
An efficient algorithm for computing exact system and survival
signatures of K-terminal network reliability

Sean Reeda, Magnus Löfstrandb, John Andrewsa

a Resilience Engineering Research Group, Faculty of Engineering, University of Nottingham,

University Park, Nottingham NG7 2RD, UK

b School of Science and Technology, Örebro University, 70182 Örebro, Sweden

Abstract
An efficient algorithm is presented for computing exact system and survival signatures of K-

terminal reliability in undirected networks with unreliable edges. K-terminal reliability is

defined as the probability that a subset K of the network nodes can communicate with each

other. Signatures have several advantages over direct reliability calculation such as enabling

certain stochastic comparisons of reliability between competing network topology designs,

extremely fast repeat computation of network reliability for different edge reliabilities and

computation of network reliability when failures of edges are exchangeable but not

independent. Existing methods for computation of signatures for K-terminal network reliability

require derivation of cut-sets or path-sets which is only feasible for small networks due to the

computational expense. The new algorithm utilises binary decision diagrams, boundary set

partition sets and simple array operations to efficiently compute signatures through a

factorisation of the network edges. The performance and advantages of the algorithm are

demonstrated through application to a set of benchmark networks and a sensor network from

an underground mine.

1. Introduction

Analysing the reliability of complex networks is an important topic that has been studied

extensively. A widely used network model is a graph where the set of vertices V represent the

nodes to be connected (workstations, sensors etc.) and the set of edges E represent the links

(fibre-optic cable, wireless communication connection etc.) between nodes. One of the most

common measures of network reliability is known as the K-terminal network reliability. This

is defined as the probability that there is a path through working edges and vertices between

all pairs of vertices in subset K (known as the terminal nodes) of V. Two important special

cases are the 2-terminal network reliability which measures the reliability of connectivity

between a pair of terminal vertices and the all-terminal network reliability which measures the

reliability of simultaneous connectivity between all pairs of vertices in the network. K-terminal

network reliability has diverse applications, in addition to evaluating the reliability of various

types of networked system, such as telecommunications, transport and power systems, there

are also applications within numerous other domains such as optimal design decomposition in

operations research (Michelena & Papalambros, 1994) and prediction of protein complex

membership in genome research (Asthana, King, Gibbons, & Roth, 2004).

The problem of computing the K-terminal network reliability for a network is NP-hard (Ball,

1986; Valiant, 1979), even for planar networks (Provan, 1986). Various algorithms for

computing K-terminal network reliability have been published in the literature and can be

categorised into those that compute exact reliability such as (Hardy, Lucet, & Limnios, 2007;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/185244776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Herrmann, Soh, & Model, 2009; F.-M. Yeh, Lu, & Kuo, 2002), those that compute reliability

bounds such as (Brecmt & Colbourn, 1988; Jane, Shen, & Laih, 2009; Niu & Shao, 2011) and

those that utilise Monte Carlo simulation to compute the approximate reliability such as (Botev,

L’Ecuyer, Rubino, Simard, & Tuffin, 2013; Manzi, Labbé, Latouche, & Maffioli, 2001).

The focus of this paper is the computation of exact system and survival signatures for K-

terminal network reliability rather than direct reliability computation. The system signature

was introduced by Samaniego (F J Samaniego, 1985) as a tool for studying the reliability of

coherent systems (Francisco J. Samaniego, 2007). Consider a coherent system of m

components with independent identically distributed failure times. Let 𝑇𝑠 > 0 be the random

failure time of the system and let 𝑇𝑗:𝑚 be the jth order statistic for the random component failure

times with 𝑇1:𝑚 ≤ 𝑇2:𝑚 ≤ ⋯ ≤ 𝑇𝑚:𝑚. The system signature is defined as the vector 𝑞 where

the value at index 𝑙 ∈ {1,2, … , 𝑚}, denoted 𝑞𝑙, gives the probability that the system failure time

coincides with the lth component failure

𝑞𝑙 = 𝑃(𝑇𝑠 = 𝑇𝑙:𝑚) (1)

The system signature has various theoretical applications in reliability engineering such as

establishing stochastic comparisons between the reliability of different systems (Block, Dugas,

& Samaniego, 2006; Philip J Boland & Samaniego, 2004). Coolen and Coolen-Maturi (Coolen

& Coolen-Maturi, 2012) later introduced the survival signature which, similar to the system

signature, fulfils the role of a quantitative model of the system reliability structure that is

entirely separated from the random failure times of the components. The survival signature

has the advantage that is can be easily generalised to systems with multiple types of

components. Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1} 𝑚 represent a Boolean state vector for a system

of m components with exchangeable failure times, where 𝑥𝑖 = 1 if component 𝑖 functions and

𝑥𝑖 = 0 if it is failed. Also let 𝜙: {0,1}𝑚 → {0,1} represent the system reliability structure

function, defined for all 2𝑚 possible 𝑥, where 𝜙(𝑥) = 1 if the system functions with

component states 𝑥 and 𝜙(𝑥) = 0 if it is failed. Finally, let 𝑆𝑙 denote the set of component state

vectors with exactly l of the m components functioning (i.e. ∑ 𝑥𝑖 = 𝑙𝑚
𝑖=1). The survival

signature is then defined as the vector Φ where the value at index 𝑙 ∈ {0,1,2, … , 𝑚}, denoted

Φ𝑙, gives the probability that the system functions given that precisely l components function

Φ𝑙 = (
𝑚
𝑙

)
−1

∑ 𝜙(𝑥)

𝑥∈𝑆𝑙

 (2)

Now consider the case where the m components in the system are partitioned into 𝑁𝑇 different

types, where the 𝑀𝑗 components of type 𝑗 ∈ {1, … , 𝑁𝑇} have exchangeable random failure

times. Note that this differs from the usual notation in the literature on survival signatures

where K is used to represent the number of component types since K is defined as the set of

terminal nodes of a network in this paper. Let 𝑆𝑙1,…,𝑙𝑁𝑇
 denote the set of component state vectors

that contain precisely 𝑙𝑗 ∈ {0,1, … , 𝑀𝑗} functioning components of type j (i.e. those for which

