
 

 

 

 

 

Enabling High Quality Executable 

Domain Specific Language 

Specification 

 

 

 

 

 

A thesis submitted to the University of Manchester for the degree of 

Doctor of Philosophy 

in the Faculty of Engineering and Physical Sciences 

 

 

 

 

 

2014 

 

 

 

 

Qinan Lai 

School of Computer Science 

  



2 
 

Table of Contents 

Table of Contents ......................................................................................................... 2 

List of Figures ................................................................................................................ 7 

List of Tables ................................................................................................................. 9 

Abstract ........................................................................................................................ 10 

Declaration ................................................................................................................... 11 

Copyright Statement ................................................................................................... 12 

Acknowledgement ...................................................................................................... 13 

Chapter 1. Introduction .......................................................................................... 14 

1.1 Motivation .................................................................................................... 16 

1.2 Research objectives ................................................................................... 20 

1.3 Contributions ............................................................................................... 21 

1.4 Research methodology .............................................................................. 22 

1.5 Thesis structure .......................................................................................... 25 

Chapter 2. Domain Specific Language Foundations ........................................ 26 

2.1 Programming language specification ...................................................... 26 

2.1.1 Concrete syntax ...................................................................................... 27 

2.1.2 Abstract syntax ........................................................................................ 28 

2.1.3 Behavioural semantics ........................................................................... 28 

2.2 Domain Specific Language development ............................................... 29 

2.2.1 DSL language specification ................................................................... 30 

2.2.2 Traditional ways of DSL development ................................................. 31 

2.2.3 Developing DSL by a model-driven approach ................................... 33 

2.3 Methods for defining DSLs ........................................................................ 34 

2.3.1 Review of DSL abstract syntax definition ........................................... 35 

2.3.2 Survey of semantic description approaches of DSLs ....................... 35 

2.4 Quality of DSL specifications .................................................................... 44 



3 
 

2.4.1 Model quality goals ................................................................................. 44 

2.4.2 Practice to improve quality of models .................................................. 45 

2.4.3 Requirements of high quality language specifications ...................... 47 

2.5 Summary ...................................................................................................... 51 

Chapter 3. Model-driven foundations .................................................................. 52 

3.1 Model-Driven Engineering ........................................................................ 52 

3.1.1 Meta-modelling ........................................................................................ 53 

3.1.2 Model-driven work flow .......................................................................... 54 

3.2 Semantics of UML ...................................................................................... 55 

3.2.1 Previous work to formalise the semantics of UML ............................ 55 

3.2.2 Foundational subset of UML ................................................................. 56 

3.2.3 Summary .................................................................................................. 56 

3.3 Action Language for fUML (ALF) ............................................................. 57 

3.3.1 Features of the ALF notation ................................................................ 57 

3.3.2 A tutorial of ALF ...................................................................................... 58 

3.4 Summary ...................................................................................................... 61 

Chapter 4. A Framework for Quality Language Specification (FQLS) ........... 63 

4.1 DSL syntax and semantics definition ...................................................... 63 

4.2 Architecture of FQLS ................................................................................. 65 

4.2.1 Definition layer ......................................................................................... 65 

4.2.2 Analysis layer .......................................................................................... 67 

4.2.3 Execution layer ........................................................................................ 69 

4.2.4 Summary .................................................................................................. 71 

4.3 A development process for DSL .............................................................. 72 

4.3.1 Software & Systems Process Engineering Meta-Model ................... 72 

4.3.2 Method content ....................................................................................... 74 

4.4 Summary ...................................................................................................... 83 



4 
 

Chapter 5. Defining DSLs using FQLS ................................................................ 84 

5.1 Defining DSL via ALF ................................................................................ 84 

5.1.1 Representing abstract syntax by ALF ................................................. 85 

5.1.2 Representing static semantics by ALF ................................................ 85 

5.1.3 Representing behavioural semantics via FQLS................................. 87 

5.2 Defining a Petri net language ................................................................... 90 

5.3 Defining Petri net language via ALF ........................................................ 93 

5.4 Discussion ................................................................................................... 96 

5.5 Summary ...................................................................................................... 99 

Chapter 6. Static analysis of DSL specifications using FQLS ....................... 100 

6.1 Extended static checking ........................................................................ 100 

6.2 Building static code analysers ................................................................ 107 

6.3 Bridging FQLS specification with fUML ................................................ 110 

6.3.1 Atlas Transformation Language ......................................................... 111 

6.3.2 Mapping ALF to fUML .......................................................................... 112 

6.4 Summary .................................................................................................... 117 

Chapter 7. Executing DSL specifications using FQLS .................................... 118 

7.1 Architecture of the code generation project ......................................... 119 

7.2 From ALF structural aspects to Emfatic ................................................ 122 

7.3 From ALF’s behavioural aspects to Emfatic ........................................ 125 

7.3.1 Generating statements ......................................................................... 126 

7.3.2 Generate expressions .......................................................................... 128 

7.4 Discussion ................................................................................................. 132 

7.5 Summary .................................................................................................... 134 

Chapter 8. Case study:  

                    Formalising Business Process Execution Language ......................... 135 

8.1 Introduction to WS-BPEL ........................................................................ 135 



5 
 

8.1.1 Compositing web services with BPEL ............................................... 135 

8.1.2 Structure of a BPEL process ............................................................... 137 

8.1.3 Execution of a BPEL process ............................................................. 141 

8.2 Scope of the case study .......................................................................... 142 

8.3 Defining abstract syntax .......................................................................... 145 

8.4 Defining behavioural semantics ............................................................. 147 

8.4.1 Execution model overview ................................................................... 147 

8.4.2 Variables ................................................................................................ 149 

8.4.3 Communication ..................................................................................... 149 

8.4.4 Semantics of Basic Execution ............................................................ 151 

8.4.5 Semantics of Structured activities ...................................................... 156 

8.4.6 Semantics of Scope and Process ...................................................... 158 

8.4.7 Correlations ........................................................................................... 160 

8.4.8 Abstract activities .................................................................................. 163 

8.5 Checking and testing the language specification ................................ 164 

8.6 Summary .................................................................................................... 165 

Chapter 9. Evaluation ........................................................................................... 166 

9.1 Evaluating the ALF-based BPEL specification .................................... 166 

9.1.1 Syntactic correctness/consistency evaluation .................................. 167 

9.1.2 Evaluating semantic correctness by testing ..................................... 167 

9.1.3 Evaluating model quality by software metrics .................................. 170 

9.2 Evaluating static checkers of the ALF Language Specification 

Framework ................................................................................................................... 179 

9.3 Limitations .................................................................................................. 181 

9.4 Summary .................................................................................................... 182 

Chapter 10. Conclusion and further work ............................................................ 183 

10.1 Conclusions ............................................................................................... 183 



6 
 

10.1.1 Summary of contributions ................................................................ 183 

10.1.2 Summary of evaluation .................................................................... 184 

10.2 Further work .............................................................................................. 185 

Appendix A. Complete specification of BPEL ..................................................... 187 

Appendix B. Guidelines for the FQLS process ................................................... 224 

Decide the semantic definition strategy ............................................................ 224 

Guideline: Behavioural semantics development .............................................. 225 

Guideline for developing behaviours ................................................................. 226 

Guideline for creating semantics definition architecture ................................. 227 

Guidelines for implements an external checking strategy .............................. 227 

Appendix C. List of errors sourced from static checkers of other languages. 229 

Bibliography ............................................................................................................... 232 

 

Word Count: 48307.  

  



7 
 

List of Figures 

Figure 1: Process of design research. ..................................................................... 23 

Figure 2: Components of language specification. ................................................. 27 

Figure 3: An example of a meta-model. .................................................................. 28 

Figure 4: Roles and products in the DSL development process. ........................ 30 

Figure 5: Components of translational approach. ................................................. 36 

Figure 6: Components of operational semantics. .................................................. 39 

Figure 7: Languages used in rewriting approach. ................................................. 40 

Figure 8: Languages used in weaving approach. .................................................. 42 

Figure 9: The context of model-driven workflow. ................................................... 54 

Figure 10: MDA workflow. ......................................................................................... 55 

Figure 11: Architecture of FQLS. ............................................................................. 65 

Figure 12: Workflow of analysis layer. ..................................................................... 69 

Figure 13: Overview of SPEM. ................................................................................. 74 

Figure 14: Phases of DSL development. ................................................................ 75 

Figure 15: Products and process phases. .............................................................. 75 

Figure 16: Developing abstract syntax. ................................................................... 77 

Figure 17: Develop behavioural semantics. ........................................................... 78 

Figure 18: Checking language specification. ......................................................... 79 

Figure 19: Testing language specification. ............................................................. 81 

Figure 20: Attaching behaviours directly to meta-model operations. ................. 87 

Figure 21: Attaching behaviours as separate operation rules. ............................ 88 

Figure 22: Variable and Statements meta-model. ................................................. 89 

Figure 23: Variable and Statements run-time meta-model. ................................. 89 

Figure 24: Attaching behaviours to a run-time meta-model. ................................ 90 

Figure 25:  The meta-model of a PNTD. ................................................................. 91 

Figure 26: Executable meta-model of PNTD. ........................................................ 94 

Figure 27: Defining semantics as activities. ........................................................... 96 

Figure 28: Checking name typos. ............................................................................ 97 

Figure 29: Checking non-existent properties. ........................................................ 98 

Figure 30: Validation package. ............................................................................... 109 

Figure 31: ALF text to model transformation. ....................................................... 112 

Figure 32: An example in the ALF grammar meta-model. ................................. 113 



8 
 

Figure 33: Arithmetic expression models in the ALF meta-model. ................... 114 

Figure 34: Compiled fUML model of getActiveTransition.  ..................... 117 

Figure 35: Generating Java code. .......................................................................... 121 

Figure 36: Project structure of the executor generator. ...................................... 121 

Figure 37: Graphical syntax of BPEL. ................................................................... 137 

Figure 38: BPEL and WSDL. .................................................................................. 138 

Figure 39: Abstract syntax of WSDL. .................................................................... 145 

Figure 40: Abstract syntax of BPEL. ...................................................................... 146 

Figure 41: Runtime meta-model of BPEL. ............................................................ 148 

Figure 42: State machine of basic execution. ...................................................... 151 

Figure 43: A flow activity that contains pick activity and links. .......................... 152 

Figure 44: Basic executions from runtime meta-models. ................................... 153 

Figure 45: Structured executions. .......................................................................... 156 

Figure 46: State machine of ScopeExecution.  ............................................... 158 

Figure 47: example of correlations ......................................................................... 161 

Figure 48: Illustration of correlations. .................................................................... 162 

 

  



9 
 

List of Tables 

Table 1: ALF syntax that is similar to that of Java. ..................................................... 59 

Table 2: Errors identified from established checker ................................................. 101 

Table 3: Errors identified in the BPEL case study. ................................................... 102 

Table 4: fUML analysis approaches ........................................................................... 111 

Table 5: Transformation languages. ........................................................................... 112 

Table 6: Mapping between ALF code and fUML models. ....................................... 115 

Table 7: Mapping from ALF to Emfatic. ...................................................................... 122 

Table 8: Mapping from ALF statements to Java. ...................................................... 127 

Table 9: BPEL handlers ................................................................................................ 139 

Table 10: BPEL basic activities. .................................................................................. 140 

Table 11: BPEL structured activities. .......................................................................... 141 

Table 12: Differences between BPEL 1.1 and 2.0. .................................................. 143 

Table 13: Added concepts in BPEL 2.0. .................................................................... 143 

Table 14: testing files .................................................................................................... 169 

Table 15: environments ................................................................................................ 170 

Table 16: LOC comparison. ......................................................................................... 173 

Table 17: Cychomatic complexity comparison. ........................................................ 175 

Table 18. Cognitive weights of control structures. .................................................... 176 

Table 19: Cognitive complexity comparison. ............................................................. 179 

 

  



10 
 

Abstract 

 

Domain Specific Languages (DSL) are becoming a common practice for describing 

models at a higher abstraction, using a notation that domain experts understand. Designing 

a DSL usually starts from creating a language specification, and the other tools of the 

DSLs are derived from the specification. Hence, the quality of the language specification 

can crucially impact the quality of the complete DSL tool chain.  

Although many methods for defining a language specification have been proposed, the 

quality of the language specification they produced is not emphasised. This thesis explores 

the quality of language specifications, and proposes consistency, correctness, executability, 

understandability, and interoperability as the key features that a high quality language 

specification processes.  

Given the importance of these features, this thesis designs a new language definition 

approach that is based on the newly published OMG standards, namely: the semantics of 

the foundational subset of UML (fUML), and the Action Language for fUML (ALF). This 

approach enables the creation of a language specification with the proposed criteria. 

Moreover, a software framework that simplifies the production of high quality language 

specifications is built. Finally, a software development process is developed, which 

analyses the roles, products, and activities in DSL specification development.   

The framework is demonstrated by defining the language specification of Business 

Process Execution Language (BPEL) as a case study. The BPEL specification is further 

evaluated, which confirms the desired quality features are processed.  

  



11 
 

Declaration 

 

No portion of the work referred to in the thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institute of learning. 

  



12 
 

Copyright Statement 

 

 

• The author of this thesis (including any appendices and/or schedules to this thesis) 

owns certain copyright or related rights in it (the “Copyright”) and s/he has given 

The University of Manchester certain rights to use such Copyright, including for 

administrative purposes. 

• Copies of this thesis, either in full or in extracts and whether in hard or electronic 

copy, may be made only in accordance with the Copyright, Designs and Patents 

Act 1988 (as amended) and regulations issued under it or, where appropriate, in 

accordance with licensing agreements which the University has from time to time. 

This page must form part of any such copies made. 

• The ownership of certain Copyright, patents, designs, trade marks and other 

intellectual property (the “Intellectual Property”) and any reproductions of 

copyright works in the thesis, for example graphs and tables (“Reproductions”), 

which may be described in this thesis, may not be owned by the author and may be 

owned by third parties. Such Intellectual Property and Reproductions cannot and 

must not be made available for use without the prior written permission of the 

owner(s) of the relevant Intellectual Property and/or Reproductions. 

• Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property and/or 

Reproductions described in it may take place is available in the University IP 

Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any 

relevant Thesis restriction declarations deposited in the University Library, The 

University Library’s regulations (see 

http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s 

policy on Presentation of Theses. 

 

  



13 
 

Acknowledgement 

 

I would like to express my greatest gratitude to my supervisor, Dr. Andy Carpenter, for 

his invaluable feedback, patient guidance, support, and encouragement.  

I would like to offer my special thanks to my external examiner, my internal examiner, 

and my advisor Dr. Renate Schmidt for their precious feedback.  

This thesis could not have been accomplished without my family and friends for the 

support they offered through these years. I would like to thanks my parents for their 

supports and help. My deepest thanks are to my wife, Ying Jing, for the support, help and 

love.  

Finally, I would like to thank the School of Computer Science of the University of 

Manchester for the financial support via the Overseas Research Scholarship.  

 

  



14 
 

Chapter 1.  
 
Introduction 

The history of programming languages shows them evolving from machine languages 

to assembly languages, then to third generation languages like Java or C++. An alternative 

way to see this is as enabling the use of higher levels of abstraction for specifying 

implementations. That is, specifications that contain less low-level detail and which are 

less dependent on a single platform. By using a higher-level language, a problem can be 

solved more quickly and the solution usually contains fewer errors. For example, consider 

using an assembly language or Java to solve the same problem. The assembly code 

requires developers to remember many different instruction words and memory locations, 

and the process is error-prone. On the other hand, the Java software would contain fewer 

code lines and would be easier to write and debug. 

Third generation languages are not the end of the programming language evolution. 

Language developers are seeking to raise the abstraction level further by creating new 

languages that have more concise and powerful syntaxes. For example, new languages, 

such as Scala, Groovy, Xpand1 and Google’s Go language include concepts like closure, 

higher-order functions and sequence expressions. Mature languages are also enhanced as a 

result of the development of newer programming languages. This can be seen in the 

development of Java 7 and Java 8 where support for simplified syntaxes, such as for 

multiple catch statements, and higher-level concepts, such as lambda expressions, are 

occurring. Thus, perceived deficiencies in existing languages lead to the creation of new 

languages, and the creation of new languages leads to the enhancement of existing 

languages. 

The programming paradigm is also changing. While the object-oriented programming 

paradigm is still dominant, newer languages absorb concepts from Functional 

Programming, and Aspect Oriented Programming (AOP) can make logic clearer, and 

produce code that is easier to develop and maintain [78]. Meanwhile, the development of 

newer frameworks also makes programming easier for certain application areas. For 

                                                 
1
 http://wiki.eclipse.org/Xpand 



15 
 

example, a well-supported domain is web application with frameworks such as Spring, JSF 

and Ruby on Rails widely used.  

One important aim of these technologies is to allow developers to focus on the problem 

that they are trying to solve. Therefore, by utilising these technologies, they can ignore 

many details that are not relevant to the problem. However, in all of the approaches 

mentioned, the focus is on the solution domain. In other words, although some high level 

concepts are supported, they still capture the details of the solution and developers must 

put effort into creating a solution from the problem. Modelling the solution rather than the 

problem means they could be trying to solve the wrong problem; moreover, modelling a 

problem using a language intended for defining solutions always involves unnecessary 

detail.  

A promising way of raising the abstraction of programming languages is to capture the 

problem directly using Domain Specific Languages. A Domain Specific Language (DSL) 

is a programming language designed for a particular domain or application area. Deursen 

et al.  [155] defines a DSL as 

 [a] “programming language or executable specification language that offers, through 

appropriate notations and abstractions, expressive focus on, and usually restricted to, a 

particular problem domain”. 

Compared to General-Purpose Languages (GPL), DSLs are more expressive for the 

domain they serve. DSLs are thought to be the next generation of programming languages 

[100]. However, it is not always possible to distinguish between GPLs and DSLs, because 

the main differences are the problem domain on which they focus. The term ‘domain-

specific’ is a relative concept when compared to general purpose languages  [156].  

Another way of raising the abstraction level is to use modelling. Models are the 

abstraction of a real system or problem, and are widely used as a way of expressing design 

blueprints. The Model-Driven Engineering (MDE) [134, 16] approach suggests focussing 

on models rather than on computing. It encourages the use of a high-level model to 

describe the system, and the entire implementation of the system can be automatically 

derived from the models by model transformations and code generation  [148]. DSL 

programmes and models share certain similarities, since both try to capture the problem 

domain via a higher-level abstraction language. Hence, the development of DSL and 

models are related, and they share various theories and tools.  

This chapter presents an overview of current DSL development and highlights the 

problems that motivated the research presented in this thesis. Section 1.1 motivates my 



16 
 

work, and is followed by Section 1.2 that introduces the research objectives and the 

hypothesis of the thesis. Section 1.3 highlights the contributions of the thesis. Section 1.4 

discusses the methodology of this project. Finally, Section 1.5 presents a structural 

overview of the complete thesis.  

1.1 Motivation  

DSLs are not new concepts. Examples such as UNIX shell have a longer history than 

that of most of the current GPLs. On the other hand, programming in DSLs shared many 

similarities to modelling. Both DSLs and models are ways of precisely and concisely 

describing a narrow domain. Indeed, DSLs provide a way of expressing models in such a 

manner that domain experts, who may not know programming, can use the notations they 

understand for development. To use models in MDE also requires the design of a language 

(abstract syntax) that is sufficiently expressive for the target domain that the required 

models can be specified. By first designing a DSL and then using it to solve problems, 

MDE has demonstrated higher productivity level with fewer errors than traditional 

software development approaches that separate design and implementation [102].  

Developing a useful (domain specific) language entails not only defining its syntax and 

semantics, but also creating support tools, such as editors, executors (either compilers or 

interpreters) and, possibly, verifiers. Historically the creation of DSLs has been held back 

by the high cost of developing this tooling [144]. The characteristic of MDE to define 

things, including languages, by models and then use these models as inputs to 

transformations and generators means that with the appropriate transformations and 

generators, DSL support tooling can be created from a model of the language drastically 

cutting the cost of creating this tooling. This application of MDE is referred to as Model-

Driven Language Engineering (MDLE).  

MDLE has provided good support for the development of domain specific programs 

expressed in a DSL. Code editors (textual and graphical), tools for checking the well-

formedness of programs and code generators can be produced by tools developed as part 

of the Eclipse Modelling Project (EMP). There are also many other commercial or open 

source projects that can provide some or all of this support [43]. However, an important 

aspect of a language specification, namely behavioural semantics, is not well supported by 

MDLE.  



17 
 

Behavioural semantics refers to the rules used to execute a programme. It is noted that 

some languages are designed purely for structural modelling and do not have execution or 

evaluation semantics. Although such non-executable languages still have semantics, this 

thesis concentrates only on the behavioural semantics of executable DSLs. 

As an important aspect of a DSL specification, behavioural semantics should be clearly 

defined. However, in practice, they are often defined by English prose or a reference 

implementation with, hopefully, consistent prose. Although prose makes the specification 

accessible to a wider audience than a technology based description, it has many limitations. 

In particular, as natural languages are subject to readers’ interpretations, it can be 

ambiguous. Also, because the specification cannot be automatically processed, executors, 

simulators and debuggers cannot be derived from the DSL specification.  

The definition of behavioural semantics is shifting from a prose-based one to a 

formally specified one. Several approaches to formally defining behavioural semantics 

have been adopted by real-world DSLs (see Subsection 2.2.3 for examples). However, 

many researchers have identified defects in the published DSL specifications. If MDLE 

defines behavioural semantics as models, their quality is affected by the same factors as 

any model. The literature reveals that consistency, correctness, understandability, 

executability and interoperability are seen as the most important factors affecting the 

quality of models [101, 140, 103, 137, 19, 23].  

Consistency of DSL specification 

In DSL development, a common approach is to define the abstract syntax and 

behavioural semantics via different languages. The syntax domain and the semantic 

domain are then linked by a manual or automatic (but usually not bi-directional) 

transformation. Hence, it is possible that inconsistent concepts exist, such as the semantic 

definition referring to concepts that do not exist in the abstract syntax definition, or 

abstract syntax elements without semantics. The inconsistency between abstract syntax and 

the behavioural semantics of DSLs, which is also called the ‘fragmentation problem’ [137], 

can lead the two to evolve separately with undetected inconstancies affecting later 

developments. 

The Specification and Description Language Specification (SDL) [153] is an example 

of how syntax and semantics can evolve separately. The former version of SDL-2000 

defines syntax and semantics as two separated standards. In a major update - SDL-2010, 



18 
 

significant changes were made to the syntax; however, the semantic specification is still 

that of SDL-2000, in which these changes are not applied to the official language standard.  

Correctness of DSL specification 

Assume the language specification is consistent, it is still necessary to maintain the 

semantic correctness of the specification. Semantic correctness reflects whether the 

semantics of the DSL specification are as the language developers intended (see Section 

2.4.3 for details). The correctness of the language specification is an important factor that 

affects the quality of language specifications. An incorrect language specification can 

confuse its audience and can crucially impact the correctness of other products that are 

derived from it.  

In practice, the correctness of many DSL specifications is questionable. For example, 

Glaser et al. [42] examined the language specification of SDL-2000 and identified that 

there are thousands of errors in the specification. Similarly, Wilke and Demuth [160] 

performed a check on the UML specification, which identified that nearly 80% of its static 

semantics are incorrect. These examples demonstrate the need of DSL specifications 

development process to be improved.  

Executability of DSL specification 

The way of which a DSL is executed is defined as the executability of the language 

specification, the actual execution is done by an executor. While creating the DSL 

specification, the developers may develop a reference implementation in parallel. This 

reference implementation can be used to test the language specification and further 

maintain its correctness. When releasing the DSL specification, the reference 

implementation can also be released as a official executor.   

Due to the high cost of development, a reference implementation is usually not a 

compulsory part when releasing a DSL specification. It is possible that the behavioural 

semantics of a DSL has never been tested until its release, which results the released 

language specification uncertain quality. Thus, there is a conflicted interest between 

maintaining the quality of the DSL specification and reducing the development cost.  

Understandability of DSL specification 

The prime aim of models is communication and the target can be either humans or 

machines [132]. Traditionally, GPLs are developed by computer scientists who have 

fundamental programming language knowledge, which means that they may use one of the 



19 
 

many formal frameworks that exist for defining semantics using mathematical notations. 

Unlike GPLs, DSLs developers are often lack the knowledge to understand formal 

notations [65, 137].  

In contrast to the GPL, the semantics of DSL can be more complex. During the boom 

of multi-core and parallel computing, DSLs needed semantics that included the concepts of 

parallel behaviours, threads and signals. For example, reactive programming languages 

(Esterel [12] and HUME [63]) and process definition languages (BPMN [52], BPEL [147] 

and xSPEM [10]) contain concurrent concepts. However, existing development approaches 

fail to obtain both expressiveness and understandability, as will be discussed in the 

literature review chapters. The result is that the definitions of semantics are either not easy 

to understand or not easy to compose by normal DSL developers. Both factors result in a 

complex specification, which affects the understandability of the specification.  

Interoperability of DSL specification 

Although there are other ways of defining abstract syntax, the MDLE approach usually 

defines the abstract syntax of a DSL using the Meta Object Facility (MOF)[51] as a meta-

model. The MOF standard does not exist in isolation, OMG have other related standards, 

e.g. the MOF mapping to XMI, that means models can be moved between any tools that 

support these standards. Thus, abstract syntax descriptions are interoperable across 

multiple tools. In contrast, there is no widely agreed standard for defining behavioural 

semantics meaning many approaches have been used (see Section 2.3). Thus, behavioural 

semantic specifications are only usable by the original tools used to create them; i.e. they 

are not sharable.  

Quality assurance tasks for DSL specification 

There are various ways of ensuring the quality of the models. Many researchers 

proposed that modelling processes, automatic error prevention, simulation and conventions 

are practices for improving model quality [103]. Although it is desirable to apply these 

methods to a DSL specification, as the number of DSL users is very small, it is only worth 

doing so if the cost thereof is small. The current state of defining DSLs uses separates 

specification languages with limited expressiveness, which makes it difficult and not cost-

effective to improve the model quality of DSL specifications. The ways of maintaining 

model quality are expanded in the literature review chapters.   

In summary, developing the semantics of DSLs while retaining the quality thereof is a 

challenging task. Inconsistent, incorrect and complex semantics affect the quality of DSL 



20 
 

specifications. On the other hand, a high quality DSL specification should be consistent, 

correct, executable, interoperable and understandable.  

1.2 Research objectives 

The literature review identifies that current approaches to defining DSL specifications, 

especially behavioural semantics, lack quality assurance and that many of the existing 

semantic specifications for DSLs are of low quality. The main causes of this are:  

• The separation of abstract syntax and behavioural semantic definitions which 

allows inconsistency between the two elements.  

• The limited expressiveness of modelling languages causes DSL specifications to be 

complex and not easily understood.  

• The lack of executability makes it difficult to test the specification, thus leading to 

an incorrect specification .  

• The lack of interoperability makes DSL specification not processable by a wide 

ranges of machines , which results in having less tool support.  

The DSL specification is used as the basis for understanding the language, and is the 

guide for related tool development. Thus, investigating ways of ensuring the quality of 

DSL specifications is a significant task. There are several properties proposed as the 

features of a high quality DSL specification, which can be categorised as follows: 

• Features can be addressed by a DSL definition approach. Interoperability and 

understandability are features of the DSL definition approach.  

• Features can be addressed by a DSL development methodology. Correctness, 

particularly semantic correctness, cannot be guaranteed by a specification method 

because it relies largely on the interpretation of the language engineer. However, by 

applying a proper development methodology and by using proper tools, the errors 

in the specification can be identified more easily.  

• Features can be addressed by both the DSL definition approach and development 

methodology. This includes the consistency and the executability of DSL 

specification. Creating a mechanism to ensure the consistency automatically is one 

way of dealing with the inconsistency. On the other hand, since the inconsistencies 



21 
 

are caused by defining DSL separately, it is promising to use a method that could 

define them in the same language.  

As indicated above, a DSL specification would be of a high quality if a proper DSL 

definition approach, development method and tools were to be used. Since defining DSL 

in a unified manner could eliminate inconsistency errors, this thesis focuses on using a 

unified definition approach. The hypothesis of this thesis is therefore: 

Hypothesis: 

Given the importance of the DSL development, if a highly expressive, interoperable 

modelling language were to be applied for defining both the abstract syntax and the 

behavioural semantics, and if the development were supported by proper software 

development method and tools, the DSL specification would be of better quality in terms 

of consistency, correctness, understandability and interoperability.  

Thus, the research objectives are 

• To investigate the requirements of a high quality DSL specification.  

• To design an approach that could define a DSL in a unified manner, fulfilling the 

requirements of a high quality DSL specification.  

• To develop a framework to support the software development process that assists 

in the development of DSLs.  

• To create a software development process that applies the newly defined approach.  

1.3 Contributions 

The contributions this thesis made can be categorised as scientific contributions and 

technical contributions.  The scientific contribution can be summarised as: 

• A new approach for defining a pure, model-based DSL specification in a unified 

manner is designed. The new method is based on the newly published OMG 

standard fUML/ALF, which defines abstract syntax and behavioural semantics in 

one interoperable modelling language. The unified definition makes the automatic 

identification of inconsistency errors possible. It also makes specifying concurrent 

behaviour and concepts of threads possible, without sacrificing understandability.  

The thesis also made three technical contributions:  



22 
 

• A software framework for defining DSL and performing various quality assurance 

tasks is developed. It enables the definition of a DSL specification, performing a 

static analysis and report errors, bridging the definition domain/analysis domain, 

building test DSL programmes and testing the behavioural semantics.  

• A modelling process for defining the DSL specification, which applies quality 

assurance of the DSL specification directly rather than leaving quality assurance to 

the implementation stage, is proposed as a SPEM model. It includes roles, activities, 

and guidelines.  

• The thesis also confirms that, though fUML is designed to give UML semantics, it 

can also be used to define the semantics of a wider range DSLs. This is 

demonstrated by defining the Petri net example (see Chapter 5) and the BPEL case 

study (see Chapter 8). 

1.4 Research methodology 

In Section 1.1, a set of problems in current model-driven language engineering is 

identified. To solve these problems, it is necessary to design a solution. Hevner and 

Chatterjee [67] summarised that “all design begins with the awareness of a problem”. The 

known frameworks in design science research all started with problems, followed by the 

design of a conceptual framework, a prototype or a real product, and the evaluation of the 

design. Examples include [151] and [154]. In this section, the process of design science 

research followed by this thesis is illustrated.  

The Design Science Research Methodology  

Hevner and Chatterjee [67] extended Vaishnavi and Kuechler [154]’s work and 

formulated the activities in design research as a six-step-process, which is illustrated in 

Figure 1. The same process is followed in this research. 



23 
 

 
Figure 1: Process of design research.  

Problem identification and motivation 

This step involves defining the research problems and justifying the value thereof. The 

problems were previously identified in Section 1.1.   

Define the objectives for a solution 

By analysing these problems, a set of requirements is established, and the solution to 

these problems must have these features. In this thesis, the requirements of quality 

language specification are explored in Section 2.4.  

Design and development 

This step includes creating and developing the solution. Due to the features listed in 

Section 1.2, different approaches to defining semantics are explored, according to which 

the design is constructed. The contributions of the thesis all involve design and 

development. The framework for defining a DSL based on ALF/fUML is designed, and 

the supporting tools, including code editors, model transformers and an executor are 

implemented to perform the defining and quality assurance tasks.  

Problem identification and motivation 

Define the objectives for a solution 

Design and development 

Demonstration

Evaluation 

Communication



24 
 

Demonstration 

Demonstration is an important step as it shows that the designed artefacts could solve 

one or more instances of the problem. This could involve experiments, simulation or case 

studies. In this research, the following features of our solution need to be demonstrated: 

• That ALF/fUML can be used for specifying the abstract syntax and behavioural 

semantics of a DSL. 

• The realisation of the software development process. When a software 

development process for DSL specification is designed, it must be demonstrated 

that it can be used in a real context, and that it is possible to perform quality 

assurance tasks, such as testing and static checking.  

These demonstration aspects are well suited to a case study. A case study that uses the 

new software framework to realise a DSL specification could demonstrate the usability of 

the framework, as long as the selection of the case study is capable of showing the features 

proposed in Step 2. Using the software development process to implement the case study 

could demonstrate the usability of the software development process, while simultaneously 

identifying defects in the process and identifying guidelines that could be reused.  

Evaluation 

Evaluation is the process of examining how well the design actually addressed the 

problem. In this thesis, evaluation includes:  

• Evaluating the DSL specification created in the case study and seeing whether the 

specification meets the requirements.  

• Evaluating the framework and the software development process to see whether 

they meet the design requirements.  

Communication 

Hevner et al. [68] proposed that communication of the researching findings and 

innovations to other, relevant audiences is an independent step of design science. Aspects 

of the research solutions have already been published in several academic papers,  

[87] Qinan Lai and Andy Carpenter. Defining and verifying behaviour of domain 

specific language with fuml, BM-FA ’12, pages 1:1–1:7, 2012. ACM.  



25 
 

[88] Qinan Lai and Andy Carpenter. Static Analysis and Testing of Executable DSL 

Specification. In: Proceedings of MODELSWARD2013, Barcelona, Spain, 2013. 

INSTICC.  

1.5 Thesis structure 

This thesis is organised in three sections:  

Background 

Chapter 2 provides an introduction to the foundations of domain specific language 

development. It also includes the literature review of the current DSL development 

approaches. Finally, the model quality of DSL specifications are discussed and the 

characteristics of quality DSL specifications are analysed.  

Chapter 3 provides an introduction to the model-based technologies that are used to 

build the language specification framework.   

Design and development 

Chapter 4 gives an overview of a Framework for Quality Language Specification 

Framework (FQLS), which includes the software framework and the software 

development process.  

Chapter 5 introduces the language definition approach of FQLS and the definition layer 

of the FQLS by guiding the readers through a running example.   

Chapter 6 illustrates the analysis layer of the FQLS. It summarises the static checks 

that FQLS can perform and introduces the development of the checkers. It then explains 

how the FQLS enables the reuse of fUML checking approaches by a model-transformation.  

Chapter 7 introduces the execution layer of the FQLS and discusses the way in which 

the language specification is translated into Java code.  

Demonstration and evaluation 

Chapter 8 demonstrates the contributions of the thesis by applying it to defining a 

language specification for BPEL.  

Chapter 9 evaluates the FQLS by using the BPEL case study, conducting experiments 

on evaluating different parts of the framework.  

Finally, Chapter 10 concludes the thesis and proposes further work.  

  



26 
 

Chapter 2.  
 
Domain Specific Language Foundations 

This chapter introduces the foundations of domain specific language development. 

Section 2.1 explains the basic elements of any computer language specification. Thereafter, 

Section 2.2 introduces the process of domain specific language development. Section 2.3 

reviews the technologies used, especially those for defining behavioural semantics. Section 

2.4 considers the characteristics of a DSL specification and summaries the desirable 

features of a high quality language specification.  

2.1 Programming language specification 

A widely supported programming language may have many code editors and compilers 

that have been developed by various parties. However, all these tools support the same 

language syntax and semantics, because all these tools are implementations of the same 

language specification, as illustrated in the bottom of Figure 2. A language specification is 

an abstract definition of a programming language that covers one-or-more concrete syntax 

(what the user writes), abstract syntax (what the user expresses), behavioural semantics 

(how it is interpreted) and possibly the mappings thereof. 



27 
 

 
Figure 2: Components of language specification. 

Figure 2 also illustrates the relationship between the language specification and the 

language definition method. The concrete syntax, the abstract syntax, the mappings and the 

behavioural semantics form a language specification. The language specification is still 

needed to be expressed by some languages. The language that defines languages is a 

language definition method. The following subsections introduce the components of a 

language specification. After that, the language definition methods are reviewed in Section 

2.2.  

2.1.1 Concrete syntax 

Every language is represented by notation; this is true of both natural languages and 

programming language. The symbols and their possible sequences constitute the concrete 

syntax of the language. One thing to note is that a concrete syntax can be textual or 

graphical. It is common for textual concrete syntaxes to be defined using context-free 

grammars, typically Extended Backus-Naur Form (EBNF). Another thing to note is that a 

language may have several different concrete syntaxes. For example, RELAX NG [146], 

which has an XML syntax (suitable for processing by applications) and a compact syntax 

(suitable for human interpretation); this situation also occurs in OWL [124] and BPEL 

[147, 141].  

Language Specificationpackage DSML[   ]

......

Language definition method

Language Specification

Implementation1 Implementation2

Behavioural Semantics

Implementation N

Concrete Syntax Abstract SyntaxMappings

-definedBy

0..*



28 
 

2.1.2 Abstract syntax 

Abstract syntax defines the concepts of a language and the relationships between these 

concepts [25]. In traditional language design, an abstract syntax has a one-to-one 

correspondence with a concrete syntax and it is defined by the BNF for the concrete syntax. 

More recently in language engineering, it has become common to define an abstract syntax 

using a meta-model [112]. There are several possible notations for defining meta-models 

one of which is shown in Figure 3; although on first glance this looks like a UML class 

diagram, each ‘class’ represents a concept present in the abstract syntax and the 

‘associations’ relationships between these concepts. The process of linking an abstract 

syntax to a concrete syntax is done automatically, either by a parser or by transformation.  

 
Figure 3: An example of a meta-model. 

Associated with the abstract syntax are well-formed rules. These invariance or 

constraints are often specified by a constraint language, such as OCL [46], and are 

sometimes called static semantics. In this thesis, well-formed rules are treated as a part of 

the abstract syntax, and the word semantics indicates behavioural semantics, unless 

otherwise specified.  

2.1.3 Behavioural semantics 

Language semantics describes the meaning of concepts in a language. In natural 

languages, semantics can be defined as a mapping between the language concepts and 

concepts in the real world. The semantics of a programming language also defines the 

meaning of that language. It is still possible to define the semantics as mappings if such a 

mapping exists; however, computer scientists are more interested in how the programs 

executes in order to build an execution tool according to the semantics of the language.  

pnmlExamplepackage class[   ]

+initialMarking : Integer

Place

PetriNet

+name : String

NamedElement Transition

Arc

PnObject

Node
+inArcs

*

+target

+outArcs

*

+source

+objects *



29 
 

In the domain of executable programming languages, the semantics of a language is 

how the programs written in that language would execute on a computer [137].  This is 

also called behavioural semantics, execution semantics or dynamic semantics. This thesis 

choose to use the term behavioural semantics for representing how the programs are 

executed.  

Zhang and Xu [161] summarised three ways to formally define semantics, namely 

operational, denotational and axiomatic. Denotational semantics gives the meaning of 

programmes by defining mathematical functions or denotations that map the abstract 

syntax of the programme to a semantic value. It corresponds to the construction of a 

compiler. The compiler generates target code that is assumed to have meaning in the target 

machine.  

Operational semantics describes the meaning of a programme as a sequence or as the 

execution history of state transitions. The sequences are specified as operational steps of 

an abstract machine. Operational semantics correspond to the construction of a programme 

interpreter; the execution steps describe how the program is interpreted in a machine, using 

the same notations as the abstract syntax. The most widely used notation for defining 

operational semantics is Plotkin's SOS approach [121], which uses mathematical language 

to capture the transition rules. 

Finally, axiomatic semantics use a different mechanism, which does not directly define 

a method that could be used to execute the programme, but defines a set of assertions that 

express the correctness of the programme or the equivalence of the programmes.  

In the development of semantics for GPLs, the approaches used are all mathematical 

notations. This is because these rigid and concise specifications enable analysis, they are 

understandable to GPL developers (who are mainly computer scientists who are used to 

working with formal notations) and because it is possible to abstract GPL semantic 

concepts in mathematics without losing meaning. However, the same principles do not 

hold for DSL semantic development, as will be discussed in the next section.  

2.2 Domain Specific Language development 

This section reviews the basic concepts and methods for DSL specification 

development. Subsection 2.2.1 discusses what is the contents involved in a DSL 

development process. Subsection 2.2.2 reviews the traditional methods for DSL 



30 
 

development. After that, Subsection 2.2.3 introduces the DSL development by a model-

driven approach.  

2.2.1 DSL language specification 

The content of a DSL specification depends on the purpose of the DSL specification. 

There are two examples of the purposes. A DSL specification can purely defines the 

language itself; or it may contain sufficient details that allow various tools to be built as 

well, for example, executors or verifiers. In the latter case, a DSL specification may 

contain examples and tutorials in addition to language syntax and semantics.  

Multiple tools can be built as implementations of the same specification. In order to 

allow this, a form of platform-independence is needed in a DSL specification. In addition, 

a level of formality is needed in the specification. It is not a requirement to build the 

language specification by mathematical language; however, the language that used to 

define the DSL specification must prevent different interpretations of the same language 

specification.  

Kelppa [80] summarises that there are two distinct phases in the life cycle of a DSL. In 

the first phase, the language is designed, which produces a language specification and 

usually also provides reference implementations of support tooling. The other phase is the 

use of the language. By using the specification and the tools created in the first phase, 

domain experts create DSL programmes.  

These two phases involve three different roles, as shown in Figure 4, which are the 

language engineers who create the language specification, the language tool developers 

who create supporting tools, and the DSL users. During the design phase, it is common for 

the roles of language designer and tool developer to overlap. 

 

 
Figure 4: Roles and products in the DSL development process. 

As Figure 4 shows, language specification is at the top of language development. It is 

the basis of language tools and provides instructions for using the language. The main aim 



31 
 

of language specification is to be interpreted either manually or automatically by language 

tool developers and users. To allow this interpretation, the specification must be 

understandable to people not familiar with special language design notations. However, 

because the correctness of the DSL tools and DSL programmes depends on the correctness 

of the specification, the language used to define the specification must allow at least a 

basic validation of the specification. Since the language specification is used in various 

roles, understandability and correctness are the two main aspects of the quality of a 

language specification.  

When talking about understandability, it is necessary to discuss the knowledge that the 

roles involved in the DSL development process. Language engineers understand the 

process of MDE; therefore, they can use the technologies in the MDE domain. The 

language tool developers know the principles of MDE; however, they may not be familiar 

with all the technology in the MDE domain. For example, the developers that create DSL 

code analysers may only need to use a GPL and use API to parse serialised models directly 

into Java classes. Thus, they do not necessarily know how to perform a model 

transformation. Here, the only assumption of the language tool developers is that they have 

a general computer science background, and they know programming and UML.  

The language users are domain experts; thus, they are seen as not have any 

programming background. However, since a large amount of DSLs are designed for the 

domain of software development, the DSLs are used by developers. As a result, if a 

language user seeks ultimate guidance from the language specification, the user must be an 

advanced user and must be confidently working with UML.  

2.2.2 Traditional ways of DSL development 

GPLs usually use a context-free grammar for defining the syntax, which results a 

unified abstract and concrete syntax definition. Conversely, tools such as executors are 

built from scratch. DSLs share many similarities with GPL, although it has distinct 

features, which are listed as follows: 

• A small number of users means that it must be developed at a low cost and reuse 

tools rather than building tools from scratch [71]. 

• The syntax prefers graphics, or multiple syntaxes [75]. An example is RELAX NG, 

which has an XML-based surface syntax and a compact syntax that is easier to be 

understood by humans.  



32 
 

• The developers of DSLs can be computer scientists who are equipped with the 

relevant knowledge of language engineering but, in MDLE, they are more likely to 

be developers of normal software [79].  

• The DSLs can evolve in fast-pace, while GPLs are slow and often standardised 

[156]. This requires the necessary support of modification of the language 

definition.  

Many traditional ways of building DSLs aim to provide tool reuse. One widely used 

method is to define the DSL using the pre-processing ability of a GPL; hence, the existing 

tools for the GPL can be reused. An example is defining the DSLs as macros, as in the 

case of SystemC [113], which used the existing pre-process mechanism of C/C++ to 

generate the target language. Another group of examples includes the approaches that use 

the syntax extension mechanism of functional programming languages (LISP or Groovy). 

The functional programming paradigm can be used to define grammar, whereafter a DSL 

programme can be written as a valid programme in the functional programming language.  

The pre-processing approaches could reuse the existing target language platform. On 

the other hand, this also means that the DSL is platform-specific to the target language. 

The syntax of macro-based DSLs is limited by the target language, which does not support 

multiple types of syntaxes. It also requires the designer to know the target language well, 

because expanding macros can result in unexpected occurrences [92].  

Another way of developing DSLs is by using parser-generators. Parser-generators 

could be used to derive a parser that transforms the concrete syntax of the DSL into an 

abstract syntax tree, such as JavaCC2 or ANTLR3. It is possible to use the same technology 

to build compilers or interpreters for GPLs. Parser-generators are also limited to textual 

notations. Moreover, because DSLs have a fewer users than do GPLs, building tools for 

them from scratch is costly.  

In order to advance the use of parser-generators, language working benches like 

ASF+SDF [17], LISA [109] and the MOSES [36] framework, are special software tools 

that aim to ease the process. They could use BNF for building syntax and they can 

generate code-formatter or even executors from formal specifications. While these 

approaches can build DSLs, because they are built on special platforms, the language 

                                                 
2
 https://javacc.java.net/ 

3
 http://www.antlr.org/ 



33 
 

specifications are difficult to reuse and are not interchangeable. As a result, these 

approaches have limited usage and seems out of date [40, 109].  

Another embedded approach is to use the target language only as a tool for parsing; for 

example, using a restricted general-purpose language for representing a DSL (for example,  

[94] uses Smalltalk). This approach can be seen as giving an existing language new 

semantics.  

Although the traditional ways of developing DSLs support the reuse of the tools, they 

face the challenges listed below: 

• They bind the language specification to textual, single concrete syntax languages.  

• They link the DSL to a particular GPL or to a language development framework.  

• They require advanced knowledge of the target GPLs in order to develop the 

macros.   

• They combine the specification with its implementation, which may cause the 

absence of a language specification. In this case, the only way to understand the 

semantics of the language is to inspect the implementation of the language. 

2.2.3 Developing DSL by a model-driven approach 

Model-driven approaches take models as the key artefacts in the development process. 

By building platform-independent models and finally transforming them into working 

software, model-driven approaches have developed rapidly in the last decade. A detailed 

description of various model-driven terms is given in Chapter 3. In this subsection, ways in 

which a model-driven approach could benefit DSL development are discussed.  

A model-driven approach analyses the domain of the problem and definitively models 

a representation of the problem. In the domain of DSL development, a DSL can be 

represented as a language model (as shown in Figure 2), where the meta-model is a model 

that could define the syntax and semantics of any DSL. The problem of building a DSL 

then becomes building the language model of the DSL, and this language model is the 

same as the language specification because a language specification is an abstract model 

that defines the language.  

If a language specification is developed as a language model, then all benefits of 

model-driven approaches can be achieved. In the domain of model-driven language 

engineering (MDLE) [25, 43], the limitations of traditional approaches discussed in the 

last section can be eliminated. The benefits are summarised as the following: 



34 
 

• MDLE defines the abstract syntax of language specifications as platform-

independent models, which allows for graphical syntax or for having multiple 

kinds of syntax.  

• The language models are not tied to a particular target GPL.  

• By transforming models to various artefacts, the complexity of building DSL tools 

is reduced.  

• For language specification development, MDLE could produce a clear language 

model that can act as the language specification; thus, readers could research the 

language models rather than the implementations4.  

MDLE has become an extremely promising approach. Consequently, many DSLs now 

have a model-based specification, which could be categorised as follows: 

• DSLs that are officially defined as models, for example SysML [57], MARTE [56] 

and BPMN [52]. 

