate class has to check the following conditions to the execution of

message methods:

• pre-condition on send: status == READYTOSEND;

• pre-condition on forward: status == RECEIVED V status ==SENT;

• pre-condition on reply: status == RECEIVED;

The Figure 14 shows the Java code assigning preconditions and Figure 15 shows an

implementation of the precondition enabling the send method.

public MessageMate(Object model, Session session) {
super(model, session);
addPrecondition("forward",new ForwardReplyPrecondition(this));
addPrecondition("reply",new ForwardReplyPrecondition(this));
addPrecondition("send",new SendPrecondition(this));
[... snip ...]

Figure 14: The auxiliary class MessageMate assigns pre-conditions to allow the invo-
cation of specific methods of the model class Message.

In this way the MessageMate enables or disables methods in the user interface de-

pending on the message state.

A second issue regarding the message view is the following: once the user invoke send

on a message, the proper behaviour would be to close the message view in the screen.

Closing the message user interface in the screen provides a feedback to the user that the

46

public class SendPrecondition extends Condition {
public boolean isîrue() {
try {

return mate.getValue("status").
equals(Message.READY_TO_SEND);

} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {

e.printStackTrace();
}

return false;
}
[... snip ...]

Figure 15: Precondition implementation for method send ().

task is clone. Such a behaviour cannot be implemented in the Message class, nor in the

view since it is generated by the system. Thus the proper place is the mate. (Figure 16)

A third issue is about presentation order of fields in the view. With no additional

information, members would be laid out in the panel in an unpredictable order. To

constraint the presentation to a specific order a Layout abject must be provided (Figure

17).

As a result, a view of a message enables methods according to pre-conditions and lays

out field members respecting a specific order (Figure 13).

Finally, before sending a message we must assess that subj ect and recipient are not

null fields. In that case, the method should throw an exception. Then, the mate handles

exceptions like any other model abjects to be rendered and an appropriate runtime editor

is loaded and presented to the user.

47

public void invokeMethod(String name) throws Exception {
super.invokeMethod(name);
if(name.equalsignoreCase("send"))

session.closeView(model);
}

Figure 16: The invokeMethod method overrides the default behaviour inserting the in-
struction for closing the view when the invocation of send is successfull.

The MailBox Class

The MailBox class defines the common structure to all mail boxes (Figure 18). Specifi-

cally, it defines a field envelopes of type Message[]. The class Inbox extends Mailbox

and defines the method checkNewMessages (). The class OutBox defines the method

addEnvelope (Message m) which appends a message to the outgoing queue. Notice that

the method addEnvelope (Message m) is not showed to the user for it is not a zero-

parameter method.

Figure 19 shows how the InBox is rendered on PC screen. The message array is

rendered by MORE in the Swing platform as a tabular component, more precisely a

JTable instance from the Swing API is used. With this kind of editor the user is allowed

to scroll the message list, to sort them with respect to a field, to remove a message and

to open the selected message in a separate view.

To show how the mate can filter and dynamically modify the behaviour of the applica-

tion, we wrote a MailBoxMate able to observe the user behaviour and switch from novice

to expert mode the interaction with the InBox. In the novice mode the operation on the

mail box are shielded by a confirm dialog in order to avoid unexpected deletion of data.

After a given number of interactions with the mail box object, the user is considered

expert and the dialog is not popped any more.

48

public MessageMate(Object model, Session session) {
super(model, session);
[... snip ...]
Layout l=new Layout();
l.addMember("recipient");
1. addNewLine () ;
l.addMember("subject");
l.addNewLine();
l.addMember("sender");
1. addNewLine () ;
l.addMember("message");
1. addN ewLine () ;
l.addMember("send");
l.addMember("forward");
l.addMember("reply");

this.setLayout(l);
[... snip ...]

Figure 17: Definition and assignation of a Layout object in the body of MessageMate

Although it is a simple example of dynamic change of behaviour of an application, it

highlights the mechanisms that may provide for personalization. To do so the method

MailBoxMate. setValue (String variable, Obj ect value) overrides the

Mate. set Value (String variable, Obj ect value) (Figure 20). After N invocation of

any operation which sets the fields of the mail box object, a default mate without user

confirmation, replaces the current one for the mailbox and the user is notified that from

now on he is considered an expert user.

49

Mail box

+getEnvelopes() :Message[]
+setEnvelopes(envelopes :Message[]) :void
« create »+Mailbox():Mailbox

6. 6.

ln Box Out Box

+getl nstanceü: 1 n Box +getl nstanceO :OutBox
+checkNewMessages() :void +add Envelope(outGoingMessage:Message) :void
+ toStri ng ():String +toString():String

Figure 18: UML diagram for classes MailBox, InBox and OutBox

Preferences and Set-up

By means of this tool the user is enabled to configure his mail identity, the outgoing

mail SMTP server , the incoming mail POP3 server , and other security relevant infor-

mation such as username and password. The classes involved are PopConfiguration,

SmtpConf iguration, and Configurations (Figure 21).

The class Configurations is simply a container of abjects which defines a field

configurations of type Vector. When MORE runs in. the J2SE platform and the

delivery context is based on Swing, a Configurations instance appears as in Figure 22.

The view allows the user to navigate a tree on the left panel, and to select an abject

50

Figure 19: An InBox instance as displayed by MORE on the J2SE platform with Swing
API.

which is rendered on the right panel.

1.6.3 Multi-platform access to the MailDemo application

Previous sections sketched the general principles for generating dynamically a user in-

terface for a PC. This section depicts how user interfaces are dynamically generated for

different platforms, namely ~Web page and a cellular phone

51

public void setValue(String variable, Object value)
throws ... {

}

int k = session.showShield("Want to keep your changes?");
System.out.println(k);
if (k == 0)

super.setValue(variable, value);
counter --;
if (counter == O){

}

session.setMate(model,new Mate(model,session));
session. showinfo("Now you are expert, ... ");

Figure 20:. MailBoxMate code overrides the default setValue method. Initially, a
confirmation is expected from the user. When counter equals zero a default mate, with
no such a policy, is assigned to the model abject.

Access to MailDemo from a Web Page

The MailDemo application may be rendered by MORE when the user connects through

a Web browser (Figure 23 and Figure 24). Any abject is represented by a view which

is a Web page dynamically generated. Any view shows also a toolbar with a button for

any class registered in the session.

Access to MailDemo from a Cellular Phone

Maildemo model abjects can also be delivered to a cellular phone by MORE (Figure 25).

Here the delivery device is a Nokia 3510 Mobile Phone simulator using WAP browsing

mode. The simulator has been choosen instead of the real device to easily grab images

of the running application instead of photos.

52

Configurations
(from crs4::more::mai/demo)

+getlnstance(}:Configurations
« create »-Con1igura1ions():Con1igurations
+getCon1igurations():Vector
+se1Configurations(con1igura1ions:Vector):void
+toS1ring():String

PopConfiguration SmtpConfiguration
(from crs4::more::mai/demo) (from crs4::more::maildemo)

-identity: Strin g="yourn am e@domain .net"

+ge1Popserver():String « create »-SmtpCon1iguration():SmtpConfiguration
+setPopserver(popserver:String):void +setSmtpserver(smtpserver:Stri n g):void
+ge!Username():String +getSmtpserver():String
+setUsemame(usemame:String):void +toString():String
+getPassword():String +getlnstance(}:SmtgCon1iguration
+setPassword(password:String):void +getldentity() :String
+getD eleteMessageOnServer(): Boolean
+set DeleteMessageOnServer(deleteMessageOnServer: Boolean):void
+toString():String

Figure 21: UML diagram for Configurations, PopConfiguration, and
SmtpConf iguration classes

53

Figure 22: View for a Configurations instance containing the mail settings for the
J2SE platform with Swing user interfaces.

54

Figure 23: HTML pages generated by MORE. The generated Web pages are linked to
model abjects of type Message and InBox

55

Figure 24: HTML pages generated by MORE. The generated Web pages are linked to
model abjects of type Preferences and PopPreferences

56

Figure 25: WML pages generated by MORE. (Top-left) Generated WML page for a
Message instance. (Top-right) The generate edit dialog for the recipient field mem-
ber of Message class. (Bottom-left) Generated WML page for the Configurations
instance. (Bottom-right) Generated WML page for the Pop Configuration instance.

57

Chapter 2

BEYOND OBJECT-DRIVEN

INTERACTION

The design approach described in Chapter 1 has the advantage of a pure object-based

definition of applications where users access data and fonctions directly interacting with

application's first class citizens, the abjects. From a programmer point of view this is a

straightforward way to implement in a platform independent manner all the functionali-

ties letting user interfaces and platform specific deployment details to be automatically

handled by the system.

Such an approach, which provides multi-channel access with no wrinkles, is somehow

fascinating for whom does not want to deal with user interface issues related to design

and usability. Programmers do not necessarily feel confortable to work side-by-side with

usability experts because in many cases they assume to have the authority to tell pro-

grammers what they have to do. For their part, managers simply want to save as much

money as they can. From a Java programmer point of view there is another advantage:

he/she can design, implement, and deploy an application working exclusively with Java

code. No Javascript, HTML, XML or whatever else have to be used.

However, object-driven and direct-manipulation systems have received strong and

58

merciless critics from usability experts. For example, Constantine in [15] writes a very

negative review of the work described by Pawson in [48]. The two authors starts from

totally different assumptions and reach opposite conclusions about the opportunity to

adopt object-driven interactions in software applications.

The subject of this chapter is not to examine all the reasons from both sicles. We

rather want to start from the experience gathered during the development and the ex-

perimentation of the MORE framework to assess the limits of object-driven interactions

in the context of pervasive computing (Section 2.1). Then we go beyond these limits

and propose in PLANES (Section 2.3) a possible solution. The next step is to integrate

PLANES and MORE in a complementary approach (Section 2.4). Tools (Section 2.5)

are designed and implemented to help working with PLANES. Finally, the MailDemo

application is revisited to show the adaptation obtained with the new approach (Section

2.6).

2.1 Limits of the Object-Driven Interaction

In this section we examine three different forces that make pure object-driven interactions

inadequate in the context of pervasive computing. Such forces are the user profile (Section

2 .1.1), the device profile (Section 2 .1. 2), the context of use (Section 2 .1. 3), and the

combinatorial explosion of objects (Section 2.1.4).

2 .1.1 User Profile

The user profile is an important factor in interacting with computers both in traditional

and pervasive computing. Let limit the attention on the experience of the user1 . Although

the direct interaction with domain objects seems to be straightforward for an expert

computer user, it is not the case for a novice one: we cannot assume a novice user to
1The study of a complete user prufile is far beyond the scope of this work.

59

understand the metaphor behind the object-driven interactions. Therefore, assistance

from the system will be often necessary to reach his goal.

Moreover, even a computer litera te can find useful a guidance when he faces an

application in a complex or critical domain. I was personally involved in using a software

for the production of Modulo 740, an Italian form stating annual incarnes, real estate

ownership, medical tax discounts and other tax relevant information. The production of

such a module was in the past really a hard task, even for acconting and finance experts.

In 1992 it has been defined "lunare" 2 by the former president of Italy, Francesco Cossiga.

Then a specialized software tool was developed to guide the user and help him to fill the

form. U sers accustomed with tax regulation could just pick the relevant forms and print

it with no additional works. For non-expert users in tax laws and accounting jargon, the

tool provided a guided tour of the Modulo 7 40, asking the user punctual informations

about his incarnes, real estate and so forth.

Assisting the user often means constraining his interaction in a precise sequence of

tasks and sub-tasks. This approach is exactly the opposite of the direct manipulation of

model abjects. In other words, novice users need to focus their attention on a precise

goal in a step-by-step process. The possibility to internet with the complete set of model

abjects at the same time can lead the novice to confusion. Consequently, the model

abjects must blur themselves in the background letting tasks and goals emerge.

In terms of Interaction Patterns [73], it is the right place to apply the Wizard pattern3 .

2From the moon; something really mazed or mad.
3The Wizard pattern was proposed by Martijn van Welie. It can be summarized as follows:

• Problem: The user wants to achieve a single goal but several decisions need to be made before
the goal can be achieved completely, which may not be known to the user

• Principle: User Guidance (Visibility)

• Context: A non-expert user needs to perform an infrequent complex task consisting of several
subtasks where decisions need to be made in each subtask. The number of subtasks must be small
e.g. typically between 3 and 10.

• Forces: The user wants to reach the overall goal but may not be familiar or interested in the steps
that need to be performed. The tasks can be ordered but are not always independent of each

60

It is an example of a guidance for novice users that need an explicit definition of task

and subtasks. This is not easy to implement in our current abject driven system. Forcing

an abject driven system like MORE to produce a Wizard interaction raises interesting

issues: abjects in a Wizard are not really domain abjects but rather steps and they should

have methods like next, back and exit that link a step to the other. Such step abjects

have no meaning in an abject oriented domain model, they would be at least a sort of

anomaly. So modelling a Wizard in a abject driven system is not a viable solution. A

more appropriate solution is to define task models.

2.1.2 Device Profile

The end user device is another critical factor that must be taken into account when

designing user interaction. In a pure abject driven system abject are accessed by means

of automatically generated views even for devices with poor input/ output capabilities.

other i.e. a certain task may need to be completed before the next task can proceed. To reach
the goal several steps need to be taken but the exact steps required may vary because of decisions
made in previous steps.

• Solution: Take the user through the entire task one step at the thne. Let the user step through
the tasks and show which steps exist and which have been completed.

When the complex task is started, the user is informed about the goal that will be achieved and the
fact that several decisions are needed. The user can go to the next task by using a navigation widget (for
example a button). If the user cannot start the next task before completing the current one, feedback
is provided indicating the user cannot proceed before completion (for example by disabling a navigation
widget). The user is also able to revise a decision by navigating back to a previous task.

The users are given feedback about the purpose of each task and the users can see at any time where
they are in the sequence and which steps are part of the sequence. When the complex task is completed,
feedback is provided to show the user that the tasks have been completed and optionally results have
been processed.

Users that know the default options can immediately use a shortcut that allows all the steps to be done
in one action. At any point in the sequence it is possible to abort the task by choosing the visible exit. The
navigation buttons suggest the users that they are navigating a path with steps. Each task is presented
in a consistent fashion enforcing the idea that several steps are taken. The task sequence informs the
user at once which steps will need to be taken and where the user currently is. The learnability and
memorability of the task are improved but it may have a negative effect of the performance time of the
task. When users are forced to follow the order of tasks, users are less likely to miss important things
and will hence make fewer errors.

61

Does it make sense to access domain abjects and their methods in a 1,8 inch display with

no mouse and keyboard? Does it make sense to perform interactions in parallel as one

does on a desktop computer in a totally different device. U sing a modern cellular phone,

it is unlikely for the user to start writing a message, suspend such task to configure its

mail account, then navigate in the mèssage list and finally resume writing the suspended

message. That is what we do on a desktop computer. When a device has a small display,

no mouse and a 12-keys keyboard even if the software allows parallel interaction, the

bottleneck is input/ output capability yielding to interactions that are strongly serialized.

Yet in this case it seems interactions must be simple and focused on a precise goal, thus

a guidance through a task model is likely to be a suitable solution.

2.1.3 Context of use

The device is just one variable in the whole delivery context. There are other factors

related to place and time: when and where the interaction occurs. For instance, a user

at office has the time and the hardware for coordinating different concurrent interactions

with the computer. On the other hand, a user during a travel would usually access

programs and data through the Web because Internet browsers are available for most

platforms. Someone having a breakfast in his kitchen would check his mailbox without

turning on the computer but rather by means of his interactive TV. So tasks models

should be tailored according to the context of use, e.g. place, time, and device available.

2.1.4 Towards a Combinatorial Explosion of Objects

In Chapter 1, objects are described as interactive and self-contained computing elements.

They allow users to perform activities related to abjects such as: invoke a method,

assigning a value to a field, select an abject in a list, and so forth. Assuming a pervasive

computing environment like a place enhanced with thousands of abjects then it would

62

be hard for the user to handle such a complexity with a pure abject driven interaction

system. The next section introduces task models, explains how to define tasks and

subtasks using a visual tool and how to integrate a task model with the abject model in

a pervasive computing environment.

', DEVICE , DEVI CE DEVI CE

-• •• • • •• ·=··· .. ~ ... 1111• ... Ill -1:. If • 1 11--:..r• Il •• • •• ···!'• Il Il 1 l': ~ •1 : r. ~ -..
Ill - • 1 .. ,. • • . .. •• Il .. Il .. ••

Il .. • • Il · · ··-......
•• 11111 .. Il • • - .. 1 ·1 1111 ... -... . .. Il Ill Ill Il il ... 1 1 .. 1 •• 1 • , • 1 1 f ~ - 1 1 r.\.q3 ... "l ~ 1 J 1

" ' L: .!. 1 .,191 • •• .. ii' • • 1 Il Ill '!
... ~ • • 1 1 1 . ·' 1 Il

.. •• Il 11 l 1 •• 1"'11 • • 1 1 • •••• Il 1 .. 1 ...
• Il :~.-.