∑ 𝑥𝑖
𝑗

=
𝑀𝑗

𝑖=1
𝑙𝑗 for 𝑗 = 0,1, … , 𝑁𝑇 − 1 where 𝑥𝑖

𝑗
 is the ith component of type j). Also let

|𝑆𝑙1,…,𝑙𝑁𝑇
| = ∏ (

𝑀𝑗

𝑙𝑗
)

𝑁𝑇
𝑗=1 denote the cardinality of 𝑆𝑙1,…,𝑙𝑁𝑇

 and Φ̅𝑙1,…,𝑙𝑁𝑇
= ∑ 𝜙(𝑥)𝑥𝜖𝑆𝑙1,…,𝑙𝑁𝑇

denote the number of state vectors from 𝑆𝑙1,…,𝑙𝑁𝑇
 for which the system functions. The

generalised survival signature, Φ, is then defined as the multidimensional array with 𝑁𝑇

dimensions where the value at index (𝑙1 ∈ {0, . . , 𝑀1}, … , 𝑙𝑁𝑇
∈ {0, . . , 𝑀𝑁𝑇

}) in dimensions

(1, … , 𝑁𝑇) respectively, denoted Φ𝑙1,…,𝑙𝑁𝑇
, gives the probability that the system functions

given that precisely (𝑙1, … , 𝑙𝑁𝑇
) components of types (1, … , 𝑁𝑇) respectively function

Φ𝑙1,…,𝑙𝑁𝑇
=

Φ̅𝑙1,…,𝑙𝑁𝑇

|𝑆𝑙1,…,𝑙𝑁𝑇
|

 (3)

Let 𝐶𝑡
𝑗
𝜖{0, … , 𝑀𝑗} denote the number of components of type j in the system that function at

time 𝑡 > 0. The probability that the system functions at time 𝑡 can be calculated using the

survival signature and the joint probability distribution for the number of functioning

components of each type at time t

𝑃(𝑇𝑆 > 𝑡) = ∑ …

𝑀1

𝑙1=0

∑ [Φ𝑙1,…,𝑙𝑁𝑇
𝑃 (⋂{𝐶𝑡

𝑗
= 𝑙𝑗}

𝑁𝑇

𝑗=1

)]

𝑀𝑁𝑇

𝑙𝑁𝑇
=0

(4)

If failure times of components of type j are conditionally independent and identically

distributed with CDF 𝐹𝑗(𝑡) and failure times of components of different types are independent,

then

𝑃(𝑇𝑆 > 𝑡) = ∑ …
𝑀1
𝑙1=0 ∑ [Φ𝑙1,…,𝑙𝑁𝑇

∏ ((
𝑀𝑗

𝑙𝑗
) [𝐹𝑗(𝑡)]

𝑀𝑗−𝑙𝑗
[1 − 𝐹𝑗(𝑡)]

𝑙𝑗
)

𝑁𝑇
𝑗=1]

𝑀𝑁𝑇

𝑙𝑁𝑇
=0

 (5)

For systems containing a single component type, the system signature and survival signature

have the simple relation

𝑞𝑙 = Φ𝑚−𝑙 − Φ𝑚−𝑙−1 (6)

Whilst real world networks can be topologically very complex, resulting in similarly complex

reliability structure functions, the edges in networks are often similar (e.g. in the case of a

communications network, all edges may use the same cable technology). In such cases, it is

often appropriate to use the same reliability model for all or many edges making them natural

subjects for analysis using signature theory.

There are numerous applications for reliability signatures of networks, a few of which will now

be described briefly. Once a signature is computed, the reliability of the network for given edge

reliabilities can be computed very quickly through Eqn. 4 or Eqn. 5. This is advantageous when

repeated analysis of a system is required, for example in the analysis of real time systems,

importance measure analysis and optimisation problems. Signatures can also represent the

reliability of networks where the failure events of edges of the same type are exchangeable

dependent and the random failure times of components of different types are dependent

(Eryilmaz, Coolen, & Coolen-Maturi, 2018). The majority of existing algorithms for

computing K-terminal network reliability, such as the algorithm from Hardy et al. (Hardy et

al., 2007), rely on the stronger assumption that all failure events are statistically independent.

The exchangeability assumption is often relevant in practical problems, for example where

failures of edges result in increased stresses placed on those that remain working or are

influenced by common environmental factors. Aslett et al. (Aslett, Coolen, & Wilson, 2015)

recently presented a method for Bayesian inference of reliability under such exchangeability

assumptions using the survival signature and 2-terminal network examples. For situations

where analytical solution through Eqn. 4 or Eqn. 5 is infeasible, simulation can be used to

derive system reliability from the survival signature (Patelli, Feng, Coolen, & Coolen-Maturi,

2017). Signatures can also be used to compare the performance of different system and network

designs (McAssey & Samaniego, 2014; F. Samaniego & Navarro, 2016; Francisco J.

Samaniego, 2007), such as to determine if there is a uniformly optimal network design (e.g. in

terms of stochastic or hazard rate ordering of the survival distributions) for a given number of

vertices and edges independent of the reliability of the edges. This type of analysis results in

the development of fundamental knowledge on the design of efficient and reliable networks in

the real world.

Existing methods for the computation of signatures for K-terminal reliability have relied on the

computation of cut-sets or path sets and the inclusion-exclusion expansion, sum of disjoint

products or domination theory (P. J. Boland, Samaniego, & Vestrup, 2003; Francisco J.

Samaniego, 2007). However, the enumeration of cut-sets or path sets in a network (Fard & Lee,

1999; W. C. Yeh, 2006) is notoriously expensive and therefore practical application of these

methods is limited to relatively small networks. Reed (Reed, 2017) recently introduced an

efficient method for computation of signatures from an ordered binary decision diagram (BDD)

representation of a reliability structure function. In this paper, an algorithm for the exact

computation of system and survival signatures for K-terminal network reliability in undirected

networks is presented under the assumption that only edges are unreliable whilst vertices are

perfectly reliable. The algorithm combines the ideas from Reed (Reed, 2017) for signature

computation from BDDs with those from BDD based K-terminal network reliability methods

(Hardy et al., 2007; Herrmann et al., 2009; Imai, Serine, & Imai, 1999; F.-M. Yeh et al., 2002)

to enable signature computation for larger networks than previously feasible.

The remainder of this paper is organised as follows: Section 2 describes the theory for the

algorithm, Section 3 presents some benchmark results on its performance when applied to

numerous benchmark K-terminal network reliability problems commonly used in the literature,

Section 4 demonstrates the analysis of a sensor network from an underground mine and Section

5 discusses these results and gives some concluding remarks.

