
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195638021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005 133

An Efficient Cutset Approach for Evaluating
Communication-Network Reliability With

Heterogeneous Link-Capacities
Sieteng Soh, Member, IEEE, and Suresh Rai, Senior Member, IEEE

Abstract—This paper presents an efficient cutset approach to
compute the reliability of a large communication network having
heterogeneous link capacities. The reliability measure has been de-
fined as capacity related reliability (CRR). The proposed method,
subset cut technique (SCT), requires the cutset information of the
network. For each minimal cut , and a given minimum band-
width requirement , the method enumerates all nonredun-
dant subset cut (SC), where each SC relates link capacities & min-
imum bandwidth requirements. Note that if all links in an SC fail,
the capacity of the induced cut will be less than . Given
the failure probability of each link, and the nonredundant SC, any
Boolean technique for generating mutually disjoint terms can be
utilized to obtain a capacity related unreliability (CRU) of the net-
work. Thus, the CRU for an node pair is the probability that
the network has a capacity of less than for the given node
pair. Note that . Two SCT algorithms are pro-
posed: Algorithm-1, and Algorithm-2; and the suitability of using
either algorithm is also discussed. Examples are given to illustrate
the techniques. The time complexity, and the proof of correctness
for the proposed algorithms are also included. It is shown empiri-
cally that the time complexity of generating the nonredundant SC
of a network is polynomial in the order of the number of cuts of the
network. The proposed SCT algorithms have been implemented in
C. We have utilized the SCT to generate the CRR of some large
communication networks with various values.

Index Terms—Capacity related reliability, communication net-
work, cutset, network flow, network reliability, sum of subsets, ter-
minal reliability.

I. INTRODUCTION

VARIOUS measures for the reliability index of a commu-
nication network are proposed in the literature [1]–[19],

[24], [25]. In one measure, the reliability index of the network
is represented by its terminal reliability, which is defined as
the probability that there exists at least one path for a given
source-destination node pair of the network [1]–[5]. Here,
we assume that the network has equal link capacity, or the link
capacities are large enough to sustain the transmission messages
(packets) of any bandwidth (size). However, this assumption is
unrealistic. The link capacity is a function of cost, and is limited;
and each link in a network may have different capacity. More-
over, almost every communication system has a certain required

Manuscript received July 26, 2002; revised May 23, 2003. The work of
S. Rai was supported in part by the NSF grant CCR 0073429. Associate Editor:
W. H. Sanders.

S. Soh is with the Department of Computing, Curtin University of Tech-
nology, Perth, WA, Australia (e-mail: soh@cs.curtin.edu.au).

S. Rai is with the Department of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, LA, USA (e-mail: suresh@ece.lsu.
edu).

Digital Object Identifier 10.1109/TR.2004.842530

capacity of information contents to be transmitted, and hence
there can be a minimum bandwidth requirement, , from
the source node to the terminal node of the network in order for
the network to be considered to operate successfully. In setting
up a video conferencing, as an example, the two connecting par-
ties must agree on the minimum bandwidth requirement. Simi-
larly, establishing a virtual private network between two remote
sites of a company also requires such minimum bandwidth [26].
With these additional constraints, we consider that the two con-
necting nodes can communicate successfully only if the network
has at least the required minimum capacity of . The net-
work reliability is, thus, measured as the probability that the net-
work has, at least, a minimum bandwidth of between the

node pair. Reference [15] calls such performance index
as capacity related reliability (CRR). Note that this reliability
measure can also be used as the performance index of other net-
works, such as a power distribution network, a transportation
network, or a water distribution network.

Several researchers [6]–[19] have proposed techniques to
compute the CRR. Some of the techniques require only the
pathset [8]–[12], or the cutset information [17], [18]; some
others [14]–[16] in addition to the pathset, require the cutset
to help compute the capacity of the generated composite paths
[15], while methods in [13], [19] build a branching-tree (with
disjoint tree nodes) directly without using minimal paths and/or
cuts. Method [6] requires large memory sizes for solving large
networks, and hence, is not efficient. On the other hand, Lee’s
technique [7] is quite involved & cumbersome, and also the
method is restricted to directed graphs [9]. Misra & Prasad [8],
and Aggarwal, et al. [9] propose two-step approaches to obtain
CRR. In the first step, their algorithms [8], [9] start with the
pathset information of the evaluated network to generate com-
posite paths. In the second step, any Boolean algebra to obtain
reliability expression [4], [5] is used to generate the CRR from
the composite paths. However, these algorithms fail, in general,
to generate correct results [11], [15]. The method in [8] fails to
generate all success composite paths, while the basic problem
with the method in [9] lies in the procedure used to compute
composite path capacity. Aggarwal [10], [11] has introduced the
concept of “weighted reliability index” to benchmark the per-
formance of a communication network with heterogeneous link
capacities. In [11], he also proposes a new method to calculate
the capacity of a subnetwork formed by any subset of paths (i.e.,
the composite paths). Varshney, et al. [12] generalize the method
in [11] to a multistate graph. However, the procedures used to
calculate the maximum flow in [11] & [12], in general, do not

0018-9529/$20.00 © 2005 IEEE

134 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

produce correct results [15], [20], [21]. Schanzer [20] suggests
two ways to correct the problems, while Kyandoghere [21] pro-
vides a correction of the procedure. Rueger [13], and Rai, et al.
[14] have proposed algorithms which obtain a symbolic CRR ex-
pression under a capacity constraint. However, their algorithms
suffer from the drawback of generating a huge number of redun-
dant paths/cuts. The algorithms, thus, are impractical even for
moderate size graphs where the number of paths is more than ten.
Recently, Jane, & Yuan [19] proposed an algorithm to improve
the method in [13]. Their improved algorithm [19] is shown to
run faster, and to be more robust than Rueger’s method, with a
tradeoff for producing an average of four times larger number
of disjoint terms than those generated in [13]. Furthermore,
their labeling scheme approach is more suitable for networks
with directed links, and the steps 3–5 of their algorithm may be
repeated exponentially [19].

Rai & Soh [15] proposed a technique to enumerate all success
states of the network for the CRR problem. In addition, they pro-
vide a new method to compute the capacity of a composite path
by utilizing the max-flow min-cut theorem [22]. However, each
capacity computation needs all the cuts of the network, and the
computation is done for each generated composite path; hence,
the overall compensation is expensive. Recently, Lee & Park [16]
proposed a new method which reduces the number of composite
paths generated from minpaths, and thus reduce the number of
capacity computations. However, the time complexity (to gen-
erate the composite paths) of the methods in [15], [16] is expo-
nential in the order of the number of simple paths of the network.

