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Abstract 
An efficient algorithm is presented for computing exact system and survival signatures of K-

terminal reliability in undirected networks with unreliable edges. K-terminal reliability is 

defined as the probability that a subset K of the network nodes can communicate with each 

other. Signatures have several advantages over direct reliability calculation such as enabling 

certain stochastic comparisons of reliability between competing network topology designs, 

extremely fast repeat computation of network reliability for different edge reliabilities and 

computation of network reliability when failures of edges are exchangeable but not 

independent. Existing methods for computation of signatures for K-terminal network reliability 

require derivation of cut-sets or path-sets which is only feasible for small networks due to the 

computational expense. The new algorithm utilises binary decision diagrams, boundary set 

partition sets and simple array operations to efficiently compute signatures through a 

factorisation of the network edges. The performance and advantages of the algorithm are 

demonstrated through application to a set of benchmark networks and a sensor network from 

an underground mine. 

 

1. Introduction 
 

Analysing the reliability of complex networks is an important topic that has been studied 

extensively. A widely used network model is a graph where the set of vertices V represent the 

nodes to be connected (workstations, sensors etc.) and the set of edges E represent the links 

(fibre-optic cable, wireless communication connection etc.) between nodes. One of the most 

common measures of network reliability is known as the K-terminal network reliability. This 

is defined as the probability that there is a path through working edges and vertices between 

all pairs of vertices in subset K (known as the terminal nodes) of V. Two important special 

cases are the 2-terminal network reliability which measures the reliability of connectivity 

between a pair of terminal vertices and the all-terminal network reliability which measures the 

reliability of simultaneous connectivity between all pairs of vertices in the network. K-terminal 

network reliability has diverse applications, in addition to evaluating the reliability of various 

types of networked system, such as telecommunications, transport and power systems, there 

are also applications within numerous other domains such as optimal design decomposition in 

operations research (Michelena & Papalambros, 1994) and prediction of protein complex 

membership in genome research (Asthana, King, Gibbons, & Roth, 2004).  

 

The problem of computing the K-terminal network reliability for a network is NP-hard (Ball, 

1986; Valiant, 1979), even for planar networks (Provan, 1986). Various algorithms for 

computing K-terminal network reliability have been published in the literature and can be 

categorised into those that compute exact reliability such as (Hardy, Lucet, & Limnios, 2007; 
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Herrmann, Soh, & Model, 2009; F.-M. Yeh, Lu, & Kuo, 2002), those that compute reliability 

bounds such as  (Brecmt & Colbourn, 1988; Jane, Shen, & Laih, 2009; Niu & Shao, 2011) and 

those that utilise Monte Carlo simulation to compute the approximate reliability such as (Botev, 

L’Ecuyer, Rubino, Simard, & Tuffin, 2013; Manzi, Labbé, Latouche, & Maffioli, 2001). 

 

The focus of this paper is the computation of exact system and survival signatures for K-

terminal network reliability rather than direct reliability computation. The system signature 

was introduced by Samaniego (F J Samaniego, 1985) as a tool for studying the reliability of 

coherent systems (Francisco J. Samaniego, 2007). Consider a coherent system of m 

components with independent identically distributed failure times. Let 𝑇𝑠 > 0 be the random 

failure time of the system and let 𝑇𝑗:𝑚 be the jth order statistic for the random component failure 

times with 𝑇1:𝑚 ≤ 𝑇2:𝑚 ≤ ⋯ ≤ 𝑇𝑚:𝑚.  The system signature is defined as the vector 𝑞 where 

the value at index 𝑙 ∈ {1,2, … , 𝑚}, denoted 𝑞𝑙, gives the probability that the system failure time 

coincides with the lth component failure 

𝑞𝑙 = 𝑃(𝑇𝑠 = 𝑇𝑙:𝑚)  (1) 

 

The system signature has various theoretical applications in reliability engineering such as 

establishing stochastic comparisons between the reliability of different systems (Block, Dugas, 

& Samaniego, 2006; Philip J Boland & Samaniego, 2004). Coolen and Coolen-Maturi (Coolen 

& Coolen-Maturi, 2012) later introduced the survival signature which, similar to the system 

signature, fulfils the role of a quantitative model of the system reliability structure that is 

entirely separated from the random failure times of the components.  The survival signature 

has the advantage that is can be easily generalised to systems with multiple types of 

components. Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1} 𝑚 represent a Boolean state vector for a system 

of m components with exchangeable failure times, where 𝑥𝑖 = 1 if component 𝑖 functions and 

𝑥𝑖 = 0 if it is failed. Also let 𝜙: {0,1}𝑚 → {0,1} represent the system reliability structure 

function, defined for all 2𝑚 possible 𝑥, where  𝜙(𝑥) = 1 if the system functions with 

component states 𝑥 and 𝜙(𝑥) = 0 if it is failed. Finally, let 𝑆𝑙 denote the set of component state 

vectors with exactly l of the m components functioning (i.e. ∑ 𝑥𝑖 = 𝑙𝑚
𝑖=1 ). The survival 

signature is then defined as the vector Φ where the value at index 𝑙 ∈ {0,1,2, … , 𝑚}, denoted 

Φ𝑙, gives the probability that the system functions given that precisely l components function 

Φ𝑙 = (
𝑚
𝑙

)
−1

∑ 𝜙(𝑥)

𝑥∈𝑆𝑙

 
 (2) 

 