2. Theory

2.1. Existing BDD based algorithms for computing exact K-terminal network reliability
Factoring algorithms, based on the repeated decomposition of the network at each edge into

two sub-networks, the first assuming the edge has failed and the second assuming the edge is

functioning, have been shown to be more efficient than cut or path set enumeration techniques

(Page & Perry, 1989; Theologou & Carlier, 1991; Wood, 1986). However, these methods do

not merge isomorphic sub-networks to avoid redundant computations and are computationally

expensive for larger, more complex networks. Imai et al. (Imai et al., 1999), Yeh et al. (F.-M.

Yeh et al., 2002), Hardy et al. (Hardy et al., 2007) and Herrmann et al. (Herrmann et al., 2009)

presented algorithms for computing K-terminal network reliability using BDD to efficiently

represent the edge factorisation of the reliability structure function, resulting in a significant

improvement in computational performance over the earlier algorithms.

BDD (Bryant, 1986) are a data structure that has been widely used in reliability engineering

for efficient representation, manipulation and reliability evaluation of Boolean reliability

structure functions, for example in fault tree analysis (Rauzy, 1993). They are based upon

Shannon decomposition theory (Shannon, 1938), where the Shannon decomposition of a

Boolean function f on Boolean variable 𝑥𝑖 is defined as

𝑓 = (𝑥𝑖 = 1) ∧ 𝑓𝑥𝑖=1 ∨ (𝑥𝑖 = 0) ∧ 𝑓𝑥𝑖=0 (9)

where 𝑓𝑥𝑖=𝑣 is 𝑓 evaluated with 𝑥𝑖 = 𝑣.

A BDD contains two terminal nodes that represent the Boolean constant values 1 and 0. Each

non-terminal node represents a sub-function g, is labelled with a Boolean variable v and has

two outgoing edges. By applying a total ordering on the m Boolean variables for function f by

mapping them to the integers 1, … , 𝑚, and applying the Shannon decomposition recursively to

f, it can be represented as a binary tree with m+1 levels. Each intermediate node, referred to as

an if-then-else (ite) node, at level 𝑙 ∈ {1, … , 𝑚} (where the root node is at level 1 and the nodes

at level 𝑚 are adjacent to the terminal nodes) represents a Boolean function g on variables 𝑥𝑙 ,
𝑥𝑙+1, … , 𝑥𝑚. It is labelled with variable 𝑥𝑙 and has two out edges called 1-edge and 0-edge

linking to nodes labelled with variables higher in the ordering. 1-edge corresponds to 𝑥𝑙 = 1

and connects to the node representing 𝑔𝑥𝑙=1, whist 0-edge corresponds to 𝑥𝑙 = 0 and connects

to the node representing 𝑔𝑥𝑙 =0. In addition, the following two rules are applied to eliminate

redundancy:

1. Isomorphic subgraphs are merged.

2. Any node whose two children are isomorphic signifies that the value of the Boolean

variable labelling the node does not influence the value of the Boolean function that

the node represents. Such nodes are eliminated by replacing the node by its child

node.

To construct the BDD representing K-terminal network reliability, a total ordering is given to

the edges 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑚. The root node corresponds to the full network and its two child

nodes represent the sub-networks assuming functioning and failure of edge 𝑒1. The

decomposition process is then continued, with the child nodes at level l in the BDD

representing the sub-networks resulting from the additional decomposition of edge 𝑒𝑙−1. If the

sub-network resulting from the decomposition results in all K terminal vertices being surely

connected, then it is represented by the terminal 1 node, whilst if it results in the at least 1

terminal vertex being surely disconnected from any other then it is represented by the terminal

0 node. Thus at level l of the BDD, edges from 𝐸𝑙 = {𝑒1, … , 𝑒𝑙−1} are decided (either failed or

functioning) and the corresponding sub-networks represented by the BDD nodes at that level

comprise only edges from 𝐸𝑙̅ = {𝑒𝑙, … , 𝑒𝑚}. To efficiently evaluate the network state and

identify isomorphic sub-networks during the BDD construction, the method from Carlier and

Lucet (Carlier & Lucet, 1996) for representing sub-network topologies as partitions of certain

vertices is used. The use of vertex partitions during BDD construction was used by Imai et al.

(Imai et al., 1999) for all-terminal network reliability and Hardy et al. (Hardy et al., 2007) for

K-terminal network reliability. At level l of the BDD, the boundary set 𝐹𝑙 ⊆ 𝑉 is the set of

vertices incident to at least one edge from 𝐸𝑙 and at least one edge from 𝐸𝑙̅. To represent sub-

networks, the boundary set is split into partitions where:

 Vertices x and y of 𝐹𝑙 are in the same partition if and only if they have merged into a

single vertex due to the decided edges in 𝐸𝑙.

 A partition is marked with an asterisk if at least one of the K terminal vertices has been

merged with one of the vertices from that partition.

Two sub-networks at level l are isomorphic and represented by the same BDD node if they

have identical boundary set partitions (Imai et al., 1999). Additionally, if all K terminal vertices

are connected in the same partition then the network surely functions, whilst if any of the K

terminal vertices are disconnected in a partition then the network surely fails.

Once the BDD is constructed, the K-terminal network reliability of the network represented by

a BDD node can be computed in a recursive manner from the reliability of its child nodes.

Therefore, by caching the reliability value for each node to avoid repeat computation, a

computation time that is linear with the number of BDD nodes is achieved. The pseudo-code

algorithm for this procedure is shown in Figure 1.

compute_network_reliability(f, QR):
inputs:
f: BDD node at level l of the BDD representing the structure function for the K-terminal network
reliability to be computed, f = (el = 1) ∧ fel=1 ∨ (el = 0) ∧ fel=0.

QR: hash table of (key:g, value:r) pairs where g is a BDD node and r is its computed reliability. This
should be empty on initial (non-recursive) call.
output:
Reliability of the network represented by the BDD, i.e. P(f = 1).

algorithm:
if f is terminal 1 node:
 return 1
else if f is terminal 0 node:
 return 0
else if f is in QR:
 return value from QR with key f
end if

𝑅1 ← compute_network_reliability(𝑓𝑒𝑙=1, QR) # 𝑓𝑒𝑙=1 is the 1-edge child node of f.

