Enabling High Quality Executable
Domain Specific Language
Specification

A thesis submitted to the University of Manche$terthe degree of
Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2014

Qinan Lai

School of Computer Science

Table of Contents

Table Of CONENTSeiiiiiiiiitiei e e e nnees 2
S 0) T USSP 7
LISt Of TADIES ...t e e 9
ADSIFTACT ...t e et e e e e e e e e e e e e e e e e aeas 10
DECIATATIONeie ettt e e e e e 11
Copyright STAtEMENT... ... e e e e e e e eeeas 21
ACKNOWIEAGEMENT ...ttt e e e e e e e e e e eeeeenneees 13
(O aF=T o) (=1 g AR [0o To [F o 1o o PRSPPI 14
1.1 MOUIVALION ..eetiiiiiieiiiie ettt e e e e e e e e e e e 16
1.2 ReSearch ODJECHIVES.........uuuiiiiiiee e 20
1.3 CONMDULIONS ...t 21
1.4 Research methodology.......couuuuuiiiiiiiiiiie e 22
1.5 TRESIS SITUCKIUIE ..o e e e e e 25
Chapter 2. Domain Specific Language Foundationsccccevevvvivvviiinnnnnn. 26
2.1 Programming language specificationcccceceeeviviiiiiiiiiiiiiiie e 26
2.1.1 CONCIELE SYNTAX ...uieiiieiiieeeeeeiiiae e e e ettt e e e e e eem e e e e eete e e e e eeena e e 27
2.1.2 ADSIACT SYNTAX......ciiiiiiiiiiiiiiiiieee et ee e e e e e e 28
2.1.3 Behavioural SEMaNtiCS...........euviiiiiiiiiiiii e 28
2.2 Domain Specific Language development...........cccvvvviiiiiiiiiciiiiiniee e, 29
2.2.1 DSL language SPeCIfiCatioN............uuiiiiiieieeeiieiieieeeiiiiii s 30
2.2.2 Traditional ways of DSL development..........cccceeeeiiieieieeiiieeeeeeeiiiinns 31
2.2.3 Developing DSL by a model-driven approachccccvvvivvvinnnnnns 33
2.3 Methods for definiNng DSLS......coiiiiiiiieeieeiieeeeeee e 34
2.3.1 Review of DSL abstract syntax definitioncccoevvvviiiiiiiiciinnnnnn. 35
2.3.2 Survey of semantic description approaches of DSLScccceeen..... 35
2.4 Quality of DSL SPeCifiCatioNS.........ccciiiieieieeeieieieieeeei s 44

2.4.1 Model quality goalS..........ceuvuiiiiiiiiiiiiie e 44

2.4.2 Practice to improve quality of Models...........oooooiiiiiiiiiiiiiiiiiii 45
2.4.3 Requirements of high quality language specifications...................... 47
2.5 SUMIMAIY it e e e et e et e e e et e e e ea e e e ea e e eenns 51
Chapter 3. Model-driven foundationscoovvveiiiiiiiiiiie e, 52
3.1 Model-Driven ENQINEEIINGuuuiiiiieeeeeeieiieeeeeeiiiti e 52
3.1.1 Meta-modelliNg.......coveeiiiiiiiiiiiee e e 53
3.1.2 Model-driven WOrk flOW ..o 54
3.2 SemantiCs Of UMLooooiiiiii e 55
3.2.1 Previous work to formalise the semantics of UMLcovvvvveneen. 55
3.2.2 Foundational sSubset Of UMLccoociiiiiiiiiiiiiiiiec e 56
3.2.3 SUIMIMATY .ttt e et e e e e e e eeeeta e e e e e e e eba e e e e eeennn e eeeeeennnns 56
3.3 Action Language for fUML (ALF)ccoiiiiiiiiiiee e 57
3.3.1 Features of the ALF NOtatioNoovveiiiiiiiiieee e 57
3.3.2 Atutorial Of ALF ..o 58
34 SUMIMAIY ettt e et e e e e e e eeeeta e e e e e eetan e e aeeeennnaeeeeennnnn 61
Chapter 4. A Framework for Quality Language Specification (FQLS) 63
4.1 DSL syntax and semantics definitionccovvvvvviiiiiiiiiiiiii e, 63
4.2 Architecture of FQLS ... 65
4.2.1 DefiNtION lQYEIuueieiei e e e e e e e eeeaeenaeees 65
4.2.2 ANAIYSIS [AYET ...iiieee et re e e ——————— 67
G T = (Tt U 1[0 T = Y 69
A. 2.4 SUIMIMETY ..euiiieiiiiit et e e et et e e e et eeemmasa e e e e eeeta e e e eaeesba e aaaeensannnaans 71
4.3 A development process for DSLcuuviviiiiiiiieiee e 72
4.3.1 Software & Systems Process Engineering Meta-Model................... 72
4.3.2 MethOod CONENT ...ttt 74
A4 SUIMIMAIY ..ttt e e e et e emmta e e e e e eett e e e e eeesba e e aeeennnnneans 83

Chapter 5. Defining DSLs using FQLS..........oiiiiiiiiiii e 84

5.1 Defining DSL VIa ALF ..o eeeeaeeees 84
5.1.1 Representing abstract syntax by ALFccooiiiiiiiii 85
5.1.2 Representing static semantics by ALFoooovviiiiiiiiiiiiieeeeeeeeeeee, 58
5.1.3 Representing behavioural semantics via FQLS................cccevvvvvvinnnns 87

5.2 Defining a Petri net languageuuuuuuiiiiiiiiiee e 90

5.3 Defining Petri net language via ALF...........cccoooeiiiiiiiiiieee, 93

5.4 DISCUSSION ...eviiieiiiitiiiite e ettt e et e e s e e e e e e e e e e eee e e e nnnn) 6.9

5.5 SUMMAIY ..ot e et e e e e e e e e eennnans 99

Chapter 6. Static analysis of DSL specifications using FQLS 100

6.1 Extended static CheCKiNgcuuuvuiiiiiiiiiiie e 100

6.2 Building static code analySers...........ooooiiiiiiiiiiiii e 107

6.3 Bridging FQLS specification with fUML ... 1
6.3.1 Atlas Transformation Languageeeuvvvriiiiiiieeeeeeenneeereeeeeeenn. 111
6.3.2 Mapping ALF 10 fUMLccooiei e 112

6.4 SUMIMAIY ..ttt e et e e e ettt e e e e e e e e e eeta e e e eeeestaa e e eeeesnnnn e eaaennes 117

Chapter 7. Executing DSL specifications using FQLS............cccccceiiieieevininnnnn. 118

7.1 Architecture of the code generation pProjectccccceeeeeevevvveeeeennnnnnnnns 119

7.2 From ALF structural aspects to EmfatiC..............ccooviiiiiiiiiiiiiiiiinnennn. 221

7.3 From ALF’s behavioural aspects to Emfaticcccoeeiieiiiiiiiiiiiiiinnns 125
7.3.1 Generating StatemMENTS.......ccoviiiiieeeeieeeeeeeee e 126
7.3.2 Generate eXPreSSIONScccceeeeeeeeeeeeeeeeeiiiit s e e e e eseeaesaaaeaeeaaaaeaeeens 128

T4 DISCUSSION ...ceiiiiiieiiii ittt e e e e r e e e e e e e e e e e e e e e e e e aaaaans 132

7.5 SUMIMAIY ..t e e e e et e e e et e e e et e e e eaan e e eenaneeees 134

Chapter 8. Case study:
Formalising Business Process Execution Languageccceeeee.... 135

8.1 INtrodUCLION tO WS-BPEL ... 135

8.1.1 Compositing web services With BPELccccceevviiiiiiiiiiiiiieeiiins 513

8.1.2 Structure of @ BPEL PrOCESS......ccovviiiiiiiiiiiiiieiiiiiii e 137
8.1.3 Execution of @ BPEL PrOCESScccvvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 141
8.2 Scope of the case StUAYcccceeeeeiiiiiiieee e 142
8.3 Defining abstract SYNtaXcccoeeeeiiiiiiiieice e 145
8.4 Defining behavioural SemMantiCscuuvvviiiiiiiiiin e 147
8.4.1 EXxecution MOdel OVEIVIEW..........ccuiiiiiiiiiiiiieeeeiireeee e 147
8.4.2 VariabIESscooiiii e 149
8.4.3 COMMUNICALIONutiiiiiiiiiiiiiiiieie e e e e e e mmne e e e e e e e e e 149
8.4.4 Semantics of BasiC EXECULIONcevviiiiiiiiiiiiiiiiiiieeeeee e 151
8.4.5 Semantics of Structured actiVitieS.............eveveiiiiiiiiiiee e 156
8.4.6 Semantics of Scope and ProCesSuuvvueuiiiiiiiieieeeeeieeeeeeeeiiieeens 158
8.4.7 COrTeIALIONSeiiiiiiiiiiiiee et 160
8.4.8 ADSIACt ACHVITIESceeeiiiiiiiiiiee it 163
8.5 Checking and testing the language specification................cccccceeeeennn. 164
8.6 SUMIMAIY ...eeiii ettt e e e e e e e et e e e e e e et e e e e eeenna e eaaeeees 165
Chapter 9. EVAlUALION.......coiiiiiiiiiee et 166
9.1 Evaluating the ALF-based BPEL specificationccccoeeeeieeeeeennnnnee. 166
9.1.1 Syntactic correctness/consistency evaluation............ccccceevvvvevvnnnnnnn. 167
9.1.2 Evaluating semantic correctness by testingcccoceeeeeeiiiiiiiiiiiinnnns 167
9.1.3 Evaluating model quality by software metrics............cccevvvvvvvvnnnnnnnnn. 170

9.2 Evaluating static checkers of the ALF Language Specification

FraMEWOTK ... e e e e 179
9.3 LIMIEALIONS ...ttt ns
0.4 SUMIMAIY ittt e e e et e e e et e e e et e e e ean e e eenaneeees 182

Chapter 10. Conclusion and further Work..............oooooiiiiiiiiiiiiiiiiie e, 183
10.1 CONCIUSIONScoiiiiiiieeeie e e e e e e 183

10.1.1 Summary of contribUtioNSccooeiiiiiii e 183

10.1.2 Summary of evaluation ... 184
10.2 FUMNEI WOTK ...t e e 185
Appendix A. Complete specification of BPEL..............cccceeeeiiiiiiiiiiieiieeeeeeeeiiees 187
Appendix B. Guidelines for the FQLS ProCesS........cccovvvvvvvviiiviiiiiiiiiineeeeeeeeen 224
Decide the semantic definition Strategyceeeeeeiiiieeeiiiiieeieeieeees 224
Guideline: Behavioural semantics development...............ovviiiiiiiiiiieeeeeeeeeee, 225
Guideline for developing behaviourscccccceiiiiieeeeeee, 226
Guideline for creating semantics definition architecture...............cc.ooceevvvnnnnnn. 227
Guidelines for implements an external checking strategy............cccevvvevvnnnnes 227

Appendix C. List of errors sourced from static checkers of other languages. 229

BIDIOGIrapy ..o ——————— 232

Word Count: 48307.

List of Fi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

gures
Process of design research..............cvieiiiiiiiii e 23
Components of language specification.coouuvveiiiiiiiinneieeeeeeeee, 27.
An example of a meta-model.ccceeiiiiiiiiii 28
Roles and products in the DSL development process............cccceevvuees 30
Components of translational approach.ccccevviiiiiiiiiiiieeee 36
Components of operational SEMaNtiCS.uuvveiiiiieieeeeeeeeeeeeeeeereninnnns 39
Languages used in rewriting approach.ccceoeeviiiiieiiiiiiiiiin 40,
Languages used in weaving approach...........cceeuvuuvvviiiiinnieeeeeeeeeeenns 42
The context of model-driven workflow. ..., 54
MDA WOTKFIOW. ..ottt 55
Architecture of FQLS.o 65
Workflow of analysis layer.............uuiiiiiiiiiiiieeeeeeeeeeeeeeeee e 69
OVErVIEW OF SPEM. ..o 74
Phases of DSL development. ... e 75
Products and process Phases.uuuvuuuiiiiiiiieeeeeeeeeeeeeeeeevieeeeneeeeees 75
Developing abstract SYNtaX.ccceeeeeeieeeeeeeiiiieeeeeceii e 77
Develop behavioural SemMantiCs.cccceveiiiiieeieiiieiieec s 78
Checking language specification.couuuvuuiiiiiiniineeeeeeeeeeeeeeeeeen, 79
Testing language Specification.ccccceeviieeeeieiiiiicee s 81
Attaching behaviours directly to meta-model operations. 87
Attaching behaviours as separate operation rules.ccccceevvvnee. 88
Variable and Statements meta-model.ccccooiiiiiiiiiiiiiiiiiiiiiiian 89
Variable and Statements run-time meta-model..............cccccciviiinnnne. 89
Attaching behaviours to a run-time meta-model................ccccceiinne 90
The meta-model of a PNTD........coooiiiiiiiiiiiiiiee e 91
Executable meta-model of PNTD.ccooiiiiiiiiiiiiceeii s 94
Defining semantics as actiVities.cccceveeiiiieeieeiceceeeee s 96
Checking NAme tYPOS. ..ooeeeiiiiiiiiiiiee e 97
Checking non-existent Properties.ccccvvvvveeeevviiiiiiiiiiee e eeeeeeeeen 98
Validation package. ..o 109
ALF text to model transformation.ccccoeeeeiiiiiiiiiiiiiiic e 112
An example in the ALF grammar meta-model.ccceevvvviinnnnne 113

7

Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:

Arithmetic expression models in the ALF meta-model. 114

Compiled fUML model of getActiveTransition. ..., 117
Generating Java COUE.uuuvuuiiiiiie e e e e ee e et 121
Project structure of the executor generator.cccceeeeeieeeeeeeeeeeeenn. 121
Graphical syntax of BPEL.ciiiiiiiiiiiieeccceeeeeee 137
BPEL @and WSDL.coooiiii it 138
Abstract syntax of WSDL.ouuviiiiiiiiiiie e eeeeeeeeeeeeeeeeeeeeeeeeaees 145
Abstract syntax of BPEL. ... 146
Runtime meta-model of BPEL.ccoocviiiiiiiiiiiieeeee 148
State machine of basic execution. ..., 151
A flow activity that contains pick activity and links.ccccceeee. 152
Basic executions from runtime meta-models.ccccceevieiiiniiiin. 153
Structured @XECULIONS.uueeeiiiiiiie e 156
State machine of ScopeExecution. ccvvviiiiiiiiiiii e, 815
example of COrrelationsS.............uceeiiiiii e 161
lllustration of COrrelations.uuuueiiiiiiiii e 162