-• ••
1 • • r ;,- r• •• Il .. , •• - l!l!I Ill - 1 • Il • :: . - Ill - - - ..

Figure 26: Layers between the user and domain abjects

Our approach clearly becomes a layered one (Figure 26) . The abject model contains

63

all domain related abjects of the application and thus all data and logic. Mates, precon-

ditions and layouts builds a layer wrapping abjects. The wrapping layer adds application

specific and device specific behaviours as well as other presentation relevant information.

The task models layer hides underlying layers to provide users with guided, structured,

and personalized user experience.

2.2 On Task Models

Task models capture the flow of activities that must be carried out to reach a given goal.

Task modelling involves a high-level description of choices and sequences of activities.

Tasks represent activities at different levels of abstraction. For instance, a task repre-

senting the insertion of a new appointment into a personal agenda must be considered

an abstract task which will be reified by one or more concrete tasks.

Task-driven design assumes an abstraction on technology and implementation as well

as object-driven design does. Tasks are first-class citizens and operate on data, the user is

led through sequences or choices of actions to the accomplishment of the main task, while

in object-driven systems the user acts much more as a problem solver. The advantages of

task-driven systems are many. First, it eases the job of users. Second, it provides a clear

guided path. For instance, a user interacting with a mobile application may likely prefer

to know exactly what to do next instead of figure out how to exploit the user interface.

Furthermore, a task-driven system could be easily personalized according to the previous

activity. For instance, assume that while interacting with an answering machine a user

must choose among "save" and "exit" and that the actual user often does "save" and

then "exit" , the system could infer that a better menu for the actual user is: "save and

exit", "save", "exit" composing and reordering the options given.

64

2.3 PLANES: Prototyping LANguage for Embedded

Systems

The in-depth exploration of task driven systems is far beyond the scope of this thesis.

Our focus is rather on the experimentation of task-driven design and the integration with

the automatic user interface generation provided by MORE for developing services for

pervasive computing environments.

Many languages and environments for task driven design of interactive systems had

been proposed in the past but none of them emerged as a standard tool or standard

suite (although some tools such as ConcurrentTaskTrees (CTT) [46) are gaining a wide

adoption from HCI experts). The reader could find several examples of task modelling

tools in literature. [4),[31),[29),[46),[50),[61) address task modelling in all its aspects.

Since none of the above task driven approaches has reached the completeness and

the easyness-to-use for a commercial licensing, we at CRS4 designed and implemented a

simple task-driven design tool for mobile devices. The input of the tool, called PLANES

[7), is a task model defined with a visual palette of tasks, the output is a set of Java

classes for the J2ME platform. The original experiment was to design a personal agenda

system. It was limited to a pattern of applications that can be defined ChooseTask-

FillTheForm-Confirm-Submit(Figure 27 and Figure 28). The Java code generated by the

tool can be manually refined in order to cover specific presentation requirements.

One of the objective of our work is the integration of the task driven design of ap-

plication provided by PLANES with the capacity to generate user interfaces for any

device provided by MORE. In other words, how to exploit the abstraction and the ex-

pressiveness of task driven design in pervasive computing where multiple platforms such

as desktop computers, noteboks, Web pages, WAP decks, Java phones and VoiceXML

enabled browsers must be addressed.

65

The elements of a PLANES model4 have the following properties:

• any model can be represented by a N-nary tree.

• N odes in the tree are tasks.

• N odes can be either concrete tasks or composite tasks.

• A composite task is composed by one or more subtasks either composite or concrete.

• There are four different type of composite tasks: SEQUENCE, CHOICE, INTER-

LEAVING, and REPEAT.

• A SEQUENCE node is a composite task which constraints its subtasks in a sequen-

tial execution. Once the last task in a sequence is performed then the setj_uence is

over and returns the control to its ancestor task. Tasks in a sequence must commu-

nicate data between them. For this purpose, they share a common registry called

TaskContext which can contain an abject reference.

SEQUENCE(T1, T2, ... , Tn) means execute T1 then T2 ... then Tn

• A CHOICE node is a composite task which contains one or more mutually exclusive

subtasks.

CHOICE(T1, T2, ... , Tn) means user has to choose to execute T1 or T2 ... or Tn

• An INTERLEAVING is a composite task whose subtasks are all allowed to be

performed by the user concurrently. In this case more "Task Context" , one for

each interleaved task, are created in order to ensure consistency between concurrent

activities.

INTERLEAVING(T1, T2, ... , Tn) means T1 and T2 ... and Tn are performed in

parallel way
4The exact specification of the text notation used in this section is reported in appendix C.

66

• A REPEAT node is a container which repeats its component tasks arbitrary Nor

infinite times according to its definition.

REPEAT(T, N) means repeat task T N times

REPEAT(T, FOREVER) means repeat task T forever

The integration of PLANES tasks in the MORE framework required to introduce

some concrete tasks related to object instantiation, methods invocation and get/set of

object properties. These concrete tasks are:

• INSTANTIATE: it is a system task that creates a new instance of a given class.

The new instance is saved in the task context in order to be retrieved by next task

in a sequence.

INSTANT I AT E(ClassN ame)

• INPUT: this is a user task where the user is required to input the value of one or

more properties of the current model object contained in the task context. The

type of dialog presented to the user depends on the type of value that must be

inserted and on the platform.

INPUT(x, y, z) opens a dialog for the insertion of x,y,z. Once the user submits

the form, methods setX, set Y and setZ are invoked on the model object at the top

of the context5 .

• SELECTION: a user task to select one or more model abjects.

SELECTION read an array from the task context, waits the user selection and

writes the selected item into the task context.

• SHIELD: a dialog between user. and system to prevent accidental changes in data.

The user must choose among going further in a sequence, aborting the sequence or
5To be more precise, methods are :110t directly invoked by the task but by the mate which always acts

as mediator between domain objects an, .. dients.

67

going one step back. This task does not modify the context. If the user chooses

to abort, all the following tasks are simply skipped and the entire sequence is

considered clone. Any change in the task context or any other sicle effect caused

before the abortion is not rolled back.

• INVOKE: this is a system task which invokes the specified method on the abject

contained in the task context6 . The result is written in the task context.

2.4 PLANES and MORE Integrated

The integration of PLANES tasks in the MORE framework relies on the integration of

different models:

• Delivery Context: the delivery context contains device and context related infor-

mation. (See section 3.3 for a detailed description)

• Task Models: the application developer writes a set of contextual task models. For

instance, the task models can be associated to the actual end user device. For a

desktop PC with mouse, 102 keys and large screen the task model will be different

than the one for a 2 inches display, 12 keys mobile phone.

• Mate Madel: the application developer writes a set of classes which stand aside

the domain abject. Such classes filter invocations, define layouts, define and check

preconditions on methods and fields of the underlying domain abject model.

• Object Madel: the abject model defines the domain of the application. They are

self contained pieces of data and behaviour.
6 Also in this case any method invocation is proxied by the mate of the domain object

68

Once the application developer defines the Object Model and the Mate Model, de-

pending to the actual Delivery Context, the appropriate Task Model is loaded and exe-

cuted during service delivery.

2.5 PLANES: The Graphical Editor

The graphical editor for PLANES allows composition, file saving/loading, and deploy-

ment of task models (Figure 28). A palette of tasks is presented to the developer in order

to insert and edit tasks in the tree. The tool is written in Java and relies on Swing user

interfaces. The format for saving/loading PLANES models is XML (See Appendix D for

an example of XML output). Other formats such as LOTOS [4] or CTT [46] could be

implemented in future if requested.

We choose to serialize the task tree in XML instead of Java binary because saving

Java abjects in the native binary format is not version-resistant: for any change in the

implementation of a class, all previously saved models cannot be reloaded by the editor.

2.6 Task Models for the Maildemo application

The code of Maildemo application 1.6 was made of the following classes: an abject model

which contains message, inbox, out box and preferences classes; a mate model containing

preconditions, special behaviours and layouts. This section shows how and put on the

top of the previous models (Figure 26).

As examples, three different delivery contexts are depicted: Delivery Context on a

PC (Section 2.6.1), Delivery Context on a cell phone (Section 2.6.2), Delivery Context

on voice responder (Section 2. 6. 3).

69

2.6.1 Delivery Context on PC

In the first scenario the user works with his personal computer. More than one activity

can be going on at the same time. Interactions are interleaved and performed in parallel.

Such activities are: instantiate classes, edit fields of instances, invoke methods and so

forth (Figure 29).

70

agenda:=REPEAT(CHOICE(addAppointment,modifyAppointment),FOREVER)

addAppointment:=SEQUENCE(instantiateAppointment,
f illAppointmentForm,
SHIELD,
invokeWriteOnDisc)

instantiateAppointment:=INSTANTIATE("Appointment")

fillAppointmentForm:=INPUT("when", "why", "whom", "where")

invokeWriteOnDisc:=INVOKE("save")

modifyAppointment:=SEQUENCE(selectAppointment,
CHOICE(editAppointment,
removeAppointment))

editAppointment:=SEQUENCE(fillAppointmentForm,
SHIELD,
invokeWriteOnDisc)

removeAppointment:=SEQUENCE(SHIELD,INVOKE("remove"))

selectAppointment:=SEQUENCE(INVOKE("listAppointments"),SELECTION)

Figure 27: Prototype of an Agenda application designed with PLANES for a J2ME
powered mobile phone.

71

, Root
!

'P-· K agenda

1 .i. IJI TaskCholce

1 ,. :Il: Reference to addAppointment

l _ :. ... :Il: Reference to modifyAppointment

! .. 'fi. addAppointment

l ure··.· .. ·• instantiateAp~~intment
!--.. 'ii1 l œa,

1

L !At.· SHIELD l w
L . .. fi invokeWriteOnDisc

f.·· tq;, modifyAppointment
l g r ~ editAppointment

j '§ selectAppointment

<rr. ffï. removeAppointment

Figure 28: PLANES: the graphical tool in action. The task model in the picture (A)
defines tasks and subtasks for an Agenda application. In (B) and (C) screenshots of the
user interfaces related to tasks of the Agenda.

72

mailer:=INTERLEAVING(
REPEAT(sendMessage,FOREVER),
REPEAT(checkincomingMail,FOREVER),
REPEAT(manageSentMessages,FOREVER),
REPEAT(manageinbox,FOREVER),
REPEAT(configure,FOREVER))

sendMessage:=SEQUENCE(INSTANTIATE(Message),editMessage,INVOKE(send))
editMessage:=INPUT(recipient,subject,message)
checkincomingMail:=SEQUENCE(INSTANTIATE(InBox),

INVOKE(checkNewMessages),
manage In box)

manageinbox:=SEQUENCE(INSTANTIATE(InBox),
INVOKE(getEnvelopes),
SELECTION,
editMessage,
CHOICE(replyMessage,forwardMessage,

deleteMessage))

replyMessage:=SEQUENCE(INVOKE(reply),editMessage,INVOKE(send))
forwardMessage:=SEQUENCE(INVOKE(forward),editMessage,INVOKE(send))
manageSentMessages:=SEQUENCE(INSTANTIATE(OutBox),

INVOKE(getEnvelopes),
SELECTION,
editMessage,
CHOICE(forwardMessage,deleteMessage))

configure:=CHOICE(configurePOP, configureSMTP)
configurePOP:=SEQUENCE(INSTANTIATE(PopConfiguration),

INPUT(username,
password,
popServer,
deleteMessagesOnServer))

configureSMTP:=SEQUENCE(INSTANTIATE(SmtpConfiguration),
INPUT(identity,smtpServer))

Figure 29: Task model for the Maildemo application delivered on a PC.

73

2.6.2 Delivery Context on a Cell Phone

In this delivery context the user connects to the Internet with his mobile phone. The

connection is slow, the display is 2 inches monochrome screen and the user agent is a

WAP browser. In this context some activities can be performed while others cannot

(Figure 30). One can check new messages but not retrieve the list of old message for

the slow connection and the limited amount of memory. He can write and send a new

message but he cannot open the configuration panel. All parameters must be set in

another delivery context.

The main difference with the delivery on a PC are:

• the task mailer2 is not a composition of interleaved subtasks;

• the task manageinbox2 differs from the task manageinbox because it invokes the

method getNewEnvelopes instead of the method getEnvelopes thus limiting the

number of items displayed to the user. However, the class In box do es not implement

a method getNewEnvelopes. We should not have to modify the domain abject to

fit the task model. It would not be coherent with the approach underlying our

thesis. To address this issue, a mate for the Inbox is implemented. This mate

filters new messages when the method getNewEnvelopes is invoked by a task.

74

mailer2:=REPEAT(CHOICE(sendMessage,checkincomingMail2);FDREVER)

checkincomingMail2:=SEQUENCE(INSTANTIATE(InBox),
INVOKE(checkNewMessages),
manageinbox2)

manageinbox2:=SEQUENCE(INSTANTIATE(InBox),
INVOKE(getNewEnvelopes),
SELECTION,
editMessage,
CHOICE(replyMessage,

forwardMessage,
deleteMessage))

Figure 30: Task model for the Maildemo application delivered on a cell phone.

2.6.3 Delivery Context on Voice Responder

In this delivery context the user connects to the application by means of an Interactive

Voice Responder (IVR). He wants to keep his phone call really short and he is interested

in newly incoming mail only. A further limited set of tasks are allowed (Figure 31). It is

allowed only to read new messages:

The task manage!nbox3 reduces the manage!nbox2 by preventing the user to reply

or forward messages.

75

mailer3:=REPEAT(CHOICE(checkincomingMail3);FOREVER)

checkincomingMail3:=SEQUENCE(INSTANTIATE(InBox),
INVOKE(checkNewMessages),
manageinbox3)

manageinbox3:=SEQUENCE(INSTANTIATE(InBox),
INVOKE(getNewEnvelopes),
SELECTION,
editMessage)

Figure 31: Task model for the Maildemo application delivered on a interactive voice
responder.

76

Chapter 3

LIFECYCLE OF APPLICATIONS

In Section 1.4 is introduced and explained an object-driven methodology for the design

and implementation of domain classes and the subsequent automatic user interface gener-

ation which allows the direct interaction between users and domain objects. The Section

2.3 analyzes issues in direct user-object interaction and highlights the need for a task-

centered design. This chapter discusses the lifecycle of objects and services once design

and implementation have been successfully accomplished. The main design goals are:

how to deploy services making them accessible in the surrounding environment? How

to discover them? Finally, how to deliver them to end user in a pervasive computing

context?

3.1 Lifecycle

Once the application developer writes the classes of the domain model and provides a

set of task models, objects should be instantiated in order to be accessible to end users.

A simplistic solution is to instantiate objects on an arbitrary machine in the network.

N evertheless, this solution is not viable in a pervasive computing environment because the

existence of brand new objects would be not known to anybody. This kind of discovery

77

issue is often encountered in distributed system, and even in the Web: how can someone

connect to a Web page if no search engine has indexed it? When the user knows the

hast name and the directory path of the page. But in general users cannot be expected

to know beforehand the Internet address of a new abject.

A step further is to deploy abjects and to advertise them in a dedicated and well

known registrar. Many systems adopt this technique: RMI uses the RMI Registry, Jini

uses the Lookup service, CORBA uses the ORB and finally Web pages try to be indexed

by search engines such as Google and Altavista.

Discovering services is not the only problem in distributed and pervasive computing

contexts, the following items describe and summarize other important design goals:

• The application developer must be able to deploy his services with the confidence

that they will be made accessible to end users.

• The deployment architecture must be flexible enough to handle load balancing in

a transparent way both for the user and for the developer.

• A search mechanism must be available for those who seek services.

• Objects must be able to move and reach the end user device, or at least to reach a

proxy or a message relay connected to the device. Instances must be serialized and

deserialized in different machines, therefore remote class loading is required.

• Objects must be made persistent in order to be recovered after a system crash or

when they cannot all be stored in the physical memory.

• The user should be allowed to seamlessly change device while he is interacting with

a service.

• In some applications (Section 4.1) it compels to perform some jobs while the user is

disconnected. For instance, to search the Web, to check for incoming appointments

78

and so forth. A framework is necessary to build off-line and active operations1 .

Moreover, beyond deployment and discovery issues there are issues related to delivery.

The questions are:

• when the device is turned on, what is the entry point to the system?

• How is the delivery context modeled and how applications are affected by it?

• How is the user interface adapted to the actual device?

In the following subsections possible solutions are described to address the issues and

the design goals enumerated in this introductory analysis.