𝑅0 ← compute_network_reliability(𝑓𝑒𝑙=0, QR) # 𝑓𝑒𝑙=0 is the 0-edge child node of f.

R ← 𝑃(𝑒𝑙 = 1) × 𝑅1 + 𝑃(𝑒𝑙 = 0) × 𝑅0
Insert (key:f, value:R) into QR
return R

Figure 1 – Pseudo-code algorithm for computing the K-terminal network reliability of a network represented by a BDD.

Even so, the size of the BDD for a large network can be huge (for example, 65 million BDD

nodes for a 12 by 12 grid network (Hardy et al., 2007)) and require large amounts of memory.

Herrmann et al. (Herrmann et al., 2009), introduced the idea of computing and storing

reliability values in the BDD nodes during construction, enabling child node reliabilities to be

computed directly. In this approach, each BDD node is processed only once and discarded after

processing such that only a maximum of 2 complete levels of the BDD need to be stored at any

time, leading to reduced memory requirements.

2.2. New algorithm for computing signatures for K-terminal network reliability
A new algorithm for computing exact signatures for K-terminal network reliability will now

be described. It combines the approach from Herrmann and Soh (Herrmann et al., 2009) for

memory efficient construction of the BDD with methods introduced by Reed (Reed, 2017) to

achieve efficient computation of the signature for each BDD node as it is encountered. As in

Reed (Reed, 2017), the algorithm utilises multidimensional array data structures with NT

dimensions and length Mi+1 in dimension j to represent survival signatures, where the value

stored at index (𝑙1, … , 𝑙𝑁𝑇
) of the array corresponds to Φ𝑙1,…,𝑙𝑁𝑇

 or Φ̅𝑙1,…,𝑙𝑁𝑇
. Signatures for

systems with large numbers of components and component types can comprise of huge

numbers of elements, resulting in very large arrays that require significant amounts of memory

to represent computationally, for further details see Reed (Reed, 2017).

The algorithm utilises the following three operations on these arrays: elementwise addition,

elementwise division and shift-j. The elementwise addition of two arrays A and B, denoted

𝐴 ⊕ 𝐵, outputs an array C that has the same size as 𝐴 and B (i.e. same number of dimensions

and dimension lengths), where the value at each index in array C is equal to the sum of the

values at the same index in arrays A and B. Elementwise division of array A by array B, denoted

𝐴 ⊘ 𝐵, outputs an array C that has the same size as 𝐴 and B, where the value at index in array

C is equal to the value at that index in array A divided by the value at that index in array B. The

shift-j operation on array A by integer j is denoted 𝐴 ⊛ 𝑗, where A is a multidimensional array

with 𝑁𝑇 dimensions and 𝑗 ∈ {1, … , 𝑁𝑇}. It returns an array B that has the same size as A, where:

 the value in B at each index (𝑙1, … , 𝑙𝑗 , … , 𝑙𝑁𝑇
), except where 𝑙𝑗 = 0, is equal to the

value from A at index (𝑙1, … , 𝑙𝑗−1, … , 𝑙𝑁𝑇
);

 the value in B at each index (𝑙1, … ,0, … , 𝑙𝑁𝑇
) is equal to 0.

The pseudo-code for the main algorithm and a sub-routine it uses are shown in Figure 2 and

Figure 3 respectively. The BDD construction procedure then follows that from Hermann and

Soh (Herrmann et al., 2009) using network edge factorisation and boundary set partitions to

identify isomorphic BDD nodes. However, a state vector count array (representing Φ̅ from

Eqn. 3) is computed and stored for each BDD ite node and for the network functioning instead

of reliability values. An array is initially created with the value 0 everywhere and assigned to

variable S. This array represents Φ̅ corresponding to the network functioning (i.e. existence of

a path through working edges between all K terminal nodes) and is updated during the edge

factorisation process. A second array is also created with value 1 at index 0,…,0 in dimensions

0,…,NT and value 0 elsewhere, this is assigned to variable S0 and represents Φ̅ for the BDD

root node. The state vector count array operations that were defined above are then utilised by

the algorithm during the edge factorisation process to compute the arrays representing Φ̅ for

each ite node. The shift-j operation is used to update an array from the parent node to account

for an additional component of type j that functions in the edge factorisation, whilst the

elementwise addition operation is used to add the state vector count from a parent BDD node

to that of a child node. When the edge factorisation results in the certain connection of the K

terminal nodes, the array containing the state vector counts from the parent BDD node is first

updated to account for the possible functioning or failed state of each edge at higher levels in

the BDD since they do not influence the reliability of the network given the states of the already

decided edges. This is performed by the sub-routine given in Figure 3, and the updated array

is then added to the array for the state vector counts for the terminal 1 node. Once the edge

factorisation is complete or no new child nodes were created from the BDD nodes at a level,

the final operation in the main algorithm is to use the elementwise division operation to

normalise the final state vector count Φ̅ corresponding to the network functioning by an array

representing |𝑆𝑙1,…,𝑙𝑁𝑇
|, which is computed from the shape of the survival signature array, to

obtain the array representing the final survival signature Φ for the K-terminal network

reliability. In the case of 𝑁𝑇 = 1, the simple transformation from Eqn. 6 can be used to compute

an array representing the system signature from the array representing the survival signature.

Compute signature(G, K, edge_types)
inputs:
G: network (V,E) with edges ordered from 1 to m.
K: set of K-terminal vertices.
edge_types: hashset of (key:e, value:j) pairs for each and every edge e from E where j∈{1,…,NT} is the
component type of e.
output:
Survival signature as array with NT dimensions and length Mi+1 in dimension i where value at index