Now consider the case where the m components in the system are partitioned into 𝑁𝑇 different 

types, where the 𝑀𝑗 components of type 𝑗 ∈ {1, … , 𝑁𝑇} have exchangeable random failure 

times. Note that this differs from the usual notation in the literature on survival signatures 

where K is used to represent the number of component types since K is defined as the set of 

terminal nodes of a network in this paper. Let 𝑆𝑙1,…,𝑙𝑁𝑇
 denote the set of component state vectors 

that contain precisely  𝑙𝑗 ∈ {0,1, … , 𝑀𝑗}  functioning components of type j (i.e. those for which 

∑ 𝑥𝑖
𝑗

=
𝑀𝑗

𝑖=1
𝑙𝑗 for 𝑗 = 0,1, … , 𝑁𝑇 − 1 where 𝑥𝑖

𝑗
 is the ith component of type j). Also let 

|𝑆𝑙1,…,𝑙𝑁𝑇
| = ∏ (

𝑀𝑗

𝑙𝑗
)

𝑁𝑇
𝑗=1  denote the cardinality of 𝑆𝑙1,…,𝑙𝑁𝑇

 and Φ̅𝑙1,…,𝑙𝑁𝑇
= ∑ 𝜙(𝑥)𝑥𝜖𝑆𝑙1,…,𝑙𝑁𝑇

 

denote the number of state vectors from 𝑆𝑙1,…,𝑙𝑁𝑇
 for which the system functions. The 

generalised survival signature, Φ, is then defined as the multidimensional array with 𝑁𝑇 

dimensions where the value at index (𝑙1 ∈ {0, . . , 𝑀1}, … , 𝑙𝑁𝑇
∈ {0, . . , 𝑀𝑁𝑇

})  in dimensions 



(1, … , 𝑁𝑇)  respectively, denoted  Φ𝑙1,…,𝑙𝑁𝑇
, gives the probability that the system functions 

given that precisely (𝑙1, … , 𝑙𝑁𝑇
) components of types (1, … , 𝑁𝑇) respectively function 

Φ𝑙1,…,𝑙𝑁𝑇
=

Φ̅𝑙1,…,𝑙𝑁𝑇

|𝑆𝑙1,…,𝑙𝑁𝑇
|
 

 (3) 

Let 𝐶𝑡
𝑗
𝜖{0, … , 𝑀𝑗} denote the number of components of type j in the system that function at 

time 𝑡 > 0. The probability that the system functions at time 𝑡 can be calculated using the 

survival signature and the joint probability distribution for the number of functioning 

components of each type at time t 

𝑃(𝑇𝑆 > 𝑡) = ∑ …

𝑀1

𝑙1=0

∑ [Φ𝑙1,…,𝑙𝑁𝑇
𝑃 (⋂{𝐶𝑡

𝑗
= 𝑙𝑗}

𝑁𝑇

𝑗=1

)]

𝑀𝑁𝑇

𝑙𝑁𝑇
=0

 

(4) 

If failure times of components of type j are conditionally independent and identically 

distributed with CDF 𝐹𝑗(𝑡) and failure times of components of different types are independent, 

then 

  

𝑃(𝑇𝑆 > 𝑡) = ∑ …
𝑀1
𝑙1=0 ∑ [Φ𝑙1,…,𝑙𝑁𝑇

∏ ((
𝑀𝑗

𝑙𝑗
) [𝐹𝑗(𝑡)]

𝑀𝑗−𝑙𝑗
[1 − 𝐹𝑗(𝑡)]

𝑙𝑗
)

𝑁𝑇
𝑗=1 ]

𝑀𝑁𝑇

𝑙𝑁𝑇
=0

  

 (5) 

For systems containing a single component type, the system signature and survival signature 

have the simple relation 

 

𝑞𝑙 = Φ𝑚−𝑙 − Φ𝑚−𝑙−1  (6) 

 

Whilst real world networks can be topologically very complex, resulting in similarly complex 

reliability structure functions, the edges in networks are often similar (e.g. in the case of a 

communications network, all edges may use the same cable technology). In such cases, it is 

often appropriate to use the same reliability model for all or many edges making them natural 

subjects for analysis using signature theory. 

 

There are numerous applications for reliability signatures of networks, a few of which will now 

be described briefly. Once a signature is computed, the reliability of the network for given edge 

reliabilities can be computed very quickly through Eqn. 4 or Eqn. 5. This is advantageous when 

repeated analysis of a system is required, for example in the analysis of real time systems, 

importance measure analysis and optimisation problems. Signatures can also represent the 

reliability of networks where the failure events of edges of the same type are exchangeable 

dependent and the random failure times of components of different types are dependent 

(Eryilmaz, Coolen, & Coolen-Maturi, 2018). The majority of existing algorithms for 

computing K-terminal network reliability, such as the algorithm from Hardy et al. (Hardy et 

al., 2007), rely on the stronger assumption that all failure events are statistically independent. 

The exchangeability assumption is often relevant in practical problems, for example where 

failures of edges result in increased stresses placed on those that remain working or are 

influenced by common environmental factors. Aslett et al. (Aslett, Coolen, & Wilson, 2015) 

recently presented a method for Bayesian inference of reliability under such exchangeability 

assumptions using the survival signature and 2-terminal network examples. For situations 



where analytical solution through Eqn. 4 or Eqn. 5 is infeasible, simulation can be used to 

derive system reliability from the survival signature (Patelli, Feng, Coolen, & Coolen-Maturi, 

2017). Signatures can also be used to compare the performance of different system and network 

designs (McAssey & Samaniego, 2014; F. Samaniego & Navarro, 2016; Francisco J. 