3.1.1 Deployment Service and Load Balancing

A straightforward approach to service deployment is based on special system services

called application servers. An application server is committed to instantiate services,

to allocate required resources, to publish service references in network registrars or dis-

tributed index, to provide persistence facilities and to handle transactions. The use of a

deployment service could be summarized as follow: a developer connects to the deploy-

ment service and puts packaged code that an application server will use to deploy the

service la ter.

We assume that in general more than one application server is available to deploy

services. Therefore, the application server architecture must take into account the co-

operation between multiple application servers and load balancing. Rather than letting

the developer choose which application server will deploy his service, a master /worker

architecture can be put at work. Services are packed into entities called service packs.

These service packs are inserted into a distributed queue. Any application server having

resources available, connects to the queue, gets a service pack and deploys it (Figure 32).
1Further on in the document we refer to off-line agents.

79

When an application server has not sufficient resources to run a service then the

service is repackaged and inserted back into the queue. This distributed algorithm is

already used in distributed operating systems and multicomputers [62]. In our approach,

the queue itself is a service that can be discovered in the network and that can be used

to coordinate deployment by clients through application servers.

A positive aspect of this algorithm is that when the load in an application server is

high it does not pickup new packs from the queue. On the other hand, an application

server with many resources available will connect frequently to the queue. Alternative al-

gorithms without queue coordination may also be implemented: for instance, application

servers can measure their workload against a given metric and then when the workload

reaches a given threshold they connect to another application server asking this one to

take some of the workload. If the contacted server has not enough resources the re-

quest is denied and then another server is contacted. After N failures the server stop

contacting the other application servers. This algorithm was first proposed in [21] for

multi-computer load balancing. Compared to the distributed queue it has the drawback

that network traffic increases at the least favorable moment: when the average workload

in servers is high.

Application servers can provide extra services such as publishing, persistence and

transaction management.

3.1.2 Service Discovery

Service discovery is a mechanism that allows clients to find services. Clients can be either

end user clients or other online services. The simplest solution is to publish a reference

to a service in a publicly available registrar or index. From the user point of view, we

want to implement the metaphor "devices are portals": then using any device, when the

user connects to the registrar he should be able to see the list of available services, select

a service, load it and start the execution.

80

SERVICE PACK QUEUE
SERVICE
DEPLOYMENT
CLIENT

Figure 32: A distributed queue contains service packs to be deployed by application
servers.

Several architectures implement such a discovery mechanism: CORBA (66), RMI (59),

Jini (1), UPnP (69), Globe (65), JXTA (45) and Salutation (55). The implementation of

the work related to this thesis relies on the Jini connection technology. This section

explain in details this choice and how it has been deployed to implement the lifecycle of

services in a pervasive computing context.

3.1.3 Delivery

ln this document we denote by the word delivery the set of actions and mechanisms

by which applications reach users. Delivery enables the user-service interaction. Given

that in a pervasive computing environment no prior assumption can be made on the

capabilities of the end user device. Hence, the main issues are related to code mobility

and to the adaptation of user interface to the end user device.

The direct approach is to' moye objects from the application server to the end user

81

device. If we analyze how object mobility is implemented in the Java Virtual Machine,

we see that for each serialized object sent on the network all its referenced objects must

move too, unless they are declared transient or Remote. Thus, it is an entire graph of

objects which moves.

When both JVMs share the same classes, they are pre-loaded from their local disk but

in a real-world distributed system, the class bytecode must be loaded from a remote server

with the HTTP protocol. The recipient JVM can load remote classes and can perform

the instantiation of deserialized objects. This mechanism works fine when sender and

recipient JVM share the same "profile" . However, in general it is not possible to serialize

an object in a J2SE virtual machine and move it to a J2ME one.

3.2 lmplementation Details

Previous section defined requirements to support the lifecycle of services in an environ-

ment computationally pervaved and highly dynamic. In this sections we first present

and justify the choice of Jini for the spontaneous networking architecture (Section 3.2.1).

Then we sketch the implementation of the distributed queue (Section 3.2.2). We explain

details of the service model in Section 3.2.3. Finally a concrete example is sketched

(Section 3.2.4).

3.2.1 Jini as Connection Technology for Pervasive Computing

Jini extends the classic object oriented paradigm to distributed system in a more robust,

fault-tolerant and dynamic way than other technologies such as RMI or CORBA. By

means of discovery, lookup and join protocols becomes possible building service networks

with no setup overhead. Jini is deeply woven with RMI for method invocation and

code mobility. The evolution of object-oriented distributed systems has been toward a

uniform programming paradigm both for local method invocations and remote method

82

invocations.S

A Jini service network (or service federation) relies on some fondamental system

services:

• Lookup service, which supports the registration of services and the search from

clients.

• Transaction manager service, which handles transactions with multiple partici-

pants.

• J avaspaces services: they are used to decouple applications and enable them to

exchange data and to synchronize operations in similar way as Linda systems [12].

These system services are built like all other Jini services and while Transaction managers

and Javaspaces can be considered optional, an instance of Lookup service is compulsory

to boot a network.

The Lookup service stores abjects that can themselves be whole services or simple

proxies to remote servers. These abjects are stored in form of byte arrays and are not

instances when in the Lookup service. The discovery protocol in Jini is used to localize

a Lookup service in the network without knowing its IP number and port number. Such

protocol uses IP multicast packets to find Lookup servers in the network, and therefore

is not sui table for a large Internet environment. In fact, IP multicast packets are special

purpose packets where the IP destination does not correspond to a real machine but

stands as the address of a group of services. Any device can join and leave the group

and therefore receive the packets. This works straightforward in intranets but is not

suitable in inter networking context like the Internet because packets have a TTL (Time

to live) field which is decremented whenever the packet is relayed by a router from a

physical network to another. The TTL field is used to prevent infinite loop propagation

of multicast packets.

83

Once a Lookup service is discovered, the device willing to register a service receives

an instance of an object implementing the Java interface ServiceRegistrar which im-

plements the discovery, join and lookup protocols. The main methods of this interface

are lookup and register. The method lookup implements a search in the set of already

registered objects. The matching criteria can vary as follows:

• an object 0 matches the query Q if Q refers to a Java interface that 0 implements;

• an object 0 matches the query Q if 0 was registered together with a tuple of

attributes (ai, a2, ... , an) and Q contains a tuple (b1, b2, ... , bn) where bi are either

equal to null or equal to ai.

• an object 0 matches a query Q if Q contains a service ID and 0 was registered

with that ID.

The method register perform the registration of an object in the Lookup service

(Figure 33). Such a registration is a resource-consuming operation. To correctly handle

resources, the Lookup service uses a lease mechanism to prevent the waste of resources.

For each resource-consuming operation a Lease is created and returned to the requestor.

When the lease expires the resource is freed. The requestor may renew the lease with an

appropria te request.

Methods lookup and register are woven with the underlying code mobility mecha-

nism of Java. In fact, in a Jini federation of services, objects are mobile and when classes

cannot be loaded locally they are loaded from a remote machine by means of network

protocols. Invoking register inserts an object in the Lookup service. The object is seri-

alized, stored in the Lookup service and then deserialized by the client. This object can

be a self-contained service or simply the mobile part of a two-tiered or N-tiered service.

In this last case, it performs as a proxy as described by the Proxy design pattern [24).

Jini does not make assumptions about the communication protocol between proxies and

84

Application server Lookup service

retwn lease
t2

t3
renew()

lease

Figure 33: Registration of an object in the Jini Lookup service. At time tl the Ap-
plication server invokes register on the Lookup service. At time t2 the Lookup service
performs the registration and returns a lease object to the Application server. At time
t3, the Application server renews the lease.

back-end tiers. Any protocol is good, because it is deployed in a private communication

where the proxy is a mobile client fully implementing this protocol. The proxy will be

loaded, linked and executed at runtime in the recipient virtual machine.

The last consideration about object mobility is that Lookup service stores objects

in a byte array form. In other words, while stored they are not instances of their own

class but simply instances of MarshalledObj ect class. This fact lays a constraint on Jini

architectures: all virtual machine must be capable to load the MarshalledObj ect class.

This cannot be granted in some Java virtual machine profiles such as PersonalJ ava and

J2ME.

85

Provisioning of class binaries to requesting virtual machines is performed by means

of the underlying RMI implementation and no further API is added by Jini. Application

developers would be expected to install jar files in HTTP servers. The architecture

described in this chapter, make this installation automatic in application servers that are

committed to serve classes via HTTP.

3.2.2 lmplementation of the Service Queue

Our implementation of the ready-to-run service queue is based on Javaspaces [22]. A

J avaspace is a Jini service which allows applications to coordinate each other via tuple-

o bjects exchange. The Javaspace interface is quite simple and provides methods to read,

write and take tuples2 from the space:

Entry read(Entry tmpl, Transaction txn, long timeout)

Entry readifExists(Entry tmpl, Transaction txn, long timeout)

Entry take(Entry tmpl, Transaction txn, long timeout)

Entry takeifExists(Entry tmpl, Transaction txn, long timeout)

Lease write(Entry entry, Transaction txn, long lease)

Writing a tuple means to insert a local instance of the tuple in the space. The method

read takes a template tuple as argument and blacks until a tuple matching the argument

is inserted by someone else in the space (Figure 34). A tuple T matches an template

tuple Q if given T = (ti, t2, ... , tn) and Q = (qi, q2, ... , qn) where qi are either equal to null

or equal to ti. When read completes it returns the tuple without removing it form the

space. On the other hand, the method take behaves as read does but it alse removes

the tuple from the space.

The method readifExist (tuple) and takeifExist (tuple) are non-blocking meth-

ods performing reading/taking operations. They return a null value if no tuple matches
2More precisely, the class implementing tuple in Javaspaces is called Entry.

86

the argument.

Application 1 Javaspace Application 2

tl
write (a, b, c)

t2
write (d, e, f)

take (x, y, *)
t3

return nothing ...
t4 take (a, b, *)

return (a, b, c)
..

Figure 34: Tuple Matching in Javaspaces. At time tl, Application 1 writes a tuple
(a, b, c). At time t2, Application 1 writes a second tuple (d, e, f). At time t3, Application
2 fails to take a tuple. At time t4, Application 2 succeeds to take a tuple.

The J avaspaces specifications do not define the behavior of the space when more than

one tuple match the template.

J avaspaces interface is really simple and do es not support the management of queues.

Sorne algorithms have been proposed [32] to build more structured data types on the top

of Javaspaces architecture. Our queue implementation is based on them. It implements

methods to put abjects in the end of the queue and to pick up abjects from the front.

Differently from Javaspaces, the DistributedQueue interface works with any subclass of

Obj ect and does not require they are tuples.

87

3.2.3 Service Model

We can say that a service model is the mix of various ingredients: domain abjects, mate

models, task models, and others. We will introduce them in this section. Sorne of them

have to move to reach the user while other will run remotely. Mobile components are

put into a delivery unit called Servicelet. A Servicelet recalls the concept of Applet

but with some special features. Communications between the mobile Servicelet and the

components that reside in the application server occurs by means of RMI.

The service model is composed of the following components:

• User interface: the service user interface is expected to be platform independent as

it is unknown beforehand which device the user will use to access the service.

• Domain abjects: they are the common abjects shared by more applications in the

same domain (i.e. music) and users are supposed to internet with them via user

interface.

• Back-end methods: they implement the server-side behavior which cannot move

to the user client device. For instance, an electronic payment service must reside

server-side.

• User workspace: this is memory space allocated to store domain abjects. It can

be fault-tolerant if a underlying database is used to provide persistence. Objects

stored in a workspace remain instantiated and running while the user is offiine.

• Agents: in some applications the user can schedule some operations to be performed

when he is disconnected. For instance, in a personal agenda an agent is committed

to check incoming events and to notify them somehow (by email or by SMS). Such

agents share the user workspace. They are not mobile agents for they always run

in the application server.

88

Figure 35 shows components of a service and how they are partitioned among local

and remote tiers.

We claim that user experience is greatly improved through the management of user

sessions and the scheduling of off-line agents. A session is a container created the fist time

a user connects to a service. The session contains the following elements: a workspace

to store domain abjects instances; connectors to external services like databases, mail

exchanger, or any type of business methods; finally, agents that can manage abjects in

the session and invoke methods on connectors (for instance, an agenda agent can read

user appointments and invoke an external short message service). Sessions can be joined

and left any time and by means of any device. Thus, a session created with a mobile

phone can be joined in a later time with a palm computer or with a desktop-PC. Agents

may be created, associated to sessions and committed to perform some tasks such as

content-searches or cultural events notification when the user is off-line. We believe that

the possibility to create agents and to join and leave sessions using different devices in

different moments can really improve the interaction between the user and a distribute

information system.

The next section makes a step-by-step description of the deployment of a personal

agenda service.

89

#----------------. \ session •

• ..

J #

~----------------

client side server side

Figure 35: Service components partitioned between local and remote tiers.

3.2.4 Example: Persona! Agenda service deployment

• Service Pack. The first step is to put into the queue the service pack released from

the developer. The service pack contains a Java archive that stores classes and

resources required to run the service such as configuration and multimedia files.

The service pack remains in the DistributedQueue until an application server

extracts it to perform next steps in deployment.

• HTTP class publishing. Once the service pack is opened by an application server all

service classes expected to be loaded from remote clients are published in a HTTP

server embedded in the application server.

90

• Service session creation and initialization. When an application server opens a ser-

vice pack, it creates an instance of ServerSession. The ServerSession instance

is a factory which creates a new instance of UserSession each time a new user con-

nect to the service. So any user has a session which persist between connections.

The ServerSession initialization is performed by the application server running

the method ini tializeService (). Such a method is defined by the service de-

veloper, and in the case of the Agenda example, this method creates the backend

methods3 , loads the agent classes, and defines two workspaces called AGENDA and

ADDRESSBOOK to store appointments and contacts.

public void initializeService() throws Exception {

}

//init of business method prototypes
AgendaPrototype proto = new AgendaPrototype();
Prototype[] protoArray = new Prototype[] { proto };
getServerSession().setPrototypes(protoArray);

//registering off-line agent classes
getServerSession().registerAgentClass

(AgendaAgent.class,"AgendaAgent");

getServerSession () . createWorkspace ("AGENDA 11);

getServerSession () . createWorkspace ("ADDRESSBOOK");

Figure 36: Initialization of the server-side part of Agenda Service

3Backend methods are implemented in form of Command pattern [24]. A Command is an object ,
instantiated when the service is initialized and then stored in the server session. Once a new user session
is created, a deep-copy of this Command is created by cloning and copied in the user session. So all user
session have their own instance of back-end methods which are all clones of the original Command.

91

• Servicelet publishing. Once the service session has been created and initialized, the

application server discovers the Lookup service and register the Servicelet that

is the mobile part of the service. To do so, the Servicelet is first serialized. Then

the resulting byte code is put into a MarshalledOb j ect instance which is marked

with the URL of the HTTP class server. This tag allows remote class loaders to

correctly unmarshal object instances.

• UserSession creation and initialization. When a user connects to the Agenda service

he/she uses an appropriate application called Service Viewer which is fully described

in Section 3.3.6. The viewer receives the mobile part of the service (an instance of

the Servicelet). If the user connects for the first time, a new user session is created

and initialized in the application server, otherwise he/she simply reconnects to

his/her already instantiated user session. Hence, the user reconnects to edit/modify

appointments already inserted in the workspace with another device. Any user

session replicates the structure defined in the service session which generated it.

Therefore it contains workspaces, back-end methods and offi.ine agents.

Speaking the design pattern jargon, we can say that a service session is the factory

of all the user sessions.

• W orkspace creation. When a new user session is created, its workspaces are also

created.

• Back-end methods. As stated before, some features cannot be implemented in the

mobile part of the code of the service. In the case of the Agenda, the user needs

to send messages to some of his/her contacts from the address book. The code

implementing message relaying is based on standard Internet protocols such as

SMTP and it is implemented in the server-side of the service. MessageRelay is the

class implementing the mail protocol. A new MessageRelay object is instantiated

for each user session and stored in the user session itself. In this manner, any

92

MessageRelay can be configured with user specific settings. The Figure 37 shows

the MessageRelay interface. MessageRelay methods must be remotely invokable,

therefore the MessageRelay interface must extends the Java Remote interface.

public interface MessageRelay {

}
void relay(Message m) throws Exception;

Figure 3 7: MessageRelay interface

• Agenda Agent. When the user is offiine, the Agenda service keeps running. Every

five minutes, the agent checks future appointments and if one is imminent it sends

to the user a message. Of course, this simple behaviour may be enhanced.