(𝑙1, … , 𝑙𝑁𝑇
) gives K-Terminal network reliability of G when (𝑙1, … , 𝑙𝑁𝑇

) edges of component types (1,…,NT)

function.
algorithm:
Qc ← empty hash table
Qn ← empty hash table
S0 ← Array with NT dimensions and length Mi+1 in dimension i with value 1 at index 0,…,0 in dimensions
0,…,NT and value 0 elsewhere.
part ← []
Insert (key:part, value:S0) into Qc
l ← 1
S = Array with NT dimensions and length Mi+1 in dimension i with value 0 everywhere.
while l ≤ m and Qc not empty:
 el ← edge at level l in the ordering
 compute Fl+1
 for each (key:partnode, value:Snode) pair in Qc:
 # Create boundary set partitions for failure (removal) of el.
 part0 ← boundary set partitions in function of partnode, Fl+1 and elevel=0
 # Create boundary set partitions for success (contraction) of el.
 part1 ← boundary set partitions in function of partnode, Fk+1 and el=1
 jl ← value from edge_types with key el
 if all K vertices in same partition in part1:
 S1 ← update for missing levels(Snode, G, edge_types, l+1)
 S1 ← S1 ⊛ jl
 S ← S ⊕ S1
 else if not empty marked partition in part1:
 S1 ← Snode
 S1 ← S1 ⊛ jl
 if part1 in Qn keys:
 Scurrent ← value in Qn with key part1
 Update value in Qn with key part1 to Scurrent ⊕ S1
 else:
 Insert (key:part1, value:S1) into Qn
 end if
 end if
 if all K vertices in same partition in part0:
 S0 ← update for missing levels(Snode, G, edge_types, l+1)
 S ← S ⊕ S0
 else if not empty marked partition in part0:
 S0 ← Snode
 if part0 in Qn keys:
 Scurrent ← value in Qn with key part0
 Update value in Qn with key part0 to Scurrent ⊕ S0
 else:
 Insert (key:part0, value:S0) into Qn
 end if
 end if
 end for each
 qc ← qn
 qn ← empty hash table
 l ← l + 1
end while

N ← Array with NT dimensions and length Mi+1 in dimension i where value at index (𝑙1, … , 𝑙𝑁𝑇
) is ∏ (

𝑀𝑖

𝑙𝑖
)

𝑁𝑇
𝑖=1

return S ⊘ N

Figure 2 – Pseudo-code for main routine for computing the survival signature of K-terminal network reliability.

update for missing levels(S, G, edge_types, from_level)
inputs:
S: Array with NT dimensions and length Mi+1 in dimension i that is to be updated.
G: network (V,E) with edges ordered from 1 to m.
edge_types: hashset of (key:e, value:j) pairs for each and every edge e from E where 𝑗 ∈

(𝑙1, … , 𝑙𝑁𝑇
) is the component type of e.

from_level: the first missing level in the BDD.
output:
Array with NT dimensions and length Mi+1 in dimension i that represents S after updating for
edges at the missing levels.
algorithm:
for n from start_level to m:
 en ← edge at n in the ordering
 jn ← value from edge_types with key en
 S ← S ⊕ (S ⊛ jn)
end for
return S
Figure 3 – Pseudo-code for sub-routine used by algorithm from Figure 2 to update array for missing levels in BDD.

Computational Complexity

Theorem: The computational complexity of the algorithm is 𝑂 (𝑚. 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (𝐹𝑚𝑎𝑥 +

(
𝑚

𝑵𝑻
)

𝑵𝑻

)), where 𝐹𝑚𝑎𝑥 is the maximum size of the boundary set and 𝐵𝐹𝑚𝑎𝑥
 is the Bell number

of 𝐹𝑚𝑎𝑥.

Proof: The number of BDD nodes at level 𝑙 is bounded by the theoretical maximum number

of marked partitions which is given by 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
 (Hardy et al., 2007), whilst the size of a

signature array is bounded by (
𝑚

𝑵𝑻
+ 1)

𝑵𝑻

 (Reed, 2017). For each BDD node, the two

corresponding child node partitions for level 𝑙 + 1 must be computed which is O(|𝐹𝑙|) (Hardy

et al., 2007) and the signatures corresponding to each of these partitions are updated through a

small number of elementwise addition and shift-j array operations for which the complexity is

approximately proportional to the number of array elements and therefore O ((
𝑚

𝑵𝑻
+ 1)

𝑵𝑻

).

The computation time complexity is therefore 𝑂 (𝑚. 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (𝐹𝑚𝑎𝑥 + (

𝑚

𝑵𝑻
)

𝑵𝑻

)) whilst

the memory complexity is 𝑂 (2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (

𝑚

𝑵𝑻
)

𝑵𝑻

) since signature arrays are stored at a

maximum of two levels of the BDD at any time.

2.3. Example for Wheatstone bridge network
To illustrate the algorithm, it was applied to the Wheatstone bridge network shown in Figure 4

that has 5 edges of 2 component types. The BDD computed by the algorithm with edges ordered

𝑒1 < 𝑒2 < 𝑒3 < 𝑒4 < 𝑒5, where each ite node is labelled with its boundary set partitions and

array for the state vector counts (representing Φ̅ from Eqn. 3) of the survival signature, is shown

in Figure 5. The terminal 1 node is labelled with the array representing Φ̅ for the network

functioning.

va

vb

vc

vd

e1

e2 e5

e4

e3
Type 1 – {e1, e3}
Type 2 - {e2,e4, e5}

Figure 4 – Bridge network with two terminal nodes (shaded) and two edge component types.

Figure 5 –BDD computed by the algorithm for the Wheatstone Bridge network from Figure 4, where each node is labelled

with its boundary set partitions and array for the state vector counts 𝛷̅ of the survival signature. Dashed edges represent

failure of the edge and solid edges represent functioning of the edge.

3. Benchmark Results
The algorithm introduced in the preceding section was applied to the computation of the system

and survival signatures for 11 different K-terminal network reliability problems that have been

previously used for benchmarking algorithms in the literature. Since the problems from the

literature all assume a single component type for the edges, additional variations of each

problem were created that have two and three component types for the edges with an

approximately equal number of components of each type.

Table 1 shows the times for the computation of the system (𝑁𝑇 = 1) and survival signatures

(𝑁𝑇 = 2 and 𝑁𝑇 = 3) for the “net2_8”, “net.19” and “Network (5)” networks from Yeh et al.

(F.-M. Yeh et al., 2002), four 𝑊𝑥𝑁 grid networks (“8x8”, “12x12”, “3x12” and “3x100”) from

Hardy et al. (Hardy et al., 2007) and four 𝐾𝑊, 𝑛 fully connected networks (“K10”, “K12”,

“K7,15” and “K7,50”) from Herrmann et al. (Herrmann et al., 2009). All measurements were

obtained on a standard desktop PC with an Intel i3 3.4Ghz processor and 8GB RAM using a

breadth first search order for edges. For the 12x12 and K12 networks with 𝑁𝑇 ≥ 2 and 𝑁𝑇 = 3

respectively, the signature could not be computed due to insufficient memory (RAM).