Samaniego, 2007), such as to determine if there is a uniformly optimal network design (e.g. in 

terms of stochastic or hazard rate ordering of the survival distributions) for a given number of 

vertices and edges independent of the reliability of the edges. This type of analysis results in 

the development of fundamental knowledge on the design of efficient and reliable networks in 

the real world.  

 

Existing methods for the computation of signatures for K-terminal reliability have relied on the 

computation of cut-sets or path sets and the inclusion-exclusion expansion, sum of disjoint 

products or domination theory (P. J. Boland, Samaniego, & Vestrup, 2003; Francisco J. 

Samaniego, 2007). However, the enumeration of cut-sets or path sets in a network (Fard & Lee, 

1999; W. C. Yeh, 2006) is notoriously expensive and therefore practical application of these 

methods is limited to relatively small networks. Reed (Reed, 2017) recently introduced an 

efficient method for computation of signatures from an ordered binary decision diagram (BDD) 

representation of a reliability structure function. In this paper, an algorithm for the exact 

computation of system and survival signatures for K-terminal network reliability in undirected 

networks is presented under the assumption that only edges are unreliable whilst vertices are 

perfectly reliable. The algorithm combines the ideas from Reed (Reed, 2017) for signature 

computation from BDDs with those from BDD based K-terminal network reliability methods 

(Hardy et al., 2007; Herrmann et al., 2009; Imai, Serine, & Imai, 1999; F.-M. Yeh et al., 2002) 

to enable signature computation for larger networks than previously feasible. 

 

The remainder of this paper is organised as follows: Section 2 describes the theory for the 

algorithm, Section 3 presents some benchmark results on its performance when applied to 

numerous benchmark K-terminal network reliability problems commonly used in the literature, 

Section 4 demonstrates the analysis of a sensor network from an underground mine and Section 

5 discusses these results and gives some concluding remarks. 

2. Theory  

2.1. Existing BDD based algorithms for computing exact K-terminal network reliability 
Factoring algorithms, based on the repeated decomposition of the network at each edge into 

two sub-networks, the first assuming the edge has failed and the second assuming the edge is 

functioning, have been shown to be more efficient than cut or path set enumeration techniques 

(Page & Perry, 1989; Theologou & Carlier, 1991; Wood, 1986). However, these methods do 

not merge isomorphic sub-networks to avoid redundant computations and are computationally 

expensive for larger, more complex networks. Imai et al. (Imai et al., 1999), Yeh et al. (F.-M. 

Yeh et al., 2002), Hardy et al. (Hardy et al., 2007) and Herrmann et al. (Herrmann et al., 2009) 

presented algorithms for computing K-terminal network reliability using BDD to efficiently 

represent the edge factorisation of the reliability structure function, resulting in a significant 

improvement in computational performance over the earlier algorithms. 

 

BDD (Bryant, 1986) are a data structure that has been widely used in reliability engineering 

for efficient representation, manipulation and reliability evaluation of Boolean reliability 

structure functions, for example in fault tree analysis (Rauzy, 1993). They are based upon 

Shannon decomposition theory (Shannon, 1938), where the Shannon decomposition of a 

Boolean function f on Boolean variable 𝑥𝑖 is defined as 

 



𝑓 = (𝑥𝑖 = 1) ∧ 𝑓𝑥𝑖=1 ∨ (𝑥𝑖 = 0) ∧ 𝑓𝑥𝑖=0  (9) 

where 𝑓𝑥𝑖=𝑣 is 𝑓 evaluated with 𝑥𝑖 = 𝑣.  

 

A BDD contains two terminal nodes that represent the Boolean constant values 1 and 0. Each 

non-terminal node represents a sub-function g, is labelled with a Boolean variable v and has 

two outgoing edges. By applying a total ordering on the m Boolean variables for function f by 

mapping them to the integers 1, … , 𝑚, and applying the Shannon decomposition recursively to 

f, it can be represented as a binary tree with m+1 levels. Each intermediate node, referred to as 

an if-then-else (ite) node, at level 𝑙 ∈ {1, … , 𝑚} (where the root node is at level 1 and the nodes 

at level 𝑚 are adjacent to the terminal nodes) represents a Boolean function g on variables 𝑥𝑙 , 
𝑥𝑙+1, … , 𝑥𝑚. It is labelled with variable 𝑥𝑙 and has two out edges called 1-edge and 0-edge 

linking to nodes labelled with variables higher in the ordering. 1-edge corresponds to 𝑥𝑙  = 1 

and connects to the node representing 𝑔𝑥𝑙=1, whist 0-edge corresponds to 𝑥𝑙 = 0 and connects 

to the node representing 𝑔𝑥𝑙 =0. In addition, the following two rules are applied to eliminate 

redundancy: 

1. Isomorphic subgraphs are merged. 

2. Any node whose two children are isomorphic signifies that the value of the Boolean 

variable labelling the node does not influence the value of the Boolean function that 

the node represents. Such nodes are eliminated by replacing the node by its child 

node. 

