48 research outputs found

    Exact two-terminal reliability of some directed networks

    Full text link
    The calculation of network reliability in a probabilistic context has long been an issue of practical and academic importance. Conventional approaches (determination of bounds, sums of disjoint products algorithms, Monte Carlo evaluations, studies of the reliability polynomials, etc.) only provide approximations when the network's size increases, even when nodes do not fail and all edges have the same reliability p. We consider here a directed, generic graph of arbitrary size mimicking real-life long-haul communication networks, and give the exact, analytical solution for the two-terminal reliability. This solution involves a product of transfer matrices, in which individual reliabilities of edges and nodes are taken into account. The special case of identical edge and node reliabilities (p and rho, respectively) is addressed. We consider a case study based on a commonly-used configuration, and assess the influence of the edges being directed (or not) on various measures of network performance. While the two-terminal reliability, the failure frequency and the failure rate of the connection are quite similar, the locations of complex zeros of the two-terminal reliability polynomials exhibit strong differences, and various structure transitions at specific values of rho. The present work could be extended to provide a catalog of exactly solvable networks in terms of reliability, which could be useful as building blocks for new and improved bounds, as well as benchmarks, in the general case

    A contribution to the evaluation and optimization of networks reliability

    Get PDF
    L’évaluation de la fiabilitĂ© des rĂ©seaux est un problĂšme combinatoire trĂšs complexe qui nĂ©cessite des moyens de calcul trĂšs puissants. Plusieurs mĂ©thodes ont Ă©tĂ© proposĂ©es dans la littĂ©rature pour apporter des solutions. Certaines ont Ă©tĂ© programmĂ©es dont notamment les mĂ©thodes d’énumĂ©ration des ensembles minimaux et la factorisation, et d’autres sont restĂ©es Ă  l’état de simples thĂ©ories. Cette thĂšse traite le cas de l’évaluation et l’optimisation de la fiabilitĂ© des rĂ©seaux. Plusieurs problĂšmes ont Ă©tĂ© abordĂ©s dont notamment la mise au point d’une mĂ©thodologie pour la modĂ©lisation des rĂ©seaux en vue de l’évaluation de leur fiabilitĂ©s. Cette mĂ©thodologie a Ă©tĂ© validĂ©e dans le cadre d’un rĂ©seau de radio communication Ă©tendu implantĂ© rĂ©cemment pour couvrir les besoins de toute la province quĂ©bĂ©coise. Plusieurs algorithmes ont aussi Ă©tĂ© Ă©tablis pour gĂ©nĂ©rer les chemins et les coupes minimales pour un rĂ©seau donnĂ©. La gĂ©nĂ©ration des chemins et des coupes constitue une contribution importante dans le processus d’évaluation et d’optimisation de la fiabilitĂ©. Ces algorithmes ont permis de traiter de maniĂšre rapide et efficace plusieurs rĂ©seaux tests ainsi que le rĂ©seau de radio communication provincial. Ils ont Ă©tĂ© par la suite exploitĂ©s pour Ă©valuer la fiabilitĂ© grĂące Ă  une mĂ©thode basĂ©e sur les diagrammes de dĂ©cision binaire. Plusieurs contributions thĂ©oriques ont aussi permis de mettre en place une solution exacte de la fiabilitĂ© des rĂ©seaux stochastiques imparfaits dans le cadre des mĂ©thodes de factorisation. A partir de cette recherche plusieurs outils ont Ă©tĂ© programmĂ©s pour Ă©valuer et optimiser la fiabilitĂ© des rĂ©seaux. Les rĂ©sultats obtenus montrent clairement un gain significatif en temps d’exĂ©cution et en espace de mĂ©moire utilisĂ© par rapport Ă  beaucoup d’autres implĂ©mentations. Mots-clĂ©s: FiabilitĂ©, rĂ©seaux, optimisation, diagrammes de dĂ©cision binaire, ensembles des chemins et coupes minimales, algorithmes, indicateur de Birnbaum, systĂšmes de radio tĂ©lĂ©communication, programmes.Efficient computation of systems reliability is required in many sensitive networks. Despite the increased efficiency of computers and the proliferation of algorithms, the problem of finding good and quickly solutions in the case of large systems remains open. Recently, efficient computation techniques have been recognized as significant advances to solve the problem during a reasonable period of time. However, they are applicable to a special category of networks and more efforts still necessary to generalize a unified method giving exact solution. Assessing the reliability of networks is a very complex combinatorial problem which requires powerful computing resources. Several methods have been proposed in the literature. Some have been implemented including minimal sets enumeration and factoring methods, and others remained as simple theories. This thesis treats the case of networks reliability evaluation and optimization. Several issues were discussed including the development of a methodology for modeling networks and evaluating their reliabilities. This methodology was validated as part of a radio communication network project. In this work, some algorithms have been developed to generate minimal paths and cuts for a given network. The generation of paths and cuts is an important contribution in the process of networks reliability and optimization. These algorithms have been subsequently used to assess reliability by a method based on binary decision diagrams. Several theoretical contributions have been proposed and helped to establish an exact solution of the stochastic networks reliability in which edges and nodes are subject to failure using factoring decomposition theorem. From this research activity, several tools have been implemented and results clearly show a significant gain in time execution and memory space used by comparison to many other implementations. Key-words: Reliability, Networks, optimization, binary decision diagrams, minimal paths set and cuts set, algorithms, Birnbaum performance index, Networks, radio-telecommunication systems, programs