In most practical systems, the number of cuts is much smaller
than the number of paths [17], and hence computing CRR from
cutset information is expected to be more efficient. The method
in [17] requires only cutset information to determine the CRR.
The method computes the CRR in two main steps. In the first
step, the method enumerates all possible nonredundant subsets
of a cut , for all , each of which is capable of blocking the
transmission of messages of size from to in the given
network. Note that such subset is called a valid cut in [17]. In the
second step, the method uses any existing sum-of-disjoint prod-
ucts algorithm [4], [5] to compute the CRR from the valid cut
groups. To generate the valid cut group, the method [17] uses
a cutset matrix, , to represent the cutset of the network. Rows
of the matrix correspond to the various cutset, and columns in-
dicate the links contained in the particular cutset. The nonzero
entries in the matrix show the link capacities. Utilizing the ma-
trix, the method generates a column matrix in which its th
entry is computed as . Note that is the cut
capacity for . The method enumerates the valid cut from ma-
trices & . Starting from the first row in , the algorithm
computes . If the result is less than , a 1-link
valid cut is found, and all nonzero entries of in column are
made zero. Then, from the remaining nonzero entries in that
row, the algorithm enumerates all possible two combinations,
three combinations, and so on; and each of them is checked for
being valid-cut, i.e., , where is the sum
of all link capacities in the combination. Note that while gen-
erating the two or more links forming a valid-cut, the method
also deletes any redundant valid cuts. This process is repeated
for each row of the matrix. However, the method [17] is effi-

cient only for computing CRR of small networks where some
1-link valid cuts exist. For large networks without or with a
small number of 1-link valid cuts, the method has to generate
all possible combinations of subsets for all the cuts, and hence,
is not efficient. As an example, with , the network
shown in Fig. 2 contains no 1-link valid cut, and thus for a
cut {1,3,4,8,13,14}, the method has to generate possible
2-link, possible 3-link, possible 4-link, and possible
5-link to generate three nonredundant valid cuts: {3,4,13,8,14},
{1,3,4,13,14}, and {1,3,4,8,13). Thus, for each cut with car-
dinality , combinations of links are generated; and hence
this step is very time consuming. Furthermore, the method fails
to detect for system failure when we set , where

is the maximum capacity flow through the network [22].
Thus, a more efficient algorithm is needed to compute the CRR
of large networks. Soh & Rai [18] have proposed a cutset-based
algorithm to solve the CRR. Note that the difference between
the method in [17] and that in [18] lies in the valid cut enu-
merations. In [18], the valid cuts, referred as modified power
set (MPS), are generated more efficiently; and hence CRR can
be computed faster. The method in [18] generates the MPS by
utilizing only links with capacity less than in each cut.
Because the method in [18] generates subsets from fewer links
than those required in [17], the method in [18] is more efficient
compared to that in [17]. The method presented in this paper is
an improvement over the algorithm in [18].

The layout of the paper is as follows. Section II describes the
CRR concepts, and other related issues. In Section III, the subset
cut technique (SCT) is introduced, and two algorithms, Algo-
rithm-1, and Algorithm-2, to enumerate the SC are presented.
The section provides some definitions to help reduce the time
complexity of the algorithms. In addition, implementation issues
for both algorithms are discussed. Several examples illustrating
the concepts and correctness proof of the methods are also given
in the section. In Section IV, the time complexities of the pro-
posed methods are derived. Section V discusses the CRR results
for some communication networks, and concludes the paper.

II. TERMINOLOGY

In the graph model of a communication network,
where vertices represent communication centers, and links

denote connection services, consider each link has a finite
capacity which is known a priori. A flow in a network is a
function assigning a nonnegative number to each link so that

, and for a vertex (that is neither source nor terminal)
the in- & out-flow are the same (flow conservation). Thus,
provides a bound on a flow passing through link . The network
is good if and only if a specified amount of signal capacity
can be transmitted from the input to the output node, or
node pair. This condition implies that the network must have at
least bandwidth/capacity for the given node pair.

A link is said to be UP (DOWN) if it is functioning (failed).
An UP (DOWN) link is denoted by . Note, the nodes
are assumed to be always good. An cut is a disconnecting
set. All communications between a prescribed node pair
is disrupted once all the links in are not operational. An

cut , , is minimal if no proper subset of it represents

SOH AND RAI: AN EFFICIENT CUTSET APPROACH FOR EVALUATING COMMUNICATION-NETWORK RELIABILITY 135

Fig. 1. Bridge network.

Fig. 2. 7 node, 15 link network.

a ‘cut.’ The cutset is the set of all minimal cuts for the
graph . The capacity of a cut , , is the sum of
link-capacities in . From max-flow min-cut theorem [22], the
maximum capacity flow, , through the network is given
as the minimum of . As an example, consider a bridge
network as shown in Fig. 1. The figure shows the link capacities
in the brackets. The cutset is given as: ,

, , and . The capacities
are , , , and

; and hence, .
A simple path , , for an node-pair is formed by the

set of UP links such that no nodes are traversed more than once.
Any proper subset of simple paths does not result in a path be-
tween the node pair. The pathset is a set whose elements
are simple paths. The capacity of a simple path , , is
obtained from the capacities of UP links contained in , and
is given as the minimum capacity of the links in . Thus, the
capacity for a in Fig. 1 is computed as

. If , a simple path
, in addition to satisfying the connectivity requirement, fulfils

the capacity constraint too. The path is then called a success
state of . Otherwise, the represents a failed state.
In the event that link capacities are infinitely large, all simple
paths form success states because they do provide connec-
tivity, and their successes ensure the system or network success.
However, for a finite capacity situation, all simple paths may or
may not lead to the success states of . Depending on

, some or all simple-paths may fail to satisfy the capacity
constraint. Thus, simple path, and cut, two important concepts
in terminal reliability, has to be revisited while considering the
CRR measure. The concept of composite path & its capacity de-
termination [15], and subset cut (introduced in Section III) are
the steps in this direction.

III. THE SUBSET-CUT TECHNIQUE (SCT)

This section introduces the subset cut (SC) concept, and some
definitions which lead us in developing the SCT to compute the
CRR.