To construct the BDD representing K-terminal network reliability, a total ordering is given to 

the edges 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑚. The root node corresponds to the full network and its two child 

nodes represent the sub-networks assuming functioning and failure of edge 𝑒1. The 

decomposition process is then continued, with the child nodes at level l in the BDD 

representing the sub-networks resulting from the additional decomposition of edge 𝑒𝑙−1. If the 

sub-network resulting from the decomposition results in all K terminal vertices being surely 

connected, then it is represented by the terminal 1 node, whilst if it results in the at least 1 

terminal vertex being surely disconnected from any other then it is represented by the terminal 

0 node. Thus at level l of the BDD, edges from 𝐸𝑙 = {𝑒1, … , 𝑒𝑙−1} are decided (either failed or 

functioning) and the corresponding sub-networks represented by the BDD nodes at that level 

comprise only edges from 𝐸𝑙̅ = {𝑒𝑙, … , 𝑒𝑚}.  To efficiently evaluate the network state and 

identify isomorphic sub-networks during the BDD construction, the method from Carlier and 

Lucet (Carlier & Lucet, 1996) for representing sub-network topologies as partitions of certain 

vertices is used. The use of vertex partitions during BDD construction was used by Imai et al. 

(Imai et al., 1999) for all-terminal network reliability and Hardy et al. (Hardy et al., 2007) for 

K-terminal network reliability. At level l of the BDD, the boundary set 𝐹𝑙 ⊆ 𝑉 is the set of 

vertices incident to at least one edge from 𝐸𝑙 and at least one edge from 𝐸𝑙̅. To represent sub-

networks, the boundary set is split into partitions where: 

 Vertices x and y of 𝐹𝑙 are in the same partition if and only if they have merged into a 

single vertex due to the decided edges in 𝐸𝑙.  

 A partition is marked with an asterisk if at least one of the K terminal vertices has been 

merged with one of the vertices from that partition. 

Two sub-networks at level l are isomorphic and represented by the same BDD node if they 

have identical boundary set partitions (Imai et al., 1999). Additionally, if all K terminal vertices 

are connected in the same partition then the network surely functions, whilst if any of the K 

terminal vertices are disconnected in a partition then the network surely fails. 



 

Once the BDD is constructed, the K-terminal network reliability of the network represented by 

a BDD node can be computed in a recursive manner from the reliability of its child nodes. 

Therefore, by caching the reliability value for each node to avoid repeat computation, a 

computation time that is linear with the number of BDD nodes is achieved. The pseudo-code 

algorithm for this procedure is shown in Figure 1. 

  



 
compute_network_reliability(f, QR): 
inputs: 
f: BDD node at level l of the BDD representing the structure function for the K-terminal network 
reliability to be computed, f = (el = 1) ∧ fel=1 ∨ (el = 0) ∧ fel=0. 

QR: hash table of (key:g, value:r) pairs where g is a BDD node and r is its computed reliability. This 
should be empty on initial (non-recursive) call.   
output: 
Reliability of the network represented by the BDD, i.e. P(f = 1). 
 
algorithm:  
if f is terminal 1 node: 
  return 1 
else if f is terminal 0 node: 
  return 0 
else if f is in QR: 
  return value from QR with key f 
end if 
 
𝑅1 ← compute_network_reliability(𝑓𝑒𝑙=1, QR) # 𝑓𝑒𝑙=1 is the 1-edge child node of f. 

𝑅0 ← compute_network_reliability(𝑓𝑒𝑙=0, QR) # 𝑓𝑒𝑙=0 is the 0-edge child node of f. 

R ← 𝑃(𝑒𝑙 = 1) × 𝑅1 + 𝑃(𝑒𝑙 = 0) × 𝑅0 
Insert (key:f, value:R) into QR  
return R 

 
Figure 1 – Pseudo-code algorithm for computing the K-terminal network reliability of a network represented by a BDD.  

 

Even so, the size of the BDD for a large network can be huge (for example, 65 million BDD 

nodes for a 12 by 12 grid network (Hardy et al., 2007)) and require large amounts of memory.  

Herrmann et al. (Herrmann et al., 2009), introduced the idea of computing and storing 

reliability values in the BDD nodes during construction, enabling child node reliabilities to be 

computed directly. In this approach, each BDD node is processed only once and discarded after 

processing such that only a maximum of 2 complete levels of the BDD need to be stored at any 

time, leading to reduced memory requirements.  

 

2.2. New algorithm for computing signatures for K-terminal network reliability 
A new algorithm for computing exact signatures for K-terminal network reliability will now 

be described. It combines the approach from Herrmann and Soh (Herrmann et al., 2009) for 

memory efficient construction of the BDD with methods introduced by Reed (Reed, 2017) to 

achieve efficient computation of the signature for each BDD node as it is encountered. As in 

Reed (Reed, 2017), the algorithm utilises multidimensional array data structures with NT 

dimensions and length Mi+1 in dimension j to represent survival signatures, where the value 

stored at index (𝑙1, … , 𝑙𝑁𝑇
) of the array corresponds to Φ𝑙1,…,𝑙𝑁𝑇

 or Φ̅𝑙1,…,𝑙𝑁𝑇
. Signatures for 

systems with large numbers of components and component types can comprise of huge 

numbers of elements, resulting in very large arrays that require significant amounts of memory 

to represent computationally, for further details see Reed (Reed, 2017). 