List of Tables

Table 1: ALF syntax that is similar to that of Java...........cccccceeeiiiiiiiiciieeeeeiee 59
Table 2: Errors identified from established checker..............cccciiiiiiiiiiiiiicenn. 101
Table 3: Errors identified in the BPEL case study.ccuvvvviiiiiiiiiiniiieeeeeeeeeee 102
Table 4: fUML analysis approachesccoooeiiiiiiiiieeeiiiie e e e 111
Table 5: Transformation [anguUagEsS.ccoooeiiiiiiiiiiiii e 112
Table 6: Mapping between ALF code and fUML models.ccccovvvvvivvivinniinnennnn. 115
Table 7: Mapping from ALF t0 EMfatiC............ceiiiiiiiiii e 122
Table 8: Mapping from ALF statements t0 Java.cevvvvvviiiiiiiiieeeeeeeeeeeeeiieens 127
Table 9: BPEL handIErS..........u i 139
Table 10: BPEL DASIC ACHVILIES.uuuuiiiiiiiiiiiiiiiiieeee e 140
Table 11: BPEL Structured aCtiVItIES.uuiiiiiiie e 141
Table 12: Differences between BPEL 1.1 and 2.0.ccoeeeeiiiiiiiiiiiiiiiiiiiiieee 143
Table 13: Added concepts iN BPEL 2.0. ...ccooiiiiiiiiiieee e 143
Table 14: teStiNG fIleSuuuiiii e 169
Table 15: ENVIFONMENTSuuiiiiiii e e e e e e e e e eeeeeeeananaas 170
Table 16: LOC COMPAIISON. ..uuuuuuiiiiiiieieeeeeeieeeeeeeeesieasans s s e e s s e e e aeeaaaaeeeesnnsnnns 173
Table 17: Cychomatic complexity COMPAriSON.ccceveeiieeeeeeeerieeiiieiiiiiieanans 175
Table 18. Cognitive weights of control StruCtures..........cccccoeeeeeiiiiiiieieiiiiiee 176
Table 19: Cognitive complexity COMPArISON.ccvvvveeiriiiiiiciieee e e e e e e e ereeeeeaaes 179

Abstract

Domain Specific Languages (DSL) are becoming a commractice for describing
models at a higher abstraction, using a notatiahdbmain experts understand. Designing
a DSL usually starts from creating a language $pation, and the other tools of the
DSLs are derived from the specification. Hence,dbality of the language specification
can crucially impact the quality of the completellX8ol chain.

Although many methods for defining a language dmation have been proposed, the
guality of the language specification they produisedot emphasised. This thesis explores
the quality of language specifications, and propasmsistency, correctness, executability,
understandability, and interoperability as the Kegtures that a high quality language
specification processes.

Given the importance of these features, this thésssgns a new language definition
approach that is based on the newly published OkM@dards, namely: the semantics of
the foundational subset of UML (fUML), and the AwtiLanguage for fUML (ALF). This
approach enables the creation of a language spa@in with the proposed criteria.
Moreover, a software framework that simplifies freduction of high quality language
specifications is built. Finally, a software devmioent process is developed, which
analyses the roles, products, and activities in Bcification development.

The framework is demonstrated by defining the lagguspecification of Business
Process Execution Language (BPEL) as a case slimyBPEL specification is further

evaluated, which confirms the desired quality fesdlare processed.

10

Declaration

No portion of the work referred to in the thesis leeen submitted in support of an
application for another degree or qualificationtbis or any other university or other

institute of learning.

11

Copyright Statement

The author of this thesis (including any appendeaad/or schedules to this thesis)
owns certain copyright or related rights in it (tl@opyright”) and s/he has given
The University of Manchester certain rights to sseh Copyright, including for

administrative purposes.

Copies of this thesis, either in full or in extmend whether in hard or electronic
copy, may be made only in accordance with the dgpyrDesigns and Patents
Act 1988 (as amended) and regulations issued uhaer where appropriate, in
accordance with licensing agreements which the &fsity has from time to time.

This page must form part of any such copies made.

The ownership of certain Copyright, patents, desigmade marks and other
intellectual property (the “Intellectual Property’and any reproductions of
copyright works in the thesis, for example graphd #ables (“Reproductions”),
which may be described in this thesis, may notweeal by the author and may be
owned by third parties. Such Intellectual Propentyl Reproductions cannot and
must not be made available for use without therpndtten permission of the

owner(s) of the relevant Intellectual Property and#eproductions.

Further information on the conditions under whicdsctbsure, publication and
commercialisation of this thesis, the Copyright ang Intellectual Property and/or
Reproductions described in it may take place islabda in the University IP

Policy (see http://documents.manchester.ac.uk/Ddoiaspx?DoclD=487), in any
relevant Thesis restriction declarations depositethe University Library, The

University Library’s regulations (see
http://www.manchester.ac.uk/library/aboutus/regatet) and in The University’s
policy on Presentation of Theses.

12

Acknowledgement

I would like to express my greatest gratitude tosugervisor, Dr. Andy Carpenter, for
his invaluable feedback, patient guidance, suppod,encouragement.

| would like to offer my special thanks to my extak examiner, my internal examiner,
and my advisor Dr. Renate Schmidt for their presitaedback.

This thesis could not have been accomplished withou family and friends for the
support they offered through these years. | woikd to thanks my parents for their
supports and help. My deepest thanks are to my, Wifeg Jing, for the support, help and
love.

Finally, 1 would like to thank the School of ComputScience of the University of

Manchester for the financial support via the Ovasdeesearch Scholarship.

13

Chapter 1.

Introduction

The history of programming languages shows theniveagpofrom machine languages
to assembly languages, then to third generatiogulages like Java or C++. An alternative
way to see this is as enabling the use of higheeldeof abstraction for specifying
implementations. That is, specifications that contass low-level detail and which are
less dependent on a single platform. By using adridevel language, a problem can be
solved more quickly and the solution usually camédiewer errors. For example, consider
using an assembly language or Java to solve the saoblem. The assembly code
requires developers to remember many differentungon words and memory locations,
and the process is error-prone. On the other hed)ava software would contain fewer
code lines and would be easier to write and debug.

Third generation languages are not the end of thgramming language evolution.
Language developers are seeking to raise the atistrdevel further by creating new
languages that have more concise and powerful xsysitd=or example, new languages,
such as Scala, Groovy, Xpdrahd Google’s Go language include concepts liksuri
higher-order functions and sequence expressiontrb&nguages are also enhanced as a
result of the development of newer programming Ueggs. This can be seen in the
development of Java 7 and Java 8 where supporsifoplified syntaxes, such as for
multiple catch statements, and higher-level corsgseptich as lambda expressions, are
occurring. Thus, perceived deficiencies in existimgguages lead to the creation of new
languages, and the creation of new languages leadbe enhancement of existing
languages.

The programming paradigm is also changing. Whike dhject-oriented programming
paradigm is still dominant, newer languages absodncepts from Functional
Programming, and Aspect Oriented Programming (A©&) make logic clearer, and
produce code that is easier to develop and maifi&j Meanwhile, the development of

newer frameworks also makes programming easiercéotain application areas. For

! http://wiki.eclipse.org/Xpand
14

example, a well-supported domain is web applicatvdh frameworks such as Spring, JSF
and Ruby on Rails widely used.

One important aim of these technologies is to alli@velopers to focus on the problem
that they are trying to solve. Therefore, by utigsthese technologies, they can ignore
many details that are not relevant to the probléelowever, in all of the approaches
mentioned, the focus is on the solution domairothrer words, although some high level
concepts are supported, they still capture theildeththe solution and developers must
put effort into creating a solution from the prableModelling the solution rather than the
problem means they could be trying to solve thengrproblem; moreover, modelling a
problem using a language intended for defining temhg always involves unnecessary
detail.

A promising way of raising the abstraction of pamming languages is to capture the
problem directly using Domain Specific LanguagesD@main Specific Language (DSL)
is a programming language designed for a particdganain or application area. Deursen
et al. [155] defines a DSL as

[a] “programming language or executable specificat language that offers, through
appropriate notations and abstractions, expresso@is on, and usually restricted to, a
particular problem domain”.

Compared to General-Purpose Languages (GPL), D& snare expressive for the
domain they serve. DSLs are thought to be the gexération of programming languages
[100]. However, it is not always possible to digtirsh between GPLs and DSLs, because
the main differences are the problem domain on khiey focus. The term ‘domain-
specific’ is a relative concept when compared toegal purpose languages [156].

Another way of raising the abstraction level isuse modelling. Models are the
abstraction of a real system or problem, and adehlyiused as a way of expressing design
blueprints. The Model-Driven Engineering (MDE) [1345] approach suggests focussing
on models rather than on computing. It encouragesuse of a high-level model to
describe the system, and the entire implementaifothe system can be automatically
derived from the models by model transformationd ande generation [148]. DSL
programmes and models share certain similaritiesgsboth try to capture the problem
domain via a higher-level abstraction language. ddernthe development of DSL and
models are related, and they share various theanig$ools.

This chapter presents an overview of current DStettigpment and highlights the

problems that motivated the research presentetlisntitesis. Section 1.1 motivates my

15

work, and is followed by Section 1.2 that introdsidbe research objectives and the
hypothesis of the thesis. Section 1.3 highlights dbntributions of the thesis. Section 1.4
discusses the methodology of this project. Finagction 1.5 presents a structural
overview of the complete thesis.

1.1 Motivation

DSLs are not new concepts. Examples such as UN&X Bhve a longer history than
that of most of the current GPLs. On the other h@ndgramming in DSLs shared many
similarities to modelling. Both DSLs and models avays of precisely and concisely
describing a narrow domain. Indeed, DSLs provideag of expressing models in such a
manner that domain experts, who may not know progreng, can use the notations they
understand for development. To use models in MB& e¢quires the design of a language
(abstract syntax) that is sufficiently expressioe the target domain that the required
models can be specified. By first designing a D8 #&en using it to solve problems,
MDE has demonstrated higher productivity level wigwer errors than traditional
software development approaches that separatendasigimplementation [102].

Developing a useful (domain specific) language ientent only defining its syntax and
semantics, but also creating support tools, suchdésrs, executors (either compilers or
interpreters) and, possibly, verifiers. Historigathe creation of DSLs has been held back
by the high cost of developing this tooling [144he characteristic of MDE to define
things, including languages, by models and then timsse models as inputs to
transformations and generators means that with ajhygropriate transformations and
generators, DSL support tooling can be created faomodel of the language drastically
cutting the cost of creating this tooling. This kpgtion of MDE is referred to as Model-
Driven Language Engineering (MDLE).

MDLE has provided good support for the developm&Entiomain specific programs
expressed in a DSL. Code editors (textual and geaphtools for checking the well-
formedness of programs and code generators canobeged by tools developed as part
of the Eclipse Modelling Project (EMP). There aleoamany other commercial or open
source projects that can provide some or all of support [43]. However, an important
aspect of a language specification, namely behaai@@mantics, is not well supported by
MDLE.

16

Behavioural semantics refers to the rules useceglge a programme. It is noted that
some languages are designed purely for structupdkiting and do not have execution or
evaluation semantics. Although such non-executksiguages still have semantics, this
thesis concentrates only on the behavioural sepsaatiexecutable DSLs.

As an important aspect of a DSL specification, lvehaal semantics should be clearly
defined. However, in practice, they are often dedirby English prose or a reference
implementation with, hopefully, consistent prosdéthdugh prose makes the specification
accessible to a wider audience than a technologgddescription, it has many limitations.
In particular, as natural languages are subjectetders’ interpretations, it can be
ambiguous. Also, because the specification canaautomatically processed, executors,
simulators and debuggers cannot be derived fronD8lespecification.

The definition of behavioural semantics is shiftigm a prose-based one to a
formally specified one. Several approaches to faym@defining behavioural semantics
have been adopted by real-world DSLs (see Subseti®.3 for examples). However,
many researchers have identified defects in thdighdnl DSL specifications. If MDLE
defines behavioural semantics as models, theintgual affected by the same factors as
any model. The literature reveals that consistenoytrectness, understandability,
executability and interoperability are seen as mi@st important factors affecting the
quality of models [101, 140, 103, 137, 19, 23].

Consistency of DSL specification

In DSL development, a common approach is to defime abstract syntax and
behavioural semantics via different languages. $ietax domain and the semantic
domain are then linked by a manual or automatict (bsually not bi-directional)
transformation. Hence, it is possible that incaesisconcepts exist, such as the semantic
definition referring to concepts that do not existthe abstract syntax definition, or
abstract syntax elements without semantics. Thensistency between abstract syntax and
the behavioural semantics of DSLs, which is aldleddhe ‘fragmentation problem’ [137],
can lead the two to evolve separately with undetedhconstancies affecting later
developments.

The Specification and Description Language Spetifim (SDL) [153] is an example
of how syntax and semantics can evolve separaidlg. former version of SDL-2000

defines syntax and semantics as two separatedastindn a major update - SDL-2010,

17

significant changes were made to the syntax; howekie semantic specification is still

that of SDL-2000, in which these changes are nplieghto the official language standard.
Correctness of DSL specification

Assume the language specification is consisteng #till necessary to maintain the
semantic correctnesef the specification. Semantic correctness refleshether the
semantics of the DSL specification are as the laggulevelopers intended (see Section
2.4.3 for details). The correctness of the langusgmgeification is an important factor that
affects the quality of language specifications. inorrect language specification can
confuse its audience and can crucially impact treectness of other products that are
derived from it.