3.3 Delivery to any Device

3.3.1 Introduction

Once services have been deployed they must be delivered to users. Our goal is to allow

users to pickup the most convenient device and connect to the desired service. In the

user interface we can hide the concept of service and let the user focus on tasks, but even

in this case the abjects implementing the required functionalities must be searched and

loaded in order to start the interaction. Furthermore, the user could switch to another

device as soon he/she has at hand a more appropriate device, and then he/she keeps

working on the same task.

93

3.3.2 Delivery Context Analysis

One can think of delivery context as a vector

where the single fk is a feature in the context. Examples of feature are the RAM memory

or the disk space. Basically, features are related to hardware/software capabilities of

current device but they can be related to other environmental and user specific variables

as well.

In fact, cultural features such as the user language or physical features such as the

geographic position in longitude/latitude coordinates, the surrounding temperature and

the air humidity are examples of delivery context variables that may affect the behavior

of an application.

A unique definition of delivery context seems to need more than the definition of a

static and fixed set of variables because given a class of applications some features are

supposed to affect the computation while the others are totally irrelevant.

Nevertheless, as this work is devoted to the delivery of applications to any device,

we can make a bare classification based on hardware/software features and on the user

location:

• hardware features: CPU, dock, memory, disk, screen, vocal interface, keyboard,

mouse.

• Software features: OS, markup language, markup language version, java version.

• Cultural features: language.

• Geographic features: longitude, latitude, altitude, speed, timezone.

Several methods can be used to code context relevant information in the body of a

communication protocol. For instance, in the HTTP protocol such data can be inserted

94

in the headers. The HTTPExt [68) framework defines how to extend the HTTP headers.

Another solution for including device capabilities and user preferences in HTTP requests

is the Composite Capability/Preferences Profiles (CC/PP) [53) framework where context

relevant information are coded by means of XML/RDF.

3.3.3 Exploitation of the Delivery Context

Once the delivery context has been defined and gathered the question is "how to use it?".

Applications can modify their behaviour according to one or more features. For instance,

one of the most used cultural features is the language: once a Web service realizes that

your browser is sending the header

Accept - Language: en - us, en; q = 0.5

it may send you English translated pages rather than original French or Italian pages.

Another possibility is to infer from which geographical region the user is connecting

by the analysis of IP numbers. For instance, there are online databases which map

IP-to-Location [43) in the range of a metropolitan area.

If one thinks of fk as the coordinates of a point C = (!1 , h, ... , fn) in a hyperspace,

C is one of the possible values for the context. An application can adapt itself with

respect to its user interface, its server-side computation, its partitioning among different

tiers and so forth. Sorne adaptation are strictly related to the application other can be

common to more applications. For instance, the adaptation of the user interface to the

end user device is a common adaptation.

In the case of pervasive computing, services must be delivered seamlessly to any kind

of device. If applications are not able to adapt their user interface they become barely

unaccessible to users. In terms of regions of the context hyperspace, a device neutral

application could be delivered effectively in all regions of the hyperspace. In real world

95

systems, it is not possible to cover all the possible delivery context regions but only a

limited subspace, limited both in dimensions4 and in range.

In our case, the MORE delivery architecture takes into account the following features:

• Remote classloading capability: values = (YES, NO)

• Markup Language: values = (HTML, WML, VoiceXML, HTML + Javascript,

XML)

• Java: values=(J2SE, J2ME, PersonalJava, None)

• User Location expressed as (longitude, latitude).

This set do es not contains information such as the CPU power, memory, disk, screen

size, voice I/O and so forth because the choice is made upon the following assumptions:

• If a remote classloading is available then the client is supposed to run on an high

end computer with at least J2EE or J2SE and full graphie user interfaces such as

the Java Swing toolkit. This assumption is not always true, in fact a host can be

able to load remote class but also to provide other types of user interfaces such as

vocal interfaces. Anyway we make this assumption for sake of simplicity and we

will refine later the context analysis in case for the voice interface delivery.

• If remote classloading is not available, but the device has a pre-installed virtual

machine then it is assumed to be a low-end device such as a Java enabled PDA

computer or a Java enabled smart phone with Java.

• If Markup Languages are HTML, WML, VoiceXML, then the device is hosting a

browser but it is not running a JVM (or the user decided not to use the JVM to

connect the service). Then the service must be delivered across a proxy able to

generate a user interface based on the appropriate mark-up language.
4 If N is the number of features in the delivery context only k < N are taken into account.

96

Yet these assumptions may seem too simplistic but they allow to design and implement

a delivery architecture able to cover the following platforms:

• Desktop PC with J2SE;

• Desktop PC with Internet browsers such as Mozilla, Miscrosoft IE and Opera;

• Mobile phone with WAP browser;

• Mobile phone with J2ME;

• Mobile phone or PDA with HTML browser;

• PDA with J2ME or Personal Java;

• Interactive TV with HAVi [38] components;

• ISDN/PSTN phones or other voice devices connected via VoiceXML browsers;

When speaking of context / device neutrality we assume it as a good point for appli-

cations in pervasive computing. However, it is desirable for an application to be context

dependent if from this dependency an added value can be achieved. For instance, if the

device is a mobile phone then a service could exploit the ring tone to make the user aware

that something is going to happen.

With respect to geo-referenced applications, the position variable is something ex-

pected to enhance the computation. For instance, a search engine could give higher

priority to search results somehow "near" to the user location [9].

Task Models and Delivery Context

One good point in task model specification is that the application designer can provide,

together with the service, one or more models and decide at design-time which model

must be used to internet with the user in a given delivery context.

97

3.3.4 Issues Related to Java Classes and Code Mobility

The JVM is the running core of any Java pro gram. This core is built under an API which

is the same for any operating system and is literally a framework whence any application

can be considered an extension. Since Java is a general purpose language, the Java

API is quite large and it contains classes and interfaces for almost any tapie related to

data manipulation such as simple file and console I/O, complex data structures, XML

processing, RPC and CORBA services and so forth. It is impossible to write a new Java

pro gram without dependencies to the Java API, in fact even if your class do es not extend

any other class in the API it must at least extend the root of the hierarchy tree: the class

Obj ect.

Therefore, loading the class Obj ect also implies loading class Class and class String

because Object has the methods Object.getClassO and Object.toStringO. Then,

it implies that also Classloader, InputStream, Field, Constructor and so forth are

loaded as they are either return values types or argument types for methods of class

Class. The propagation of dependencies spreads along all the Java API, then the simplest

Java pro gram causes huge classloading when it is launched.

Although Java is supposed to be a cross-platform language, this is true only if all

dependencies of a pro gram are correctly satisfied in the runtime environment. Java is

neutral with respect to operating system but it is not neutral with respect to platform

profiles. In fact, there is more than one Java API specification , or edition, depending

on the device type. The most common specification is the Java Standard Edition (J2SE)

which is targeted for desktop and laptop computers. The standard edition enriched with

components for server sicle applications is called Java Enterprise Edition (J2EE). The

Persona! Java edition and the Java Micro Edition(J2ME) address the needs of small

devices. Finally the Javacard edition is so called for it is aimed at the development of

applets in smart cards.

This heterogeneity of profiles is an issue when we want our code to move from a device

98

to another, in fact we cannot assume in general that the edition of the sender JVM is

compatible with the edition of the recipient JVM. Unfortunately, compatibility is not

ensured, as one could suppose, from smaller to bigger profile, in fact a class written for

the J2ME platform simply does not work in J2SE.

3.3.5 Delivery Architecture

As described in the Section 3.3.2 the delivery context can be categorized according to the

physical characteristics of devices. For instance, devices can be divided according to their

computation power or according to their network interface type (Ethernet, PPP, etc.),

or according to their input/output modalities (keyboard, touch screen, mouse, etc.). If

one wants to take into account all the existing possibilities the number of cases to face

up becomes unmanageable.

In our delivery architecture, the first step is to group devices by the capability to

dynamically load and execute the mobile code of a service. We distinguish three funda-

mentals categories of clients:

• Fat client: the device can download and execute mobile code. This category in-

cludes devices such as desktop-PC, Unix workstations and laptops.

• Thin client: the device can execute local code and can download/upload data.

Smart-phones and PDA programmable in Java fall into this category.

• HTTP-only: the device can only download/upload data and can visualize the in-

formation by means of some pre-installed applications like a browser. VoiceXML

browsers, WAP phones and WEB kiosks fall into this category.

99

3.3.6 The Service Viewer

Users need an entry point to access online services. This entry point may change de-

pending on the end user device. For instance, it could be a URL in a HTTP-only device

or a stand-alone application in the Fat client architecture. Our goal is to provide the

user with a tool which performs the discovery of available services and allows the user to

access them.

We called this tool Service Viewer. Any Service Viewer is committed to the following

tasks:

• user authentication,

• loading of the device profile,

• discovery of portals and lookup of services,

• dynamic loading and execution of mobile code,

• generation on-the-fly of the user interface.

With respect to these requirements, the building blacks of any Service Viewer are:

• Device Profile: this module contains any device relevant information like key-

board/pen availability, display size, color depth and user position. Once the device

profile is loaded, it is stored in the execution context. Depending on the actual

device profile, the Service Viewer should look up in the service if a specific task

model definition has been provided for that device. In this case, the task model

definition should be used to present the user interfaces.

• Lookup Component: this module searches all portals available across the network

by either multicast or unicast discovery protocols and allows the user to access

services published in the portals.

100

• Object Renderer: at runtime the Object Renderer first loads the domain abjects.

Then it generates a user interface for them. Finally, it links the domain abjects

and their user interfaces.

In the E-Mate project (Section 4) we have developed one implementation of Service

Viewer for each category of devices. Next sections will discuss these implementations.

Service Viewer for Fat Clients

In the Service Viewer for Fat Clients the mobile part of the service runs on the terminal

and the device profile is loaded from a local file. The devices that fall into this category

normally can display services with WIMP user interfaces and connect to GPS via serial

interface. The Service Viewer is then a local application containing all the building

blacks cited above. It generates a concrete user interface based on windows, buttons and

keyboard/mouse input modality. Figure 38 shows how the Service Viewer components

and the application server components are partitioned in the architecture. Follows a

description of Service Viewer components in this architecture

• The Lookup component is implemented and embedded in the Service Viewer. It is

based on the underlying Jini API.

• The Object Renderer component is the implementation of MORE for the current

platform. As said before, we assume that in a fat client we have a fully WIMP user

interface, therefore the Object Renderer implementation generated Swing based

user interfaces.

• The Device Profile is managed by a Java library which sends to the User Session

information related to the device. If a GPS antenna is connected to the device,

an approprfate Java library gathers this information through the serial port and

adds it to the device profile. This allows geo-referenced services to adapt their

computation to the end user position.

101

Service viewer
(User device)

' ..1>: ,

, TASK MODEL;
DOMAIN OBJECTS

':)J:, '< ' '

Servicelet

Application server

Figure 38: Delivery architecture for fat clients. The arrow represents a push/pull network
connection and the Servicelet is the mobile code which moves at run-time to the client.

Service Viewer for Thin Clients

Thin Client devices cannot run mobile code and cannot directly .connect to the Jini

lookup nor to services, therefore the Service Viewer must be two-tiered. The local tier is

the part of the viewer that must be installed in the user device beforehand. It loads the

device profile and connects to GPS via serial interfaces. It is also provided with an object

renderer implementation that generates at runtime the user interface. The remote tier of

the Service Viewer runs on another machine (not the user device and not the application

102

server). It performs the discovery of portals, the lookup of services, the downloading and

the execution of the mobile code related to domain abjects, task models and control of

the application. The communication between local tier and remote tier of the Service

Viewer uses XML as application level protocol and HTTP as the transport protocol. The

communication is push/pull in the sense that the local tier can be triggered by events

from the remote tier and the local tier can also request information to the remote tier.

Follows a description of Service Viewer components in this architecture

• The Lookup component is exactly the same component used in fat clients. It is

deployed in the remote tier.

• The Object Renderer component is split in two subcomponents: the remote sub-

component uses refiection to inspect domain abjects at runtime and generate a

description which is encoded in XML. On the user device, the local sub-component

receives this XML description and instantiates local widgets. The XML commu-

nication protocol between local tier and remote tier is specified in appendix B by

means of XML schema definitions.

• The Devi ce Profile is managed by a Java library which sends to the User Session

information related to the device. In the case of fat clients and thin client the

Devi ce Profile is computed in the end user device and sent to the User Session. If

the platform allows Java to read from serial ports, then GPS coordinates are sent

to the the User Session. The access to serial ports is a low-level feature that is

implemented in C and linked to the JVM through JNI (Java Native Interface) [34].

U nfortunately, the JNI extension of JVM is available in the PersonalJ ava profile

but not in the J2ME. This implies that nowadays a GPS can be connected to a

PDA or to an interactive TV (if such a thing would make any sense) but not to a

smart phone.

103

•
Service viewer
(User Device)

TASK MODEL
DOMAIN OBJECTS

Service viewer
(remote)

Servicelet

Application server

Figure 39: Delivery architecture for thin clients. The arrow represents a push/pull
network connection and the Servicelet is the mobile code which moves to the remote
tier of the Service Viewer.

Service Viewer for HTTP-only Clients

In a HTTP-only Client the developer can install none of the Service Viewer modules so

all the Service Viewer building blocks are remote (Figure 40). A pre-installed browser

must be available. It is a third-party application bundled with the terminal that is not

part of E-Mate. This pre-installed browser queries the Service Viewer via HTTP. The

Service Viewer translates its response into the appropriate markup language. This is

clone on-the-fiy by means of translation processors. This category of devices can usually

not connect to a GPS system or a location service. In most cases, the device profile must

be built by the remote Service Viewer using ~he HTTP header data or other relevant

user agent information.

Follows a description of Service Viewer components in this architecture

104

• The Lookup component is exactly the same component used in fat and thin clients.

I t is deployed in the remote tier.

• The Object Renderer component entirely runs in the remote tier. The local tier

receives a XML document already adapted for the current delivery context.

• The Device Profile is managed by a Java library which runs in the Web server.

This component collects the client request and from the analysis of HTTP headers

builds the device profile. This profile deeply affects the type of XML translation

performed. In fact, depending on the device profile an appropriate translator is

loaded. The translation is performed by means of XSLT [36]. Regarding the GPS,

it is not assumed that coordinates are sent from the device because the Internet

browser is a third party pre-installed application. Nevertheless, it is possible under

certain conditions, to load a special add-on in the browser and connect to the

GPS hardware if this is available5 . The Internet browser can insert the current

GPS coordinates in the header of HTTP requests. This is possible if the browser

is extensible, a GPS device is connected and the user performs a minimal set of

installation and configuration tasks.

5 An example of Internet browser extension for GPS management is available in [27] [9]:,

105

HTTP Client XSLT processor and
Web server

• Servicelet

Service viewer
(full remote)

Application server

Figure 40: Delivery architecture for HTTP-only clients. Between the end user client and
the Service Viewer there is a Web server which computes the current device profile and
perform the appropriate XML to XML translation. ln our case, we provide three possible
translation: XML to HTML, XML to WML, and XML to VoiceXML.

3.3. 7 Position Analysis

There are several ways to obtain the position of the user. The most known is the Global

Positioning System (GPS) [30] that is based on the device capability to connect via radio

links to a network of satellites. Other systems are specifically based on mobile phone

networks such as Enhanced Observed Time Difference (E-OTD) and Cell Global Identity

(CGI). The precision of those systems can range from 1-10 meters, in the case of GPS, to

30 km in the case of CGI. See [42] for a complete discussion about positioning for mobile

phones. ln our experiments only the GPS position was used. Therefore, the position

collection is affected by two important limits: it is available only outdoor because the

GPS works only on direct visibility between satellites and device; even outdoor, it is

limited by buildings and reliefs because satellites has equatorial orbits and therefore they

are close to the horizon in most of developed countries. Many technologies development

are underway. For instance, the European Union is planning to launch its own satellite

106

based global positioning system called Galileo. Other enhancements are on going to

obtain indoor position by the combination of the GPS signal with the double integration

of acceleration collected through inertial system, this kind of devices are still under

experimentation.

A GPS peripheral is commonly connected to a computer through a serial port. A

special string protocol called NMEA 0183 [44] is transported through the port at bit-

rate of 4800 BPS. So collecting GPS datais merely a matter of string parsing. For this

purpose, we use a Java library called Gipsy (Figure 41).

107

Figure 41: Gipsy is a Java library based on JavaComm. It can run as daemon or can
linked as a library. Gipsy parses the output of a GPS device connected to a serial port.
Programs can receive GPS coordinates either by direct method invocation, or by TCP /IP,
or by file based data exchange

108

Chapter 4

E-MATE: AN OPEN

ARCHITECTURE TO SUPPORT

MOBILITY OF USERS

Solutions, architectures, and code presented in the previous chapters have been conceived

to address specific issues such as the delivery on any device, the service lifecycle, and the

task-driven and object-driven design approach. This chapter shows how these solutions

were used to develop prototyes of significant size for real world applications. Most of

these prototypes were done in the context of the E-Mate project [10]. E-Mate was a

24-month research program which has people with different competencies: technicians,

programmers, researchers, teachers, students and GIS experts. Therefore, it contains

more features than the ones described in this dissertation. Particularly, E-Mate focus is

on three scenarios in the field of multi-modal, mobile, personalized and location-based

software applications. Such scenarios were defined to elicit the technical requirements for

the framework of E-Mate.