The algorithm utilises the following three operations on these arrays: elementwise addition, 

elementwise division and shift-j. The elementwise addition of two arrays A and B, denoted 

𝐴 ⊕ 𝐵, outputs an array C that has the same size as 𝐴 and B (i.e. same number of dimensions 

and dimension lengths), where the value at each index in array C is equal to the sum of the 

values at the same index in arrays A and B. Elementwise division of array A by array B, denoted 

𝐴 ⊘ 𝐵, outputs an array C that has the same size as 𝐴 and B, where the value at index in array 

C is equal to the value at that index in array A divided by the value at that index in array B. The 

shift-j operation on array A by integer j is denoted 𝐴 ⊛ 𝑗, where A is a multidimensional array 

with 𝑁𝑇 dimensions and 𝑗 ∈ {1, … , 𝑁𝑇}. It returns an array B that has the same size as A, where: 



 the value in B at each index (𝑙1, … , 𝑙𝑗 , … , 𝑙𝑁𝑇
), except where 𝑙𝑗 = 0, is equal to the 

value from A at index  (𝑙1, … , 𝑙𝑗−1, … , 𝑙𝑁𝑇
); 

 the value in B at each index (𝑙1, … ,0, … , 𝑙𝑁𝑇
) is equal to 0. 

The pseudo-code for the main algorithm and a sub-routine it uses are shown in Figure 2 and 

Figure 3 respectively. The BDD construction procedure then follows that from Hermann and 

Soh (Herrmann et al., 2009) using network edge factorisation and boundary set partitions to 

identify isomorphic BDD  nodes. However, a state vector count array (representing Φ̅ from 

Eqn. 3) is computed and stored for each BDD ite node and for the network functioning instead 

of reliability values. An array is initially created with the value 0 everywhere and assigned to 

variable S. This array represents Φ̅ corresponding to the network functioning (i.e. existence of 

a path through working edges between all K terminal nodes) and is updated during the edge 

factorisation process. A second array is also created with value 1 at index 0,…,0 in dimensions 

0,…,NT and value 0 elsewhere, this is assigned to variable S0 and represents Φ̅ for the BDD 

root node. The state vector count array operations that were defined above are then utilised by 

the algorithm during the edge factorisation process to compute the arrays representing Φ̅ for 

each ite node. The shift-j operation is used to update an array from the parent node to account 

for an additional component of type j that functions in the edge factorisation, whilst the 

elementwise addition operation is used to add the state vector count from a parent BDD node 

to that of a child node. When the edge factorisation results in the certain connection of the K 

terminal nodes, the array containing the state vector counts from the parent BDD node is first 

updated to account for the possible functioning or failed state of each edge at higher levels in 

the BDD since they do not influence the reliability of the network given the states of the already 

decided edges. This is performed by the sub-routine given in Figure 3, and the updated array 

is then added to the array for the state vector counts for the terminal 1 node. Once the edge 

factorisation is complete or no new child nodes were created from the BDD nodes at a level, 

the final operation in the main algorithm is to use the elementwise division operation to 

normalise the final state vector count Φ̅  corresponding to the network functioning by an array 

representing |𝑆𝑙1,…,𝑙𝑁𝑇
|, which is computed from the shape of the survival signature array, to 

obtain the array representing the final survival signature Φ for the K-terminal network 

reliability. In the case of 𝑁𝑇 = 1, the simple transformation from Eqn. 6 can be used to compute 

an array representing the system signature from the array representing the survival signature. 

  



 
Compute signature(G, K, edge_types) 
inputs:  
G: network (V,E) with edges ordered from 1 to m. 
K: set of K-terminal vertices. 
edge_types: hashset of (key:e, value:j) pairs for each and every edge e from E where j∈{1,…,NT} is the 
component type of e. 
output:  
Survival signature as array with NT dimensions and length Mi+1 in dimension i where value at index 

(𝑙1, … , 𝑙𝑁𝑇
) gives K-Terminal network reliability of G when (𝑙1, … , 𝑙𝑁𝑇

) edges of component types (1,…,NT) 

function. 
algorithm: 
Qc ← empty hash table 
Qn ← empty hash table 
S0 ← Array with NT dimensions and length Mi+1 in dimension i with value 1 at index 0,…,0 in dimensions 
0,…,NT and value 0 elsewhere. 
part ← [] 
Insert (key:part, value:S0) into Qc  
l ← 1  
S = Array with NT dimensions and length Mi+1 in dimension i with value 0 everywhere. 
while l ≤ m and Qc not empty: 
  el ← edge at level l in the ordering 
  compute Fl+1 
  for each (key:partnode, value:Snode) pair in Qc: 
    # Create boundary set partitions for failure (removal) of el. 
    part0 ← boundary set partitions in function of partnode, Fl+1 and elevel=0 
    # Create boundary set partitions for success (contraction) of el. 
    part1 ← boundary set partitions in function of partnode, Fk+1 and el=1 
    jl ← value from edge_types with key el 
    if all K vertices in same partition in part1: 
      S1 ← update for missing levels(Snode, G, edge_types, l+1) 
      S1 ← S1 ⊛ jl 
      S ← S ⊕ S1 
    else if not empty marked partition in part1: 
      S1 ← Snode 
      S1 ← S1 ⊛ jl 
      if part1 in Qn keys: 
        Scurrent ← value in Qn with key part1 
        Update value in Qn with key part1 to Scurrent ⊕ S1 
      else: 
        Insert (key:part1, value:S1) into Qn 
      end if 
    end if 
    if all K vertices in same partition in part0: 
      S0 ← update for missing levels(Snode, G, edge_types, l+1) 
      S ← S ⊕ S0 
    else if not empty marked partition in part0: 
      S0 ← Snode 
      if part0 in Qn keys: 
        Scurrent ← value in Qn with key part0 
        Update value in Qn with key part0 to Scurrent ⊕ S0 
      else: 
        Insert (key:part0, value:S0) into Qn  
      end if 
    end if 
  end for each  
  qc ← qn 
  qn ← empty hash table 
  l ← l + 1 
end while 

N ← Array with NT dimensions and length Mi+1 in dimension i where value at index (𝑙1, … , 𝑙𝑁𝑇
) is ∏ (

𝑀𝑖

𝑙𝑖
)

𝑁𝑇
𝑖=1   

return S ⊘ N 

Figure 2 – Pseudo-code for main routine for computing the survival signature of K-terminal network reliability. 