• DSLs that are officially defined in other ways, although the working groups are 

shifting towards a model-based language specification, such as SDL [122] and 

Petri Net Mark-up Language[14].  

• DSLs that are officially defined by other means, but which have a widely used, 

model-based implementation, such as BPEL (enabled by BPEL designer project) 

and ASM [86], and ontology definition languages such as OWL (enabled by the 

Ontology Definition Meta-model [49]). 

2.3 Methods for defining DSLs 

This section provides a literature review of the state of the art of MDLE. Although the 

focus of this review is the definition of behavioural semantics, these are linked to the 

abstract syntax of a DSL. Thus, before looking at behavioural semantics, the definition of 

abstract syntax is first considered.  

                                                 
4
 Later, in section 2.3.2, the limitations of MDLE in defining the semantics of a language will be introduced.  



35 
 

2.3.1 Review of DSL abstract syntax definition 

In MDLE, as introduced by [136], there are two widely used ways of defining abstract 

syntax; UML profiles and meta-models. UML profiles use Stereotypes to specialise UML 

elements to representing domain-specific concepts. Since UML aims at being a generic 

modelling language, it intentionally retained many semantic variation points. As well as 

specialising existing concepts, profiles can add constraints or explanations to these. Since 

the profile mechanism allows the use of existing UML tools, it immediately provides 

support for the creation of DSL programs. However, UML profiles cannot violate the 

semantics of UML. Thus, a DSL specification is its DSL profile plus all of UML, which is 

normally more than required by the problem domain In conclusion, it is considered [137] 

that UML profiles often provided inadequate expressiveness and lack precision .  

In the meta-model approach to defining the abstract syntax of a DSL, the syntax 

captured by a meta-modelling language like MOF [51], Ecore or Microsoft DSL toolkit5. 

When using this approach, the specification starts with a ‘blank sheet of paper’. Thus, it is 

possible to ensure that the final specification only contains elements appropriate to the 

problem domain. Of course, with this approach no tools directly support the creation of 

DSL programs. However, tools like Xtext [33] and GMF [39] do simplify the production 

of such tools. 

2.3.2 Survey of semantic description approaches of DSLs 

Bryant et al. [19] and Chaudron et al. [23] summarised that defining behavioural 

semantics is one of the most challenging topics in the MDE domain. One reason is that, 

unlike abstract syntax that has widely agreed means of defining it, there is no unanimous 

way of defining behavioural semantics. In principle, the means of specifying the semantics 

of DSLs are the same as those of specifying the semantics of GPLs.  The existing 

approaches for defining the behavioural semantics of DSLs can be roughly categorised as 

translational approaches (which involves a mapping from the language syntax to semantic 

domain) and operational approaches (which defines the semantics as operational rules).  

2.3.2.1  Translational semantics 

Translational semantics [40] explains the behavioural semantics of DSLs by translating 

the DSL concepts to another semantic domain of which semantics are well defined, and 

                                                 
5
 Now known as Modeling SDK for Microsoft Visual Studio. 



36 
 

then uses the concept from the semantic domain to explain the semantics of the target DSL. 

It is also called semantic anchoring [24].  

The components of translational approaches are illustrated in Figure 5. Translational 

approaches involve the abstract syntax domain, the transformation, and the semantic 

domain. The concepts from abstract syntax domain are translated to similar concepts in the 

semantic domain. These translated concepts are used as the structure of the semantic 

domain. The behaviours of the target DSL are then developed using the concepts in the 

semantic domain. Hence, it is possible to build a programme in the semantic domain that 

represents the behavioural semantics of the original language. The program can be 

executed by the executor for the semantic domain. By executing the program in the 

semantic domain, how the DSL program should be executed in the abstract syntax domain 

can be understood.  

 
Figure 5: Components of translational approach. 

 

Translational semantics are similar with denotational semantics. However, there are 

several differences. 

• Denotational semantics gives programming languages meaning by translating 

language concepts to another domain. However, the GPLs already contains 

sufficient details to create a transformation that can generate a complete program in 

Program in Semantic 

domain

Abstract syntax 

specification

A DSL program

Conform to

Transform

Semantic domainAbstract syntax domain

Executor for the 

semantic domain

Executed by

Semantics specification



37 
 

the target domain. In this case, when referring to the 'semantics specification', the 

specification only contains the transformation. In contrast, a translational semantics 

specification usually involves a mapping and additional programs that are written 

in the language of the semantic domain.  

• Denotational semantics for GPLs usually use mathematical notations and the aim is 

to explain the compiled results in a formal way. Implementations of the semantics 

compile the language source code to assemble the code. By contrast, translational 

semantics usually selects a semantic domain that is at a higher level than assembly 

code. The selection of semantic domains usually has a purpose, so the existing 

analysis approaches and tools of the programmes can be reused. Because the aim is 

to reuse, semantic domains are usually executable programming languages.  

• The mapping of the DSL concepts to the semantic domain concepts is usually done 

automatically. Even if it is not, there are ways of making automatic translation 

possible, usually by using a model-to-model or mode-to-text transformation.  

Abstract State Machines (ASMs) are widely used in describing language semantics. In 

this approach, an ASM programme first defines an abstract data structure of the state 

machine, and then defines a set of transition rules. In essence, a transition rule is like the 

pseudo code ‘if condition  then update states’ , where ’updates’ are a set of state 

modifications. ASM successfully defines the semantics of some widely used, general-

purpose languages, such as C#, Java, VDM, etc. According to Gurevich et al. [60], it is 

sensible to adapt the ASM method for DSLs. 

Semantic anchoring [24] is the initial attempt to formalise DSL semantics using ASM. 

It uses AsmL, which is the ASM implementation in Microsoft Visual Studio, as a semantic 

domain. It shows how to identify the so-called ‘semantic unit’, which can be reused for 

different DSLs. However, the process of finding semantic units is somewhat non-

systematic and ad hoc.  

Gargantini et al. [40] extended the semantic anchoring approach by defining higher 

level semantic anchoring in model-based technology. Compared to semantic anchoring, 

Gargantini et al. used meta-model based technology and the semantic domain is ASMETA 

[86], which is an open-source implementation of ASM based on modelling technology. 

Because the core of ASMETA is a meta-model of ASM, it is possible to establish model-

to-model transformations using standard model technology. Equally important, Gargantini 

et al. tried to formalising the process of establishing mapping between the abstract syntax 



38 
 

and ASM. They developed mapping between MOF and ASMETA; thus, the process of 

creating mapping is automatically derived.  

DiRuscio et al. [31] proposed a similar approach. It tries to extend the AMMA 

framework, which aims to provide a complete modelling toolset, of which the widely used 

model transformation language ATL is a part, by adding the ability to write ASM rules. 

Thus, the behavioural semantics specification can be defined in the enriched ATL 

programme by in-place transformation. [6, 127] use similar approaches; they focus on 

evaluating the ASM semantic mapping via DSL case studies that are more detailed.  

Maude [108] is a programming language based on rewriting logic, which is widely 

used in the domain of real-time embedded system specification and simulations that 

involve real-time and concurrency. [69, 138, 128] selected Maude as a semantic domain. 

They provided the methodology for translating the abstract syntax of the DSL to Maude 

data structures. The means of specifying real-time and concurrent concepts were discussed, 

and they eventually proposed a way of integrating a Maude-based model verifier to their 

frameworks. 

There are also other semantics domains in order to perform various analysis. For 

example, Hahn and Fischer [61] propose using Z-Object language to specify the semantics 

of the DSL. Kelsen and Ma [77] use Alloy as the semantic domain. If one considers GPLs 

to be a semantic domain, then works such as [74], which generate code from the language 

specification, can be seen as translational approaches.  

By translating to semantic domains, translational approaches can reuse the editors or 

checkers in the semantic domain to maintain the correctness of the specification, and 

translational semantics are usually executable. On the other hand, there are also some 

challenges of translational semantics, as listed below.  

• Consistency. It is possible that abstract syntax and behavioural semantics will 

evolve separately, causing inconsistencies. If no mechanism is applied for 

maintaining consistency, it is likely that updating one category will cause the other 

to expire. Although it is possible to develop a tool that automatically does the cross 

checking, such a tool is costly in terms of effort.  

• Understandability. Readers must understand the abstract syntax, the mapping, and 

the semantic domain, which requires understanding at least two languages. 

Considering that translational semantics usually has the purpose of performing a 



39 
 

certain targeted analysis, the semantic domain is usually formal. This is difficult for 

the language tool developers, and may even be impossible for the language users.  

• Interoperability. There are many possible choices for the semantic domain; thus, if 

two DSLs are defined by different semantic domains, interchange between the 

languages is nearly impossible and it is not possible to combine these two 

languages.  

2.3.1.2  Operational semantics 

Operational semantics originated from the methods of defining semantics for GPLs. It 

defines semantics as the rules for manipulating the concepts defined in the abstract syntax.  

Figure 6 illustrates the components of operational semantics. The semantics are defined 

as the transitional rules that manipulate the DSL programs by using the concepts defined in 

the abstract syntax.  The transition rules can be interpreted without ambiguity by an 

executor. The executor can then execute the DSL programs according to the transition 

rules. When creating a semantics specification by operational approaches, it is the 

transition rules that are actually created.  

 
Figure 6: Components of operational semantics. 

Abstract syntax 

specification

A DSL programme

Transition rules

Conform to

Executor

Uses

Input to

Executed by

Semantics specification



40 
 

The transition rules in operational semantics still need a method of specification. 

Unlike GPLs, the transition rules of which are captured using mathematical language 

(usually the notations used in [121]), DSLs often select an understandable language to 

express transition rules. There are two ways of defining these transition rules. The first is 

rewriting approaches, which define transition rules using a rule rewriting language that 

could directly manipulate the DSL instance model. The other is weaving approaches, 

which use an action language that is capable of defining both abstract syntax and 

behavioural semantics.  

Rewriting approaches 

As shown in Figure 7, the rewriting approach requires two languages, one for defining 

the abstract syntax of the DSL and the other for defining the rewriting rules. The rewriting 

rules can manipulate a DSL programme directly, thus expressing the semantics as 

transformations.  

 
Figure 7: Languages used in rewriting approach. 

 

There are many options for defining the rewriting rules. Graph transformation 

approaches, such as that of Biermann et al. [13], the Dynamic Meta-Modelling approach 

[35, 9], and de Lara and Vangheluwe [30], are examples. They use a graph transformation 

tool that could transform the DSL instances. The graph transformation tools include AGG 

Abstract syntax 

specification

Behavioural semantics 

specification (Transformation 

programme)

A DSL programme

Transformation language

Conform to

Conform to

Manipulate

Abstract syntax definition 

language

Conform to



41 
 

[107], Groove [41] and Henshin [7]. Because the transition rules of graph transformation 

approaches are graphic, these approaches are preferred by domain experts who lack a 

computer science background [142, 149]. On the other hand, graph transformations for 

defining semantics of DSLs also pose many challenges. Rensink [125] summarises these 

as graph transformations have problems of scalability (when a graph is too large to show), 

maturity (theoretical maturity and technical maturity) and that they lack of tools.  

In model-driven development, model-transformation languages can also be used for 

defining behavioural semantics. Examples include Baar [8], Sadilek and Wachsmuth [131] 

and Wachsmuth [157], which all use the QVT language. These approaches are strong in 

terms of interoperability, because QVT is the standard transformation language.  

No matter which language is used as the rewriting language, rewriting language still 

defines a DSL specification as using two languages. Maintaining the consistency between 

the models and the transformations in an evolving system is still a challenge, and the 

language engineers still need to learn two languages.  

Weaving approaches 

The other way approach is to weave behaviour into the language model. The abstract 

syntax model contains classifiers, the relationship between classes and attributes. The 

operations in a meta-model usually act as abstract placeholders. Weaving behaviour 

approaches use the operations as an aspect-joint point in order to add detailed behaviour to 

the meta-models by using an action language. These action languages have the ability to 

represent both abstract syntax and behavioural semantics; therefore, the language 

specification becomes a programme of the action languages, as shown in Figure 8.  



42 
 

 
Figure 8: Languages used in weaving approach. 

Action languages can be languages that are designed for model management, such as 

XOCL [25], Kermeta [18], Scheidgen and Fischer [132] or Epsilon [81]. These languages 

have their own features. For example, because Kermeta supports aspect-oriented 

programming, it works seamlessly with the Ecore model. Scheidgen and Fischer [132] 

uses graphical notations that enhance understandability, and Epsilon [81] is a platform 

whereby all management languages share syntax and a semantic basis. On the other hand, 

various action languages share similar benefits, as listed below. 

• High understandability. The human consumers of a semantics specification often 

have a programming background which means that they prefer UML. Using an 

action language to manipulate instance model concepts is readable for this purpose.   

• Elimination of inconsistency. Compared to translational semantics, in which the 

semantic mapping and consistency must be managed, weaving approaches do not 

have a separate semantic mapping; thus, there is no need to manage it. As it uses a 

unified approach for both the syntax and the semantics, inconsistencies that occur 

in translational approaches, such as outdated references, will result in a syntactic 

error in the language specification.  

Similarly, they also share the same limitations.  

Action language

A DSL programme

DSL specification

Conform to

Manipulate

Abstract syntax

Behavioural 

semantics

Conform to



43 
 

• Lack of interoperability. It is impossible to share or combine languages that are 

defined in different action languages. These action languages, although they are 

maintained and are actively developing, are not standard technology because their 

use is not widely agreed upon, nor are they widely used.   

• Limited expressiveness. The action languages are usually similar to GPLs. They 

need a starting point, such as a main method to execute. In addition, existing 

weaving approaches do not natively support concurrent behaviours; thus, the 

specification of current behaviours requires using the language to define a 

concurrent programming architecture.  

UML as a weaving approach 

In order to address the limitations of weaving approaches, researchers look for 

inspiration from UML. In MDLE, meta-modelling languages such as MOF and Ecore are 

the de facto standard for abstract syntax. There is a close relationship between meta-

modelling language and UML, as MOF and Ecore are a subset of UML class diagram. It is 

considered promising if a subset of UML could be used for defining both syntax and 

semantics, since UML already has the ability to define behaviours. The challenge is that 

UML does not have formal execution semantics – the semantics of UML are defined by 

prose, with indented semantic gaps.  

Sunyé et al [150] proposed using UML Action Semantics [44] as an action language 

for defining semantics. Since UML action semantics is an OMG standard, it could 

introduce interoperability into weaving approaches. Although the action semantics 

approach was proposed a decade ago, the use thereof is very limited. The following 

challenges may explain why UML Action Semantics is not suitable as a standard method 

of defining language semantics. 

• As it was built upon UML 1.4, the syntax of UML changed dramatically from 1.4 

to 2.x.  

• It does not provide concrete syntax; instead, one action language needs to define 

the mapping between the meta-model of the action language and the meta-model of 

UML action semantics. Since there are many action language and none of them 

have obtained universal support, it is challenging to use it to create an 

understandable behaviour model.  



44 
 

• UML Action Semantics still lacks formal semantics, because its base semantics are 

described by natural language, which makes performing a formal analysis a 

challenge.  

The semantics of the foundational subset of UML (fUML) [55] have been published by 

OMG, which is a promising technology for addressing the existing problems of the 

weaving approach [137]. This thesis seeks a new DSL definition method by using the 

textual notation of fUML. In the same way, XMOF [96] shares similar opinions regarding 

the method of semantic definition. However, XMOF seeks to combine MOF with fUML 

by building a new modelling language that shares MOF and fUML concepts. XMOF and 

the method described in this thesis, although sharing some technological basis, can be 

distinguished by many aspects, such as the manner of defining models and the method of 

executing the DSL.  

Summary 

Translational and operational approaches can define a language specification formally, 

thus eliminating the limitations of a prose-based specification. However, each of the 

methods has certain limitations, and these limitations hamper the quality of the language 

specification.  

2.4 Quality of DSL specifications 

Many DSLs already have, or are evolving to, a model based specification, and much 

research focuses on the ways of defining a DSL specification that enables a particular 

analysis purpose. However, these approaches do not emphasise the quality of the 

specification. This section provides a introduction of the quality of models.  Subsection 

2.4.1 introduces the goals of model quality. After that, Subsection 2.4.2 reviews the 

practices to improve the quality of models. Finally in Subsection 2.4.3, requirements of a 

high quality language specification are proposed.  

2.4.1 Model quality goals 

Since the final products are derived from the initial models, the quality of these models 

could affect all products that are derived from them. Models can be checked at an early 

stage, enabling any errors found to be corrected during the design process, at which time it 

is easier to identify them than after they are implemented. Language specifications are also 



45 
 

models, so the quality of a language specification shares similarities with the general 

model quality features. However, assuring the quality of the language specification is 

challenging, particularly considering the errors in widely used DSL specifications, such as 

UML and SDL. 

According to the literature [101, 103, 57], it is possible to classify the goals of model 

quality into two categories. 

The first goal is correctness. The models, as an abstraction of a real system, do not 

violate any properties that exist in the real system. This means that the model must not 

specify something that is wrong. [101, 103, 57] separate this goal into correctness and 

consistency. Correctness means the model is syntactically correct (well formed) and 

semantically correct (the logic and relationship of the abstraction conform to the real 

system). Consistency means ensuring that different models of the same system do not 

contradict each other, which can be seen as a special property of correctness. In the same 

way, incorrect models can be seen as inconsistencies between the model and the meta-

model. Regardless of the definition, a correct model is the pre-condition for applying 

model-driven activities, because an incorrect model will lead to incorrect systems.  

The other goal is communication. Models are read by both humans and machines; thus, 

they must be able to fulfil the purpose of communication. This means that models must be 

captured by a language that is understandable by the intended users of the models, and is 

interoperable between its users and tools.  

2.4.2 Practice to improve quality of models 

The quality of models seriously affects the quality of the final products. However, 

model quality is not easy to monitor, since many factors can affect the quality of the 

models. Factors such as the choice of an improper modelling language, limitations of tools 

and developer knowledge, as well as quality assurance techniques, can affect the quality of 

the models. Nelson and Monarchi [105] identified that most of the MDE processes lacked 

quality assurance activity. The lack of quality assurance restricts the quality of the models. 

Lassen  and Aalst [89] identified that complex models can cause many problems, including 

design flaws, and are difficult to implement. Thus, controlling the complexity of models 

can enhance the quality of the models.  

The practices for model quality assurance can be roughly divided into two categories, 

processes and automation [103]. Processes approaches create a modelling process that the 

modellers need to follow, which can include many factors 



46 
 

• The particular activities the developers need to follow, or the activities they need to 

enforce, include code review [98], using Agile [4], building reference 

specifications [26] or using a test-driven approach [142].  

• Guidelines and conventions, such as forcing the developers to use a particular 

modelling language (for example, UML) or a programming paradigm (for example, 

Cariou et al. [22] forces design by contract principle), documenting best practices 

and error-prone places.  

Automation is another way of maintaining the quality of the models. Automatic error 

detection and testing are widely used and effective ways of programming, and modelling is 

no different. It is more difficulty to apply automation in models because, when testing or 

simulating models, the models need to be executable and to have a good execution tool.  

There are many works aimed at automatic model analysis that transform models to a 

formal domain, which use reasoners or model checkers for the analysis. These include 

[119, 126, 28] for checking reachability and contradiction, [117, 118] for checking 

executability6 for detailed behaviours, and various approaches for checking the consistency 

of UML [34]. While these approaches are useful for checking the special properties of the 

models, they are limited by the reasons listed below. 

• Using a reasoned or model checking technology faces the problem of the state 

explosion problem, which makes checking large models difficult.  

• It involves knowledge that normal developers do not have.  

• A way of tracing the errors back to the original model is still needed when errors 

are identified.  

The formal approaches uncover various kinds of advanced errors in a language 

specification. Features such as reachablity are important. However, the current practice 

fails to reveal extremely basic errors, which should have been considered in the first place. 

Wilke and Demuth [160] and Glaser et al. [42] not only reveal the large number of errors 

in the language specification, they also identify that these errors are not tricky errors, but 

most of them are inconsistencies or syntax errors. Consequently, it is more desirable to use 

a method that could identify these simple errors.  

                                                 
6
 Here, the concept ‘executability’ is not whether the language specification can be executed as a 

programme, but to whether the system is still in a valid state after the execution of a method.  



47 
 

Static code analysis tries to find bugs or errors without executing the program. 

Researchers prove that they increase the quality of the software [70, 27]. It could involve 

using a type system, applying analysis based on bug patterns, restricting code styles, or 

involving use of theorem prover or model checking.  

2.4.3 Requirements of high quality language specifications 

While language semantics specifications are transforming from a prose-based 

specification to formal specifications, a definition method that can produce such a 

specification must have the following features: 

Consistency 

If a language specification is defined in different languages, these different parts must 

not be contradictory when several parts are combined as one language specification. The 

consistency discussed in this thesis is also referred to as horizontal consistency in some of 

the literature [103]. Horizontal consistency may occur when the language specification is 

defined by different languages or models, as each part is correct, but the concepts that 

cross paths are used incorrectly. For instance, when using translational semantics, the 

structure of the semantics specification is derived from the abstract syntax specification; 

however, as they have both evolved, the semantics specification may refer to an element in 

the syntax specification that has already changed name, or which does not even exist.  

Consistency is an important factor in a high quality language specification. Thus, a 

language specification method must design a method to ensure the consistency of the 

language specification.  

Correctness  

The correctness of the language specification is important, because the audiences rely 

on the specification to solve ambiguity, and machines use the specification as input for 

other products. Any flaw in the language specification will confuse the audience, and the 

flaw will propagate to any other products that rely on the language specification.  

It is possible to categorise the correctness of a specification as syntactic correctness 

and semantic correctness. If a language specification is syntactically correct, this means 

that it does not violate the constraints of the language definition technique. For example, if 

the abstract syntax of a language is defined as a model, it must be a valid model of its 

meta-model. Another example is when the semantics of the language are defined in a 

particular language, the semantic specification itself must be a valid programme of that 



48 
 

definition language. Syntactic correctness is the basic condition that a correct language 

specification has to meet.  

The other category is semantic correctness. The specification must really reflect the 

language designers’ intentions. A semantically incorrect language specification may be a 

syntactically correct specification; however, such a language specification describes an 

incorrect language for the application domain.  

The syntactic correctness of a language specification can be ensured by applying 

automation methods, such as developing a tool for checking syntactic errors. Semantic 

correctness of the language specification is not easily checked by a single tool, since the 

semantic correctness of a language is subject to human interpretation. A software process 

that combines inspection and testing is one way of ensuring semantic correctness.  

Executability  

The syntactic correctness of a language specification can be automatically checked, and 

errors will be reported to the language designers. However, the semantic correctness of a 

language specification is not easy to check, as it involves the same difficulty as debugging 

a programme that has been successfully compiled. Thus, testing is the most effective way 

of checking semantic correctness. Testing requires the language specification to be able to 

act as an executor of the language, which can load an input programme and output the 

results. In addition, executability is also expected when working with domain experts, as 

the domain experts judge whether a programme ends with the expected behaviour. 

Understandability 

A language specification must be widely accessible; this is why many language 

specifications use natural language, because anybody who can read can access the 

language specification. However, such a specification usually cannot prove or disprove 

one example of a programme as being correct or wrong, nor can be automatically 

processed. On the contrary, a specification that uses pure mathematics makes it possible to 

prove correctness, but is not accessible to the audience of the specification. Much of the 

literature [137, 65, 79] suggests that mathematical definitions are not preferred due to a 

lack of knowledge. Thus, a language definition technique must balance the formality and 

the accessibility of the specification.  

The primary audience is the language engineer, who wrote the specification, and 

language tool developers, who use the language specification as their product input, and 

advanced language users, who are the users that are interested in the language specification 



49 
 

itself. The normal users may also be interested in the language specification. However, a 

language specification is not the best way to learn how to use a language. Thus, domain 

experts who do not have any programming language experience are not the target audience. 

The language engineers, language tool developers and advanced users have different 

knowledge, but it is reasonable to assume that they have some experience in UML, model-

driven technology and object-oriented programming.  

Expressiveness 

The method of defining a language specification can also be seen as a domain-specific 

language that targets defining languages. In such a situation, the language engineers are the 

domain experts for defining languages. The ability of the language they use affects their 

ability to design high quality language definitions.  

Expressiveness is another important feature of a language that is used to define 

language specifications. An expressive language specification technique should be able to 

define common semantics in a concise and precise way, while a non-expressive approach 

may still be able to define the same semantics, albeit in a difficult way. Meanwhile, the 

expressiveness of a language is not an absolute concept. While graph transformations can 

naturally support concurrent executions, they do not support express rewritings that have 

complex conditions in a precise way.   

Model-based specification 

Language specification must be model-based, using meta-modelling technology, 

making it possible to achieve the various benefits discussed in Section 3.1.  

Interoperability 

Bryant et al. [19] discussed another desirable feature called dissemination, which is the 

ability to share the language standard among shareholders. The ability of a language 

specification to interoperate with other shareholders (either human or machine) is defined 

as interoperability.  

Many semantic definition techniques introduced in Section 2.3 have a special language 

or method to define the language concepts. Specially designed languages, although making 

a particular analysis possible, lack interoperability. A language specification is 

interoperable if the specification is defined using widely accessible technology. Such 

technologies are usually backed up by an international standard consortium, such as the 

OMG or ITU, or a large community, possibly an open source community, or are led by a 



50 
 

large industry player. Interoperability is an important aspect of a language specification. 

As it is an increasing requirement of composite DSLs, it must be accessible by other tools.  

• Using an interoperable standard notation to capture the models makes the models 

understandable by a larger community.  

• An interoperable specification can be accessed by other tools. A language 

specification is read by various actors in the development lifecycle of a DSL. If the 

specification is interoperable, different users can use their tools to access the 

language specification.  

• In the same way, considering the frequent requirement to transform a language 

specification to other representations for purposes of analysis, such a 

transformation may already be available if the specification is interoperable. 

• Interoperable specifications make composite and reusable DSLs possible. The ideal 

scenario is that, if a DSL is defined using an interoperable approach, when the 

language engineers implement another DSL that shares domain concepts or 

semantics, the language specification can be reused. For example, if XPath is 

defined using an interoperable approach, then all XML-based languages contain an 

XPath expression, as their query language will benefit from the standard 

specification by reusing it.  

A development process for DSL 

A description method should be accompanied by a process and tools. The described 

technique can affect the quality of the specification. Although a method may support high 

quality language specification, it is still dependant on the language engineer’s work to 

design, analyse and implement the specification. A unified syntax and semantic 

specification can allow consistency and correctness checking to be done in an easier way, 

but such a task still needs to have a means of being performed automatically. Meanwhile, 

the language developers need assistance to carry out the language development process. 

Such assistance can be via conventions (general guidance, including rules, styles and 

design principles), methods (which recommend following a sequence of steps to gain 

quality), or a framework (which is a software or a tool chain that provides general 

functionality for performing the tasks in language development, and which can be 

extended by developers). All this assistance can be summarised as a software development 

process for language specification.  



51 
 

In summary, a model-based, interoperable semantic description technique that is 

unified, executable and expressive is needed. Such features make building consistent, 

correct and understandable language specification possible. To support this language 

specification method, a software development process and a software tool chain also need 

to be built.  

2.5 Summary 

This chapter introduced the foundational concepts in domain specific language 

development, and presented a literature review of existing approaches for defining domain 

specific language specification. Starting from the concept of a programming language 

specification, it is explained that such a specification includes concrete syntax, abstract 

syntax and behavioural semantics.  

Following this, the concept of domain specific language specification was defined. The 

actors involved in the development process of DSLs were defined as the language 

engineers, the language tool engineers and the users. The expectations of a high quality 

DSL specification were discussed.  

The literature review of existing approaches was presented as traditional approaches 

and model-driven approaches. Model-driven approaches were categorised as translational 

approaches and operational approaches.  

Finally, by discussing the quality of the specifications produced by these approaches, 

the thesis proposed that a model-based, interoperability, understandability, correctness, 

consistency, executability and expressiveness were features of a high quality DSL 

specification. These features could be achieved depending on what the selection of the 

language specification method and the degree of support in terms of the development 

process and tools.  

 

  



52 
 

Chapter 3.  
 
Model-driven foundations 

Section 2.2.3 discussed what benefits MDLE could bring to language development. 

Subsequent chapters of this thesis will show how the proposed language specification 

framework can achieved this. Before doing so, this chapter provides a general introduction 

to the model-based technologies that are used to build the framework.  

As MDLE is a specialist form of Model-Driven Engineering (MDE), Section 3.1 

outlines the elements of MDE that relate to the proposed framework. One significant 

aspect of the framework is the support for defining the semantics of a language. As the 

approach used builds on work being done to give UML formal semantics, Section 3.2 

examines attempts to define formal semantics for UML and Section 3.3 introduces the 

ALF technology that forms the basis of semantic definitions in the proposed framework.  

3.1 Model-Driven Engineering 

The widespread use of UML diagrams in software development means that model are 

widely accepted has having a role in software development. However, often this is as blue 

prints or diagrams that informally document the design. Model-Driven Engineering (MDE) 

takes models and makes them first class entities; c.f. objects in object-oriented 

programming. Developers take the initial models and translate them into models 

(preferably automatically to reduce the cost) with more concrete (implementation) detail 

and, finally, these concrete models are used to generate an implementation.  

It is widely believed [155, 5, 32, 71, 102, 116, 84]  that MDE has several benefits; 

these include: 

• Increased understandability and communication. The audience for models consist 

of two groups, namely domain experts and application developers. By providing a 

vocabulary understood by both groups, MDE provides enhancement 

communication between these groups. In addition, because a model is not 



53 
 

dependent on users’ native language, MDE also enables international cooperation 

both within and between these groups.  

• MDE increases productivity. As MDE includes code generation, it can reduce the 

time needed to produce implementation code. Additionally, as it avoids the copy-

paste-edit processes often involved in standard code writing, implementation code 

has fewer errors and there is a reduction in the cost of maintenance. Further, the 

shift to developing at a higher leveller of abstraction means flaws are identified and 

corrected earlier in the design cycle, with the consequent improvements that result 

from this.  

Despite the benefits of MDE, there are drawbacks. One of these is the upfront cost of 

building models and supporting tools. Another is the challenge of changing the culture of 

an organisation to use MDE [71]. There have even been reports stating that MDE does not 

enhance productivity [32]. However, reports [76, 144, 16] of the successful application of 

MDE outweigh these drawbacks. Hence, the basic features of code generation from the 

models are provided in every modern IDE and many companies formally adopted MDE as 

part of their development process [102, 159]. 

Having established why a MDE approach has benefits, the following subsections 

discuss the definition and models (meta-modelling) and how these models are used in 

MDE workflows.  

3.1.1 Meta-modelling 

MDE takes models as first class entities. So, what is a model? Seidewitz [135] defines 

a model as “a set of statements about some system under study (SUS).” OMG [45] defines 

models as “A description or specification of that system and its environment for some 

certain purpose.” Muller et al. [104] summaries nine alternative definitions of models, and 

suggests there is no common acceptance of what is a model. Although there is no 

agreement on the definition of models, there is an agreement that models are abstractions 

that capture something about an application domain.  

Part of the previous definitions of models are that they are “descriptions and 

specification” [45]or “statements”[135]. This implies the need for a notation to 

capture/describe models that itself must conform to a definition. In the model-driven world, 

everything is assumed to be a model. Thus, the notation in which models are defined is 

also as model. To distinguish the fact that this is “ is a model of a modelling language”, or 



54 
 

more precisely, a model of models, it is normally referred to as a meta-model. From an 

MDLE point of view, a meta-model is the abstract syntax of a language; Ramsin and Paige 

[123] provide a more precise definition: “A meta-model is a description of the abstract 

syntax of a language, capturing its concepts and logic, using modelling infrastructure”. In 

this thesis, Ramsin and Paige’s definition is used.  

3.1.2 Model-driven work flow 

The context for an MDE workflow is shown in Figure 9. The goal is to produce the 

implementation artefacts that execute in the target platform (environment). This is 

achieved by a ‘top-down process’ of system construction that iteratively creates increasing 

more implementation oriented models [16].  

 
Figure 9: The context of model-driven workflow. 

The iterative model-refinement and final artefact generation step of Figure 9 is what is 

implemented in a model-driven workflow. The Model Driven Architecture [45] proposed 

by the Object Management Group is the best known realisation of this workflow. Probably 

the most significant thing about this workflow is that, as shown in Figure 10, it identifies 

models for different purposes. The development process starts with a Computation 

Model Artefacts

Modelling 

language/DSL

Meta-modelling 

language

Target Platform

Conform to

Execute on

Model-to-Model

transformation

Model-to-text 

transformation

Meta-level

Application domain

Application

Design Implementations



 

Independent Model (CIM) or domain model 

without giving details of how it

Independent Model (PIM) that

particular platform or technology. The PIMs are then combined with marking models that 

add platform specific

PSMs are enriched with further

regarding to the platform

generation or model interpretation.  

3.2 Semantics of UML

Currently the semantics of UML 

which allows for ambiguity 

semantics of executing actions

allows UML tool vendors 

attempts to formalise the semantics of UML and examines current work to do this based on 

a foundational subset of UML.

3.2.1 Previous work to formalise the semantics of UML

A detailed discussion of the need 

This need means many 

approaches include the use of

UML is a standard, one of its main 

Using a particular technology could 

a particular application. However, if the semantic definition of UML is not agreed

55 

Independent Model (CIM) or domain model that describes the expectation of the system 

without giving details of how it is implemented. The CIM is transformed to a Platform 

(PIM) that gives more detail about the system without 

particular platform or technology. The PIMs are then combined with marking models that 

add platform specific configurations to produce Platform Specific Models 

PSMs are enriched with further details of the system, including the necessary details 

platform. Finally the system is derived from these PSMs by either code 

generation or model interpretation.   

Figure 10: MDA workflow. 

Semantics of UML 

semantics of UML are defined by the English prose of the standard

ambiguity in human interpretation. There are also 

of executing actions, which leaves aspects of the semantics 

UML tool vendors to apply their own interpretations. This section outlines previous 

attempts to formalise the semantics of UML and examines current work to do this based on 

a foundational subset of UML. 

Previous work to formalise the semantics of UML

detailed discussion of the need for UML semantics is summarised

any researchers have tried to provide UML 

approaches include the use of Petri Nets [83] and graph transformation

a standard, one of its main purposes is to be interoperable 

Using a particular technology could provide with UML formal semantics and make it serve 

a particular application. However, if the semantic definition of UML is not agreed

describes the expectation of the system 

transformed to a Platform 

the system without tying it to a 

particular platform or technology. The PIMs are then combined with marking models that 

Platform Specific Models (PSMs). The 

details of the system, including the necessary details 

. Finally the system is derived from these PSMs by either code 

 

English prose of the standard, 

There are also semantic gaps, e.g. the 

of the semantics undefined and 

This section outlines previous 

attempts to formalise the semantics of UML and examines current work to do this based on 

Previous work to formalise the semantics of UML 

summarised by O’Keefe [110]. 

UML with formal semantics; 

and graph transformation [85]. However, as 

is to be interoperable among different parties. 

ormal semantics and make it serve 

a particular application. However, if the semantic definition of UML is not agreed upon by 



56 
 

most of the UML shareholders, this still does not solve the problem. UML action 

semantics [44] tried to define a standard method for manipulating models. However, it still 

does not define the semantics of UML, but provides a way of defining the behaviour of 

method bodies in a clearer way.  

3.2.2 Foundational subset of UML  

As a step towards giving UML formal semantics, OMG oversaw the development of 

the semantic foundational subset of UML (fUML) standard [55]. This standard provides 

execution semantics for a subset of UML2. The subset selects the more basic elements of 

UML2; e.g. classes, common behaviours, actions and activities. The intension is that 

fUML will provided a shared foundation for building the semantics of higher-level UML 

concepts.  

The subset of elements imported from the UML meta-model defines the abstract syntax 

of fUML. Its semantics are defined using a two-stage approach; firstly, the semantics of a 

core fUML, often referred to as base-UML, are created and then these are used as the basis 

of the semantics for complete fUML. The core covers the very basic concepts of UML, e.g. 

primitive types, control flows, edges and events. The semantics of this core are defined 

using Process Specification Language (PSL) [15] axioms; that is, first-order logic 

assertions and equivalence to the PSL ontology. This means that the semantics of base-

UML do not provide a means of interpreting UML models or mapping them to other 

languages. Instead, these semantics dictate constraints that a legal implementation of 

fUML must satisfy.  

fUML does have some semantic variation points, including time, inter-object 

communication and concurrency implementation. These variation points allow tool 

vendors to make their own interpretations when supporting the fUML standard. However, 

this semantics variation does not prevent higher-level semantics being defined in terms of 

elements that have this variation. Thus, although semantic variation points could be an 

issue, in practice they are not. For example, it is possible to specify that actions are 

executed concurrently, without knowing how the concurrency is achieved (using real 

concurrency on a multi-core platform or simulated concurrency on a single-core platform).  

3.2.3 Summary 

fUML became an OMG standard in 2008. Since then, tool vendors, including 

MagicDraw, IBM, and open-source projects, such as Model-driven solution’s 



57 
 

implementation [143] Papyrus, and [91], have developed native support for fUML or 

compatibility mechanisms. Hence, it is now possible to see fUML as a stable standard. A 

view reflected in the fact that recent work on UML semantics has included UML 

Composite Structures RFP [54] where these semantics are being expressed in terms of  

fUML. 

3.3 Action Language for fUML (ALF) 

As mentioned previously, the lack of a concrete syntax for fUML is a problem when 

using it to define semantics. The reuse of the UML graphical concrete syntax was 

considered/has been attempted [96]. However, using any graphical syntax for detailed 

behaviour modelling can result in verbose models, additionally some concepts, such as 

LoopNode, do not have a standardised graphic concrete syntax. In practice, behaviours are 

better captured using textual notations.  

Attempts at creating textual notations for describing behaviour include tool-specific 

action languages (such as the xUML [99] and IBM rational) and OMG’s UML Action 

Semantics standard. In addition to the failures of UML Action Semantics described in 

Section 2.3.1.2, none of these have the same scope as fUML. Thus, OMG developed the 

Action Language for fUML (ALF) [50] which acts as a true concrete syntax for fUML. 

ALF is a key part of the semantics definition approach proposed in this thesis. Thus, 

this section provides an introduction of the language. Firstly, the features of ALF are 

described. Subsequently, the syntax and semantics of ALF are introduced in order that 

ALF programs presented in later chapters can be understood. 

3.3.1 Features of the ALF notation 

The ALF standard highlighted the features of ALF: 

• The users of the community are already familiar with UML and an object-oriented 

language like Java or C++, which primarily have C-legacy syntax. UML-specific 

usage, such as double colon syntax for name qualification or colon syntax for 

typing, should also be supported. These syntax requirements result in the syntax of 

ALF being a combination of C-legacy and UML syntax.  



58 
 

• ALF supports reference to any models that are defined using the graphical syntax 

of UML, even when there are special characters in the model’s name. Furthermore, 

ALF does not need the models that are defined by UML graphical syntax to change.  

• ALF has special, highly expressive syntax, which has the same expressiveness as 

OCL. Because ALF semantics are built on fUML, it inherits the concurrent nature 

of UML, which allows the simple specification of highly concurrent computations.  

• It also provides notations for structured programming, such as classes, associations 

and signals, which means that ALF has the generality of a standard programming 

language. 

One significant difference between fUML/ALF and UML is that fUML models can be 

unambiguously executed, which enables the simulating/testing of the models before they 

are processed to other artefacts. The ALF standard specifies three ways of executing ALF 

programmes: 

• Compilative Execution maps ALF concepts to fUML and executes the fUML 

models. This is the approach applied by the ALF reference implementation and our 

former work [87]. This approach requires a good fUML executor; in our experience, 

there is still no available tool that could execute complex fUML models generated 

from ALF text.  

• Interpretive Execution directly interprets and executes ALF text. The approaches 

include ALF open source implementation and IBM rational designer. These 

approaches do not support the full specification of ALF language.  

• Translational Execution translates ALF text to a non-UML platform and executes 

the translation in the other platform.  

3.3.2 A tutorial of ALF 

The ALF standard separates the language description into three components, namely 

expressions, statements and units. Like other programming language, an ALF expression 

evaluates a specific value, which can be empty or can be a collection. Statements are like 

the statements provided in any other imperative programming languages that execute a 

behaviour with no specific values evaluated. The units define the structural aspects of 

fUML. 



59 
 

As indicated previously, ALF has Java-like syntax, this means that some concepts of 

ALF are identical to the equivalent Java ones both in terms of their syntax and semantics. 

Table 1 lists these identical concepts. This tutorial assumes that readers are already 

familiar with these. 

ALF also provided notations that are different from Java, which directly represents 

fUML concepts. The following paragraphs summarise these concepts.  

Name Example 

Expression  

Literal expression "String", 123, true, false 

This expression this.invoke() 

Super expression super.init() 

Property access expression student.name 

Invocation expression7 student.enrollToCource( course ) 

Arithmetic/logical expression 1+2, condition && condition2, etc. 

Statements  

local name declaration String s = "hello" 

let s:String = "hello" 

if statement if (condition) { 

}else { 

} 

switch switch (month) { 

case 1:… 

default: 

} 

while/do while statement while(condition){ 

} 

for statement for (int i=0; i<size; i++){} 

for (element in collection){} 

break statement break; 

return statement return value ; 

Units  

class public class Student{} 

public abstract class 
AbstractClass{} 

Enumeration  enum Color{RED, BLUE, GREEN} 

Table 1: ALF syntax that is similar to that of Java. 

                                                 
7
 The Invocation expression of ALF has another usage that Java does not have, which is sending a particular 

signal to an active class. 



60 
 

Tuple 

A tuple is a list of expressions that could be used for method invocation. ALF supports 

Java-like tuples, such as “expression1, expression2”. In addition, it also supports named 

tuples, for example:   

name=>”John”,  age=>34, married=>true 

Associations and link expression 

Association is a relationship between classes; one end of the association could affect 

the other end of the association. ALF could define associations like this: 

public assoc Student_School{ 

    public students: Student[*]; 

    public school: School; 

} 

Link operation expressions are used for managing the instances of associations, which 

corresponds to the UML Link concept.  

If John is an instance of Student and Manchester is an instance of the School, their link 

can be established by:  

Student_School. createLink(john, manchester); 

Meanwhile, the assigned new value of one association end will also affect the other end. 

For example, if cambridge  is another instance of School, then 

john.school = cambridge; 

will result in cambridge.student  including john .  

Active classes and signals 

An active class is a class in which the classifier behaviour of its objects runs in an 

independent thread. For example, 

public active class Execution{} 

do{ 

    accept(SignalStart); 

} 

The active class defines its classifier behaviour in the ‘do’ block. When creating a new 

instance of the active class, its classifier behaviour starts to execute automatically.  

Signals are a kind of specialisation of the classifier. Active class instances could 

receive signals asynchronously. There are two ways to define a signal in ALF. The first is 

to declare a standalone signal classifier: 

public signal SignalStart{} 

The other is to define the signal as a signal reception in the members of an active class, 

for example: 



61 
 

public active class Execution{ 

    public receive signal SignalStart{} 

…. 

An ‘accept’ statement defines receipts of signals. When executing the accept statement, 

the active object will suspend and wait for special kinds of signals. A simple accept 

statement, which will only wait for one type of signal, is shown above. It is possible to use 

compound accept statements to accept several kinds of signals, and one type of signal 

triggers the corresponding blocks to execute. For instance,  

accept(sig1:SignalStart){ 

… 

} or accept(sig2:SignalTerminate){ 

… 

} 

Accept statements can only appear in the classifier behaviour of active objects. The 

reasons are that only active objects can receive signals, and the classifier behaviours of 

active objects are the behaviours that are running. On the other hand, any method can send 

signals to active objects using a signal sending call that happens to have the same syntax as 

an invocation expression. For example, if ‘e’ is an instance of Execution, if a SignalStart  

is needed to be sent to e, the invocation statement will be 

e.SignalStart(); 

Annotated statement 

Certain statements can have annotations that are given special information for their 

execution. For example, “parallel ” annotation can be added to a block or a statement. 

The statements inside the block will be executed in parallel, which means the sequence of 

the inside statements does not reflect the execution sequence.  

Inline statement 

Inline statements can embed the code other programming languages in the ALF 

programme.  

3.4 Summary 

This chapter provided the technical foundation of the thesis. Starting from the concepts 

of model-driven engineering, it presented meta-modelling and the model-driven workflow. 

Thereafter, an introduction to fUML and ALF were presented, with a tutorial on ALF. In 



62 
 

the next chapter, a framework for defining language specifications are build based on the 

technologies introduced in this chapter.  

  



63 
 

Chapter 4.  
 
A Framework for Quality Language Specification 
(FQLS) 

Previous chapters have highlighted why DSL specifications are often of low quality or, 

alternatively, why high quality specifications are difficult to produce. This chapter presents 

a framework for building language specification – the FQLS - that simplifies the 

production of high quality DSL specifications. The framework consists of three parts:  

• A language definition method using ALF/fUML,  

• A software architecture formed of three layers, and, 

• A software development process. 

Each of these is covered individually in the following subsections.  

4.1 DSL syntax and semantics definition 

The DSL syntax and semantics definition approaches reviewed in Section 2.3 all 

lacked at least one features associated with high quality language specification. The 

characteristics with the three approaches considered (translational, operational rewriting 

and operational weaving) are:  

• Translational approaches are useful when a well-defined semantic domain exists. 

However, because their abstract syntax and semantics are defined in two different 

languages, they are harder to understand than approaches based on a single 

language and the possibility for inconsistencies exists. There is also currently no 

single agreed semantics domain on which to build. 

• Generally, operational rewriting approaches are easier to understand than 

translational ones because they require less additional knowledge. However, since 

they still require two languages, the problems caused by multiple using languages 

still exist.    



64 
 

• Operational weaving approaches define both abstract syntax and semantics in a 

single executable meta-model. Thus, the language engineers only need to know one 

language, and the possibility for inconsistency between syntax and semantics does 

not exist.  

The above characteristics mean that an operational weaving approach has been selected 

as the approach used in FQLS for defining both the abstract syntax and semantics of a 

DSL. However, the choice of the action language needs to be considered. Existing action 

languages such as Kermeta [18], XOCL [25], or Xcore have demonstrated that these 

languages can be used to execute models. However, these languages usually have two 

problems. Firstly, they are implemented as a platform-dependent technology and are not 

supported by a standardisation organisation. Secondly, these action languages have limited 

expressiveness, for example, neither of them has native supports for concurrency nor 

communication. This means that a semantics specification that specified via them is prone 

to be at a lower abstraction of the language, which results a type of implementation rather 

than specification.  

When thinking about what it required from the action language to be used, core among 

the features is an ability to define semantics for a language defined by a meta-model. This 

brings into consideration fUML which is intended to allow semantics to be attached to 

UML meta-model elements. fUML also has the attraction that it is a standardised language 

supported by OMG that has produced interest from both industrial and academic sectors, 

and it understandable to language engineers.  

Of course, since fUML is intended to attach semantics to UML meta-model elements, 

there is the question of whether or not it can be used to give semantics to the meta-model 

elements of a DSL. The fact that fUML is a highly expressive with natural concurrency 

support and communication support, gives promise that the answer to this question may be 

in the affirmative. Chapter 5 examines this question further and shows that fUML can 

indeed be used to define the semantics of a DSL. Within the FQLS, ALF is used as the 

concrete syntax for fUML.  



65 
 

4.2 Architecture of FQLS  

While ALF forms an ideal candidate of describing DSL syntax and semantics, proper 

software architecture is needed in order to utilise ALF as a language definition method. 