Table 1 – System and survival signature computation times for benchmark K-terminal network reliability problems.

Network |𝑽| |𝑬| |𝑲| CPU Time

with 𝑵𝑻 = 𝟏

(seconds)

CPU Time

with 𝑵𝑻 = 𝟐

(seconds)

CPU Time

with 𝑵𝑻 = 𝟑

(seconds)

net2_8 16 24 2 0.00 0.00 0.00

net.19 20 30 2 0.02 0.03 0.07

Network (5) 20 30 9 0.02 0.03 0.07

8x8 64 112 2 0.34 1.56 19.90

12x12 144 264 2 130.23 N/A * N/A *

3x12 36 57 2 0.00 0.00 0.01

3x100 300 497 2 0.01 0.53 42.78

K10,10 10 45 10 0.08 0.15 0.55

K12,12 12 66 15 1.96 4.65 N/A *

K7,15 15 69 15 0.04 0.06 0.2

K7,50 50 279 50 0.37 2.52 92.70

The 𝑁𝑇 = 3 variations of the “net2_8” and “Network (5)” networks are shown in Figure 6 and

their computed survival signatures are given in Appendix A.

*The computer used to perform the computations had insufficient memory (RAM) to compute the signature.

Figure 6 – Two of the benchmark networks with 𝑁𝑇 = 3 where edges are labelled with the component type and terminal

nodes are shaded.

4. Application to analysis of the reliability of a RFID wireless sensor network
This section describes the application of the algorithm to analyse reliability of a radio-

frequency identification (RFID) sensor network at an underground mine. The network enables

the location of personnel and mobile assets fitted with RFID tags to be tracked as they operate

within the mine, increasing productivity and safety. RFID sensors and wireless routers are

located strategically within the production areas of the mine and communicate with one another

via short-range radio link to form a wireless mesh network. One of the routers is connected via

wireless connection to a server that forms part of a wired network. When an RFID tag passes

within range of a RFID sensor, a data packet containing the unique ID codes belonging to the

tag and sensor along with the current time is generated by the sensor and sent over the wireless

network to the server. The transmission protocol used ensures that a data packet generated by

a sensor will reach the server if there exists at least one path between the sensor and the server

through available node to node wireless connections. On receipt of a data packet, the server

updates the last known location of the person or asset, which can then be viewed by mining

staff on computer terminals connected to the server via the wired network. The topology of the

wireless network, comprising 62 nodes (including 57 sensor nodes) and 96 wireless network

connections between nodes, is shown in Figure 7. The wireless network connections between

nodes in the network may temporarily fail due to radio-frequency (RF) interference created by

machinery and equipment used in the mine, such as electric motors and personal dust monitors.

In such cases, the nodes will attempt to re-establish the connection until it is restored. Failures

of the nodes themselves (sensors, routers and the server) are negligible in comparison and are

not considered in the analysis.

Figure 7 – Topology for the wireless RFID sensor network.

The level of the overall RF interference in the mine varies depending on the current activities

and its normalised value, such that a value of 0 represents the minimum level of interference

and a value of 1 represents the maximum level, is modelled as a random variable with a Beta

distribution with shape parameters 3.8 and 5.3, as shown in Figure 8.

Figure 8- Plot of the probability density function (PDF) for the normalised level of RF interference in the mine.

A wireless connection between a sensor and a sensor or router is denoted as a type 1 connection

and the probability it is failed, 𝐹1, is modelled by the following Gompertz function of the

normalised level of RF interference in the mine 𝑧:

𝐹1(𝑧) = 0.0013𝑒−5.5𝑒−3.5𝑧

Whilst a wireless connection between a router and a router or the server is denoted as a type 2

connection and the probability it is failed, 𝐹2, is modelled by the following Gompertz function

of the normalised level of RF interference in the mine 𝑧:

𝐹2(𝑧) = 0.0002𝑒−7.7𝑒−4.1𝑧

There are 91 type 1 wireless connections and 5 type 2 wireless connections in the network. The

parameters in the two failure probability models differ due to the different technologies used

for the two types of wireless connection. Figure 9 shows a plot of the probability that each type

of wireless connection is failed against the normalised level of RF interference in the mine.

Figure 9 – Plot of the probability of a wireless link being failed against the normalised level of radio-frequency (RF)

interference in the mine.

The aim of the analysis is to determine the reliability of the simultaneous availability of a path

along functioning wireless connections between a specified subset of the RFID sensors in the

network and the server at a random time. This is therefore a K-terminal reliability problem

where the K terminal nodes consist of the server and the subset of sensor nodes. The reliability

of the connection between the server and each of the following three subsets of sensors from

Figure 7 will be considered: all sensors, sensors numbered 48 to 61 (these sensors cover a single

production area at the mine) and sensor 1.

Due to the common dependence between the failure probabilities of wireless connections and

the level of RF interference in the mine, algorithms that assume independent edge failures, such

as (Hardy et al., 2007; Herrmann et al., 2009), are unsuitable. However, it follows from the

modelling assumptions that the failure events of edges representing wireless connections of the

same type are exchangeable dependent whilst the failure events of edges representing wireless

connections of different types are dependent. A survival signature for the network with two

component types can therefore be computed for each of these three cases using the algorithm

that was introduced in Section 2.2 of this paper (these signatures are given in Appendix A).