This chapter describes four applications. It shows that our work sets the founda-

tions for real-life applications. These applications are: an Ubiquitous travel assistant

109

(Section 4.1), a mobile lesson management and deployment system (Section 4.2), a crisis

management system (Section 4.4), and finally an investor decision support system called

MKTS(Section 4.5). The chapter is closed by a section describing models, design goals,

and issues about the composition of different E-Mate services.

4.1 A Travel Assistant: T-MATE

4.1.1 Introduction

In this section an Ubiquitous travel assistant called t-MATE is described. The application

addresses three use cases: user profiling, macro-planning and micro-planning. Each case

focuses on a specific type of devices and on a different delivery context. In the range

of devices involved in this scenario are included Internet-digital TV, desktop computers,

cellular phones and personal digital assistant (PDA). The assistance to a traveler is

personalized and position-aware. The variety of tasks and configurations is luxuriant.

Sorne are performed when the user is disconnected. Sorne require him to be on-line. Sorne

require thin-clients, others are better suited for fat-clients. Sorne involve the cooperation

between distributed remote services. Other are stand-alone services written from scratch.

This scenario was implemented as a whole but we <livide the presentation in three parts

and for each we sketch the status of the implementation.

4.1.2 User Profiling

The first use case relies on profiling the user when he is listening to interactive-TV.

An off-line agent, called "Profile Manager" , is loaded on the set-top box. This agent

gathers information and refines continuously the user profile. The user profile structure

is defined according to services ontologies and requirements. User profiles are refined

either automatically in the background and/or at the explicit request of the user. The

110

automatic profiling system makes inferences on preferences and interests according to

the semantic information encoded in the video stream (MPEG4 and MPEG 7 [13]). For

instance, if the user spends most of the time watching TV series on angling, the system

should refine the profile with this information. On the other hand the user can explicitly

assign a score to a video content; for instance, if during a television documentary about

Kenya the user marks the program with the maximum score the system can infer interest

about a Kenya sojourn. Thus, the user profiling is refined gradually over time. The Profile

Manager connects periodically to the service servers to update the user profile available

for a service. Once ready to go on vacation, the customer requests proposals to his travel

agency service. To build these proposals, the agency will use his profile built while he

was listening to the TV. Obviously profiles may be built using information coming from

multiples sources, electronic journals, web browsing, etc. The profiling engine indeed

needs only a semantic encoding of information and a fonction that computes the interest

of a topic selected in the ontology.

4.1.3 Macro-Planning

The second use case focuses on the macro-planning of the journey. It mainly involves

personal computer, browsers and e-mails. During this phase the user connects to the

planning agent service in order to plan a trip and submits, by means of the user interface

of the service (Figure 42), his requirements about the travel such as the total budget, the

preferred hour of departure and so on. Hence, the planning agent will use its knowledge

of the travel industry to plan an appropriate itinerary.

The planning agent should also arrange hotel accommodation for the duration of the

traveler's stay, and should also provide a selection of local attractions that might interest

the traveler during his stay.

111

Figure 42: User interface of the t-MATE service accessed by a PC. The user builds a trip
plan submitting requirements like the maximum budget, the preferred hour of departure
and so on.

112

4.1.4 Micro-Planning

The last use case occurs while the user is on the road. Once the plan has been approved

by the user, the planning agent keeps working off-line to handle any event or change that

might affect the plan such as adverse weather forecast, strikes and so forth. The main

devices involved are PDAs and cellular phones.

During the night, the traveler's personal agent achieves a micro-planning for the next

day. For instance, the planning agent works off-line searching cultural events in order

to fill the tomorrow agenda of its user. It uses weather forecasts to select the activities,

museum if rain is expected, beach otherwise. As far as personalization is a concern,

the agent needs to know the user preferences (user profile). Events are screened out by

inquiring the profile manager and those matching the user profile are stored in the user

personal agenda as appointments. The personal agenda notifies the user whenever an

event is imminent by means of SMS messages. The personal agenda is a self-contained

service accessible from any device with respect to multi-channel capabilities of E-Mate.

Therefore, the user can connect to his agenda with his cellular phone and manage his

appointments while he is in line for visiting a museum or if he's moving through the city by

train. Furthermore, the agent can actas a tourist guide, providing information according

to the physical user position; for instance, the traveler may ask: what is the name of the

church I am in front of?. The traveler may point new interests to his agent. The agent

will then search information related to these newly expressed interests and adapts the

user's agenda accordingly. The travel agency may offer last minute promotions for shows

toits customer through the customer's t-MATE.

4.1.5 Implementation Details

To implement the User Profiling use case we have developed an E-Mate service called

TV-Log (Figure 43) to be delivered in the TV set-top box. Our set-top box was provided

113

Figure 43: The TV-Logis an E-Mate service which is delivered in the digital TV and
registers information about user preferences. This spying activity is used to populate
a bayesian network which is the knowledge based used to personalize service delivery
to users. This architecture is simply a proof-of-concepts and personalization issues are
beyond the scope of this thesis.

with a special distribution of Linux, a JVM, and a Multimedia Home Platform (MHP)

implementation consisting in layers HAVi [38] and DAVIC [17]. The HAVi layer is a

Graphical User Interface toolkit while the DAVIC API is an interface to interna! features

of the digital TV such as tuning, channels, and other low-level controls.

To implement the Macro planning use case we used a fake data base containing only a

out-of-date subset of flights sold by real companies. The interface with the online flight

reservation system was out of the scope of this work.

The current implementation of the planning algorithm is summarized as follows: (i)

search the minimum route, (ii) repeatedly make queries to the database looking for the

corresponding flights, (iii) remove the unavailable routes, and (iv) return the minimum-

cost route. The first phase is realized using an A *-like algorithm, the result of this phase

is the list of cities and airports involved. The agent repeatedly makes queries to the

database in order to find all the possible flights. Among the resulting flights the agent

has to screen out flights that are unavailable at the given departure date. Finally, the

114

agent sorts the flights with respect to the cost and returns the minimal cost itinerary to

the user.

To implement the Micro planning use case we developed various modules: a Even-

tAgent is committed to seeks cultural events from various datasources such as online

databases and Web sites. Another module is the Agenda which is accessed by the Even-

tAgent to insert new cultural events. Finally, an interface to a Short Messaging System

(SMS) has been implemented to communicate incoming events to the user when he/she

is disconnected.

Figure 44 shows correlations between modules in the t-MATE scenario.

115

AGENDA
AGENT

!.
A

·~ . , ;.;.:,' .• ,~;,:~.:.{ .•.... :~.:~·~ .. ·.• .. (,i~

> ~. '

» .. -' .' ~;- ' t:. <" ,,

CULTURAL
EVENTS
AGENT

/
~
A

Figure 44: User activities during TV-watching are sent from the TV-Log to the Profile
Manager which populates a bayesian network. The Macro planning module provides
a GUI for creating trip plans. Trip plans are inserted in the Agenda. During Micro
planning, an Event Agent seeks new cultural events co-located with the user. Events
are filtered by the Persona! Profile manager and only those matching the user profile are
inserted in the Agenda. The Agenda is equipped with an Agenda Agent which notifies
imminent events to the user by means of SMS messages.

116

4.2 Mobile Lesson

A mobile lesson [25) is an educational activity where teachers prepare questions relevant

to places or monuments the students have to find. The questions are asked to students

at the very moment the monument or the place is reached. This section describes both

how such a lesson was experienced by students and teachers and how the system was

implemented.

4.2.1 Experimentation

Teachers and students of an high school in Sardinia (Italy) 1 experimented a mobile les-

son for the archaeological site of Nora. This site is very interesting from an historical

perspective because it contains both Punie and Roman ruins. The lesson was performed

in June 2001 with a class of 12-13 years old students.

Nora was chosen because the pedagogical program of these students included the

knowledge of the architecture of cities in the Ancient Rome.

From a technological point of view, the requisite was a software application for both

the edition of the lesson content and the management and monitoring of the students

work on the field.

While preparing the mobile lesson, teachers first identified the zones of interest, then

they selected a set of hot spots for each zone (Figure 45). Hot spots correspond to precise

location. Knowing the exact position of a student enables to ask questions on what she

can see. So teachers first went to the chosen site with a GPS system and pointed out

the coordinates of each hot spo~. The objective was to bring students to discover thes.e

points once on the field. The hot spot GPS position is a 2-tuple like East, 38 59 3,80 ;

North, 09 OO 59, 72.
1The project would not have been possible without the full support and participation of the Scuola

Media Statale no 2, Assemini, Italy. In particular, the collaboration of the teachers Mrs Maria-Cristina
Sanna and Mrs Giovanna Arru was invaluable.

117

Each hot spot was then associated with other information. First a label like the

roman theater gives the name of the hot spot. Obviously, the students have to find

a significant place, for instance the theatre, and not just a GPS position. But this is

not enough, because the theater is indeed a squared area whose side is more than forty

meters long. The students must find the right position picked up by the teacher, near

the theater. Why the teacher chose this precise point is a question they have to answer.

When some difficulties occur to find the right place, explanations, help and hints are

supplied progressively. Their form may be as wide-ranging as the teachers imagination

can sustain: charade, riddle, description, etc.

Once on the field, teams of two or three students using laptops connected to a GPS

system had to discover the significant hot spots previously identified by the teachers.

They can wander wherever they want. Since the site is fenced, letting them free was

not an issue. When students thought they were at the right location, the one identified

by teachers, they asked the MobileLesson for confirmation. The current GPS position is

then compared to the GPS position taken by the teacher. If the current GPS position

is close enough, students have access to questions related to it. They may be general

questions about the reached place but often they are questions about what the students

can see from this precise location. Students have only to turn or move slightly to observe

the place and discover or infer the right answers. A score was associated to each hotspot

and each questions to motivate the students and to give them the feeling of a game.

If the position was wrong, more information about the place is supplied. Receiving

it, students have to move and ask again the software if they are at the right place or

not. Latitude and longitude were used to represent a GPS position. For convenience,

it might be possible to transform them into UTM coordinates [11] expressed in meters

using a specific algorithm but, for the purpose of the experiment described here, it was

not necessary. Many tests have been carried about the precision of GPS data and ten

meters uncertainty was considered acceptable.

118

Figure 45: Hotspots chosen by teachers for the Nora mobile lesson

4.2.2 The Technology

The first version was a stand-alone application. Then it was re-designed as a service

based on the the E-Mate platform where domain abjects are accessed by means of user

interfaces automatically generated by MORE (Figure 46 and Figure 47). It uses the

general infrastructure described in this dissertation concerning design, delivery and de-

ployment of services in a pervasive computing context. Software and devices used on the

field are completely different but the content itself of the lesson remains the same. We

also integrated results of the experimentation and comments of all actors involved in the

process to improved the way of presenting data and we added modules not implemented

previously. Students on the area of the lesson, are now using a PDA. Only a part of

software is installed on PDA and assures all connections with the school web site and

the :cemote part. The PDA is equipped with a GPS system that automatically gives its

119

position coordinates. This position is transferred to the remote architecture and so the

service can detect if a student is facing an hot spot of the lesson or not.

-·~!~~~;;,~t~n'
- · 'P.fecble'fêntiè

, -têinPl&~;sa~#Mr8èMSri: ê6

î~ ri,) P,@ct!; ~~Çl) i~ Pfq
. .. .

,-.-~~~~~~e~:r;{cu, -
. $~'nfü~ho ;~ I Es tUr~plo'~

-· ç~~a:~~11,~1~19]'.~fra,~11W:

Figure 46: The right panel shows the lessons published in the system. Any lesson can be
selected and the set of hot spots is presented to the student. On the field, the student
can try to guess which hot spot he/she has reached.

1 1, - ~

120

i ~fi~~~Jf ~1~~:rt~1i~~:r•••h~ihdafBêrGIP~1~1t 1iiForo,écarattei~\1o~~·Wüitta ro

.. n!t9r8,~~;~~tâ#~rr~f;~J:t:a~Ji~~;P.m~Jifot~Pe

Figure 4 7: Once the student has guessed the hot spot the system asks some questions
relevant to the hot spot.

4.3 Evacuation Plan

4.3.1 Application Description

The mobile lesson application is a distributed software application that delivers an adapts

geo-referenced information on request. Figure 48 gives the architecture of the system that

supports the mobile lesson. Only a part of the service is loaded on it, the terminal tier.

As several PDA are simultaneously connected an HTTP server is required to manage for

121

each device the remote tier of the service. It find its resources in the application server

that deployed it. The HTTP server itself finds the remote tier of services required by the

users in the service portal where the application server has published them after their

deployment. Data exchanged between PDA devices and the HTTP server is contained

in an XML document.

&.tiobile 1esson
Re1note der

IfrTP serve1"

J\lfobi.le lesson
··re1111inai tïer·

Pt11tal

~ortal serve1~

" ' '\. ... '\. ' ... '

Figure 48: Communication in the case of distributed architecture. Notice how mobile
lesson maps to general delivery architecture for thin clients.

122

4.4 Evacuation Plan

This application [19] refers to a hypothetical oil explosion, having its epicenter in Monte

Urpino, the "green lung" in the town of Cagliari, occurred on a winter weekday between

8,00 and 9,00 a.m. Also, it is assumed that the zone to be cleared falls inside a circle

area having its center point in the explosion epicenter, and radius of about 1 km.

4.4.1 Scenario Description

The considered area is approximately 220 ha, one third of which are occupied by the

park. The rest is characterized by residential and commercial neighborhoods, where

some schools, the main police department, the Court, and a hospital reside. The zone

surrounding the Court is densely populated and characterized by a high traffic density,

with congestion phenomena, especially in the early morning. The road network of the

zone, about 27 km in length, is a urban type, classified in primary roads, district and

inter-zone roads, and local streets for door-to door traffic. Approximately, one third

of the roads is one-way. Parking along the lanes is allowed almost everywhere. Six

intersections are signal controlled. Traffic is mostly composed by car; however, public

transport services operate in the main roads of every neighborhoods. All the streets

include sidewalks.

4.4.2 System Description

For the evacuation application, services have been designed by taking into account the

different figures who can be involved during an emergency. Services are implemented

as E-Mate services and they rely on the architecture for service deployment, service

discovery and delivery-on-any-device described in Section 3.

Evacuation plan related entities are:

123

• the citizens, considered as vehicles, that have to evacuate the area;

• the decision makers (or coordinators), that supervise and co-ordinate the opera-

tions;

• several aid forces (police, red cross, fire fighters, etc.), that have to opera te in the

area of the disaster under the control of the coordinators;

• the traffic inspectors (or observers), who have to cover predefined neighborhoods

to oversee and constantly send data (with their PDA) for updating the traffic

conditions;

• the traffic directors (or actors), who have to stand in given junctions and follow the

coordinators instructions to direct cars toward the egress routes.

The system is composed by the following services:

• Coordinator Service: it is the decision makers main interface, and the core of

the system. The coordinators have the possibility to visualize all the information

concerning the ongoing situation, to communicate with the other services of the

system, with the observers, the actors, and the aid forces;

• Database Reader Service: it is a data source that loads, memorizes and manages the

data related to the observers, actors and to their position, and to the characteristics

of the road network, via a DBMS (Data Base Management System) connection;

• Operational Research Service: it executes the transportation algorithms that ini-

tialize the traffic fiow on the network, that update the changed traffic conditions,

and that calculate the shortest path;

• GIS Layer Service: it is a data source that builds the required layers and their

attributes (Open Map Graphiclist), after verifying the properties of the necessary

shapefiles or raster images by reading an XML metadata file;

124

• Map Server: it returns different maps such as map representing the traffic conditions

at any time, map showing the observers position, the shortest path, etc;

• Device Registration Service: it registers each device present on the net and memo-

rizes the position of the observers on the field;

• Device Register Messages: it manages the observers communication providing the

Database Reader Service with the observers information;

• Traffic Flow Simulator: it is a multi-agent system that simulates the evacuation sce-

nario. Given the impossibility to test the system in effective emergency condition,

tests used a multi-agent system integrating several human behavioral parameters

and fortuitous factors, such as different types of accidents. The agents represent the

road lanes (containing groups of cars), the observers and the actors. As perceived

by the agents, the information is sent to the Device Register Messages Service. In

order to simplify the simulation, it has been assumed that the aid forces had lim-

ited discretionary power, having just to follow the coordinator instructions, and,

therefore, they have not been identified by agents.