In practice, the correctness of many DSL specificat is questionable. For example,
Glaser et al. [42] examined the language spedificabf SDL-2000 and identified that
there are thousands of errors in the specificat®imilarly, Wilke and Demuth [160]
performed a check on the UML specification, whidantified that nearly 80% of its static
semantics are incorrect. These examples demondtrateneed of DSL specifications

development process to be improved.
Executability of DSL specification

The way of which a DSL is executed is defined as dkecutability of the language
specification, the actual execution is done by aecaetor. While creating the DSL
specification, the developers may develop a retsramplementation in parallel. This
reference implementation can be used to test thgukge specification and further
maintain its correctness. When releasing the DSlecifipation, the reference
implementation can also be released as a offizt@tor.

Due to the high cost of development, a referencplementation is usually not a
compulsory part when releasing a DSL specificatibns possible that the behavioural
semantics of a DSL has never been tested untilelesase, which results the released
language specification uncertain quality. Thus,réhis a conflicted interest between

maintaining the quality of the DSL specificatiordareducing the development cost.
Understandability of DSL specification

The prime aim of models is communication and thigetacan be either humans or
machines [132]. Traditionally, GPLs are developad domputer scientists who have
fundamental programming language knowledge, whielma that they may use one of the

18

many formal frameworks that exist for defining semnzs using mathematical notations.
Unlike GPLs, DSLs developers are often lack thewedge to understand formal
notations [65, 137].

In contrast to the GPL, the semantics of DSL cambee complex. During the boom
of multi-core and parallel computing, DSLs needeahantics that included the concepts of
parallel behaviours, threads and signals. For el@nmpactive programming languages
(Esterel [12] and HUME [63]) and process definitianguages (BPMN [52], BPEL [147]
and xSPEM [10]) contain concurrent concepts. Howexdsting development approaches
fail to obtain both expressiveness and understalitgabas will be discussed in the
literature review chapters. The result is thatdb@énitions of semantics are either not easy
to understand or not easy to compose by normal &Sfelopers. Both factors result in a
complex specification, which affects the undersédmigty of the specification.

Interoperability of DSL specification

Although there are other ways of defining absteyeittax, the MDLE approach usually
defines the abstract syntax of a DSL using the NDdigect Facility (MOF)[51] as a meta-
model. The MOF standard does not exist in isolat®MG have other related standards,
e.g. the MOF mapping to XMI, that means models lmammoved between any tools that
support these standards. Thus, abstract syntaxripglests are interoperable across
multiple tools. In contrast, there is no widely egnl standard for defining behavioural
semantics meaning many approaches have been ese8dstion 2.3). Thus, behavioural
semantic specifications are only usable by theimalgools used to create them; i.e. they

are not sharable.
Quality assurance tasks for DSL specification

There are various ways of ensuring the quality led tnodels. Many researchers
proposed that modelling processes, automatic premMention, simulation and conventions
are practices for improving model quality [103].tidugh it is desirable to apply these
methods to a DSL specification, as the number df D&ers is very small, it is only worth
doing so if the cost thereof is small. The currstatte of defining DSLs uses separates
specification languages with limited expressivenagsch makes it difficult and not cost-
effective to improve the model quality of DSL spgmeations. The ways of maintaining
model quality are expanded in the literature revobnapters.

In summary, developing the semantics of DSLs wiataining the quality thereof is a

challenging task. Inconsistent, incorrect and cax@emantics affect the quality of DSL

19

specifications. On the other hand, a high quali§LBpecification should beonsistent,

correct, executable, interoperakd@dunderstandable

1.2 Research objectives

The literature review identifies that current apgmioes to defining DSL specifications,
especially behavioural semantics, lack quality emste and that many of the existing

semantic specifications for DSLs are of low qualitite main causes of this are:

* The separation of abstract syntax and behaviowalasatic definitions which

allows inconsistency between the two elements.

* The limited expressiveness of modelling languageses DSL specifications to be
complex and not easily understood.

* The lack of executability makes it difficult to teke specification, thus leading to

an incorrect specification .

* The lack of interoperability makes DSL specificatinot processable by a wide

ranges of machines , which results in having leskgupport.

The DSL specification is used as the basis for tstdeding the language, and is the
guide for related tool development. Thus, investngaways of ensuring the quality of
DSL specifications is a significant task. There aeweral properties proposed as the

features of a high quality DSL specification, whidm be categorised as follows:

* Features can be addressed by a DSL definition approlnteroperability and

understandability are features of the DSL definitapproach.

» Features can be addressed by a DSL developmentodaodbdlgy. Correctness,
particularly semantic correctness, cannot be gueednby a specification method
because it relies largely on the interpretatiotheflanguage engineer. However, by
applying a proper development methodology and lygugroper tools, the errors

in the specification can be identified more easily.

» Features can be addressed by both the DSL defirgipproach and development
methodology. This includes the consistency and #xecutability of DSL
specification. Creating a mechanism to ensure dmsistency automatically is one

way of dealing with the inconsistency. On the othand, since the inconsistencies

20

are caused by defining DSL separately, it is prarmgiso use a method that could

define them in the same language.

As indicated above, a DSL specification would beadfigh quality if a proper DSL
definition approach, development method and to@sevio be used. Since defining DSL
in a unified manner could eliminate inconsistenoywrs, this thesis focuses on using a
unified definition approach. The hypothesis of tiissis is therefore:

Hypothesis:

Given the importance of the DSL development, hiighly expressive, interoperable
modelling languagewere to be applied for definingoth the abstract syntaand the
behavioural semantigsand if the development were supported by propdEtware
development method and tools, the DSL specificatvonld be of better quality in terms
of consistency, correctness, understandabilityiat@doperability.

Thus, the research objectives are

» To investigate the requirements of a high quali§L3pecification.

* To design an approach that could define a DSL umiied manner, fulfilling the

requirements of a high quality DSL specification.

* To develop a framework to support the software higraent process that assists

in the development of DSLs.

* To create a software development process thatespible newly defined approach.

1.3 Contributions

The contributions this thesis made can be categgrés scientific contributions and

technical contributions. The scientific contrilmrtican be summarised as:

* A new approach for defining a pure, model-based BBécification in a unified
manner is designed. The new method is based omeiady published OMG
standard fUML/ALF, which defines abstract syntaxd drehavioural semantics in
one interoperable modelling language. The unifiefinition makes the automatic
identification of inconsistency errors possiblealsio makes specifying concurrent

behaviour and concepts of threads possible, witkacrificing understandability.

The thesis also made three technical contributions:

21

» A software framework for defining DSL and performiaarious quality assurance
tasks is developed. It enables the definition &L specification, performing a
static analysis and report errors, bridging thanitedn domain/analysis domain,

building test DSL programmes and testing the behaal semantics.

* A modelling process for defining the DSL specifioat which applies quality
assurance of the DSL specification directly rathean leaving quality assurance to
the implementation stage, is proposed as a SPEMImibéhcludes roles, activities,
and guidelines.

* The thesis also confirms that, though fUML is daesigjto give UML semantics, it
can also be used to define the semantics of a widege DSLs. This is
demonstrated by defining the Petri net example Gespter 5) and the BPEL case
study (see Chapter 8).

1.4 Research methodology

In Section 1.1, a set of problems in current matiglen language engineering is
identified. To solve these problems, it is necesdar design a solution. Hevner and
Chatterjee [67] summarised that “all design begyith the awareness of a problem”. The
known frameworks in design science research afltestanith problems, followed by the
design of a conceptual framework, a prototype oeah product, and the evaluation of the
design. Examples include [151] and [154]. In thest®n, the process of design science
research followed by this thesis is illustrated.

The Design Science Research Methodology

Hevner and Chatterjee [67] extended Vaishnavi anckcKler [154]'s work and
formulated the activities in design research asxstep-process, which is illustrated in

Figure 1. The same process is followed in thisaede

22

[Problem identification and motivation]

[Define the objectives for a solution]

Design and development

Demonstration

Evaluation

Communication

Figure 1: Process of design research.
Problem identification and motivation

This step involves defining the research problentsjastifying the value thereof. The

problems were previously identified in Section 1.1.

Define the objectives for a solution

By analysing these problems, a set of requiremsnéstablished, and the solution to
these problems must have these features. In tlésisththe requirements of quality

language specification are explored in Section 2.4.

Design and development

This step includes creating and developing thetmwiuDue to the features listed in
Section 1.2, different approaches to defining sditswrare explored, according to which
the design is constructed. The contributions of thesis all involve design and
development. The framework for defining a DSL basadALF/fUML is designed, and
the supporting tools, including code editors, mottahsformers and an executor are

implemented to perform the defining and qualityuagsce tasks.

23

Demonstration
Demonstration is an important step as it shows tthatdesigned artefacts could solve

one or more instances of the problem. This cowdlire experiments, simulation or case

studies. In this research, the following featuresw solution need to be demonstrated:

* That ALF/fUML can be used for specifying the abstrayntax and behavioural

semantics of a DSL.

» The realisation of the software development pracedthen a software
development process for DSL specification is desilgnt must be demonstrated
that it can be used in a real context, and thas possible to perform quality

assurance tasks, such as testing and static clgeckin

These demonstration aspects are well suited te@a stady. A case study that uses the
new software framework to realise a DSL specifamattould demonstrate the usability of
the framework, as long as the selection of the sas#y is capable of showing the features
proposed in Step 2. Using the software developmestess to implement the case study
could demonstrate the usability of the softwareetlgyment process, while simultaneously

identifying defects in the process and identifygugdelines that could be reused.
Evaluation
Evaluation is the process of examining how well tesign actually addressed the

problem. In this thesis, evaluation includes:

» Evaluating the DSL specification created in theecstsidy and seeing whether the

specification meets the requirements.

» Evaluating the framework and the software develapgnpeocess to see whether

they meet the design requirements.

Communication

Hevner et al. [68] proposed that communication ld researching findings and
innovations to other, relevant audiences is angaddent step of design science. Aspects
of the research solutions have already been p@alishseveral academic papers,

[87] Qinan Lai and Andy Carpenter. Defining and ify@ng behaviour of domain
specific language with fuml, BM-FA '12, pages 1:1/412012. ACM.

24

[88] Qinan Lai and Andy Carpenter. Static Analyaredl Testing of Executable DSL
Specification. In: Proceedings of MODELSWARD2013arélona, Spain, 2013.
INSTICC.

1.5 Thesis structure

This thesis is organised in three sections:

Background

Chapter 2 provides an introduction to the foundeiof domain specific language
development. It also includes the literature reviefvthe current DSL development
approaches. Finally, the model quality of DSL sfpeaiions are discussed and the
characteristics of quality DSL specifications analgised.

Chapter 3 provides an introduction to the modekbatechnologies that are used to
build the language specification framework.

Design and development

Chapter 4 gives an overview of a Framework for @udlanguage Specification
Framework (FQLS), which includes the software frawmk and the software
development process.

Chapter 5 introduces the language definition apgrad FQLS and the definition layer
of the FQLS by guiding the readers through a rugexample.

Chapter 6 illustrates the analysis layer of the BQIt summarises the static checks
that FQLS can perform and introduces the developrakethe checkers. It then explains
how the FQLS enables the reuse of fUML checking@gghes by a model-transformation.

Chapter 7 introduces the execution layer of the $@bhd discusses the way in which
the language specification is translated into taeke.

Demonstration and evaluation

Chapter 8 demonstrates the contributions of theighley applying it to defining a
language specification for BPEL.

Chapter 9 evaluates the FQLS by using the BPEL stagly, conducting experiments
on evaluating different parts of the framework.

Finally, Chapter 10 concludes the thesis and prepbasgther work.

25

Chapter 2.

Domain Specific Language Foundations

This chapter introduces the foundations of domaiacsic language development.
Section 2.1 explains the basic elements of any cbenpanguage specification. Thereafter,
Section 2.2 introduces the process of domain dpdaiiguage development. Section 2.3
reviews the technologies used, especially thosddbning behavioural semantics. Section
2.4 considers the characteristics of a DSL spetibo and summaries the desirable

features of a high quality language specification.

2.1 Programming language specification

A widely supported programming language may haveyntade editors and compilers
that have been developed by various parties. Howealethese tools support the same
language syntax and semantics, because all theledme implementations of the same
language specification, as illustrated in the buottaf Figure 2. A language specification is
an abstract definition of a programming language tovers one-or-moreoncrete syntax
(what the user writesgbstract syntaXwhat the user expressegehavioural semantics
(how it is interpreted) and possibly the mappirgg¢of.

26

package DSML[|Z1Language Specification]J

Language definition method

-definedBy

Concrete Syntax Behavioural Semantics Mappings Abstract Syntax

0.*

Language Specification

T

Implementationl Implementation2 Implementation N

Figure 2: Components of language specification.

Figure 2 also illustrates the relationship betw#ss language specification and the
language definition method. The concrete syntaxatbstract syntax, the mappings and the
behavioural semantics form a language specificafidre language specification is still
needed to be expressed by some languages. Theatgndbat defines languages is a
language definition method. The following subseawiantroduce the components of a
language specification. After that, the languagindsn methods are reviewed in Section
2.2.

2.1.1 Concrete syntax

Every language is represented by notation; thisuis of both natural languages and
programming language. The symbols and their passibtiuences constitute the concrete
syntax of the language. One thing to note is thabmacrete syntax can be textual or
graphical. It is common for textual concrete syet&to be defined using context-free
grammars, typically Extended Backus-Naur Form (EBMfnother thing to note is that a
language may have several different concrete sgstaxor example, RELAX NG [146],
which has an XML syntax (suitable for processingapyplications) and a compact syntax
(suitable for human interpretation); this situatialso occurs in OWL [124] and BPEL
[147, 141].

27

2.1.2 Abstract syntax

Abstract syntax defines the concepts of a langaagethe relationships between these
concepts [25]. In traditional language design, dstract syntax has a one-to-one
correspondence with a concrete syntax and it isegfoy the BNF for the concrete syntax.
More recently in language engineering, it has becoommon to define an abstract syntax
using a meta-model [112]. There are several passibtations for defining meta-models
one of which is shown in Figure 3; although ontfgtance this looks like a UML class
diagram, each ‘class’ represents a concept preserthe abstract syntax and the
‘associations’ relationships between these concépts process of linking an abstract

syntax to a concrete syntax is done automaticeitlier by a parser or by transformation.

package pnmlExampld (2] class u

NamedElement PnObject Transition
+name : String

T objects *

PetriNet

Place

Node +initialMarking : Integer

Arc

+arget +inArcs

+source +outArcs

*

Figure 3: An example of a meta-model.