Therefore, this section will introduce the architecture of the FQLS.  

Figure 11 is an overview of the software architecture. The FQLS is divided into three 

layers, the definition layer, the analysis layer and the execution layer. In each layer, 

different tools are provided to support the development of a language specification, which 

are shown in the left-hand columns. The components of the FQLS are loosely coupled, 

which means the concrete tools can be substituted if better tools exist. Within the tools 

presented in the left column, the ALF editor, transformers, built-in checkers, and executor 

are developed as part of the thesis. The external checkers are checkers developed by other 

sources, but they can be integrate to the framework.  

The right-hand column of the figure specifies the models. The arrows represent the 

transformation flows of different representations of the language specification. The rest of 

this section introduces the design of FQLS by layers.  

 
Figure 11: Architecture of FQLS. 

 

4.2.1 Definition layer 

The definition layer is the layer that the language engineers will work with directly. It 

is also the layer that provides input to the analysis layer. Language engineers develop a 



66 
 

language specification in this layer and the language specification is captured using the 

concrete syntax of the language specification approach, which is ALF.  The editor in this 

layer provides three types of features, which are listed as follows.  

ALF text to model transformation. A grammar that enables the parsing of the ALF 

text to models needs to be implemented. The ALF standard defines the grammar of ALF in 

an abstract way by using BNF but, in Appendix I, an implementation of the parser by 

JavaCC is provided. As reusing a language development project based on EMF and Xtext 

is desired, a new grammar file that is compatible with Xtext is implemented, namely the 

Alf.xtext  file. Most of its content is derived from the JavaCC implementation of the 

ALF standard, because Xtext supports the generation of an Ecore model from the grammar. 

Therefore, a grammar that is similar to the meta-model of ALF is created, in order to 

generate a meta-model that is similar to the ALF meta-model, thus making the model 

transformation easier in the analysis phase. In addition, certain control extensions that 

could be placed in a comment are added, such as the “//@OCL” annotation, which is 

introduced in detail in Chapter 5. These extensions also need to be parsed to the model.  

Syntax highlighting, error reporting and code completion. A language specification, 

regardless of the method used, needs to be captured by a notation. The language engineers 

need to have the ability to compose language specifications according to the notation. 

Language specification development usually suffers from a lack of support in composition. 

It is possible that the specification is created without a proper editor. An editor is the first 

interface with which the language engineers need to work and is the first tool that assists 

them.  

After building a grammar for the ALF, the Xtext framework generates a skeleton of an 

Eclipse code editor, providing syntax highlighting and reporting parsing errors. Other tasks 

must be implemented manually, including: 

• Code completing. When the language engineer develops code using the editor, the 

editor should provide reasonable code content assistance.  

• Variable scoping. Each name acknowledged in a DSL that is built by Xtext is a 

global name. The given variables are proper scopes; thus, a local variable that 

cannot be accessed by other methods is necessary.  

• Exporting ALF text as XMI. This means that XMI can be loaded with other tools 

that support loading models.  



67 
 

Bridging the analysis layer code. In the definition layer, the ALF programme is 

parsed to an internal model representation, and then become the model for the input to the 

analysis layer. The analysis layer analyses the ALF models and reports back 

errors/warnings to the definition layer, which delivers reports to the editor.  

4.2.2 Analysis layer 

An ALF-based language specification still needs a mechanism to maintain its 

correctness, since the correctness of a language specification is largely reliant on human 

factors. An incorrect language specification will confuse its audience, and will particularly 

impair all the other products that depend on the language specification. Because of its 

importance, many methods [1] that aim to find errors in models or programmes have been 

proposed. Depending on whether or not to execute the programmes, the methods of error 

checking can be categorised as static methods and dynamic methods. Static methods 

directly analyse the programme without executing the programme, while dynamic methods 

involve executing the programme and observing the execution results. The most widely 

accepted method is testing. To be precise, there are two ways of performing static methods, 

as follows:  

• Inspection, review and walk-through: These are all performed by using a 

systematic method for reviewing the system under study. McConnell [98] reported 

the effectiveness of inspection and review, and determined that the result is largely 

dependent on human factors, such as management. 

• Automatic checking: This is usually supported by an automatic tool to check for 

particular kinds of errors. For example, compile time error checking, including 

syntax and type error checking, is equipped with nearly every programming 

language.  

Automatic checking can be roughly divided into two kinds: Formal checking, which 

involves transforming the programme into a formal, usually first-order logic model, using 

mathematical knowledge to analyse the desired properties. While the contributions of 

formal methods are crucial, they are usually difficult to verify in practice [137] because of 

the lack of skill in the industry [65].  

The other kind of automatic checking is the pragmatic method, which often involves 

implementing a static checker that can analyse programmes and match a suspicious code to 

bug patterns. According to Hovemeyer and Pugh [70], many errors that exist in 



68 
 

programmes are easily detectable errors; thus, even simple detectors can find bugs in a real 

application. Other tools, such as [72, 27], also applied a similar approach, and they also 

support the checking of styles of the programme. The developers can easily extend the 

checkers and build new checkers into the framework. These pragmatic checking tools are 

widely adopted in software development.  

Similarly, the errors that occur in language specifications are usually small errors, like 

typos [42, 160], which can be identified by applying similar methods of pragmatic 

checking. The FQLS implements pragmatic static checking to enhance the correctness of 

the language specifications.  

There is no single method that could identify all the errors in an application. Pragmatic 

checkers are simple to implement, but are usually neither complete nor sound. As false 

positives and false negatives can both occur, the developers still need to be cautious when 

treating the error reports. Formal methods are reliable, as they usually eliminate at least 

one type of error. The best results for software quality assurance are achieved by 

combining existing methods. Thus, the analysis layer must support the performance of 

pragmatic and formal methods.  

As automatic checking is a significant way of assuring the correctness of a language 

specification, FQLS should provide an architecture that enables the use of many kinds of 

checkers, rather than leaving the validation of the correctness to a later stage.  This is the 

principle to design the analysis layer of FQLS.  

The analysis layer takes the parsed ALF model as input, and then uses static checkers 

to check the correctness of the language specification, reporting any errors to the definition 

layer. As shown in Figure 11, this layer contains three software components. 

The built-in checkers enable syntax correctness checking, such as basic syntax 

checking, bad practice checking and type checks. These built-in checkers are performed on 

ALF models, which differ from external checkers that perform checks on other types of 

meta-models. Since the checking and error reporting is done in the same model, a built-in 

checker can be implemented as a Java validator that queries and examines the ALF models. 

These checkers are integrated using a plugin architecture that allows further static checkers 

to be included in the framework.  

The external checkers, as indicated above, mean that the checking has to be 

performed in a different analysis domain; thus, some analysis models need to be generated 

by the transformers. Since there are many kinds of possible external checks of the ALF 

programme, and the language engineers may have their own checkers, it is not feasible to 



69 
 

include all types of external checkers. As an example, FQLS demonstrates the integration 

of an external checker by integrating the Ecore OCL checker, which inputs an Ecore model 

with OCL constraints, and checks the syntactic correctness of the OCL expression.  

The transformers. Instead of integrating many kinds of external checkers, FQLS 

supports exporting the ALF programmes either as Emfatic models or as fUML models, 

because there are already many approaches for analysing these two types of models and 

they can be reused. The ALF to fUML transformation is developed as an ATL project, and 

the ALF to Emfatic transformation is developed as an Acceleo M2T project.  

 
Figure 12: Workflow of analysis layer. 

Figure 12 summarises the workflow of an analysis layer. The ALF models are checked 

by built-in checkers. Meanwhile, the analysis layer provides an interface that performs 

external checking. The result from the checkers is reported to the definition layer and is 

eventually reported to the language engineers. The Emfatic models generated from the 

language specification also support the reuse of EMF and are the basis of the execution 

layer.  

4.2.3 Execution layer 

The dynamic method is another category of software quality assurance. It executes the 

programmes in the executor. The results produced by the executor are observed and the 

behaviours of the executor are monitored. It is difficult to imagine that a software system 

would be released without testing, and test-driven development even considers tests as the 

first activity of development. Because of the importance of testing, a high quality language 

specification also needs to be tested. 

Non-executable language specifications are not testable, because there is no evaluation 

of the semantic correctness of the specification other than review; in other words, the 



70 
 

language specification is semantically correct because the language engineers have 

declared that it is. By contrast, an executable specification that ensures testability, with the 

support of tools, enables language engineers to observe the behaviour of the language, thus 

identifying semantic errors. As a result, the execution layer also aims to assure the 

correctness of the language specification.  

The term executor is referred as a system that could load the language input models 

and output the results, without attention being paid to the form of the mechanism. In order 

to execute a language specification, the first function that is needed is an executor of the 

language. ALF follows the usual method of executable modelling by providing a flexible 

executing definition whereby an ALF executor belongs to interpretive execution, 

compilative execution and translational execution, as introduced in Section 3.3. The three 

ways of executing ALF require different kinds of tools. 

• Interpretive execution needs an ALF interpreter. The ALF open-source 

implementation is a current example8.  

• Compilative execution needs a transformation or a model compiler that generates 

fUML models from ALF text. The transformation is the same transformation as in 

the analysis layer. The models can then be loaded by a fUML executor, such as the 

fUML reference implementation.  

• Translative execution also requires a transformation, which can be a model-to-

model transformation or code generation.  

Although it is possible to select any of the execution approaches of ALF, FQLS prefers 

translative execution as it is the only feasible method of executing ALF code. The reasons 

for this are listed below: 

Firstly, the current ALF tools are not sufficiently mature for interpretive or compilative 

execution of ALF language. The previously mentioned tools, such as [143], do not support 

the complete language. For example, the ALF reference implementation does not support 

the inheritance of classifier behaviour. Furthermore, the tools have a limited error 

reporting mechanism and a limited library. 

Secondly, the unification of language specification and a reference implementation 

could save the effort of developing a reference implementation. However, it is still 

                                                 
8
 Although the inner mechanism of ALF open-source implementation is done by mapping ALF abstract 

syntax to fUML and executing fUML models, from the users’ point of view it is treated as a black box, 

because the process of transformation is not visible to the users. 



71 
 

necessary for them to be separated, because a language specification may not provide 

enough detail to work as a complete implementation. For example, a language 

specification may leave something intentionally undefined, like the semantic variation 

points. If such a separation between language specification and reference implementation 

is needed, then their consistency must be maintained, which could be done by deriving the 

reference implementation from the language specification.  

Lastly, the development of a language specification needs more tools than merely an 

executor, such as the tools for creating/loading model instances and for validating instance 

models.  

Since the FQLS has adopted the translative execution of ALF, the execution layer must 

deliver a reference implementation, which is generated from the language specification 

with minimal effort by reusing EMF. This reference implementation can then be used for 

testing purposes (testing the semantic correctness of the language specification), and 

eventually save the cost of building a reference implementation from scratch. In the 

Execution layer of FQLS, the tasks of the execution layer are listed below: 

Generating executors for the target DSL. The execution is responsible for the code 

generation. The code generator loads the checked ALF models and finally generates an 

interpreter of the target language in Java.  

Creating test cases with an instance model editor. This is another facility that is 

required for executing the language specification to support the language engineers when 

creating instance models for testing purposes.  

Executing the language specification. The language engineers will eventually need to 

test the language specification in the generated reference implementation. The executor 

needs to load the specified model instances and output the result after the execution.  

4.2.4 Summary 

To sum up the features of the general idea of FQLS: it uses ALF as the definition 

language, performs static checks on language specification and generates language 

reference implementation from the language specification. All these methods are aiming to 

maintain the quality of the language specification.  



72 
 

4.3 A development process for DSL 

As developing DSLs becomes a more general idea, a detailed software process could 

save effort on the part of the language engineer, since a software process, or a development 

methodology, is one important method of quality assurance. A software development 

process involves several different concepts. It could involve the identification of concepts, 

such as roles, artefacts, tasks or activities. It could also include guidelines or suggestions 

that a shareholder in the development process should follow. 

In the area of DSL development, it is worth mentioning that Mernik et al. [100] 

summarises the activities of, and some guidelines for, DSL development. It does not 

discuss the roles and products in a DSL development process. Moreover, the process 

definition is difficult to reuse or adapt, because there is no automatic way of checking the 

consistency of the process document, nor is it possible to transform the document to a new 

process if certain sub-modules are changed. [156, 43] also contains many guidelines that a 

developer could adapt. In addition, Kleppe [80] also proposed a set of tasks or activities 

that need to be performed in a DSL development process. However, these works only 

show a general outline of how to create language specifications, rather than a detailed 

process that language engineers can follow. 

The ad hoc definition of process prevents a more accurate presentation thereof, since 

all these processes are defined as text. Thus, it is the author’s choice to include or not to 

include something. The text-based DSL development process tends to focus only on one 

specific topic of the process; however, it is preferable for the software development 

process can be formalised as a model that conforms to a standard representation, allowing 

the development process to be captured in a systematic and reusable manner.  

Software & Systems Process Engineering Meta-Model (SPEM) [48] is a meta-model 

that are designed to fulfil the role of a standard way to capture a software development 

process. It is selected as the method for presenting the software development process the 

FQLS. Hence, an introduction of SPEM in terms of its features, workflow, and tools is 

presented firstly. The development process of FQLS is presented thereafter.  

4.3.1 Software & Systems Process Engineering Meta-Model 

SPEM is an OMG standard that attempts to solve the problem of the lack of standard 

representation and management of software methodology and processes. The meta-model 

and its supporting tools give [48] 



73 
 

• A standard representation and managed libraries of reusable method content. By 

using SPEM, the key tasks and practices can be documented, and these provide 

knowledge regarding the knowledge of performing these tasks for developers. For 

example, there are several tasks in the process of developing DSL, such as 

designing the language specification, testing the language specification and 

implementing reference implementations. The developers need to know how to 

perform these tasks, as well as the relevant knowledge for supporting the process.  

• Developed and managed processes for performing projects. Although the library of 

method content is developed, the developers still need to select a development 

process. The creation of the process is based on the reuse of the method contents.  

• Configuration of a cohesive process framework, customised for specific projects. In 

reality, as different projects have different scopes and characteristics, it is 

impossible to determine one process that can be executed for any project. SPEM 

supports modelling variability, so developers can define their own extensions for 

the reused method contents.  

•  Enactment of a process for development projects. A process known as guidance 

must be deployed and must be able to be accessed by the process enactment 

systems (the workflow engines that the developers and managers used every day). 

SPEM defines how a process will be enacted via these systems.  

Figure 13 illustrates the workflow using SPEM model. It starts from creating method 

contents, which includes the atomic concepts that from a development process, such as 

products, activities, and guidelines. Then these concepts are used to create processes for a 

general domain, for example, a process for general DSL development. When developing a 

particular project, the developers can customise a process that fits a particular project. 

Finally, these models can be accessed by other project management tools and should be 

enacted to the real development activities. Therefore, the development process is not just a 

document, but also a working system that developers need to interact with in normal 

development activity.  



74 
 

 
Figure 13: Overview of SPEM. 

Many tools have implemented SPEM and support the definition of the SPEM model in 

an easy to use and easy to deploy way. The major parts of the SPEM standard are 

implemented by an open source project, namely the Eclipse Process Framework (EPF). 

Due to its completeness and wide accessibility, the EPF was selected as the tool for 

defining the DSL development process.  

4.3.2 Method content 

Method content describes the basic elements of a SPEM model. It defines the basic 

vocabulary in the development process, which includes concepts such as Roles, Tasks, 

Work Product, and guideline definitions.  

Section 2.2 introduced the three roles involved in the DSL lifecycle: The language 

engineer, the language tool engineer and the language user. They are involved in two 

processes, namely the development of the language and the use thereof. Here, this thesis 

concentrate on the development process of the language.  

The development of the language specification is the core activity of this process; 

because other activities performed by language tool engineers and language users are all 

depend on the existence and quality of the language specification.  

ExamplesMethod content

Standard 

representation , 

reusable libraries and 

method content

Agile 

development 

contents

JUnit guidance

ExamplesProcesses

Develop and manage 

processes for projects

Process for 

J2EE 

development

Process for 

Embedded 

system 

development

Configure a process customised for a particular 

project needs

Create  project plan templates for enactment of 

process in context of a customised project.



75 
 

The process of language specification development guides the language engineers to 

create a language specification via ALF by increments. An increment of the language 

specification is initialised by creating a feature of the language specification, or by 

modifying a feature of an existing language specification. The increment finishes when the 

language engineers have completed the necessary testing and validating of the new feature; 

thus, they can assume the feature has been implemented successfully. An increment of the 

language specification may involve one or more iteration. Each of the iterations delivers a 

successful working language specification at the end.  

An iteration is separated into four phases, as shown in Figure 14. As these phases are 

collections of activities, each takes a set of products as input and outputs certain products, 

as can be seen in Figure 15.  

 
Figure 14: Phases of DSL development. 

 

 
Figure 15: Products and process phases. 

Starting with the requirements that were generated by the language users, the first 

phase, develops abstract syntax, which creates a meta-model that forms part of the 

Develop abstract 

syntax

Develop 

behavioural 

semantics

Check language 

specification

Test language 

specification

Requirements Meta-model

Language specification

Analysis models

Analysis results

Test cases

Test results

Reference 

implementation

Input

Input

Output

Output

Input

Input Output

Outp
ut

Input



76 
 

language specification. The meta-model is then used as the input to the develop 

behavioural semantics phase, which delivers the complete language specification.  

The language specification is the most important product, and is the final product of 

the process. Because ALF is selected as the language for defining the language 

specification, the definition of a language specification in FQLS can be narrowed as 

follows: A language specification is a set of models that define the concepts of a domain-

specific language. It consists of abstract syntax and behavioural semantics, which are 

defined as executable meta-models captured by ALF.  

An unverified language specification contains syntactic and semantic errors. Thus, 

there are two phases – checking language specification and testing language 

specification. These deliver analysis models, analysis results, test results and reference 

implementation. These are not products that will be released to the public, but the internal 

products that assist in the development of the language specification.  

The analysis models are the models for analysis purposes. All internal or external 

representations of the language specification, except the original models that are intended 

for analysis purposes only, can be categorised as analytical models.  

Both the analysis and the testing phases produce certain results. The results may not be 

accessible to language users, but they help to identify errors and bad practices. 

The reference implementation serves two purposes, namely as a tool for testing the 

design of the DSL, and as a tool for language tool developers to test the DSL or, if the 

reference implementation is mature enough, it can be the real implementation of the 

language.  

Given the understanding of the products, the details of each phase are introduced below.  

Develop abstract syntax 

The first component of a language that should be developed is debatable. Selic [137] 

suggested always starting to design using a semantic model, thus encouraging developers 

to think about designing the semantics at an early stage, which avoids inconsistent design 

decisions that could occur when designing them as separate things. Selic’s suggestion 

raises the importance of semantics. Treating semantics as additional work may cause 

problems; however, it also indicates that many language designers start by designing 

syntax. In fact, starting by designing syntax is a common approach and is applied by [25, 

156, 80].  



77 
 

Developing abstract syntax is listed as the first task of the language specification 

development process. It is possible that the domain already has a type of language that is 

but not formalised, or that migrating an existing DSL to model-base is required. In both 

cases, the syntax should be considered first. In addition, when defining a language 

specification as an executable meta-model, syntax and semantics are not separate and are 

linked from the beginning. The semantic definition uses the abstract syntax concepts as the 

vocabulary.  

 
Figure 16: Developing abstract syntax. 

Figure 16 illustrates these activities. The first activity when designing abstract syntax is 

to create the meta-model. The meta-model may originate from two different sources: 

Either it is designed from scratch, or it is imported/rebuilt according to an existing 

representation of the language syntax. When creating the meta-model from scratch, the 

language engineers need to work closely with the requirements and the domain experts, 

and to abstract the domain to a set of entities, attributes and relationships. This process 

should follow the experiences and best practices in language design and domain 

engineering. 

When formalising a language specification to an ALF-based representation, the meta-

model may already exist, but be defined as another format, such as BNF grammar or XML 

schema. Such languages capture the abstract syntax tree; it is possible to convert such 

representations into an ALF programme by representing an element as a class, and 

containing/reference relationships as associations. Many works, such as Xtext, EMFtext 

and EMF could convert a BNF grammar/XML schema to an Ecore model. Regardless of 

the tools that have been used, it is possible to derive a meta-model from other formats of 

defining the abstract syntax with reasonable effort.  

Once there is a meta-model, the next activity is to add constraints to the meta-model. 

These constraints define a well-formed model. Many technologies can be used to define 

constraints, and OCL is the standard constraint language for UML-like meta-models. Thus, 

a strategy for defining constraints needs to be defined before developing strategies. The 

explanation of how to add constraints to ALF is detailed in Section 5.1.2, which introduces 

three different ways of adding constraints to an ALF specification. These are adding them 



78 
 

as additional files, using extended ALF, and defining constraints as semantics. When the 

constraints are developed, the output of this task is the abstract syntax definition, which is 

an ALF programme representation. This ALF programme is ready to have semantics added.  

Develop behavioural semantics 

The purpose of this phase is to create the behavioural semantics of an ALF-based 

language specification, adding operations and behaviours to the abstract syntax definition. 

The input of the task is the abstract syntax definition, and the output is a completed 

language definition. 

Because of the complexity of developing semantics, the task is split into five activities, 

as shown in Figure 17. 

 
Figure 17: Develop behavioural semantics. 

The first activity is to understand the requirement details. In various scenarios, the 

requirement can be gathered from the domain experts and the knowledge of the language 

engineers. No matter how these requirements are gathered, a deep understanding is the first 

step of developing the expected language specification instead of an incorrect specification. 

When formalising a language, the requirement is clearer because it is already defined in 

another format.  

The second activity is to decide the semantic definition strategy. Semantic 

specification is a type of programme and it involves many design decisions. There are 

many ways of implementing the same semantics. However, this does not imply there are 

no rules for design decisions. Before implementing the semantics, several questions need 

to be clarified, for example, how to deal with semantics variation points. A full list of the 

questions and guidelines on developing behavioural semantics is listed in Appendix B, 

where interested readers can check in detail.   

The next activity is to create semantic definition architecture. An executable 

language specification is also a kind of software; thus, it follows the general rules of 

software design. Specifically, the language engineers need to decide how to attach 



79 
 

behaviours to the meta-model and how the state-machine of the runtime model should be 

build if needed.  

The last activity is to develop the behaviours. With regard to the requirements and the 

decisions and rules given above, the language engineers can develop the language 

semantics.  

Checking the language specification 

 
Figure 18: Checking language specification. 

Figure 18 illustrates the activities in the checking language specification phase. The 

first activity is to configure built-in static checkers. During the task of developing 

behavioural semantics, the language engineers decide the architecture, the coding style and 

ways of dealing with various issues. Since the static checkers indicated that there were 

various errors and bad practices to check, depending on the language engineers’ decisions, 

something that could be considered as an error might be acceptable in other circumstances. 

For example, a checker that forces developers to use Java style or UML styles needs to be 

turned on or off.  



80 
 

The next activity is to perform built-in checks. According the configuration, the static 

checkers will perform the selected checks on the language specification and report errors 

and warnings to the editor. the internal checks are defined as checks that do not involve 

translating the language specification to other representations. Because these kinds of 

checks do not need to consider translation and message tracking, such checks are easier to 

implement than ones performed by external checkers.  

Concurrent with the use of built-in checkers, if the language engineers decided to use 

external checkers, these could be done via an activity that implements an external 

checking strategy. External checks, as discussed above, are more complex than internal 

checks. When considering an external check, the language engineers should have a 

particular checking property in mind, as well as the approach that will be taken for external 

checks. There are several possible scenarios, depending on what is to be checked. An 

interface of fUML and Ecore is provided, but did not integrate any other analysis approach. 

The reason is that there is no external analysis that needs to be performed for every 

language specification. The selection of concrete analysis and the way of annotating 

analysis results are left to the language engineers. 

The next activity is to perform external checking. Once the checking tools have been 

decided, and the necessary transformations and reporting tools have been developed and 

tested, the language engineers need to perform the checks.  

The final step is to resolve the errors reported by the checkers. However, resolving 

errors is not really the final step; it is only the final step of the iteration. The checking and 

resolution of errors should be repeated until no further issues are found.  

Testing language specification 

Although the language specification has been statically checked, these kinds of checks 

can only discover syntactic errors. Semantic errors can also be detected, but most semantic 

errors are just incorrect semantics that are not expected by the users. Since the correctness 

of the language specification is actually decided when the standard is released, a semantic 

error that remains in the release stage would entail great effort to fix. As a result, the 

language specification needs to be tested to see whether the semantics reflect the language 

engineers’ intentions.  

Language specification is an executable meta-model. To test such a specification, 

several sub-tasks must be executed in order to create a test suite for a language 

specification.  



81 
 

 
Figure 19: Testing language specification. 

Figure 19 illustrates the process of testing language specification. The first activity is to 

implement a test strategy. An executor enables testing; a programme cannot be tested 

without an executor. However, an executor alone is not enough, as a framework for 

supporting it is also needed. Since a DSL under development is not like a GPL for which a 

testing framework such as JUnit exists, enabling automatic unit testing requires the 

creation of a framework. Language engineers may also consider manual testing.  

When executing a test case of a GPL, which is fairly straight forward, the unit being 

tested is given relevant inputs and executions; the developers then analyse whether the 

outputs were expected. In comparison, language specification as a whole is a large black 

box in which inputs can be complex and outputs may not be obvious. The inputs are a DSL 

programme and the language engineer must define the ‘result’ that is to be analysed. 

Executing the DSL programme may cause the executor to output something to an output 

channel. This is an output of the DSL programme, but is not necessarily the result that the 

language engineer wants to analyse. The DSL programme may not have output in terms of 

its own input. As an abstract model, the DSL programme may only result in the internal 



82 
 

states being changed. In such a case, the language engineer needs to test the internal states 

of the language executor.  

The next activity is to generate an executor. The language specification is sufficiently 

detailed for any GPL that has the same structures as the language specification to generate 

an application, and the behaviours are also transformed into GPL implementation. Chapter 

7 demonstrates this via a code generator that generates Java. This executor is completed in 

the next activity and is used for testing the language specification.  

Depending on the completeness of the language specification, the language engineers 

may need to implement abstract activities. As indicated above, unspecified behaviours 

are defined as abstract activities in FQLS. However, to make the reference implementation 

executable and to produce the expected result, these abstract activities need to be 

implemented. Depending on the purpose of the generated implementation, when it is a 

prototype to show how the standard works, the implementation does not need to be as 

complete as a real implementation. On the other hand, if the generated implementation is 

the basis of a real language executor, then many issues such as efficiency, the quality of 

the generated code and the use of the API or libraries must be considered. However, 

creating a language implementation of a language standard is out of the scope of the 

language specification developed.  

When the language reference implementation is ready for execution, the language 

engineers need to develop test cases. Language developers can create input models using 

the generated model editor. When the input models are created, the expected result should 

also be created. When working with domain experts, they should confirm the result. It is 

possible that the language engineers’ understanding is different from that of the domain 

experts, thus creating incorrect test cases and passing them via an incorrect executor. Good 

practice [142] suggests building tools for the domain experts so that they can build the test 

cases and the expected result directly.  

Then the final activity is to run the test cases and to refine the behavioural 

semantics. When a test case fails, the language engineers should make the necessary 

changes in the language specification and regenerate the specification rather than modify 

the generated code. When the language specification changes, the implementation of 

abstract activities may also need to be changed.  

There is another optional task, which is to identify repeated errors and to update the 

static checker. FQLS is designed to allow the language engineers to add new rules or 

algorithms for static checking. When testing and refining the language specification, it is 



83 
 

possible that types of errors can occur repeatedly. In fact, when developing the case study 

in Chapter 8, it is identified that many errors that cause the executor to fail are small 

mistakes that could be checked at the language specification level with little effort when 

compared to leaving this to being identified at the generated implementation stage.  

4.4 Summary 

FQLS is a framework that uses ALF to define both abstract syntax and behavioural 

semantics, which performs static checks on the language specification, and enables the 

generation of reference implementation for testing a language specification. To apply the 

idea, the software architecture of FQLS, which provides support to define DSL syntax and 

semantics via ALF, is illustrated. Finally, a software development process, which is 

captured by SPEM, is proposed. This process defines the roles, products, activities and 

guidelines in DSL specification development.   



84 
 

Chapter 5.  
 
Defining DSLs using FQLS 

In the last chapter, the development process and the architecture of FQLS is introduced. 

Thereafter, Chapter 5, Chapter 6 and Chapter 7 explain the layers of FQLS in detail. This 

chapter introduces how to use ALF as a method to define a DSL by starting from 

introducing the principles in Section 5.1. In order to illustrate these principles, Section 5.2 

gives an example of a Petri net language, which is defined as a meta-model and the 

abstract state machine transition rules. In Section 5.3, the same example is then defined 

using ALF language, with explanations regarding the ways in which ALF units can 

represent a meta-model, how it can be integrated with OCL, and methods of defining 

behavioural semantics as operations. Finally, Section 5.4 discusses how an ALF-based 

definition can simplify consistency checking and why it is an interoperable, 

understandable and expressive language specification.  

5.1 Defining DSL via ALF 

As introduced in Section 3.2, fUML defines the semantics by itself, and is able to 

define higher level UML semantics. Hence, there is no doubt that fUML can give 

semantics to UML concepts. However, there is the question of whether or not it can be 

used to give semantics to the meta-model elements of DSLs. In order to represent the 

behavioural semantics in an operational way, the most important requirement is a language 

that can specify basic behaviours, for example, basic calculations, conditions and loops. As 

long as these basic behaviours are provided, the complex behaviours can be composed 

using them.  

The semantics that a language can express depend on the expressiveness of the 

semantics definition language. Existing action languages supports variable assignments, 

sequential execution, conditional statements or loops well; what they do not support well is 

to specify concurrency and communications. In comparison, fUML supports the basic 

behaviours in the same way as other action languages. It also natively support concurrency 



85 
 

and communications. This means that fUML can specify an even wider ranges of DSL 

semantics than existing action languages in a simpler way.  

In order to demonstrate that a DSL specification can be defined via ALF/fUML, the 

rest of this section provides principles of how to use ALF to represent the abstract syntax, 

the static semantics and the behavioural semantics of a language specification.  

5.1.1 Representing abstract syntax by ALF 

Since FQLS aims to use ALF as the single technology to represent a language 

specification, it is needed that abstract syntax of a language must be able to be defined via 

ALF. While MOF is the usual way to capture meta-models, ALF provides similar concepts 

of classifiers, attributes and associations. These are the basic elements for representing a 

meta-model. Because ALF is a concrete syntax for fUML, its kernel package is compatible 

with the UML 2 meta-model, and MOF imports UML::Classes::Kernel  from the UML 

meta-model. Thus, the kernel classes of fUML and MOF are treated as the same meta-

classes. This means that, though UML class models and MOF models exists in different 

meta-levels, they are the same thing and have the same expressiveness. Hence, it is 

possible to use ALF to represent a meta-model by treating ALF as a meta-modelling 

language. Defining a meta-model uses ALF becomes straightforward work.  

5.1.2 Representing static semantics by ALF 

Static semantics are additional constraints of the meta-model. If the model is captured 

directly by MOF or an Ecore meta-model, there are ways of adding OCL constraints. 

Certain specially designed syntax for representing Ecore, such as Kermeta [18] and 

Emfatic, has a method for adding OCL for representing pre- and post-conditions and 

invariance, such as the example in Listing 1. Although ALF has the same expressive 

power as OCL, it also supports OCL collection expressions; however, there is no way of 

directly integrating OCLs.  

In order to allow constraints in meta-model, this subsection proposes three ways to 

include OCLs in a ALF program, and discusses their benefits and drawbacks.  

The first way is to add OCLs as an additional view of the models. Because ALF units 

are just a concrete syntax, the real meta-model they represent can add OCLs. The 

published language standard can then contain several parts, namely the abstract syntax 

defined by ALF or just a MOF model, the behavioural semantics defined by ALF, and the 

static semantics, defined by OCLs. A compiled fUML model is then created from these 



86 
 

specifications for machine processes. Although this method could represent static 

semantics, it makes consistency checking necessary. However, much of the research (as 

summarised in [93]) suggests that consistency checking for UML is not easy.  

The second way is to extend ALF syntax so that it can support OCLs. By creating a 

large meta-model that contains the abstract syntax of ALF and OCL, all aspects of a 

language specification can be integrated as one extended ALF programme, and 

consistency checking is easy because it is restricted. However, this breaks the 

interoperability of the specification, because the extended ALF is not compatible with the 

OMG standard.  

The third way is to use the existing features of ALF to represent static semantics. OCL 

is used for querying models or constraint models. When querying models, developers can 

use OCL to specify derived properties, which are the properties of which values are 

derived from other properties. When giving models constraints, OCL expressions define 

invariance, pre-conditions and post-conditions. All of these can be specified as special 

operations on a model, and can be defined as behaviours. Derived properties can be 

substituted as assignments in the constructors of the class. Pre- and post-conditions can be 

substituted as ‘if’ statements, and invariance can be written as a validation that must be 

performed before changing the model.  

This method does not necessitate the loss of interoperability and consistency. However, 

this will make the behavioural semantics specification more complex, and it is difficult to 

verify the static semantics by other tools. 

Inspired by the “//@inline ” and “//@parallel ” annotations, a compromised solution 

is included in the FQLS, which supports adding OCL to the language specification in the 

same place while still maintaining interoperability. These annotations start with an inline 

comment symbol; therefore, if a tool does not support these annotations, they will be 

ignored and the programme will still remain a valid programme. Following the same 

principle, an OCL annotation is added to ALF: 

//@OCL(” invariance ”) 

By using this method, the language specification can be physically unified as one file. 

When checking its correctness, some crosschecks need to be performed on the ALF 

programme, as well as on the OCLs. This is detailed in Subsection 7.3.2.   



87 
 

5.1.3 Representing behavioural semantics via FQLS 

After a meta-model has already been defined by ALF, the next step is to attach 

behaviours to the meta-model. Learning from existing approaches, there are three ways to 

attach detailed behaviours to a meta-model using an action language, namely direct 

attachment, attachment as separate rules and attachment via a run-time meta-model.  

The first method, direct attachment, as shown in Figure 20, attaches behaviours 

directly to the abstract syntax model. General meta-model definition languages, such as 

MOF or Ecore, all have the ability to define operations’ interfaces as members of classes. 

There is no default method of expressing detailed behaviours; however, if the operations 

can be extended, it is natural to be able to define detailed behaviours. By defining 

semantics as the operations body of a meta-model, a complete executable meta-model 

standing for the language specification is created.  

 
Figure 20: Attaching behaviours directly to meta-model operations. 

Direct attachment is the simplest way to attach behaviours, and results in a unified, 

executable meta-model. However, this method needs to change the abstract syntax model 

by adding operations, which is not expected if the task is to add semantics to an existing 

meta-model. It is common that the abstract syntax has already been published and used by 

many other tools before language developers create the formal semantic specification. As a 

result, modifying the meta-model breaks the interoperability of the language specification.  

The second method attaches behaviours as an aspect of the system, using the idea of 

aspect weaving. Because adding operations to the abstract syntax model modified the 

original model, it is possible to define the semantics separately in order to avoid this, and 

to use an aspect weaver to combine. Although this appears similar to translational 

semantics, there are fundamental differences: the syntax and semantics of translational 

approaches are defined using different meta-models, but the weaving approach defines 

syntax and semantics using the same meta-model. It is much easier to develop an aspect 

weaver for a bidirectional transformation from syntax to semantics.  

This approach does not need to add operations to the abstract syntax. However, it also 

has some limitations. One problem is that direct attachment does not permit the full use of 

Executable Meta-Model

Language Specification Abstract Syntax

Semantics ALF+definedBy

+definedBy



88 
 

the signal and concurrent programming of ALF. ALF only allows activities and the 

classifier behaviour of active classes to use ‘accept’ statements for receiving signals. If the 

language developers wish to use a signal-driven model as the semantic model, they have to 

define their own signal management infrastructure.  

 

 
Figure 21: Attaching behaviours as separate operation rules. 

The other problem is that the developers cannot differentiate between runtime concepts 

and structural concepts. The abstract syntax defines the structural view of the language; 

however, depending on the DSL, it is possible that the concepts that are processed are 

instance level concepts when executing the language. For example, as illustrated in Figure 

22, a language contains Variables  and Statements . AssignStatement  has a left hand 

and a right hand reference. The execution semantics of AssignStatement  copy the value 

of the right hand variable to the left hand variable. The copy is on the instance level value, 

which means a class that represents instance level concepts has to be added, as in Figure 

23.  

At the abstract syntax model level, the variable does not have an attribute called ‘value’  

because, in the DSL programme, the variables are only declarations and the runtime value 

does not need to be specified. The Object  class is the instance of the Variable  and has a 

value property that the Variable  class does not have. The Locus  manipulates the instance 

level concepts, rather than changing the original programme model. This design permits 

running many instances of the same programme. In summary, it is often necessary to 

separate runtime concepts from structural concepts.  

Executable metamodel approach2package DSML[   ]

Language Specification Abstract Syntax

Meta-Model

ALFActivitySemantics -defineBy

+definedBy

ALFActivity

Meta-Model

Aspect weaver

Executable Meta-Model



89 
 

 
Figure 22: Variable and Statements meta-model. 

 
Figure 23: Variable and Statements run-time meta-model. 

Because the separation of structural and runtime concepts is necessary, a widely used 

approach is to create the semantics of a modelling language by starting from a runtime 

meta-model by adding new instance level classes to another package, and then importing 

the abstract syntax (the method for defining the semantics of fUML [55] is an example). 

As illustrated in Figure 24, the runtime meta-model combines structural and runtime level 

concepts, making it possible to attach behaviours to the runtime meta-model. Since all the 

models are defined using ALF, the language specification is still a unified model.  

structural and runtimeruntime conceptspackage [   ]

AssignStatementStatementProgram

Variable
+rightHand

+leftHand

+variables

*

+statements

*

runtime conceptspackage runtime[   ]

AssignStatementStatement

+value

Object

Program

Variable

Locus

+rightHand

+leftHand

+variables

*

+objects

+statements

*

+variable

+objects *



90 
 

 
Figure 24: Attaching behaviours to a run-time meta-model. 

A runtime model does not change the abstract syntax model; thus, it does not break the 

interoperability. By extending the abstract syntax model, language engineers can use the 

full expressiveness of ALF, using active classes and signals for communication. Although 

creating a runtime meta-model involves extra work, the work is necessary for separating 

structural and runtime concepts.  

In summary, if a simple DSL already represents runtime level concepts and there is no 

need to add any concepts, it is better to use direct attachment, or weaving behaviour and 

structure together. However, if runtime concepts need to be added, then a runtime meta-

model is necessary. The BPEL case study in Chapter 8 illustrates an example of using a 

run-time meta-model.  

5.2 Defining a Petri net language 

After the discussion of how a language specification can be represented as an ALF 

program, this section provides an example of a Petri net language, and represents it by 

ALF in the next section.  

Petri net is a mathematical modelling language for information flow, which was 

originally defined by formal language [115]. Petri nets have been widely used as the basic 

example of DSML development. Works like those of [132, 133, 157] all used Petri net as 

an example. As this example’s syntax and semantics have been exhaustively studied and 

are widely understandable, this example is also used to demonstrate the definition method.  

There are many ways of creating a meta-model that abstracts Petri nets. For example, 

the meta-models used by [132] and [96] are slightly different. The Petri Net Markup 

Language (PNML) [14] was created in order to standardise the representation of Petri nets, 

Executable metamodel approachpackage DSML[   ]

Language Specification

Runtime Meta-model

Instance Concept

Abstract Syntax Meta-Model

Semantics Method

ALF

*

*

definedBy

definedBy

import



91 
 

and has become an ISO standard for defining Petri nets. The standard provides XML-

based syntax, together with an official meta-model based definition implemented by Ecore.  

As a standard, PNML intends to define all types of Petri nets, regardless of whether 

these are basic Petri nets, coloured or high-level Petri nets. Thus, the language is designed 

to be a somewhat abstract definition that contains the net, arcs, nodes and graphics. 

Additional information, such as legal labels, is defined as an extension called Petri Net 

Type Definition (PNTD). A PNTD is an instance of a PNML, and that the PNML meta-

model is an abstract class or interface. 

Figure 25 shows the meta-model of a simple PNTD, in which the class Place  is 

labelled “initialMarking ”. The abstract syntax for the PNTD is the standard model, 

transformed to remove concepts related to concrete syntax, such as positions and shapes. 

This shows that, conceptually, a PetriNet  contains Arcs , Transitions  and Places ,  

where Transitions  and Places  generalise the concept of Node. The associations between 

Arc  and Node enable navigation through the Petri net. The initial marking of a net can be 

defined using the initialMarking  attribute of a Place  that indicates how many tokens 

are initially located at a Place . 

 

 
Figure 25:  The meta-model of a PNTD. 

In additional to the abstract syntax, the model includes static semantics expressed in 

OCL. The OCL constraint shown below prevents an Arc linking a Place to a Place or a 

Transition to a Transition. 

context Arc inv: 

(source.oclIsKindOf(Place) and target.oclIsKindOf(T ransition)) or 
(source.oclIsKindOf(Transition) and target.oclIsKin dOf(Place))     

Listing 1: OCL added to Petri net meta-model. 

pnmlExample meta-modelpackage [   ]

+initialMarking : Integer

Place

PetriNet

+name : String

NamedElement Transition

Arc

PnObject

Node

+outArcs

*

+source

+inArcs

*

+target

+objects *



92 
 

Behavioural semantics for the PNTD have been created in an ASM formalism that is 

similar to that used to define the semantics of BPEL [37]. This ASM is created by 

mapping the concepts in the abstract syntax to the concepts in ASM via a “by name” 

association between the two technical spaces. UML classes are mapped as a Universe in 

the ASM, with a generalisation relationship mapped to a sub-set relationship; for example, 

class PnObject  and Node are mapped as shown below: 

��������:	
�� ⊂ ��������  

��������: ��������
� ⊂ 	
��  

Attributes and properties are mapped to a function with their parent class as a 

parameter. For example, NamedElement.name  is translated to 

����:	����������� → ������  

Since the mapping from UML classes to universes and functions are straight forward, 

they are omitted due to limited usefulness. The transition rules and important functions are 

listed below: 

 

1. RUNPETRINET 

2.        !	 ∈ �����	��$ ≡  

3. &�'	����(���������
� = ���*���(���������
� !$		�� 

4.       FIRE ����(���������
�$  
 

5. FIRE 

6.            � ∈ ��������
�$ ≡  

7. +,�-&&	! ∈ ����
.��������� t$	0,  

8.           �
1�� !$ ∶= �
1�� !$ − 1 

9. +,�-&&	! ∈ ����
.��������� t$	0,  

10.           �
1�� !$ ∶= �
1�� !$ + 1 

 

11. ���*���(���������
�	 ! ∈ �����	��	, � ∈ ��������
�$ =	  
12.            ∃e ∈ �����������
�� !$		��*���(� �$  
 

13. ��*���(� � ∈ �������
�$ ↦ 

14.          :��.�, ∀� ∈ ����
.��������� �$			�
1�� �$ > 0	
>����, ����																																																																				

?  
 



93 
 

Listing 2: Semantics of Petri net defined by ASM. 

This behavioural semantic specification has several deliberate inconsistencies and 

errors, including: 

• Syntax error: A function name is spelled incorrectly (�������
� in line 13 should 

be ��������
�. If an ASM syntax checker supports the syntax above, such an error 

will result in a syntax error.  

• Inconsistency with the meta-model: In lines 8 and 10, the function of getting the 

token from a Place  is named “token ” rather than “initialMarking ”, which 

means that the same property appears under different names in the syntax and 

semantic definitions. An ASM syntax checker will not find this error, because the 

ASM specification is a valid specification within its technical space. 

• Logical error: The rule FIRE should decrease the number of tokens in the sources 

by one and increase those in the targets by one. Therefore, ����
.��������� t$ in 

line 9 should be ��������������� t$.  
These errors can be found by a careful review of the specification. However, the 

specification of a DSL can be large, running to hundreds of pages, so not all mistakes will 

be identified by a review process.  

5.3 Defining Petri net language via ALF 

In this section, PNTD introduced in the previous section is defined using ALF as an 

executable meta-model.  The definition starts from representing the abstract syntax of 

PNTD.  

It is possible to establish a mapping and use ALF for representing a meta-model in a 

similar way to other textual representations of meta-modelling languages, such as Emfatic 

or KM3. The following code defines a class: 

 public abstract class NamedElement{ 

  public name:String; 

 } 

In the example above, the Java-like syntax defines a class, an attribute (can specify the 

multiplicity), the type of attribute and the isAbstract  attribute of the class.  

Generalisation can be defined using the “specializes ” keyword.  

 abstract class PnObject specializes NamedElement{} 



94 
 

When defines a reference, the “compose ” keyword illustrates that the referenced object 

is composed by the parent object.  

 public class PetriNet specializes NamedElement{ 

  public objects: compose PnObject[*]; 

The associations between Arc  and Node can be defined as: 

 public assoc Arc_Node_Source{ 

  public source:Node; 

  public outArcs:Arc[*]; 

 } 

By the same method, all the classes and their relationships can be defined as shown in 

Figure 25. These result in a meta-model captured by ALF syntax. While defining the 

abstract syntax, the OCL constraints can also be added to the ALF program.  

When defining behavioural semantics, the PNTD model is already describing a Petri 

net instance, there is no need to add more instance concepts; thus, behaviours can be 

directly attached to this model. In order to realise this approach, four operations are added 

to the original meta-model, as shown in Figure 26. The behaviours are captured in the 

operations.  

 
Figure 26: Executable meta-model of PNTD. 

Then the body of the operations can be developed. For example, in Transition  class, 

an operation isActive  is needed to tell whether a transition’s source places all have a 

mark, so that the transition is ready to be fired. This can be specified in OCL as a derived 

function 

self.inArcs->forAll(e|e.source.oclAsType(Place).ini tialMarking>0) 

It can also be written using ALF syntax 

  public isActive():Boolean{ 

   return this.inArcs 

executable meta-modelpnmlExamplepackage [   ]

+runPetriNet()
+getTransitions() : Transition [*]
+getActiveTransition() : Transition

PetriNet

+initialMarking : Integer

Place

+isActive() : boolean
+fire()

Transition
+name : String

NamedElement

Arc

PnObject

Node
+inArcs

*

+target

+outArcs

*

+source

+objects *



95 
 

-> forAll e (((Place)e.source).initialMarking>0); 

  } 

The code below is the complete ALF definition of the Petri net language. 

 

public abstract class NamedElement{ 
  public name:String; 
} 
public class PetriNet specializes NamedElement{ 
  public objects: compose PnObject[*]; 
  public runPetriNet (){ 
    let activeTransition:Transition = this.getActiveTransition(); 
    activeTransition.fire(); 
  } 
  public getActiveTransition():Transition { 
    return this.getTransitions()-> select e (e.isActive())->at(0); 
  } 
  public getTransitions():Transition[*]{ 
  return this.objects-> select e (e instanceof Transition); 
  } 
} 
abstract class PnObject specializes NamedElement{} 
abstract class Node specializes PnObject{} 
/* @OCL( "(source.oclIsKindOf(Place) and target.oclIsKindOf( Transition)) 

or (source.oclIsKindOf(Transition) and target.oclIs KindOf(Place))" ) */  
class Arc specializes PnObject{} 
public assoc Arc_Node_Source{ 
  public source:Node; 
  public outArcs:Arc[*]; 
} 
public assoc Arc_Node_Target{ 
  public target:Node; 
  public inArcs:Arc[*]; 
} 
class Place specializes Node{ 
  public initialMarking:Integer; 
} 
class Transition specializes Node{ 
  public isActive():Boolean{ 
    return this.inArcs-> forAll e (((Place)e.source).initialMarking>0); 
  } 
  public fire(){ 
    for (Arc arcIn : this.inArcs){ 
      let place:Place = (Place)arcIn.source; 
    place.initialMarking--; 
    } 
    for (Arc arcOut: this.outArcs){ 
    let place:Place = (Place)arcOut.target; 
    place.initialMarking++; 
    } 
  } 
} 

Listing 3: ALF specification of the PNTD. 