4.5 MKTS

The objective of the MKTS project was the application of mobile and Ubiquitous Com-

puting technologies in the domain investments planning. The services developed in the

MKTS project are E-Mate services, therefore rely on the distributed architecture for the

deployment, discovery and delivery on any device. GIS products have been integrated in

order to provide geo-referenced data.

4.5.1 Features of MKTS

The features implemented in MKTS are:

125

• decision support system

• ATECO 2 based classification of enterprises;

• funding and tax-exemption knowledge base for investors.

The decision support system is aimed to help investors in planning the installation of

new industrial or commercial sites. Inferences are obtained using ontologies and bayesian

networks.

The user interface leads the user through a sequence of question related to the nodes

of the Bayesian network. Based on the answers provided by the user the system suggest

a set of possible locations for the new site.

The ATECO classification allows user to browser categories and to consult a detailed

view of any registered enterprise.

All the MKTS services are accessible by means of desktop computers, Web browsers,

palm size computers and smart phones (Figure 49).

2 ATECO is an enterprise classification system developed by Istat, the italian national institute of
statistics

126

(b)

(c)

(a)

Figure 49: A Enterprise domain abject presented to the user in a Web page (a). The
same domain abject accessed from a mobile phone in (b) and (c).

4.5.2 Lessons Learned

Sorne interesting issues arose during the development of this application. The first issue

was about interactive maps. In fact, the application requires maps to be visible in all

platforms. Thus, the initial set of classes provided with the MORE implementation

needed to be extended with some geographical related types. The choice was to define a

new Java interface called Si tua t ed (Figure 50).

Any abject implementing such an interface must expose either lat-lon coordinates or a

topological information like 1162 Park Avenue, NY, USA. Then a specific runtime editor

for a Si tuated [] was implemented for Java Swing, Java AWT, HTML, J2ME platforms.

The rationale is that an array of situated abjects can be rendered in a user interface by

a map where the individual situated items are spots in the map. The user can point and

click a spot, read some related information, use all the interactive maps related fonctions

127

such as zoom in, zoom out, select a layer and so forth.

Therefore, such an editor is a client of a two tier architecture where the server is a

GIS engine. The data between the GIS server and the editor are exchanged in the GML

format. To improve performances in mobile networks, where the bandwidth is still an

issue, a special compressed form of GML, called compact GML (cGML[20]), was used.

The second issue was about the interaction with the recommendation system. Dur-

ing the interaction, the system asks the user a question and then proceeds to the next

question until a sufficient amount of information is gathered to provide a suggestion.

This pattern of interaction cannot easily modeled with an object-driven design for the

considerations already exposed in Section 2 .1. This experience led the development to-

ward the integration between MORE (the object-driven framework) with PLANES (the

pro of-of-concept task centered design environment).

Finally, one of the interaction requirements was to allow users to browse categories

of enterprises with a total amount of thousands of possible objects to be loaded into

memory and contained in a java. ut il. Collection. This fact led to an inefficient use of

memory. Then, a special subclass of java. util. Collection was implemented in order

to allow the lazy initialization of objects. Data was stored in a XML file and loaded as

soon as requested by the user.

4.6 Composition of Services

The scenarios described in this chapter and implemented in the E-Mate project require

the interaction and cooperation of different services. To meet this requirement the E-

Mate project defines and implements a mechanism for the composition of services. The

design goals of this composition mechanism can be summarized as follows:

• to build a new service starting from component services in a way that the resulting

composite service has the following properties:

128

- it can be packed and deployed in the service queue/ application server archi-

tecture;

- it can be published and discovered in the Jini architecture;

- it can be loaded and delivered to users by means of the service viewer delivery

architecture;

- it can be used to compose other services.

• to build a new service without requiring that components have a mutual knowledge

of interfaces. In other words, starting from two services 8 1 and 82 we can build a

service 8 3 even if 8 1 makes no reference to the definition of 8 2 and vice-versa. Under

this condition 8 1 and 8 2 are decoupled.

• the service composition is defined a design-time but the discovery, lookup and

linking of component services is performed at run-time.

In this section we will not go into details of the E-Mate service composition because

this is a large topic which would deserve an entire dissertation. We want only give an

overview of the rationale and of the main issues.

As example of composition we can take two services: AddressBook and Agenda. They

are decoupled, sono references of AddressBook are in the code of Agenda and vice-versa.

Typically, the Agenda is used to fill a new Appointment in which a field of type Person

is manually filled by the user. On the other hand, the use case of the composite service

is: the user fills a new Appointment in the Agenda and can load the Person to meet

selecting her/him form the AddressBook. Both services are interactive, so the user is

able to launch the user interface of the AddressBook while interacting with the Agenda.

It is worth noticing that two services can be composed even if they are decoupled but

they must share a common knowledge of the data they exchange. In our example, both

... AddressBook and Agenda must refer to the data type Perscn.

129

The data exchange between different services is affected by some issues due to the

classloading mechanism of the JVM. In fact, if the objects exchanged between two services

are of a pre-installed3 type (i.e type String) the data exchange is performed instantiating

object whose classes are unambiguously loaded by the JVM. On the other hand, when we

compose AddressBook and Agenda they both contain in their jar an identical definition

for class Person and the JVM loads two classes: a class Person from the jar of the

AddressBook and a class Person from the jar of Agenda. They are identical but distinct

and an instance of Person cannot be exchanged between the two services.

To address this issue, the E-Mate implementation instantiates a new classloader for

the composite services which is expected to load all the classes of component services.

This way, the class Person is loaded once and its instances can be exchanged between

the two services.

3In this case we mean pre-installed type any class already available in the standard library of the
JVM

130

(a)

(b)

(c)

Figure 50: Maps in three different modalities: (a) Web browser, (b) Java interface on
desktop PC, (c) and cellular phone.

Chapter 5

RELATED WORKS

This chapter collects some of the main research efforts in the field of pervasive computing

and interactive systems design. Section 5.1 presents a conceptual framework called Active

Spacec. Section 5.3 and Section 5.2 present two works which are similar to MORE in

their approach to provide direct interactions with domain abjects. Section 5.4 introduces

Model-driven and Task-driven design approaches. Finally Section 5.5 presents some

standardization activities carried by W3C related to this thesis.

5.1 GAIA and Active Spaces

Active Spaces [54] are a new approach for modeling Ubiquitous Computing environments.

Such an approach abstracts from the traditional computer model, and assumes that

computers are simply a particular case of such an abstraction while other cases could

be for instance Active City, or Active Office and so forth. In an Active Space the

computation is affected by environmental variables such as noise, temperature, light,

and environmental variables can be affected by computation. Traditional computing

systems are composed by components belonging to the following categories: hardware,

operating system, applications, and users. Assume two different implementations of the .

132

Active Space model, the first one is a traditional computer, the second one is an Active

Office. The similarities are:

• A computer has one or more processors, volatile and storage memory, and some

peripherals connected via PCI, USB, and RS232 interfaces. An Active Space has as

many processor as the number of devices, workstations, and servers located in the

room; has volatile memory used by programs and storage services; the active office

has some peripherals such as sensors, actuators, terminals, and so forth; peripherals

are connected via network protocols such as IIOP, RMI, and DCOM.

• A computer has an operating system which manages computing resources and as-

sign them to running programs. The communication between programs and the

operating system is based on the "system calls". In an active office can work many

users, using many terminals, and there may exist many processes interacting with

sensors and actuators. The active space need an operating system to handle all con-

current activities and to avoid conflicts between users or applications while using

the computing resources.

GAIA [23] is an operating system for active spaces. Regarding interactive applications,

GAIA defines an extension of the Model-View-Control design pattern which adds the el-

ement Mo del Adapter. The Mo del Adapter translates at runtime the data type exported

by a model in the format expected by the view.

5.2 Coupling Application Design and User Interface

The approach of coupling together the application objects and the user interface is not

a novel one. One of the first attempts is due to de Baar, Foley and Mullet [18]. In their

work they split the system design in two main parts: data objects design and interaction

objects design. Data objects define attributes and actions, interaction objects activate

133

actions, and manipulate data object's attributes. The design process takes as input a

data model and send it to an inference engine aimed to map data abjects and interaction

abject. Such an inference engine is parameterized by a set of selection rules and layout

rules. Both types of rules are implemented by a if-then-else list. The design process relies

on two third party tools: D2M2 Edit, and a ad-hoc modified version of DevGuide by Sun

Microsystems. D2M2 Edit is aimed at the visual definition of data models. The data

model produces by D2M2 is then dragged on DevGuide which connects to the inference

engine and produce a formal specification of the user interface in a proprietary format

called "User Interface Description File". Such a specification can be translated into a

compilable source file for a specific graphical user interface toolkit and programming

language.

The main difference between this approach and MORE is that mapping and user

interface generation occur at design-time in the de Baar et al. system and the result is

a specification file. On the other hand, MORE uses a set of selection rules which takes

into account the actual device and the actual delivery context, thus, the user interface is

produced and displayed at runtime. In our approach the emphasis is more on the device

diversity and on the unpredictability of actual device type.

5.3 Naked Objects

N aked Objects [4 7] authors envision a new philosophical approach to requirements anal-

ysis, system design, and implementation of enterprise software. The rationale behind is

close to the conceptual level of design in MORE, in which obje?ts are at the same time

building blacks of software and an expressive language to communicate functionalities.

Such a software development vision is well explained in [48] where the author expres their

skepticism about some current practices in software development which represent a step

134

backward with respect to the potential of true abject oriented design. The practices ac-

cused are the following: Business process orientation, Task-oriented user interfaces, Use-

case driven methodologies, the Model-View-Controller pattern, and Component-based

software development. In Naked Objects, the emphasis is on the behavioral-completeness

of abjects. Objects must contains both data and relevant operations and must be ex-

posed to users as are, with N aked Objects media tors. Such an approach targets the

agility of the development process, freeing the design from any other aspect not relevant

to the pure comprehension of the problem. Naked Object provides an implementation of

a Java framework. New Naked Objects can be created by extending base classes; the user

interface aimed to internet with such abjects is automatically provided by the runtime

environment which inspects abjects properties.

MORE and Naked Objects share the same vision of abjects as expressive building

blacks of software, nevertheless there are some important differences: N aked Objects has

been developed to address the need for a new agile approach to the development of enter-

prise software, MORE focuses much more on the management of heterogeneity of delivery

contexts by the direct manipulation of Java instances. With respect to multi-platform

access to services, while N aked Objects authors consider multi-platform access to ser-

vices just a possible side-effect of their architecture, MORE has focused an important

part of the whole development to the implementation of multiple viewing mechanisms:

Java Swing, PersonalJava, Interactive TV, Wireless Application Protocol(WAP), HTML

with Cascade Style Sheets (CSS) and Javascript, simple HTML, and VoiceXML. On the

other hand, Naked Objects reached objectives that have been partially disregarded or not

fully addresseQ. in MORE, such as the implementation of abjects per~istence mechanism

integrated in the framework, and a strong support to agile practice such as unit and

acceptance testing.

135

5.4 Task-Driven User Interface Design

The user interface is the "communication" channel between the user and the system and

it can be considered the physical implementation of the human-machine interaction. The

main problem related to the design of graphical user interfaces (GUI) is the portability

of the code, in fact, even if we use a multi-platform language like Java, an application

based upon a component library like Swing cannot be executed in a device with small

footprint and minor hardware capabilities. Moreover there are devices that cannot run a

Java Virtual Machine (JVM) at all or devices with mono-dimensional input like a voice

interface. The discipline of model-based user interface design advocates the explicit

denotation of the conceptual abstractions that underlie a user interface. This formal

description can then be used to drive the user interface at run time, and it can also serve

additional purposes. For instance, the tool TERESA (41] aims to the generation of several

user interfaces, for many different devices, from a single task model. The approach is

to define a task model using a tool called CTTE (46] and enabling each task for one or

more end user devices. So a task could be enabled for the PC but not for a PDA. The

final result of the process is a set of user interfaces tailored for a particular device.

Like our work, TERESA addresses the issue of the automatic generation of user

interfaces in the context of multi-channel access to services. This leads to a similar

result: task models may be a useful abstraction that can be adapted to the final delivery

context. Unlike our work, TERESA is strongly focused on task models and datais simply

data without the behaviour completeness of domain abjects in MORE. Last difference,

TERESA does not address any issue related to the deployment, discovery, and delivery

of services. It seems to assume that user interfaces are simply document in HTML, WML

or other markup languages to be delivered by a Web service.

136

5.5 W3C Standards and Device Independence Ac-

tivity

The Device Independece Activity aims to provide: Access to a Unified Web from Any

Device in Any Context by Anyone {67}

Among the tapies subject to standardization there are: user preferences and device

capabilities (Subsection 5.5.1), and flexible forms able to work seamlessly with different

user interfaces (Subsection 5.5.2).

These efforts prove that the issues addressed in this thesis are considered critical

by an organizations like W3C and that the emerging solutions will shape the future of

computer applications.

5.5.1 CC/PP

The issue to adapt Web contents to the final delivery context is not new and varions

solutions have been put in place. Most of them are based on the automatic detection of

the User Agent, i.e. the short description of the device accessing a content. Below we

present some of the most used techniques based on the user agent analysis.

• On-the-fly content selection and presentation based on user agent detection, using

scripting languages,

• HTML abject and link elements have mechanisms defining alternate behaviours,

• SMIL, the multimedia language for audio/visual content, has a switch element

defining alternate elements to choose from, and can be used, for example, to choose

some content based on available bandwidth,

• CSS also has such a mechanism called Media Queries for selecting appropriate style

sheets.

137

The shortcoming of these approaches is that they are static and while the number of

possible user agent is increasing the existing adapted contents are no longer sufficient.

Moreover, the user agent do es not provide any detailed information such as the screen

resolution or the number of colors thus the adaptated content may be not really adapted

whenever these parameters differs from their default values. Finally, to get a good adap-

tation, the content should be re-authored for a large variety of user agents making life

hard to content authors.

The CC/PP [53] framework aims to solve these problems. CC/PP stands for Com-

posite Capabilities/Preferences Profile, and is a system for expressing device capabilities

and user preferences. With CC /PP it is possible to specify, for instance, that a device

has a 256xl 72px screen resolution or that even if the color depth is 32bit the user is able

only to distinguish few colors. CC/PP is based on RDF, and it is not limited to a fixed

set of capabilities. but instead new

5.5.2 XForms

The massive adoption of Web technologies have raised some issues related to one of the

most important elements of the HTML language: the form element. To better integrate

forms with newcoming XML standards a new form specification called XForms [51] has

been produced. The new XForms have the following advantages:

• they are written in XML, present XML data, and submit XML;

• they combines existing XML technologies;

• they make easier to author complicated forms;

• they are internationalized;

• they are accessible;

138

• they are device independent.

The last feature is strongly related to our work and is a key factor for the delivery of

Web services over multiple platforms.

139

Chapter 6

Conclusion and Future Work

This chapter closes this work with a summary of the issues addressed, solutions proposed,

and results concretely achieved. Furthermore, in Section 6 are introduced and described

some promising future research directions.

Summary

This thesis faces the realization of software applications for computing-pervaded envi-

ronments where applications are required to automatically adapt to the actual delivery

context, to the actual device, and to allow user to seamlessly change device during a

session of use.

Design objectives of this work are:

• A methodology for the design and implementation of platform-independent appli-

cations that allows programmers to implement once the application and to deliver

it in any device even those not known at design time.

• A technique to refine applications in order to better adapt them to the actual

delivery context and letting the user to focus on tasks rather than on abjects.

140

• A middleware and a network architecture for the management of the whole life cycle

of applications comprising the support for design, deployment, discovery, lookup

and delivery of software in pervasive computing environments.

To address the points above we have conceived and experienced the solutions sum-

marized as follow:

• A design methodology and a framework for the implementation of pervasive ap-

plications which allows the automatic generation of user interfaces in any device.

The methodology enforces the human-to-object direct interaction and it is based on

the refiective capabilities of object-oriented programming languages. We have de-

veloped a framework called MORE (Multimodal Object REnderer) which delivers

applications in multiple platform without the need to re-write the user interface.

• To handle the complexity of interaction with thousands of possible domain abjects

deployed in a pervasive computing environment, we have developed a simple task-

centered approach together with the tools to define and execute task models. The

task approach is fully integrated with the MORE engine and thus it reuses the

capability to generate user interfaces for different platforms.

• To fully support the design and delivery requirements of the points above, we have

designed and developed an architecture for the whole life cycle of software appli-

cations in pervasive computing environment based on the Jini connection technol-

ogy. The mentioned architecture meets the requirements for deployment, discovery,

lookup and delivery of services.

Future Work

This section describes promising research directions still open to further improvements.