The computation of each signature took approximately 10 seconds on the computer used for

the benchmark tests with a breadth first search edge ordering starting from the sensor node

labelled 1 in Figure 7. The K-terminal reliability for the network at random time 𝑡, 𝑅𝑡, can then

be calculated for each case from its survival signature Φ :

𝑅𝑡 = ∑ ∑ [Φ𝑙1,𝑙2
𝑃(𝐶𝑡

1 = 𝑙1, 𝐶𝑡
2 = 𝑙2)]

5

𝑙2=0

91

𝑙1=0

(10)

The probability that exactly 𝑙1 and 𝑙2 of the type 1 and type 2 wireless connections,

respectively, are failed in the network at random time 𝑡 is given by:

𝑃(𝐶𝑡
1 = 𝑙1, 𝐶𝑡

2 = 𝑙2) = (
91
𝑙1

) (
5
𝑙2

) ∫ 𝑓(𝑧)[𝐹1(𝑧)]91−𝑙1[1 − 𝐹1(𝑧)]𝑙1[𝐹2(𝑧)]5−𝑙2[1 − 𝐹2(𝑧)]𝑙2𝑑𝑧
1

0

(11)

where 𝑓(𝑧) is the probability density function of the normalised level of RF interference in the

mine. This integral was approximated numerically for each combination of 𝑙1 and 𝑙2 using the

tanh-sinh quadrature algorithm (Bailey, Jeyabalan, & Li, 2005) and the computed values are

given in Appendix A. The following K-terminal network reliabilities for the three sensor nodes

subset cases were computed: 0.999558 for the all sensors case, 0.999944 for the sensors

numbered 48 to 61 case and 0.999565 for the sensor 1 case.

The failures of wireless network connections are conditionally independent given that the

normalised level of RF interference in the mine is known at time 𝑡. Therefore, the probability

that exactly 𝑙1 and 𝑙2 of the type 1 and type 2 wireless connections, respectively, are failed in

the network at time 𝑡 when the normalised level of RF interference is 𝑧 is given by:

𝑃(𝐶𝑡
1 = 𝑙1, 𝐶𝑡

2 = 𝑙2) = (
91
𝑙1

) (
5
𝑙2

) [𝐹1(𝑧)]91−𝑙1[1 − 𝐹1(𝑧)]𝑙1[𝐹2(𝑧)]5−𝑙2[1 − 𝐹2(𝑧)]𝑙2

(11)

Figure 10 shows a plot of the K-terminal reliability against the normalised level of RF

interference for the three different sets of terminal nodes. Note that the plotted reliability values

could also have been determined from the K-terminal reliability network algorithms that

assume independent edge failures. However, the advantage of the signature approach is that

repeating the edge factorisation and BDD construction process was not required. Instead, the

reliabilities were calculated directly from the signatures for the different edge failure

probabilities, making it much more computationally efficient.

Figure 10 – Plot of the K-terminal network reliability against the normalised level of RF interference for the network in

Figure 7 for three different sets of terminal nodes.

5. Discussion and Conclusions
Previous algorithms for the computation of system and survival signatures for networks

required the derivation of cut-set or path sets as an intermediate step which is computationally

infeasible when the network is large and complex. A new algorithm was presented in this paper

that utilises binary decision diagrams, boundary set partition sets and simple array operations

to efficiently compute signatures through a factorisation of the network edges. The computation

times for a set of benchmark problems from the literature demonstrate the efficiency of the

algorithm, in many cases it was able to compute the signatures within a few seconds on a

standard PC. The results for the 3x100 grid network show that signatures for even very large

networks, in this case with 497 edges, can be computed in reasonable times provided that the

maximum size of the boundary set is small. As expected, computation times are greater for

networks with greater numbers of edges, greater boundary set sizes and greater numbers of

signature elements.

The analysis of a RFID sensor network from an underground mine using the new algorithm

provided an example of the practical applications. Using the survival signatures computed for

the network, K-terminal reliability values were obtained for exchangeable but non-independent

edge failures. K-terminal reliability values for the network were also computed for multiple

edge failure probabilities using the signatures, eliminating the need for repetition of the edge

factorisation and BDD construction process.

It was not possible to compute the signatures for a small number of the benchmark problems

due to the memory requirement exceeding the available resources on the computer used. The

huge memory requirement in these cases was due to a combination of a signature with a large

number of elements, resulting from the number of edges belonging to each component type,

and a large maximum BDD width resulting from the edge factorisation. Further research is

needed on the development of algorithms to make it feasible to compute survival signatures for

these cases. The presented algorithm is limited to the computation of signatures for K-terminal

network reliability of undirected networks with unreliable edges and perfectly reliable vertices.

The development of similar methods for networks with unreliable vertices and directed edges

is another area for future work.

6. References
Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2015). Bayesian Inference for Reliability of

Systems and Networks Using the Survival Signature. Risk Analysis, 35(9), 1640–1651.

https://doi.org/10.1111/risa.12228

Asthana, S., King, O. D., Gibbons, F. D., & Roth, F. P. (2004). Predicting Protein Complex

Membership Using Probabilistic Network Reliability. Genome Research, 14, 1170–1175.

https://doi.org/10.1101/gr.2203804

Bailey, D. H., Jeyabalan, K., & Li, X. S. (2005). A comparison of three high-precision

quadrature schemes. Experimental Mathematics, 14(3), 317–329.

https://doi.org/10.1080/10586458.2005.10128931

Ball, M. O. (1986). Computational Complexity of Network Reliability Analysis: An Overview.

IEEE Transactions on Reliability, 35(3), 230–239.

https://doi.org/10.1109/TR.1986.4335422

Block, H., Dugas, M. R., & Samaniego, F. J. (2006). Characterizations of the Relative Behavior

of Two Systems via Properties of Their Signature Vectors. In N. Balakrishnan, J. M.

Sarabia, & E. Castillo (Eds.), Advances in Distribution Theory, Order Statistics, and

Inference (pp. 279–289). Boston, MA, MA: Birkh{ä}user Boston.

https://doi.org/10.1007/0-8176-4487-3_18

Boland, P. J., & Samaniego, F. J. (2004). The Signature of a Coherent System and Its

Applications in Reliability. In R. Soyer, T. A. Mazzuchi, & N. D. Singpurwalla (Eds.),

Mathematical Reliability: An Expository Perspective (pp. 3–30). Boston, MA, MA:

Springer US. https://doi.org/10.1007/978-1-4419-9021-1_1

Boland, P. J., Samaniego, F. J., & Vestrup, E. M. (2003). Linking Dominations and Signatures

in Network Reliability Theory. In B. H. Lindqvist & K. A. Doksum (Eds.), Mathematical

and Statistical Methods in Reliability. Singapore: World Scientific.

Botev, Z. I., L’Ecuyer, P., Rubino, G., Simard, R., & Tuffin, B. (2013). Static Network

Reliability Estimation via Generalized Splitting. INFORMS Journal on Computing, 25(1),

56–71. https://doi.org/10.1287/ijoc.1110.0493

Brecmt, T. B., & Colbourn, C. J. (1988). Lower bounds on two terminal network reliability.