 

 



96 
 

It is also possible to define the behavioural semantics as separated activities. In order to 

use this approach, the behavioural semantics are defined as ALF activities that manipulate 

the input model. Five activities (shown in Figure 27) can be added and one of them can be 

defined as the start activity.  

 
Figure 27: Defining semantics as activities. 

5.4 Discussion 

This subsection discusses the relevant quality features that the definition layer supports, 

and explains why using ALF would reduce the first two types of errors given in the ASM-

based Petri net specification.  

Consistency 

There was a debate regarding the use of either a multi-viewed modelling language, 

such as UML9 , or a single-viewed modelling language, such as the single diagram 

approach [114], for software modelling. The one diagram approach, although providing 

greater understandability and a higher correctness rate, is not sufficient for modelling a 

complex software system. It supports the modelling of smaller views, such as structures 

and detailed behaviour, but does not support higher-level behaviours (e.g. state machines), 

composition, deployment or requirements. Although it is possible to create a unified 

language for all aspects of a software system, the meta-model of the modelling language 

will be complex and the model quality will be difficult to maintain due to the complexity 

thereof.  

Compared to a software system, a language specification contains fewer components, 

mainly in terms of abstract syntax and behavioural semantics. The common 

inconsistencies are inconsistent syntax and semantic models, because they are defined in 

different languages. In order to check such inconsistencies, a common approach is to 

create a composite meta-model that composes the syntax and semantics specification, then 

validates the composed model and traces the errors from the composed model to the 

                                                 
9
 UML is multi viewed, but the UML meta-model could bring all views together. However, the UML standard 

does not force the checking of the syntax validation. Hence, the unified meta-model of UML does not make 

the validation of the consistency of UML easier.  



97 
 

original model. Thus, before automatic consistency checking can be provided, the 

language engineers need to  

• Link the syntax and semantics model by transformations, which is a significant 

amount of challenging work.  

• As the translations and traces may also contain errors, they must also be validated 

and maintained.  

In comparison, ALF already provides a model that can capture both syntax and 

semantics; thus, the translations, traces and possible errors that could occur during the 

process are eliminated. In an ALF programme, detecting inconsistency is as difficult as is 

maintaining the correctness of the syntax. Therefore, if the language engineer resolves all 

syntactic errors of a language specification by FQLS, inconsistency is eliminated.  

Let us now return to the semantics of the Petri net that contains intentional errors, 

presented in Section 5.2. The ASM version of the PNTD consists of an abstract syntax 

specification that is defined by a class diagram and a behavioural semantic specification 

defined by ASM. The first error is a syntax error - a name typo. Such syntactic errors of a 

language are easier to check by a parser or a model validator, as shown in Figure 28. If the 

ALF specification has a basic syntax checker, such an error can be found, as in the 

example shown in Figure 28.  

 
Figure 28: Checking name typos. 

Consider the second error, which is an inconsistency between syntax and semantics. 

The inconsistency is due to different views of language specification using different names 

to refer to the same attribute. Such an inconsistency will not be detected by a syntax error 

checker, since both the syntax and semantic specification are correct in terms of the 

specification language. Moving on to the ALF version, if the same error - the semantics 

(operations) using different names from the abstract syntax (class structures) for the same 

attribute - occurs, such an error will cause a syntax error (a name refers to a non-existent 

property) that is easier to be identified by a parser. Compared to a parser, the other ways 

usually requires additional methods. Figure 29 shows how the ALF editor can detect such 

an error.  



98 
 

 
Figure 29: Checking non-existent properties. 

Interoperability 

As they are backed by the Object Management Group, are supported by many large 

tool vendors in the modelling community and have the existing resources of UML, ALF 

and fUML are considered to be interoperable technologies.  

Since ALF is an interoperable format that is supported by industrials, it makes 

language specification reuse and language specification composition possible. If the PNTD, 

for example, were to be extended to a hierarchical Petri net, the classes and operations 

could be reused as normal object-oriented programmes with inherited classes, override 

operations and polymorphisms. This is more difficult if the base language specification is 

procedural based, or even defined using different languages.  

Understandability 

ALF is designed to be an understandable language for a wide group of users. Although 

it is not expected that users who are not familiar with programming and who are therefore 

not the intended audience of a language specification could understand it, advanced users, 

language tool engineers and language engineers are all target audiences of ALF.  

Expressiveness 

Expressiveness gives the language engineers the opportunity to create semantics in a 

higher-level language, instead of worrying about implementation. An expressive language 

does not guarantee that the users of the language will develop high quality products but, 

with the process discussed in Section 4.3.2 and the guidelines in Appendix B, it will 

certainly be beneficial when defining concurrent behaviours and working with sequences 

and associations, resulting in code that is smaller and less complex.  



99 
 

5.5 Summary 

In summary, defining a DSL using FQLS includes defining a DSL as an executable 

meta-model, which is represented by ALF syntax. Abstract syntax is defined as classes and 

their relationships. Static semantics can be captured by using an aspect weaver, by 

extending ALF syntax, or by representing constraints in behavioural semantics. 

Behaviours are attached to the abstract syntax by direct attachment, using an aspect weaver, 

or by creating a runtime meta-model.  

In order to demonstrate the method, a Petri net example was illustrated, first defined by 

translational semantics using a class diagram, a prose-based transformation and an ASM 

rules for behavioural semantics. The ALF specification of the same language is provided 

thereafter. Why the ALF-based specification is better in consistency, interoperability, 

understandablity and expressiveness is discussed.   

The next chapter discuss describes how static analysis is used in FQLS to maintain the 

correctness of a ALF-based language specification.  

  



100 
 

Chapter 6.  
 
Static analysis of DSL specifications using FQLS 

Using ALF as a method for defining language specifications leads to a more 

understandable specification that has improved consistency and correctness and which is 

more interoperable. However, these benefits still need the developers' efforts in order to 

achieve them. As discussed in Chapter 4, an automatic method of error reporting is an 

important aspect of creating a high quality language specification, which requires 

performing a static analysis of the language specification via the analysis layer of FQLS.  

In this chapter, the types of errors that would occur in an ALF-based language 

specification are first discussed in Section 6.1. After identifying these errors, in Section 6.2, 

how these errors can be statically checked by FQLS are demonstrated, by using the built-in 

checkers that traverse the syntax tree and perform type checks. Thereafter, Section 6.3 

explains how to transform an ALF specification into fUML, which enables the reuse of 

UML analysis approaches. 

6.1 Extended static checking 

This section tries to answer a question: What kinds of static analysis are required? 

Because a static analyser targets a particular kind of error by looking for a bug pattern, this 

question can be answered by examining the kinds of errors that can appear in an ALF 

specification. Research into the kinds of errors that can occur in an ALF specification 

starts by sourcing errors from two different categories, a static code analyser for other 

languages, and our experience of using ALF.  

The first source of errors comes from the static code analysers for other programming 

languages, particularly those of Java. Java is selected as a major source because that ALF, 

as a programming language that is similar to Java, shares the same kind of errors as Java. 

Therefore, the errors that can be checked by Java code analysers are analysed.  



101 
 

The Java code analysers that are analysed are FindBug [70], PMD [27] and 

CheckStyle10. Each has a list of the errors they can check, which ranges from common 

causes of bugs and styles, to bad practices (or ‘bad code smells’, as described in [98]). If 

the same error occurs in ALF, the error is listed as a possible target for a static analyser.  

Table 2 lists the errors that are migrated from established static checkers. Since they 

only requires efforts to implement, they are not worthy to be introduced in the main body 

of the thesis. The details of these errors are listed as Appendix C. 

Name 

Syntax errors 

Class implements the same classes as super class 

An Activity that has a return part must define a return 

statement 

Type errors 

Unused/unwritten class members or variables 

Compare two objects when they are not comparable 

Method names differ only in capitalisation 

Class defines an attribute that masks a superclass attribute 

Unnecessary type check done using instanceof operator 

Obvious infinite loop  

Impossible cast 

Table 2: Errors identified from established checker 

The other source of errors comes from our experience in using ALF. ALF has its own 

features that can cause errors, especially some tricky features that are syntactically similar 

to Java, but which have different behaviours in Java. When developing the BPEL case 

study, some errors that were encountered could occur repeatedly. These errors were 

identified as features of the static analyser; it was found that the effort involved in 

implementing the checker was less than that of finding them manually.  

Table 3 lists the errors that are identified from the BPEL case study. Their details are 

introduced in the following paragraphs.  

  

                                                 
10

 http://checkstyle.sourceforge.net/ 



102 
 

 

Name 

Wrongly placed accept statement 

Accepting a signal that is not defined in a signal reception 

An OCL expression cannot be interpreted. 

Empty code block 

Blocked active class thread by signal deficiency 

Use of a local variable without declaration 

Try to compare a collection with null 

Access a collection by index when the collection is not a sequence 

Ambiguous ! operator 

Check java naming rules 

Practical rules regarding sequence expressions 

Table 3: Errors identified in the BPEL case study.  

Wrongly placed accept statement 

An accept statement is a special statement that will temporarily stop the execution of 

the active object, which will be resumed when the signal it is waiting for arrives. Since it 

stops the execution of an active object, it must appear in an active object. ALF constrains 

only the classifier behaviour of an active class, or a pure activity, because activity is 

treated as a classifier that is active. However, it is easy to forget this and to put accept 

statements into a normal operation. For example, moving a code block that contains an 

accept statement to a new operation, as in Listing 5, is incorrect.  

public active class Test{ 

    public receive signal SignalTest{} 

} do{ 

                        accept(SignalTest); 

                        //do something 

} 

Listing 4: Correct accept statement. 

  



103 
 

public active class Test{ 

public receive signal SignalTest{} 

private receiveSignal(){ 

accept(SignalTest); //Incorrect 

} 

} do{ 

this.receiveSignal(); 

//do something 

} 

Listing 5: Incorrect accept statement. 

Accepting a signal that is not defined in a signal reception 

This error happens when an accept statement tries to accept a signal that is not defined 

as a signal reception of the enclosed class. ALF has two ways of defining a signal 

reception; one is to define the signal and its reception in the same place, as below: 

public active class A{ 

    public receive signal SignalTest{} 

} do{ 

    accept(SignalTest); 

} 

The other way is to define the signal separately, as below: 

public active class A { 

    public receive SignalTest; 

} do{ 

    accept(SignalTest); 

} 

public signal SignalTest{} 

If an accept statement tries to accept a signal that is not a reception of the active class, 

it indicates either the signal reception is missing, or that the target name is wrong. For 

example,  

public active class A { 

} do{ 

    accept(SignalTest); //missing signal reception 

} 

An OCL expression cannot be interpreted. 

Section 5.1.2 introduces the three ways that are proposed to specify static semantics via 

ALF. When defining static semantics by OCL separated from the ALF specification or 

embedding OCL to ALF, the OCLs can also experience errors. When an OCL interpreter 

cannot interpret the OCL expression, this error will be reported.  



104 
 

Blocked active class thread by signal deficiency 

As discussed previously, an accept statement stops the execution of the active object 

that contains the accept statement. If the language engineers wish to continue the execution 

of that active object, another object must send the signals for which it is waiting. If such a 

signal is missing, then the active class is blocked due to signal deficiency. 

It is not easy to eliminate blocked active classes, considering the complexity of a 

programme. However, it is possible to check a particular kind of deficiency.  

public active class A{ 

    public receive signal SignalContinue{} 

} do{ 

    accept(SignalContinue){ 

    //do something 

    } 

} 

public active class B{ 

} do{ 

    let a:A = new A(); 

    a.SignalContinue();   //------- 1 

} 

For instance, assume that the code above is a complete collection of the ALF 

programme. The code block contains two active classes, A and B. The active objects will 

not be blocked, because an instance of B will send the signal to A when B is instantiated. If 

statement 1 is deleted, then class A is waiting for a SignalContinue . However, such a 

signal is not sent by any instances of the entire programme, which indicates an error of 

signal deficiency.  

As a result, the check scans the complete programmes and creates an error message if 

an active class waits for a signal that is not sent by any other classes.  

Use of a local variable without declaration 

In ALF, the local name can be declared as in any dynamic language, when it is first 

assigned a value like 

    a = "fdsafsa" ; // a was not declared before 

In the assignment statement above, the type String is omitted. However, it is better to 

avoid it, because static type checks can reveal bugs. Use implicit type, especially when 

indicating the type of the variable is not easy, can make static type checks difficult.  



105 
 

Try to compare a collection with null 

When testing whether a collection is empty, it is wrong to compare the collection to 

null. The correct way is to invoke the isEmpty()  method. The code below shows an 

instance: 

    if (structuedActivity.activities==null) //not correct 

    if (strucutedActivity.activities->isEmpty())  //correct 

Access a collection by index when the collection is not a sequence. 

ALF defines a sequence using the syntax below: 

public class Scope{ 

    public activities: Activity[*] sequence; 

} 

where a sequence keyword is the same as  

    public activities: Activity[*] ordered nonunique; 

A property is non-ordered by default. This does not affect the processing of each 

element of the list if the order is not important. However, it does cause an error when 

accessing non-ordered multiple properties via an array index operator (“[“ and “]”). When 

this happens, no correct result is guaranteed: ALF open source reference implementation 

will return a value in the list, but it does not have the index of the desired one.  

This check performs checks on the array access operator and reports errors if the target 

it tries to access is not ordered. In the Petri net example, the multiple properties are a non-

ordered collection. Thus, the in Transition.fire() , accessing an arc by the index is 

wrong: 

class Transition specializes Node{ 

    public fire(){ 

        let firstArc:Arc = this.inArcs[0]; // wrong 

        //. . .  

    } 

} 

Check java naming rules. 

This rule checks whether a name in the ALF text conforms to Java naming rules. It is 

useful when generating the testing executor. Since the naming rules of ALF and Java are 

different, it is possible that a legal name in ALF will cause a syntax error or an ambiguity 

error. An obvious example is that it is legal to name an ALF variable “try ”, which will 

result in the generated code not being compiled. Another unobvious example is to give an 

ALF class the same name as a class in java.lang  package, such as ‘Process’ , which will 



106 
 

result in the generated code use of java.lang.Process  in default, rather than using the 

Process class defined by the language engineer.  

The rule contains the follow sub rules: 

• Names are not reserved Java names 

• The first letter of the class is capitalised 

• The first letter of variables/operations is not capitalized. 

• Signals start with a keyword signal.  

Practical rules regarding sequence expressions 

The sequence expressions of ALF are powerful because they give ALF the same 

expressiveness as OCL. Sequence expression can be easily defined as lambda expressions. 

However, current Java does not support lambda expressions11, which makes generating 

Java code from ALF sequence expressions a difficult task. It can be done by generating an 

interface with an anonymous function, which will damage the generated code because each 

sequence expression results in an interface with a randomly generated name. Some JVM 

based Java-like languages, such as Scala and Xtend, support lambda expression; however, 

using a language other than Java makes the reuse of EMF impossible. Finally, FQLS 

supports the generation of sequence expressions as OCLs embedded in Java with 

limitations. The details of the generation are introduced in Chapter 7. In order to enable 

our approach of code generation, the following conditions must be satisfied. 

• Avoid sequence expressions in a normal ALF block. 

• Put sequence expression into a new operation that only has a return statement.  

For example, such sequence expressions should be avoided: 

public operation (){ 

    //some code 

    let flag:Boolean = sequence -> forAll e (e>0); 

    //some code 

} 

However, sequence expressions can be used if they are defined in a separate method by 

generating sequence expressions as OCLs; for example, the list below will generate 

working EMF code in FQLS.  

                                                 
11

 Java aimed to support closure by project lambda (http://openjdk.java.net/projects/lambda/) in Java 7 

(2011); however, it was delayed until Java 8, which was released in 2014 - clearly too late for this thesis.  



107 
 

public operation(){ 

    //some code 

    let flag:Boolean = createFlag(sequence); 

} 

private createFlag( in sequence: any[*]):Boolean{ 

    return sequence-> forAll e (e>0); 

} 

Thus, a checker can be implemented to check whether the use of a sequence expression 

meets the limitation. This option should be turned on if generating code for Java 7 or 

below is desired.  

6.2 Building static code analysers  

Once the errors that need to be checked have been identified, the next step is to build 

static checkers that validate these errors. Many syntactic errors mean that the programme 

cannot be parsed as a valid syntax tree. These kinds of errors do not need the 

implementation of a validator, because the ALF editor included in the tool chain of FQLS 

is built upon Xtext, which automatically generates a parser that validates lexical errors. 

The details regarding the way in which Xtext generates a parser are omitted, as this is 

outside of the scope.  

On the other hand, many of the errors listed in Section 6.1 should be checked by 

building customised validators. Fortunately, Xtext provides a plugin mechanism to add 

customised validation rules in a declarative style. A class that generalises 

AbstractDeclaritiveValidator  can add a @Check annotation to an operation. The input 

of such an operation is a class from the language meta-model. In the body of the operation, 

the input class instance is examined using any Java methods necessary and, if any error or 

warning is found, the operation should tell the editor to report specific error messages. For 

example, the list below shows a validating rule that checks whether an operation of an 

ALF programme should have a return statement. OperationDefinitionOrStub  is a class 

from the ALF meta-model. If it has a return part (which means the operation should return 

a value) and the body of the operation does not have a return statement, the validating rule 

will report an error.  

  



108 
 

@Check 

public void validateOperationDefinitionOrStub(OperationDefinit ionOrStub 
operation){ 

    AlfFinder finder = new AlfFinder(); 

    if (operation.getReturnPart()!= null  

  && (! finder.hasReturnStatement(operation))){ 

    error("The operation must return a result", ope ration, null, 

        INSIGNIFICANT_INDEX ); 

 } 

} 

Listing 6: Validating rule for testing the return statement. 

When the ALF editor is running, the Xtext framework automatically invokes the 

validating operations with relevant input. For example, every instance of 

OperationDefinitionOrStub  will be passed to the validating rule in Listing 6 and be 

validated. The mechanism of the Xtext validator provides a framework to perform 

validation on special elements of the ALF meta-model, so the developers only need to 

implement how to identify the errors, rather than how these rules are invoked or how the 

errors are rendered in the editor.  

The validation framework of Xtext enables the addition of customised validation rules 

to a language in a simple way. It is necessary to mention that, although it is called a 

declarative validator, the logic for querying the ALF models, finding errors and reporting 

errors is still performed by imperative code. The errors listed in Section 6.1 can all be 

validated by validating operations that range from several to hundreds of lines of Java code.  

The validators and the helper classes form a Java package. To demonstrate how a 

validator is implemented, the validator that relates to type errors is taken as an example. 

The class diagram is illustrated in Figure 30. It was chosen because it is the most complex 

validator, and the helper classes are used by other validators.  



109 
 

 
Figure 30: Validation package. 

AbstractDeclaritiveValidator  is a base class provided by the Xtext framework. Its 

subclasses can use the @Check annotation and are managed by the Xtext framework. 

ALFJavaValidator  is an example that contains validating operations.  

Because many different rules need to query the language specification, the queries are 

separated in the AlfFinder  class. AlfFinder  provides helper operations that, when given 

an input model from the language specification, return a special model that can be used for 

analysis purposes. For instance, 

public Statement findStatement(EObject exp) 

This operation will find the statement that contains the input object. Some statements 

are only correct when their enclosed expressions are of a certain type. Here is another 

example: 

public EObject findNameDefinition(NameExpression exp) 

When given a name expression, it is necessary to find its definition; whether it is a 

local variable, a class member, or a parameter. If there is no definition of the name 

expression, it returns null.  

To check type errors, the complete ALF instance model is first traversed. The models 

that could be a type are identified and their types are recorded. Basic types that are 

supported by the ALF standard are included, as well as any classifiers that can be used as a 

type. Each of the expressions is then scanned, and the type of the expression is resolved by 

the class TypeResolver .  

package Validators class[   ]

AbstractDeclaritiveValidator

+validate()
+...()

ALFJavaValidator

TypeResolver

TypeFactory

AlfFinder
<<use>>

<<use>>

<<use>>

<<use>>

<<use>>



110 
 

TypeResolver  is a class that computes the type of the input expression. When the 

input expression has type errors, it will recode the errors, which can then be retrieved by 

the callers. The TypeFactory  class provides the relevant utility operations, such as 

creating a specific validation type, or the static operations that compare two types to see 

whether they are compatible.  

By using these classes, rules related to type checks can be implemented. The 

implementation details are omitted, since they are not innovative. On the other hand, the 

numerous small checkers, as a whole, enhance the quality of a language specification.  

6.3 Bridging FQLS specification with fUML 

Since the built-in checkers validate types and syntax trees, it is possible to create a 

checker for most of the errors listed in Section 6.1. While these checkers are targeted for 

the most frequent errors, these checkers take ALF programmes as input. They can only 

analyse errors by querying the ALF programme. In other words, the errors and bad 

practices targeted by the built-in static checkers share the same feature, in that they can be 

identified by querying the syntax tree of the ALF programme.  

Formal static analysis method can verify some properties like deadlocks or inefficient 

use of resources. They are also desired because such kinds of errors reduce the quality of 

the language specification. Moreover, the result they produced is usually sound, which 

gives extra confidence of the quality. In order to perform formal analysis on a language 

specification specified via ALF, it is needed to bridge ALF to an analysis domain.  

A direct mapping from ALF to an analysis domain can be created. Since there are 

many possible candidates, each of the mappings requires significant effort to develop. In 

addition, such developments require the formal semantics in order to transform them. The 

semantic basis of ALF is fUML, which means if a transformation from ALF to an analysis 

domain is desired; this can be done by firstly transform to fUML, and then transforms 

fUML models to any desired analysis models.  

There is another reason why fUML is a promising candidate of analysis domain. Since 

the release, significant works have been done on how to formally analyse or to verify a 

fUML models, which are listed in Table 4, specifying the property that can be verified and 

the input model required for that approach.  

  



111 
 

Name Input model Analysis 

[20, 21] UML/EMF Satisfiability, Liveliness, deficiency, redundancy 

[158]  fUML Data flow analysis 

[118, 120]  UML/fUML Executability, satisfiability 

[2] fUML Deadlock Checking  

[11] fUML  Performance analysis  

[90] fUML Control- and data-flow, resources, and time 

dimensions 

Table 4: fUML analysis approaches 

The establishment of fUML analysis approaches means if an approach that bridges 

ALF and fUML exists, the fUML analysis approaches can be reused, thus saves the effort 

to develop the mappings individually. Fortunately, mapping from ALF to fUML is defined 

in its language standard. However, the transformation is not a straightforward 

implementation. The transformation, rather than being defined in a rigid way, is defined by 

text, which needs to be interpreted and formalised. In total, ALF and fUML contain 

hundreds of classes, and mapping is not a simple mapping. One ALF element can be 

mapped to a group of fUML nodes, edges, structured nodes and classifiers, and these 

fUML elements can be owned by different groups. Thus, the nature of ALF makes the 

transformation complex and challenging.  

In order to create such a transformation, the following parts of this section discuss the 

choice of model transformation languages, and then how the transformation is created and 

the results are demonstrated.  

6.3.1 Atlas Transformation Language 

To develop such a transformation, it is necessary to select a model transformation 

language. There are several commercial or open-source projects that can be used to 

transform models, as shown in Table 5. They share similar features, such as providing a 

mechanism to define transformation rules. Most of them support so-called hybrid 

transformation, which enables the use of both declarative and imperative styles to define 

transformation rules.  

  



112 
 

Name Feature 

ATL [73] Widely used, supports hybrid rules, actively developed by the Atlanmod 
team. 

QVT [53] OMG standard. Contains three languages. Supports hybrid rules 
Kermeta [18] Supports imperative style transformation. 
Epsilon m2m [82] Has the ability to interoperate with other members of the Epsilon language 

family.  
Henshin [7] Uses in-place graph transformation to define declarative rules 

Table 5: Transformation languages. 

Of these transformation languages, ATL and QVT are the most acceptable model 

transformation languages. While QVT is a language defined as an OMG standard, which 

forms the model-to-model part of the MDA process, QVT is somewhat complex as it is 

split into three different languages, namely QVT relational, QVT operational and QVT 

core. Within three of the languages, only QVT operational has a usable open-source 

implementation in the Eclipse ecosystem. In comparison, ATL is a model transformation 

language that has a large user community. It supports hybrid rules, which are powerful 

enough for a complex transformation, yet still keep the transformation simple to read. 

Hence, ATL is selected as the language for implementing the transformation.  

Although ATL is selected as the means of implementing the transformation, this does 

not mean that the idea can only be realised by ATL. QVT and any other mature model 

transformations can do the job. The model transformation implemented in this section is a 

demonstration of a possible solution.  

6.3.2 Mapping ALF to fUML 

A model transformation needs to define its input/output meta-models, the source/target 

models, and the transformation rules. Figure 31 shows an overview of the transformation. 

This process involves four rounds of transformations, and three meta-models are used. 

 
Figure 31: ALF text to model transformation. 



113 
 

The ALF meta-model and the fUML meta-models are Ecore implementations of the 

standard, imported from the CMOF files given on the OMG website by the EMF standard 

import wizard. The errors that happened in the importing process were solved manually.   

The transformation starts from the ALF text. The first round transforms from text to the 

ALF grammar model, which is done automatically by Xtext. A model that conforms to the 

grammar meta-model is passed to the transformation from the definition layer of FQLS.  

The grammar model is different from the ALF meta-model defined in the standard, 

because it still contains the verbose classes that are only meaningful for parsing. Thus, the 

next step is to translate the grammar model to ALF meta-model. This process, if compared 

to traditional language development, is similar to constructing an abstract syntax tree from 

a syntax tree.  

The grammar of ALF is divided into expressions, statements and units. When 

constructing the grammar, the units and statements are identical; thus, the transformation 

rules mainly copy the contents. However, the expressions of the grammar model and the 

ALF meta-model are different. To ensure that the grammar is an LL(*) grammar12 that can 

be parsed, the class representative of expression is verbose. For instance, an expression 

“operand1 + operand2 ” in the grammar model will be: 

 
Figure 32: An example in the ALF grammar meta-model. 

In the ALF meta-model, expressions are resolved to a proper representation: 

                                                 
12

 Xtext uses ANLTR 3 as its parser generator, which supports LL(*) grammar.  

AlfGrammarpackage Additive[   ]

MultiplicativeExpression
+op : String

AdditiveExpression

.....
UnaryExpression+exp

*
+exp

*



114 
 

 
Figure 33: Arithmetic expression models in the ALF meta-model. 

The M2M linking transformation mainly contains the transformation that resolves the 

expressions. This transformation will create an ALF instance model, which is ready to be 

transformed to fUML.    

The last round of transformation compiles the ALF instance model and the fUML 

instance model. The ALF standard has defined how the mapping should be done. Although 

this is informative, it is not intuitive if implemented by a model-to-model transformation 

language.  

Table 6 summarises the simple ALF programme and its corresponding UML 

representation. This table helps to give an idea of how concepts from ALF are translated.  

 

ALF code fUML models 

Activity Activity with parameters mapping to 

ParameterNode .  

Code block Maps to a 

StructuredActivityNode , with each 

of the statement inside mapped to multiple 

StructuredActivityNode  that are 

linked by control flows.  

Parallel code block 

 

Maps to a 

StructuredActivityNode  similarly to 

a normal code block, but without the 

control flows. 

Literal expression Maps to ValuSpecificationAction 

AlfMetamodelArithmetircExpressionAlfMetamodelpackage [   ]

+operator : String

ArithmeticExpression

Expression

+operand2+operand1



115 
 

binary expression The operands are mapped to fUML as 

normal. The result of the operands are 

lined to a 

BehaviouralInvocationAction  that 

invokes the corresponding calculation 

action defined in the standard model 

library.  

method call Maps to a 

BehaviouralInvocationAction .  

return statement The expression part of the return 

statement is mapped to nodes and edges 

that are enclosed in a 

StructuredActivityNode . The result 

source of that expression has a data flow 

linked to the return parameter node of the 

activity.   

sequence expression 

sequence 

-> select variable 
(expression)  

 

Sequence expression is mapped to a 

ExpansionRegion , as the example 

figure.  

signal sending Maps to a SendSignalAction 

Signal receiving Maps to an AcceptEventAction 

Loop Statement Maps to LoopNode with the body 

maps to the body of the LoopNode, and 

the test codition maps to the Condition of 

the LoopNode.  

Table 6: Mapping between ALF code and fUML models. 



116 
 

The table shows that one ALF concept can be mapped to a group of UML nodes and 

edges. However, the containers for these UML nodes and edges that are derived from the 

same ALF class can be different. For example, in the standard (page 347), mapping 

expressions indicates that an expression statement is mapped to a structured activity node 

that contains the activity nodes and edges that are transformed from the expression. This is 

realised by identifying the owner of the target models when writing the ATL rules.  

By using this transformation, ALF text can be transformed into fUML models, and can 

be analysed or tested in a fUML executor if the language engineers desire. Returning to the 

Petri net example, for the operation getActiveTransition() , the code is 

public getActiveTransition():Transition{ 

    return this.getTransitions() 

     -> select e (e.isActive())->at(0); 

} 

Figure 34 shows the transformation result of the operation. The operation 

getActiveTransition  is mapped to a UML operation, of which method body is an 

activity that contains the nodes and edges. The operation contains one statement (a return 

statement), which maps to a structured activity node that contains the nodes and edges that 

are derived from the expression of the return statement. This expression is mapped to a 

ReadSelfAction . The call to getTransitions()  maps to a callOperationAction . The 

selected expression maps to an expansionRegion , with the conditions mapped inside the 

ExpansionRegion . The at()  operation is an operation that comes from the standard 

fUML library, which maps to a callFunctionAction  that return the value with the 

correct index.  



117 
 

 
Figure 34: Compiled fUML model of getActiveTransition. 

6.4 Summary 

In this chapter, the components of the analysis layer of FQLS were presented in detail. 

The errors that could occur in an ALF specification were identified, and ways of building 

these checkers using Xtext were discussed. Thereafter, a transformer from ALF to fUML 

was proposed and demonstrated by implementing it as an ATL transformation application.  

  

( net : Net [1] ) : Transition [0..1] getActiveTransition getActiveTransitionactivity [   ]

result : Transition

<<structured>>

<<parallel>>
expansion

isActiveTransition : 
isActivitiedTransition

return_parameter

transition_parameter

expansion.in

expansion.out

expansionFork1

decisionFl
owSelect

Active

<<structured>>
s20

<<valueSpecification>>
v0

callFunctionGet 
: ListGet

indexlist

result

<<readSelf>>
readSeflAction(

this) getTransitions :
 getTransitionsnet

rtn

decisionFlowSelectActive

edge1 - owned by activity

 [true]

edge2 - owned by structured node



118 
 

Chapter 7.  
 
Executing DSL specifications using FQLS 

In the previous chapter, the static analysis of the language specification was performed 

without executing the specification. Although the process of detecting the problems is 

automatic, these static analyses are limited by checking syntax errors, bad practices and 

some semantic errors. The semantic errors that are not easily analysed by checkers require 

the language designers to identify them. When the semantics specification reaches a 

sufficiently complex stage, it is difficult to verify its real execution result manually. On the 

other hand, an executable semantics specification will provide an automatic method for 

language developers to derive the execution results.  

Executability of the language specification is one of the most important requirements 

as it enables testing and thus enhances the quality of the language specification. Testing a 

language specification involves creating testing programmes of the language specification, 

then executing the programmes and checking whether the result is as expected. Thus, the 

task of testing language specification not only involves an executor, but other tools as well.  

Just because a language specification is executable does not mean that software that 

can execute the language specification exists. A language specification defines the 

language executor at the conceptual level, and is then implemented as a piece of software.  

In practice, language specification is the guidance the language engineers use to create 

a reference implementation of the language. A reference implementation of a language 

specification should  

• Give the language designer a tool for testing the language specification.  

• Give the readers a standard tool to understand the language. 

• Give the tool developers a starting point that they can use as a basis for creating 

other tools.  

However, the relationship between a language specification and its implementation 

does not happen automatically. The release of a language specification is not required to be 

accompanied by a reference implementation. In fact, it is possible that a language 



119 
 

specification, or at least part of it, is never implemented, even by the time it replaced by a 

newer version.   

Given the importance of a reference implementation, one reason for the absence 

thereof is the cost. If the language specification is composed of text, a reference 

implementation needs to be developed manually. Defining the language specification as an 

executable meta-model enables the language specification to act as a reference 

implementation. However, this is only possible if the language specification is sufficiently 

detailed for execution and if certain tools are available.  

As discussed in Section 4.2.3, FQLS uses code generation to create a reference 

implementation of the language specification. Section 7.1 introduces the architecture of the 

code generation project. Section 7.2 demonstrates the transformation from ALF structural 

aspects to Java code. Following this, the last section discusses the method of transforming 

behavioural aspects of ALF into Java code.  

7.1  Architecture of the code generation project 

Directly generating Java from ALF is time-consuming and can involve a large degree 

of development because there are many features of ALF that do not have straightforward 

mapping. It is not worth reinventing features, such as ways of managing bi-directional 

references, as when one end changes the other end does too. Thus a solution is to generate 

an Ecore model from ALF. Ecore models are necessary for generating DSL model editors 

and validators. Furthermore, EMF can generate the skeleton of the Java code that 

represents the Ecore model. Then Java statements can be generated directly from ALF 

statements. The Java statements use the skeleton generated by EMF.  

fUML and Ecore share many similarities when defining structural models. Although 

some classifiers, such as signals/associations do not have a direct translation, they can be 

translated to similar concepts. For instance, associations can be translated to references. 

Thus, it is possible to develop a similar model-to-model transformation that bridges ALF 

and Ecore. However, Ecore lacks the ability to define behaviours, which makes it 

impossible to translate ALF to Ecore without losing behavioural model definitions13.  

                                                 
13

 The experimental EMF project Xcore includes basic variable assignment, loops and conditional 

statements, which could be used to define detailed behaviours. However, Xcore has limitations in many  

places, such as lacking of concurrency support, no exception handling and limited documentations. 



120 
 

In order to support the reference implementation generation, the ALF to Ecore model 

transformation is designed as a model-to-text transformation, rather than as a model-to-

model transformation. The reference implementation requires generating Java code from 

ALF, which is more suitable as a M2T transformation. The generated code is coupled with 

the Java skeleton generated by EMF. If the structural aspects of ALF are transformed to 

Ecore using an m2m transformation while the behavioural aspects of ALF are transformed 

to Java using an m2t transformation, it is too complex to integrate. Hence, it is more 

suitable to create an M2T transformation that deals with both the structural and the 

behavioural aspects of the language specification.  

The following two paragraphs introduces Emfatic and Acceleo, both of them are key 

technologies that enable the transformation. After that, the architecture of the 

transformation is explained.   

Emfatic 

Emfatic [29] is one candidate for the textual representation of Ecore, and there are 

many other choices. It is chosen because it supports Ecore annotations well. It directly 

supports adding Ecore annotations to the Emfatic files, which means an Emfatic file can 

contain the structure of the models, the OCL and the body of the operations. The body of 

the operations is specified in @Genmodel annotations as Java statements. Thus, this Emfatic 

file acts as an intermediate format. In addition, the Emfatic file can be directly loaded by 

EMF, and the code generation is smoothly integrated, just as in generating Java code from 

a normal Ecore file. Although a similar effect can be achieved by the other textual 

representations of Ecore, the author believes Emfatic provides the best solution as it does 

not need to cross check between the textual representation of Ecore and the genmodel.  

Acceleo 

Acceleo14 is a code generation language. Compared to similar languages, Acceleo is an 

implementation of the OMG M2T standard [47], which means its syntax is template-based, 

uses OCL as its querying language, and is compatible with the standard. It is possible to 

implement the M2T transformation in any other M2T language, such as JET15 , 

AndroMDA 16 , Xtend17 , or Epsilon Generation Languages [129]. The various M2T 

languages have their own features, but their syntax is not compatible with the OMGM2T 

                                                 
14

 http://www.eclipse.org/acceleo/ 
15

 https://www.eclipse.org/modeling/m2t/?project=jet 
16

 http://www.andromda.org/index.html 
17

 http://www.eclipse.org/xtend/ 



121 
 

standard. Since interoperability is a fundamental requirement of a language specification, 

building the complete framework by technologies that are compatible with industry 

standard will make them easier to adapt and understand.   

Architecture 

 
Figure 35: Generating Java code. 

As illustrated in Figure 35, the code generator works as two-round code generation. 

The first round transforms FQLS models to an Ecore model. The structural definition in 

ALF can be translated as one-to-one mapping, and the behavioural definition is translated 

to Java code embedded as the body of operations. The transformation is done by using 

Acceleo M2T, which creates an Emfatic file. The second round of transformation is the 

standard code generation of EMF, which generates Java code from the Ecore model.  

 
Figure 36: Project structure of the executor generator. 

Figure 36 above shows the structure of the Acceleo code generation project. The 

package alf2emf.main  contains the code generation templates. Generate.java  is the 

class that initialises the code generation framework, which loads the input ALF mode and 

loads the .mtl  templates. There are three template files, namely generate.mtl , 

generateBlock.mtl  and generateExp.mtl . As the names suggest, generate.mtl  is the 

starting point for the code generation, which defines the location of the output Emfatic file. 

It also contains the generating structural aspects of Emfatic files, namely the classes and 



122 
 

class members. Finally, generate.mtl also generates some Java files, which act as glue code 

or adaptors.   

GenerateBlock.mtl  maps ALF statements to Java statements. When an ALF 

statement contains expressions, it also invokes the generateExp.mtl  template, which 

transforms ALF expressions into Java Expressions. GenExpression.java  provides some 

low-level detailed code generation tweaks.  

This and the next section explain the details of the code generation. They are divided as 

two parts: the structural aspects, and the behavioural aspects. 

7.2 From ALF structural aspects to Emfatic 

This section explains the mapping of structural aspects of ALF to Emfatic in detail. 

The concepts in ALF that are similar to Emfatic are listed firstly, following by the 

mapping of advanced concepts.  

When representing classifiers, ALF has a richer vocabulary than has Ecore. Class, 

enumeration and datatype have correspondent concepts in Ecore. 

Table 7 summaries a general mapping of structural concepts from ALF to Ecore. Basic 

types are mapped from ALF types to Ecore types. Multiplicities are mapped in the same 

way as in ALF, because they are the same in terms of concept and differ only with regard 

to syntax.  

ALF structures Emfatic structures 

Class class 

signal/signal reception class extends Signal 

active class class extends ActiveClass 

Enum enum 

Attribute attribute 

Association reference 

Operation operation 

Parameter parameter 

Table 7: Mapping from ALF to Emfatic. 

Signals/signal reception 

The table also shows that some concepts, such as signals and active classes, do not 

have corresponding concepts. To solve this problem, a base class for all the classifiers that 

do not have a corresponding Ecore concept is created. Consider the signal definition in an 



123 
 

ALF programme. In reality, signal instances are special objects that can receive/send 

signals by using an invocation expression or an accept statement. They do not have any 

special properties; thus, they can be represented as a class. By creating an interface called 

Signal and then transforming an ALF signal definition to an Ecore class that implements 

the Signal interface, a signal definition can be simulated by an Ecore class. 

Active class 

Another, more complex example, is transforming the active class in ALF. The active 

class starts its classifier behaviour when a new instance of the active class has been created. 

The most similar concept in Java is a thread. The active class also needs to manage 

incoming/outgoing signals, as it is possible to receive signals before the object goes to a 

waiting signal state. As the internal communication mechanism is a semantic variation 

point of fUML, the detail of inter object communication is left to the tool implementer to 

interpret. A simple message exchange model is used, whereby each active object has a 

queue that stores the incoming signals. Once an accept statement has received a particular 

signal, that signal will be removed from the queue. Finally, a Java interface can be 

implemented: 

public interface ActiveClass extends EObject,Runnable { 

 EList<Signal_> getMessageQueue(); 

 void run(); 

} // ActiveClass  

Thus, when generating Emfatic code from ALF, an active class is mapped as a normal 

class that extends the ActiveClass  interface: 

abstract class Execution extends ActiveClass  {…  

The classifier behaviour of the active class is mapped to the content of the run()  

method. When an active object is created, a new thread that executes the run()  method is 

created in the generate Java implementation.  

An ALF active class can define signal receptions, and other objects can send signals to 

the active object. The syntax for sending a signal to an active object is the same as 

invoking it to an operation, for example 

public active class Test { 

    public receive signal SignalTest{} 

} do{} 

Assuming ‘test’  is an instance of Test, sending a SignalTest  to test can be written as 

test.SignalTest(); 



124 
 

Thus, signal invoking is mapped as an operation that adds a signal instance to the 

message queue of the active object. This means that a signal reception is transformed into 

an operation with the same signal name; when invoked, the operation causes the same 

effect as being sent a signal, adding a signal instance to its own message queue.  

Attribute/association 

As shown in Table 7, attributes in ALF and Ecore are the same concept; thus, an 

attribute in ALF is mapped as an attribute in Ecore that has the same name, type and 

multiplicity. In the Petri net example, Place.initialmarking  is defined as 

 public initialMarking:Integer; 

and will generate Emfatic code like this: 

 attr Integer initialMarking; 

Translating ALF associations is a direct transformation. In ALF, associations are 

classifiers that have the same root class as classes, signals and data types. An ALF 

association has its own name and visibility in addition to the other properties of a classifier, 

and it can have multiple associations.  

In the previous sections, a limitation is set that only bi-directional association is 

allowed in an FQLS specification. One reason is the difficulty of mapping it to Ecore and, 

most importantly, a multiple association does not have a semantic basis in fUML. If 

multiple associations are eliminated in ALF, the closest assembly of an ALF association is 

a bi-directional reference in Ecore, which can only be a member of a class. Thus, given the 

association ends of an ALF association, the transformation needs to identify the correct 

Ecore classes that contain the reference ends. A heuristic is applied to identify relevant 

associations and to generate references in the Emfatic file. When translating an ALF class 

to an Ecore class, the code generator transforms the attributes first. It then looks up the 

complete model, and finds those associations that have one association end that is the 

target class. Depending on the associations found, the generator finally generates the 

references.  

In the Petri net example, the associations between args  and nodes : 

 public assoc Arc_Node_Source{ 

  public source:Node; 

  public outArcs:Arc[*]; 

 } 

  

 public assoc Arc_Node_Target{ 

  public target:Node; 



125 
 

  public inArcs:Arc[*]; 

 } 

  

will be translated to the following Emfatic code: 

class Arc extends PnObject  

{ 

 ref Node#outArcs source; 

 ref Node#inArcs target; 

} 

abstract class Node extends PnObject  

{ 

 ref Arc[*]#source outArcs; 

 ref Arc[*]#target inArcs; 

} 

 

7.3 From ALF’s behavioural aspects to Emfatic 

This section continues the explanation of the code generation from ALF to Java, 

focusing on the behavioural aspects of the mapping. Firstly, the scope of the mapping is 

defined. Following that, the mappings of statements and expressions are explained.  

In Java, methods are the only way of defining detailed behaviours of the programmes. 

By contrast, ALF inherited the UML method of defining behaviours. The basic unit for 

defining behaviours is ‘activities’, which is equivalent to the concept of a Java method that 

also has parameter lists and a body block that contains statements. Activities are the basic 

unit of behaviours, can be invoked by invocation expressions, and do not need to be 

wrapped by a class.   

An ALF operation is a member of a classifier. An active class not only has operations, 

but also contains the classifier behaviour. Although operations and classifier behaviours 

are defined in a similar way to activities in terms of syntax, they are actually a definition of 

the operation and a definition of an activity. Considering this difference, various basic 

behaviour units need to be represented in Java without losing their original meaning.  

As indicated previously, there is no perfect way of transforming ALF to Java without 

adding specific information or losing information, because this is the nature of 

implementing a specification. A code generator generates code automatically, but there are 

still many implementation decisions that are based on the developers’ choice. Although it 



126 
 

would be nice to provide all options and consider all issues regarding the transformation of 

logic, as well as the implementation efficiency thereof, this is more of a development issue 

and, as such, is of no benefit to this thesis.  

Therefore, the code generator’s scope is limited. This code generator is to make the 

specification testable, to prove the idea that it is possible to generate a language prototype 

with limited effort, and to suggest that this prototype can give language designers a better 

way of testing and analysing semantic errors. The code generation attempts to retain the 

original meaning; however, when it is necessary, the generated code may have to apply an 

inefficient or naïve implementation.  It tries to achieve this by making the look and feel of 

the generated code similar to that of the original ALF code, which means the generated 

Java code is similar to the original ALF code, as they have the same structures. By making 

the ALF and Java codes similar, it is easier to debug the code generator. In addition, when 

implementing abstract activities, having clearer codes makes development easier.  

Following the principles discussed in the previous paragraph, the next paragraphs 

introduce the details of statement generation. most of the statements are revealed to be 

translated to their Java equivalents, while concurrent statements are transformed in a 

simple way to preserve the original statement structure.  

7.3.1 Generating statements  

An ALF operation is mapped to a Java operation because they share many similarities. 

The parameter lists were also translated, which generated a similar Java operation from the 

ALF operation. When translating classifier behaviour, because an ALF active class is 

translated into a Java class that implements the Runnable  interface, translating classifier 

behaviour to a run()  operation that realises the Runnable  interface will result in a similar 

effect to that of an ALF active object.  

Some activities do not belong to any class, since they can be invoked without an 

instance, which is similar to a public static method in Java. Thus, all the standalone 

activities are translated to the public static method that is contained by the class 

GlobalActivities .  

Table 8 shows that many statements can be transformed simply by some syntax 

tweaking, while others, such as break statements, do not require any transformation at all. 

The challenging aspects are translating the statements that Java does not have and 

translating expressions contained in the statements, since some ALF expressions cannot be 

directly mapped.  



127 
 

ALF statement Java code 

normal if statement if (condition) {} 

else {} 

while (condition) 

do {statements} while(condition); 

while (condition) 

do {statements} while(condition); 

normal for statement 

for (Type iterator in collection) 

For 

for (Type iterator : collection) 

local name definition 

let a:Type = initialValue; 

Type a = initialValue; 

break; break; 

return expression; return expression 

inline statement 

/*@inline(language=Java) statements 
*/ 

statements 

Table 8: Mapping from ALF statements to Java. 

One ALF statement is mapped to a Java statement, or to a segment of a Java 

programme that simulates the function of the ALF statement.  