Associated with the abstract syntax are well-formetes. These invariance or
constraints are often specified by a constrainglage, such as OCL [46], and are
sometimes called static semantics. In this thegdi-formed rules are treated as a part of
the abstract syntax, and the word semantics ireicéiehavioural semantics, unless

otherwise specified.

2.1.3 Behavioural semantics

Language semantics describes the meaning of canagepa language. In natural
languages, semantics can be defined as a mappingde the language concepts and
concepts in the real world. The semantics of a qamogning language also defines the
meaning of that language. It is still possible &dine the semantics as mappings if such a
mapping exists; however, computer scientists areenngterested in how the programs
executes in order to build an execution tool acogrdb the semantics of the language.

28

In the domain of executable programming languaties,semantics of a language is
how the programs written in that language wouldcate on a computer [137]. This is
also called behavioural semantics, execution seozaat dynamic semantics. This thesis
choose to use the term behavioural semantics faresenting how the programs are
executed.

Zhang and Xu [161] summarised three ways to foynd#fine semantics, namely
operational, denotationalnd axiomatic Denotational semantics gives the meaning of
programmes by defining mathematical functions onodiations that map the abstract
syntax of the programme to a semantic value. Itesponds to the construction of a
compiler. The compiler generates target code thassumed to have meaning in the target
machine.

Operational semantics describes the meaning obgrgamme as a sequence or as the
execution history of state transitions. The segesrare specified as operational steps of
an abstract machine. Operational semantics comelsfeothe construction of a programme
interpreter; the execution steps describe how tbgram is interpreted in a machine, using
the same notations as the abstract syntax. The widsly used notation for defining
operational semantics is Plotkin's SOS approach][M#hich uses mathematical language
to capture the transition rules.

Finally, axiomatic semantics use a different med@ranwhich does not directly define
a method that could be used to execute the progearbut defines a set of assertions that
express the correctness of the programme or theaence of the programmes.

In the development of semantics for GPLs, the agutes used are all mathematical
notations. This is because these rigid and corspseifications enable analysis, they are
understandable to GPL developers (who are mainhypeer scientists who are used to
working with formal notations) and because it issgble to abstract GPL semantic
concepts in mathematics without losing meaning. el@mw, the same principles do not

hold for DSL semantic development, as will be déssad in the next section.

2.2 Domain Specific Language development

This section reviews the basic concepts and methiods DSL specification
development. Subsection 2.2.1 discusses what isctrmgents involved in a DSL

development process. Subsection 2.2.2 reviews thditibnal methods for DSL

29

development. After that, Subsection 2.2.3 introduttee DSL development by a model-

driven approach.

2.2.1 DSL language specification

The content of a DSL specification depends on tmpgse of the DSL specification.
There are two examples of the purposes. A DSL fpaton can purely defines the
language itself; or it may contain sufficient ditahat allow various tools to be built as
well, for example, executors or verifiers. In thatér case, a DSL specification may
contain examples and tutorials in addition to laggisyntax and semantics.

Multiple tools can be built as implementations loé tsame specification. In order to
allow this, a form of platform-independence is rebch a DSL specification. In addition,
a level of formality is needed in the specificatidnis not a requirement to build the
language specification by mathematical languageyeker, the language that used to
define the DSL specification must prevent differerierpretations of the same language
specification.

Kelppa [80] summarises that there are two disfietses in the life cycle of a DSL. In
the first phase, the language is designed, whiclymes a language specification and
usually also provides reference implementationsugiport tooling. The other phase is the
use of the language. By using the specification tedtools created in the first phase,
domain experts create DSL programmes.

These two phases involve three different rolesstasvn in Figure 4, which are the
language engineers who create the language s@ific the language tool developers
who create supporting tools, and the DSL usersinguhe design phase, it is common for

the roles of language designer and tool develapeverlap.

o
- —
Create————J = Study

‘ / DSL Specification -
. / N ! ‘
Language Engineer v L

< w

€ 4—Use g
creme—7 DSLTools -
I) reate
‘—‘Z Create Language User
Language Tool Developer DSL programs

Figure 4: Roles and products in the DSL development process.

As Figure 4 shows, language specification is attdipeof language development. It is

the basis of language tools and provides instrastfor using the language. The main aim

30

of language specification is to be interpretedegitimanually or automatically by language
tool developers and users. To allow this interpi@a the specification must be
understandable to people not familiar with spelaauage design notations. However,
because the correctness of the DSL tools and D8gr@mmes depends on the correctness
of the specification, the language used to defime dpecification must allow at least a
basic validation of the specification. Since theglaage specification is used in various
roles, understandability and correctness are the rvain aspects of the quality of a
language specification.

When talking about understandability, it is necegsa discuss the knowledge that the
roles involved in the DSL development process. luagg engineers understand the
process of MDE; therefore, they can use the tecymed in the MDE domain. The
language tool developers know the principles of NiID&wvever, they may not be familiar
with all the technology in the MDE domain. For exde) the developers that create DSL
code analysers may only need to use a GPL and RstoAarse serialised models directly
into Java classes. Thus, they do not necessaripwkhow to perform a model
transformation. Here, the only assumption of timgleage tool developers is that they have
a general computer science background, and they pnegramming and UML.

The language users are domain experts; thus, theyseen as not have any
programming background. However, since a large anoftiDSLs are designed for the
domain of software development, the DSLs are usedidvelopers. As a result, if a
language user seeks ultimate guidance from thei&geyspecification, the user must be an

advanced useand must be confidently working with UML.

2.2.2 Traditional ways of DSL development

GPLs usually use a context-free grammar for defintine syntax, which results a
unified abstract and concrete syntax definitionn@osely, tools such as executors are
built from scratch. DSLs share many similaritiesthwiGPL, although it has distinct

features, which are listed as follows:

* A small number of users means that it must be dgeel at a low cost and reuse

tools rather than building tools from scratch [71].

* The syntax prefers graphics, or multiple syntaxég.[An example is RELAX NG,
which has an XML-based surface syntax and a congatax that is easier to be

understood by humans.

31

» The developers of DSLs can be computer scientists are equipped with the
relevant knowledge of language engineering buMiLE, they are more likely to

be developers of normal software [79].

» The DSLs can evolve in fast-pace, while GPLs aosvshnd often standardised
[156]. This requires the necessary support of natibn of the language

definition.

Many traditional ways of building DSLs aim to prdei tool reuse. One widely used
method is to define the DSL using thee-processin@bility of a GPL; hence, the existing
tools for the GPL can be reused. An example isndejithe DSLs as macros, as in the
case of SystemC [113], which used the existing ppogess mechanism of C/C++ to
generate the target language. Another group of pkeamncludes the approaches that use
the syntax extension mechanism of functional pnognéng languages (LISP or Groovy).
The functional programming paradigm can be usedef;me grammar, whereafter a DSL
programme can be written as a valid programmearfuhctional programming language.

The pre-processing approaches could reuse thaengxistrget language platform. On
the other hand, this also means that the DSL idopha-specific to the target language.
The syntax of macro-based DSLs is limited by tligatlanguage, which does not support
multiple types of syntaxes. It also requires thsiglger to know the target language well,
because expanding macros can result in unexpectemirences [92].

Another way of developing DSLs is by usipgrser-generatorsParser-generators
could be used to derive a parser that transformmsctimcrete syntax of the DSL into an
abstract syntax tree, such as Java@CANTLR?, It is possible to use the same technology
to build compilers or interpreters for GPLs. Paigenerators are also limited to textual
notations. Moreover, because DSLs have a fewesukan do GPLs, building tools for
them from scratch is costly.

In order to advance the use of parser-generatarsgjuhge working benches like
ASF+SDF [17], LISA [109] and the MOSES [36] framaWpare special software tools
that aim to ease the process. They could use BMFddding syntax and they can
generate code-formatter or even executors from dbrspecifications. While these

approaches can build DSLs, because they are buikpecial platforms, the language

2 https://javacc.java.net/
3 http://www.antlr.org/

32

specifications are difficult to reuse and are noterichangeable. As a result, these
approaches have limited usage and seems out of4fat&09].

Another embedded approach is to use the targetiéeyggonly as a tool for parsing; for
example, using a restricted general-purpose larggt@agepresenting a DSL (for example,
[94] uses Smalltalk). This approach can be seemgidag an existing language new
semantics.

Although the traditional ways of developing DSLppart the reuse of the tools, they
face the challenges listed below:

* They bind the language specification to textualgls concrete syntax languages.
* They link the DSL to a particular GPL or to a lange development framework.

* They require advanced knowledge of the target GiALsrder to develop the

macraos.

* They combine the specification with its implemeimtat which may cause the
absence of a language specification. In this cdmepnly way to understand the

semantics of the language is to inspect the imphtatien of the language.

2.2.3 Developing DSL by a model-driven approach

Model-driven approaches take models as the kejaattein the development process.
By building platform-independent models and finallpnsforming them into working
software, model-driven approaches have developadlyain the last decade. A detailed
description of various model-driven terms is giweriChapter 3. In this subsection, ways in
which a model-driven approach could benefit DSLadepment are discussed.

A model-driven approach analyses the domain ofptieblem and definitively models
a representation of the problem. In the domain &LDdevelopment, a DSL can be
represented aslanguage modelas shown in Figure 2), where the meta-modelnsdel
that could define the syntax and semantics of a8{.0'he problem of building a DSL
then becomes building the language model of the,¥d this language model is the
same as the language specification because a lgagyecification is an abstract model
that defines the language.

If a language specification is developed as a laggumodel, then all benefits of
model-driven approaches can be achieved. In theaooraf model-driven language
engineering (MDLE) [25, 43], the limitations of tliéional approaches discussed in the

last section can be eliminated. The benefits amnsarised as the following:

33

« MDLE defines the abstract syntax of language smetibns as platform-
independent models, which allows for graphical aynbr for having multiple

kinds of syntax.
* The language models are not tied to a particutgetaGPL.

» By transforming models to various artefacts, theglexity of building DSL tools

is reduced.

* For language specification development, MDLE copitdduce a clear language
model that can act as the language specificatlurs, treaders could research the

language models rather than the implementations

MDLE has become an extremely promising approacms€guently, many DSLs now

have a model-based specification, which could begcaised as follows:

» DSLs that are officially defined as models, for myde SysML [57], MARTE [56]
and BPMN [52].

 DSLs that are officially defined in other ways,haligh the working groups are
shifting towards a model-based language specificatsuch as SDL [122] and
Petri Net Mark-up Language[14].

» DSLs that are officially defined by other meanst tnich have a widely used,
model-based implementation, such as BPEL (enabyeBREL designer project)
and ASM [86], and ontology definition languagestsas OWL (enabled by the
Ontology Definition Meta-model [49]).

2.3 Methods for defining DSLs

This section provides a literature review of thetestof the art of MDLE. Although the
focus of this review is the definition of behavialisemantics, these are linked to the
abstract syntax of a DSL. Thus, before lookingettdvioural semantics, the definition of

abstract syntax is first considered.

* Later, in section 2.3.2, the limitations of MDLE in defining the semantics of a language will be introduced.

34

2.3.1 Review of DSL abstract syntax definition

In MDLE, as introduced by [136], there are two wydesed ways of defining abstract
syntax; UML profiles and meta-models. UML profilese Stereotypes to specialise UML
elements to representing domain-specific concefitice UML aims at being a generic
modelling language, it intentionally retained magmantic variation points. As well as
specialising existing concepts, profiles can adast@ints or explanations to these. Since
the profile mechanism allows the use of existing Wkols, it immediately provides
support for the creation of DSL programs. HoweugkIL profiles cannot violate the
semantics of UML. Thus, a DSL specification isIXSL profile plus all of UML, which is
normally more than required by the problem domaimrdnclusion, it is considered [137]
that UML profiles often provided inadequate expressess and lack precision .

In the meta-model approach to defining the abstsyotax of a DSL, the syntax
captured by a meta-modelling language like MOF [Edore or Microsoft DSL toolkit
When using this approach, the specification staitis a ‘blank sheet of paper’. Thus, it is
possible to ensure that the final specificationyorntains elements appropriate to the
problem domain. Of course, with this approach mastalirectly support the creation of
DSL programs. However, tools like Xtext [33] and GNB9] do simplify the production
of such tools.

2.3.2 Survey of semantic description approaches of DSLs

Bryant et al. [19] and Chaudron et al. [23] sumsedi that defining behavioural
semantics is one of the most challenging topickh&éMDE domain. One reason is that,
unlike abstract syntax that has widely agreed meé&wfining it, there is no unanimous
way of defining behavioural semantics. In princjglee means of specifying the semantics
of DSLs are the same as those of specifying theasgos of GPLs. The existing
approaches for defining the behavioural semantid3Sis can be roughly categorised as
translational approacheéwhich involves a mapping from the language symtagemantic

domain) andperational approache@vhich defines the semantics as operational rules)
2.3.2.1 Translational semantics

Translational semantics [40] explains the behadbsemantics of DSLs by translating

the DSL concepts to another semantic domain of kveemantics are well defined, and

> Now known as Modeling SDK for Microsoft Visual Studio.

35

then uses the concept from the semantic domairpiaie the semantics of the target DSL.
It is also called semantic anchoring [24].

The components of translational approaches arstridited in Figure 5. Translational
approaches involve the abstract syntax domain,tidwesformation, and the semantic
domain. The concepts from abstract syntax domariranslated to similar concepts in the
semantic domain. These translated concepts are asdtle structure of the semantic
domain. The behaviours of the target DSL are theweldped using the concepts in the
semantic domain. Hence, it is possible to build@mmme in the semantic domain that
represents the behavioural semantics of the otigemaguage. The program can be
executed by the executor for the semantic domain.eBecuting the program in the

semantic domain, how the DSL program should bewgrddn the abstract syntax domain
can be understood.

Abstract syntax domain Semantic domain

Semantics specification
Abstract syntax
specification

Program in Semantic
domain

Conform to

[A DSL program]

Executed by

Executor for the
semantic domain

Figure 5: Components of translational approach.

