322 research outputs found

    A customised ASM thesis for database transformations

    Get PDF
    In order to establish a theoretical foundation for database transformations, we search for a universal computation model as an umbrella for queries and updates. As updates are fundamentally distinct from queries in many respects, computation models for queries cannot be simply extended to database transformations. This motivates the question whether Abstract State Machines (ASMs) can be used to characterise database transformations in general. In this paper we start examining the differences between database transformations and algorithms, which give rise to the formalisation of five postulates for database transformations. Then a variant of ASMs called Database Abstract State Machines (DB-ASMs) is developed, and we prove that DB-ASMs capture database transformations, i.e. the main result of the paper is that every database transformation stipulated by the postulates can be behaviourally simulated by a DB-ASM

    Acta Cybernetica : Volume 19. Number 4.

    Get PDF

    Concurrent Computing with Shared Replicated Memory

    Get PDF
    The behavioural theory of concurrent systems states that any concurrent system can be captured by a behaviourally equivalent concurrent Abstract State Machine (cASM). While the theory in general assumes shared locations, it remains valid, if different agents can only interact via messages, i.e. sharing is restricted to mailboxes. There may even be a strict separation between memory managing agents and other agents that can only access the shared memory by sending query and update requests to the memory agents. This article is dedicated to an investigation of replicated data that is maintained by a memory management subsystem, whereas the replication neither appears in the requests nor in the corresponding answers. We show how the behaviour of a concurrent system with such a memory management can be specified using concurrent communicating ASMs. We provide several refinements of a high-level ground model addressing different replication policies and internal messaging between data centres. For all these refinements we analyse their effects on the runs such that decisions concerning the degree of consistency can be consciously made.Comment: 23 page

    Behavioural Theory of Reflective Algorithms I: Reflective Sequential Algorithms

    Full text link
    We develop a behavioural theory of reflective sequential algorithms (RSAs), i.e. sequential algorithms that can modify their own behaviour. The theory comprises a set of language-independent postulates defining the class of RSAs, an abstract machine model, and the proof that all RSAs are captured by this machine model. As in Gurevich's behavioural theory for sequential algorithms RSAs are sequential-time, bounded parallel algorithms, where the bound depends on the algorithm only and not on the input. Different from the class of sequential algorithms every state of an RSA includes a representation of the algorithm in that state, thus enabling linguistic reflection. Bounded exploration is preserved using terms as values. The model of reflective sequential abstract state machines (rsASMs) extends sequential ASMs using extended states that include an updatable representation of the main ASM rule to be executed by the machine in that state. Updates to the representation of ASM signatures and rules are realised by means of a sophisticated tree algebra.Comment: 32 page

    A Behavioural Theory of Recursive Algorithms

    Full text link
    "What is an algorithm?" is a fundamental question of computer science. Gurevich's behavioural theory of sequential algorithms (aka the sequential ASM thesis) gives a partial answer by defining (non-deterministic) sequential algorithms axiomatically, without referring to a particular machine model or programming language, and showing that they are captured by (non-deterministic) sequential Abstract State Machines (nd-seq ASMs). Moschovakis pointed out that recursive algorithms such as mergesort are not covered by this theory. In this article we propose an axiomatic definition of the notion of sequential recursive algorithm which extends Gurevich's axioms for sequential algorithms by a Recursion Postulate and allows us to prove that sequential recursive algorithms are captured by recursive Abstract State Machines, an extension of nd-seq ASMs by a CALL rule. Applying this recursive ASM thesis yields a characterization of sequential recursive algorithms as finitely composed concurrent algorithms all of whose concurrent runs are partial-order runs.Comment: 34 page

    Logische Grundlagen von Datenbanktransformationen fĂĽr Datenbanken mit komplexen Typen

    Get PDF
    Database transformations consist of queries and updates which are two fundamental types of computations in any databases - the first provides the capability to retrieve data and the second is used to maintain databases in light of ever-changing application domains. With the rising popularity of web-based applications and service-oriented architectures, the development of database transformations must address new challenges, which frequently call for establishing a theoretical framework that unifies both queries and updates over complex-value databases. This dissertation aims to lay down the foundations for establishing a theoretical framework of database transformations in the context of complex-value databases. We shall use an approach that has successfully been used for the characterisation of sequential algorithms. The sequential Abstract State Machine (ASM) thesis captures semantics and behaviour of sequential algorithms. The thesis uses the similarity of general computations and database transformations for characterisation of the later by five postulates: sequential time postulate, abstract state postulate, bounded exploration postulate, background postulate, and the bounded non-determinism postulate. The last two postulates reflect the specific form of transformations for databases. The five postulates exactly capture database transformations. Furthermore, we provide a logical proof system for database transformations that is sound and complete.Datenbanktransformationen sind Anfragen an ein Datenbanksystem oder Modifikationen der Daten des Datenbanksystemes. Diese beiden grundlegenden Arten von Berechnungen auf Datenbanksystemen erlauben zum einem den Zugriff auf Daten und zum anderen die Pflege der Datenbank. Eine theoretische Fundierung von Datenbanktransformationen muss so flexibel sein, dass auch neue web-basierten Anwendungen und den neuen serviceorientierte Architekturen reflektiert sind, sowie auch die komplexeren Datenstrukturen. Diese Dissertation legt die Grundlagen für eine Theoriefundierung durch Datenbanktransformationen, die auch komplexe Datenstrukturen unterstützen. Wir greifen dabei auf einen Zugang zurück, der eine Theorie der sequentiellen Algorithmen bietet. Die sequentielle ASM-These (abstrakte Zustandsmaschinen) beschreibt die Semantik und das Verhalten sequentieller Algorithmen. Die Dissertation nutzt dabei die Gleichartigkeit von allgemeinen Berechnungen und Datenbanktransformationen zur Charakterisierung durch fünf Postulate bzw. Axiome: das Axiom der sequentiellen Ausführung, das Axiom einer abstrakten Charakterisierbarkeit von Zuständen, das Axiom der Begrenzbarkeit von Zustandsänderungen und Zustandssicht, das Axiom der Strukturierung von Datenbanken und das Axiom der Begrenzbarkeit des Nichtdeterminismus. Die letzten beiden Axiome reflektieren die spezifische Seite der Datenbankberechnungen. Die fünf Axiome beschreiben vollständig das Verhalten von Datenbanktransformationen. Weiterhin wird eine Beweiskalkül für Datenbanktransformationen entwickelt, der vollständig und korrekt ist

    A holistic approach to thermomechanical processing of alloys

    Get PDF
    New process design and control methods are needed for significantly improving productivity and reducing costs of thermomechanical processes such as hot metal forging. Current practices for accomplishing basic design tasks such as selecting the number of forming steps and specifying the processing conditions for each thermomechanical operation produce feasible solutions that are often far from optimal. Substantial improvements in effectiveness and efficiency can be realized through holistic approaches that optimize the whole system performance and not just individual subsystems such as workpiece material behavior, material flow in dies, and equipment responses. Recent progress in the application of dynamical modelling and process design techniques using ideal forming concepts and trajectory optimization are discussed. Monitoring methods for the on-line monitoring of the process and an intelligent forging system has been proposed
    • …
    corecore