141

Dynamic Partitioning of Objects

The architecture proposed in this thesis is based on the dynamic partitioning of services

between user device tier, proxies and remote tiers. According to the actual delivery

context objects can behave as follows:

• they move to the end user device which renders an appropriate user interface;

• they move to an appropriate HTTP proxy, are translated into XML documents by

the remote tier of the object renderer on the proxy and finally rendered as user

interfaces by the local tier of the object renderer in the user device;

• they are translated into the appropriate mark-up language understood by the end

user device. The object renderer is exclusively implemented in the remote tier.

This solution allows three different architectures and is based on the assumption that

domain objects cannot be split into parts dynamically at run-time.

If we could overcome such a limitation, we would have the possibility to build more

performant and dynamically adapted distributed systems. A promising research direc-

tion is in the design and implementation of a system able to perform dynamically and

according to the delivery context the appropriate partitioning of objects into sub-objects

with shared variables.

Taking as example an object of type Foo

public class Foo{
int x,y;
Collection c;

public int doSum(){
return x+y;

}

public Collection doSorting(){
[... snip ...]

142

}
}

c.add(new Integer(x));
c.add(new Integer(y));
[... snip ...]
return c;

In a J2ME device the class Foo cannot be loaded because Collection is not part of

the Java library. Therefore, the object must be instantiated in a J2SE virtual machine

and accessed by means of a network protocol. If instead, we could split the Foo instance

into two parts foo1 and foo2 as follows:

public class Foo1{
int x,y;

}

public int doSum(){
return x+y;

}

public class Foo2{
Collection c;
int x,y;

}

public Collection doSorting(){
[... snip ...]

}

c.add(new Integer(x));
c.add(new Integer(y));
[... snip ...]
return c;

we could instantiate Foo1 in the local tier while the Foo2 would be still instantiated

in the remote tier. Invoking doSum() on Foo1 does not affect the computation on the

remote Foo2 and it can be effectively performed in the end user device. If the value of

either x or y are changed in one of the two sub-objects then the other must be updated

before it performs a computation based on the value of x, y. In other words, x and y

143

are shared variables and each sub-object must manage its local copy: whenever a shared

variable is written in Fool the local copy of Foo2 must be invalidated and vice versa. To

invalidate a local copy it is necessary that a message is sent through the net from the

sub-object performing the writing to the other. An invalidated variable cannot be used

in the computation, its up-to-date value must be requested before to proceed. Thus if

Foo1. doSum() is far more used than doSorting() and an efficient mechanism manages

the coordination of x and y between Foo1 and Foo2 minimizing the number of messages

exchanged, then the overall configuration would be far more efficient.

The benefit in pervasive computing is evident: programmers can develop domain

objects focusing on core functionalities and later objects are automatically partitioned

into sub-objects and deployed in different tiers according to the actual delivery context.

In such a way, the final architecture of any object is unpredicatable at design time because

it is computed at run time according to the pervasive computing environment.

Beyond Java

Another limitation of the architecture proposed in this thesis is in the exclusive use of Java

as programming language. The whole architecture could be replicated in other languages

than Java as far as they allow remote classloading and reflective operations. Nonetheless,

the architecture would not allow the interoperability between services written in two

different languages. If we can relax somehow the constraint of remote class loading and

code mobility, we could try to design a pervasive computing system based not on the Jini

connection technology and not based on Java. A sui table solution can be in the use of

a protocol-centered architecture where elements in the network can be implemented in

any language and exchange data but not code. Protocol-centered architectures such as

peer-to-peer systems could be effectively designed to implement discovery, searching and

publishing of resources and services in a completely decentralized manner.

144

. - • • . • . . . • • - . . •

~[il[i]
...

1 i ti(")Stfuif) i ·•• I
I •··••· ~9s<?t-t1ng;ê) .< 1

Network is
used for any
operation

. Network is
1 ~c)Sqlj;iijg()j used only for

· ··· · · · ···· ··· ·· invalidate the local
·· ·. ·· · ·· .. ···· copy of shared

variables

. .. .

.li]<< .. :·> .··· · .

. >'V:° \ -.:~- :J:/·.:::·,-. :;
..

.·.'.·.:··.···.1 . :. ·(loSllIIl(.) .

Figure 51: If a device must communicate with a remote object .(top) then the network
is used for any message from the user to the object . In a dynamically partitioned archi-
tecture (bottom) objects are split into parts. Sorne part runs on the remote server and
some run on the user device minimizing the number .of messages sent from client-sicle to
server-side and vice versa.

145

Disappearing User Interfaces

In this thesis we tackled some of the issues related to the design and delivery of services

over a multitude of heterogeneus devices. However, we did not take into account one of

the aspects that, according to some relevant research articles and in line with an IST call

of the European Union [72], is a step ahead the traditional interaction paradigm: how to

make the computing disappear and blur in the background. The disappearing computer

seems to be a perfect integration of extremely complex technologies in everyday life,

where computation is controlled by users "unconsciously" with the minimum amount of

explicit HCI.

From a psycological point of view, it should be assessed whether the technology

disappears because it becomes more user-friendly and more adaptive to our habits or

instead because we do adapt to technology changing our habits. For instance, some

programmers consider vi an "invisible" tool because they are so accustomed to use it

that their fingers can activate commands even if they have difficult to say which key

activates which fonction. This an example of how the human being can adapt to a very

difficult tool to learn. The question is: does the tool become invisible because it is well

designed or because it is reliable? Human beings are likely more adaptive than computers

and a technology becomes invisible when perhaps the user is strongly motivated (or he

cannot avoid using the tool), he survived the learning curve, and the tool is well designed

and very reliable (we always realize the complexity of machines at the very moment they

break).

From a technology point of view, design methods, input/output technologies, and

sensing distribution schemas are key factors for the invisible computer. These factors

must take into account the context. For instance, how the situation, the user profile,

the social relationship between user in the same environment can have an impact in the

choice of input/ output devices and sensors.

From a social point of view, there are issues related to privacy of users when in a

146

disappearing and ubiquitous computer thousands of sensors register our actions and sen-

sible data are available to anybody who controls the pervasive computing environment.

Another problem is how to draw the attention of one user without disturbing his neigh-

bors. Other relevant questions are: who owns the radio channel? Which policy about

bandwidth and processing power allocation? Rich people will be advantaged compared

to poors? Which impact can have in our life a failure or a bug in a ubiquitous and

invisible computer system?

Final Remarks

Although the ubiquitous computer is still to corne, today there are less and less human

activities that can be performed without the computer. So everyday life is pervaded by

computers but yet this pervasiveness lacks of organization, structure, and design methods.

People use a PC to work, a play station to play games, a PDA to store appointments and

read mail, but all those elements are like separate islands in the computing archipelago.

The development of the Internet has leveraged more organization and has acquired a crit-

ical mass for the development of new applications based on the cooperation of distributed

services.

What the future will bring to us is difficult to say. Perhaps, all everyday abjects,

including some parts of the human body, will be connected in a huge wireless network

where processors, sensors, and actuators will cooperate to relieve us from tasks and to

meet needs that today we are not able to fully appreciate.

This scenario is impressive, and at the same time, frightening. Then, I'd like to close

this thesis citing Alan Kay's1 thoughts: The best way ta predict the future is to invent it.

1 Alan Kay is one of the inventors of the Smalltalk programming language and one of the fathers of
the idea of Object Oriented Programming. He is the conceiver of the laptop computer and the architect
of the modern windowing GUI. ,, ·

147

Appendix A

Pocket Calculator Code

public class Cale {
private String display - 1111. - '
private String accumulator
private String operation;

private static final
Cale instance=new Cale();

1111.

'

boolean appendingDigits true;

priva te Cale() {

}

public static Cale getinstance(){
return _instance;

}

148

void append(String digit){
if (appendingDigits){

setDisplay(getDisplay()+digit);
}

el se{
setDisplay(digit);
appendingDigits = true;

}

}

public void _O_() {

append("O");
}

public void _1_() {

append("1");
}

public void _2_() {

append("2");
}

public void _3_() {

append("3");
}

public void _4_() {

append("4");
}

149

public void _5_() {

append("5");
}

public void _6_() {

append("6");
}

public void _7_() {

append("7");
}

public void _8_() {

append("8");
}

public void _9_() {

append("9");
}

public void division() {
accumulator = getDisplay();
setDisplay("");
operation ="division";

}

public String getDisplay() {
return display;

}

150

public void multiplication() {
accumulator = getDisplay();
setDisplay(1111);

operation ="multiplication";
}

public void result() {

Double o1 new Double(getDisplay());
Double o2 new Double(accumulator);
Doubler= new Double(O.O);
if (operation.equals("sum"))

r = new Double(o1.doubleValue()
+ o2.doubleValue());

if (operation.equals("subtraction"))
r = new Double(o2.doubleValue()
- o1.doubleValue());

if (operation.equals("division"))
r = new Double(o2.doubleValue()
/ o1.doubleValue());

if (operation. equals ("multiplication"))
r = new Double(o1.doubleValue()
* o2.doubleValue());

setDisplay (1111 + r. double Value());

accumulator="";
appendingDigits=false;

151

}

}

public void setDisplay(String newDisplay) {
Object old = display;
display = newDisplay;
//fireModelChange(old,display);

}

public void sqrt() {
setDisplay("" + Math.sqrt(
new Double(getDisplay()).doubleValue()));
appendingDigits=false;

}

public void subtraction() {
accumulator = getDisplay();
setDisplay("");
operation = "subtraction";

}

public void sum() {
accumulator = getDisplay();
setDisplay("");
operation = "sum";

}

public String toString() {
return "a more elaborate Cale ... ";

}

152

153

Appendix B

XML Schemas

B.1 Schema for Response in Thin and HTTP-only

Client Architectures

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com)
by Andrea Piras (CRS4 ICT/NDA) -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xsd:complexîype name="slot_type">
<xsd:annotation>

<xsd:documentation>it is like java field</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:choice>
<xsd:sequence>

<xsd:choice>
<xsd:sequence>

<xsd:element name="value" type="xsd:string">
<xsd:annotation>

154

<xsd:documentation>
the value of the slot,
recovered by the field value of java o
bject</xsd:documentation>

</xsd:annotation>
</xsd:element>

</xsd:sequence>
<xsd:element name= 11 element 11

type= 11 collection_type 11

minOccurs= 11 0 11

maxOccurs= 11 unbounded 11 />
</xsd:choice>

</xsd:sequence>
<xsd:sequence>

<xsd:element name= 11 reference 11 type= 11 xsd:string 11 >
<xsd:annotation>

<xsd:documentation>
it indicates the reference to a not
primitive stored object contained
by main object</xsd:documentation>

</xsd:annotation>
</xsd:element>

</xsd:sequence>
</xsd:choice>
<xsd:element name= 11 parameter 11

type= 11 parameter_type 11

minOccurs= 11 0 11

maxOccurs= 11 unbounded 11 />
</xsd:sequence>
<xsd:attribute name= 11 name 11

type= 11 xsd:string 11 use= 11 required 11 />

155

<xsd:attribute name="type"
type="xsd:string" use="required"/>

<xsd:attribute name="alias"
type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="parameter_type">

<xsd:sirnpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="name"
type="xsd:string" use="required"/>

</xsd:extension>
</xsd:sirnpleContent>

</xsd:complexType>
<xsd:complexType name="collection_type">

<xsd:annotation>
<xsd:documentation>

it is like java collection field
</xsd:docurnentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="name"
type="xsd:string" rninOccurs="O">

<xsd:annotation>
<xsd:documentation>

Name of an elernent in
the collection
</xsd:docurnentation>

</xsd:annotation>
</xsd:elernent>
<xsd:elernent name="type"

type="xsd:string" rninOccurs="O"/>

156

<xsd:element name="value"
type="xsd:string" maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation>

the value of a
collection element.</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="reference" type="xsd:string">

<xsd:annotation>
<xsd:documentation>

it indicates the reference to
a not primitive stored object
contained by the collection.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="checked"

type="xsd:boolean" minOccurs="O">
<xsd:annotation>

<xsd:documentation>
indicates if it's item is selected
and its presence indicates
that it's a 'selection'
</xsd:documentation>

</xsd:annotation>
</xsd:element>

</xsd:sequence>
</xsd:complexîype>
<xsd:complexîype name="operation_type">

<xsd:annotation>

157

<xsd:documentation>
it is like java method
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="return_type"
type="xsd:string" minOccurs="O">

<xsd:annotation>
<xsd:documentation>

the type of returned value
by the operation.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="parameter"

type="parameter_type" minOccurs="O"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name"

type="xsd:string" use="required"/>
<xsd:attribute name="alias"

type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="object_type">

<xsd:annotation>
<xsd:documentation>It's the type definition

of "object".
At first use, it is made only by the class
name on the object browser must work.
Working on the different states of the some object,
it is made by slot items (like java fields)

158

and operation items (like java methods)
</xsd:documentation>
</xsd:annotation>
<xsd:sequence minOccurs="O" maxOccurs="unbounded">

<xsd:element name="slot"
type="slot_type" minOccurs="O"
maxOccurs="unbounded"/>

<xsd:element name="operation" type="operation_type"
minOccurs="O" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name"

type="xsd:string" use="required"/>
<xsd:attribute name="reference"

type="xsd:string" use="required"/>
<xsd:attribute name="alias"

type="xsd:string" use="required"/>
</xsd:complexîype>
<xsd:element name="hmi" type="hmi_type"/>
<xsd:complexîype name="hmi_type">

<xsd:sequence>
<xsd:element name="session" type="xsd:string">

<xsd:annotation>
<xsd:documentation>"session" is the session id

which the object browser work
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="processor" type="xsd:string">

<xsd:annotation>
<xsd:documentation>the processor file name

for working on the object

159

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="stylesheet"

type="xsd:string"
default="toHTMLObject.xsl"
minOccurs="O">

<xsd:annotation>
<xsd:documentation>

if written, it indicates which xsl document
must to use for this slot
instead of to use default one.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name= 11 xmlobject 11 maxOccurs="unbounded">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="object_type"/>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="history">

<xsd:annotation>
<xsd:documentation>

the ref erences lists of the
previous browsed object.
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>

160

<xsd:element name="element"
type=" collection_ type"
minOccurs="O"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexîype>

</xsd:element>
</xsd:sequence>

</xsd:complexîype>
</xsd:schema>

161

Appendix C

PLANES: Text Notation

C.1 Introduction

In this appendix we describe the grammar used to express task models in textual notation.

The elements of the grammar are expressed as follows:

expr:
expr1 expr2

It means: expr is composed by expr1 followed by expr2

expr:
expr1
expr2

It means: expr is either expr1 or expr2

expr:
expr1+

I t means: expr is expr 1 one or more times

expr:
expr1*

162

It means: expr is expr1 zero or more times

• Characters literals are expressed with 'a' , 'b' , ' c ' etc.

• String literals are delimited by double quotes.

• Expressions can be grouped inside parenthesis.

• Sorne expressions may rely on primitive expression types such as STRING and

INTEGER.