Accept statements 

Accept statements that are simulated in Java by using a ‘while loop’ continue to check 

the content of the MessageQueue,  defined in the ActiveClass  class. When another thread 

has invoked the signal-received method and the signal received is one of the signals for 

which the current active object is waiting, the block of the compound accept statement 

(translated to Java) is executed, and then breaks out of the while loop. The following code 

shows an example: 

accept (sig1:StartSignal){ 

//code block 1 

} or accept (sig2:EndSignal){ 

//code block 2 

} 

is translated to  

while( true){ 

  if (messageQueue.size()==0){ 

  try { 

    Thread.sleep(100); 

  } catch (InterruptedException e) {} 

  } else{ 

    Signal_ signal_ = messageQueue.get(0); 

    messageQueue.remove(0); 

    if (signal_ instanceof StartSignal){ 



128 
 

  //code block 1 

      break; 

    } else if (signal_ instanceof EndSignal){ 

      //code block 2 

    break; 

    } 

  } //if message 

} //while true 

Annotated statement/concurrent ‘if’ statement 

The statements that deal with concurrency are the parallel annotated statement and the 

concurrent ‘if’ statement. Translating them into Java while preserving their concurrency 

requires implementing each of the concurrent statements as a new thread starts with a new 

implementation of an anonymous Runnable  inner class. However, such an anonymous 

inner class can only access final local variables; ALF does not have such constraints. It is 

possible to design a mechanism that passes relevant local variables to it - one possible way 

is to create a local final array that contains the referred local variable, and which passes the 

array instead of the variable itself. However, such a mechanism is error-prone, and makes 

the generated code much more complex than that of the original ALF. This is conflicts 

with our purpose, which is to generate similar code.  

Finally, in this prototype, the parallel statements are translated as normal statement 

blocks. Concurrent ‘if’ statements are transformed to a set of normal ‘if’ statements. This 

means that such concurrent statements are actually implemented as a sequence execution, 

which is not in conflict with the ALF language standard, since it does not constrain 

methods of implementing real concurrency. On the other hand, the omission of real 

concurrent behaviours in the implementation is definitely a limitation of the current code 

generator.  

7.3.2 Generate expressions 

The approach to generating expressions has the same principle as that of generating 

statements. The generateExp.mtl  template reconstructs Java expressions from the ALF 

expression model, because of the difference between Java and ALF syntax. It adds 

syntactic changes to the Java code, because the code generated from expressions interacts 

with the code generated by EMF. In the following paragraphs, the mapping from ALF 

expressions to Java expressions is introduced.  



129 
 

Named expressions, such as classifier names, local variable names and parameters are 

printed exactly as is.  

Value specifications, like numbers, strings and enum values, are printed.  

An invocation expression tries to invoke an activity that is mapped to a method call of 

the corresponding static operation in the GlobalActivity  class. If it tries to invoke a 

signal reception or a normal operation call, it is mapped to a call to the relevant Java 

method.  

An instance creation expression (the ‘new’ operator) is mapped as a call to the creation 

method of the factory class.   

let n:Node = new Node(); 

will generate 

Node n = GenptnetFactory.eINSTANCE.createNode(); 

If the new object is an active object, the relevant Java code also initialises a thread that 

executes its classifier behaviour.  

An ALF property access expression is mapped to a call to its getter Java methods.  

//assume node is an instance of the Node class 

let a:Arc = node.source; 

is translated to 

Arc a = node.getSource(); 

In the same way, an assignment expression, of which the left hand side is a property, is 

mapped to an invocation of its setter method.  

//assume a is an instance of Arc 

node.source = a; 

is mapped to 

node.setSource(a); 

Since EMF uses lists to represent multiplicity, the index access expression in ALF, 

which is the “[” “]” syntax for accessing an index of a collection, is mapped to a call to 

List.get(index) . Similarly, a call to the standard model library of ALF is mapped to a 

similar method in Java.  

//assume arcs is a sequence collection 

arcs -> isEmpty(); 

is mapped to arcs.isEmpty()  

GenExpressions.java  provided the helper methods, such as string manipulation 

(capitalise/lowercase names, delete empty spaces or format comments), and complex 

condition tests that can be invoked by the code generation templates.  



130 
 

Generating OCL expression 

One challenging type of generation is how to deal with sequence expressions in ALF. 

Sequence expressions in ALF are OCL-like, such as select/collect/forAll/exists 

expressions. Because Java does not support lambda expression, sequence expressions are 

difficult to translate into Java. Because the current version of JDK does not support lambda 

expression, there are two ways to achieve the same effect as an ALF sequence expression 

in Java.  

The first is to create a code block that produces semantically equivalent results using 

loops and condition statements. However, considering that sequence expression can be 

chained (Listing 7), or can be nested (Listing 8), implementing sequence expression chain 

or nested sequence expression using loops will create heavily nested code. For example, 

the chained expression will generate a three level nest for each loop; inside each loop are 

the statements that calculate the expression and the statements for generating the result of 

the sequence expression, as shown in Listing 9. 

Directly produce semantically equivalent results unmaintainable code. Ideally, the code 

of the generated executor does not need to be maintained, because it is lower level 

artefacts. The language developers should maintain the models and the code generators. 

However, generating clean and maintainable code is still desired. The generated code can 

be used for debugging the code generator. In addition, they may also be reused when 

developing another reference implementation by a non-MDE approach.  Hence, another 

way is selected to generate OCL expression. 

 

sequence  

-> select x (expression1) 

-> collect x (expression2) 

-> forAll x (expression3) 

Listing 7: Chained sequence expression. 

sequence -> select x (createList(x)-> forAll y (f(y))) 

Listing 8: Nested sequence expression. 

sequence-> select x (expression) 

List local = new List(); 

for (Object x:sequence){ 

  TypeOfExpression e = expression; 

  if (expression) local.add(x); 

} 

Listing 9: Generating code from sequence expressions. 



131 
 

The other way of implementing ALF sequence expressions is trying to interpret the 

ALF sequence expression in Java. Although mapping an ALF sequence expression in Java 

is not straightforward, it is very easy to map ALF sequence expressions to OCL, because 

the ALF sequence expression is designed to have the ability of OCL expressions. ALF 

sequence expressions are differ only at the concrete syntax level; for example, the chained 

expression in Listing 10 can be expressed in OCL as  

 

 

sequence  

-> select  (x|expression1) 

-> collect (x|expression2) 

-> forall  (x|expression3) 

Listing 10: Generating OCL from ALF sequence expressions. 

Therefore, ALF sequence expressions can be transformed into OCL, and OCLs can be 

evaluated dynamically in Java. This is the approach that FQLS applied: An ALF sequence 

expression is transformed into an OCL expression, and the result of the OCL is 

dynamically evaluated as a query of the input model. For instance, returning to the Petri 

net example, the content of Transition::isActive()  is a sequence expression. It is 

translated into an Emfatic operation with the content translated as OCL (see Listing 11). 

The content of dynamically evaluated OCL expressions in the input model is delegated to 

EMF code generation.  

 

class Transition specializes Node{ 

  public isActive():Boolean{ 

    return this.inArcs-> forAll e (((Place)e.source).initialMarking>0); 

  } 

translates to: 

class Transition extends Node  

{ 

 //@OCL(body= "self.inArcs->  
forAll(e|e.source.oclAsType(Place).initialMarking>0 )" )  

 op Boolean isActive (); 

Listing 11: Sequence expression translates to OCL embedded in Emfatic. 

It is worth mentioning that this approach is only a practical solution. It suffers two 

main limitations. The first is that the use of an ALF sequence expression has to be limited 

as the expression of a return statement, contained by an operation that contains only such a 



132 
 

return statement. The second is that the evaluation of the OCL expression is based on an 

EMF OCL project. Hence, its limitations are also shared.  

Since an ALF sequence expression can easily be represented by project-lambda in Java, 

implementing sequence expressions in JDK8 is much easier than it is in JDK7. Hence, the 

OCL generation approach is only temporary, and could be improved by using JDK8 in 

future work.  

Eclipse UI extension  

The code generator also generates an Eclipse UI extension skeleton for executing the 

instance model. The language engineer needs to configure the Eclipse plugin project to add 

the action to create a new menu action. When the framework recognises an Ecore instance 

model as a DSL instance that has associated semantic definition, it will display an 

additional menu to execute the instance model. When the starting action is performed, it 

executes the classifier behaviour of the root of the instance model by default, and logs the 

execution steps.  

Finally, by generating an implementation of the DSL specification, the DSL designer 

can test the implementation; should an error be found, the designer could modify the 

specification and regenerate the implementation. This makes identifying runtime and logic 

errors at an earlier stage possible.  

7.4 Discussion 

Having established the details of the execution layer, this section provides some 

discussions about it. The contribution of this chapter is highlighted by linking it to the 

complete FQLS. After that the discussion moves on to evaluation. Finally, how future 

advances of technology would change FQLS is discussed. 

Contribution 

This chapter presents the execution layer of FQLS, in which the ALF executor is 

implemented by code generation. Only the code generation itself does not form a novel 

contribution; however, the code generation is a way to add executability to language 

specifications via ALF, which is an undividable part of the FQLS.  

By adding the execution layer, a language defined via ALF becomes testable. The 

testing performed on the specification will reveal more errors, and will increase the quality 

of the language specification eventually. For instance, going back to the Petri net example 



133 
 

presented in Chapter 5, the ASM version of the semantics specification contains a 

semantic error that wrongly calculates the tokens of places. Such an error will be revealed 

if the simplest test case is executed.  

Evaluation 

Considering the efficiency of the code generator, the speed of the generation and the 

resources it takes are reasonable. The small examples are generated to Java just like a 

normal EMF generation project, and in Chapter 9, the BPEL case study is evaluated, which 

contains more than 2000 lines of ALF code, generates thousands lines of code within 

seconds. The efficiency of the generated reference implementation is also reasonable. 

Small examples as well as more complex instance models are tested; the time between 

loading the instance model and giving out the final execution result is not delayed.  

The efficiency of the code generation is largely dependent on the efficiency of EMF, 

which is demonstrated to be stable and efficient by many projects. On the other hand, the 

efficiency of code generation and execution is not an important factor for language 

specification development, because the main purpose of a language specification is to 

communicate to its shareholders. Creating an efficient implementation of the language is 

outside the development cycle of language specifications.   

The correctness of the code generation is evaluated by checking the correctness of the 

language specification it produced. This is detailed in Chapter 9 after the complete BPEL 

case study is introduced.  

Further changes 

The FQLS approach reuses EMF in order to reuse the mature tools and simplify the 

creation of a reference implementation. On the other hand, reusing EMF also brings a 

challenge of covering the complete ALF language standard. The method of transforming 

ALF sequence expressions to OCLs has limitations which prevents the language engineers 

to use them freely. The reason is the lacking of similar concepts in Java. After the release 

of Java 8 and the newest EMF, ALF sequence expressions can be mapped to lambda 

expressions easily. This means that supporting them completely is only an implementation 

issue.  



134 
 

Another issue that may affect the design of the execution layer is the development of 

better ALF tools. The ALF tools are still in its early stage. In terms of executing ALF 

program, the only available choices18  are  

• The ALF open source reference implementation.  

• e-alf [91] 

• IBM Rational Software Architect®, also support ALF syntax as an action 

language19.  

They have been tested. None of the open sourced tools can be adapted to load an 

instance model to a complex ALF program successfully. The commercial tools appear to 

have a better editor but the mechanism of execution is not clear, thus it is impossible to 

integrate with it.  

The lacking of available tools is one but not the only reason that FQLS chooses to 

generate Java code. Although not likely to happen in a short timescale, if a fully-

functioned ALF executor is available, generating a Java implementation is still useful due 

to the requirement to separate specifications from implementations. Hence, if a good ALF 

executor is created, it is a further work to integrate this to FQLS in order to provide better 

integrated testing, but the code generator will remain as the starting point of an 

implementation.  

7.5 Summary 

This chapter discussed the components of the execution layer of FQLS. The code 

generator that generates Java from ALF code was introduced. The ALF code is first 

translated to Emfatic code by an Acceleo project. Mapping from the ALF concepts to 

Ecore concepts and Java concepts was listed. The code generation can also generate the UI 

extension of Eclipse, giving the model editor an extension menu to be executed.  

  

                                                 
18

 Distributed Systems Engineering (http://www.distributed-systems.de/) presents a tool chain in 

CodeGen2014 that claims to support the editing and execution of ALF. However, the tool is still under 

internal evaluation and is not yet shown on their official website.  
19

 https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/b7da455c-5c51-

4706-91c9-dcca9923c303/page/910cd642-c59a-47d7-9739-7459941a9e2b/attachment/9ba9af70-22fa-

4756-8128-5ec8a3a08c2d/media/uml%20actional%20language%20in%20rsa.pdf 



135 
 

Chapter 8.  
 
Case study: Formalising Business Process Execution 
Language 

The previous four chapters introduced each component of FQLS and illustrated how 

this framework could help to provide quality assurance for language specification 

development, using a Petri net example. In this chapter, the framework is demonstrated  by 

applying it to a more complex and realistic DSL – the Business Process Execution 

Language (BPEL). This case study is used as a demonstration of FQLS, as well as a source 

for the evaluation of FQLS, which will be conducted in Chapter 9.  

The case study of formalising BPEL consists of the following sections: Section 8.1 

introduces BPEL and its related standards for web service composition. Section 8.2 

introduces the scope of the case study. Thereafter, Section 8.3 defines the abstract syntax 

of BPEL by establishing mapping from the XML definition to a meta-model definition. 

Section 8.4 uses the development process to define the behavioural semantics of BPEL by 

creating a runtime meta-model, adding behaviours and performing quality assurance 

checks.  

8.1 Introduction to WS-BPEL 

In order to understand the case study that defines BPEL by FQLS, this section provides 

an introduction of BPEL and related standards. The three subsections introduces the 

definitions, the structures, and the life cycle of executing a BPEL process.  

8.1.1 Compositing web services with BPEL 

Web services are widely accepted as a communication method by many organisations. 

The ubiquitous applications of web services promote a set of technologies that aim to build 

web services in an easier and more standard way. The technologies promoted by 

worldwide standardisation organisations, such as W3C and OASIS, have gained wide 

support. They are chosen as the domain of this case study.  



136 
 

W3C [58] defines a web service as “a software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface 

described in a machine-processable format (specifically WSDL).” According to this 

definition, web services need interfaces to communicate with each other, and the interface 

is defined as a WSDL file.  

WSDL is a standard for defining an interoperable interface for machine communication. 

A WSDL interface includes the input, output, and the fault message, which are 

independent of the implementation of the web service. A web service with a WSDL file 

describes its own features in a machine-readable manner.  

Many features of the web are provided by web services. In business organisations, web 

services are used for communication and for achieving business goals. Because 

interoperability is one goal of web services, there are the requirements that integrate 

different web service systems and which composite these different web services to realise 

business logic that is more complex. This is the purpose of BPEL.  

BPEL defines a model for describing the interaction between the business process and 

its partners, and these interactions are performed through WSDL interfaces. A BPEL 

process defines a set of primitive partner links, variables in the data process, handlers for 

errors and events and, most importantly, the executable activities that form a business 

process. The data process technology in the XML technology space, such as XPath and 

XSLT, are directly supported to be used inside a BPEL process.  

Many servers support the deployment of a BPEL process, including as Apache ODE20, 

GlassFish21, and ActiveVOS22. These projects support deploying a new BPEL process to 

the server, and deal efficiently with web requests. Specifically, they support long time 

transactions, which means that a process may wait for a response message days after it was 

first instantiated, and compensate for such long time transactions.  

Although a BPEL process is expressed in XML, there is no official concrete syntax 

except XML. Since the XML syntax is verbose, Eclipse BPEL designer project23 , 

Netbeans SOA24, and many other tools have provided similar unofficial graphical notation 

support. Simon et al. [141] also proposed a textual, human readable notation for 

                                                 
20

 http://ode.apache.org/  
21

 https://glassfish.java.net/  
22

 http://www.activevos.com/  
23

 http://www.eclipse.org/bpel/  
24

 https://soa.netbeans.org/  



137 
 

representing BPEL. In this thesis, the graphical syntax of Eclipse BPEL is used to 

demonstrate BPEL process examples.  

8.1.2 Structure of a BPEL process 

An example of a BPEL process is listed in Figure 37, represented by the Eclipse BPEL 

designer graphical syntax. The graphical syntax defines the activities and fault handlers. 

However, a complete BPEL process contains four parts, , namely partner links, variables, 

handlers, and activity.  

 
Figure 37: Graphical syntax of BPEL. 

The first block of the XML file defines the partner links as a reference to a particular 

partner link type that is defined in a WSDL file. A port type is similar to an interface type, 

in that it contains operations. Similar to the operations in programming languages, they 

have input parameters and output parameters, and can produce a fault message. The type 

of parameter is defined as a WSDL message, which encapsulates the XML data type of the 

message. The WSDL file then defines the partner link types, which include the role name 

of the service. By linking a port type to a role, it restricts the operations that a role can 

FaultHandler

Activity



138 
 

invoke. Finally the WSDL file contains the physical settings of the web service, including 

the physical web address of the web service.  

Figure 38 illustrates the relationship between BPEL and WSDL. A partner link is 

defined by declaring its partner link type and its role. Both of these are defined in the 

WSDL file. The partner link type then refers to a port type definition. The port type 

defines a set of operations that contains parameters, and these operations are interfaces that 

can be invoked as a web service. The web service interfaces defined in a WSDL file are 

platform independent from its physical URL and its implementation technology, thus 

enabling the change of the implementation or of the physical address without changing the 

interfaces.  

 
Figure 38: BPEL and WSDL. 

The next element defines the variables. The variables define the spaces for holding the 

data that need to be processed in the business process. As with the concept of variables in 

GPLs, the execution engine can read and update the value of the variable. The variables 

are typed, and the type must be an XML type or a WSDL message type. For example, the 

following line defines a variable, the name of which is Invoice, and the type is defined as 

an XSD type lns:InvMessage , which is defined in a schema file.  

bpel

<bpws:partnerLinks >

<bpws:partnerLink myRole ="purchaseService"

name="purchasing" partnerLinkType ="lns:purchasingLT" />

…
</ bpws:partnerLinks >

<plnk:partnerLinkType name="purchasingLT" >
<plnk:role name="purchaseService"

portType ="pos:purchaseOrderPT" />
</ plnk:partnerLinkType >

Orderprocessing.wsdl

Orderprocessing.bpel



139 
 

 
    <bpws:variable  messageType ="lns:InvMessage"  name="Invoice" />  
 

Variables can be manipulated using an XML query language, using XPath by default, 

and are mainly used in Assign  activity. When invoking an external web service or being 

invoked by other web services, the value input and output parameters are stored in 

variables.  

Handlers are started when their triggers have been initialised; thereafter the activity 

defined in the handlers is started and the normal execution may be terminated. The 

handlers can be defined inside a process or a scope activity (introduced in Table 9).  

Handlers Introduction 

Fault handler A fault handler will be started when a fault is thrown. The normal 

execution terminates thereafter. It defines a fault handing activity that 

handles the errors.  

Event handler An event handler is triggered by events, including time events (after a 

certain time elapse or a certain time is reached) or message events (when the 

process receives certain messages).  

Compensation 
handler 

A compensation handler is started when the process wishes to undo all 

the operations it has already executed. This is usually triggered by a 

"compensate" activity.  

Table 9: BPEL handlers 

The next element consists of activities. Table 10 and Table 11 give a list of the 

activities of BPEL. These activities are categorised as basic activities and structural 

activities. Basic activities enable the exchange of messages to external web services, 

provide data process actions such as assigning values to variables, and special activities for 

error handling, such as throwing a fault message. Structured activities are containers of 

other activities. When a structured activity starts to execute, it starts its child activities by 

its semantics. The example defines a process that receives messages from the external web 

services, using Flow  activity to invoke external web services and waiting for responding 

messages in parallel.  

  



140 
 

 

Basic activity Introduction 

Empty An Empty activity does nothing, as the name suggests. It can be used as a 

placeholder, or can be used as an activity to join flow links.  

Assign An Assign activity defines a specification for manipulating the data. It 

copies data from one part to another, where the parts can be a variable, an 

expression or a literal value.  

Receive A Receive activity receives a message from its specified partner link and 

assigns the received message content to a variable. 

Reply A Reply activity sends a response to a previously received two-way 

(request-response) request.  

Invoke An Invoke activity invokes an operation of a partner link with input 

message. Depending on the type of output, it can also receive a response 

message from the partner link.  

Terminate Terminates the process instance. 

Throw A Throw activity throws a fault that indicates an internal error. The fault 

is then dealt with by a fault handler. 

Waiting A Waiting activity causes the process instance to wait for a period, or to 

wait until a certain time point.  

Compensate A Compensate activity can only appear in a fault handler, which will start 

the compensate handlers according to the sequence of execution, and will 

thus undo the work being done by the instance.  

Table 10: BPEL basic activities. 

  



141 
 

 

Structured activity Introduction 

Sequence A Sequence activity executes its contained activities sequentially; 

in other words, the completion of the previous activity triggers the 

start of the next activity. 

Flow A Flow activity executes its contained activities in parallel with 

regard to the flow link definition. Flow links and dead path 

elimination are introduced in Subsection 8.4.5.  

Switch A Switch activity defines a logic branch. The first branch in which 

the condition expression evaluates to true is executed.  

While A While activity repeatedly executes its containing activity until 

its condition expression evaluates as false.  

Pick A Pick activity is similar to a Receive activity. The difference is 

that it can receive different types of messages, and can define different 

enclosed activities for each type of message. 

Scope A Scope is similar to a sub-process, as it can also define handlers, 

variables and partner links, but the variables and partner links only 

work within its scope. 

Table 11: BPEL structured activities. 

8.1.3 Execution of a BPEL process 

A BPEL process is defined as a “stateless client-server model of request-response or 

uncorrelated one-way interactions” [147]. The process is the guidance and instruction for 

the BPEL execution engine in terms of managing the instances of the BPEL process. A 

process instance starts when an activity receives a new message. The activity must be 

either receive activity or pick activity with its “createInstance ” attribute set to ‘yes’. 

Such an activity is also called a start activity, and no other activity can be placed before it.  

After the instance is started by the start activity, the execution engine of BPEL needs to 

initialise the process instance. If a process has correlation sets, they will first be initialised 

(see Subsection 8.4.3 Communication and Subsection 8.4.7 Correlations for the detailed 

semantics of correlations). If these activities contain any handlers, the handlers will then be 

installed before executing the activities.  

The process instance then executes the enclosed activity of the process. The example 

contains a sequence activity, and the activities it contains will be executed sequentially. 



142 
 

After receiving a message via the receive activity, the flow activity begins and starts all its 

containing activities in parallel.  

A business process instance finishes either normally or abnormally. When the main 

activity of the process and other handlers finish without propagating faults, the process 

instance ends normally. On the other hand, if any fault occurs, the relevant fault handler 

will be started and, depending on the activities in the fault handler, the process may be 

compensated to undo the work it has done. In such a situation, the process ends abnormally.  

8.2 Scope of the case study 

In this section, the scope and the architecture of the case study are defined. Since BPEL 

is a complex language that have two major versions, related to other web service languages 

and can be extended, it is necessary to limit the scope of the case study, and clearly define 

what would be included and what will not.   

Firstly, it is needed to answer what should be included. The case study is a 

formalisation of an existing DSL. Unlike creating a DSL from scratch, the requirement of 

the DSL is clear: It is the BPEL standard [147]. The BPEL standard defines its abstract 

syntax as an XML schema, while defining the execution semantics as text. Both the 

abstract syntax and execution semantics are illustrated by examples. The following 

paragraphs discuss each aspects of the standard and explain the decisions have been made.  

Abstract syntax 

Rebuilding the language specification of BPEL by FQLS starts with building the 

abstract syntax. The mapping from XML schema and ALF structures is straightforward. 

An XML element is mapped to a MOF class, with attributes mapped to an attribute that 

belongs to the same MOF class. The containing and referencing relationships of XML are 

also similar to those of MOF. Such a translation has already been developed by the BPEL 

designer project, which included an Ecore model of BPEL.   

Static semantics 

Another concern is the static semantics of BPEL. This involves which version of BPEL 

to implement, since there are certain differences between BPEL 1.1 and BPEL 2.0. The 

BPEL 1.1 standard does not consider the additional well formedness of the meta-model; or 

at least it does not define it explicitly. BPEL 2.0 has defined the well-formedness rules in a 

clearer and more explicit way as text.  



143 
 

There are existing works that attempt to formalise the static semantics, such as OCL 

expression [3]. FQLS supports one way of extending ALF with OCL expression 

definitions, and the same way of defining well formedness can be applied. Because 

completely re-implementing static semantics is outside the scope, the static semantics are 

excluded.  

BPEL 1.1 and 2.0 

While BPEL1.1 and 2.0 shares many similar concepts, there are several differences. In 

the process life cycle, the execution workflow does not change, but some new activities are 

added and some activities are renamed more sensibly. 

BPEL 1.1 BPEL 2.0 

switch if .. then .. else 

terminate exit 

Table 12: Differences between BPEL 1.1 and 2.0. 

 

Added in BPEL 2.0  

Compensate scope Similar to Compensate, but only compensates for the 

specified scope, rather than the complete process.  

rethrow Similar to the Throw activity, which can be used in a 

fault handler.  

repeat until Similar to the While activity, which evaluates the 

condition after executing its enclosed activity.  

foreach Similar to the While activity, of which the ending 

condition is to execute the enclosed activity a certain 

number of times.  

Table 13: Added concepts in BPEL 2.0. 

The activities that appear in both 1.1 and 2.0 are supported. The relevant research in 

BPEL 1.1 is more complete and mature than that of 2.0. For BPEL 1.1, Stahl [145] and 

Fahland and Reisig [37, 38] are identified, which tries to use various methods of semantic 

definition, but 2.0-based approaches are not identified. Hence, using BPEL 1.1 as the base 

will enable this case study to be compared to many other approaches. The comparison with 

other semantic definition approaches of BPEL 1.1 is one of the experiments performed in 

Chapter 9.  

In addition, the semantics of the repeat until and the foreach activities can easily be 

represented by a while activity with a changed condition. The same also happens to the 



144 
 

embedded fault handler in an invoke activity, which is equivalent to a scope activity that 

contains an invoke activity and a fault handler.  

Semantics of abstract processes and extensions 

There are two kinds of the BPEL process, the normal BPEL process and the abstract 

BPEL process. The difference is that an abstract BPEL process can hide certain details, 

such as the detailed specification of partner links. As a result, an abstract BPEL process is 

not meant to be executable, while an executable BPEL process is ready to be deployed to a 

server as a new specification of web services. The aim of the abstract process is to explain 

the process. Due to the lack of relevant information, the process is not executable; thus, 

defining the execution semantics is meaningless. Hence, in this thesis, the focus is only on 

the executable BPEL process. 

The extension mechanism can extend the BPEL process with new concepts. Execution 

engine developers can use this mechanism to provide advanced activities that are not 

officially supported by the standard. The behavioural semantics of the extensions are 

outside of our scope for formalising the BPEL standard. Hence, it is omitted.  

Semantics of related standards 

BPEL is not a standalone language; many places contain the composition of another 

language. XPath, WSDL and XML schema are commonly used languages that are related 

to BPEL. BPEL uses XPath for querying data and managing the incoming/outgoing 

messages, and changing the value of the variables. The BPEL partner link definition needs 

to refer to WSDL files so that the BPEL execution engine can query information, such as 

parameters and message types about external web services. An XML schema is used for 

defining the message types. While BPEL is linked with several other DSLs, defining the 

other DSLs are clearly outside of the scope of the BPEL definition. Hence, the abstract 

syntax of the other DSLs are simplified. A simplified meta-model of WSDL is built and 

imported to a BPEL meta-model, and an XPath expression is treated as a black box, the 

semantics of which are defined as abstract activities.  

By defining the scope of the case study, it is possible to create a meta-model of BPEL 

via ALF. Hence, it is possible to began to develop the abstract syntax.  



145 
 

8.3 Defining abstract syntax 

The language specification of BPEL starts from this section. Following the software 

development process proposed in Chapter 4, the abstract syntax is defined as a meta-model. 

Since WSDL is an indispensible part of BPEL, a basic meta-model of WSDL is firstly 

presented, following by the BPEL meta-model.  

Figure 39 illustrates the meta-model of the WSDL, which is used to define external 

web services. In reality, port types, service link types and messages can be defined in 

different XML files, and the types can be types in XML Schema name spaces.  

 
Figure 39: Abstract syntax of WSDL. 

The PortType  class comprises the operation  list, and is a type of external web service. 

The operations define the interfaces for communication between web services, including 

the input, output and fault parameters, and the types of the parameters are defined as 

MessageTypes .  

Property  is a special kind of message that is similar to the ‘derived attributes’ in an 

MOF-based meta-model. It uses query language to define a particular manipulation of 

package wsdlbpel [   ]

+name : String

MessageReference

+name : String
...

ServiceLinkTypeMessageType

+name : String

PartnerLink

+name : String

PortType

+name : String
+type : String

Property

Operation

Role

Output

WSDL

Fault

Input

+myRole

+partnerRole

+serviceLinkTypes

*

+portType

+input

0..1

+output

0..1

+messages * +properties *
+portTypes*

+serviceLinkType

+operations *

+role

*

+fault 0..1



146 
 

message contents. Properties are used in BPEL as a way of generating correlation 

instances.  

The ServiceLinkType  encapsulates an external web service and defines all the parties 

that are involved in an interaction with the web service. The partners are defined as roles. 

For example, a web service that receives a request and provides information with regard to 

that request, two roles are involved, namely the web service that provides the service, 

which may be given a role name like 'serviceProvider' , and the partner that invokes the 

service, which can be given a role name like “client ”. The PartnerLink  class is the 

same class in Figure 40 and it bridges the two meta-models.  

 
Figure 40: Abstract syntax of BPEL. 

Figure 40 shows the meta-model of the BPEL abstract syntax. The meta-model 

proposed by Eclipse BPEL designer project is reused, but is simplified by removing 

irrelevant concepts, such as the full definition of WSDL, XPath and XSLT. The meta-

model has a similar structure to that of the XML schema defined in the standard. The 

Scope  is the basic unit that acts as a container of handlers, variables, partner links and 

CompensationHandler

StructuredActivity

PartnerActivity

CorrelationSet

EventHandler

Compensate

FaultHandler

PartnerLink

Correlation

Sequence

Process

Activity

Variable

Receive

Assign

Invoke

Switch

Throw

Empty

Scope

Reply

While

Wait

Flow

Pick

+correlations

0..*

+compensationHandler
0..1

+activities 0..*

+parent 0..1

+eventHandlers

0..*

+correlationSet 0..*

+set 1

+faultHandlers

0..*

+partnerLinks 0..*

+variables 0..*

+partnerLink
1



147 
 

activities. The Process , which represents a BPEL process, is a sub-class of Scope . A 

Scope also inherits from a StructuredActivity  and an Activity .  

The activities listed in Table 10 and Table 11 are defined as sub-classes of an 

Activity . When they share similar behaviours, they are defined as being inherited from 

the same class. For example, the activities of Receive , Invoke  and Reply  need to 

communicate with other partner links, thus sharing behaviours. These are categorised as 

PartnerActivity .  

Finally, it is possible to build the meta-model via ALF. Readers who are interested can 

find the ALF definition of the meta-model in the Appendix.  

8.4 Defining behavioural semantics 

The next step in formalising BPEL is to develop its behavioural semantics. Since the 

requirement is derived from the standard, a strategy for defining semantics needs to be 

chosen, designing the architecture of semantics, identifying abstract activities and, finally, 

developing the behaviours. This section begins with building a runtime meta-model in 

subsection 8.4.1. The behavioural semantic definition of BPEL is presented from 

Subsection 8.4.2 to Subsection 8.4.8.  

8.4.1 Execution model overview 

As indicated in Subsection 5.1.3, there are three ways of attaching behaviours to the 

meta-model, namely adding operations directly, adding behaviours as activities, and 

adding operations to a runtime meta-model. The semantics of BPEL require adding 

instance level concepts because, while executing a BPEL process, the execution engine 

creates new instances of the process and manages these instances. Thus, it is necessary to 

create a runtime meta-model and add the behaviours to it.  

 



148 
 

 
Figure 41: Runtime meta-model of BPEL. 

Figure 41 lists the class diagram of the runtime meta-model. The process level concepts, 

such as variables, activities and correlations, all have corresponding instance level 

concepts. For example, for each subtype of Activity , an Execution class is created to 

represent the instance level model (FlowExecution  corresponding to Flow  activity).  

To express the execution semantics of BPEL, adding the corresponding instance class 

to the meta-model is not enough. The BPEL specification defines the architecture for 

managing process instances and ways of passing and correlating messages between 

activity instances. Thus, it is natural to create the class of Locus , which is a virtual 

machine for managing instances. It provides the entry point for the semantic specification. 

As an active class, the class starts when its instance is created. 

As described above, a BPEL process instance communicates with its external web 

services by exchanging WSDL messages. The class MessageManager  manages the 

incoming and outgoing messages. When incoming messages are received, the 

MessageManager  must dispatch the message to the correct instance. When there are many 

+initiate( variable : VariableInstance, correlation : Correlation )
+createInstance( variable : VariableInstance, correlation : Correlation )

CorrelationManager

+sendToExecution( request : MessageRequest, info : MessageInfo )

MessageManager

+createExecutions()
+doAction()
+finishing( execution : Execution )

FlowExecution

+doAction()
+finishing( execution : Execution )
+faulted( faultInfo : FaultInfo )
+handleEvent( info : MessageInfo )
+compensateScope()

ScopeExecution

+propagateDPE()
+allLinksActivitied() : Boolean
+doAction()
+running() : Boolean
+notifyTargets( succ : Boolean )
+throwFault( faultInfo : FaultInfo )
+enable()
+terminate()
+complete( linkSucc : Boolean )
+isAllDetermined() : Boolean
+finishing( execution : Execution )

Execution

StructuredExecutions

StructuredExecution

COMPENSATING
TERMINATED

COMPLETED

DISABLED
ENABLED

FAULTED

STOPPED

RUNNING

<<enumeration>>
State

VariableInstance

Executions

LinkInstance

+run()

Locus

Activity

Variable

Process

Flow

Link

+executions

1..*

+activity_

+execution

+link

+messageManager

+flow

+executions

0..*

+parent 0..1

+links 0..*

+correlationManager

<<use>>

<<use>>



149 
 

instances waiting for the same type of messages, the MessageManager  identifies the 

correct target instance by calculating a unique identifier from the incoming message, 

which is called correlations.  

A PartnerActivity  (the class diagram is illustrated in Figure 39 and Figure 40) can 

define correlations. When the business process is instantiated, the correlation instance can 

be calculated by operating the incoming message. When further messages are received, the 

execution engine dispatches the message to the instances that have the same correlation 

instance. In Figure 41, the CorrelationManager  class defines the behaviours related to 

the correlations.  

8.4.2 Variables 

The basic data structure with which a BPEL process can interact is messages. The 

execution of a BPEL process involves exchanging messages between partner links. Thus, 

it is necessary to provide a method for holding these messages for exchanging or 

manipulating, and these are the variables. A BPEL variable has a name that identifies it, 

and a message type that references a message defined in the WSDL documents. At the 

abstract syntax level, as which other programming languages, the variable is the definition 

of a data structure which needs to be instantiated as an object for storing message instances.  

When executing a process, a process instance creates VariableInstances,  which 

reference the original variable definition, and which is given memory space for storing the 

message content. VariableInstances  is then used as the atomic data that is exchanged 

between different BPEL activity instances.  

8.4.3 Communication 

In the BPEL execution model, two kinds of communication are needed. The first is 

external communication. This process needs to communicate with external web services. 

For example, a BPEL instance can receive external messages and can reply to external web 

services. The communication is done via WSDL messages, and the WSDL message is text. 

In this case study, the MessageManager  class is in charge of external communication.  

Communication with external web services involves two basic behaviours, namely 

sending a message to an external web service, and receiving a message from an external 

server. While sending to externals is quite straightforward, by invoking the remote 

operation calls defined in the WSDL web service, receiving a message can lead to two 

different behaviours. This could result in the message being sent to an execution that is 



150 
 

waiting for this particular message, or could result in a new business process instance 

being created.  

When an execution that requests an external message, the execution informs the 

MessageManager  regarding the message it is requesting. MessageManger  saves the 

information, and when it receives a message, it compares the current message requests, 

and tries to map the message to the correct instance. Default message mapping is via 

message type and, if ambiguity happens, the correlations will be used.  

There is an unclear definition of who is in charge of creating new instances. The BPEL 

standard specifies that a starting activity creates a new instance when receiving a new 

message. Referring to the standard [147],  

“The creation of a process instance in BPEL4WS is always implicit; activities that 

receive messages (that is, receiveactivities and pickactivities) can be annotated to indicate 

that the occurrence of that activity causes a new instance of the business process to be 

created. This is done by setting the createInstanceattribute of such an activity to "yes". 

When a message is received by such an activity, an instance of the business process is 

created if it does not already exist.” 

According to the standard, an instance will be created when a receive activity receives 

a message. However, such an instance of the receive activity does not exist before it can 

receive a message. Fahland [38]also discussed this, and assumed that an instance is created 

before the receive activity receives any messages. In this thesis, a similar approach is 

applied: When the BPEL process is deployed (when the Locus class is created and started), 

the Locus immediately creates a BPEL process instance that waits for the message for the 

start activity. The created instance requests the message by sending SignalRequest  to 

MessageManager . When the start activity receives a message, it tells the Locus  to create 

another BPEL instance that waits for further activity.  

In addition to external communication, internal communication between executions are 

also needed. In our execution model, each instance of the activity (executions) runs as an 

independent thread. These need to communicate to relevant executions; for instance, when 

an execution finishes, it needs to inform its container that the execution is completed. 

Another example is when a fault occurs. The ScopeExecution  needs to be informed, so 

that the ScopeExecution  will start the fault handler. Internal communication is performed 

using signals and signal receptions.  



151 
 

8.4.4 Semantics of Basic Execution 

 
Figure 42: State machine of basic execution. 

The Execution  class is an instance of an activity. It associates the original activity in 

the abstract syntax and provides operations for executions. The process of executing a 

BPEL process is to create top-level execution (the process execution, which is a sub-class 

of ScopeExecution ). The activated execution creates the contained executions, and each 

of the executions is executed in parallel before being stopped.  

Figure 42 illustrates an abstraction of the internal states of an execution. Because the 

executions are instantiated as a referenced tree, this means that each execution is contained 

by a structured execution. The structured execution is responsible for instantiating its 

contained executions; for example, a sequence execution needs to create executions 

sequentially. Hence, the structured execution manages the executions it contains, which is 

called the parent execution.The contained execution is called the child execution.  

When an execution is created, its default state is DISABLED. Its parent execution then 

sends a SignalStart  signal and the state transits to ENABLED. Then, depending on 

whether the child execution has flow links, it directly transits to RUNNING, or could wait 

for the flow links. Depending on the result of the execution, it could be ended as 

TERMINATED, FAULTED if it exists abnormally or COMPLETED, if it exists normally.   

When the Execution transfers from ENABLED to RUNNING.  The execution waits for 

a SignalLinkActivited  signal. This is because, when an execution starts, it may not 

transit to RUNNING, because it is contained by a Flow , and there are previous links.  

state machine basic execution basic execution[   ]

FAULTED

ENABLED TERMINATED

RUNNING

DISABLED

COMPLETED

SignalFaulted

SignalTerminated

SignalTerminatedSignalLinkActivited

SignalStart



152 
 

Consider a Switch  or Pick  activity that is contained by a Flow activity. When the flow 

execution executing all its contained executions enters the ENABLED state, the Flow 

execution will be complete if all of its child executions complete a normal execution flow. 

However, not all of them will be executed. For instance, in Figure 43, only one of the 

execution paths will be successfully executed, and the other executions in other paths 

should be ignored. The behaviour for checking whether an execution contained by a 

FlowExecution  should be executed or ignored is called the Dead Path Elimination (DPE). 

When such an execution finishes, it needs to inform all the executions that have a link as a 

target whether the execution is successful or not.  

 
Figure 43: A flow activity that contains pick activity and links. 

The works of popagateDPE() and notifyTargets()  are defined as operations in the 

Execution class, and activity specification behaviours are defined as the sub classes of 

Execution.  



153 
 

 
Figure 44: Basic executions from runtime meta-models. 

 

A pattern is used for realising the state machine specified in Figure 44. Operations that 

have the same name as a state transform the execution’s state as the name suggests. For 

instance, enable()  involves the necessary behaviours to transform the state to ENABLED, 

while running()  transforms its state to RUNNING, as does terminate() . All executions 

except ScopeExecution  share the same semantics for enabling and terminating; thus, they 

can be reused.  

The operation sets its state to ENABLE and, when its activity does not have a source 

link that indicates that the execution is not needed when waiting for a link to activate the 

execution) it will automatically transmit to running by sending SignalLinkActivited  to 

itself.  

basic executionpackage bpel [   ]

+propagateDPE()
+allLinksActivitied() : Boolean
+doAction()
+running() : Boolean
+notifyTargets( succ : Boolean )
+throwFault( faultInfo : FaultInfo )
+enable()
+terminate()
+complete( linkSucc : Boolean )
+isAllDetermined() : Boolean
+finishing( execution : Execution )

Execution

+receiving( info : MessageInfo )
+initCorrelation()
+doAction()

ReceiveExecution

COMPENSATING
TERMINATED

COMPLETED

DISABLED
ENABLED

FAULTED

STOPPED

RUNNING

<<enumeration>>
State

+doAction()

TerminateExecution

+running()
+initCorrelation()

InvokeExecution

+doAssign()
+doAction()

AssignExecution

+doAction()

EmptyExecution

+doAction()

ReplyExecution

+doAction()

WaitExecution



154 
 

  public enable(){ 
   if ( this.state==State.DISABLED){ 
    this.setState(State.ENABLED); 
    if ( this.activity_.sources->isEmpty()){ 
     this.SignalLinkActivited(); 
    } 
   } 
  }  
  public terminate(){ 
   this.setState(State.TERMINATED); 
  } 
   

 

 

The operation contains various behaviours of different activities. Obviously, the 

contents of running() will depend on the activity. However, the semantics of dead path 

elimination are performed before the actual behaviours. Thus, the running()  operation 

contains the behaviours of dead path elimination. The actual behaviour of running an 

execution is placed in the doAction()  operation.  

In Listing 12, the class of EmptyExecution  is presented, which demonstrates the 

pattern that is used by all executions. The statements in the classifier behaviour defines a 

loop that will receive signals until a signal that causes the loop ends, at which point the 

active object will end. Because EmptyExecution  does nothing, it sets the state to 

RUNNING and then completes the execution. This hides the mechanism such as 

performing the dead path elimination, and forces to put the activity-specific behaviours to 

the doAction()  method. The other basic executions listed in Table 10 have similar "do 

blocks". Their specific behavioural semantics can be represented as ALF code. Readers 

can refer to the Appendix A for details.   



155 
 

 

 public active class EmptyExecution specializes Execution { 
 
  public doAction(){ 
   this.setState(State.RUNNING); 
   this.complete( true);   
  } 
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 

 

 

Listing 12: EmptyExecution. 

 

 

 



156 
 

8.4.5 Semantics of Structured activities 

 
Figure 45: Structured executions. 

Structured activities are different from basic activities because they deal with their 

child activities. A basic activity is completed when its execution ends. A structured activity 

needs its child activities to send SignalChildFinished  to it.  

Listing 13 shows an example of the pattern of the classifier behaviour of a structured 

activity. When receiving a SignalChildFinished  signal, the active class decides whether 

to wait for further child activity to be finished, or completes the activity.  

structured executionspackage bpel [   ]

+doAction()
+finishing( execution : Execution )
+faulted( faultInfo : FaultInfo )
+handleEvent( info : MessageInfo )
+compensateScope()

ScopeExecution

+createExecutions()
+doAction()
+finishing( execution : Execution )

FlowExecution

+propagateDPE()
+allLinksActivitied() : Boolean
+doAction()
+running() : Boolean
+notifyTargets( succ : Boolean )
+throwFault( faultInfo : FaultInfo )
+enable()
+terminate()
+complete( linkSucc : Boolean )
+isAllDetermined() : Boolean
+finishing( execution : Execution )

Execution

+doAction()
+finishing( execution : Execution )

SequenceExecution

+doAction()
+finishing( execution : Execution )

...

WhileExecution
+allChildFinished() : Boolean
+terminateChilds()
+terminate()

StructuredExecution

+doAction()

SwitchExecution

+doAction()

PickExecution



157 
 

 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sig:SignalChildFinished){ 
    completed = this.finishing(sig.execution); 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 

 

 

Listing 13: Classifier behaviour of structured activity. 

The list below shows a FlowExecution::doAction()  operation. The last statement 

sends signals concurrently to all childExecution . This enables the semantics for 

executing all activities in a Flow activity in parallel.  

  public doAction(){ 
   this.setState(State.RUNNING); 
   this.createExecutions(); 

this.childExecution.SignalStart(); 
  } 

 

 

Listing 14 shows the ALF programme for dealing with SignalChildFinished , 

depending on whether the child execution is finished normally or negatively. If the child 

execution finishes negatively, the FlowExecution  terminates all activated children, sets its 

state to FAULTED and informs its parent. If all the children are finished, the 

FlowExecution  also finishes normally. 

  



158 
 

 public finishing( in execution:Execution):Boolean{ 

  let completed:Boolean = false; 

  if (execution.state==State.FAULTED){ 

   this.setState(State.FAULTED); 

   //inform parent execution  

   this.terminateChilds(); 

   this.parentExecution.SignalChildFinished( this); 

   return true; 

  } 

   

  if ( this.allChildFinished() && this.state==State.RUNNING){ 

   completed = true; 

   this.complete( true); 

    

  } 

  return completed; 

 } 

Listing 14: Finishing operation. 

8.4.6 Semantics of Scope and Process 

 
Figure 46: State machine of ScopeExecution.  

A BPEL process is a special kind of Scope. A Scope can also define variables and 

partner links, but such variables or partners are only available within the Scope. With 

regard to the instance of a Scope, the ScopeExecution  class is responsible for error 

handling, event handling and compensation handling.  

state machine scope scope[   ]

RUNNING

TERMINATEDENABLED

COMPLETED

FAULTED

DISABLED

COMPENSATING STOPPED

SignalTerminated

SignalCompensate

SignalTerminated1

SignalFaulted

[compensating completed]
SignalChildFinished

SignalLinkActivited

SignalStart



159 
 

A fault can be thrown by a Throw activity when an external partner service returns a 

fault message or when runtime errors that are specified in the standard occur. The fault is 

passed to its enclosed ScopeExecution  and, if the enclosed ScopeExecution  does not 

define a fault handler, it will be passed to the higher-level enclosed scope until the process 

instance. If a fault handler does not exist, the BPEL instance should create a default fault 

handler for that fault.  

Event handlers define special kinds of activities. Their enclosed activity will start when 

it is triggered by an event. A normal StructuredExecution , such as the FlowExecution  

or SequenceExecution , when child execution starts, will only wait for termination signals. 

When starting a ScopeExecution , it requests messages that trigger an event handler from 

the MessageManager . When such messages are sent to the scope, the ScopeExecution  

manages the creation of the execution of the event handler activity.  

Apart from other structured activities, when the child activity finishes and the scope 

transits to the COMPLETED state, the active object does not quit and is not destroyed, but 

still waits for compensation. This is because a BPEL process is a long-term transaction and 

may take a long time to find that something is wrong, while the executions that have 

already been executed need to be cancelled in the compensation handler activity. In order 

to express a mechanism of compensation handling, a process instance has a 

CompensationStack.  When a ScopeExecution  transits to the COMPLETED state, it also 

registers itself to the compensation stack. When a CompensateExecution  activates, it will 

send signals sequentially to all the ScopeExecutions  in the compensation stack, and the 

compensating handler activity of the Scope  will be instantiated to the process of any 

compensating work.  