Definition: A subset-cut, , for , is a subset of a
cut with capacity .

The capacity is the sum of link-capacities in .
If all links in fail, the capacity of the induced cut be-
tween the given node pair of a network will be less than

. Note that when , and all links in the network
have equal link capacity , each reduces to the cut
of the graph theoretic terminology (i.e., equal to). Also note
that a cut is always an SC.

For any , , , and , an is called a redundant SC if there
exists an as its subset. This redundancy can occur among
the SC generated from a cut (called internal redundant), and
may also occur among the SC generated from all cuts in the net-
work (called external redundant). We define a minimal-subset-
cut, , as a non internal-redundant SC generated from a
cut ; and a network-minimal-subset-cut, , as a non
external-redundant . A is an internal redundant SC if
the cut contains at least one . Given the cutsets, link ca-
pacities, and a required of a network, the proposed SCT
algorithms generate the NMSC for the network.

It is obvious that the SC concept is the reverse of the com-
posite path [15]. An SC is a subset of any cut of a net-
work whose link failures (DOWN) are able to block the required
system capacity, , between a given node pair in the
network, whereas a -composite path [15] is the composition of

paths whose link successes (UP) are able to meet the required
bandwidth for the given node pair. The capacity related
unreliability (the probability that the network has a capacity of
less than for the given node pair), CRU, is computed from
the enumerated NMSC. Any Boolean techniques [1], [2], [4],
[5] can be used to generate the mutually disjoint expression for
the NMSC. An expression (value) for the CRU, and hence the

, is obtained by substituting each DOWN
(UP) link in the mutually disjoint forms with its probability
of failure (success), .

A. The SC Enumeration Technique

In general, computational complexity of the SC enumeration
depends on:

(i) the total number of subsets of links generated for each
,

(ii) the total number of internal (external) redundant SC
generated/removed, and

(iii) the total number of cuts in the network that are used to
generate SC.

Therefore, to design an efficient SC enumeration algorithm, we
need to reduce the values of these three parameters.

The problem to generate the from a is similar to the
well-known sum-of-subsets problem [23]. In the sum-of-sub-
sets problem with distinct positive numbers or weights, we
generate all combinations of these numbers whose sum is equal
to a given integer . On the other hand, in our SC enumer-
ation problem, there are nondistinct positive numbers or

136 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

link capacities, and we enumerate all minimal combinations
of these capacities (and hence links because each link has a
one-to-one correspondence with its capacity) whose sum is
larger than . Note, is the total number of
links in . Obviously we can use any sum-of-subsets algorithm
to generate all the SC by running the algorithm for each
larger than . Then, taking care of redundant
SC, we obtain all the MSC. However, for a general network
with , this approach will generate an excessive
number of subsets, most of which are redundant SC, and hence
the approach is not efficient. Furthermore, the sum-of-subsets
algorithms [23] do not take advantage of non distinct link
capacities, and other network properties which can be used to
help reduce the time complexity of enumerating the SC.

The SC for a given cut can also be enumerated by, first,
exhaustively taking all possible combinations (subsets) of links
in , where each of the generated subsets is tested for being an
SC. Second, we remove the internal redundant to generate
the set of . We repeat these two steps for all cuts of
the network. Finally, we remove the external redundant SC to
obtain the set of NMSC for the network. However, this simple
(exhaustive) method is not efficient. For each cut containing

links, this method has to generate subsets, most of which
are not SC. Furthermore, we also have to remove many internal
& external redundant SC to generate the NMSC. Therefore, we
need to devise an efficient algorithm to avoid generating the
exponential number of subsets, and to reduce the number of
internal & external redundant SC.

In the following subsections, we propose two SCT algorithms
to generate SC: Algorithm-1, and Algorithm-2. To reduce the
number of subsets generated for each , these two algorithms
generate subsets only from links each with capacity less than

. Furthermore, the proposed algorithms reduce the com-
putational complexity of generating the NMSC by removing
some cuts a priori, should the cuts be detected to eventually gen-
erate redundant SC. The proposed Algorithm-1 is efficient for
enumerating the NMSC for small to moderate sized networks,
while the SCT Algorithm-2 is suitable for obtaining the NMSC
of large networks, where there are some sets of links each with
the same link capacity.

B. SCT Algorithm-1

This proposed SCT Algorithm-1 reduces the computational
complexity of SC generation by reducing the total number of
subsets enumerated for each cut , and by removing some ,
which will eventually produce redundant SC. Furthermore, this
Algorithm-1 employs a greedy approach. The method will stop
generating additional subsets once it detects that larger subsets
will generate only redundant SC. In this greedy approach, the
total number of subsets generated depends on the link capaci-
ties, and the required . In the following, we define several
concepts which are needed in the SCT Algorithm-1.

Definition: A sum-of-subsets-less, (for
), is a subset of a cut which has a sum of link

capacities less than .
Utilizing the , we propose the following theorem to gen-

erate the for a cut .

Theorem 1: , where ‘ ’ is a set differ-
ence operation.

Proof: Because each link has a nonnegative capacity,
from the theorem we get the following equality:

. To prove the correctness of this theorem,
we need to show that each generated using Theorem 1
meets its definition, i.e., . To
show this, we consider two cases.

Case 1: . Substituting to the the-
orem, we obtain . For

, it is obvious that ;
and hence the theorem is proved for this case.

Case 2: . Because, by definition,
, substituting the

in the theorem with , we ob-
tain , and hence the
theorem is also proved for this second case.

Following Theorem 1, the for a cut can be easily
generated once we obtain all their corresponding . The

, in turn, are generated from the links in a cut . How-
ever, because (by definition), it is obvious
that each link in a has a link capacity ;
and hence the can be more efficiently enumerated by con-
sidering only the links in , each with link capacity less than

. Here, we define a as a subset of a cut ,
which contains links each of which has link capacity less than

. Therefore, the can be more efficiently generated
from a .

The advantages of generating the SC following Theorem 1
are two-fold. First, we notice that, in general, and for various
values of , the number of links in a ,
is less than the number of links in ; and hence,
enumerating from a is more efficient than
obtaining SC directly from the corresponding cut . Second,
this approach does not necessarily generate all subsets from
each . For , if each subset of size has
capacity greater than or equal to , then subsets of size

should not be generated because they will not produce
any more . This greedy approach avoids the unnecessary
generation of subsets.