Translational semantics are similar with denotatiosemantics. However, there are
several differences.

» Denotational semantics gives programming languagesning by translating
language concepts to another domain. However, tRdsGalready contains

sufficient details to create a transformation tteat generate a complete program in

36

the target domain. In this case, when referrinthto'semantics specification’, the
specification only contains the transformationcémtrast, a translational semantics
specification usually involves a mapping and addii programs that are written
in the language of the semantic domain.

» Denotational semantics for GPLs usually use mathiealanotations and the aim is
to explain the compiled results in a formal wayplementations of the semantics
compile the language source code to assemble the &y contrast, translational
semantics usually selects a semantic domain ttetashigher level than assembly
code. The selection of semantic domains usually engsirpose, so the existing
analysis approaches and tools of the programmebeagused. Because the aim is

to reuse, semantic domains are usually executabtggmming languages.

* The mapping of the DSL concepts to the semanticasimironcepts is usually done
automatically. Even if it is not, there are waysmneéking automatic translation

possible, usually by using a model-to-model or mtwdeext transformation.

Abstract State Machines (ASMs) are widely useddsctibing language semantics. In
this approach, an ASM programme first defines astrabt data structure of the state
machine, and then defines a set of transition rufegssence, a transition rule is like the
pseudo codeif’ condition then update states’ , Where ’'updates’ are a set of state
modifications. ASM successfully defines the sen@ntf some widely used, general-
purpose languages, such as C#, Java, VDM, etc.rdicgpto Gurevich et al. [60], it is
sensible to adapt the ASM method for DSLs.

Semantic anchoring [24] is the initial attempt donfalise DSL semantics using ASM.
It uses AsmL, which is the ASM implementation indktisoft Visual Studio, as a semantic
domain. It shows how to identify the so-called ‘seriic unit’, which can be reused for
different DSLs. However, the process of finding sefit units is somewhat non-
systematic and ad hoc.

Gargantini et al. [40] extended the semantic anogoapproach by defining higher
level semantic anchoring in model-based technol@pmpared to semantic anchoring,
Gargantini et al. used meta-model based technaogythe semantic domain is ASMETA
[86], which is an open-source implementation of A®kked on modelling technology.
Because the core of ASMETA is a meta-model of ABN§ possible to establish model-
to-model transformations using standard model telcyy. Equally important, Gargantini

et al. tried to formalising the process of estdilaig mapping between the abstract syntax

37

and ASM. They developed mapping between MOF and BBM thus, the process of
creating mapping is automatically derived.

DiRuscio et al. [31] proposed a similar approadhtries to extend the AMMA
framework, which aims to provide a complete modgllioolset, of which the widely used
model transformation language ATL is a part, byiagdhe ability to write ASM rules.
Thus, the behavioural semantics specification candbkfined in the enriched ATL
programme by in-place transformation. [6, 127] gsuilar approaches; they focus on
evaluating the ASM semantic mapping via DSL casdiss that are more detailed.

Maude [108] is a programming language based onititegrogic, which is widely
used in the domain of real-time embedded systencifgf@ion and simulations that
involve real-time and concurrency. [69, 138, 128ksted Maude as a semantic domain.
They provided the methodology for translating thsteact syntax of the DSL to Maude
data structures. The means of specifying real-amgconcurrent concepts were discussed,
and they eventually proposed a way of integratidaade-based model verifier to their
frameworks.

There are also other semantics domains in ordgsetéorm various analysis. For
example, Hahn and Fischer [61] propose using Z-@lgmguage to specify the semantics
of the DSL. Kelsen and Ma [77] use Alloy as the astit domain. If one considers GPLs
to be a semantic domain, then works such as [/Miiwgenerate code from the language
specification, can be seen as translational appesac

By translating to semantic domains, translationgdraaches can reuse the editors or
checkers in the semantic domain to maintain theectwess of the specification, and
translational semantics are usually executable.tf@nother hand, there are also some
challenges of translational semantics, as listéole

» Consistency. It is possible that abstract syntas behavioural semantics will
evolve separately, causing inconsistencies. If nechrmnism is applied for
maintaining consistency, it is likely that updatioge category will cause the other
to expire. Although it is possible to develop al i@t automatically does the cross

checking, such a tool is costly in terms of effort.

» Understandability. Readers must understand theaabstyntax, the mapping, and
the semantic domain, which requires understandingeast two languages.

Considering that translational semantics usually e purpose of performing a

38

certain targeted analysis, the semantic domaisuslly formal. This is difficult for

the language tool developers, and may even be sitgegor the language users.

» Interoperability. There are many possible choicegtie semantic domain; thus, if
two DSLs are defined by different semantic domainggrchange between the
languages is nearly impossible and it is not pésstbo combine these two

languages.
2.3.1.2 Operational semantics

Operational semantics originated from the methdd$ebning semantics for GPLs. It
defines semantics as the rules for manipulatingtimeepts defined in the abstract syntax.

Figure 6 illustrates the components of operatieeahantics. The semantics are defined
as the transitional rules that manipulate the D&igrams by using the concepts defined in
the abstract syntax. The transition rules canrterpreted without ambiguity by an
executor. The executor can then execute the DSgranes according to the transition
rules. When creating a semantics specification pgrational approaches, it is the

transition rules that are actually created.

O e,

Abstract syntax
specification

-

Input to
Conform to P

] Executed by
A DSL programme J

Figure 6: Components of operational semantics.

39

The transition rules in operational semantics sided a method of specification.
Unlike GPLs, the transition rules of which are camptl using mathematical language
(usually the notations used in [121]), DSLs oftatest an understandable language to
express transition rules. There are two ways ohdef these transition rules. The first is
rewriting approacheswhich define transition rules using a rule reingtlanguage that
could directly manipulate the DSL instance moddie Tother isweaving approaches
which use an action language that is capable oinidgf both abstract syntax and
behavioural semantics.

Rewriting approaches

As shown in Figure 7, the rewriting approach regglitwo languages, one for defining
the abstract syntax of the DSL and the other fdinohg the rewriting rules. The rewriting
rules can manipulate a DSL programme directly, tlexpressing the semantics as

transformations.

Abstract syntax definition

Transformation language
language

Conform to

Abstract syntax

e Conform to
specification

Conform to

Behavioural semantics
A DSL programme [€rrrmennnnans specification (Transformation
Manipulate programme)

Figure 7: Languages used in rewriting approach.

There are many options for defining the rewritingles. Graph transformation
approaches, such as that of Biermann et al. [b&],Dtynamic Meta-Modelling approach
[35, 9], and de Lara and Vangheluwe [30], are eXxamphey use a graph transformation

tool that could transform the DSL instances. Thapgrtransformation tools include AGG

40

[107], Groove [41] and Henshin [7]. Because thagiton rules of graph transformation
approaches are graphic, these approaches arerpdefey domain experts who lack a
computer science background [142, 149]. On therdtla@d, graph transformations for
defining semantics of DSLs also pose many chalenBensink [125] summarises these
as graph transformations have problems of scatalfilihen a graph is too large to show),
maturity (theoretical maturity and technical matgrand that they lack of tools.

In model-driven development, model-transformatianguages can also be used for
defining behavioural semantics. Examples includarB8], Sadilek and Wachsmuth [131]
and Wachsmuth [157], which all use the QVT languddesse approaches are strong in
terms of interoperability, because QVT is the staddransformation language.

No matter which language is used as the rewritamgliage, rewriting language still
defines a DSL specification as using two langualyesntaining the consistency between
the models and the transformations in an evolviygfesn is still a challenge, and the
language engineers still need to learn two langslage

Weaving approaches

The other way approach is to weave behaviour iiolanguage model. The abstract
syntax model contains classifiers, the relationdhgtween classes and attributes. The
operations in a meta-model usually act as absipéateholders. Weaving behaviour
approaches use the operations as an aspect-jomtiporder to add detailed behaviour to
the meta-models by using an action language. Taesen languages have the ability to
represent both abstract syntax and behavioural r#&sa therefore, the language

specification becomes a programme of the actioguages, as shown in Figure 8.

41

Action language

Conform to

/ DSL specification \

Manipulate
e mEEE e [Abstract syntax]

Behavioural

=1,

T Conform to
:................)[A DSL programme]

Figure 8: Languages used in weaving approach.

Action languages can be languages that are designedodel management, such as
XOCL [25], Kermeta [18], Scheidgen and Fischer [182Epsilon [81]. These languages
have their own features. For example, because HKarnsepports aspect-oriented
programming, it works seamlessly with the Ecore eho&cheidgen and Fischer [132]
uses graphical notations that enhance understditglabnd Epsilon [81] is a platform
whereby all management languages share syntax aechantic basis. On the other hand,

various action languages share similar benefitstesl below.

* High understandability. The human consumers ofraasgics specification often
have a programming background which means that pnefer UML. Using an

action language to manipulate instance model caaggpeadable for this purpose.

* Elimination of inconsistency. Compared to transkaél semantics, in which the
semantic mapping and consistency must be managsaljing approaches do not
have a separate semantic mapping; thus, therengeed to manage it. As it uses a
unified approach for both the syntax and the serrsnihconsistencies that occur
in translational approaches, such as outdatederefes, will result in a syntactic

error in the language specification.

Similarly, they also share the same limitations.

42

* Lack of interoperability. It is impossible to shase combine languages that are
defined in different action languages. These aclémguages, although they are
maintained and are actively developing, are naidgied technology because their

use is not widely agreed upon, nor are they widsbd.

» Limited expressiveness. The action languages arallyssimilar to GPLs. They
need a starting point, such as a main method tecuéxe In addition, existing
weaving approaches do not natively support conotirbehaviours; thus, the
specification of current behaviours requires usihg language to define a

concurrent programming architecture.

UML as a weaving approach

In order to address the limitations of weaving apphes, researchers look for
inspiration from UML. In MDLE, meta-modelling langges such as MOF and Ecore are
the de factostandard for abstract syntax. There is a closatioslship between meta-
modelling language and UML, as MOF and Ecore aselset of UML class diagram. It is
considered promising if a subset of UML could bedugor defining both syntax and
semantics, since UML already has the ability tardebehaviours. The challenge is that
UML does not have formal execution semantics —simantics of UML are defined by
prose, with indented semantic gaps.

Sunyé et al [150] proposed using UML Action Sen@mnf{d4] as an action language
for defining semantics. Since UML action semantissan OMG standard, it could
introduce interoperability into weaving approachédthough the action semantics
approach was proposed a decade ago, the use thergefy limited. The following
challenges may explain why UML Action Semanticsidé suitable as a standard method

of defining language semantics.

* As it was built upon UML 1.4, the syntax of UML aiged dramatically from 1.4
to 2.x.

* It does not provide concrete syntax; instead, ai®rmalanguage needs to define
the mapping between the meta-model of the actioguage and the meta-model of
UML action semantics. Since there are many actaoglage and none of them
have obtained universal support, it is challengitog use it to create an

understandable behaviour model.

43

* UML Action Semantics still lacks formal semantibgcause its base semantics are
described by natural language, which makes perfayma formal analysis a

challenge.

The semantics of the foundational subset of UMLMIL) [55] have been published by
OMG, which is a promising technology for addressihg existing problems of the
weaving approach [137]. This thesis seeks a new B&inition method by using the
textual notation of fUML. In the same way, XMOF |%hares similar opinions regarding
the method of semantic definition. However, XMOFlseto combine MOF with fUML
by building a new modelling language that sharesAvi@d fUML concepts. XMOF and
the method described in this thesis, although sbasome technological basis, can be
distinguished by many aspects, such as the marfirdsfioing models and the method of

executing the DSL.
Summary

Translational and operational approaches can defia@guage specification formally,
thus eliminating the limitations of a prose-basg@c#ication. However, each of the
methods has certain limitations, and these linutetihamper the quality of the language
specification.

2.4 Quality of DSL specifications

Many DSLs already have, or are evolving to, a mdieded specification, and much
research focuses on the ways of defining a DSL itp&oon that enables a particular
analysis purpose. However, these approaches doemghasise the quality of the
specification. This section provides a introductmnthe quality of models. Subsection
2.4.1 introduces the goals of model quality. Afteat, Subsection 2.4.2 reviews the
practices to improve the quality of models. FinalySubsection 2.4.3, requirements of a

high quality language specification are proposed.

2.4.1 Model quality goals

Since the final products are derived from the ahithodels, the quality of these models
could affect all products that are derived fromnthéModels can be checked at an early
stage, enabling any errors found to be correctethglthe design process, at which time it

is easier to identify them than after they are enpénted. Language specifications are also

44

models, so the quality of a language specificasbares similarities with the general
model quality features. However, assuring the twaif the language specification is
challenging, particularly considering the errorsvidlely used DSL specifications, such as
UML and SDL.

According to the literature [101, 103, 57], it iegsible to classify the goals of model
quality into two categories.

The first goal is correctness. The models, as atratiion of a real system, do not
violate any properties that exist in the real systdhis means that the model must not
specify something that is wrong. [101, 103, 57]asafe this goal into correctness and
consistency. Correctness means the model is siabytcorrect (well formed) and
semantically correct (the logic and relationshiptio¢ abstraction conform to the real
system). Consistency means ensuring that diffeneodels of the same system do not
contradict each other, which can be seen as aap®operty of correctness. In the same
way, incorrect models can be seen as inconsistet@dveen the model and the meta-
model. Regardless of the definition, a correct nhaslehe pre-condition for applying
model-driven activities, because an incorrect madilead to incorrect systems.

The other goal is communication. Models are realidiin humans and machines; thus,
they must be able to fulfil the purpose of commatian. This means that models must be
captured by a language that is understandable éyntbnded users of the models, and is
interoperable between its users and tools.

2.4.2 Practice to improve quality of models

The quality of models seriously affects the quabfythe final products. However,
model quality is not easy to monitor, since mangtdes can affect the quality of the
models. Factors such as the choice of an impropeletting language, limitations of tools
and developer knowledge, as well as quality assertgchniques, can affect the quality of
the models. Nelson and Monarchi [105] identifiedttmost of the MDE processes lacked
quality assurance activity. The lack of qualitywassice restricts the quality of the models.
Lassen and Aalst [89] identified that complex medan cause many problems, including
design flaws, and are difficult to implement. Thaentrolling the complexity of models
can enhance the quality of the models.