160 
 

 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
   } 
   or accept(sigFinish:SignalChildFinished){ 
    completed = this.childFinish(sigFinish.execution); 
   } 
   or accept(sigReceive:SignalReceive){ 
    this.handleEvent(sigReceive.info); 
   } 
   or accept(sigFault:SignalFaulted){ 
    this.faulted(sigFault.faultInfo); 
   } 
   or accept(sigCompensate:SignalCompensate){ 
    this.compensateExecution = 
sigCompensate.compensateExecution; 
    this.compensateScope();   
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
   or accept(SignalCompleted){ 
    completed = true; 
   } 
   // accept  
  } //while  
 } 

 

 

8.4.7 Correlations 

The MessageMangaer  is responsible for dispatching incoming messages to BPEL 

process instances and for dispatching the incoming messages to a particular execution that 

can receive a message. Because the process must start with a start activity, if only one 

activity receives the external message, every new message will result in the creation of a 

new process instance. On the other hand, if more than one Receive activity exists in a 

BPEL process, the MessageManager  needs to correlate the received messages to the 

correct instance. This is done by using correlations in the BPEL process.  

To dispatch the message to the correct process, the activity that receives a message 

requires the identification of a unique identifier. This is done by using message properties. 

A message property queries the incoming message via a certain XPath query and generates 

a unique identifier for the message. For example, Figure 47 is a simple BPEL process that 



161 
 

contains two Receive activities. The first receive activity (ReceiveM1, 

createInstance=’yes’ ) receives a message in which the type is M1, which will trigger 

the execution engine to create a new process instance. The second receive activity 

(ReceiveM2, createInstance=’no’ ), in which the receive message type is M2, will not 

result in a new instance. Supposing that the messages are incoming, as shown in Figure 48, 

the first two messages of type M1 will create two process instances (Instance 1 and 

Instance 2). Both are waiting for a message that has type M2. In this situation, the message 

manager must know which instance it should send.  

Message M1 contains an attribute called ID, and this ID consists of shared information 

with M2. The shared information does not need to be the same, as long as it can be 

computed by XPath expressions to create a unique ID.  

 
Figure 47: example of correlations 



162 
 

 
Figure 48: Illustration of correlations. 

In order to send the messages to correct instances for the example in Figure 47, the 

BPEL process can define a correlation set as 

<correlationSets> 

  <correlationSet name="correlationSet1" properties ="ID M1ID"/>  

</correlationSets>  

In the Receive  activity, it must also specify the correlation set 

<receive name=”ReceiveM1” …> 

  <correlations> 

    <correlation set=”correlationSet1” initiate=”ye s”/> 

  </correlations> 

</receive> 

By adding the correlations, the MessageManager  can now correctly despatch the 

information to Instance 2, because the incoming message has the same correlation instance 

as instance 2.  

After understanding the semantics of correlations, the next step is to use ALF to define 

these semantics. The relevant concepts, namely CorrelationInstance,  are added. In 

Incoming message type

M1(ID=001)

M1(ID=002)

M2(M1ID=002)

Locus

Incoming message type

M1(ID=002)

M2(M1ID=002)

Locus

Instance 1

State: waiting for 

message M2

Correlation Instance: 

001

Incoming message type

M2(M1ID=002)

Locus

Instance 1

State: waiting for 

message M2

Correlation Instance: 

001

Instance 2

State: waiting for 

message M2

Correlation Instance: 

002



163 
 

addition, when dispatching messages to an instance, it performs a check to validate 

whether the relevant correlation definition is satisfied. The following code shows 

MessageManager::requrestMessage() , which is invoked when a Receive  or Pick  

execution is executed.  

private requestMessage( in execution:Execution, in  

messageInfo:MessageInfo){ 

 //internal execution request message  

 //find the a incoming message that has the correct type  

 let info:MessageInfo = this.findMessageInfo(messageInfo); 

 let request:MessageRequest = new MessageRequest 

     (execution, 

      messageInfo.message.type, 

      messageInfo.portType, 

      messageInfo.operation 

     ); 

 //when there is no instance request the message typ e, or correlation  

//is not satisfied  

 if (info== null || ! ( this.correlationSatisfied(execution,info))){ 

  //add this message to waiting queue  

  this.messageRequests->add(request);     

 } else{ 

  //send the message to the relevant instance  

  this.sendToExecution(request,info); 

 } 

} 

8.4.8 Abstract activities 

Some of the concepts are outside of the scope of a language specification when these 

concepts are platform-specific. In the language specification, these are represented as 

abstract activities, which only specify the interfaces instead of the detailed method of 

achieving the result. For example, the Wait  activity and the EventHandler  all involve the 

use of time, particularly when waiting for a particular length of time, or when waiting until 

a particular time point.  

 public activity waitFor( in duration:DurationExpression){} 

 public activity waitUntil( in deadline:DeadlineExpression){} 

Other examples include the behaviours regarding what a web service should do when it 

is invoked and how the Xpath is evaluated, as the purpose of a case study is to define the 

semantics of BPEL, rather than web services or Xpath. When generating reference 



164 
 

implementation prototypes, these operations can be implemented in the Java 

implementation for testing.  

8.5 Checking and testing the language specification 

The previous sections introduced a language specification that formalised BPEL to a 

model based specification. The specification contains more than 1300 lines of code. The 

process of developing this specification is assisted by the static checkers, and is tested 

iteratively when one feature has been developed by testing the generated prototype. This 

section summarises checking and testing during the implementation stage.  

As introduced in Chapter 8, an Emfatic file that contains structural and behavioural 

aspects of the specification is generated. The prototype can load a BPEL process and 

execute it; however, this prototype also needs to interact with external web services. Thus, 

it is needed to set up a test environment to simulate external web services. The messages it 

sends need to be configured according to the test cases. If the tested BPEL processes 

invoke or reply to an external web service, such behaviours must be logged.  

To enable these requirements, the meta-model of WSDL is extended with testing 

messages, which are defined as following:  

• When testing a BPEL process, the developer can define a sequence of incoming 

messages. These messages will be sent to the Locus  class when initialised.  

• Given the WSDL port type, the developer can configure the message that the 

operation will reply. For example, the developer can create a sequence of messages 

whereby, when the operation is called, a message in the sequence will be sent back. 

The use of this operation can simulate a normal reply or a fault reply.  

Finally, the executor can be generated. To make the executor executable, the abstract 

activities need to be implemented since the implementation thereof is omitted in the 

language specification. Once these activities are implemented, a working reference 

implementation of the language specification is achieved. Testing instance models can be 

created via the Eclipse in-place model editor, and execute them using the generated 

Eclipse plugin. If any modifications need to be addressed, the language designer can 

modify the language specification and regenerate everything.  



165 
 

8.6 Summary 

This chapter demonstrates the FQLS using a case study of BPEL. While the complete 

language specification of BPEL is listed in Appendix A, this chapter provides a guide as to 

how this specification is created from the official standard. The case study is a proof that 

FQLS is capable of defining a practical real-world language. In the next chapter, the case 

study is evaluated in terms of quality, proving that FQLS can develop a language 

specification while maintaining high-level quality.  

 

  



166 
 

 

Chapter 9.  
 
Evaluation 

This Chapter evaluates FQLS. While evaluating FQLS, there are two types of products 

that require evaluation. As the FQLS promises to enhance the quality of language 

specification development, in order to evaluate that, the quality of a language specification 

that is defined via FQLS must be evaluated. Furthermore, the quality of the FQLS, 

especially the software component it has included, also needs evaluation.  

This chapter starts from evaluating the BPEL specification that is developed in the 

previous chapter.  In Section 9.2, the quality of the FQLS is evaluated in terms of 

robustness. Finally, Section 9.3 discusses the limitations of FQLS.  

9.1 Evaluating the ALF-based BPEL specification 

The BPEL case study produces a realistic example of an ALF-based BPEL 

specification. Evaluating the quality of the BPEL specification is a method to evaluate the 

quality of the framework. With regard to the quality features proposed in Section 2.4.3, the 

interoperability, the model-based features and the executability are features of the 

language specification technique, which was already processed by FQLS. On the other 

hand, the correctness, the consistency, and the understandability require further evaluation. 

This section firstly evaluates the syntactic correctness and consistency of the BPEL 

specification by checking its syntax validity using another ALF implementation. 

Following that, the semantic correctness of the BPEL specification is evaluated by testing 

cases, both from our design and from open source projects. Finally, the understandability 

of the specification is evaluated by using software metrics.  



167 
 

9.1.1 Syntactic correctness/consistency evaluation 

When evaluating the correctness of an ALF specification, two kinds of correctness 

must be considered. The first is syntactic correctness, in other words, whether the ALF 

specification conforms to the meta-model of ALF.. The second is semantic correctness, in 

other words, wether the ALF specification really expresses the semantics of BPEL.   

When defining a language using various technologies, the consistency between syntax 

models and semantic models must be ensured. On the other hand, if the language is 

defined in one language, such inconsistency errors will be revealed as syntactic 

incorrectness. This is one of the fundamental reasons for designing the FQLS. Thus, it can 

be assumed that the consistency will be ensured if the language specification is correct in 

terms of syntax.  

If the ALF-based BPEL specification is successfully parsed, the editor will not report 

any kind of error. However, it is possible that our ALF editor produced false negatives, 

which means that some errors are missed. In order to eliminate this, ALF open-source 

reference implementation is used as a benchmark. If the ALF open-source reference 

implementation successfully parsed the BPEL file without reporting errors, the syntactic 

correctness of the BPEL specification is assured. 

The ALF open source reference implementation is used as follows:  

• Remove the annotations that the current ALF open source reference 

implementation does not support, namely @inline  statements and @OCL statements.  

• Remove the @parallel  annotation, but keep the annotated block, since the 

@parallel  annotation is also not supported.  

• Parse the file by running the parsing command in the command line.  

The ALF-based BPEL specification successfully passed the parsing and constraint 

checking stage. In conclusion, the ALF-based BPEL specification is correct in terms of 

syntax.  

9.1.2 Evaluating semantic correctness by testing 

Semantic correctness concerns whether the specification truly represents the language 

developers’ intentions and can be declared to be correct by the language developers. 

However, this is often not the case, as the real understanding of the DSL semantics relies 

on the language developers’ explanation. Many DSL semantics are based on the 



168 
 

knowledge of domain experts. In such cases, the language developers do not create 

language semantics, but capture the domain experts’ knowledge and formalise them into a 

machine processable format.  

In both cases (evaluated either by domain experts or language developers), the 

semantic correctness of a language specification relies on people’s justification. People can 

be language developers or domain experts. As the BPEL is a well-implemented technology, 

and its execution result is clearly defined in the standard, it is possible to inspect the 

correctness of the execution manually via testing and observing the result.  

Testing by design test cases 

36 testing files are created by the Ecore instance editor for testing the correctness of the 

BPEL specification.The test cases are designed to reflect various activities. The following 

steps are used for testing the BPEL processes.  

• Predefine the expected execution behaviour of the testing model.  

• Execute the testing model.  

• Analyse the log file manually to check whether the result is the correct behaviour. 

The BPEL specification successfully passed all these test cases. This suggests that the 

BPEL case study produces expected behaviours.  

Testing by real BPEL processes 

The BPEL specification is tested according to various test cases. However, the 

expected behaviour of the test cases is derived from our understanding of the language 

specification. It is possible that our understanding is wrong. In this case, the BPEL 

specification could produce a result that is different from that of the language standard’s 

authors. In a real scenario of DSL development, the domain experts are involved in 

judging whether the language specification provides the expected result. However, in our 

project, this is infeasible because there is no access to a domain expert.  

Fortunately, BPEL is a well-implemented language. There are open source 

implementations of BPEL, and they conform to the language standard, while being used 

for commercial projects. The result produced by a mature BPEL execution engine is 

assumed to be the correct behaviour.  

Thus, the hypothesis of this experiment is that our generated BPEL prototype produces 

the correct behaviour when executing processes. This correct behaviour can be achieved 



169 
 

by executing the same process files in a BPEL implementation. This is achieved via the 

following steps.  

Firstly, it is necessary to select certain BPEL processes for testing. It will be more 

convincing if the test cases are real test cases that are not designed by the authors, but by 

other developers.  

Such BPEL process can be found in open source projects. Google code and github.com 

are searched for BPEL files and Many of them are found, but also that most are fairly 

simple and contain only certain activities (such as invoking two web services and 

combining the received data) that are enclosed in a sequential activity. The author 

attempted to search for BPEL files that are more complex, and which are defined as 

follows. This process should have more complex business logic and should use fault and 

compensation handlers. It is better to use nested scopes and correlations.  

Then the BPEL files that contained a fault handler and an event handler are searched. 

20 files are obtained, most of which are clearly test files for BPEL tools. As testing real 

process used in real projects is desired, these files were also eliminated. Finally, the 

Bookstore project is selected, which is a web service that orders purchases of books. Table 

14 lists the files that are used for testing, of which three come from the bookstore project, 

and one is the standing example of the official primer document [106].  

The Apache ODE is selected as the execution engine due to its integration with Eclipse. 

The testing environment is listed in Table 15. Apache ODE (Orchestration Director Engine) 

is an implementation of BPEL, which supports the execution of both BPEL 1.1 and 2.0 

standards. After deploying a BPEL process file to Apache ODE, the process is visible as a 

normal web service. When it receives messages, the Apache ODE will perform the 

execution, evaluating data and invoking the external web services.  

As testing the BPEL processes in Table 14 is desired, these needed to be deployed to 

an Apache ODE server. The process files interact with and are composed of web services, 

to which accesses are not gained. However, based on the WSDL files, the interfaces of the 

web service are revealed. It is possible to build dummy web services that have the same 

interface as the required web service, and which provide a meaningful response.  

Test file Source 

ShippingService.bpel BPEL primer [106] 

OrderBook.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/  

ShipmentBook.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/  

onlineBookStore.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/  

Table 14: Testing files 



170 
 

 

 Environment Version 

Operating 
system 

Windows XP SP3 

Eclipse Helios with BPEL designer project 

Apache Tomcat v7.0 

Apache ODE v1.3 

Table 15: Environments 

Finally, relevant web services are built by Java and to deploy them to an Apache 

Tomcat server with ODE plugin, then simulated requests that triggered different execution 

paths of the process, such as a normal flow, or a response that causes a fault and runs a 

negative flow. The log files are analysed and the activities that were executed are recorded, 

the sequence of the execution and the data transfer between activities. 

Then the Ecore instance editor is used to rebuild the same process, giving it the same 

request model and executing it. Its log file shows that the sequence of the execution of the 

activities and the transfer of the messages is as expected.  

By passing these test cases, the generated prototype is demonstrated that the expected 

behaviours are processed. As the prototype is derived from the ALF-based BPEL 

specification, if the BPEL specification is incorrect, or if the code generation is incorrect, 

both will result in the prototype having unexpected behaviours.  

Thus, it is possible to conclude that the language specification is consistent and correct.  

9.1.3 Evaluating model quality by software metrics 

Language specifications are also models. The quality thereof should have the same 

feature as other models. Mohagheghi et al. [103] summarised methods of assessing model 

quality. The first method is manual inspection. While manual inspection is a good way of 

evaluating understandability, it would be nice to design an experiment and to recruit 

volunteers to manually inspect the understandability thereof. However, limited time and 

resources makes finding the developers of language specifications difficult, because there 

are not many developers that are familiar with models and DSLs. Thus, an evaluation 

method that does not require manual inspection is needed.  

The other way of assessing model quality is to collect metrics from models. Various 

software metrics can reveal the quality features of the software under study. This chapter is 

more interested in evaluating the understandability of the BPEL case study. Many factors 

can impact on the understandability of models, including the organisation of diagrams and 



171 
 

models, the familiarity of the users and the model’s simplicity or complexity [103]. Of 

these three types, the complexity of the models can be revealed by software metrics, as 

agreed by Gruhn and Laue [59]. The understandability of the models is related to the 

complexity metrics. Since complexity metrics have been used successfully in predicting 

the understandability, as well as in the cost and error rate, the evaluation of the 

understandability of the ALF-based BPEL specification is carried out by evaluating the 

complexity metrics.  

Software metrics have proved effectiveness in evaluating the traditional programme, 

including structurally oriented programming [97, 130] and object-oriented programming 

[152]. Many works have tried to adapt the same metrics to models. For example, Gruhn 

and Laue [59] discussed ways of evaluating the complexity of business process models 

using several metrics, including size, the control flow complexity, and the cognitive 

complexity. [95, 89] applied similar metrics for analysing various domain models. These 

works clearly show that it is feasible to apply traditional complexity metrics to models.  

The ALF-based BPEL specification can be seen as an executable meta-model, and can 

also be seen as an object-oriented programme. As previously discussed, both views can 

feasibly apply complexity metrics to the specification. Thus, the task of the evaluation is to 

calculate the complexity metrics of the BPEL specification.  

Our hypothesis is that, compared to other implementations of the BPEL semantic 

specification, the ALF-based BPEL specification has a lower metrics in software 

complexity. 

 Comparable specifications 

Evaluating the complexity of the ALF-based BPEL specification requires the 

comparison of the specification with other BPEL specifications. Thus, it is possible to 

establish metrics and to compare them. The official semantic specification of BPEL is 

based on text, which makes it impossible to compare it. Fortunately, there are two other 

works that formalise BPEL semantics. Fahland and Reisig [38] specified the semantics of 

BPEL using an ASM language. The ASM specification is created by first mapping the 

BPEL meta-model manually to an abstract state machine and then using a combination of 

mathematical language and procedural execution rules to specify semantics. Stahl  [145] 

used the Petri net for the same purpose. The resulting semantic specification consists of 

many Petri net diagrams. Both can be categorised as translational semantics. As a result, 



172 
 

the ASM specification and the Petri net specification are considered to be comparable 

implementations of the ALF specification.   

Since the complexity of the three specifications will be calculated and will repeatedly 

be referenced in the remainder of the thesis, the ALF-based BPEL specification produced 

in the case study will be referred to as the ALF specification, Fahland and Reisig [37] 

(complete specification in [38]), will be referred to as the ASM specification, and Stahl 

[145] will be referred to as the Petri net specification.  

Coverage of the official standard 

The three BPEL semantics specifications are research works; therefore, not all parts of 

the official documents are covered. Of the three specifications, ALF and ASM have similar 

coverage. Activities, handlers, instances, correlations and message management are all 

defined. However, ASM specification has many abstract functions whereby only the 

interface is defined and the semantics are defined by the text. The ALF-based specification 

also contains certain abstract functions, but these are limited to the functions that the 

semantics intentionally left undefined, or the semantics that are dependent on the 

implementation platform. Hence, the amount of abstract functions in the ALF specification 

is significantly smaller. The Petri net specification did not define instances, correlations or 

message management; therefore it has significantly less coverage than the other two. Of 

the three specifications, only ALF specification defines both the abstract syntax and the 

behavioural semantics.  

Size analysis 

The most commonly used metrics for measuring the size of a programme are the lines 

of code. These are the most commonly cited software metrics [111]. The Lines of Code are 

measured by first remove any empty lines and comments. The line numbers were then 

calculated. However, since the ALF specification includes the syntax, the semantic 

definition and the definition of a WSDL meta-model, ASM specification only defines the 

semantics. Thus, to make the comparison fair, the definition of the BPEL meta-model, the 

WSDL meta-model is removed from the specification, but any other classes that are 

related to behaviours, such as the execution class, the instance class and managers, remain. 

By doing this, Table 16 lists the Lines of codes of the two specifications.  

 ALF ASM 

LOC - complete 1588 1506 

LOC - exclude syntax 1318 1498 



173 
 

Number of methods 121 147 
Table 16: LOC comparison. 

Table 16 shows the size of the ALF specification in terms of LOC and the number of 

methods. Although the size of the specification is not only affected by the technology for 

defining the specification, it can also be affected by the design of the specification, the 

skills of the developer, and the coverage of the specification. Considering that the coverage 

of the ALF specification is better than that of the ASM specification, and that the design of 

the specification is similar, both are derived from the same official language specification. 

Thus, it is concluded that the ALF specification is smaller in size than that of the ASM 

specification.  

Cyclomatic Complexity analysis 

Cyclomatic Complexity [97] believes that the complexity of the control flow graph 

could reflect the complexity of the programme. In addition, the metric is language 

independent and could even measure graphs. If a programme were to be translated into a 

control graph, assuming that the count of nodes is n, the count of edge would be e, 

Cyclomatic Complexity (CC), defined as  

CC = e − n + 2 

A practical method included in [97] for calculating CC is counting the number of 

control structures (if, for, while, logical and, or, etc.). The Cycomatic complexity can be 

calculated by the following formula.  

CC = count + 1 

This formula is used for calculating the Cyclomatic complexity of a single-entry-

single-exit programme. In both the ALF and ASM specifications, there are certain methods 

that contain multiple-exit programmes. However, there are various ways of calculating the 

Cyclomatic Complexity of a multiple-exit programme. According to Henderson-Sellers 

and Tegarden [66], Cyclomatic complexity could be adapted to multiple exist programmes 

just by consisting as an existing as a control structure25. Thus, the count of structures is 

defined as  

count = sum conditional	statements$ + sum loop	statements$
+ sum logical	operators$ + sum exits$ 

                                                 
25

 It is also identify that [64] suggests a different way of calculating the complexity. However, the multiple 

exit points only appear a few times in the ALF specification, and do not exist in the ASM specification. 

Applying [64]’s work will not affect the conclusions, because this will only reduce the complexity of the ALF 

specification.  



174 
 

Here, the conditional statements are defined as normal conditional statements, 

including if/switch, and accept statements are also treated in the same way as switch 

statements. Loop statements include for/while/do while loops. Finally,The Total 

Cyclomatic Complexity (TCC) is defined as the summarised CC of the entire project: 

TCC = QCC	� − 1R

STU
+ 1 

The above method is used in order to collect the Cynclomatic complexity of ALF and 

ASM specification. The Petri net specification, however, is different from the other two. 

Since it is not structured programming but graphs, in terms of the calculation of the 

complexity of a Petri net, Mao’s [95] approach is applied by calculating the nodes and 

edges.  

Mao presents a technique to calculate the Cyclomatic complexity of a business process 

that is defined as a Petri net. The method simply treats places and transitions as nodes, and 

allows the link between them to be the edges. By calculating their numbers, the 

Cyclomatic complexity of the Petri net can be derived. This method was chosen due to the 

limited work in applying Cyclomatic complexity to Petri nets, and this is the exact method 

that solves the same problem as ours.  

The method for gathering the complexity metrics is to first divide the language 

specification into several code units, and then to gather the Cychomatic complexity 

manually. A code unit contains the portion of the specification that defines a specific topic. 

The specifications are split into comparable code units. A code unit in ALF specification 

may contain one class or several related classes, and a code unit of the ASM or the Petri 

net specification may contain the rules or graphs listed in one subsection. Since the 

architectures of the three specifications are different, the code units are not guaranteed to 

have the same semantics. However, each code unit reflects the semantics of the same 

BPEL structure, the semantics of which are similar.  

Table 17 shows the result of the Cyclomatic complexity of the three specifications of 

BPEL. Each line of the table stands for a code unit of the language specification. 

Considering the coverage of the specification, the Petri net specification has the lowest 

coverage of the official standard but the highest complexity, which shows that a graph-

based language definition could increase the complexity and thus affect the 

understandability of the language standard.  



175 
 

The ALF and ASM specification has similar coverage, and their architectures are also 

similar. It is clear that the ALF specification is the least TCC of them. When looking at 

each code unit, most of the CC of ALF is smaller than that of ASM. When going deeply 

into the code, if the code blocks are very simple, the CC will make no significant 

difference. For example, Reply , Terminate , Empty , Wait , has nearly the same CC. When 

the code unit become more complex, the ALF specification becomes simpler than the 

ASM specification. There are exceptions; for example, the Flow , Invoke  unit of ALF 

specification is significantly more complex than that of ASM. The reason is that the ASM 

has defined the fault and event handlers as a separated unit, while in the ALF specification, 

the event handling is managed by the relevant activity instances that cannot be calculated 

individually.  

 

 ALF ASM Petri Net 

Reply 7 7 11 

Flow 16 8 2 

Flow Link 26   31 

Terminate 4 5 4 

While 11 11 4 

Invoke 24 13 35 

Empty 4 5 2 

Wait 5 5 6 

Throw 4 4 2 

Receive 9 7 13 

Assign 10 30 11 

Sequence 11 10 2 

Switch 16 10 7 

Pick 18 31 17 

Scope  47 52 99 

handlers27  23 42 

process 10 9 8 

Compensation 7 24 67 

Message manager 26 36 0 

Basic activity 24 26 0 

Total 253 316 363 
Table 17: Cychomatic complexity comparison. 

                                                 
26

 The ALF specification and ASM specification combines Flow link semantics with flow, and they are 

combined with Flow semantics. Thus, the complexity of flow of ALF and ASM is greater than that of Petri 

net.  
27

 The ALF specification combined the semantics of fault handlers with scope, process and basic execution; 

thus, there is no separate class to deal with a fault handler.  



176 
 

Cognitive complexity 

Cychromatic complexity can reflect the physical complexity of software; however, it 

considers only the control and conditional flows of the programme, whereas in the 

specifications that are evaluated, there are certain statements that are different from the 

normal definition of control flows, such as signals, sequence expressions and logical 

expressions in ASM. Shao and Wang [139] also argued that such metrics did not reflect 

the effort to understand the software. They proposed a metric based on cognitive weight 

that could evaluate programmes with more advanced structures. This could reflect the 

cognitive and psychological complexity of software by considering both the internal 

structures and the behaviours they process. In the case study, the cognitive complexity is 

calculated by first assigning a cognitive weight to all the control structures, which are 

shown in Table 18. The cognitive weights are categorised according to the type of control 

structure. Because ASM formalism and ALF language have special control structures, 

there is a column entitled “language”, which indicates the languages that such control 

structures.  

Category Language Control Structures Weight(V�) 
Sequence Both Sequence 1 

Branch Both if-then-else 2 

 Both case, if-elseif 3 

Iteration Both for  3 

 Both While 3 

 Both do while 3 

Function calls Both function calls 2 

 Both Recursion 3 

Concurrency ALF Parallel 4 

 ASM on signal 4 

 ALF Accept 4 

Sequence operation Both select/forAll/exists 4 

 ASM other logic structure 4 

Table 18. Cognitive weights of control structures. 

Cognitive complexity adds the cognitive weights of its q linear blocks. If a block 

contains nested blocks, the cognitive weights are defined by multiplying the cognitive 

weights of the nested blocks. The total cognitive weight can be calculated by the formula  



177 
 

WX = QYZQwX j, k, i$
^

STU

_

RTU
`

a

bTU
 

wX j, k, i$ is the complexity weight of the statement.  

 The following steps are used to calculate the total cognitive complexity.  

• The complexity of a code block is the sum of the weight of the control flow.  

• A statement that does not contain nested code blocks has the weight specified in 

Table 18.   

• The complexity of a statement that has nested code blocks is the weight multiplied 

by the sum of the nested blocks.  

• The total cognitive complexity of a code unit is the sum of the complexity of the 

code blocks.  

In order to explain how this works, the code from the ALF specification is took and the 

complexity thereof is calculated. The code below is the classifier behaviour of 

AssignExecution and the complexity of each statement or code block is written as 

comments 

      //Total: 2+72=74 

      //2 

  this.setState(State.DISABLED); 

  let completed:Boolean = false; 

      //3*24=72 

  while (! completed){ 

   //4*(2+2+2)=24 

   accept(SignalStart){ 

   //2 

    this.enable(); 

   } 

   or accept(SignalLinkActivited){ 

    //2 

    this.running(); 

    completed = true; 

   } 

   or accept(SignalTerminate){ 

    //2 

    this.terminate(); 

    completed = true; 

   } 

  }   



178 
 

Table 19 listed the cognitive complexity of the ALF specification and the ASM 

specification. This table is similar to the table of Cychromatic complexity. The ALF 

specification is less complex than is the ASM specification in terms of total cognitive 

complexity.  

When looking into individual code units, the distribution of the complexity is revealed. 

For simpler units, like Wait  and Throw , the complexity of ALF and ASM is similar. In fact, 

the ALF specification is slightly higher than that of ASM. This is because the pattern of 

receiving incoming signals uses a while loop, which results in the block always having a 

nested loop that multiplies the compexity. In the ASM specification, there is a specially 

designed syntax for receiving the signal continuously, which results in the complexity of 

receiving a signal being lower. However, for more complex code blocks, such as Assign, 

Compensate, Scope and Sequence, the ALF specification has a much smaller complexity.  

Name ALF ASM 

assign 117 278 

compensate 113 665 

correlation 8  

empty 78 84 

structured activity 300 236 

flow 168 154 

invoke 403 407 

locus 360  

message 244  

pick 257 294 

receive 201 156 

reply 191 168 

scope 553 959 

sequence 163 428 

switch 251 184 

terminate 80 86 

throw 99 70 

wait 97 86 

while 201 256 

event handler  472 

fault hander  460 



179 
 

Total 3884 5443 

Table 19: Cognitive complexity comparison. 

One reason that the ASM specification is more complex than that of ALF is that its 

nature makes the reuse of code difficult. Many codes are duplicated. The ASM 

specification also uses extremely complex logic to define the semantics as a post condition, 

which makes the control flow complexity large.  

Discussion 

This section evaluated the physical lines of code, the Cychomatic complexity thereof, 

and the cognitive complexity of the ALF-based BPEL specification of the ASM-based 

BPEL semantic specification and a Petri net BPEL semantic specification. The result 

summarised in the tables clearly show the lower complexity of the ALF specification, thus 

validating the hypothesis.  

Our method of using software metrics for evaluating the complexity relies on the 

assumption that the complexity metrics used are independent of language. This claim is 

supported by other works; for example, McCabe [97] and Shao and Wang [139] believe 

that CC and cognitive complexity are language independent, while there are other metrics, 

like the first complexity metrics proposed by Halstead [62], which are language dependent.  

Although differences in the complexities between ALF/ASM specifications are large 

(the total cognitive complexity of ALF specification is 28.6% less than that of ASM, and 

the total Cychomatic complexity is 19.9% smaller), there is a concern that may affect 

validity: the differences of the complexity are not proven to be statistically significant. 

However, evaluating the statistical significance of software metrics is still a challenging 

topic, and cannot be done if a large code database exists. Considering the age of ALF, 

although such a large database is still missing, it is nearly impossible to prove the 

statistical significance of the complexity evaluation. 

9.2 Evaluating static checkers of the ALF Language 

Specification Framework 

The consistency, correctness and complexity of the ALF-based BPEL specification are 

evaluated in the previous section. These features are the most important factors that affect 

the quality of a language specification. It demonstrates the effectiveness of producing a 

high quality language specification using FQLS because, in the process of developing the 



180 
 

BPEL case study, the framework helped to identify many errors in the earlier stages. 

Because some of the built-in static checkers were designed and developed while 

developing the BPEL case study, the true ability of the static checkers needs to be tested in 

a better way than using the author's report, so that the static checkers are not only useful to 

the BPEL case study, but are generally related  to ALF programmes.  

Thus, in this experiment, the robustness of the static checkers was evaluated. The 

robustness was defined as the built-in checkers of ASLF, which will still have expected 

behaviour when given ALF programme from other sources.  

One widely used method for evaluating the static checkers is to use the static checker 

to analyse a widely known open source project and to analyse its result, as per Findbug 

[70]. The same principle holds when evaluating a static checker for ALF; however, ALF 

does not have such a large open-source project. Finally, the sample was collected from the 

testing file28 for the ALF open-source reference project and, after extracting the source 

code, the test files were placed in the ‘test-x’ folder.  

The test files of the ALF open-source reference implementation contain 25 test files 

and four helper files. The content varies from a simple hello world, to evaluating complex 

expressions and ALF-specific statements. These programmes can be treated as real 

examples of ALF programmes. These test ALF files were opened using the ALF code 

editor. By analysing the results, it can be seen that these test files contain several bad 

practices and possible errors.  

• Many of the test files use variables without declaring the type. This is considered to 

be bad practice. Therefore, the result is a warning, or possibly an error, if the type 

cannot be inferred by the static checker. 

• Many variables are used without initialisation, particularly when used as an output 

variable.  

• In Expressions_Assignment_Feature.alf , line 34, there is a type error, where 

c.y  has a type Integer and cannot be assigned to null .  

• Expressions_Assignment_Feature_Indexed.alf , line 31, similar to the above. 

• Expressions_Constructor_Destructor.alf.  In lines 27, 28 and 34, the 

constructor has the same name as a public member. For example: 

                                                 
28

 http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-Implementation/dist/test-x.zip  



181 
 

• public transferred: Boolean = false ; 

• @Create public transferred(in employeeInfo: Employe e)  { 

• Expressions_Sequence_Expansion_Reduction.alf , from line 25: The 

parameter name is the same as a keyword.  

The bad practices identified above clearly show the necessity of having basic static 

checkers to assure the correctness of the programmes, because the examples in the 

standards have potential errors.  

9.3 Limitations 

FQLS uses fUML as its semantic basis. This indicates that it is not possible to specify 

the semantics that fUML cannot specify. The fUML standard [55] and Selic [137] both 

summarise the limitations of fUML, in that it only supports event-driven, discrete 

behaviours. If a DSL that simulates the physical world has continuous behaviours, such 

semantics cannot be directly specifiable by fUML. Such behaviours may possibly be 

supported by certain profiles that remain unexplored.  

Various arguments [111] imply that many complexity metrics (including Cyclomatic 

Complexity) are correlated to the size of the programme; in other words, the LoC. If this is 

true, an evaluation that uses metrics in the thesis would be less convincing. This is a 

limitation of the evaluation method. Another way of evaluating the understandability is to 

conduct an experiment that surveys language engineers. This is extremely challenging 

because the number of language engineers is limited, making the task almost impossible 

because of limited resources and time.  

The generated prototype also has a limitation, because the generated prototype does not 

ensure thread safety. EMF “can safely be used in multi-threaded environments; however, 

EMF does not, itself, ensure thread-safety in application model implementations29”. The 

prototype inherited the limitations of EMF; thus, attributes shared by multiple threads may 

have race conditions. 

                                                 
29

 http://wiki.eclipse.org/EMF/FAQ  



182 
 

9.4 Summary 

This chapter evaluated the FQLS by confirming the hypothesis. The evaluation 

demonstrated that the BPEL specification developed by FQLS is a correct and consistent 

specification and, compared to other implementations of the language, has lower 

complexity that indicates better understandability. The effectiveness of the static checkers 

of ALF was also tested by examining the testing code of the ALF open source reference 

implementation.  

  



183 
 

Chapter 10.  
 
Conclusion and further work 

10.1  Conclusions 

The journey of this thesis starts from the problems in domain specific language 

development. The current methods for developing domain specific language specification, 

especially a specification contains both abstract syntax and behavioural semantics, deliver 

language specifications that are in low quality. The problem of the quality of language 

specifications leads to the research objectives of the thesis.  

The first research objective is “To investigate the requirements of a high quality DSL 

specification.” By analysing existing approaches and existing language specifications, 

Section proposes that the language specification should has consistency, correctness, 

executability, understandability, expressiveness, interoperability, and should be model-

based.  

The second research objective is “To design an approach that could define a DSL in a 

unified manner, fulfil the requirements of a high quality DSL specification”. The FQLS 

approach introduced in Chapter 4 and detailed in later chapters is the answer to this 

objective.  

The third research objective is “To create a software development process that 

applying the new definition approach”. Such a software development process is presented 

in Section 4.3.  

The last research objective is “To develop a framework for supporting the software 

development process that assists the development of DSLs”. A software tool chain that 

supports specification development, static checking and testing are presented in Chapter 5, 

Chapter 6, and Chapter 7. 

10.1.1  Summary of contributions 

The scientific contribution of the thesis is the method for defining domain specific 

language specification. Its purpose is to deliver high quality language specification. The 

goal is reached by using established technologies, i.e. the ALF, fUML, static analysis and 



184 
 

projects based on the Eclipse modelling framework. In contrast to other approaches, the 

FQLS approach eliminates inconsistencies between abstract syntax and semantics. It uses 

expressive language and produces interoperable and understandable language 

specifications.  

The thesis also contributes three technical area. The first technical contribution is a 

software architecture that supports the language specification technique and the software 

development process. It proposes a tool chain that contains editor for the language 

specification, static checkers for identifying errors, model transformer which translates the 

ALF specification to fUML models, and code generator that translates the ALF 

specification to Java, which enables testing the language semantics.  

The second technical contribution is a software development process that applies 

quality assurance on the language specification itself while developing the language 

specification.  The products, the roles, the tasks and the guidelines of developing language 

specifications are identified and captured by SPEM meta-model. The process proposes to 

perform checks and testing directly on the specification rather than leave them until 

implementation stage, thus, makes identifying errors in an early stage.  

The last technical contribution is that the case study demonstrates that fUML can be 

used to define the semantics of DSLs despite its original purpose is to define UML 

semantics. The case study creates the first model-based BPEL specification that defines 

abstract syntax and behavioural semantics in a unified way.  

10.1.2  Summary of evaluation 

To demonstrate that FQLS can produce a high quality language specification, a real 

DSL – the BPEL is chosen as a case study. In the case study, the abstract syntax and 

behavioural semantics are defined by ALF, while applying the software development 

process and using the software tool chain. While developing the language specification, 

the specification is statically checked for syntax and bad practices on going, and being 

tested in each iteration.  

Then this case study is used as a source for evaluation. The experiments and results are 

summarised as: 

• The syntactical correctness of the specification is evaluated by checking the 

syntactical correctness by the ALF open source implementation. The semantic 



185 
 

correctness is demonstrated by running test cases and real process examples. Both 

of the methods show no error in the ALF –based BPEL specification.  

• The BPEL case study is evaluated by software metrics, and the result is compared 

to other approaches for defining BPEL. The ALF-based BPEL specification is less 

complex than the comparable specifications in all the selected metrics, which 

suggests the FQLS method is better in understandability.  

• The static checkers are evaluated by checking the programs presented in the ALF 

open source implementation. Several bad practices that suggest errors are identified. 

This experiment shows the robustness of the static checkers. They are not only 

effective for checking errors in the BPEL specification.  

The evaluation confirms that a language specification defined as the FQLS has better 

quality in terms of correctness, consistency, understandability. Since the FQLS used an 

interoperable, expressive language, the language specification that the FQLS produced 

unifies abstract syntax and behavioural semantics, the hypothesis of the thesis is confirmed.  

10.2  Further work 

The OMG is seeking the methods of defining the semantics of UML family by ALF. 

Currently, the fUML standard defines the semantics as restricted Java code. It will be 

much consist and precise, if the semantics are defined by ALF. The “structures of Precise 

Semantics of UML Composite Structures” [54] is a working on draft that describes the 

semantics of UML composite structures (e.g. the elements of the composite diagrams and 

the collaboration diagrams), using fUML as its vocabulary. Eventually, the same work can 

be extended to any language that is defined as a meta-model.  

If ALF and fUML become a widely accepted way for defining languages, it is possible 

to reuse language definitions just like reuse software components. This direction can be 

further researched in several routes 

• Language composition. One requirement in language development is to composite 

two different but similar languages into one language, thus the composited 

language contains the expressiveness and the concepts of both the languages. If 

these two languages are defined by ALF, it is likely that the process of composition 



186 
 

will be easier since they share many similarities. It is also worth seeking automatic 

ways to composite languages that are defined using ALF.  

• Language evolution. DSLs change and evolve throughout their life cycle. The 

meta-model may be extended with new concepts, or changes to another model. The 

semantics may change as well. Hence, it is worth of research on how FQLS could 

support the development of an evolving language specification that still keeps the 

quality of the specification.  

Another direction of further research is continuing to improve the FQLS to provide 

advanced supports for language developers. The possible works include: 

• Adding automatic unit tests. Currently, testing is done by executing the test cases 

and then checks the result manually. It is worth to develop an automatic testing 

framework.  

• Revising the ALF to Java code generation, generating from ALF sequence 

expression to Java lambda expression. Using Java lambda expression will avoid the 

complex mechanism of generating OCL and limitations of sequence expression.  

• The Model Library of ALF is not fully implemented. Thus, some built in data type, 

such as BitString, Set, will report type not found error, which is not an error.  

• Addressing known bugs. There are some known bugs, such as failing to deal with 

treaty ++ -- operators performed on a property access expression.  

• Developing full support of the ALF model library. The Model Library of ALF is 

not fully implemented. Thus, some built in data type, such as BitString, Set, will 

report type not found error, which is not an error.  