The problem of generating all from a
is also similar to the sum-of-subsets problem [23]. Here, there
are nondistinct positive numbers or link capacities, and we
generate all combinations of these capacities (and hence links
because each link has one-to-one correspondence with its ca-
pacity) whose sum is less than . Thus, the can be
generated by exhaustively taking all possible 2-subsets, 3-sub-
sets, all the way up to -subset from the , where
the capacity of each subset should be less than .

However, some redundant may still be generated. Note,
these redundant , in turn, will result in internal redundant
SC, and hence should be deleted. We consider a redun-
dant if there exists a as its superset. Here, we define
a maximum-sum-of-subsets-less, , as a non redundant

in a cut . The for a cut can be generated
either by removing all redundant SC, or by enumerating them
from the . The correctness of this second approach is
validated by the following lemma.

SOH AND RAI: AN EFFICIENT CUTSET APPROACH FOR EVALUATING COMMUNICATION-NETWORK RELIABILITY 137

TABLE I
CUTSET FOR THE NETWORK IN FIG. 2

Lemma 1: , where ‘ ’ is a set
difference operation.

Two theorems are now presented. Theorem 2 can be used
to detect a priori network failures for a required , while
Theorem 3 is used to delete some of the cuts which eventually
produce redundant SC, and hence this action reduces the com-
plexity of enumerating the SC.

Theorem 2: For any & , and a given , if there exists
an empty set , the network is always failed.

Proof: From Theorem 1, an empty set implies
. When , because,

by definition, . From max-flow min-cut
theorem, the capacity of a network is given as the
minimum of all for all , and thus, can not be
larger than . If , then it follows that

; hence, the network always fails.
Example: Consider , and a bridge network shown

in Fig. 1. Given , we obtain .
Following Theorem 2, there is no success state in the network
for . Note, .

Theorem 3: Consider a subset cut which contains
links each of which has capacity . If there is any cut

such that , then any subset cut generated
from will always be a redundant SC.

Proof: From Theorem 1, each generated from
contains at least all links in . Thus, by definition, each

is redundant.
To take the benefit of the property described in Theorem 3, we

suggest all the cuts in be ordered following the increasing
cardinality of their number of links, and we generate the SC
starting from the cut with the smallest cardinality. Then, each
SC which meets the given criteria in Theorem 3 is kept in a
separate list. Should there be a cut that is a superset of any SC in
the list, the detected cut can be ignored. Thus, this step reduces
unnecessary generations of subsets, which in turn, also reduces
the number of (external) redundant SC.

Example: Table I shows all cuts, through (sorted
based on their increasing cardinality), of the network in Fig. 2
for the given node pair. For , the
for the cut is obtained as:{1 2 5 8 14 15}. Because
each link in a is always less than , each
1-subset of the small-link is a . Taking all 2-subsets of
the , we obtain as: {2 5}, {2 8}, {2
14}, {2 15}, {5 15}, {8 15}, {14 15}. Reducing redundant

, we find that all, but {1}, are redundant 1-link . The
algorithm, then, generates all 3-subsets from the ,

and finds that none of them is an . Thus, the algorithm
stops generating larger subsets, and all the obtained are

. Using Lemma 1, we obtain the MSC for the cut :
,
,

, ,
, ,

, and .
Similarly, from , we generate . Note
that , and ; also

, , and
. Thus, by Theorem 3, we

can a priori delete cuts , , and . Should we generate
the SC for the deleted cuts, we obtain the following redundant
MSC: {3, 6, 12}, {3, 9, 12}, {3, 12, 14}, and {3, 12, 13}. Using
this method for the remaining cuts, we generate the MSC of the
network:{1 3}, {2 3}, {3 12}, {3 4 6}, {6 11 12}, {6 12 15},
{12 13}, {9 12}, {12 14 15}, , , {3
4 9 14}, {1 7 11}, {1 2 7 15}, {2 7 11 15}, {1 4 6 11}, {1 4 6
15}, {4 6 11 15}, {1 4 9}, {1 4 14 15}, {4 9 14 15}, {7 11 12},
{2 7 12 15}, {3 4 8 13 14}, , ,
{1 4 8 13}, {1 4 13 14}, {4 8 13 14 15}, {1 2 7 9}, {1 7 9 14},
{1 7 9 15}, {2 7 9 14 15}, {1 2 7 8 13 14}, {1 2 5 7 8 13}, {1 2
5 7 13 14}, {1 5 7 8 13 15}, {1 5 7 8 13 14}, {1 5 7 13 14 15},
{1 7 8 13 14 15}, {2 5 7 8 13 14 15}.

Removing the external redundancies (the ones in the list with
a superscript ‘R’), we obtain the NMSC for the network. Finally,
using CAREL [1], we get the expression for CRU. Assuming
that the network has equal link unreliability of 0.1, CRU is given
as 0.050 156, and, hence, .

The proposed SCT Algorithm-1 produces the (with total
link capacities less than) to help enumerating the SC,
and this approach is different than the steps taken in [17]. Be-
cause are generated from , it is obvious that
this approach is more efficient compared to that in [17] be-
cause, in general, . However, if we generate the sub-
sets exhaustively, we may have to generate up to subsets
for each . We observe that the worst case scenario for Al-
gorithm-1 is when it eventually generates only one , i.e.,

. For this case, Algorithm-l generates all
possible subsets, and there are redundant ;

Algorithm-1 is recommended for use only when , on average,
is small and . Assuming that,
in general, each link of a large network has nonunique capacity,
we propose SCT Algorithm-2.

C. SCT Algorithm-2

Given a , we group all of the links based on their
link capacities. Let be a group of links each with a link ca-
pacity of units. Thus, for different link capacities, we obtain
a set of groups, , comprising . Let
denote the number of links in a group , and thus

. For a given , there are no more than groups
in the , and hence .

Example: Consider the following set of links, each with its
corresponding link capacity.

138 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

For , we find
. Dividing the links

in the into groups, we obtain the set of groups
as , , ,

, , and .
The proposed SCT Algorithm-2 generates all MSSL of a

in two steps:

Step 1: Generate all combinations of sum-of-subsets nota-
tions,

, for , and
Step 2: Generate from each .
Each denotes a set of all -subsets of , for

, and . The ‘x’ is a set multiply
operator. For each , the and the are computed
such that .