    Exact solutions for the two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan

    Full text link
    The two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan have been calculated exactly for arbitrary size as well as arbitrary individual edge and node reliabilities, using transfer matrices of dimension four at most. While the all-terminal reliabilities of these graphs are identical, the special case of identical edge (pp) and node (ρ\rho) reliabilities shows that their two-terminal reliabilities are quite distinct, as demonstrated by their generating functions and the locations of the zeros of the reliability polynomials, which undergo structural transitions at ρ=1/2\rho = \displaystyle {1/2}

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research

    Probabilistic Inference Using Partitioned Bayesian Networks:Introducing a Compositional Framework

    Get PDF
    Probability theory offers an intuitive and formally sound way to reason in situations that involve uncertainty. The automation of probabilistic reasoning has many applications such as predicting future events or prognostics, providing decision support, action planning under uncertainty, dealing with multiple uncertain measurements, making a diagnosis, and so forth. Bayesian networks in particular have been used to represent probability distributions that model the various applications of uncertainty reasoning. However, present-day automated reasoning approaches involving uncertainty struggle when models increase in size and complexity to fit real-world applications.In this thesis, we explore and extend a state-of-the-art automated reasoning method, called inference by Weighted Model Counting (WMC), when applied to increasingly complex Bayesian network models. WMC is comprised of two distinct phases: compilation and inference. The computational cost of compilation has limited the applicability of WMC. To overcome this limitation we have proposed theoretical and practical solutions that have been tested extensively in empirical studies using real-world Bayesian network models.We have proposed a weighted variant of OBDDs, called Weighted Positive Binary Decision Diagrams (WPBDD), which in turn is based on the new notion of positive Shannon decomposition. WPBDDs are particularly well suited to represent discrete probabilistic models. The conciseness of WPBDDs leads to a reduction in the cost of probabilistic inference.We have introduced Compositional Weighted Model Counting (CWMC), a language-agnostic framework for probabilistic inference that partitions a Bayesian network into subproblems. These subproblems are then compiled and subsequently composed in order to perform inference. This approach significantly reduces the cost of compilation, yet increases the cost of inference. The best results are obtained by seeking a partitioning that allows compilation to (barely) become feasible, but no more, as compilation cost can be amortized over multiple inference queries.Theoretical concepts have been implemented in a readily available open-source tool called ParaGnosis. Further implementational improvements have been found through parallelism, by exploiting independencies that are introduced by CWMC. The proposed methods combined push the boundaries of WMC, allowing this state-of-the-art method to be used on much larger models than before

    An efficient cutset approach for evaluating communication-network reliability with heterogeneous link-capacities

    Get PDF

    An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability

    Get PDF
    An efficient algorithm is presented for computing exact system and survival signatures of K-terminal reliability in undirected networks with unreliable edges. K-terminal reliability is defined as the probability that a subset K of the network nodes can communicate with each other. Signatures have several advantages over direct reliability calculation such as enabling certain stochastic comparisons of reliability between competing network topology designs, extremely fast repeat computation of network reliability for different edge reliabilities and computation of network reliability when failures of edges are exchangeable but not independent. Existing methods for computation of signatures for K-terminal network reliability require derivation of cut-sets or path-sets which is only feasible for small networks due to the computational expense. The new algorithm utilises binary decision diagrams, boundary set partition sets and simple array operations to efficiently compute signatures through a factorisation of the network edges. The performance and advantages of the algorithm are demonstrated through application to a set of benchmark networks and a sensor network from an underground mine
    corecore