The practices for model quality assurance can bghiy divided into two categories,
processesndautomation[103]. Processes approaches create a modellinggsdbat the
modellers need to follow, which can include marstdas

45

» The particular activities the developers need tiofg or the activities they need to
enforce, include code review [98], using Agile [4huilding reference

specifications [26] or using a test-driven approget?].

* Guidelines and conventions, such as forcing theeldgers to use a particular
modelling language (for example, UML) or a programgrparadigm (for example,
Cariou et al. [22] forces design by contract pmhe), documenting best practices

and error-prone places.

Automation is another way of maintaining the quyatf the models. Automatic error
detection and testing are widely used and effeatiags of programming, and modelling is
no different. It is more difficulty to apply autom@n in models because, when testing or
simulating models, the models need to be executatildo have a good execution tool.

There are many works aimed at automatic model aizatipat transform models to a
formal domain, which use reasoners or model checkar the analysis. These include
[119, 126, 28] for checking reachability and coditdon, [117, 118] for checking
executability for detailed behaviours, and various approachestfecking the consistency
of UML [34]. While these approaches are usefuldioecking the special properties of the
models, they are limited by the reasons listedwelo

* Using a reasoned or model checking technology félcesproblem of the state
explosion problem, which makes checking large nmedd#ficult.

* It involves knowledge that normal developers doheote.

* A way of tracing the errors back to the originaldabis still needed when errors

are identified.

The formal approaches uncover various kinds of aded errors in a language
specification. Features such as reachablity areoitapt. However, the current practice
fails to reveal extremely basic errors, which shdudve been considered in the first place.
Wilke and Demuth [160] and Glaser et al. [42] nolyaeveal the large number of errors
in the language specification, they also identifgttthese errors are not tricky errors, but
most of them are inconsistencies or syntax erfoosisequently, it is more desirable to use
a method that could identify these simple errors.

® Here, the concept ‘executability’ is not whether the language specification can be executed as a
programme, but to whether the system is still in a valid state after the execution of a method.

46

Static code analysis tries to find bugs or erroithout executing the program.
Researchers prove that they increase the qualitjeotoftware [70, 27]. It could involve
using a type system, applying analysis based onpatigrns, restricting code styles, or

involving use of theorem prover or model checking.

2.4.3 Requirements of high quality language specification

While language semantics specifications are tramsfg from a prose-based
specification to formal specifications, a definitionethod that can produce such a

specification must have the following features:
Consistency

If a language specification is defined in differéariguages, these different parts must
not be contradictory when several parts are contbasgeone language specification. The
consistency discussed in this thesis is also edeiw as horizontal consistency in some of
the literature [103]. Horizontal consistency maywcwhen the language specification is
defined by different languages or models, as eaxth ip correct, but the concepts that
cross paths are used incorrectly. For instancenhwlsng translational semantics, the
structure of the semantics specification is derifredh the abstract syntax specification;
however, as they have both evolved, the semargmsfgcation may refer to an element in
the syntax specification that has already changeden or which does not even exist.

Consistency is an important factor in a high gyaknguage specification. Thus, a
language specification method must design a methoensure the consistency of the

language specification.
Correctness

The correctness of the language specification @omant, because the audiences rely
on the specification to solve ambiguity, and maekinise the specification as input for
other products. Any flaw in the language specifaatwill confuse the audience, and the
flaw will propagate to any other products that refhythe language specification.

It is possible to categorise the correctness gbexification assyntactic correctness
and semantic correctnesdf a language specification is syntactically ewtr this means
that it does not violate the constraints of theyleage definition technique. For example, if
the abstract syntax of a language is defined a®@ehit must be a valid model of its
meta-model. Another example is when the semantighe language are defined in a

particular language, the semantic specificatioalfitsmust be a valid programme of that

a7

definition language. Syntactic correctness is thsidcondition that a correct language
specification has to meet.

The other category is semantic correctness. Theifggion must really reflect the
language designers’ intentions. A semantically irexxt language specification may be a
syntactically correct specification; however, suchanguage specification describes an
incorrect language for the application domain.

The syntactic correctness of a language speciiicatian be ensured by applying
automation methods, such as developing a tool f@cking syntactic errors. Semantic
correctness of the language specification is netlyeahecked by a single tool, since the
semantic correctness of a language is subjectnmahunterpretation. A software process

that combines inspection and testing is one wagnstiring semantic correctness.
Executability

The syntactic correctness of a language specificatan be automatically checked, and
errors will be reported to the language designdosvever, the semantic correctness of a
language specification is not easy to check, awdlves the same difficulty as debugging
a programme that has been successfully compileds,Tiasting is the most effective way
of checking semantic correctness. Testing requitesanguage specification to be able to
act as an executor of the language, which can &matput programme and output the
results. In addition, executability is also expédctehen working with domain experts, as

the domain experts judge whether a programme eittdhve expected behaviour.
Understandability

A language specification must be widely accessilhés is why many language
specifications use natural language, because agyhdw can read can access the
language specification. However, such a speciboatisually cannot prove or disprove
one example of a programme as being correct or gyrovor can be automatically
processed. On the contrary, a specification thes psire mathematics makes it possible to
prove correctness, but is not accessible to théeacd of the specification. Much of the
literature [137, 65, 79] suggests that mathematiedinitions are not preferred due to a
lack of knowledge. Thus, a language definition teghe must balance the formality and
the accessibility of the specification.

The primary audience is the language engineer, whate the specification, and
language tool developers, who use the languagédfispdon as their product input, and

advanced language users, who are the users thatenested in the language specification

48

itself. The normal users may also be interestetthénlanguage specification. However, a
language specification is not the best way to ldaw to use a language. Thus, domain
experts who do not have any programming languagereence are not the target audience.
The language engineers, language tool developatsadmanced users have different
knowledge, but it is reasonable to assume thathlgg some experience in UML, model-

driven technology and object-oriented programming.
Expressiveness

The method of defining a language specification @lan be seen as a domain-specific
language that targets defining languages. In swgtuation, the language engineers are the
domain experts for defining languages. The abdityhe language they use affects their
ability to design high quality language definitions

Expressiveness is another important feature ofnguage that is used to define
language specifications. An expressive languageifsgion technique should be able to
define common semantics in a concise and precise wildle a non-expressive approach
may still be able to define the same semanticsitalb a difficult way. Meanwhile, the
expressiveness of a language is not an absolutepbnNhile graph transformations can
naturally support concurrent executions, they dosupport express rewritings that have

complex conditions in a precise way.
Model-based specification

Language specification must be model-based, usimgaimodelling technology,
making it possible to achieve the various beneligsussed in Section 3.1.

Interoperability

Bryant et al. [19] discussed another desirableufeatalleddisseminationwhich is the
ability to share the language standard among sblalets. The ability of a language
specification to interoperate with other shareh@deither human or machine) is defined
asinteroperability.

Many semantic definition techniques introduced @ct®n 2.3 have a special language
or method to define the language concepts. Spgdalligned languages, although making
a particular analysis possible, lack interoperghiliA language specification is
interoperable if the specification is defined uswglely accessible technology. Such
technologies are usually backed up by an internatistandard consortium, such as the
OMG or ITU, or a large community, possibly an o@urce community, or are led by a

49

large industry player. Interoperability is an imgaortt aspect of a language specification.

As it is an increasing requirement of composite BSLmust be accessible by other tools.

» Using an interoperable standard notation to captugemodels makes the models

understandable by a larger community.

* An interoperable specification can be accessed therotools. A language
specification is read by various actors in the ttgwaent lifecycle of a DSL. If the
specification is interoperable, different users agme their tools to access the
language specification.

* In the same way, considering the frequent requirénb@ transform a language
specification to other representations for purpos#s analysis, such a
transformation may already be available if the gmation is interoperable.

* Interoperable specifications make composite angaigle DSLs possible. The ideal
scenario is that, if a DSL is defined using an noperable approach, when the
language engineers implement another DSL that shdmmain concepts or
semantics, the language specification can be reusad example, if XPath is
defined using an interoperable approach, then BlLXased languages contain an
XPath expression, as their query language will berfeom the standard

specification by reusing it.
A development process for DSL

A description method should be accompanied by aga® and tools. The described
technique can affect the quality of the specifmatiAlthough a method may support high
guality language specification, it is still depentd®n the language engineer’'s work to
design, analyse and implement the specification.uified syntax and semantic
specification can allow consistency and correctrobesking to be done in an easier way,
but such a task still needs to have a means ofjl@rformed automatically. Meanwhile,
the language developers need assistance to carmh@language development process.
Such assistance can be via conventions (generdhmgee, including rules, styles and
design principles), methods (which recommend follmyva sequence of steps to gain
quality), or a framework (which is a software ortal chain that provides general
functionality for performing the tasks in languadevelopment, and which can be
extended by developers). All this assistance casub@marised as a software development
process for language specification.

50

In summary, a model-based, interoperable semardggcrigbtion technique that is
unified, executable and expressive is needed. $emtures make building consistent,
correct and understandable language specificatmssiple. To support this language
specification method, a software development pwessl a software tool chain also need
to be built.

2.5 Summary

This chapter introduced the foundational conceptsdomain specific language
development, and presented a literature reviewisting approaches for defining domain
specific language specification. Starting from tdencept of a programming language
specification, it is explained that such a speatfan includes concrete syntax, abstract
syntax and behavioural semantics.

Following this, the concept of domain specific laage specification was defined. The
actors involved in the development process of D3lese defined as the language
engineers, the language tool engineers and tha.uEke expectations of a high quality
DSL specification were discussed.

The literature review of existing approaches wass@nted as traditional approaches
and model-driven approaches. Model-driven appraaeere categorised as translational
approaches and operational approaches.

Finally, by discussing the quality of the specifiocas produced by these approaches,
the thesis proposed that a model-based, interoiigralbinderstandability, correctness,
consistency, executability and expressiveness weatures of a high quality DSL
specification. These features could be achievecrtlipg on what the selection of the
language specification method and the degree gbmtpn terms of the development

process and tools.

51

Chapter 3.

Model-driven foundations

Section 2.2.3 discussed what benefits MDLE coulddoto language development.
Subsequent chapters of this thesis will show hog gloposed language specification
framework can achieved this. Before doing so, ¢thapter provides a general introduction
to the model-based technologies that are usediliw thhe framework.

As MDLE is a specialist form of Model-Driven Engereng (MDE), Section 3.1
outlines the elements of MDE that relate to theppsed framework. One significant
aspect of the framework is the support for definihg semantics of a language. As the
approach used builds on work being done to give Ulglimal semantics, Section 3.2
examines attempts to define formal semantics forLUiid Section 3.3 introduces the

ALF technology that forms the basis of semanti¢ritédns in the proposed framework.

3.1 Model-Driven Engineering

The widespread use of UML diagrams in software graent means that model are
widely accepted has having a role in software dgwakent. However, often this is as blue
prints or diagrams that informally document theigiesModel-Driven Engineering (MDE)
takes models and makes them first class entitiek; abjects in object-oriented
programming. Developers take the initial models amn@hslate them into models
(preferably automatically to reduce the cost) wiitbre concrete (implementation) detail
and, finally, these concrete models are used tergém an implementation.

It is widely believed [155, 5, 32, 71, 102, 116] 8that MDE has several benefits;

these include:

* Increasedunderstandabilityand communication The audience for models consist
of two groups, namely domain experts and applicatievelopers. By providing a
vocabulary understood by both groups, MDE providemhancement

communication between these groups. In additiorgallee a model is not

52

dependent on users’ native language, MDE also esabternational cooperation

both within and between these groups.

* MDE increasegproductivity As MDE includes code generation, it can reduee th
time needed to produce implementation code. Aduilig, as it avoids the copy-
paste-edit processes often involved in standar@ eading, implementation code
has fewer errors and there is a reduction in tt# obmaintenance. Further, the
shift to developing at a higher leveller of absti@t means flaws are identified and
corrected earlier in the design cycle, with thessmuent improvements that result

from this.

Despite the benefits of MDE, there are drawbackse Gf these is the upfront cost of
building models and supporting tools. Another is thallenge of changing the culture of
an organisation to use MDE [71]. There have evamlyeports stating that MDE does not
enhance productivity [32]. However, reports [764146] of the successful application of
MDE outweigh these drawbacks. Hence, the basiufesatof code generation from the
models are provided in every modern IDE and mamypamies formally adopted MDE as
part of their development process [102, 159].

Having established why a MDE approach has bendtfis, following subsections
discuss the definition and models (meta-modelliagyl how these models are used in
MDE workflows.

3.1.1 Meta-modelling

MDE takes models as first class entities. So, whatmodel? Seidewitz [135] defines
a model asd set of statements about some system under SW8)(OMG [45] defines
models as A description or specification of that system atsd @nvironment for some
certain purposé.Muller et al. [104] summaries nine alternativeideions of models, and
suggests there is no common acceptance of what nsodel. Although there is no
agreement on the definition of models, there im@reement that models are abstractions
that capture something about an application domain.

Part of the previous definitions of models are thia¢y are tescriptions and
specificatiofi [45]or “statement$135]. This implies the need for a notation to
capture/describe models that itself must conform diefinition. In the model-driven world,
everything is assumed to be a model. Thus, thetiootan which models are defined is
also as model. To distinguish the fact that thisssa model of a modelling langudger

53

more precisely, a model of models, it is norma#yerred to as a meta-model. From an
MDLE point of view, a meta-model is the abstraaitayx of a language; Ramsin and Paige
[123] provide a more precise definitionA “meta-model is a description of the abstract
syntax of a language, capturing its concepts amclousing modelling infrastructure’in

this thesis, Ramsin and Paige’s definition is used.

3.1.2 Model-driven work flow

The context for an MDE workflow is shown in Figu®e The goal is to produce the
implementation artefacts that execute in the tangetform (environment). This is
achieved by a ‘top-down process’ of system consityadhat iteratively creates increasing

more implementation oriented models [16].

Design Implementations

Meta-level Meta-modelling

language
A

Modelling
language/DSL

7 7

Application domain Target Platform

Model-to-Model
transformation

Model I Artefacts

Model-to-text
transformation

Application

—3 Conform to

«eaeeeap Execute on

Figure 9: The context of model-driven workflow.