An represents one or more for .
This proposed SCT Algorithm-2 utilizes the fact that for large
networks, there are some sets of links, each of which has the
same link capacities. By grouping the links by link capacity,
and using a more concise notation to represent a set of , the
number of subsets generated will be less, and hence the number
of redundancy tests will also be reduced. The problem to enu-
merate all is also similar to the sum of subsets problem
[22]. Here, given distinct positive numbers , each with
duplicates, we generate all combinations of the numbers with
the requirement that their sum should be less than .

To avoid generating redundant , and hence in-
ternal redundant SC, we remove any redundant .
An

, is redundant if there is an

such that , , , and . It
is obvious that using these concise notations, there will be
fewer redundancy tests/deletions to produce SC. However, each
redundancy test needs more computation time than that needed
in Algorithm-1.

Example: Using the set of group , obtained in the pre-
vious example, and given , we enumerate the fourteen
SSLN: ,

, ,
, ,

, ,
, ,
, ,
, ,

and . Each SSLN meets the inequality
. As an example, for

, the sum of link capacities of one link
in , of one link in , and of any two links in ,
is equal to 7 (less than). The & are
redundant with respect to the , and hence are deleted.

Once we generate all non redundant SSLN, we generate all
, which in turn are used to enumerate the . The
are generated from an as follows.

(i) From each , we generate a which
comprises all -subsets of . Let de-
note a subset in the , for .

(ii) We obtain all by taking the set multi-
plications of each in with each

in , for all, , , , and .
Example: Given , ob-

tained in the previous example, we generate its
, and . Taking the set

multiplications of with , we obtain three MSSL:
{d, e, a, b, c}, {d, f, a, b, c}, and {e, f, a, b, c}. Similarly, from

, we obtain the fol-
lowing 27 MSSL

, {g, d, a, c}, {g, d, b, c}, {g, e, a, b}, {g, e, a, c},
{g, e, b, c}, {g, f, a, b}, {g, f, a, c}, {g, f, b, c}, {h, d, a, b},
{h, d, a, c}, {h, d, b, c}, {h, e, a, b}, {h, e, a, c}, {h, e, b, c},
{h, f, a, b}, {h, f, a, c}, {h, f, b, c}, {i, d, a, b}, {i, d, a, c}, {i,
d, b, c}, {i, e, a, b}, {i, e, a, c}, {i, e, b, c}, {i, f, a, b}, {i, f, a,
c}, and {i, f, b, c}. Note, should we not delete the redundant

, as an example, the following
three redundant are obtained: {d, a, b, c}, {e, a, b, c}, and
{f, a, b, c}. Continuing this process on the remaining SSLN,
we obtain 120 MSSL.

Even though our greedy approach in Algorithm-1 avoids gen-
erating possible subsets from the (in the pre-
vious example) to obtain the 120 , the method still needs
to generate
subsets, in addition to removing 31 059 redundant . On the
other hand, Algorithm-2 needs to remove only two redundant
SSLN; and from the other twelve (nonredundant) SSLN, the
method produces 120 MSSL. Algorithm-2, in the example, gen-
erates only 70 subsets. Thus, the Algorithm-2 is expected to be
more efficient compared to Algorithm-1 for enumerating the SC
of large networks.

IV. IMPLEMENTATION, AND TIME COMPLEXITY

OF ALGORITHMS

1) SCT Algorithm-1: The implementation of the proposed
SCT Algorithm-1 (to generate the NMSC set) is shown in Fig. 3.

2) Implementation and Time Complexity: The time com-
plexity of Algorithm-1 depends on the total number of cuts

in the network, the number of links in each cut
, the number of links in each ,

the total number of subsets generated for each , the
total number of MSC in each , and the total number
of NMSC in the network . The last four parameters, in
turn, heavily depend on the network topology, the assigned link
capacities, and the required .

The function of the Algorithm-1 in
Fig. 3 is implemented as follows.

is_red_by_theorem3 :
for (all in) do
if then
return (1)

return (0)

Referring to Theorem 3, this function is used to delete, a priori,
the cuts which will always produce redundant SC. Assuming
linear searching, the time complexity of this function is ,

SOH AND RAI: AN EFFICIENT CUTSET APPROACH FOR EVALUATING COMMUNICATION-NETWORK RELIABILITY 139

Fig. 3. The SCT Algorithm 1.

where is the total number of MSC in the . Each subset
testing can be done in because each cut , MSC, and
NMSC is bit-implementable.

Fig. 4 shows the implementation of function
of the Algorithm-1. The function

in %�$of Fig. 4 generates a
for a cut . In the following we show the

implementation for the function.

Generate from a cut
gen_small_link (, found_MSC):
for (each link in) do

if then
put link in ;

There is no small_link, each

if then
begin
put in ; // The is an MSC

;
end;

The function requires time, where is the total number
of links in a cut . If each link has capacity , the
function makes as the MSC, and returns .
This flag will make function returns with
the obtained MSC (see Fig. 3).

The in %�%�$of
Fig. 4 enumerates all sized subsets of the , and
therefore its time complexity is , where is the total
number of links in . In %�%�%of Fig. 4, each
of the subset is tested for being an , and if it is, then an
is obtained. The function requires only time.

Fig. 4. Function .

Then, function in Fig. 4 obtains nonredundant
or deletes redundant MSC from the existing list. The imple-

mentation of the function is shown as follows.

put_new_SC (, ,):
;

Check for redundancy to produce the
set
for (each in) do
begin

The generated SC is redundant
if then
begin

;
break;

end;
else if then

delete from ;

140 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

end;
if then
begin
put into ;

Used for theorem 3; Complexity is

if (each link capacity in the ,
) then

put the in ;
end;

As shown in the function, each nonredundant SC is stored in ,
and is also tested for meeting the requirement of Theorem 3. The
test requires time, and hence the complexity of this func-
tion is .With iterations, the timecomplexity
of %�%�%in Fig. 3 is .

The steps %�%�$& %�%�%, in general, are used for
(due to its greedy approach). The worst-case time complexity
of the %�%(for) is

. Finally, the worst-case complexity of function
can be computed directly from the sum of

the results for %�$& %�%which gives
.