  



 
update for missing levels(S, G, edge_types, from_level) 
inputs:  
S: Array with NT dimensions and length Mi+1 in dimension i that is to be updated. 
G: network (V,E) with edges ordered from 1 to m. 
edge_types: hashset of (key:e, value:j) pairs for each and every edge e from E where 𝑗 ∈

(𝑙1, … , 𝑙𝑁𝑇
) is the component type of e. 

from_level: the first missing level in the BDD. 
output:  
Array with NT dimensions and length Mi+1 in dimension i that represents S after updating for 
edges at the missing levels. 
algorithm: 
for n from start_level to m: 
  en ← edge at n in the ordering 
  jn ← value from edge_types with key en 
  S ← S ⊕ (S ⊛ jn) 
end for 
return S 
Figure 3 – Pseudo-code for sub-routine used by algorithm from Figure 2 to update array for missing levels in BDD. 

Computational Complexity 

Theorem: The computational complexity of the algorithm is 𝑂 (𝑚. 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (𝐹𝑚𝑎𝑥 +

(
𝑚

𝑵𝑻
)

𝑵𝑻

)), where 𝐹𝑚𝑎𝑥 is the maximum size of the boundary set and 𝐵𝐹𝑚𝑎𝑥
 is the Bell number 

of 𝐹𝑚𝑎𝑥.   

Proof: The number of BDD nodes at level 𝑙 is bounded by the theoretical maximum number 

of marked partitions which is given by 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
 (Hardy et al., 2007), whilst the size of a 

signature array is bounded by (
𝑚

𝑵𝑻
+ 1)

𝑵𝑻

 (Reed, 2017). For each BDD node, the two 

corresponding  child node partitions for  level 𝑙 + 1 must be computed which is O(|𝐹𝑙|) (Hardy 

et al., 2007) and the signatures corresponding to each of these partitions are updated through  a 

small number of elementwise addition and shift-j array operations for which the complexity is 

approximately proportional to the number of array elements and therefore O ((
𝑚

𝑵𝑻
+ 1)

𝑵𝑻

). 

The computation time complexity is therefore 𝑂 (𝑚. 2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (𝐹𝑚𝑎𝑥 + (

𝑚

𝑵𝑻
)

𝑵𝑻

)) whilst 

the memory complexity is 𝑂 (2𝐹𝑚𝑎𝑥 . 𝐵𝐹𝑚𝑎𝑥
. (

𝑚

𝑵𝑻
)

𝑵𝑻

) since signature arrays are stored at a 

maximum of two levels of the BDD at any time. 

 

2.3. Example for Wheatstone bridge network 
To illustrate the algorithm, it was applied to the Wheatstone bridge network shown in Figure 4 

that has 5 edges of 2 component types. The BDD computed by the algorithm with edges ordered 

𝑒1 < 𝑒2 < 𝑒3 < 𝑒4 < 𝑒5, where each ite node is labelled with its boundary set partitions and 

array for the state vector counts (representing Φ̅ from Eqn. 3) of the survival signature, is shown 

in Figure 5. The terminal 1 node is labelled with the array representing Φ̅ for the network 

functioning. 

 



va

vb

vc

vd

e1

e2 e5

e4

e3
Type 1 – {e1, e3}
Type 2 - {e2,e4, e5}

 
Figure 4 – Bridge network with two terminal nodes (shaded) and two edge component types. 

 

 
Figure 5 –BDD computed by the algorithm for the Wheatstone Bridge network from Figure 4, where each node is labelled 

with its boundary set partitions and array for the state vector counts 𝛷̅ of the survival signature. Dashed edges represent 

failure of the edge and solid edges represent functioning of the edge. 

 

3. Benchmark Results 
The algorithm introduced in the preceding section was applied to the computation of the system 

and survival signatures for 11 different K-terminal network reliability problems that have been 



previously used for benchmarking algorithms in the literature. Since the problems from the 

literature all assume a single component type for the edges, additional variations of each 

problem were created that have two and three component types for the edges with an 

approximately equal number of components of each type.  

 

Table 1 shows the times for the computation of the system (𝑁𝑇 = 1 ) and survival signatures 

(𝑁𝑇 = 2 and 𝑁𝑇 = 3 ) for the “net2_8”, “net.19” and “Network (5)” networks from Yeh et al. 

(F.-M. Yeh et al., 2002), four 𝑊𝑥𝑁 grid networks (“8x8”, “12x12”, “3x12” and “3x100”) from 

Hardy et al. (Hardy et al., 2007) and four 𝐾𝑊, 𝑛 fully connected networks (“K10”, “K12”, 

“K7,15” and “K7,50”) from Herrmann et al. (Herrmann et al., 2009). All measurements were 

obtained on a standard desktop PC with an Intel i3 3.4Ghz processor and 8GB RAM using a 

breadth first search order for edges. For the 12x12 and K12 networks with 𝑁𝑇 ≥ 2 and 𝑁𝑇 = 3 

respectively, the signature could not be computed due to insufficient memory (RAM). 