187 
 

Appendix A. Complete specification of BPEL 
 

  
  /**********************  
   * BPEL META MODEL  
   * ********************/  
  
 public enum State{DISABLED,ENABLED, RUNNING, COMPLETED, 
FAULTED,TERMINATED, COMPENSATING, STOPPED} 
  
 /* WSDL */  
 public class WSDL{ 
  public messages: compose MessageType[*]; 
  public portTypes : compose PortType[*]; 
  public properties: compose Property[*]; 
  public serviceLinkTypes: compose ServiceLinkType[*]; 
 } 
  
 public class ServiceLinkType{ 
  public name:String; 
  public role: compose Role[*]; 
 } 
  
 public class Role{ 
  public name:String; 
  public portType:PortType; 
 } 
  
 public class MessageType{ 
  public name:String; 
  public parts: compose Part[*]; 
 } 
  
 public class Message{ 
  public type:MessageType; 
  public value:String; 
 } 
  
 public class Part{ 
  public name:String; 
  public typeName:String; 
  public elementName:String; 
 } 
  
 public class Property{ 
  public name:String; 
  public type:String; 
 } 
  
 public class PortType{ 
  public name:String; 
  public operations: compose Operation[*]; 
   
  public invokeOperation( inout operation:Operation, inout 
message:Message){ 
    



188 
 

  } 
 } 
   
 public class Operation{ 
  public name:String; 
  public input: compose Input; 
  public output: compose Output; 
  public fault: compose Fault; 
   
  public testRespondMessage: compose MessageInfo[*]; 
   
  public invoke( in message:Message){ 
   log( ""  + message); 
   if ( this.testRespondMessage->size()>0 && this.output!= null){ 
    let messageInfo:MessageInfo = this.testRespondMessage[0]; 
    this.testRespondMessage->remove(0); 
    messageManagerInstance().SignalReceiveMessage(m essageInfo); 
   } 
  } 
   
  public receiveResponse( in message:Message){ 
   log( "" +message+ " received" ); 
  } 
 } 
  
 public abstract class MessageReference{ 
  public name:String; 
  public messageType:MessageType; 
 } 
  
 public class Input specializes MessageReference{} 
 public class Output specializes MessageReference{} 
 public class Fault specializes MessageReference{} 
 
  
 /* ACTIVITIES */  
  
 public abstract class Expression{ 
  public body:String; 
  public expressionLanguage:String; 
 } 
  
 public class BooleanExpression specializes Expression{ 
  private count:Integer; 
  public eval():Boolean{ 
   //evaluate the expression, omitted  
   if ( this.body== "true" ){ 
    return true; 
   } 
   else 
    { return false;} 
  } 
 } 
  
 public class DurationExpression specializes Expression{} 
  
 public class DeadlineExpression specializes Expression{} 
  
 public class Variable{ 
  public name:String; 
  public value:String; 



189 
 

  public messageType:MessageType; 
   
//  public setVariable(in message:Message){  
//   this.value = message.value;  
//  }  
   
  public copyFrom( in variable:Variable){ 
    
  } 
   
  public copyPart( in inVar:Variable, in inPart:Part, in 
selfPart:Part){ 
    
  } 
   
  public copyLiteral( in literal:String, in selfPart:Part){ 
    
  } 
   
  public getMessage():Message{ 
   let message:Message = new Message(); 
   message.value = this.value; 
   message.type = this.messageType; 
   return message; 
  } 
   
   
 } 
 public class PartnerLink{ 
  public name:String; 
  public serviceLinkType:ServiceLinkType; 
  public myRole:Role; 
  public partnerRole:Role; 
 } 
   
 public class BPELProcess specializes Scope { 
   
 } 
  
 public abstract class Activity{ 
  public name:String; 
  public joinCondition: compose BooleanExpression; 
  public suppressJointFailure:Boolean = false; 
  public enclosedScope():AbstractScope{ 
   let parent:Activity = container( this); 
   while (! (parent instanceof AbstractScope)){ 
    parent = parent.container; 
   } 
   return (AbstractScope)parent; 
  } 
 } 
      
// public abstract class CorrelationActivity{  
//  public correlations:compose Correlation[*];  
// }  
//  
 public class Correlation{ 
  public set:CorrelationSet; 
  public initiate:Boolean; 
  public pattern:String; 
 } 



190 
 

  
 public abstract class AbstractScope specializes StructuredActivity{ 
  public partnerLinks: compose PartnerLink[*]; 
  public variables: compose Variable[*]; 
  public faultHandler: compose FaultHandler; 
  public eventHandlers: compose EventHandler; 
  public compensationHandler: compose CompensationHandler; 
  public correlationSet: compose CorrelationSet[*]; 
 } 
  
 public class CorrelationSet{ 
  public name:String; 
  public properties:Property[*]; 
 } 
  
 public class CompensationHandler{ 
  public activity_: compose Activity; 
 } 
  
 public class EventHandler{ 
  public events: compose OnEvent[*]; 
 } 
  
 public class OnEvent{ 
  public partnerLink:PartnerLink; 
  public portType:PortType; 
  public operation:Operation; 
  public messageType:MessageType; 
  public scope: compose Scope; 
 } 
  
 public class Scope specializes AbstractScope{} 
  
 public class Compensate specializes Activity{} 
//  
// public class CompensateScope specializes  Activity{  
//  public target:Scope;  
// }  
//  
 public assoc Link_Activity_1{ 
  public sources:Link[*]; 
  public target:Activity; 
 } 
  
 public assoc Link_Activity_2{ 
  public targets:Link[*]; 
  public source:Activity; 
 } 
  
 public class Link{} 
  
 public assoc StructuredActivity_Activity{ 
  public container:StructuredActivity; 
  public activities: compose Activity[*] sequence; 
 } 
  
 public abstract class StructuredActivity specializes Activity{ 
  public primaryActivity():Activity{ 
   return this.activities[0]; 
  } 
 } 



191 
 

  
 public assoc Flow_Link{ 
  public links: compose Link[*]; 
  public flow:Flow; 
 } 
  
 public class Flow specializes StructuredActivity{ 
 } 
  
 public class While specializes StructuredActivity{  
  public condition: compose BooleanExpression; 
 } 
 
 public class FaultHandler{ 
  public catch_: compose Catch[*]; 
  public catchAll: compose CatchAll; 
 } 
  
 public class Catch{ 
  public faultName:String; 
  public faultVariable:Variable; 
  public faultMessageType:MessageType; 
  public activity_: compose Activity;    
 } 
 public class CatchAll{ 
  public activity_: compose Activity; 
 } 
  
 public class Sequence specializes StructuredActivity{} 
  
 public class Switch specializes StructuredActivity{ 
  public case_: compose Case[*]; 
  public otherwise: compose Activity; 
 } 
  
 public class Case{ 
  public condition: compose BooleanExpression; 
  public activity_: compose Activity; 
 } 
   
 public class Pick specializes Activity{ 
//  public onMessage:compose OnMessage[*];  
  public onEvent: compose AbstractOnEvent[*]; 
 } 
  
 public abstract class AbstractOnEvent { 
  public activity_: compose Activity; 
 } 
  
 public class OnMessage specializes PartnerActivity,AbstractOnEvent{ 
//  public activity_:compose Activity;  
 } 
  
 public class OnAlarm specializes AbstractOnEvent{ 
  public for_: compose DurationExpression; 
  public until_: compose DeadlineExpression; 
 } 
   
 public class Empty specializes Activity{} 
  
 public class Terminate specializes Activity{} 



192 
 

  
 public abstract class PartnerActivity specializes Activity{ 
  public partnerLink:PartnerLink; 
  public operation:Operation; 
  public variable:Variable; 
  public portType:PortType; 
  public correlations: compose Correlation[*]; 
 } 
  
 public class Receive specializes PartnerActivity{ 
  public createInstance:Boolean; 
 } 
  
 public class Reply specializes PartnerActivity{ 
  public faultName:String; 
 } 
  
 public class Invoke specializes PartnerActivity{ 
  public inputVariable:Variable; 
  public outputVariable:Variable; 
 } 
  
 public class Throw specializes Activity{ 
  public faultName:String; 
  public faultVariable:Variable; 
 } 
  
 public class Wait specializes Activity{ 
  public for_: compose DurationExpression; 
  public until_: compose DeadlineExpression; 
 } 
  
 public class Assign specializes Activity{ 
  public copy: compose Copy[*]; 
 } 
  
 public class Copy { 
  public from_: compose FromSpec;  
  public to_: compose ToSpec; 
 } 
  
 public abstract class FromSpec{} 
 public abstract class ToSpec{} 
  
 public class FromVariablePart specializes FromSpec{ 
  public variable:Variable; 
  public part:Part; 
 } 
  
 public class FromLiteral specializes FromSpec{ 
  public literal:String; 
 } 
  
 public class FromExpression specializes FromSpec{ 
  public expression:String; 
 } 
  
 public class FromProperty specializes FromSpec{ 
  public variable:Variable; 
  public property:Property; 
 } 



193 
 

  
 public class ToVariablePart specializes ToSpec{ 
  public variable:Variable; 
  public part:Part; 
 } 
  
 public class ToProperty specializes ToSpec{ 
  public variable:Variable; 
  public property:Property;   
 } 
  
 /***********************  
  * EXECUTIONS  
  ***********************/  
   
 public abstract active class Execution{ 
  public state:State; 
  public receive signal SignalStart{} 
  public receive signal SignalTerminate{}   
  public receive signal SignalLinkActivited{}  
   
  //send SignalCompleted to its container   
//  //  OCL("  
//self.activity_.sources->size()=0  
//or  
//self.activity_.sources  
// ->collect(e|e.source.execution)  
// ->forAll(e|e.state=State::COMPLETED)  
//")  
  public allLinksActivited():Boolean{ 
//   return this.activity_.sources  
//    ->collect e (e.source.execution)  
//    ->forAll e (e.state==State.COMPLETED)  
//    || this.activity_.sources->isEmpty();  
   if ( this.activity_.sources->isEmpty()){ 
    return true; 
   } else{ 
    return this.isAllDetermined(); 
   } 
    
  }   
   
  private isAllDetermined():Boolean{ 
   let allDetermined:Boolean = true; 
   let flowExecution:FlowExecution = 
(FlowExecution)locus().findExecution(instance( this),(Flow) this.activity_.
sources[0].flow); 
   for (Link l: this.activity_.sources){ 
    let linkInstance:LinkInstance = 
flowExecution.linkInstanceOf(l); 
    if (! linkInstance.isDetermined){ 
     allDetermined = false; 
     break; 
    }   
   } 
 
   return allDetermined; 
  } 
     
  public popagateDPE():Boolean{ 
   if ( this.activity_.sources->isEmpty()){ 



194 
 

    return true; 
   } 
   if ( this.activity_.joinCondition== null){ 
    //default semantics:if one linkInstance(isDetermine d and 
success )  
    let flow:Flow = this.activity_.sources[0].flow; 
    let flowExecution:FlowExecution = 
(FlowExecution)locus().findExecution(instance( this),flow); 
     
    for (Link l: this.activity_.sources){ 
     let linkInstance:LinkInstance = 
flowExecution.linkInstanceOf(l); 
     if (linkInstance.isDetermined && linkInstance.success ){ 
      return true; 
     } 
    } 
    return false; 
   } else{   
    return this.activity_.joinCondition.eval();   
   } 
  } 
 
  public abstract doAction(){} 
  public running():Boolean{ 
   if ( this.state==State.ENABLED && this.allLinksActivited()){ 
    let linkSucc:Boolean = this.popagateDPE(); 
    if (linkSucc){ 
     this.doAction(); 
    } else{ 
     if ( this.activity_.suppressJointFailure){ 
      this.complete( false); 
     } else{ 
      this.setState(State.FAULTED); 
      //suppressJointFailure  
      let faultInfo:FaultInfo = new FaultInfo(); 
      faultInfo.faultName = "bpws:joinFailure" ; 
 //     faultInfo.faultMessage = "";  
      this.throwFault(faultInfo); 
      return true; 
     } 
    } 
    return !linkSucc;   
   } 
   return false; 
  }   
   
  public notifyTargets( in succ:Boolean){ 
//   for (Link link: this.activity_.targets){  
//    link.target.execution.SignalLinkActivited();  
//   }  
//   this.activity_.targets->collect e 
(e.target.execution.SignalLinkActivited());  
   if (! this.activity_.targets->isEmpty()){ 
    let flow:Flow = this.activity_.targets[0].flow;     
    let flowExecution:FlowExecution = 
(FlowExecution)locus().findExecution(instance( this),flow); 
    //@ parallel 
    for (Link link: this.activity_.targets){ 
     let linkInstance:LinkInstance = 
flowExecution.linkInstanceOf(link); 
     linkInstance.sourceDetermined( true); 



195 
 

     linkInstance.success = succ; 
    } 
   } 
  } 
   
  public setState( in s:State):Boolean{ 
   this.state = s; 
   return true; 
  } 
   
  public throwFault( in faultInfo:FaultInfo){ 
   let scopeExecution:ScopeExecution = 
(ScopeExecution)locus().findExecution(instance( this), this.activity_.enclo
sedScope()); 
   scopeExecution.SignalFaulted(faultInfo); 
   //do something with the faultHandler.  
  } 
  public enable(){ 
   if ( this.state==State.DISABLED){ 
    this.setState(State.ENABLED); 
    if ( this.activity_.sources->isEmpty()){ 
     this.SignalLinkActivited(); 
    } 
   } 
  }  
  public terminate(){ 
   this.setState(State.TERMINATED); 
  } 
   
  public complete( in linkSucc:Boolean){ 
   this.setState(State.COMPLETED);       
   //send parent  
   this.parentExecution.SignalChildFinished( this);  
   //send link targets  
   if (! this.activity_.targets->isEmpty()){ 
    this.notifyTargets(linkSucc); 
   }    
  } 
 } do{} 
 
 public assoc Execution_Activity_1{  
  public execution:Execution[*]; 
  public activity_:Activity; 
 } 
  
 public active class EmptyExecution specializes Execution { 
 
  public doAction(){ 
   this.setState(State.RUNNING); 
   this.complete( true);   
  } 
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 



196 
 

    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class AssignExecution specializes Execution{ 
  public getAssign():Assign{ 
   return (Assign) this.activity_; 
  }  
   
  public doAction(){ 
   this.setState(State.RUNNING); 
    
   for(Copy co: this.getAssign().copy){ 
    this.doAssign(co.from_,co.to_); 
   } 
    
   this.complete( true); 
  }  
   
  public doAssign( inout fromSpec:FromSpec, inout toSpec:ToSpec){ 
   //TODO assign value  
   if (fromSpec instanceof FromVariablePart && toSpec instanceof 
ToVariablePart){ 
    let frm:FromVariablePart = (FromVariablePart)fromSpec;  
    let t:ToVariablePart = (ToVariablePart)toSpec; 
    if (frm.part== null){ 
     t.variable.copyFrom(frm.variable); 
    } 
    else{ 
     t.variable.copyPart(frm.variable,frm.part,t.pa rt); 
    } 
   } else if (fromSpec instanceof FromLiteral && toSpec instanceof 
ToVariablePart){ 
    let frm:FromLiteral = (FromLiteral)fromSpec; 
    let t:ToVariablePart = (ToVariablePart)toSpec; 
    t.variable.copyLiteral(frm.literal, t.part); 
   } 
  }  
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  }   
 } 
  



197 
 

 public active class ReplyExecution specializes Execution{ 
   
  public getReply():Reply{ 
   return (Reply) this.activity_; 
  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
   let variable:Variable = this.getReply().variable; 
   this.getReply().operation.receiveResponse(variable.getM essage()); 
   //init  correlation  
    
   if (! this.getReply().correlations->isEmpty()){ 
    //this.getReply().correlations  
    // ->select cor  (cor.initiate)  
    // ->collect vi (...)  
    for (Correlation cor: this.getReply().correlations){ 
     if (cor.initiate){ 
      let 
vi:VariableInstance=instance( this).findVariableInstance(variable); 
      instance( this).correlationManager.initiate(vi,cor); 
     } 
    } 
   } 
   this.complete( true);   
  } 
  
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class TerminateExecution specializes Execution{ 
 
  public doAction(){ 
   this.setState(State.RUNNING); 
   this.setState(State.TERMINATED);  
   //send parent  
   this.parentExecution.SignalTerminate();     
  } 
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 



198 
 

    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  }   
 } 
  
 public abstract active class MessageReceiver{ 
  public receive signal SignalReceive{ 
//   public message:Message;  
   public info:MessageInfo; 
  } 
 } do{} 
  
 public active class InvokeExecution specializes Execution, 
MessageReceiver{ 
  public getInvoke():Invoke{ 
   return (Invoke) this.activity_; 
  } 
 
  public running():Boolean{ 
   //change the state to running if possible  
   //send the input message to external by messageMana gerInstance  
   let completed:Boolean = false; 
   if ( this.state==State.ENABLED && this.allLinksActivited()){ 
    let linkSucc:Boolean = this.popagateDPE(); 
    if (linkSucc){ 
     completed = this.runningLinkSucc(); 
    } else{ 
     this.complete( false); 
    } 
   } 
   return completed;  
  } 
   
  private initCorrelation(){ 
   for (Correlation cor: this.getInvoke().correlations){ 
    if (cor.initiate && (cor.pattern== "in"  || 
cor.pattern== "in/out" )){ 
     let 
vi:VariableInstance=instance( this).findVariableInstance( this.getInvoke().
variable); 
     instance( this).correlationManager.initiate(vi,cor); 
    } 
   } 
  } 
   
   
  private runningLinkSucc():Boolean{ 
   this.setState(State.RUNNING); 
   let inputMessage:Message = 
this.getInvoke().inputVariable.getMessage(); 
   let messageInfo:MessageInfo = new MessageInfo(); 
   messageInfo.message = inputMessage; 
   messageInfo.operation = this.getInvoke().operation; 
   messageInfo.portType = this.getInvoke().portType; 
   messageManagerInstance().SignalSendMessage( this,messageInfo); 
    
   //init  Correlation instances  



199 
 

   if (! this.getInvoke().correlations->isEmpty()){ 
    this.initCorrelation(); 
   }       
   //if the invoke expected responds, then do not comp lete, wait 
for incoming message  
   //else complete the execution  
   if ( this.getInvoke().outputVariable== null){ 
    this.complete( true);     
    return true; 
   } else{ 
    //requrest  message  
    let info:MessageInfo = new MessageInfo(); 
    let outputMessage:Message = 
this.getInvoke().outputVariable.getMessage(); 
  
    info.portType = this.getInvoke().portType; 
    info.operation = this.getInvoke().operation; 
    info.message = outputMessage; 
        
    messageManagerInstance().SignalRequestMessage( this, info); 
     
    return false; 
   }    
  } 
   
  private isOutputMessage( in info:MessageInfo):Boolean{ 
   let outputMessageType:MessageType = 
this.getInvoke().outputVariable.messageType; 
   return info.message.type==outputMessageType; 
  } 
   
  private isFaultMessage( in info:MessageInfo):Boolean{ 
   let operation:Operation = this.getInvoke().operation; 
   if (operation.fault== null){ 
    return false; 
   } else { 
    return operation.fault.messageType==info.message.type; 
   } 
  } 
   
  private receivingNormalFlow( in info:MessageInfo){ 
   //then assign the message value to the output messa ge 
//    this.getInvoke().outputVariable.setVariable(i nfo.message);  
  
 instance( this).findVariableInstance( this.getInvoke().outputVariable) 
    .copyMessage(info.message); 
   if (! this.getInvoke().correlations->isEmpty()){ 
//     this.getInvoke().correlations  
//      ->select cor  ()  
    for (Correlation cor: this.getInvoke().correlations){ 
     if (cor.initiate && (cor.pattern== "out"   || 
cor.pattern== "in/out" )){ 
      let vi:VariableInstance= 
          
instance( this).findVariableInstance( this.getInvoke().variable); 
      instance( this).correlationManager.initiate(vi,cor); 
     } 
    } 
   }      
   this.complete( true); 
  } 



200 
 

   
  public receiving( in info:MessageInfo){ 
   //if the message type is the output message  
   if ( this.isOutputMessage(info)){ 
    this.receivingNormalFlow(info); 
   } 
   //else if the message type is the fault message  
   else if ( this.isFaultMessage(info)){ 
    this.setState(State.FAULTED); 
    let faultMessage:Message = info.message; 
    let faultInfo:FaultInfo = new FaultInfo(); 
    faultInfo.faultName = faultMessage.type.name; 
    faultInfo.faultMessage = faultMessage; 
    this.throwFault(faultInfo); 
   } 
    //then report fault this.throwFault  
    //set state to FAULTED  
   //TODO else the execution received a wrong message,  possiblely  a 
runtime fault will be thrown.  
  } 
    
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sig:SignalReceive){  
    //if there is no faults  
    this.receiving(sig.info); 
    completed = true; 
   } 
   or accept(SignalTerminate){  
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class ReceiveExecution specializes Execution, 
MessageReceiver{ 
  public getReceive():Receive{ 
   return (Receive) this.activity_; 
  }  
   
  public doAction(){ 
   this.setState(State.RUNNING); 
   let info:MessageInfo = new MessageInfo(); 
   let message:Message = new Message(); 
   message.type = this.getReceive().operation.input.messageType; 
 
   info.portType = this.getReceive().portType; 
   info.operation = this.getReceive().operation; 
   info.message = message;  
   messageManagerInstance().SignalRequestMessage( this, info); 
  } 
   



201 
 

  private initCorrelation(){ 
   for (Correlation cor: this.getReceive().correlations){ 
    if (cor.initiate){ 
     let 
vi:VariableInstance=instance( this).findVariableInstance( this.getReceive()
.variable); 
     instance( this).correlationManager.initiate(vi,cor); 
    }    
   }    
  } 
   
  public receiving( in info:MessageInfo):Boolean{ 
    
   //if it is a normal receive  
    //copy the data from the message to the variable  
   //if receive an fault, the standard seems not defin ed.  
//   if 
(this.getReceive().operation.input.messageType==mes sage.type){  
//   this.getReceive().variable.setVariable(info.me ssage);  
   instance( this).findVariableInstance( this.getReceive().variable) 
    .copyMessage(info.message); 
   //inform locus to create another new instance that wait for the 
message.  
   if ( this.getReceive().createInstance){ 
    locus().SignalCreateInstance(); 
   } 
   //init  correlation  
   if (! this.getReceive().correlations->isEmpty()){ 
    this.initCorrelation(); 
   }    
   this.complete( true); 
    
   return true; 
//   }  
  } 
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sig:SignalReceive){  
    //if there is no faults  
    completed = this.receiving(sig.info); 
   } 
   or accept(SignalTerminate){  
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class ThrowExecution specializes Execution{ 
   
  public getThrow():Throw{ 
   return (Throw) this.activity_; 



202 
 

  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
//    let scopeExecution:ScopeExecution =  
//     (ScopeExecution)this.activity_.enclosedScope ().execution;  
//    scopeExecution.SignalFaulted(this.getThrow(). faultName, 
null);//  
   let faultInfo:FaultInfo = new FaultInfo(); 
   faultInfo.faultName = this.getThrow().faultName; 
   faultInfo.faultVariable = this.getThrow().faultVariable; 
   this.throwFault(faultInfo); 
   //the normal flow ends  
   //@ parallel{ 
    this.setState(State.FAULTED);  
    //send parent  
    //send link targets  
    this.parentExecution.SignalChildFinished( this);  
   }    
  } 
  
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class WaitExecution specializes Execution{ 
  public getWait():Wait{ 
   return (Wait) this.activity_; 
  } 
 
  public doAction(){ 
   this.setState(State.RUNNING); 
   if ( this.getWait().for_!= null){ 
    waitFor( this.getWait().for_); 
   } 
   else{ 
    waitUntil( this.getWait().until_); 
   } 
   this.complete( true);     
  } 
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 



203 
 

   or accept(SignalLinkActivited){ 
    this.running(); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  }   
 } 
    
 public assoc StructuredExecution_Execution{ 
  public parentExecution:StructuredExecution; 
  public childExecution: compose Execution[*]; 
 } 
  
 public abstract active class StructuredExecution specializes 
Execution{ 
  public receive signal SignalChildFinished{ 
   public execution:Execution; 
  } 
   
  //@OCL( "  
self.childExecution->forAll(e|e.state=State::COMPLE TED)  
or self.childExecution->exists(e|e.state=State::FAU LTED) 
" ) 
  public allChildFinished():Boolean{ 
   return this.childExecution-> forAll e(e.state==State.COMPLETED); 
  }  
  //send SignalCompleted to its container  
  //send SignalTerminate to its childExecution  
   
  public terminateChilds(){ 
   for (Execution execution: this.childExecution){ 
    execution.SignalTerminate(); 
   } 
  } 
   
  public terminate(){ 
   this.terminateChilds(); 
   this.parentExecution.SignalTerminate();  
   this.setState(State.TERMINATED);    
  }    
 } do{} 
  
 public class LinkInstance { 
  public link:Link; 
  public isDetermined:Boolean; 
  public success:Boolean; 
  public sourceDetermined( in isNeg:Boolean){ 
   //TODO transitionCondition  
   this.isDetermined = true; 
   this.success = isNeg; 
   let targetActivity:Activity = this.link.target; 
   let targetExecution:Execution = 
locus().findExecution(instance( this.flowExecution),targetActivity); 
   if (targetExecution!= null){ 
    targetExecution.SignalLinkActivited(); 
   } 
  } 
 } 



204 
 

  
 public assoc FlowExecution_LinkInstance{ 
  public links: compose LinkInstance[*]; 
  public flowExecution:FlowExecution;   
 } 
  
 public active class FlowExecution specializes StructuredExecution{ 
   
  public linkInstanceOf( in l:Link):LinkInstance{ 
//   this.links  
//    ->select linkInstance (linkInstance==l)  
//    ->any();  
   for (LinkInstance linkInstance: this.links){ 
    if (linkInstance.link==l){ 
     return linkInstance; 
    } 
   } 
   return null; 
  } 
   
  public getFlow():Flow{ 
   return (Flow) this.activity_; 
  } 
   
  public createExecutions(){ 
   for (Link l: this.getFlow().links){ 
    let linkInstance:LinkInstance = new LinkInstance(); 
    linkInstance.link=l; 
    linkInstance.isDetermined = false; 
    linkInstance.success = false; 
    linkInstance.flowExecution = this; 
   } 
      
   for (Activity act: ((Flow) this.activity_).activities){ 
    let execution:Execution = createExecution(act); 
    this.childExecution->add(execution); 
    //start execution in java  
   } 
  } 
  
  public doAction(){ 
   this.setState(State.RUNNING); 
   this.createExecutions(); 
this.childExecution.SignalStart(); 
  } 
   
  public finishing( in execution:Execution):Boolean{ 
   let completed:Boolean = false; 
   if (execution.state==State.FAULTED){ 
    this.setState(State.FAULTED); 
    //inform parent execution  
    this.terminateChilds(); 
    this.parentExecution.SignalChildFinished( this); 
    return true; 
   } 
    
   if ( this.allChildFinished() && this.state==State.RUNNING){ 
    completed = true; 
    this.complete( true); 
     
   } 



205 
 

   return completed; 
  } 
 
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sig:SignalChildFinished){ 
    completed = this.finishing(sig.execution); 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
  } 
 } 
  
 public active class SequenceExecution specializes StructuredExecution{ 
   
  public getSequence():Sequence{ 
   return (Sequence) this.activity_; 
  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
   let execution:Execution = 
createExecution( this.getSequence().activities[0]); 
   execution.parentExecution = this; 
   execution.SignalStart(); 
  } 
   
  public finishing( in execution:Execution):Boolean{ 
   if (execution.state==State.FAULTED){ 
    this.setState(State.FAULTED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
    return true;     
   } 
   else if ( this.childExecution-
>size()== this.getSequence().activities->size() 
    && this.allChildFinished() && this.state==State.RUNNING){ 
    this.complete( true); 
    return true;  
   }       
   else{ 
    let preIndex:Integer = this.getSequence().activities-
>indexOf(execution.activity_); 
    let nextActivity:Activity= 
this.getSequence().activities[preIndex+1]; 
    let childExecution:Execution = createExecution(nextAct ivity); 
    childExecution.parentExecution = this;     
    childExecution.SignalStart();  
    return false; 
   } 
  } //finishing  



206 
 

   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sig:SignalChildFinished){ 
    completed = this.finishing(sig.execution); 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true;  
   }  
  }  
 } 
  
 public active class SwitchExecution specializes StructuredExecution{ 
   
  public getSwitch():Switch{ 
   return (Switch) this.activity_; 
  } 
   
  private createOtherwise():Execution{ 
   let execution:Execution = null; 
   if ( this.getSwitch().otherwise== null){ 
    //create an empty  
    let em:Empty = new Empty(); 
    em.name = "default otherwise" ; 
    execution = createExecution(em); 
   } else{ 
    execution = createExecution( this.getSwitch().otherwise); 
   } 
   return execution; 
  } 
   
  private informNegativeLink( in cs:Case, in execution:Execution){ 
   if (cs.activity_!=execution.activity_){ 
    for (Link link:cs.activity_.targets){ 
     let flow:Flow = link.flow; 
     let flowExecution:FlowExecution = 
(FlowExecution)locus().findExecution(instance( this),flow); 
     let linkInstance:LinkInstance = 
flowExecution.linkInstanceOf(link); 
     linkInstance.sourceDetermined( false);       
    } 
   } 
  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
   //select the first case which condition evaluates t o true  
   let execution:Execution = null; 
   for (Case c: this.getSwitch().case_){ 
    if (c.condition.eval()){ 
     execution = createExecution(c.activity_); 
     break; 



207 
 

    } 
   } 
   //if no case eval  to true  
   if (execution== null){ 
    execution = this.createOtherwise(); 
   } 
    
   execution.parentExecution = this; 
   execution.SignalStart();   
   //When cs.activity_ is source to links, and if its condition 
evaluates to false,  
   //all the target executions must be informed that t he link is a 
negative link  
   for (Case cs: this.getSwitch().case_){ 
    this.informNegativeLink(cs,execution); 
   } 
   //TODO othervise  
  }   
  public finishing( in execution:Execution){ 
   if ( this.state==State.RUNNING && 
execution.state==State.COMPLETED){ 
    this.setState(State.COMPLETED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
    //if there is any links, send link finish to the ta rget of 
the link  
    if (! this.activity_.targets->isEmpty()){ 
     this.notifyTargets( true); 
    } 
   } else if (execution.state==State.FAULTED){ 
    this.setState(State.FAULTED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
   } 
  } 
  
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
   } 
   or accept(sig:SignalChildFinished){ 
    this.finishing(sig.execution); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   }  
  }    
 } 
  
 public active class PickExecution specializes StructuredExecution, 
MessageReceiver{ 
   
  public getPick():Pick{ 



208 
 

   return (Pick) this.activity_; 
  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
    
//   for (OnMessage onmsg:this.getPick().onMessage) {  
   for (AbstractOnEvent onevent: this.getPick().onEvent){ 
    //request all the message  
    if (onevent instanceof OnMessage){ 
     let onmsg:OnMessage = (OnMessage)onevent; 
     let info:MessageInfo = new MessageInfo(); 
     let message:Message = new Message(); 
     message.type = onmsg.operation.input.messageTy pe; 
     info.portType = onmsg.portType; 
     info.operation = onmsg.operation; 
     info.message = message; 
     messageManagerInstance().SignalRequestMessage( this, info); 
    } 
   }    
  } 
   
  private createExecutionAndInformNegative( in onmsg:OnMessage, in 
messageInfo:MessageInfo){ 
   if (messageInfo.message.type==onmsg.operation.input.m essageType 
    && messageInfo.portType==onmsg.portType 
    && messageInfo.operation==onmsg.operation ) 
   { 
    let execution:Execution = createExecution(onmsg.activi ty_); 
    execution.parentExecution = this; 
    execution.SignalStart();   
   } else{ 
    for (Link link: onmsg.activity_.targets){ 
     let flow:Flow = link.flow; 
     let flowExecution:FlowExecution =  
         
(FlowExecution)locus().findExecution(instance( this),flow); 
     let linkInstance:LinkInstance = 
flowExecution.linkInstanceOf(link); 
     linkInstance.sourceDetermined( false); 
    } 
   } 
  } 
   
  public receiving( in messageInfo:MessageInfo){ 
   //accroding  to the messageinfo , find the OnMessage, execute the 
activity  
     
   for (AbstractOnEvent onevent: this.getPick().onEvent){ 
    if (onevent instanceof OnMessage){ 
    
 this.createExecutionAndInformNegative((OnMessage)oneven t,messageInfo); 
    } 
   } 
  } 
   
  public finishing( in execution:Execution){ 
   if ( this.state==State.RUNNING && 
execution.state==State.COMPLETED){ 
    this.complete( true); 
   } else if (execution.state==State.FAULTED){ 



209 
 

    this.setState(State.FAULTED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
   } 
  } 
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  let firstOccured:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
   } 
   or accept(sigReceive:SignalReceive){  
    if (! firstOccured){ 
     this.receiving(sigReceive.info); 
     firstOccured = true;     
    } 
   }   
   or accept(sig:SignalChildFinished){ 
    this.finishing(sig.execution); 
    completed = true; 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   }  
  }     
 } 
  
 public active class WhileExecution specializes StructuredExecution{ 
   
  public getWhile():While{ 
   return (While) this.activity_; 
  } 
   
  public doAction(){ 
   this.setState(State.RUNNING); 
   if ( this.getWhile().condition.eval()){ 
    this.runWhile(); 
   } else{ 
    this.complete( true); 
   } 
  } 
   
  public runWhile(){ 
    
   let execution:Execution = 
createExecution( this.getWhile().primaryActivity());  
   execution.parentExecution = this; 
   execution.SignalStart(); 
  } 
   
  public finishing( in execution:Execution):Boolean{ 
   if ( this.state==State.RUNNING && 
execution.state==State.COMPLETED){ 
    if ( this.getWhile().condition.eval()){ 



210 
 

     this.runWhile(); 
     return false;     
    } 
    else{ 
     this.complete( true); 
     return true;   
    } 
   } else{ 
    this.setState(State.FAULTED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
    return true; 
   } 
  }   
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    completed = this.running(); 
    completed = completed || (! this.getWhile().condition.eval()); 
   } 
   or accept(sig:SignalChildFinished){ 
    completed = this.finishing(sig.execution); 
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   }  
  }     
 } 
  
 public class FaultInfo{ 
  public faultName:String; 
  public faultMessage:Message; 
  public faultVariable:Variable; 
 } 
  
 public assoc Variable_VariableInstance{ 
  public variable:Variable; 
  public instance:VariableInstance[*]; 
 } 
  
 public class VariableInstance{ 
  public value:String; 
  public copyMessage( in message:Message){ 
   this.value = message.value; 
   log( this); 
  } 
 } 
   
 public class CompensationStack{     
     
  public push( inout exe:ScopeExecution){ 
   /*@ inline(java) "this.stack.push(exe );"  */ 
  } 
  public pop():ScopeExecution{ 



211 
 

   return null; 
   /*@ inline(java) "  
   if (stack.empty())  
    return null;  
   else  
    return this.stack.pop();"  */ 
  } 
 } 
  
 public class PortInstance{ 
  public operation:Operation; 
 }   
  
 public active class ScopeExecution specializes StructuredExecution, 
MessageReceiver{ 
  public receive signal SignalFaulted{ 
   public faultInfo:FaultInfo; 
  } 
   
  public receive signal SignalCompensateScope{} 
   
  public receive signal SignalCompensate{ 
   public compensateExecution:CompensateExecution; 
  } 
   
  public receive signal SignalCompleted{} 
   
  private compensateExecution:CompensateExecution; 
  public correlationManager: compose CorrelationManager; 
  public variableInstances: compose VariableInstance[*];  
  public portInstances: compose PortInstance[*]; 
  public compensationStack: compose CompensationStack; 
  public getScope():Scope{ 
   return (Scope) this.activity_; 
  } 
   
  public getFaultHandler():FaultHandler{ 
   return this.getScope().faultHandler; 
  } 
   
  public findFaultActivity( in name:String):Activity{ 
   if ( this.getFaultHandler()== null){ 
    return null; 
   } 
    
   for (Catch catch_: this.getFaultHandler().catch_){ 
    if (catch_.faultName==name){ 
     return catch_.activity_; 
    } 
   } 
   if ( this.getFaultHandler().catchAll!= null){ 
    return this.getFaultHandler().catchAll.activity_; 
   } else{ 
    return null; 
   } 
  }   
   
  public findVariableInstance( in variable:Variable):VariableInstance{ 
   //instance = this.variableInstances->select e 
(e.variable==variable)->first();  
   let instance:VariableInstance = null; 



212 
 

   for (VariableInstance ins: this.variableInstances){ 
    if (ins.variable==variable){ 
     instance = ins; 
     break; 
    } 
   } 
   if (instance== null){ 
    instance = new VariableInstance(); 
    instance.variable = variable; 
   } 
   this.variableInstances->add(instance); 
   return instance; 
  } 
 
  public doAction(){ 
 
   this.setState(State.RUNNING); 
   this.compensationStack = new CompensationStack(); 
   this.correlationManager = new CorrelationManager(); 
   initialisePartnerLinks( this); 
   //TODO install on alarm handlers  
   let execution:Execution = 
createExecution( this.getScope().primaryActivity()); 
   execution.parentExecution = this; 
   execution.SignalStart();   
   //install event handler  
   //if event handler exists  
   if ( this.getScope().eventHandlers!= null){ 
    for (OnEvent event : this.getScope().eventHandlers.events){ 
     let info:MessageInfo = new MessageInfo(); 
     let message:Message = new Message(); 
     message.type = event.messageType; 
     info.message = message; 
     info.operation = event.operation; 
     info.portType = event.portType; 
     messageManagerInstance().SignalRequestMessage( this, info); 
    } 
   }         
   
  } 
  public finishing( in execution:Execution){ 
   //do something with the event handlers  
   if ( this.state==State.RUNNING && 
execution.state==State.COMPLETED){ 
    this.complete( true); 
    //terminate all fault handlers  
    //intall  compensation handler, put it to the stack  
    let stack:CompensationStack = 
instance( this).compensationStack;  
    stack.push( this); 
   } 
   else if ( this.state==State.RUNNING && 
execution.state==State.FAULTED){ 
    this.setState(State.FAULTED); 
    //inform parent execution  
    this.parentExecution.SignalChildFinished( this); 
   } 
   else if ( this.state==State.FAULTED){ 
    //the fault activity finished  
//    this.setState(State.COMPLETED);  
    //inform parent execution  



213 
 

    this.parentExecution.SignalChildFinished( this); 
    //if there is any links, send link finish to the ta rget of 
the link  
    if (! this.activity_.targets->isEmpty()){ 
     this.notifyTargets( true); 
    }     
   } 
  } 
   
  public faulted( in faultInfo:FaultInfo){ 
   // discuss: if fault is threw by normal flow, or ne gative flow.  
   if ( this.state==State.RUNNING ){ 
    //terminate all childs  and event handlers  
    this.setState(State.FAULTED); 
    this.terminateChilds(); 
//    this.faultHandlerExecution.SignalFault(name,v ariable);  
    let faultActivity:Activity = 
this.findFaultActivity(faultInfo.faultName); 
    if (faultActivity== null){ 
     //report the fault to its upper scope  
     let parentScopeExecution: ScopeExecution = 
(ScopeExecution)locus().findExecution(instance( this), this.getScope().encl
osedScope());  
//     
 (ScopeExecution)this.getScope().enclosedScope().ex ecution;  
     parentScopeExecution.SignalFaulted(faultInfo);  
    } 
    else{ 
     // create the instance of the activity in the fault  
handler.  
     let faultExecution:Execution = 
createExecution(faultActivity); 
     faultExecution.parentExecution = this; 
     faultExecution.SignalStart(); 
    } 
   } 
   else if ( this.state==State.FAULTED){ 
    //the fault is thrown by negative flow  
    //the parent scope of the scope deal with the fault  
    let scopeExecution:ScopeExecution  
     = 
(ScopeExecution) this.getScope().enclosedScope().execution; 
    scopeExecution.SignalFaulted(faultInfo); 
   } 
  } 
   
  public handleEvent( in info:MessageInfo){ 
   let event: OnEvent = this.findEventFromInfo(info); 
   let execution:Execution = createExecution(event.scope) ; 
   execution.parentExecution = this; 
   execution.SignalStart();   
   execution.SignalLinkActivited(); 
  } 
   
  //OCL("self.getScope().eventHandlers.events  
  //  ->select(e|e.messageType=info.message.type and 
e.operation=info.operation)->first()")  
  public findEventFromInfo( in info:MessageInfo):OnEvent{ 
   for (OnEvent event: this.getScope().eventHandlers.events){ 
    if (event.operation==info.operation){ 
     return event; 



214 
 

    } 
   } 
   return null; 
  }  
 
  public isFaultHandlerActivity( in act:Activity):Boolean{ 
   let result:Boolean = false; 
   if ( this.getFaultHandler()== null){ 
    return false; 
   } 
   for (Catch a: this.getFaultHandler().catch_){ 
    if (a.activity_==act){ 
     result= true; 
     break; 
    } 
   } 
   if ( this.getFaultHandler().catchAll.activity_==act) 
   { 
    result = true; 
   } 
   return result; 
  } 
   
  public compensateScope(){ 
   if ( this.state==State.COMPLETED){ 
    if ( this.getScope().compensationHandler!= null){ 
     this.setState(State.COMPENSATING); 
     let execution:Execution = 
createExecution( this.getScope().compensationHandler.activity_); 
     execution.parentExecution = this; 
     execution.SignalStart(); 
    } 
   }   
  } 
   
  public childFinish( in execution:Execution):Boolean{ 
   let completed:Boolean = false; 
   //Only when the finished execution is the execution  in of its 
sub activity.  
 
   //if the child is the primary activity of the scope , it finish 
succesfully  or not  
   if (execution.activity_== this.getScope().primaryActivity() 
    && (execution.state==State.COMPLETED || 
execution.state==State.FAULTED) 
   ){ 
    this.finishing(execution); 
   } 
   else if ( this.state==State.COMPENSATING){ 
    this.setState(State.STOPPED); 
    if ( this.compensateExecution!= null){ 
     this.compensateExecution.SignalCompensateNext();  
    } 
    completed = true; 
   } 
   //if the execution is a succesfully  finished fault handler.  
   else if (execution.state==State.COMPLETED  
    && this.isFaultHandlerActivity(execution.activity_) 
   ){ 
    this.setState(State.FAULTED); 
    this.parentExecution.SignalChildFinished( this); 



215 
 

    completed = true; 
   }    
   return completed; 
  } 
   
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (!completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
   } 
   or accept(sigFinish:SignalChildFinished){ 
    completed = this.childFinish(sigFinish.execution); 
   } 
   or accept(sigReceive:SignalReceive){ 
    this.handleEvent(sigReceive.info); 
   } 
   or accept(sigFault:SignalFaulted){ 
    this.faulted(sigFault.faultInfo); 
   } 
//   or accept(sigOnAlarm:SignalAlarm){  
//    //start on alarm activity execution   
//   }  
   or accept(sigCompensate:SignalCompensate){ 
    this.compensateExecution = sigCompensate.compensateExec ution; 
    this.compensateScope();   
   } 
   or accept(SignalTerminate){ 
    this.terminate(); 
    completed = true; 
   } 
   or accept(SignalCompleted){ 
    completed = true; 
   } 
   // accept  
  } //while  
 } 
 
      
 public active class CompensateExecution specializes Execution{ 
   
  public receive signal SignalCompensateNext{} 
   
  public getCompensate():Compensate{ 
   return (Compensate) this.activity_; 
  } 
   
  public running():Boolean{ 
   //execute the scope's compensation handler's activi ty  
   //and execute all the scope's sub-scope compensatio n handler 
execute  
   //only compensate completed scopes[standard p112]  
   this.setState(State.RUNNING); 
   this.compensateNext(); 
   return false; 
  } 
   



216 
 

  public compensateNext():Boolean{ 
   let stack:CompensationStack = instance( this).compensationStack; 
   let scopeExecution:ScopeExecution = stack.pop(); 
   if (scopeExecution!= null){ 
    scopeExecution.SignalCompensate( this); 
    return false; 
   }  
   return true; 
  } 
 
 } do{ 
  this.setState(State.DISABLED); 
  let completed:Boolean = false; 
  while (! completed){ 
   accept(SignalStart){ 
    this.enable(); 
   } 
   or accept(SignalLinkActivited){ 
    this.running(); 
   } 
   or accept(SignalCompensateNext){ 
    completed = this.compensateNext(); 
   } 
   or accept(SignalTerminate){  
    this.terminate(); 
    completed = true; 
   }  
  }   
 } 
 
 public active class Locus specializes StructuredExecution, 
MessageReceiver{ 
  public process_: compose BPELProcess; 
  public messageManager: compose MessageManager; 
  public testReceivedMessage: compose MessageInfo[*]; 
  public wsdl: compose WSDL; 
  public createMultipleInstance:Boolean = false; 
   
  public receive signal SignalCreateInstance{} 
   
  public getAllScopes():ScopeExecution[*]{ 
   return getAllElementsInCompensateStack(); 
  } 
   
  public findExecution( in instance:ScopeExecution, in 
act:Activity):Execution{ 
   return allContents(instance)  
     -> select e (e instanceof Execution)  
     -> select e (e.activity_==act)->first() ; 
   /*@ inline(java) "  
   if (instance.getActivity_().equals(act)){  
    return instance;  
   }  
   TreeIterator<EObject> iterator = instance.eAllCo ntents();  
   while (iterator.hasNext()){  
    EObject eobj  = iterator.next();  
    if (eobj  instanceof  Execution && 
((Execution)eobj ).getActivity_().equals(act)){  
     return (Execution)eobj ;  
    }  
   }  



217 
 

   GlobalActivity.log(\\\"[LocusImpl::findExecution ] ERROR: didnot  
find\\\");  
   return null;"  */ 
  } 
   
//  public findLinkStatus(in instance:ScopeExecutio n, in 
link:Link):LinkInstance{  
//    
//  }  
   
  public createInstanceMessageInfo():MessageInfo[*]{ 
   let infos:MessageInfo[] = new MessageInfo(); 
    
   /*@ inline(java) "  
   EList<MessageInfo> infos  =  new BasicEList<MessageInfo>() ;"  */ 
    
   for (Receive re: this.getCreateInstanceReceive()){ 
    let message:Message = new Message(); 
    message.type = re.operation.input.messageType; 
    let messageInfo:MessageInfo = new MessageInfo(); 
    messageInfo.message = message; 
    messageInfo.operation = re.operation; 
    messageInfo.portType = re.portType; 
    infos->add(messageInfo); 
   } 
   return infos; 
  } 
 
  //@OCL( "Receive.allInstances()->select(e|e.createInstance) -
>asOrderedSet()" ) 
  public getCreateInstanceReceive():Receive[*]{ 
   /*@ inline(java) "  
   TreeIterator<EObject> iterator = 
this.getProcess_().eAllContents();  
   EList<Receive> receives = new BasicEList<Receive >();  
   while (iterator.hasNext()){  
    EObject eobj  = iterator.next();  
    if (eobj  instanceof  Receive && 
((Receive)eobj ).getCreateInstance()){  
     receives.add((Receive)eobj );  
    }  
   }  
   return receives;"  */ 
   return null; 
  } 
   
  private createInstance(){ 
   let execution:Execution = createExecution ( this.process_); 
   execution.parentExecution = this; 
   execution.SignalStart(); 
  } 
    
 } do{  
 
  this.messageManager = new MessageManager(); 
   
  /*@ inline(java) "  
  GlobalActivity.setGlobalMessageManager(this.messa geManager);  
  GlobalActivity.setLocus(this);"  */ 
   
  for (MessageInfo info: this.testReceivedMessage){ 



218 
 

   this.messageManager.SignalReceiveMessage(info); 
  } 
 
  this.SignalCreateInstance(); 
  if ( this.createMultipleInstance){ 
   let completed:Boolean = false; 
   while (! completed){ 
    accept(SignalCreateInstance){ 
     this.createInstance(); 
    } 
    or accept (sigChild:SignalChildFinished){ 
     //TODO compensation is not correct  
     for (ScopeExecution exe: this.getAllScopes()){ 
      exe.SignalCompleted(); 
     } 
    } 
   }    
  } else{ 
   accept(SignalCreateInstance){ 
    let execution:Execution = createExecution ( this.process_); 
    execution.parentExecution = this; 
    execution.SignalStart(); 
   } 
   accept (SignalChildFinished){ 
    //TODO compensation is not correct  
    for (ScopeExecution exec: this.getAllScopes()){ 
     exec.SignalCompleted(); 
    } 
   }    
  } 
 
 
 }  
  
 public class MessageInfo{ 
  public message: compose Message; 
  public portType:PortType; 
  public operation:Operation; 
 } 
  
 public class CorrelationManager{ 
  public instances: compose CorrelationInstance[*]; 
   
  public initiate( in variable:VariableInstance, in 
correlation:Correlation){ 
   let instance:CorrelationInstance = 
this.createInstance(variable,correlation); 
   this.instances->add(instance); 
   log( "Correlation initialised: " +variable.value); 
  } 
   
  public createInstance( in variable:VariableInstance, in 
correlation:Correlation):CorrelationInstance{ 
   let correlationInstance:CorrelationInstance = new 
CorrelationInstance(); 
   correlationInstance.correlation = correlation; 
   correlationInstance.value = variable.value; 
   return correlationInstance; 
  } 
 
 } 



219 
 

  
 public assoc Correlation_CorrelationInstance{ 
  public correlation:Correlation; 
  public instance:CorrelationInstance; 
 } 
  
 public class CorrelationInstance{ 
  public value:String; 
  public correlationSatisfied( in messageInfo:MessageInfo):Boolean{ 
   return this.value==messageInfo.message.value; 
   /*@ inline(java) "return  
this.getValue().equals(messageInfo.getMessage().get Value());"  */ 
  }   
 } 
  
 public active class MessageManager{ 
  public receive signal SignalReceiveMessage{ 
   public messageInfo:MessageInfo; 
  } 
  public receive signal SignalRequestMessage{ 
   public execution:Execution; 
   public messageInfo:MessageInfo; 
  } 
  public receive signal SignalSendMessage{ 
   public execution:Execution; 
   public messageInfo:MessageInfo; 
  } 
  public receive signal SignalTerminateMessageManager{} 
   
  public messageRequests: compose MessageRequest[*]; 
  public incomingMessage: compose MessageInfo[*]; 
   
  public findMessageRequest( in 
messageInfo:MessageInfo):MessageRequest{ 
   for (MessageRequest request: this.messageRequests){ 
    if (request.operation==messageInfo.operation  
     && this.correlationSatisfied(request.execution,messageInfo ) 
     ){ 
 
     // if 
(instance(request.execution).correlationManager.ins tances  
     //      ->exists e (e.correlationSatisfied(messageI nfo)))  
     //  return request;  
     return request; 
    } 
   } 
   return null; 
  } 
   
  public correlationSatisfied( in execution:Execution, in 
messageInfo:MessageInfo):Boolean{ 
   if (execution instanceof ReceiveExecution 
    && 
((ReceiveExecution)execution).getReceive().createIn stance){ 
     return true; 
    } 
    
   let correlationDefined:Boolean = false; 
    
   for (CorrelationInstance 
ins:instance(execution).correlationManager.instance s){ 



220 
 

    correlationDefined = true; 
    if (ins.correlationSatisfied(messageInfo)){ 
     return true; 
    } 
   }    
   return !correlationDefined; 
  } 
   
  //("self.incomingMessage  
  // ->select(e|e.portType=info.portType and 
e.operation=info.operation)->first()")  
  public findMessageInfo( in info:MessageInfo):MessageInfo{ 
   for (MessageInfo e: this.incomingMessage){ 
    if (e.operation==info.operation){ 
     return e; 
    } 
   } 
   return null; 
  } 
   
  public initialise(){ 
   //initialise messageRequests and incoming message;  
   /*@ inline(java) 
     "this.incomingMessage = new BasicEList<MessageInfo> ();  
    this.messageRequests = new BasicEList<MessageRe quest>();  
    this.messageQueue = new BasicEList<Signal_>();"  
    */ 
  } 
   
  public sendToExecution( in request:MessageRequest, in 
messageInfo:MessageInfo){ 
   let execution:Execution = request.execution; 
   if (execution instanceof ReceiveExecution){ 
    let receiveExecution:ReceiveExecution = 
(ReceiveExecution)execution; 
    receiveExecution.SignalReceive(messageInfo); 
   } else if (execution instanceof ScopeExecution){ 
    let scopeExecution:ScopeExecution = (ScopeExecution)ex ecution; 
    scopeExecution.SignalReceive(messageInfo); 
   } 
   else if (execution instanceof InvokeExecution){ 
    let invokeExecution:InvokeExecution = 
(InvokeExecution)execution; 
    invokeExecution.SignalReceive(messageInfo); 
   } 
   else if (execution instanceof PickExecution){ 
    let pickExecution:PickExecution = (PickExecution)execu tion; 
    pickExecution.SignalReceive(messageInfo); 
   } 
   else if (execution instanceof Locus){ 
    let locus:Locus = (Locus)execution; 
    locus.SignalReceive(messageInfo); 
   } 
   else { 
    log( "[MessageManager.sendToExecution]" +execution+ "does not 
implemented" ); 
   } 
   this.incomingMessage->remove(messageInfo); 
   this.messageRequests->remove(request); 
   log( "External message:"  + messageInfo.message + " send to "  + 
request.execution); 



221 
 

  } 
   
  private receiveMessage( in messageInfo:MessageInfo){ 
   //receive message from external  
   log( "External message received:" +messageInfo.message); 
   let request:MessageRequest= this.findMessageRequest(messageInfo); 
   if (request== null){ 
    this.incomingMessage->add(messageInfo); 
   } else{ 
    this.sendToExecution(request, messageInfo); 
   }    
  } 
   
  private requestMessage( in execution:Execution, in 
messageInfo:MessageInfo){ 
   //internal execution request message  
   let info:MessageInfo = this.findMessageInfo(messageInfo); 
   let request:MessageRequest = new MessageRequest 
       (execution, 
        messageInfo.message.type, 
        messageInfo.portType, 
        messageInfo.operation 
       ); 
   request.init(execution, 
          messageInfo.message.type, 
       messageInfo.portType, 
       messageInfo.operation 
      ); 
 
   if (info== null || ! 
( this.correlationSatisfied(execution,info))){ 
    this.messageRequests->add(request);     
   } else{ 
    this.sendToExecution(request,info); 
   } 
   log( "Request received from " +request.execution);    
  } 
   
 } do{ 
  this.initialise(); 
   
  let completed:Boolean = false; 
  while (!completed){ 
   accept(sigReceive:SignalReceiveMessage){ 
    this.receiveMessage(sigReceive.messageInfo); 
   }  
   or accept (sigRequest:SignalRequestMessage){ 
    this.requestMessage(sigRequest.execution, 
sigRequest.messageInfo); 
   } 
   or accept(sigSend:SignalSendMessage){ 
    //internal execution sends message to external  
    //send to a phsycal  address if  
   
 sigSend.messageInfo.operation.invoke(sigSend.messa geInfo.message); 
   
 sendToPortInstance(instance(sigSend.execution),sig Send.messageInfo); 
   } 
   or accept(SignalTerminateMessageManager){ 
    completed = true; 
   } 



222 
 

  } 
 } 
  
 public class MessageRequest{ 
  public execution:Execution; 
  public messageType:MessageType; 
  public portType:PortType; 
  public operation:Operation; 
   
  @Create public MessageRequest( in e:Execution, in m:MessageType, in 
p:PortType, in o:Operation){ 
   this.execution = e; 
   this.messageType = m; 
   this.portType = p; 
   this.operation = o; 
  } 
  public init( in e:Execution, in m:MessageType, in p:PortType, in 
o:Operation){ 
   this.execution = e; 
   this.messageType = m; 
   this.portType = p; 
   this.operation = o; 
  } 
 } 
  
 /*GLOBAL ACTIVITIES */  
  
 public activity createExecution( in act:Activity):Execution{ 
  let execution:Execution = null; 
  if (act instanceof Empty){ 
   execution = new EmptyExecution(); 
  } 
  else if (act instanceof Receive){ 
   execution = new ReceiveExecution(); 
  } 
  //...  
  execution.activity_ = act; 
  return execution; 
 } 
  
 public activity log( in message:String){ 
   
 } 
  
 public activity messageManagerInstance():MessageManager{ 
  return MessageManager. allInstances()[0]; 
 } 
  
 public activity correlationManager():CorrelationManager{ 
   
 } 
  
 public activity pushCompensateStack( in scopeExecution:ScopeExecution){ 
 } 
  
 public activity popCompensateStack():ScopeExecution{ 
 } 
  
 public activity getAllElementsInCompensateStack():ScopeExecution[* ]{ 
   
 } 



223 
 

  
 public activity emptyCompensateStack(){} 
  
 public activity nextCompensation(){ 
 } 
  
 public activity container( in model:any){} 
  
 public activity waitFor( in duration:DurationExpression){} 
 public activity waitUntil( in deadline:DeadlineExpression){} 
 public activity locus():Locus{ 
  return Locus. allInstances()->first(); 
 } 
 public activity allContents( in ob:any):any{} 
  
 public activity instance( in execution:Execution):ScopeExecution{} 
  
 public activity logVariable( in vi:VariableInstance){} 
 public activity initialisePartnerLinks( inout 
scopeExecution:ScopeExecution){} 
  
 public activity sendToPortInstance( inout instance:ScopeExecution, in 
info:MessageInfo){} 
  

 

 

 

 

 

 

  



224 
 

Appendix B. Guidelines for the FQLS process 

Decide the semantic definition strategy 

• The language engineers need to ask, what is the primary goal of the specification? 