The iterative model-refinement and final artefaghgration step of Figure 9 is what is
implemented in a model-driven workflow. The Modeifu2n Architecture [45] proposed
by the Object Management Group is the best knowalisggion of this workflow. Probably
the most significant thing about this workflow i&at, as shown in Figure 10, it identifies

models for different purposes. The development ggscstarts with a Computation

54

Independent Model (CIM) or domain mocthat describes the expectation of the sys
without giving details of how is implemented. The CIM igansformed to a Platfor
Independent ModefPIM) tha gives more detail abouhe system withoutying it to a
particular platform or technology. The PIMs arentle®mbined with marking models tr
add platform specif configurations to producPlatform Specific Model(PSMs). The
PSMs are enriched with furtt details of the system, including the necessaryilde
regarding to theplatforrr. Finally the system is derived from these PSM<itlger code

generation or model interpretatio

CIM PIM PSM Artefacts

Markings

\ J

Figure 10: MDA workflow.

3.2 Semantics of UML

Currently thesemantics of UMLare defined by th&nglish prose of the stand,
which allows forambiguityin human interpretatiorthere are alssemantic gaps, e.g. the
semanticsof executing actior, which leaves aspectsf the semanticcundefined and
allows UML tool vendorsto apply their own interpretation$his section outlines previol
attempts to formalise the semantics of UML and erascurrent work to do this based

a foundational subset of UM

3.2.1 Previous work to formalise the semantics of UM

A detailed discussion of the nefor UML semantics isummarise by O’Keefe [110].
This need means any researchers have tried to providdIL with formal semantics;
approaches include the use Petri Nets [83fand graph transformati [85]. However, as
UML is a standard, one of its mepurposess to be interoperablamong different parties.
Using a particular technology cotprovide with UML formal semantics and make it se

a particular application. However, if the semaxiédinition of UML is not agree upon by

55

most of the UML shareholders, this still does notve the problem. UML action
semantics [44] tried to define a standard methodfanipulating models. However, it still
does not define the semantics of UML, but providesay of defining the behaviour of
method bodies in a clearer way.

3.2.2 Foundational subset of UML

As a step towards giving UML formal semantics, OM@&rsaw the development of
the semantic foundational subset of UML (fUML) stard [55]. This standard provides
execution semantics for a subset of UML2. The subsiects the more basic elements of
UMLZ2; e.g. classes, common behaviours, actions acttvities. The intension is that
fUML will provided a shared foundation for buildirtpe semantics of higher-level UML
concepts.

The subset of elements imported from the UML metateh defines the abstract syntax
of fUML. Its semantics are defined using a two-stagproach; firstly, the semantics of a
core fUML, often referred to as base-UML, are cedadnd then these are used as the basis
of the semantics for complete fUML. The core covbesvery basic concepts of UML, e.g.
primitive types, control flows, edges and eventse Bemantics of this core are defined
using Process Specification Language (PSL) [15Jorasi that is, first-order logic
assertions and equivalence to the PSL ontologys Weans that the semantics of base-
UML do not provide a means of interpreting UML mtsder mapping them to other
languages. Instead, these semantics dictate constithat a legal implementation of
fUML must satisfy.

fUML does have some semantic variation points, uditlg time, inter-object
communication and concurrency implementation. Theadation points allow tool
vendors to make their own interpretations when euppy the fUML standard. However,
this semantics variation does not prevent highesllsemantics being defined in terms of
elements that have this variation. Thus, althougimamntic variation points could be an
issue, in practice they are not. For example, ipassible to specify that actions are
executed concurrently, without knowing how the aonency is achieved (using real

concurrency on a multi-core platform or simulateda@urrency on a single-core platform).

3.2.3 Summary

fUML became an OMG standard in 2008. Since them| teendors, including
MagicDraw, IBM, and open-source projects, such asddldriven solution’s

56

implementation [143] Papyrus, and [91], have dgwetb native support for fUML or

compatibility mechanisms. Hence, it is now possiblsee fUML as a stable standard. A
view reflected in the fact that recent work on UMlemantics has included UML
Composite Structures RFP [54] where these semaatedeing expressed in terms of
fUML.

3.3 Action Language for fUML (ALF)

As mentioned previously, the lack of a concretetayrior f{UML is a problem when
using it to define semantics. The reuse of the UNtaphical concrete syntax was
considered/has been attempted [96]. However, uamg graphical syntax for detailed
behaviour modelling can result in verbose modedsliteonally some concepts, such as
LoopNode, do not have a standardised graphic ctnsgmtax. In practice, behaviours are
better captured using textual notations.

Attempts at creating textual notations for desagbbehaviour include tool-specific
action languages (such as the xUML [99] and IBMoral) and OMG’s UML Action
Semantics standard. In addition to the failuredUbfL Action Semantics described in
Section 2.3.1.2, none of these have the same sfdML. Thus, OMG developed the
Action Language for fUML (ALF) [50] which acts adraie concrete syntax for fUML.

ALF is a key part of the semantics definition amto proposed in this thesis. Thus,
this section provides an introduction of the largpiaFirstly, the features of ALF are
described. Subsequently, the syntax and semaritiéd_[6 are introduced in order that

ALF programs presented in later chapters can berstwbd.
3.3.1 Features of the ALF notation

The ALF standard highlighted the features of ALF:

* The users of the community are already familiahvdML and an object-oriented
language like Java or C++, which primarily havee@dcy syntax. UML-specific
usage, such as double colon syntax for name qualdin or colon syntax for
typing, should also be supported. These syntaxinEagents result in the syntax of

ALF being a combination of C-legacy and UML syntax.

57

ALF supports reference to any models that are ddfusing the graphical syntax
of UML, even when there are special characterbemiodel’s name. Furthermore,

ALF does not need the models that are defined by dkaphical syntax to change.

ALF has special, highly expressive syntax, whick tiee same expressiveness as
OCL. Because ALF semantics are built on fUML, ienits the concurrent nature

of UML, which allows the simple specification ofghily concurrent computations.

It also provides notations for structured programgnisuch as classes, associations
and signals, which means that ALF has the gengralia standard programming

language.

One significant difference between fUML/ALF and UNH that fUML models can be

unambiguously executed, which enables the simgldéisting of the models before they

are processed to other artefacts. The ALF starsjaedifies three ways of executing ALF

programmes:

Compilative Execution maps ALF concepts to fUML aerecutes the fUML
models. This is the approach applied by the ALEnezice implementation and our
former work [87]. This approach requires a good Udkecutor; in our experience,
there is still no available tool that could execotenplex fUML models generated
from ALF text.

Interpretive Execution directly interprets and axes ALF text. The approaches
include ALF open source implementation and IBM aa#l designer. These

approaches do not support the full specificatioAlof language.

Translational Execution translates ALF text to a+#uML platform and executes

the translation in the other platform.

3.3.2 A tutorial of ALF

The ALF standard separates the language descriptionthree components, namely

expressions, statements and units. Like other progring language, an ALF expression

evaluates a specific value, which can be emptyaarbe a collection. Statements are like

the statements provided in any other imperativegammming languages that execute a

behaviour with no specific values evaluated. Thdsudefine the structural aspects of

fUML.

58

As indicated previously, ALF has Java-like syntdds means that some concepts of
ALF are identical to the equivalent Java ones lotterms of their syntax and semantics.
Table 1 lists these identical concepts. This tatodassumes that readers are already
familiar with these.

ALF also provided notations that are different frdava, which directly represents

fUML concepts. The following paragraphs summarisesé concepts.

Name Example
Expression
Literal expression "String", 123, true, false
This expression this.invoke()
Super expression super.init()
Property access expression student.name
Invocation expression student.enrollToCource(course)
Arithmetic/logical expression 1+2, condition && condition2, etc.
Statements
local name declaration String s = "hello”
let s:String = "hello”
if statement if (condition) {
lelse {
}
switch switch (month) {
case 1:...
default:
}
while/do while statement while(condition){
}
for statement for (int i=0; i<size; i++){}
for (element in collection){}
break statement break;
return statement return value ;
Units
class public class Student{}
public abstract class
AbstractClass{}
Enumeration enum Color{RED, BLUE, GREEN}

Table 1: ALF syntax that is similar to that of Java.

” The Invocation expression of ALF has another usage that Java does not have, which is sending a particular
signal to an active class.

59

Tuple

A tuple is a list of expressions that could be usednethod invocation. ALF supports
Java-like tuples, such as “expressionl, expressidnz2addition, it also supportsamed
tuples for example:
name=>"John”, age=>34, married=>true

Associations and link expression

Association is a relationship between classes;emktof the association could affect

the other end of the association. ALF could defisgociations like this:

publ i c assoc Student_School{
publ i ¢ students: Student[*];
publ i ¢ school: School;

Link operation expressions are used for managiegrtbtances of associations, which
corresponds to the UML Link concept.

If John is an instance of Student and Manchestan imstance of the School, their link
can be established by:

Student_School. cr eat eLi nk(john, manchester);

Meanwhile, the assigned new value of one assoniatal will also affect the other end.

For example, itambridge is another instance of School, then
john.school = cambridge;

will result in cambridge.student includingjohn .
Active classes and signals

An active class is a class in which the classifiehaviour of its objects runs in an

independent thread. For example,

public active cl ass Execution{}
do{
accept (SignalStart);

The active class defines its classifier behaviauhe ‘do’ block. When creating a new
instance of the active class, its classifier betavstarts to execute automatically.

Signals are a kind of specialisation of the classifActive class instances could
receive signals asynchronously. There are two waygefine a signal in ALF. The first is

to declare a standalone signal classifier:
public signal SignalStart{}
The other is to define the signal as a signal te@mepn the members of an active class,

for example:

60

public active cl ass Execution{
public receive signal SignalStart{}

An ‘accept’ statement defines receipts of signdleen executing the accept statement,
the active object will suspend and wait for spedimds of signals. A simple accept
statement, which will only wait for one type of sa, is shown above. It is possible to use
compound accept statements to accept several kihdgnals, and one type of signal

triggers the corresponding blocks to execute. kstance,
accept (sigl:SignalStart){

} or accept (sig2:SignalTerminate){

Accept statements can only appear in the clasdidmaviour of active objects. The
reasons are that only active objects can receymals, and the classifier behaviours of
active objects are the behaviours that are runi@mgthe other hand, any method can send
signals to active objects using a signal sendifigltat happens to have the same syntax as
an invocation expression. For example, if ‘e’ is@stance of Execution, if GignalStart
IS needed to be sent to e, the invocation statemiiriie
e.SignalStart();

Annotated statement

Certain statements can have annotations that &en gipecial information for their
execution. For examplepdrallel " annotation can be added to a block or a statement
The statements inside the block will be executegairallel, which means the sequence of

the inside statements does not reflect the exatsgquence.
Inline statement

Inline statements can embed the code other progragntanguages in the ALF

programme.

3.4 Summary
This chapter provided the technical foundationhef thesis. Starting from the concepts

of model-driven engineering, it presented meta-rfimgdeand the model-driven workflow.
Thereatfter, an introduction to fUML and ALF werepented, with a tutorial on ALF. In

61

the next chapter, a framework for defining langusgecifications are build based on the

technologies introduced in this chapter.

62

Chapter 4.

A Framework for Quality Language Specification

(FQLS)

Previous chapters have highlighted why DSL spedtifinis are often of low quality or,
alternatively, why high quality specifications alifficult to produce. This chapter presents
a framework for building language specification ke tFQLS - that simplifies the

production of high quality DSL specifications. Tin@mework consists of three parts:
* Alanguage definition method using ALF/fUML,
* A software architecture formed of three layers,,and

» A software development process.

Each of these is covered individually in the follog/subsections.

4.1 DSL syntax and semantics definition

The DSL syntax and semantics definition approaafeesewed in Section 2.3 all
lacked at least one features associated with higgditg language specification. The
characteristics with the three approaches consid@éranslational, operational rewriting

and operational weaving) are:

» Translational approaches are useful when a weilheddfsemantic domain exists.
However, because their abstract syntax and semsaatcdefined in two different
languages, they are harder to understand than agpe based on a single
language and the possibility for inconsistenciestex There is also currently no

single agreed semantics domain on which to build.

* Generally, operational rewriting approaches areieeaso understand than
translational ones because they require less addltknowledge. However, since
they still require two languages, the problems edusy multiple using languages

still exist.

63

» Operational weaving approaches define both absswtfax and semantics in a
single executable meta-model. Thus, the languagmeers only need to know one
language, and the possibility for inconsistencyMeein syntax and semantics does

not exist.

The above characteristics mean that an operatwoeaing approach has been selected
as the approach used in FQLS for defining bothabstract syntax and semantics of a
DSL. However, the choice of the action languagedsde be considered. Existing action
languages such as Kermeta [18], XOCL [25], or Xchewve demonstrated that these
languages can be used to execute models. Howédnese tanguages usually have two
problems. Firstly, they are implemented as a ptatfdependent technology and are not
supported by a standardisation organisation. Ségotieése action languages have limited
expressiveness, for example, neither of them haésenaupports for concurrency nor
communication. This means that a semantics spatdit that specified via them is prone
to be at a lower abstraction of the language, wheshilts a type of implementation rather
than specification.

When thinking about what it required from the actianguage to be used, core among
the features is an ability to define semanticsaftainguage defined by a meta-model. This
brings into consideration fUML which is intended alow semantics to be attached to
UML meta-model elements. fUML also has the attacthat it is a standardised language
supported by OMG that has produced interest froth balustrial and academic sectors,
and it understandable to language engineers.

Of course, since fUML is intended to attach sentantd UML meta-model elements,
there is the question of whether or not it can $eduo give semantics to the meta-model
elements of a DSL. The fact that fUML is a highkpeessive with natural concurrency
support and communication support, gives promiaettie answer to this question may be
in the affirmative. Chapter 5 examines this questiorther and shows that fUML can
indeed be used to define the semantics of a DSthikvihe FQLS, ALF is used as the

concrete syntax for fUML.

64

4.2 Architecture of FQLS

While ALF forms an ideal candidate of describinglD§/ntax and semantics, proper
software architecture is needed in order to utildé as a language definition method.
Therefore, this section will introduce the architee of the FQLS.