 
Table 1 – System and survival signature computation times for benchmark K-terminal network reliability problems. 

Network |𝑽| |𝑬| |𝑲| CPU Time 

with 𝑵𝑻 = 𝟏 

(seconds) 

CPU Time 

with 𝑵𝑻 = 𝟐 

(seconds) 

CPU Time 

with 𝑵𝑻 = 𝟑 

(seconds) 

net2_8 16 24 2 0.00 0.00 0.00 

net.19 20 30 2 0.02 0.03 0.07 

Network (5) 20 30 9 0.02 0.03 0.07 

8x8 64 112 2 0.34 1.56 19.90 

12x12 144 264 2 130.23 N/A * N/A * 

3x12  36 57 2 0.00 0.00 0.01 

3x100 300 497 2 0.01 0.53 42.78 

K10,10 10 45 10 0.08 0.15 0.55 

K12,12 12 66 15 1.96 4.65 N/A * 

K7,15 15 69 15 0.04 0.06 0.2 

K7,50 50 279 50 0.37 2.52 92.70 

 

The 𝑁𝑇 = 3 variations of the “net2_8” and “Network (5)” networks are shown in Figure 6 and 

their computed survival signatures are given in Appendix A. 

                                                 
*The computer used to perform the computations had insufficient memory (RAM) to compute the signature. 



 
Figure 6 – Two of the benchmark networks with 𝑁𝑇 = 3 where edges are labelled with the component type and terminal 

nodes are shaded. 

 

4. Application to analysis of the reliability of a RFID wireless sensor network 
This section describes the application of the algorithm to analyse reliability of a radio-

frequency identification (RFID) sensor network at an underground mine. The network enables 

the location of personnel and mobile assets fitted with RFID tags to be tracked as they operate 

within the mine, increasing productivity and safety. RFID sensors and wireless routers are 

located strategically within the production areas of the mine and communicate with one another 

via short-range radio link to form a wireless mesh network. One of the routers is connected via 

wireless connection to a server that forms part of a wired network. When an RFID tag passes 

within range of a RFID sensor, a data packet containing the unique ID codes belonging to the 

tag and sensor along with the current time is generated by the sensor and sent over the wireless 

network to the server. The transmission protocol used ensures that a data packet generated by 

a sensor will reach the server if there exists at least one path between the sensor and the server 

through available node to node wireless connections. On receipt of a data packet, the server 

updates the last known location of the person or asset, which can then be viewed by mining 

staff on computer terminals connected to the server via the wired network. The topology of the 

wireless network, comprising 62 nodes (including 57 sensor nodes) and 96 wireless network 

connections between nodes, is shown in Figure 7.  The wireless network connections between 

nodes in the network may temporarily fail due to radio-frequency (RF) interference created by 

machinery and equipment used in the mine, such as electric motors and personal dust monitors. 

In such cases, the nodes will attempt to re-establish the connection until it is restored. Failures 

of the nodes themselves (sensors, routers and the server) are negligible in comparison and are 

not considered in the analysis.  

 



 
Figure 7 – Topology for the wireless RFID sensor network. 

 

The level of the overall RF interference in the mine varies depending on the current activities 

and its normalised value, such that a value of 0 represents the minimum level of interference 

and a value of 1 represents the maximum level, is modelled as a random variable with a Beta 

distribution with shape parameters 3.8 and 5.3, as shown in Figure 8.  



 

 
Figure 8- Plot of the probability density function (PDF) for the normalised level of RF interference in the mine. 

 

A wireless connection between a sensor and a sensor or router is denoted as a type 1 connection 

and the probability it is failed, 𝐹1, is modelled by the following Gompertz function of the 

normalised level of RF interference in the mine 𝑧:   

 

𝐹1(𝑧) = 0.0013𝑒−5.5𝑒−3.5𝑧
  

 

Whilst a wireless connection between a router and a router or the server is denoted as a type 2 

connection and the probability it is failed, 𝐹2, is modelled by the following Gompertz function 

of the normalised level of RF interference in the mine 𝑧:   

 

𝐹2(𝑧) = 0.0002𝑒−7.7𝑒−4.1𝑧
  

 

There are 91 type 1 wireless connections and 5 type 2 wireless connections in the network. The 

parameters in the two failure probability models differ due to the different technologies used 

for the two types of wireless connection. Figure 9 shows a plot of the probability that each type 

of wireless connection is failed against the normalised level of RF interference in the mine.  



 
Figure 9 – Plot of the probability of a wireless link being failed against the normalised level of radio-frequency (RF) 

interference in the mine. 

 

The aim of the analysis is to determine the reliability of the simultaneous availability of a path 

along functioning wireless connections between a specified subset of the RFID sensors in the 

network and the server at a random time. This is therefore a K-terminal reliability problem 

where the K terminal nodes consist of the server and the subset of sensor nodes. The reliability 

of the connection between the server and each of the following three subsets of sensors from 

Figure 7 will be considered: all sensors, sensors numbered 48 to 61 (these sensors cover a single 

production area at the mine) and sensor 1.  

 

Due to the common dependence between the failure probabilities of wireless connections and 

the level of RF interference in the mine, algorithms that assume independent edge failures, such 

as (Hardy et al., 2007; Herrmann et al., 2009), are unsuitable. However, it follows from the 

modelling assumptions that the failure events of edges representing wireless connections of the 

same type are exchangeable dependent whilst the failure events of edges representing wireless 

connections of different types are dependent. A survival signature for the network with two 

component types can therefore be computed for each of these three cases using the algorithm 

that was introduced in Section 2.2 of this paper (these signatures are given in Appendix A). 