Who will be the primary reader of the specification? By clarifying this, the 

language engineers will have these goals in mind while designing the language.  

• How to deal with semantic variation points? Will the specification contain 

semantics that are intentionally left undefined? If so, they can be defined as an 

abstract activity. Such an activity defines an interface that specifies the input and 

output, but leaves the implementation details to a later stage.  

• How to deal with the semantic variation points of fUML? fUML explicitly defines 

concurrency, time and inter-object communication as semantic variation points. 

This will not be a problem if such concepts are not involved in the language 

specification. Depending on how much detail the language specification needs to 

define, a language containing such concepts is not excluded in our approach. As 

mentioned, fUML’s semantic variation points do not give the implementation 

details of these concepts, but many languages do not need to know how these 

concepts are implemented. For example, BPEL contains Flow activity, which 

executes its enclosed activities concurrently. The concurrency in BPEL has not 

been explicitly defined either, which means it does not constrain the concurrent 

execution model, which can be real concurrency in a multi-core machine, or it can 

just use a single core to schedule concurrency. Therefore, it can use the concepts in 

ALF to represent its concurrent concepts, and considers the implementation of 

concurrency as a low-level detail. Only those languages that are critical for the 

semantic variation points of fUML require special discussion. For example, the 

language engineers may need to explicitly define a thread schedule model and then 

use this model for realising concurrent execution.  

• How to deal with semantics that are out of scope? This is common when a DSL can 

embed other DSLs; for example, an XML-based language can reuse XPath as its 

query language. However, the way in which the XPath expression is going to be 

evaluated and the way in which the query is executed are out of the scope. In such a 



225 
 

case, the developers need to develop a way of representing the semantics that are 

out of scope. For example, evaluating an XPath expression can be defined as an 

abstract activity, and it can then be used as a library without knowing how it works. 

Another occasion for using abstract activities is when some behaviour has already 

been defined in another technical space, and the language specification just needs 

to reuse the concept. In this case, the semantics of XPath may already be defined 

by FQLS, which means that the concepts in XPath can simply be imported as 

existing concepts.  

Guideline: Behavioural semantics development 

• Limit the use of inline statements. Inline statements enable the embedding other 

programming languages in ALF text. While this is convenient when generating 

code that is difficult to represent in ALF, inline statements can be detrimental to the 

quality of the standard. They disrupt the interoperability and direct executability, 

since a programme contains many inline statements that are platform specific to the 

inline language, and it is unlikely that an executor that can understand all types of 

inline statements will be available in the foreseeable future.  

• Limit the editing of generated code. Editing of generated code is easy to lose when 

regenerating. Furthermore, manually editing generated code results in the models 

expiring, causing the entire development process to become code-centric [80]. To 

avoid this, Kelly and Tolvanen [76] suggested that generated code should not be 

edited or even looked at. When defining language specification in ALF, the only 

exception to this is those activities that are left intentionally undefined. These 

activities should be implemented as an extension to the generated reference 

implementation.  

• Unify code style before implementation. To balance the opinions of the UML and 

Java programming society, ALF supports both UML-like syntax and Java-like 

syntax. While this gives developers flexibility, it also makes coding in two 

different styles possible. Since one specification that contains different coding style 

is not desirable, it is suggested that the language engineers agree on a unified 

coding style. Here follows a list of things to be considered: 



226 
 

• UML naming/general programme naming. UML naming supports the use of any 

string as a qualified name, while most GPL names have many constraints. Our 

experience is that the use of unrestrained UML names can make the generated code 

difficult to maintain, since long names and names that contain spaces need to be 

converted to a more restrained format in most programming languages. When 

using a special naming strategy for a GPL, the names must be checked to avoid 

ambiguity when generating code (See platform specific errors in Section 6.1).  

• UML statements/Java statements. Local variable definitions and for loops both 

support the Java style and the UML style. Although this is not bad for a language 

specification, it is preferable to agree on one.  

• Use sequence expression/prefer simple loops. Sequence expressions are short and 

expressive; thus, the use thereof is suggested in a language specification when 

possible. However, if the language engineers have special conditions, especially 

when the language specification will be used to generate code that does not support 

either lambda expressions or anonymous functions, they may agree to avoid the use 

of sequence expressions.  

• Agree on a consistent way of naming prefixes. There are seven kinds of classifiers 

in ALF, including signals and associations, and some of them do not have a 

corresponding concept in other languages. Giving them a name with a special 

prefix can help to identify the original concept when debugging the generated code.  

Guideline for developing behaviours 

• Follow general good coding practices, such as preferring shorter operations to long 

ones and using meaningful variable names. 

• Remember that the most important aim of a language specification is to be 

understood by its readers. Thus, the developers should prefer readability to 

efficiency. The programme should be well commented. 

• Abstract activities should be minimised. Leaving many gaps in the language 

specification will make the specification nearly impossible to execute without 

making an effort to implement the gaps in the reference implementation.  



227 
 

• Abstract activities should be atomic. This means ensuring that abstract activity is a 

behaviour that is outside of the scope, and that these are behaviours that do not 

need to be specified in the language specification.  

Guideline for creating semantics definition architecture 

• How to attach behaviours to the meta-model. It is possible to add operations 

directly to the abstract syntax model, to add activities as supplements to the 

abstract syntax model, or to create a runtime meta-model. Each method has certain 

benefits and drawbacks. Methods for attaching behaviours are introduced in detail 

in Section 5.1.3.  

• If some concepts of the language represent state concepts, state machines of the 

language need to be designed. In such a language execution model, there should be 

a class member of the concepts that represent the state of the object. The state 

machine should be designed by deciding the semantics of the states, and the 

transition signals’ interfaces and conditions.  

Guidelines for implements an external checking strategy 

• It is possible that a tool that could load ALF, fUML or Ecore models is already 

available, and that language engineers have decided to use it. In such a situation, 

the FQLS framework has already provided transformations for fUML and Ecore; 

the language engineers need to create a mechanism to report errors. For example, 

Ecore2CSP is a tool that checks for various conflicts and unsatisfiable concepts in 

an Ecore model. The language engineers can treat this as a black box that loads an 

Ecore model and produces a report of its findings. They then need to process the 

findings, either by manually mapping the errors in the original model, or by using 

an automatic mechanism. 

• It is possible that the language engineer could decide to use a particular tool, but 

that the input of that tool is not a format that our framework directly supported. In 

such a situation, the language engineers need to define a transformation, as well as 

a mechanism to report errors. 



228 
 

• It is possible that the language engineers do not have a tool, but that they know the 

algorithm or could find an algorithm to do the job. The checking is then completely 

reliant on the language developers' ability.  

  



229 
 

Appendix C. List of errors sourced from static checkers 
of other languages.  

Class implements the same classes as super class 

This is an error that can happen when the object inheritance design is wrong. For 

example, Activity  is a base class and A, B and  C are classes that inherit Activity . This is 

defined below: 

A specializes Activity {…} 

B specializes A {..} 

C specializes B, Activity {…} 

When C inheritance B, C is already a subclass of Activity . Making C also inherit 

Activity  is not correct syntax.  

An Activity that has a return part must define a return statement 

A syntax error is when an operation that has a return value has no proper return 

statement in the body of the operation. The simplest way of checking this kind of error is 

that when an operation has a return type, its enclosed statements must have at least one 

return statement. This method can create false negatives, because when multiple exit 

routes exist, the method must guarantee that each of the possible exits has a return 

statement.  

Empty code block 

Any statement that can include a block of statements (that is, if, while, for accept, 

inline, switch) can be empty, and such empty blocks indicate a deficiency in semantics or 

improper practices. Such errors can be checked by adding an OCL constraint to the ALF 

meta-model, or can simply be checked by a model validator, which will test whether a 

statement block contains a statement or not.  

Unused/unwritten class members or variables 

When a class member (an attribute/a signal reception) or a local variable (includes the 

parameters of an operation) is defined, but never used within their scope, this indicates that 

such class members or variables are redundant and should be removed.  

Unwritten class members or variables are the members or variables that are defined, 

but the value thereof is never changed. This means that the symbol that represents these 

variables has never appeared in an assignment expression or a createLink  expression. An 

unwritten member is not always bad practice, but it can indicate design deficiency.  



230 
 

Compare two objects when they are not comparable 

When checking the equality of two objects, for example:  

    if (a==b) {} 

if the types of a and b are not comparable (they have different static types), this can 

indicate something wrong in the specification.  

Class defines an attribute that masks a superclass attribute 

An attribute masks a super-class attribute, which means that an attribute has the same 

name as a super-class attribute and causes the attribute of the super-class to be overridden. 

Consider the following example:  

public class Vehicle{ 

    public engine : Engine; 

} 

public class Lorry specializes  Vehicle{ 

    public engine : LorryEngine; 

} 

The Lorry.engine  attribute masks the same attribute with the same name as its super-

class, which causes the same name to stand for different attributes of the class, hence 

causing confusion.  

Ambiguous ! operator 

The ! Boolean operator has a higher calculation priority than does the instanceof  

operator. However, developers may forget this rule and write code like: 

if (! parent instanceof AbstractScope) 

This is equivalent to  

if ((!parent) instanceof AbstractScope) 

However, since the parent variable is not a Boolean expression, the developer is likely 

to mean: 

if (! (parent instanceof AbstractScope)) 

This rule checks the type of the operand of the ! operator. If the type is not Boolean, the 

checker issues a warning to the developer.  

Unnecessary type check done using instanceof operator 

This error happens when using the instanceof  operator, and the result of the 

instanceof  expression can be deducted by analysing the static type of its operands. For 

example: 

    Empty a; 

    if (a instanceof Empty) {…} 



231 
 

When using instanceof , it is unnecessary to check if an object is known to be an 

instance or a sub-class instance of a particular type. The type of the left-hand-side and 

right-hand-side operands can be decided statically by type checking if all the types of an 

object can be determined. When the left-hand-side is a sub-type of the right-hand-side, the 

expression will always be true.  

ALF does not force the type of an object to be declared, which means that, as with 

other dynamic languages, the type of an object may only be determined at runtime. In 

addition, due to the effect of the classify statement, the type of an object can be changed 

during the execution. Thus, the simple method of checking unnecessary instanceof  does 

not guarantee completeness or soundness.  

Obvious infinite loop  

A loop without a termination is obviously a flaw in the code. This simple rule only 

checks a particular type of infinite loop, namely a loop in which the exit condition is true 

and there is no break statement inside the code block. The code below is an example 

while ( true){ 

    //no break statement inside the code block 

} 

Impossible cast 

An impossible cast is defined as a type cast expression, for example, (CastedClass) 

c , in which the reference that has been cast is impossible to be cast to the desired type. 

Type casts can occur successfully between basic data types. When casting an object to 

another type, the object must be a part of the target class hierarchy, which is a super class 

or a sub-class. In the example, if the checker knows the exact type of C, and if it is not 

possible to cast the type to the desired type, this cast is categorised as an impossible cast.  

The static checker uses the type resolver to analyse the type of the expression that has 

been cast. Although it is not always possible to determine the runtime type of an 

expression, there are many special cases that can be checked, such as when the declaration 

of the instance is close to the cast expression.   

Method names differ only in capitalisation. 

Method names that are only differentiated by capitalisation, like doSomething()  or 

DoSomething(),  are confusing. This check issues a warning if such confusing names 

appear.  

  



232 
 

Bibliography 

[1] IEEE Standard for System and Software Verification and Validation, 2012. 

[2] Islam Abdelhalim, James Sharp, Steve Schneider, and Helen Treharne. Formal 

Verification of Tokeneer Behaviours Modelled in fUML Using CSP. In Jin Dong 

and Huibiao Zhu, editors, Formal Methods and Software Engineering, volume 6447 

of Lecture Notes in Computer Science, pages 371–387. Springer Berlin / Heidelberg, 

2010. 

[3] David H. Akehurst. Validating BPEL Specifications Using OCL. Technical report, 

University of Kent at Canterbury technical report: 15-04, 2004. 

[4] Scott Ambler. Agile modeling: effective practices for extreme programming and the 

unified process. John Wiley & Sons, 2002. 

[5] Jorge Aranda, Daniela Damian, and Arber Borici. Transition to Model-Driven 

Engineering. In RobertB. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson, 

editors, Model Driven Engineering Languages and Systems, volume 7590 of Lecture 

Notes in Computer Science, pages 692–708. Springer Berlin Heidelberg, 2012. 

[6] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A 

model-driven process for engineering a toolset for a formal method. Software: 

Practice and Experience, 41(2):155–166, 2011. 

[7] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele 

Taentzer. Henshin: Advanced Concepts and Tools for In-Place EMF Model 

Transformations, volume 6394 of Lecture Notes in Computer Science, pages 121–

135. Springer Berlin / Heidelberg, 2010. 

[8] Thomas Baar. An OCL Semantics Specified with QVT. In Proceedings, 

MoDELS/UML 2006, pages 1–6. Springer, 2006. 

[9] Nils Bandener, Christian Soltenborn, and Gregor Engels. Extending DMM Behavior 

Specifications for Visual Execution and Debugging. In Brian Malloy, Steffen Staab, 

and Mark van den Brand, editors, Software Language Engineering, volume 6563 of 

Lecture Notes in Computer Science, pages 357–376. Springer Berlin / Heidelberg, 

2011. 

[10] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais. Definition of an 

Executable SPEM 2.0. In Software Engineering Conference, 2007. APSEC 2007. 

14th Asia-Pacific, pages 390–397, Dec 2007. 



233 
 

[11] Luca Berardinelli, Philip Langer, and Tanja Mayerhofer. Combining fUML and 

Profiles for Non-functional Analysis Based on Model Execution Traces. In 

Proceedings of the 9th International ACM Sigsoft Conference on Quality of Software 

Architectures, QoSA ’13, pages 79–88, New York, NY, USA, 2013. ACM. 

[12] Gerard Berry, Georges Gonthier, Ard Berry Georges Gonthier, and Place Sophie 

Laltte. The Esterel Synchronous Programming Language: Design, Semantics, 

Implementation, 1992. 

[13] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Precise Semantics of EMF 

Model Transformations by Graph Transformation. In Krzysztof Czarnecki, Ileana 

Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Model Driven 

Engineering Languages and Systems, volume 5301 of Lecture Notes in Computer 

Science, pages 53–67. Springer Berlin / Heidelberg, 2008. 

[14] Jonathan Billington, Soren Christensen, Kees van Hee, Ekkart Kindler, Olaf 

Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The 

Petri Net Markup Language: Concepts, Technology, and Tools. In Wil van der Aalst 

and Eike Best, editors, Applications and Theory of Petri Nets 2003, volume 2679 of 

Lecture Notes in Computer Science, pages 483–505. Springer Berlin / Heidelberg, 

2003. 

[15] Conrad Bock and Michael Gruninger. PSL: A semantic domain for flow models. 

Software and Systems Modeling, 4:209–231, 2005. 

[16] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software 

engineering in practice. Morgan & Claypool Publishers, 2012. 

[17] M.G.J. Brand, A. Deursen, J. Heering, H.A. Jong, M. Jonge, T. Kuipers, P. Klint, 

L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The 

Asf+Sdf Meta-environment: A Component-Based Language Development 

Environment. In Reinhard Wilhelm, editor, Compiler Construction, volume 2027 of 

Lecture Notes in Computer Science, pages 365–370. Springer Berlin Heidelberg, 

2001. 

[18] Lionel Briand, Clay Williams, Pierre-Alain Muller, Franck Fleurey, and Jean-Marc 

Jézéquel. Weaving Executability into Object-Oriented Meta-languages, volume 3713 

of Lecture Notes in Computer Science, pages 264–278. Springer Berlin / Heidelberg, 

2005. 



234 
 

[19] B.R. Bryant, J. Gray, M. Mernik, P.J. Clarke, R.B. France, and G. Karsai. 

Challenges and directions in formalizing the semantics of modeling languages. 

Computer Science and Information Systems, 8(2):225–253, 2011. 

[20] Jordi Cabot, Robert Claris #243, and Daniel Riera. Verification of UML/OCL Class 

Diagrams using Constraint Programming. In Software Testing Verification and 

Validation Workshop, 2008. ICSTW ’08. IEEE International Conference on, pages 

73–80. IEEE Computer Society, 2008. 

[21] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a tool for the formal 

verification of UML/OCL models using constraint programming. In Proceedings of 

the twenty-second IEEE/ACM international conference on Automated software 

engineering, ASE ’07, pages 547–548, New York, NY, USA, 2007. ACM. 

[22] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier. Contracts for 

Model Execution Verification. In ECMFA, pages 3–18, 2011. 

[23] Michel Chaudron, José Rivera, José Romero, and Antonio Vallecillo. Behavior, 

Time and Viewpoint Consistency: Three Challenges for MDE, volume 5421 of 

Lecture Notes in Computer Science, pages 60–65. Springer Berlin / Heidelberg, 2009. 

[24] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring 

infrastructure for domain-specific modeling languages. In Proceedings of the 5th 

ACM international conference on Embedded software, pages 35–43. ACM, 2005. 

[25] Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: A foundation 

for language driven development, Second edition. CETEVA, 2008. 

[26] Benoît Combemale, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thirioux. Essay 

on Semantics Definition in MDE - An Instrumented Approach for Model 

Verification. Journal of Software, 4(9):943–958, 2009. 

[27] T. Copeland. PMD applied. Centennial Books, 2005. 

[28] Simone André da Costa and Leila Ribeiro. Verification of graph grammars using a 

logical approach. Science of Computer Programming, In Press, Corrected Proof:–, 

2010. 

[29] Chris Daly. Emfatic Language Reference. http://www.eclipse.org/gmt/epsilon/doc/-

articles/emfatic/, 2004. 

[30] Juan de Lara and Hans Vangheluwe. Defining visual notations and their 

manipulation through meta-modelling and graph transformation. Journal of Visual 

Languages & Computing, 15(3-4):309–330, 2004. 



235 
 

[31] Frédéric Kurtev Ivan Bézivin Jean Pierantonio Alfonso Di Ruscio, Davide Jouault. 

Extending AMMA for Supporting Dynamic Semantics Specifications of DSLs. 

Technical report, Laboratoire d’Informatique de Nantes-Atlantique, 2006. 

[32] W.J. Dzidek, E. Arisholm, and L.C. Briand. A Realistic Empirical Evaluation of the 

Costs and Benefits of UML in Software Maintenance. Software Engineering, IEEE 

Transactions on, 34(3):407 –432, may-june 2008. 

[33] S. Efftinge and M. Völter. oAW xText: A framework for textual DSLs. In Workshop 

on Modeling Symposium at Eclipse Summit, volume 32, 2006. 

[34] M. Elaasar and L. Briand. An Overview of UML Consistency Management. 

Technical report, Department of Systems and Computer Engineering 1125 Colonel-

By Drive, Ottawa, Ontatio, K1S 5B6 Canada, 2004. 

[35] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Dynamic 

meta modeling: a graphical approach to the operational semantics of behavioral 

diagrams in UML. In Proceedings of the 3rd international conference on The unified 

modeling language: advancing the standard, UML’00, pages 323–337, Berlin, 

Heidelberg, 2000. Springer-Verlag. 

[36] R. Esser and J.W. Janneck. Moses-a tool suite for visual modeling of discrete-event 

systems. In Human-Centric Computing Languages and Environments, 2001. 

Proceedings IEEE Symposia on, pages 272 –279, 2001. 

[37] D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control 

flow. In Proc. 12th International Workshop on Abstract State Machines, pages 131–

151, 2005. 

[38] Dirk Fahland. Complete Abstract Operational Semantics for the Web Service 

Business Process Execution Language. Informatik-Berichte 190, Humboldt-

Universität zu Berlin, September 2005. 

[39] Eclipse Foundation. Graphical Modeling Project (GMP). http://www.eclipse.org/-

modeling/gmp/, 2011. 

[40] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A semantic 

framework for metamodel-based languages. Automated Software Engineering, 

16(3):415–454, 2009. 

[41] Amir Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria 

Zimakova. Modelling and analysis using GROOVE. International Journal on 

Software Tools for Technology Transfer (STTT), -:1–26, 2011. 



236 
 

[42] U. Glässer, R. Gotzhein, and A. Prinz. The formal semantics of SDL-2000: Status 

and perspectives. Computer Networks, 42(3):343 – 358, 2003. 

[43] R.C. Gronback. Eclipse modeling project: a domain-specific language toolkit. The 

Eclipse series. Addison-Wesley, 2009. 

[44] Object Management Group. UML 1.4 with Action Semantics. 

http://www.omg.org/cgi-bin/doc?ptc/02-01-09, 2002. 

[45] Object Management Group. MDA Specifications. 

http://www.omg.org/mda/specs.htm, 2003. 

[46] Object Management Group. Object Constraint Language, Version 2.0. http://-

www.omg.org/spec/OCL/2.0/, 2006. 

[47] Object Management Group. MOF Model To Text Transformation Language 

(MOFM2T), 1.0. http://www.omg.org/spec/MOFM2T/1.0/, 2008. 

[48] Object Management Group. Software & Systems Process Engineering Metamodel 

Specification (SPEM) Version 2.0. http://www.omg.org/spec/SPEM/2.0/, 2008. 

[49] Object Management Group. Ontology Definition Metamodel (ODM). 

http://www.omg.org/spec/ODM/1.0/, 2009. 

[50] Object Management Group. Action Language For Foundational UML (ALF) 1.0 - 

Beta 1. www.omg.org/spec/ALF/, 2010. 

[51] Object Management Group. OMG’s MetaObject Facility. http://www.omg.org/mof/, 

2010. 

[52] Object Management Group. Business Process Model And Notation (BPMN) Version 

2.0. http://www.omg.org/spec/BPMN/2.0/, 2011. 

[53] Object Management Group. Documents Associated With Meta Object Facility 

(MOF) 2.0 Query/View/Transformation, V1.1. http://www.omg.org/spec/QVT/1.1/, 

2011. 

[54] Object Management Group. Precise Semantics of UML Composite Structures RFP. 

http://www.omg.org/cgi-bin/doc?ad/11-12-07, 2011. 

[55] Object Management Group. Semantics Of A Foundational Subset For Executable 

UML Models (FUML), Version 1.0. http://www.omg.org/spec/FUML/1.0/, 2011. 

[56] Object Management Group. UML Profile For MARTE: Modeling And Analysis Of 

Real-Time Embedded Systems. http://www.omg.org/spec/MARTE/, 2011. 

[57] Object Management Group. OMG Systems Modeling Language. 

http://www.omgsysml.org/, 2012. 



237 
 

[58] W3C Working Group. Web Services Glossary. http://www.w3.org/TR/2004/NOTE-

ws-gloss-20040211/#webservice, 2004. 

[59] Volker Gruhn and Ralf Laue. Complexity metrics for business process models. In in: 

W. Abramowicz, H.C. Mayr (Eds.), 9th International Conference on Business 

Information Systems (BIS 2006), Lecture Notes in Informatics, pages 1–12, 2006. 

[60] Y Gurevich, B Rossman, and W Schulte. Semantic essence of AsmL. Theoretical 

Computer Science, 343(3):370–412, 2005. 

[61] Christian Hahn and Klaus Fischer. The Formal Semantics of the Domain Specific 

Modeling Language for Multiagent Systems. In Michael Luck and Jorge Gomez-

Sanz, editors, Agent-Oriented Software Engineering IX, volume 5386 of Lecture 

Notes in Computer Science, pages 145–158. Springer Berlin / Heidelberg, 2009. 

[62] Maurice Howard Halstead. Elements of software science, volume 19. Elsevier New 

York, 1977. 

[63] Kevin Hammond and Greg Michaelson. Hume: A Domain-Specific Language for 

Real-Time Embedded Systems. In Frank Pfenning and Yannis Smaragdakis, editors, 

Generative Programming and Component Engineering, volume 2830 of Lecture 

Notes in Computer Science, pages 37–56. Springer Berlin Heidelberg, 2003. 

[64] Warren A Harrison. Applying McCabe’s complexity measure to multiple-exit 

programs. Software: Practice and Experience, 14(10):1004–1007, 1984. 

[65] Constance Heitmeyer. On the Need for Practical Formal Methods. In In Formal 

Techniques in RealTime and Real-Time Fault-Tolerant Systems, Proc., 5th Intern. 

Symposium (FTRTFT’98, pages 18–26. Springer Verlag, 1998. 

[66] B. Henderson-Sellers and D. Tegarden. The theoretical extension of two versions of 

cyclomatic complexity to multiple entrylexit modules. Software Quality Journal, 

3(4):253–269, 1994. 

[67] Alan Hevner and Samir Chatterjee. Design Research in Information Systems. 

Springer, 2010. 

[68] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in 

information systems research. MIS Q., 28(1):75–105, March 2004. 

[69] Peter Őlveczky, José Rivera, Francisco Durán, and Antonio Vallecillo. On the 

Behavioral Semantics of Real-Time Domain Specific Visual Languages, volume 

6381 of Lecture Notes in Computer Science, pages 174–190. Springer Berlin / 

Heidelberg, 2010. 



238 
 

[70] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 

39(12):92–106, December 2004. 

[71] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 

Empirical assessment of MDE in industry. In Proceedings of the 33rd International 

Conference on Software Engineering, ICSE ’11, pages 471–480, New York, NY, 

USA, 2011. ACM. 

[72] S. C. Johnson. Lint, a C Program Checker. In COMP. SCI. TECH. REP, pages 78–

1273, 1978. 

[73] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model 

transformation tool. Science of Computer Programming, 72(1-2):31 – 39, 2008. 

[74] Lennart C.L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules for 

Declarative Specification of Languages and IDEs. SIGPLAN Not., 45(10):444–463, 

October 2010. 

[75] Steven Kelly and Risto Pohjonen. Worst Practices for Domain-Specific Modeling. 

IEEE Software, 26:22–29, 2009. 

[76] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full 

Code Generation. Wiley-IEEE Computer Society Press, 2008. 

[77] Pierre Kelsen and Qin Ma. A Lightweight Approach for Defining the Formal 

Semantics of a Modeling Language. In Krzysztof Czarnecki, Ileana Ober, Jean-

Michel Bruel, Axel Uhl, and Markus Völter, editors, Model Driven Engineering 

Languages and Systems, volume 5301 of Lecture Notes in Computer Science, pages 

690–704. Springer Berlin / Heidelberg, 2008. 

[78] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, 

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet 

Aksit and Satoshi Matsuoka, editors, ECOOP’97 Object-Oriented Programming, 

volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer Berlin 

/ Heidelberg, 1997. 

[79] A.G. Kleppe. A Language Description is More than a Metamodel. In Fourth 

International Workshop on Software Language Engineering, Grenoble, France, 

October 2007. megaplanet.org. 

[80] Anneke G Kleppe. Software language engineering: creating domain-specific 

languages using metamodels. Addison-Wesley Professional, 2009. 



239 
 

[81] Dimitrios Kolovos. An Extensible Platform for Specification of Integrated 

Languages for Model Management. PhD thesis, Department of Computer Science, 

The University of York, 2008. 

[82] DimitriosS. Kolovos, RichardF. Paige, and FionaA.C. Polack. The Epsilon 

Transformation Language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, 

editors, Theory and Practice of Model Transformations, volume 5063 of Lecture 

Notes in Computer Science, pages 46–60. Springer Berlin Heidelberg, 2008. 

[83] Fabrice Kordon and Yann Thierry-Mieg. Experiences in Model Driven Verification 

of Behavior with UML. In Christine Choppy and Oleg Sokolsky, editors, 

Foundations of Computer Software. Future Trends and Techniques for Development, 

volume 6028 of Lecture Notes in Computer Science, pages 181–200. Springer Berlin 

/ Heidelberg, 2010. 

[84] T. Kosar, N. Oliveira, M. Mernik, V.J.M. Pereira, M. Crepinšek, C.D. Da, and R.P. 

Henriques. Comparing general-purpose and domain-specific languages: An 

empirical study. Computer Science and Information Systems, 7(2):247–264, 2010. 

[85] Sabine Kuske. A Formal Semantics of UML State Machines Based on Structured 

Graph Transformation, volume 2185 of Lecture Notes in Computer Science, pages 

241–256–256. Springer Berlin / Heidelberg, 2001. 

[86] Formal Methods laboratory University of Milan. ASMETA. http://-

asmeta.sourceforge.net/, 2010. 

[87] Qinan Lai and Andy Carpenter. Defining and verifying behaviour of domain specific 

language with fUML. In Proceedings of the Fourth Workshop on Behaviour 

Modelling - Foundations and Applications, BM-FA ’12, pages 1:1–1:7, New York, 

NY, USA, 2012. ACM. 

[88] Qinan Lai and Andy Carpenter. Static Analysis and Testing of Executable DSL 

Specification. In Proceedings of 1st International Conference on Model-Driven 

Engineering and Software Development, 2013. 

[89] Kristian Bisgaard Lassen and Wil M.P. van der Aalst. Complexity metrics for 

Workflow nets. Information and Software Technology, 51(3):610 – 626, 2009. 

[90] Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais. 

Formalization of fUML: An Application to Process Verification. In Matthias Jarke, 

John Mylopoulos, Christoph Quix, Colette Rolland, Yannis Manolopoulos, 

Haralambos Mouratidis, and Jennifer Horkoff, editors, Advanced Information 



240 
 

Systems Engineering, volume 8484 of Lecture Notes in Computer Science, pages 

347–363. Springer International Publishing, 2014. 

[91] C.L. Lazăr, I. Lazăr, B. Pârv, S. Motogna, and I.G. Czibula. Tool Support for fUML 

Models. International Journal of Computers Communications & Control, 5(5):775–

782, 2010. 

[92] António Menezes Leitão. From Lisp S-expressions to Java source code. Computer 

Science and Information Systems/ComSIS, 5(2):19–38, 2008. 

[93] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A systematic review of 

UML model consistency management. Information and Software Technology, 

51(12):1631 – 1645, 2009. 

[94] Geoffrey Mainland and Greg Morrisett. Nikola: embedding compiled GPU functions 

in Haskell. SIGPLAN Not., 45(11):67–78, September 2010. 

[95] Chengying Mao. Complexity Analysis for Petri Net-based Business Process in Web 

Service Composition. In Service Oriented System Engineering (SOSE), 2010 Fifth 

IEEE International Symposium on, pages 193–196. IEEE, 2010. 

[96] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. Towards xMOF: executable 

DSMLs based on fUML. In Proceedings of the 2012 workshop on Domain-specific 

modeling, DSM ’12, pages 1–6, New York, NY, USA, 2012. ACM. 

[97] Thomas J. McCabe. A complexity measure. Software Engineering, IEEE 

Transactions on, 4(4):308–320, 1976. 

[98] Steve McConnell. Code complete. O’Reilly Media, Inc., 2004. 

[99] Stephen J Mellor. MDA distilled: principles of model-driven architecture. Addison-

Wesley Professional, 2004. 

[100] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop 

domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005. 

[101] P. Mohagheghi and J. Aagedal. Evaluating Quality in Model-Driven Engineering. In 

International Workshop on Modeling in Software Engineering (MiSE’07) ICSE 

Workshop, page 6, may 2007. 

[102] Parastoo Mohagheghi and Vegard Dehlen. Where Is the Proof? - A Review of 

Experiences from Applying MDE in Industry. In Ina Schieferdecker and Alan 

Hartman, editors, Model Driven Architecture - Foundations and Applications, 

volume 5095 of Lecture Notes in Computer Science, pages 432–443. Springer Berlin 

/ Heidelberg, 2008. 



241 
 

[103] Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. Definitions and approaches to 

model quality in model-based software development - A review of literature. 

Information and Software Technology, 51(12):1646 – 1669, 2009. 

[104] Pierre-Alain Muller, Frédéric Fondement, and Benoît Baudry. Modeling Modeling. 

In Andy Schürr and Bran Selic, editors, Model Driven Engineering Languages and 

Systems, volume 5795 of Lecture Notes in Computer Science, pages 2–16. Springer 

Berlin Heidelberg, 2009. 

[105] H.James Nelson and DavidE. Monarchi. Ensuring the quality of conceptual 

representations. Software Quality Journal, 15(2):213–233, 2007. 

[106] OASIS. Web Services Business Process Execution Language Version 2.0 Primer. 

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html, 2007. 

[107] Technical University of Berlin. The Attributed Graph Grammar System. http://-

user.cs.tu-berlin.de/~gragra/agg/, 2010. 

[108] University of Illinois at Urbana-Champaign. The Maude System. http://-

maude.cs.uiuc.edu/, 2010. 

[109] University of Maribor. LISA. http://labraj.uni-mb.si/lisa/index.html, 2006. 

[110] Greg O’Keefe. Improving the Definition of UML. In Oscar Nierstrasz, Jon Whittle, 

David Harel, and Gianna Reggio, editors, Model Driven Engineering Languages and 

Systems, volume 4199 of Lecture Notes in Computer Science, pages 42–56. Springer 

Berlin / Heidelberg, 2006. 

[111] Andy Oram and Greg Wilson. Making Software. O’Reilly, 2010. 

[112] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A.C. Polack. Metamodelling for 

Grammarware Researchers. In Krzysztof Czarnecki and Görel Hedin, editors, 

Software Language Engineering, volume 7745 of Lecture Notes in Computer 

Science, pages 64–82. Springer Berlin Heidelberg, 2013. 

[113] P.R. Panda. SystemC - a modeling platform supporting multiple design abstractions. 

In System Synthesis, 2001. Proceedings. The 14th International Symposium on, 

pages 75–80, 2001. 

[114] M. Peleg and D. Dori. The model multiplicity problem: experimenting with real-time 

specification methods. Software Engineering, IEEE Transactions on, 26(8):742–759, 

2000. 

[115] James L. Peterson. Petri Nets. ACM Comput. Surv., 9(3):223–252, 1977. 

[116] Marian Petre. UML in practice. In 35th International Conference on Software 

Engineering (ICSE 2013), 2013. 



242 
 

[117] Elena Planas, Jordi Cabot, and Cristina Gómez. Verifying Action Semantics 

Specifications in UML Behavioral Models. In Pascal van Eck, Jaap Gordijn, and 

Roel Wieringa, editors, Advanced Information Systems Engineering, volume 5565 of 

Lecture Notes in Computer Science, pages 125–140. Springer Berlin / Heidelberg, 

2009. 

[118] Elena Planas, Jordi Cabot, and Cristina Gomez. Lightweight Verification of 

Executable Models. In 30th International Conference on Conceptual Modeling (ER 

2011), 2011. 

[119] Elena Planas, Jordi Cabot, Cristina Gomez, Esther Guerra, and Juan de Lara. 

Lightweight Executability Analysis of Graph Transformation Rules. Visual 

Languages and Human-Centric Computing, IEEE Symposium on, 0:127–130, 2010. 

[120] Elena Planas, David Sanchez-Mendoza, Jordi Cabot, and Cristina Gómez. Alf-

Verifier: An Eclipse Plugin for Verifying Alf/UML Executable Models. In Silvana 

Castano, Panos Vassiliadis, LaksV. Lakshmanan, and MongLi Lee, editors, 

Advances in Conceptual Modeling, volume 7518 of Lecture Notes in Computer 

Science, pages 378–382. Springer Berlin Heidelberg, 2012. 

[121] G. D. Plotkin. A Structural Approach to Operational Semantics, 1981. 

[122] Andreas Prinz, Markus Scheidgen, and Merete Tveit. A Model-Based Standard for 

SDL. In Emmanuel Gaudin, Elie Najm, and Rick Reed, editors, SDL 2007: Design 

for Dependable Systems, volume 4745 of Lecture Notes in Computer Science, pages 

1–18. Springer Berlin / Heidelberg, 2007. 

[123] Raman Ramsin and Richard F. Paige. Process-centered review of object oriented 

software development methodologies. ACM Comput. Surv., 40(1):3:1–3:89, 

February 2008. 

[124] W3C Recommendation. OWL Web Ontology Language. 

http://www.w3.org/TR/owl-features/, 2004. 

[125] Arend Rensink. The Edge of Graph Transformation - Graphs for Behavioural 

Specification, volume 5765 of Lecture Notes in Computer Science, pages 6–32–32. 

Springer Berlin / Heidelberg, 2010. 

[126] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model Checking Graph 

Transformations: A Comparison of Two Approaches. In Hartmut Ehrig, Gregor 

Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Graph 

Transformations, volume 3256 of Lecture Notes in Computer Science, pages 219–

222. Springer Berlin / Heidelberg, 2004. 



243 
 

[127] Elvinia Riccobene and Patrizia Scandurra. Weaving executability into UML class 

models at PIM level. In Proceedings of the 1st Workshop on Behaviour Modelling in 

Model-Driven Architecture, BM-MDA ’09, pages 1:1–1:9, New York, NY, USA, 

2009. ACM. 

[128] José E. Rivera. On the semantics of real-time Domain Specific Modeling Languages. 

PhD thesis, Universidad de Málaga, 2010. 

[129] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A.C. Polack. The 

Epsilon Generation Language. In Ina Schieferdecker and Alan Hartman, editors, 

Model Driven Architecture - Foundations and Applications, volume 5095 of Lecture 

Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg, 2008. 

[130] Matti Rossi and Sjaak Brinkkemper. Complexity metrics for systems development 

methods and techniques. Information Systems, 21(2):209 – 227, 1996. 

[131] Daniel A. Sadilek and Guido Wachsmuth. Using Grammarware Languages to Define 

Operational Semantics of Modelled Languages. In Will Aalst, John Mylopoulos, 

Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski, Manuel Oriol, and 

Bertrand Meyer, editors, Objects, Components, Models and Patterns, volume 33 of 

Lecture Notes in Business Information Processing, pages 348–356. Springer Berlin 

Heidelberg, 2009. 

[132] Markus Scheidgen and Joachim Fischer. Human comprehensible and machine 

processable specifications of operational semantics. In Proceedings of the 3rd 

European conference on Model driven architecture-foundations and applications, 

ECMDA-FA’07, pages 157–171, Berlin, Heidelberg, 2007. Springer-Verlag. 

[133] Ina Schieferdecker, Alan Hartman, Daniel Sadilek, and Guido Wachsmuth. 

Prototyping Visual Interpreters and Debuggers for Domain-Specific Modelling 

Languages, volume 5095 of Lecture Notes in Computer Science, pages 63–78. 

Springer Berlin / Heidelberg, 2008. 

[134] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER 

SOCIETY-, 39(2):25, 2006. 

[135] E. Seidewitz. What models mean. Software, IEEE, 20(5):26–32, 2003. 

[136] B. Selic. A Systematic Approach to Domain-Specific Language Design Using UML. 

In Object and Component-Oriented Real-Time Distributed Computing, 2007. 

ISORC ’07. 10th IEEE International Symposium on, pages 2–9, 2007. 

[137] Bran Selic. The Theory and Practice of Modeling Language Design for Model-Based 

Software Engineering - A Personal Perspective. In João Fernandes, Ralf Lämmel, 



244 
 

Joost Visser, and João Saraiva, editors, Generative and Transformational 

Techniques in Software Engineering III, volume 6491 of Lecture Notes in Computer 

Science, pages 290–321. Springer Berlin / Heidelberg, 2011. 

[138] Traian Florin Serbanuta. A REWRITING APPROACH TO CONCURRENT 

PROGRAMMING LANGUAGE DESIGN AND SEMANTICS. PhD thesis, University 

of Illinois at Urbana-Champaign, 2011. 

[139] Jingqiu Shao and Yingxu Wang. A new measure of software complexity based on 

cognitive weights. Electrical and Computer Engineering, Canadian Journal of, 

28(2):69–74, 2003. 

[140] Keng Siau and M. Rossi. Evaluation of information modeling methods-a review. In 

System Sciences, 1998., Proceedings of the Thirty-First Hawaii International 

Conference on, volume 5, pages 314 –322 vol.5, jan 1998. 

[141] Balazs Simon, Balazs Goldschmidt, and Karoly Kondorosi. A Human Readable 

Platform Independent Domain Specific Language for BPEL. In Filip Zavoral, Jakub 

Yaghob, Pit Pichappan, and Eyas El-Qawasmeh, editors, Networked Digital 

Technologies, volume 87 of Communications in Computer and Information Science, 

pages 537–544. Springer Berlin Heidelberg, 2010. 

[142] Christian Soltenborn and Gregor Engels. Towards Test-Driven Semantics 

Specification, volume 5795 of Lecture Notes in Computer Science, pages 378–392. 

Springer Berlin / Heidelberg, 2009. 

[143] Model Driven Solutions. Action Language for UML (Alf) Open Source 

Implementation. http://modeldriven.org/alf/, retrived on 06/06/2013, 2013. 

[144] Jonathan Sprinkle, Marjan Mernik, Juha-Pekka Tolvanen, and Diomidis Spinellis. 

Guest Editors’ Introduction: What Kinds of Nails Need a Domain-Specific Hammer? 

IEEE Software, 26:15–18, 2009. 

[145] Christian Stahl. A Petri Net Semantics for BPEL. Technical report, Humboldt-

Universität zu Berlin, 2005. 

[146] OASIS standard. RELAX NG Specification. http://relaxng.org/spec-20011203.html, 

2001. 

[147] OASIS standard. Web Services Business Process Execution Language Version 2.0. 

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007. 

[148] Dave Steinberg. EMF : Eclipse Modeling Framework. Addison-Wesley, Boston, 

Mass. ; London, 2nd ed., rev. and updated. edition, 2009. 



245 
 

[149] Yu Sun, Jules White, and Jeff Gray. Model Transformation by Demonstration. 

Model Driven Engineering Languages and Systems, 5795:712–726, 2009. 

[150] Gerson Sunyé, François Pennaneac’h, Wai-Ming Ho, Alain Le Guennec, and Jean-

Marc Jézéquel. Using UML Action Semantics for Executable Modeling and Beyond. 

In Klaus Dittrich, Andreas Geppert, and Moira Norrie, editors, Advanced 

Information Systems Engineering, volume 2068 of Lecture Notes in Computer 

Science, pages 433–447. Springer Berlin / Heidelberg, 2001. 

[151]Hideaki Takeda, Paul Veerkamp, and Hiroyuki Yoshikawa. Modeling design process. 

AI magazine, 11(4):37, 1990. 

[152] D.P. Tegarden, S.D. Sheetz, and D.E. Monarchi. Effectiveness of traditional 

software metrics for object-oriented systems. In System Sciences, 1992. Proceedings 

of the Twenty-Fifth Hawaii International Conference on, volume iv, pages 359 –368 

vol.4, jan 1992. 

[153] International Telecommunication Union. ITU-T Recommendation Z.100 Annex F 

SDL Formal Definition, 2000. 

[154] V. Vaishnavi and W. Kuechler. Design Science Research in Information Systems. 

January 20, 2004, last updated November 11, 2012. URL: 

http://www.desrist.org/design-research-in-information-systems/, 2004. 

[155] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an 

annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000. 

[156] Markus Voelter. DSL Engineering - Designing, Implementing and Using Domain-

Specific Languages. dslbook.org, 2013. 

[157] Guido Wachsmuth. Modelling the Operational Semantics of Domain-Specific 

Modelling Languages. In Ralf Lämmel, Joost Visser, and João Saraiva, editors, 

Generative and Transformational Techniques in Software Engineering II, volume 

5235 of Lecture Notes in Computer Science, pages 506–520. Springer Berlin / 

Heidelberg, 2008. 

[158] Tabinda Waheed, Muhammad Iqbal, and Zafar Malik. Data Flow Analysis of UML 

Action Semantics for Executable Models. In Ina Schieferdecker and Alan Hartman, 

editors, Model Driven Architecture - Foundations and Applications, volume 5095 of 

Lecture Notes in Computer Science, pages 79–93. Springer Berlin / Heidelberg, 2008. 

[159] Jon Whittle, John Hutchinson, and Mark Rouncefield. The State of Practice in 

Model-Driven Engineering. Software, IEEE, 31(3):79–85, May 2014. 



246 
 

[160] Claas Wilke and Birgit Demuth. UML is still inconsistent! How to improve OCL 

Constraints in the UML 2.3 Superstructure. Electronic Communications of the 

EASST, 44:1–19, 2011. 

[161] Yingzhou Zhang and Baowen Xu. A survey of semantic description frameworks for 

programming languages. SIGPLAN Not., 39(3):14–30, 2004. 

 