The algorithm for function is shown in
Fig. 5. There are two different cases for removing external re-
dundant SC. In CASE 1, the new generated MSC is redundant;
while in CASE 2, one or more MSC in the are redun-
dant. Removing redundancy in CASE 1 is more efficient com-
pared to that in CASE 2 because once the new generated MSC
is detected to be redundant, the process is stopped. One of the
advantages of ordering the cuts based on their increasing car-
dinality is to make the occurrences of redundancies in CASE
1 more likely, as observed in our experimental results (about
90%). From the implementation of , we
compute the worst-case time complexity of the function to be

.
3) Time Complexity of the SCT Algorithm-1: The

, , and
functions are called for each cut ,

and hence the time complexity of the proposed Algorithm-1,
on average, is .
Note that the number of minimal paths, and minimal cuts of
a general network with nodes & links is , and

, respectively. Because , , , and
, and assuming in general , the worst case

time complexity of the Algorithm-1 can be approximated as
.

1) SCT Algorithm-2: The only difference between Al-
gorithm-1 & Algorithm-2 is on the implementation of the

function. Thus, in the following, we
show only the implementation, and the time complexity of the
modified function, , for Algorithm-2.

2) Implementation and Time Complexity: Fig. 6 shows the
implementation of function . Function

in %�$of the figure generates a set of
groups from a cut , for ,
where each is a unique link capacity. The function requires

Fig. 5. Function .

time, where is the number of links in a cut . If
each link has capacity , the function makes as
the MSC, and returns . This flag will make
function returns with the obtained MSC
(see Fig. 6). In the following we show the implementation of
the function.

(, found_MSC):
for (each link in) do
if (and) then
put link in ;
There is no link with

if then
begin

The is an MSC
put in ;

;
end;

The , in %�%of Fig. 6, enu-
merates all possible nonredundant

from all in . The best scenario

SOH AND RAI: AN EFFICIENT CUTSET APPROACH FOR EVALUATING COMMUNICATION-NETWORK RELIABILITY 141

Fig. 6. Function .

for the function is when each link in has the same link ca-
pacity , for any (i.e., there is only one group in). For this
case, the complexity of the function is , where
is an integer such that each -combination of the links quali-
fies as a , i.e., . On the other hand, the
worst-case scenario for the function is when each link has a dif-
ferent link capacity. For this case, there are groups in , and
therefore, SSLN are generated with each SSLN representing
only one . In this worst case, Algorithm-2’s complexity is
the same as that of Algorithm-1. Thus, the complexity of this
worst case is , and the average complexity of the func-
tion is .

%�ſof Fig. 6 obtains MSSL from , for
. The in %�ſ�$of

the figure generates all sized subsets of the links in .
Let be the number of links in group . The complexity
of the function is thus .

In %�ſ�%of Fig. 6, we start with the set multiplications of
the to generate all , and hence the MSSL for
the . The complexity of this function depends on the number
of MSSL generated. Thus, the complexity of this step, on av-
erage, should be . Function in Fig. 6 ob-
tains all the MSC, and put them in a list. In the function, each
generated MSC is tested for meeting the requirement of The-
orem 3. The test requires time, and hence the complexity

Fig. 7. 7 node, 12 link network.

of the function is . The implementation of function
is shown as follows.

put_MSC :
for (each in) do
begin

;
put into ;

Used for theorem 3; Complexity:

if (each link capacity in the ,
) then

put to ;
end;

Because %�ſ�$& %�ſ�%are iterated times, the
complexity of %�ſis .
Summing up the complexities of %�$, %�%, and
%�ſ, we obtain the time complexity of the
function as

. In general,
, and hence the complexity expression can

be reduced to . Comparing
this time complexity for Algorithm-2 with that for Algorithm-1,
we may conclude that for a large , the complexity of the func-
tion used in Algorithm-2 is better than that
of function used in Algorithm-1. There-
fore, the Algorithm-2 is suitable for use in large networks with
large .

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed SCT Algorithm-1 & Algorithm-2 are simple,
and have been implemented in C on a Pentium III computer.
Both Algorithm-1 & Algorithm-2 are used to generate the
NMSC for the networks shown in Figs. 2 & 7 for various
values of . The two methods generate exactly
the same sets of NMSC for the network. Then, assuming an
equal link reliability of 0.9 for all links, and utilizing CAREL
[1] on the NMSC, we compute the CRU, and hence the CRR
of the networks. The resulting CRR for the networks match the

142 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

TABLE II
RESULTS FOR THE NETWORK IN FIG. 2

TABLE III
RESULTS FOR THE NETWORK IN FIG. 7

TABLE IV
RESULTS FOR THE NETWORK IN FIG. 8

results reported in [15], [16]. These results, empirically, show
the correctness of our methods.

In Tables II & III, we show the total number of subset cuts
(SC), minimal-SC (MSC), and network-minimal-SC (NMSC)
generated using Algorithm-1 for the networks in Figs. 2 & 7,
respectively. When , the total number of NMSC is
equal to the number of cuts in the network. As shown in the ta-
bles, the total number of NMSC for each is of the same
order as the number of cuts of the networks. The NMSC are
generated by removing all the external-redundant SC (ERED,
from all cuts) from the MSC, which in turn are generated by re-
moving all the internal-redundant SC (IRED, within a cut) from
the SC. For each of a cut, we generate its subsets,
and each subset is checked for being an SC. The tables show
the total number of subsets generated to produce all the SC. The
total number of IRED, ERED, and subsets generated determine
the computational complexity of the method. The results in the
tables, empirically, show that the complexity of the algorithm is
polynomial in the number of cuts. Columns T3 in Tables II & III
show the number of cuts that can be removed a priori following
Theorem 3. However, as shown in Table III, such cuts may not
exist at all.

Table IV shows the CRR and the other parameters for the net-
work in Fig. 8, with various values. Notice that each of

Fig. 8. 13 node, 22 link network.