The computation of each signature took approximately 10 seconds on the computer used for 

the benchmark tests with a breadth first search edge ordering starting from the sensor node 

labelled 1 in Figure 7. The K-terminal reliability for the network at random time 𝑡, 𝑅𝑡, can then 

be calculated for each case from its survival signature Φ : 

  



𝑅𝑡 = ∑ ∑ [Φ𝑙1,𝑙2
𝑃(𝐶𝑡

1 = 𝑙1, 𝐶𝑡
2 = 𝑙2)]

5

𝑙2=0

91

𝑙1=0

 
(10) 

 

The probability that exactly 𝑙1 and 𝑙2 of the type 1 and type 2 wireless connections, 

respectively, are failed in the network at random time 𝑡 is given by: 

 

𝑃(𝐶𝑡
1 = 𝑙1, 𝐶𝑡

2 = 𝑙2) = (
91
𝑙1

) (
5
𝑙2

) ∫ 𝑓(𝑧)[𝐹1(𝑧)]91−𝑙1[1 − 𝐹1(𝑧)]𝑙1[𝐹2(𝑧)]5−𝑙2[1 − 𝐹2(𝑧)]𝑙2𝑑𝑧
1

0

 

 

(11) 

 

where 𝑓(𝑧) is the probability density function of the normalised level of RF interference in the 

mine. This integral was approximated numerically for each combination of 𝑙1 and 𝑙2 using the 

tanh-sinh quadrature algorithm (Bailey, Jeyabalan, & Li, 2005)  and the computed values are 

given in Appendix A. The following K-terminal network reliabilities for the three sensor nodes 

subset cases were computed: 0.999558 for the all sensors case, 0.999944 for the sensors 

numbered 48 to 61 case and 0.999565 for the sensor 1 case. 

 

The failures of wireless network connections are conditionally independent given that the 

normalised level of RF interference in the mine is known at time 𝑡. Therefore, the probability 

that exactly 𝑙1 and 𝑙2 of the type 1 and type 2 wireless connections, respectively, are failed in 

the network at time 𝑡 when the normalised level of RF interference is 𝑧 is given by: 

 

𝑃(𝐶𝑡
1 = 𝑙1, 𝐶𝑡

2 = 𝑙2) = (
91
𝑙1

) (
5
𝑙2

) [𝐹1(𝑧)]91−𝑙1[1 − 𝐹1(𝑧)]𝑙1[𝐹2(𝑧)]5−𝑙2[1 − 𝐹2(𝑧)]𝑙2  

 

(11) 

 

Figure 10 shows a plot of the K-terminal reliability against the normalised level of RF 

interference for the three different sets of terminal nodes. Note that the plotted reliability values 

could also have been determined from the K-terminal reliability network algorithms that 

assume independent edge failures. However, the advantage of the signature approach is that 

repeating the edge factorisation and BDD construction process was not required. Instead, the 

reliabilities were calculated directly from the signatures for the different edge failure 

probabilities, making it much more computationally efficient. 



 
Figure 10 – Plot of the K-terminal network reliability against the normalised level of RF interference for the network in 

Figure 7 for three different sets of terminal nodes. 

 

5. Discussion and Conclusions 
Previous algorithms for the computation of system and survival signatures for networks 

required the derivation of cut-set or path sets as an intermediate step which is computationally 

infeasible when the network is large and complex. A new algorithm was presented in this paper 

that utilises binary decision diagrams, boundary set partition sets and simple array operations 

to efficiently compute signatures through a factorisation of the network edges. The computation 

times for a set of benchmark problems from the literature demonstrate the efficiency of the 

algorithm, in many cases it was able to compute the signatures within a few seconds on a 

standard PC. The results for the 3x100 grid network show that signatures for even very large 

networks, in this case with 497 edges, can be computed in reasonable times provided that the 

maximum size of the boundary set is small. As expected, computation times are greater for 

networks with greater numbers of edges, greater boundary set sizes and greater numbers of 

signature elements. 

 

The analysis of a RFID sensor network from an underground mine using the new algorithm 

provided an example of the practical applications. Using the survival signatures computed for 

the network, K-terminal reliability values were obtained for exchangeable but non-independent 

edge failures. K-terminal reliability values for the network were also computed for multiple 

edge failure probabilities using the signatures, eliminating the need for repetition of the edge 

factorisation and BDD construction process.   

 



It was not possible to compute the signatures for a small number of the benchmark problems 

due to the memory requirement exceeding the available resources on the computer used. The 

huge memory requirement in these cases was due to a combination of a signature with a large 

number of elements, resulting from the number of edges belonging to each component type, 

and a large maximum BDD width resulting from the edge factorisation. Further research is 

needed on the development of algorithms to make it feasible to compute survival signatures for 

these cases. The presented algorithm is limited to the computation of signatures for K-terminal 

network reliability of undirected networks with unreliable edges and perfectly reliable vertices. 

The development of similar methods for networks with unreliable vertices and directed edges 

is another area for future work. 
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7. Appendix A. Supplementary Data 
 

The survival signatures computed for “net2_8” and “Network (5)” with 𝑁𝑇 = 3  from the 

benchmark networks presented in Section 3 along with the survival signatures and wireless 

connection failure probabilities from the example sensor network presented in Section 4 are 

provided as a Microsoft Excel spreadsheet file. 

 

 

 


