5,286 research outputs found

    Digital Current-Control Schemes

    Get PDF
    The paper is about comparing the performance of digital signal processor-based current controllers for three-phase active power filters. The wide use of nonlinear loads, such as front-end rectifiers connected to the power distribution systems for dc supply or inverter-based applications, causes significant power quality degradation in power distribution networks in terms of current/voltage harmonics, power factor, and resonance problems. Passive LC filters (together with capacitor banks for reactive power compensation) are simple, low-cost, and high-efficiency solution

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads

    Design and implementation of a modified fourier analysis harmonic current computation technique for power active filters using DSPs

    Get PDF
    The design and implementation of a harmonic current computation technique based on a modified Fourier analysis, suitable for active power filters incorporating DSPs is presented. The proposed technique is suitable for the monitoring and control of load current harmonics for real-time applications. The derivation of the basic equations based on the proposed technique and the system implementation using the Analogue Devices SHARC processor are presented. The steady state and dynamic performance of the system are evaluated for a range of loading conditions

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1mHz0.1\,\textrm{mHz} and 1Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201

    mmWave Massive MIMO with Simple RF and Appropriate DSP

    Full text link
    There is considerable interest in the combined use of millimeter-wave (mmwave) frequencies and arrays of massive numbers of antennas (massive MIMO) for next-generation wireless communications systems. A symbiotic relationship exists between these two factors: mmwave frequencies allow for densely packed antenna arrays, and hence massive MIMO can be achieved with a small form factor; low per-antenna SNR and shadowing can be overcome with a large array gain; steering narrow beams or nulls with a large array is a good match for the line-of-sight (LOS) or near-LOS mmwave propagation environments, etc.. However, the cost and power consumption for standard implementations of massive MIMO arrays at mmwave frequencies is a significant drawback to rapid adoption and deployment. In this paper, we examine a number of possible approaches to reduce cost and power at both the basestation and user terminal, making up for it with signal processing and additional (cheap) antennas. These approaches include lowresolution Analog-to-Digital Converters (ADCs), wireless local oscillator distribution networks, spatial multiplexing and multistreaming instead of higher-order modulation etc.. We will examine the potential of these approaches in making mmwave massive MIMO a reality and discuss the requirements in terms of digital signal processing (DSP).Comment: published in Asilomar 201

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    Harmonic compensation in a grid using doubly fed induction generators

    Get PDF
    Ideally, electric utilities are expected to deliver a sinusoidal voltage with a constant rated frequency, while customers are expected to draw a sinusoidal current with unity power factor. The recent widespread use of harmonic producing equipment in industrial applications, especially non-linear loads, has increased the distortion of electric currents and voltages in transmission and distribution systems. This thesis proposes a method of using multiple reference frame theory for measuring and mitigating harmonic currents of nonlinear loads using a doubly fed induction generator. The most significant low-order harmonics to be compensated are calculated using a multiple reference frame harmonic observer. This observer is simulated using Matlab® Simulink® and then implemented using the Texas Instruments TMS320F28335 digital signal processor. Experimental and simulation results are provided to verify the analysis of the observer by comparing the results with calculations from the Fourier spectrum. Along with active and reactive power generation, an algorithm is proposed to inject currents in the rotor for the mitigation of harmonics in the system. Simulation results are presented to demonstrate the performance of this proposed method. These results validate the effectiveness of the method in compensating the targeted harmonics in the system. This method of measuring and compensating harmonics discussed in this thesis is accurate, straightforward, easily implemented and effective in the mitigation of any harmonic in the system. The currents obtained in the fundamental reference frame can be further employed for the control of active and reactive power flow --Abstract, page iii
    corecore