TABLE V(a)
RESULTS FOR THE NETWORK IN FIG. 9 USING ALGORITHM-1

TABLE V(b)
RESULTS FOR THE NETWORK IN FIG. 9 USING ALGORITHM-2

the number of subsets generated is also in polynomial order of
the number of cuts of the network. This shows, empirically, the
efficiency of the proposed Algorithm-1. In Table V(a) & V(b),
we show the results generated from 7376 cuts of the network in
Fig. 9 for various values of . We used Algorithm-1 to pro-
duce Table V(a), and Algorithm-2 to generate Table V(b). As
shown in Table V(a), even though the total number of subsets,
and the internal redundant SC, are still in polynomial order of
the number of cuts of the network, the numbers are significantly
increasing. In Table V(b), we show the number of subsets gener-
ated by the SCT Algorithm-2. Comparing the results with those
in Table V(a), the total number of subsets generated has been
reduced significantly. The SSLN column in the table shows the
number of sum-of-subsets notations generated by Algorithm-2,

SOH AND RAI: AN EFFICIENT CUTSET APPROACH FOR EVALUATING COMMUNICATION-NETWORK RELIABILITY 143

Fig. 9. 20 node, 30 link network.

and the IREDN is the number of redundant SSLN. The nonre-
dundant SSLN, then, are translated to obtain the MSSL, which,
in turn, are used to generate the MSC. Because we use bit nota-
tions for SC & MSC, only two set-operations (in Algorithm-1)
are needed to determine if an is redundant with
respect to an . On the other hand, determining
an SSLN redundant (with respect to another SSLN) in Algo-
rithm-2 is more time consuming. However, for larger networks,
the total number of SSLN generated in Algorithm-2 would be far
less than the total number of SC in Algorithm-1. Furthermore,
once we generate a set of nonredundant SSLN, we can directly
generate non-(internal) redundant SC. Therefore, Algorithm-2
is more suitable for use to generate the NMSC for large networks
(of size larger than 10). The average of
the network in Fig. 9 is 9.5. However, Algorithm-2 does not re-
duce the number of external redundant SC (see Column ERED
in Tables V(a) and V(b)). It is obvious that an improved algo-
rithm is needed to further reduce the complexity of generating
the NMSC.

We used Algorithm-1 to compute the CRR of the 5-node
7-link ARPA network used in [7], [17]. The network contains six
cuts, and for the average is 1.75; and thus
Algorithm-1 is more suitable to be used than Algorithm-2. Our
method generates exactly the same result as obtained in [17].
For , the network contains only one 1-link valid cut
[17], and therefore the method in [17] has to generate 31 subsets
to obtain five valid cuts of the network. On the other hand, Algo-
rithm-1 generates only 7 subsets, and removes two external-re-
dundant SC, and hence our method is more efficient than the
method in [17]. Furthermore, because the method in [17] uses a
2-dimension cutset-matrix to represent the cuts of a network, the
method [17] requires large memory spaces to solve the CRR of
large networks. The algorithms in [15] & [16] generate a set of
composite paths (cp) from the pathset information of a network.
The two algorithms also require a max-flow-min-cut algorithm
[21] to compute the capacity flow for each generated cp [15],
[16] to generate a set of minimal success composite paths. In
general, the algorithms [15], [16] generate cp (is
the total number of failure simple paths of the network), and re-

Fig. 10. 11 node, 21 link network.

TABLE VI
PERFORMANCE COMPARISONS WITH METHOD IN [19]

quire all cuts information of the network to compute the capacity
flow of each generated cp [15]. Therefore, the pathset-based al-
gorithms are not suitable for computing the CRR of large net-
works with hundreds or thousands of paths & cuts. Neither [15]
nor [16] provides experimental results for solving the CRR of
large networks, and hence we are unable to compare the effi-
ciency of our algorithms with those in [15], [16].

To compare the performance of our approach with that re-
cently reported in [19], we used Algorithm-1 to compute the
CRR, for various , of the network shown in Fig. 10 (Case
1 in [19]; average). Table VI shows, for
each , the number of NMSC produced, the number of
disjoint products generated (using CAREL [1] from each of
the NMSC set), and the running time of our SCT method. The
table also provides the required CPU time on a Pentium III,
and the number of disjoint products generated using the Jane &
Yuan’s (JY) technique as reported in [19]. We first generated the
cutset of the network, which required 110 milliseconds of CPU
time. From the cutset, we then used Algorithm-1 to generate the
NMSC for various values of . Finally, we used CAREL to
obtain the CRR for each set of NMSC, assuming each link has a
reliability of 0.9. The CPU time required for our SCT approach,
as shown in Table VI, includes only the CPU time needed to gen-
erate the NMSC using Algorithm-1, and the time for running
CAREL. The cutset enumeration was done only once (for the
network), and hence we have excluded its CPU time from our
calculation. As shown in Table VI, our method outperforms the
JY [19] in both the required CPU time, and the number of dis-
joint products generated. Based on the results reported in [19],
our method is also better than Rueger’s technique [13].

From Table V(b) we also notice that the total number of
NMSC generated are decreasing with increasing values

144 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

(from 7376 to 476). We observe that the time required to
generate the CRR of the network, when the number of NMSC
is far less than the number of cuts of the network, is less than
that needed to compute the network’s terminal reliability. As
an example, CAREL needed 156.27 seconds to obtain the
terminal reliability of the network (from 7376 cuts), while the
Algorithm-2 & CAREL took only 37 seconds to compute the
CRR for the network with . Generating NMSC
takes polynomial time in the number of cuts, while generating
CRR (terminal reliability) from NMSC (cuts) using CAREL
is exponential in the number of NMSC (cuts). Thus, when the
total number of NMSC is far less than the number of cuts,
computing CRR is more efficient compared to obtaining the
terminal reliability of the network.

Tables IV and V(b) show the CRR for the networks shown
in Figs. 8, and 9, respectively, for various values of , and
assuming an equal link reliability of 0.9 for all links. From
the CRR values, we observe that there are tradeoffs between
allowing a larger bandwidth requirement in the networks (in-
creasing the), and the reliability of the network to meet
such a requirement. However, for some values of , we get
good tradeoffs. As an example, increasing the from 10 to
12 units for the network in Fig. 9 does not reduce the reliability
of the network. Similarly, increasing the from 3 to 8 units
(167% increase) reduces the reliability of the network in Fig. 8
only by 3%. On the other hand, increasing by only 1 unit
(from 8 to 9) for the network in Fig. 8 reduces the reliability of
the network appreciably (by 18%). Our method can be used to
determine the optimal for certain network configurations,
and hence can be used to compare the reliability of various can-
didate topologies having heterogeneous link-capacities. We are
exploring to extend our method so that it can also be used to find
the bottleneck of the network, and add minimal extra bandwidth
as necessary to improve the network’s CRR.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for their
valuable suggestions and comments.

REFERENCES

[1] S. Soh and S. Rai, “CAREL: Computer Aided Reliability evaluator for
distributed computer networks,” IEEE Trans. Parallel and Distributed
Syst., vol. 2, no. 2, pp. 199–213, Apr. 1991.

[2] T. Luo and K. S. Trivedi, “An improved algorithm for coherent-system
reliability,” IEEE Trans. Reliab., vol. 47, no. 1, pp. 73–78, Mar. 1998.