Discrete Applied Mathematics, 21, 185–198.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8), 677–691.

https://doi.org/10.1109/TC.1986.1676819

Carlier, J., & Lucet, C. (1996). A decomposition algorithm for network reliability evaluation.

Discrete Applied Mathematics, 65(1–3), 141–156. https://doi.org/10.1016/0166-

218X(95)00032-M

Coolen, F. P. A., & Coolen-Maturi, T. (2012). Generalizing the Signature to Systems with

Multiple Types of Components. In Complex Systems and Dependability (pp. 115–130).

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30662-4_8

Eryilmaz, S., Coolen, F. P. A., & Coolen-Maturi, T. (2018). Marginal and joint reliability

importance based on survival signature. Reliability Engineering and System Safety, 172,

118–128. https://doi.org/10.1016/j.ress.2017.12.002

Fard, N. S., & Lee, T. H. (1999). Cutset enumeration of network systems with link and node

failures. Reliability Engineering and System Safety, 65(2), 141–146.

https://doi.org/10.1016/S0951-8320(98)00096-9

Hardy, G., Lucet, C., & Limnios, N. (2007). K-Terminal Network Reliability Measures With

Binary Decision Diagrams. IEEE Transactions on Reliability, 56(3), 506–515.

https://doi.org/10.1109/TR.2007.898572

Herrmann, J. U., Soh, S., & Model, A. N. (2009). A Memory Efficient Algorithm for Network

Reliability. In 15th Asia-Pacific Conf. Communications (APCC2009) (pp. 703–707).

https://doi.org/10.1109/APCC.2009.5375505

Imai, H., Serine, K., & Imai, K. (1999). Computational investigations of all-terminal network

reliability via BDDs. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E82–A(5), 714–721.

Jane, C. C., Shen, W. H., & Laih, Y. W. (2009). Practical sequential bounds for approximating

two-terminal reliability. European Journal of Operational Research, 195(2), 427–441.

https://doi.org/10.1016/j.ejor.2008.02.022

Manzi, E., Labbé, M., Latouche, G., & Maffioli, F. (2001). Fishman’s sampling plan for

computing network reliability. IEEE Transactions on Reliability, 50(1), 41–46.

https://doi.org/10.1109/24.935016

McAssey, M. P., & Samaniego, F. J. (2014). On uniformly optimal networks: A reversal of

fortune? Communications in Statistics - Theory and Methods, 43(10–12), 2452–2467.

https://doi.org/10.1080/03610926.2013.792353

Michelena, N. F., & Papalambros, P. Y. (1994). A Network Reliability Approach to Optimal

Decomposition of Design Problems. Journal of Mechanical Design, 2(September 1995),

195–204. https://doi.org/10.1115/1.2826697

Niu, Y. F., & Shao, F. M. (2011). A practical bounding algorithm for computing two-terminal

reliability based on decomposition technique. Computers and Mathematics with

Applications, 61(8), 2241–2246. https://doi.org/10.1016/j.camwa.2010.09.033

Page, L. B., & Perry, J. E. (1989). Reliability of direct networks using the factoring theorem.

IEEE Transactions on Reliability, 38(5), 556–562. Retrieved from

http://ieeexplore.ieee.org/ielx1/24/1755/00046479.pdf?tp=&arnumber=46479&isnumbe

r=1755

Patelli, E., Feng, G., Coolen, F. P. A., & Coolen-Maturi, T. (2017). Simulation methods for

system reliability using the survival signature. Reliability Engineering and System Safety,

167, 327–337. https://doi.org/10.1016/j.ress.2017.06.018

Provan, J. S. (1986). The Complexity of Reliability Computations in Planar and Acyclic

Graphs. SIAM Journal on Computing, 15(3), 694–702. https://doi.org/10.1137/0215050

Rauzy, A. (1993). New algorithms for fault trees analysis. Reliability Engineering and System

Safety, 40, 203–211.

Reed, S. (2017). An efficient algorithm for exact computation of system and survival signatures

using binary decision diagrams. Reliability Engineering and System Safety, 165(March),

257–267. https://doi.org/10.1016/j.ress.2017.03.036

Samaniego, F. J. (1985). On Closure of the IFR Class Under Formation of Coherent Systems.

IEEE Transactions on Reliability, R-34(1), 69–72.

https://doi.org/10.1109/TR.1985.5221935

Samaniego, F. J. (2007). System Signatures and their Applications in Engineering Reliability

(Vol. 110). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-71797-5

Samaniego, F., & Navarro, J. (2016). On comparing coherent systems with heterogeneous

components. Advances in Applied Probability, 48(1), 88–111. Retrieved from

http://projecteuclid.org/euclid.aap/1457466157

Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits. Transactions of

the American Institute of Electrical Engineers, 57(12), 713–723.

https://doi.org/10.1109/T-AIEE.1938.5057767

Theologou, O. R., & Carlier, J. G. (1991). Factoring & Reductions for Networks with Imperfect

Vertices. IEEE Transactions on Reliability, 40(2), 210–217.

https://doi.org/10.1109/24.87131

Valiant, L. G. (1979). The Complexity of Enumeration and Reliability Problems. SIAM Journal

on Computing, 8(3), 410–421. https://doi.org/10.1137/0208032

Wood, R. K. (1986). Factoring Algorithms for Computing K-Terminal Network Reliability.

IEEE Transactions on Reliability, 35(3), 269–278.

https://doi.org/10.1109/TR.1986.4335431

Yeh, F.-M., Lu, S.-K., & Kuo, S.-Y. (2002). OBDD-Based evaluation of k-terminal network

reliability. IEEE TRANSACTIONS ON RELIABILITY, 51(4).

https://doi.org/10.1109/TR.2002.804736

Yeh, W. C. (2006). A simple algorithm to search for all MCs in networks. European Journal

of Operational Research, 174(3), 1694–1705. https://doi.org/10.1016/j.ejor.2005.02.047

7. Appendix A. Supplementary Data

The survival signatures computed for “net2_8” and “Network (5)” with 𝑁𝑇 = 3 from the

benchmark networks presented in Section 3 along with the survival signatures and wireless

connection failure probabilities from the example sensor network presented in Section 4 are

provided as a Microsoft Excel spreadsheet file.