C.2 PLANES Grammar

task_model:
task_definition+

task_definition:
task_name 11 := 11 task_expression

task_expression:
task_name
task_definition

task_name:
STRING

task_definition:
composite_task
leaf_task
repeat_task

163

composite_task:
composite_task_type task_set

task_set:
'(' task_expression (' ,' task_expression)+ ')'

composite_task_type:
"SEQUENCE"
"CHOICE"
"INTERLEAVING"

leaf_task:
leaf_task_type ('(' param (' ,' param)+ ')')*

param:
STRING

leaf_task_type:
"SHIELD"
"INVOKE"
"INSTANTIATE"
"INPUT"
"SELECTION"

repeat_task:
"REPEAT" '(' task_expression ',' max_iterations ')'

max_iterations:
INTEGER
"FOREVER"

164

165

Appendix D

PLANES:XML Output for the
Agenda Task Model

<taskmodel>
<task classname="crs4.planes.core.TaskSequence"

reference="22514347" name="Root">
<type>SEQUENCE</type>
<subtask>

5313146</subtask>
<subtask>

9708927</subtask>
<subtask>

13623369</subtask>
<subtask>

26089635</subtask>
<subtask>

32739270</subtask>
<subtask>

23342038</subtask>

</task>

166

<task classname="crs4.planes.core.RepeatTask"
reference="5313146" name="agenda">

<type>REPEAT</type>
<subtask>

2737550</subtask>
<repeat>O</repeat>

</task>
<task classname="crs4.planes.core.TaskChoice"
ref erence="2737550" name="TaskChoice">

<type>CHOICE</type>
<subtask>

6888942</subtask>
<subtask>

19658898</subtask>
</task>
<task classname="crs4.planes.core.ReferenceTask"
ref erence="6888942" name="ReferenceTask">

<type>REFERENCE</type>
<ref erenced>addAppointment</ref erenced>

</task>
<task classname="crs4.planes.core.ReferenceTask"
reference="19658898" name="ReferenceTask">

<type>REFERENCE</type>
<ref erenced>modifyAppointment</ref erenced>

</task>
<task classname="crs4.planes.core.TaskSequence"
reference="9708927" name="addAppointment">

<type>SEQUENCE</type>
<subtask>

30167145</subtask>
<subtask>

11742932</subtask>

167

<subtask>
29857804</subtask>

<subtask>
13594894</subtask>

</task>
<task classname="crs4.planes.core.InstantiateTask"
reference="30167145" name="instantiateAppointment">

<type>INSTANTIATE</type>
<objectType>Appointment</objectType>

</task>
<task classname="crs4.planes.core.InputTask"
reference="11742932" name="fillAppointmentForm">

<type>INPUT</type>
<variable>when,why,where,whom</variable>

</task>
<task classname="crs4.planes.core.ShieldTask"
ref erence="29857804" name="SHIELD">

<type>SHIELD</type>
</task>
<task classname="crs4.planes.core.InvokeFunctionTask"
reference="13594894" name="invokeWriteDnDisc">

<type>INVOKE</type>
<function>save</function>

</task>
<task classname="crs4.planes.core.TaskSequence"
reference="13623369" name="modifyAppointment">

<type>SEQUENCE</type>
<subtask>

24769387</subtask>
<subtask>

22805949</subtask>
</task>

168

<task classname="crs4.planes.core.ReferenceTask"
ref erence="24769387" name="Ref erenceTask">

<type>REFERENCE</type>
<ref erenced>selectAppointment</ref erenced>

</task>
<task classname="crs4.planes.core.TaskChoice"
reference="22805949" name="TaskChoice">

<type>CHOICE</type>
<subtask>

7310123</subtask>
<subtask>

18474371</subtask>
</task>
<task classname="crs4.planes.core.ReferenceTask"
ref erence="7310123" name="ReferenceTask">

<type>REFERENCE</type>
<referenced>editAppointment</referenced>

</task>
<task classname="crs4.planes.core.ReferenceTask"
reference="18474371" name="ReferenceTask">

<type>REFERENCE</type>
<ref erenced>removeAppointment</ref erenced>

</task>
<task classname="crs4.planes.core.TaskSequence"
reference="26089635" name="editAppointment">

<type>SEQUENCE</type>
<subtask>

19601861</subtask>
<subtask>

11068806</subtask>
<subtask>

7654146</subtask>

169

</task>
<task classname="crs4.planes.core.ReferenceTask"
reference="19601861" name="Reference">

<type> REFERENCE</ type>
<ref erenced>f illAppointmentForm</referenced>

</task>
<task classname="crs4.planes.core.ShieldTask"
reference="11068806" name="SHIELD--2">

<type>SHIELD</type>
</task>
<task classname="crs4.planes.core.ReferenceTask"
ref erence="7654146 11 name="ReferenceTask">

<type> REFERENCE</ type>
<referenced>invokeWriteOnDisk</referenced>

</task>
<task classname="crs4.planes.core.TaskSequence"
reference="32739270" name="selectAppointment">

<type>SEQUENCE</type>
<subtask>

29106105</subtask>
<subtask>

29812760</subtask>
</task>
<task classname="crs4.planes.core.InstantiateTask"
reference="29106105" name="instantiateList">

<type>INSTANTIATE</type>
<objectType>Appointment[]</objectType>

</task>
<task classname="crs4.planes.core.ObjectChoiceTask"
ref erence="29812760" name="SELECTION">

<type>SELECTION</type>
</task>

170

<task classname="crs4.planes.core.TaskSequence"
reference="23342038" name="removeAppointment">

<type>SEQUENCE</type>
<subtask>

28291271</subtask>
<subtask>

25106497</subtask>
</task>
<task classname="crs4.planes.core.ShieldTask"
reference="28291271" name="SHIELD--3">

<type>SHIELD</type>
</task>
<task classname="crs4.planes.core.InvokeFunctionTask"
reference="25106497" name="INVOKE(remove)">

<type>INVOKE</type>
<function>remove</function>

</task>
</taskmodel>

171

Appendix E

Layout

package crs4.more;
import java.util.Iterator;

/**
* A Layout contains information about how members of a model are f lushed inll
* a AbstractView. It makes sense only for visual views.

*/
public class Layout extends MoreObject{

private java.util.Collection sequence
new java.util.ArrayList();

public final static java.lang.Object NEWLINE
"newline";

public Layout() {
}

public void addMember(String memberName){
sequence.add(memberName);

}

public void addNewLine(){
sequence.add(Layout.NEWLINE);

}

public Iterator layoutiterator() {

172

}

}

log("Layout layoutiteratorO:" + sequence);

return sequence.iterator();

173

Bibliography

[1] Ken Arnold, Ann Wollrath, Bryan O'Sullivan, Robert Scheifler, and Jim Waldo. The
Jini specification. Addison-Wesley, Reading, MA, USA, 1999.

[2] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson, Jeremy Suss-
man, and Deborra Zukowski. Challenges: an application model for pervasive com-
puting. In Proceedings of the sixth annual international conference on Mobile com-
puting and networking, pages 266-27 4. ACM Press, 2000.

[3] T. Berners-Lee, R. T. Rielding, and H. Frystyk Nielsen. Hypertext transfer protocol-
HTTP /1.0. http://www.w3.org/hypertext/WWW /Protocols/HTTPl.O/draft-ietf-
http-spec.html, 1995.

[4] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LO-
TOS. In P. H. J. van Eijk, C.A. Vissers, and M. Diaz, editors, The Formal Descrip-
tion Technique LOTOS, pages 23-73. Elsevier Science Publishers North-Rolland,
1989.

[5] Alan Borning. Programming language aspect of ThingLab: A constraint-oriented
simulation laboratory. A CM Transactions on Programming Languages and Systems,
3(4) :353-387, 1981.

[6] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A dexter-based refer-
ence model for adaptive hypermedia. In UK Conference on Hypertext, pages 147-156,
1999.

174

[7] D. Carboni, S. Sanna, S. Giroux, and G. Paddeu. Interactions model and code
generation for J2ME applications. Lecture Notes in Computer Science, 2411:286-
290, 2002.

[8] Davide Carboni, Sylvain Giroux, Gavino Paddeu, Andrea Piras, and Stefano Sanna.
Delivery of services on any device: From Java code to user interface. HCI Interna-
tional 2003, Lawrence Erlbaum Associates, Inc., Publishers, June 2003.

[9] Davide Carboni, Sylvain Giroux, Andrea Piras, and Stefano Sanna. The Web around
the corner: Augmenting the browser with GPS. In Proceeding of the WWW2004
International Conference. ACM Press, May 2004.

[10] Davide Carboni, Sylvain Giroux, Eloisa Vargiu, Claude Moulin, Stefano Sanna,
Alessandro Soro, and Gavino Paddeu. E-mate: An open architecture to support
mobility of users. In Hele-Mai Haav and Ahto Kalja, editors, Databases and Infor-
mation Systems II, page 15. Kluwer Academic Publishers, 2002.

[11] J. Carnes. Using the utm map coordinate system,
http://www.maptools.com/usingutm/, 2002.

[12] Nicholas Carriero and David Gelernter. Applications Experience with Linda. In
Proceedings of the ACM Symposium on Parallel Programming, pages 173-187, New
Haven, July 1988. ACM Press.

[13] Leonardo Chiariglione. Standards: MPEG: a technological basis for multimedia
applications. IEEE MultiMedia, 2(1):85-89, Spring 1995.

[14] Pierre Cointe. Metaclasses are first class: The ObjVlisp model. ACM SIGPLAN
Notices, 22(12) :156-162, December 1987.

[15] Larry L. Constantine. The emperor has no clothes: Naked abjects meet the interface.
Constantine Lockwood) Ltd - http://www.foruse.com/ articles/

[16] Ole-Johan Dahl and Kristen Nygaard. SIMULA, an ALGOL-based simulation lan-
guage. Communications of the ACM, 9(9):671-678, September 1966.

175

[17] DAVIC. http://www.davic.org.

[18] Dennis J. M. J. de Baar, James D. Foley, and Kevin E. Mullet. Coupling application
design and user interface design. In Proceedings of A CM CHT92 Conference on

Human Factors in Computing Systems, Beyond Widgets: Tools for Semantically
Driven UI Design, pages 259-266, 1992.

[19] Roberto Demontis, Eva Lorrai, Vladimiro Marras, and Claude Moulin. A multi-
modal approach to emergency situations: Modelling with multi-agent system. In
Alessandra Raffaeta and Chiara Renso, editors, Proceedings of the CRGD (Com-
plex Reasoning on Geographical Data) Workshop) ICLP)01 Conference, pages 85-93.
CRGD (Complex Reasoning on Geographical Data)Workshop, S. T. A. R., Novem-
ber 2001.

[20] Emanuela Devita, Andrea Piras, and Stefano Sanna. Using compact GML to deploy
interactive maps on mobile devices. In Proceedings of WWW2003 - Poster session,

2003.

[21] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load sharing
in homogeneous distributed systems. IEEE Transactions on Software Engineering,

SE-12(5):662-675, 1986.

[22] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles) patterns)

and practice. Addison-Wesley, Reading, MA, USA, 1999.

[23] GAIA. Web site: http://choices.cs.uiuc.edu/gaia/.

[24] Gamma, Helm, Johnson, and Vlissides. Design Patterns Elements of Reusable

Object-Oriented Software. Addison-Wesley, Massachusetts, 2000.

[25] Sylvain Giroux, Claude Moulin, Raffaella Sanna, and Antonio Pintus. Mobile
lessons: Lessons based on geo-referenced information. In Margaret Driscoll and
Thomas C. Reeves, editors, Proceedings of the E-Learn 2002 conference) World

Conference on E-Learning in Corporate) Government) Healtcare and Higher Edu-

cation, pages 331-338. Association for the Advancement of Computing in Education
(AACE), AACE, 2002.

176

[26) A. Goldberg and D. Robson. Smalltalk 80 - the Language and its Implementation.
Addison-Wesley, Reading, 1989.

[27) GPSWeb. Web site: http://www.crs4.it:8000/gpsweb.

[28) Graham Hamilton and David Geary. JavaBeans Specifications 8J Tutorial. Addison-
Wesley, Reading, MA, USA, 19xx.

[29) H. R. Hartson, A. C. Siochi, and D. Hix. The UAN: A user-oriented representation
for direct manipulation interface designs. ACM Trans. on Inf. Sys., 8(3):181, 1990.

[30) Thomas A. Herring. The Global Positioning System. Scientific American, 274(2):44-
50 (Intl. ed. 32-38), February 1996.

[31) C. A. R. Hoare. Communicating sequential processes. computer science. Prentice-
Hall International, Englewood Cliffs, N.J, 1985.

[32) Susanne Hupfer. Make room for javaspaces, part 6-build and use distributed data
structures in your javaspaces programs. http://www.javaworld.com/javaworld/jw-
10-2000/jw-1002-jiniology.html, 2000.

[33) Itautec. http: / /www.itautec.com.br / ebusiness/ihc_english.htm.

[34) JavaSoft. Java Native Interface specification, November 1996. Release 1.1.

[35) Alan C. Kay. The early history of smalltalk. In History of Programming Languages,
pages 511-579. ACM Press/ Addison-Wesley, 1996.

[36) Michael Kay. XSLT, Programmer's Reference. Wrox Press Ltd., 2000.

[37) G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80. Journal of Object Oriented Programming,
1(3):26-49, August/September 1988.

[38) Rodger Lea. HA Vi: example by example: Java programming for home entertain-
ment devices. Prentice Hall PTR example by example series. P T R Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 2002.

177

[39] H. Lieberman. Using prototypical abjects to implement shared behavior in abject
oriented systems. ACM SIGPLAN Notices, 21(11):214-214, November 1986.

[40] Pattie Maes. Concepts and experiments in computational reflection. In Proceed-

ings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 14 7-155, 1987.

[41] Giulio Mori, Fabio Paterno';, and Carmen Santoro. Tool support for designing no-
madic applications. In Proceedings of the Bth international conference on Intelligent
user interfaces, pages 141-148. ACM Press, 2003.

[42] Ajith K. Narayanan. Realms and states: a framework for location aware mobile
computing. In Proceedings of the 1st international workshop on Mobile commerce,
pages 48-54. ACM Press, 2001.

[43] Networldmap. A geographical map of the internet. http://www.networldmap.com/.

[44] NMEA. Nmea 0183 standard: http://www.nmea.org/pub/0183/index.html.

[45] Scott Oaks, Li Gong, and Bernard Traversat. JXTA in a Nutshell. O'Reilly &
Associates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, 2002.

[46] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Applied Computing. Springer-Verlag, 1999.

[47] Richard Pawson and Robert Matthews. Naked abjects: a technique for designing
more expressive systems. ACM SIGPLAN Notices, 36(12):61-67, December 2001.

[48] Richard Pawson and Robert Matthews. Naked Objects. John Wiley and Sons Ltd,
2002.

[49] H. Pigot, B. Lefebvre, J.G. Meunier, B. Kerherv, A. Mayers, and S. Giroux. The role
of intelligent habitats in upholding elders in residence. In Proc. of 5th international
conference on Simulations in Biomedicine, April 2003.

178

[50] Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A. Musen. Beyond
data models for automated user interface generation. In Proceedings of the HCT94
Conference on People and Computers IX, Notations and Tools for Design, pages
353-366, 1994.

[51] T. V. Raman. XForms: XML Powered Web Forms. Addison-Wesley, 2003.

[52] Bharat Rao and Louis Minakakis. Evolution of mobile location-based services. Com-
mun. ACM, 46(12):61-65, 2003.

[53] F. Reynolds. Composite Capability / Preferences Profiles: A user sicle framework for
content negotiation. http://www.w3.org/TR/NOTE-CCPP /, 1999.

[54] Manuel Roman and Roy H. Campbell. Gaia: enabling active spaces. In Proceedings
of the 9th workshop on ACM SIGOPS European workshop, pages 229-234. ACM
Press, 2000.

[55] Salutation. Web site: http: / /www.salutation.org/.

[56] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
Communications, pages 10-17, August 2001.

[57] Upendra Shardanand and Patti Maes. Social information filtering: Algorithms for
automating "word of mouth". In Proceedings of ACM CHT95 Conference on Human
Factors in Computing Systems, volume 1, pages 210-217, 1995.

[58] Brian C. Smith and Carl E. Hewitt. A Plasma primer. Report, Massachusetts
Institute of Technology, A.I. Lab., Cambridge, Massachusetts, September 1975.

[59] Sun.
tion.

Java remote method
Technical report, Sun

invocation specifica-
Microsystems, 1997.

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html.I

[60] Sun Microsystems. www.sun.com.

179

[61] Pedro A. Szekely, Piyawadee Noi Sukaviriya, Pablo Castells, Jeyakumar Muthuku-
marasamy, and Ewald Salcher. Declarative interface models for user interface con-
struction tools: the MASTERMIND approach. In EHCI, pages 120-150, 1995.

[62] Andrew S. Tanenbaum. Modern operating systems. Prentice-Hall, Inc., 1992.

[63] Thomas C. Valesky. Enterprise JavaBeans: developing component-based distributed
applications. Addison-Wesley, Reading, MA, USA, 1999.

[64] G. van Rossum. A tour of the Python language. In R. Ege, M. Singh, and
B. Meyer, editors, Proceedings. Technology of Object-Oriented Languages and Sys-
tems, TOOLS-23, pages 370-??, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1998. IEEE Computer Society Press.

[65] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum. Globe: A wide-
area distributed system. IEEE Concurrency, 7(1):70-78, January-March 1999.

[66] Steve Vinoski. CORBA: Integrating diverse applications within distributed hetero-
geneous environments. IEEE Communications, 35(2):46-55, February 1997.

[67] W3C. Device Independence Activity. http://www.w3.org/2001/di/.

[68] W3C. Http extension framework. http://www.w3.org/Protocols/HTTP /ietf-http-
ext/.

[69] Mark R. Walker, Jim Edwards, Michael Jeronimo, John G. Ritchie, and Ylian Saint-
Hilaire. Remote I/O: Freeing the experience from the platform with UPnP* archi-
tecture. Intel Technology Journal, 6(4):30-36, November 2002.

[70] M. Weiser. The world is not a desktop. Interactions, 1(1):7-8, 1994.

[71] Marc Weiser. The computer for the twenty-first century. Scientific American,
265(3):94-104, September 1991.

[72] J. Wejchert. The disappearing computer. IST call for proposals. Available online
at: http://www.cordis.lu/ ist/fetdc.htm, February 2000.

180

[73] M. Welie. Patterns in interaction design - http://www.welie.com/.

181