[3] S.-Y. Kuo, S.-K. Lu, and F.-M. Yeh, “Determining terminal-pair relia-
bility based on edge expansion diagrams using OBDD,” IEEE Trans.
Reliab., vol. 48, no. 3, pp. 234–246, Sep. 1999.

[4] C. J. Colbourn, The Combinatorics of Network Reliability. New York:
Oxford University Press, 1987.

[5] S. Rai and D. P. Agrawal, Distributed Computing Network Reliability:
IEEE Computer Society Press, 1990.

[6] S. Rai and Y. C. Oh, “Tighter bounds on full access probability in fault-
tolerant multistage interconnection networks,” IEEE Trans. Parallel and
Distributed Syst., vol. 10, pp. 327–335, Mar. 1999.

[7] S. H. Lee, “Reliability evaluation of a flow network,” IEEE Trans. Re-
liab., vol. R-29, no. 1, pp. 24–26, Apr. 1980.

[8] K. B. Misra and P. Prasad, “Comments on: reliability evaluation of flow
networks,” IEEE Trans. Reliab., vol. R-31, pp. 174–176, Jun. 1982.

[9] K. K. Aggarwal, Y. C. Chopra, and J. S. Bajwa, “Capacity consideration
in reliability analysis of communication systems,” IEEE Trans. Reliab.,
vol. R-31, pp. 177–181, Jun. 1982.

[10] K. K. Aggarwal, “Integration of reliability and capacity in performance
measure of a telecommunication network,” IEEE Trans. Reliab., vol.
R-34, no. 2, pp. 184–186, Jun. 1985.

[11] , “A fast algorithm for the performance index of a telecommunica-
tion network,” IEEE Trans. Reliab., vol. R-37, pp. 65–69, Apr. 1988.

[12] P. K. Varshney, A. R. Joshi, and P.-L. Chang, “Reliability modeling
and performance evaluation of variable link-capacity networks,” IEEE
Trans. Reliab., vol. 43, no. 3, pp. 378–382, Sep. 1994.

[13] W. J. Rueger, “Reliability analysis of networks with capacity constraints
and failures at branches and nodes,” IEEE Trans. Reliab., vol. R-35, pp.
523–528, Dec. 1986.

[14] S. Rai, A. Kumar, and E. V. Prasad, “Computing the performance index
of a computer network,” Reliab. Eng., vol. 16, pp. 153–161, 1986.

[15] S. Rai and S. Soh, “A computer approach for reliability analysis of large
telecommunication-network with heterogeneous link-capacities,” IEEE
Trans. Reliab., vol. 40, no. 4, pp. 441–451, Oct. 1991.

[16] S. M. Lee and D. H. Park, “An efficient method for evaluating network
reliability with variable link-capacities,” IEEE Trans. Reliab., vol. 50,
no. 4, pp. 374–379, Dec 2001.

[17] K. K. Aggarwal, Y. C. Chopra, and J. S. Bajwa, “Modification of cutsets
for reliability evaluation of communication systems,” Microelectron. Re-
liab., vol. 22, no. 3, pp. 337–340, 1982.

[18] S. Soh and S. Rai, “A cutset approach to survivability evaluation of
large telecommunication networks with heterogeneous link-capacities,”
in Proc. Int. Symp. Systems and Circuits, Jun. 1991, pp. 896–899.

[19] C.-C. Jane and J. Yuan, “A sum of disjoint products algorithm for re-
liability evaluation of flow networks,” Eur. J. Oper. Res., vol. 131, pp.
664–675, 2001.

[20] R. Schanzer, “Comments on: reliability modeling and performance of
variable link-capacity networks,” IEEE Trans. Reliab., vol. 44, no. 4,
pp. 620–621, Dec. 1995.

[21] K. Kyandoghere, “A note on: reliability modeling and performance of
variable link-capacity networks,” IEEE Trans. Reliab., vol. 47, no. 1, pp.
44–45, Dec. 1998.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed: MIT Press, 2001.

[23] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, Pseu-
docode: Computer Science Press, 1998.

[24] S. Liu, K.-H. Cheng, and X. Liu, “Network reliability with node fail-
ures,” Networks, vol. 35, no. 2, pp. 109–117, 2000.

[25] D.-R. Liang, R.-H. Jan, and S. K. Tripathi, “Reliability analysis of repli-
cated and-or graph,” Networks, vol. 29, pp. 195–203, 1997.

[26] A. Kumar, R. Rastogi, and A. Silberschatz, “Algorithms for provisioning
virtual private networks in the hose model,” IEEE/ACM Trans. Netw.,
vol. 10, no. 4, pp. 565–578, Aug. 2002.

received a B.S. degree in electrical engineering from Univer-
sity of Wisconsin Madison, and M.S. and Ph.D. in electrical engineering
from Louisiana State University, Baton Rouge. He was a faculty member
(1993–2000), and the director of the Research Institute (1998–2000) at Taru-
managara University-Indonesia. He is currently a Lecturer with the department
of Computing at Curtin University of Technology, Perth, W.A., Australia. Dr.
Soh has published several papers in some refereed international journals, and
conference proceedings in the area of computer network, network reliability,
and parallel and distributed processing. He is a member of the IEEE.

is a Professor with the Department of Electrical and Computer En-
gineering at Louisiana State University, Baton Rouge, Louisiana. Dr. Rai has
taught and researched in the area of network traffic engineering, ATM, relia-
bility engineering, fault diagnosis, neural netbased logic testing, and parallel
and distributed processing. He is a co-author of the book Wave Shaping and
Digital Circuit; and tutorial texts Distributed Computing Network Reliability,
and Advance in Distributed System Reliability. He has guest edited a special
issue of IEEE TRANSACTIONS ON RELIABILITY on the topic Reliability of Par-
allel and Distributed Computing Network. He was an Associate Editor for IEEE
TRANSACTIONS ON RELIABILITY from 1990 to 2004. Dr. Rai has published about
100 technical papers in the refereed journals and conference proceedings. He re-
ceived the best paper award at the 1998 IEEE International Performance, Com-
puting, & Communication Conference (Feb. 16-18, Tempe, Arizona; paper title:
S. Rai and Y. C. Oh, Analyzing packetized voice and video traffic in an ATM
multiplexer). Dr. Rai is a senior member of the IEEE, and a member of the ACM.