Figure 11 is an overview of the software architeztdhe FQLS is divided into three
layers, the definition layer, the analysis layed ahe execution layer. In each layer,
different tools are provided to support the develept of a language specification, which
are shown in the left-hand columns. The componehthe FQLS are loosely coupled,
which means the concrete tools can be substitditbdtier tools exist. Within the tools
presented in the left column, the ALF editor, tfansers, built-in checkers, and executor
are developed as part of the thesis. The extehwdkers are checkers developed by other
sources, but they can be integrate to the framework

The right-hand column of the figure specifies thedels. The arrows represent the
transformation flows of different representatiorighe language specification. The rest of

this section introduces the design of FQLS by Iayer

Tools Models
Ve
t/ ALF text \,\
_—) e S
Definition layer ALF Editor] I
(\ALF model)
1
Ve
Transformers
P \ 4 ~) 4 ~
; Built-in Ecore model) (fUML model)
Analysis Layer checkers ~) =)
External
\ checkers
Ve
v
E t)
Execution Layer xecutor _ Java Y,

Figure 11: Architecture of FQLS.

4.2.1 Definition layer

The definition layer is the layer that the languagegineers will work with directly. It
is also the layer that provides input to the anal\@yer. Language engineers develop a

65

language specification in this layer and the laigguapecification is captured using the
concrete syntax of the language specification aggrowhich is ALF. The editor in this
layer provides three types of features, which iated as follows.

ALF text to model transformation. A grammar that enables the parsing of the ALF
text to models needs to be implemented. The ALRdstad defines the grammar of ALF in
an abstract way by using BNF but, in Appendix |, immplementation of the parser by
JavaCC is provided. As reusing a language developpreject based on EMF and Xtext
is desired, a new grammar file that is compatibit W(text is implemented, namely the
Alf xtext file. Most of its content is derived from the J&& implementation of the
ALF standard, because Xtext supports the generafian Ecore model from the grammar.
Therefore, a grammar that is similar to the metalehaf ALF is created, in order to
generate a meta-model that is similar to the ALRanmeodel, thus making the model
transformation easier in the analysis phase. Intiadd certain control extensions that
could be placed in a comment are added, such a¥/®©CL” annotation, which is
introduced in detail in Chapter 5. These extensadss need to be parsed to the model.

Syntax highlighting, error reporting and code compegtion. A language specification,
regardless of the method used, needs to be cagiyradotation. The language engineers
need to have the ability to compose language spatidns according to the notation.
Language specification development usually suffiens a lack of support in composition.
It is possible that the specification is createthaut a proper editor. An editor is the first
interface with which the language engineers neesldik and is the first tool that assists
them.

After building a grammar for the ALF, the Xtext fin@work generates a skeleton of an
Eclipse code editor, providing syntax highlightisugd reporting parsing errors. Other tasks

must be implemented manually, including:

» Code completing. When the language engineer desaloge using the editor, the
editor should provide reasonable code contenttassis.

* Variable scoping. Each name acknowledged in a Dfit is built by Xtext is a
global name. The given variables are proper scoppess, a local variable that
cannot be accessed by other methods is necessary.

» Exporting ALF text as XMI. This means that XMI cae loaded with other tools
that support loading models.

66

Bridging the analysis layer code.In the definition layer, the ALF programme is
parsed to an internal model representation, and lleeome the model for the input to the
analysis layer. The analysis layer analyses the AbBdels and reports back

errors/warnings to the definition layer, which gelis reports to the editor.

4.2.2 Analysis layer

An ALF-based language specification still needs acimanism to maintain its
correctness, since the correctness of a languagsfisption is largely reliant on human
factors. An incorrect language specification wdhtuse its audience, and will particularly
impair all the other products that depend on thyuage specification. Because of its
importance, many methods [1] that aim to find esrior models or programmes have been
proposed. Depending on whether or not to exec@etbhgrammes, the methods of error
checking can be categorised static methodsand dynamic methodsStatic methods
directly analyse the programme without executirgglogramme, while dynamic methods
involve executing the programme and observing ttexation results. The most widely
accepted method is testing. To be precise, theréaar ways of performing static methods,

as follows:

* Inspection, review and walk-through: These are @drformed by using a
systematic method for reviewing the system undgaystMcConnell [98] reported
the effectiveness of inspection and review, anérdahed that the result is largely

dependent on human factors, such as management.

» Automatic checking: This is usually supported byaanomatic tool to check for
particular kinds of errors. For example, compiladi error checking, including
syntax and type error checking, is equipped witlarlyeevery programming

language.

Automatic checking can be roughly divided into tkiads: Formal checking, which
involves transforming the programme into a formelyally first-order logic model, using
mathematical knowledge to analyse the desired piiepe While the contributions of
formal methods are crucial, they are usually difi¢o verify in practice [137] because of
the lack of skill in the industry [65].

The other kind of automatic checking is the prageatethod, which often involves
implementing a static checker that can analyserproges and match a suspicious code to

bug patterns According to Hovemeyer and Pugh [70], many errtrat exist in

67

programmes are easily detectable errors; thus, €ugple detectors can find bugs in a real
application. Other tools, such as [72, 27], alspliad a similar approach, and they also
support the checking of styles of the programmes @avelopers can easily extend the
checkers and build new checkers into the framewbhlese pragmatic checking tools are
widely adopted in software development.

Similarly, the errors that occur in language speatfons are usually small errors, like
typos [42, 160], which can be identified by apptyisimilar methods of pragmatic
checking. The FQLS implements pragmatic static kingcto enhance the correctness of
the language specifications.

There is no single method that could identify aé errors in an application. Pragmatic
checkers are simple to implement, but are usuaither complete nor sound. As false
positives and false negatives can both occur, ¢éveldpers still need to be cautious when
treating the error reports. Formal methods arebédi as they usually eliminate at least
one type of error. The best results for softwaralip assurance are achieved by
combining existing methods. Thus, the analysis rlagest support the performance of
pragmatic and formal methods.

As automatic checking is a significant way of assythe correctness of a language
specification, FQLS should provide an architectina enables the use of many kinds of
checkers, rather than leaving the validation ofdbeectness to a later stage. This is the
principle to design the analysis layer of FQLS.

The analysis layer takes the parsed ALF model astjrand then uses static checkers
to check the correctness of the language spedditateporting any errors to the definition
layer. As shown in Figure 11, this layer contaim&é software components.

The built-in checkers enable syntax correctness checking, such as Ils3sitax
checking, bad practice checking and type checkssd built-in checkers are performed on
ALF models, which differ fromexternal checkershat perform checks on other types of
meta-models. Since the checking and error reporsirtpne in the same model, a built-in
checker can be implemented as a Java validatogtleies and examines the ALF models.
These checkers are integrated using a plugin acthite that allows further static checkers
to be included in the framework.

The external checkers as indicated above, mean that the checking habeto
performed in a different analysis domain; thus, s@nalysis models need to be generated
by thetransformers.Since there are many kinds of possible externatichef the ALF

programme, and the language engineers may haveotlieicheckers, it is not feasible to

68

include all types of external checkers. As an eXapnpQLS demonstrates the integration
of an external checker by integrating the Ecore @@¢cker, which inputs an Ecore model
with OCL constraints, and checks the syntacticeminess of the OCL expression.

The transformers. Instead of integrating many kinds of external aitees, FQLS
supports exporting the ALF programmes either asaiminodels or as fUML models,
because there are already many approaches forsarglyhese two types of models and
they can be reused. The ALF to fUML transformai®developed as an ATL project, and

the ALF to Emfatic transformation is developed asfaceleo M2T project.
4] N

e ™ iit-i
(" ALF model Jcheckeatypl Built-in
%/ checkers |
Report to
—-
Analysis layer]
[Analysis models DSL designer
S
(M Checked byl External
checkers
SN
| fUML model
\——FS
- Y,

Figure 12: Workflow of analysis layer.

Figure 12 summarises the workflow of an analysygdlaThe ALF models are checked
by built-in checkers. Meanwhile, the analysis lapeovides an interface that performs
external checking. The result from the checkeneported to the definition layer and is
eventually reported to the language engineers. Hinéatic models generated from the
language specification also support the reuse oFE¥Md are the basis of the execution

layer.

4.2.3 Execution layer

The dynamic method is another category of softwgaiaity assurance. It executes the
programmes in the executor. The results producethéyexecutor are observed and the
behaviours of the executor are monitored. It iidift to imagine that a software system
would be released without testing, and test-dridevelopment even considers tests as the
first activity of development. Because of the impaoce of testing, a high quality language
specification also needs to be tested.

Non-executable language specifications are nalstbecause there is no evaluation
of the semantic correctness of the specificatidrerothan review; in other words, the

69

language specification is semantically correct beeathe language engineers have
declared that it is. By contrast, an executableifipation that ensures testability, with the

support of tools, enables language engineers terebshe behaviour of the language, thus
identifying semantic errors. As a result, the execu layer also aims to assure the
correctnessof the language specification.

The termexecutoris referred as a system that could load the lagguaput models
and output the results, without attention beinglgaithe form of the mechanism. In order
to execute a language specification, the first fioncthat is needed is an executor of the
language. ALF follows the usual method of execwahbdelling by providing a flexible
executing definition whereby an ALF executor belontp interpretive execution,
compilative execution and translational executas jntroduced in Section 3.3. The three

ways of executing ALF require different kinds obls

* Interpretive execution needs an ALF interpreter.e TALF open-source

implementation is a current example

» Compilative execution needs a transformation oroaleh compiler that generates
fUML models from ALF text. The transformation isetsame transformation as in
the analysis layer. The models can then be loagledfdML executor, such as the

fUML reference implementation.

» Translative execution also requires a transformatighich can be a model-to-

model transformation or code generation.

Although it is possible to select any of the exemutpproaches of ALF, FQLS prefers
translative execution as it is the only feasibléhud of executing ALF code. The reasons
for this are listed below:

Firstly, the current ALF tools are not sufficientlyature for interpretive or compilative
execution of ALF language. The previously mentiotwals, such as [143], do not support
the complete language. For example, the ALF retaremplementation does not support
the inheritance of classifier behaviour. Furthemothe tools have a limited error
reporting mechanism and a limited library.

Secondly, the unification of language specificateomd a reference implementation

could save the effort of developing a reference lémentation. However, it is still

8AIthough the inner mechanism of ALF open-source implementation is done by mapping ALF abstract
syntax to fUML and executing fUML models, from the users’ point of view it is treated as a black box,
because the process of transformation is not visible to the users.

70

necessary for them to be separated, because aatmgpecification may not provide
enough detail to work as a complete implementatibor example, a language
specification may leave something intentionally eifitted, like the semantic variation
points. If such a separation between language fig@mn and reference implementation
is needed, then their consistency must be mairdaimkich could be done by deriving the
reference implementation from the language spetiéo.

Lastly, the development of a language specificatieads more tools than merely an
executor, such as the tools for creating/loadinglehestances and for validating instance
models.

Since the FQLS has adopted the translative exatofid\LF, the execution layer must
deliver a reference implementation, which is geteerdrom the language specification
with minimal effort by reusing EMF. This refereniteplementation can then be used for
testing purposes (testing the semantic correctoésthe language specification), and
eventually save the cost of building a referencelémentation from scratch. In the
Execution layer of FQLS, the tasks of the execulayer are listed below:

Generating executors for the target DSL The execution is responsible for the code
generation. The code generator loads the checkdd rAddels and finally generates an
interpreter of the target language in Java.

Creating test cases with an instance model editoiThis is another facility that is
required for executing the language specificatmisupport the language engineers when
creating instance models for testing purposes.

Executing the language specificationThe language engineers will eventually need to
test the language specification in the generatéztaece implementation. The executor
needs to load the specified model instances amulbtlite result after the execution.

4.2.4 Summary

To sum up the features of the general idea of FQL8ses ALF as the definition
language, performs static checks on language $p@E@i and generates language
reference implementation from the language spetito. All these methods are aiming to
maintain the quality of the language specification.

71

4.3 A development process for DSL

As developing DSLs becomes a more general ideataled software process could
save effort on the part of the language engin@sresa software process, or a development
methodology, is one important method of qualityuassce. A software development
process involves several different concepts. lidcawolve the identification of concepts,
such as roles, artefacts, tasks or activitiesollict also include guidelines or suggestions
that a shareholder in the development process gHollbw.

In the area of DSL development, it is worth mentignthat Mernik et al. [100]
summarises the activities of, and some guidelimes DSL development. It does not
discuss the roles and products in a DSL developrpemtess. Moreover, the process
definition is difficult to reuse or adapt, becatisere is no automatic way of checking the
consistency of the process document, nor is itipes transform the document to a new
process if certain sub-modules are changed. [13]6aldo contains many guidelines that a
developer could adapt. In addition, Kleppe [80pgisoposed a set of tasks or activities
that need to be performed in a DSL developmentgafcHowever, these works only
show a general outline of how to create languageipations, rather than a detailed
process that language engineers can follow.

The ad hoc definition of process prevents a moceirate presentation thereof, since
all these processes are defined as text. Thus thtei author’'s choice to include or not to
include something. The text-based DSL developmentgss tends to focus only on one
specific topic of the process; however, it is pralide for the software development
process can be formalised as a model that conftorasstandard representation, allowing
the development process to be captured in a sySteaml reusable manner.

Software & Systems Process Engineering Meta-Mo8PIEM) [48] is a meta-model
that are designed to fulfil the role of a standasly to capture a software development
process. It is selected as the method for preggtii@ software development process the
FQLS. Hence, an introduction of SPEM in terms effégatures, workflow, and tools is

presented firstly. The development process of F@@Besented thereafter.

4.3.1 Software & Systems Process Engineering Meta-Model

SPEM is an OMG standard that attempts to solveptbblem of the lack of standard
representation and management of software methgyl@od processes. The meta-model
and its supporting tools give [48]

72

» A standard representation and managed librariesenfsable method conterBy
using SPEM, the key tasks and practices can benuemied, and these provide
knowledge regarding the knowledge of performingéhtasks for developers. For
example, there are several tasks in the procesdeeéloping DSL, such as
designing the language specification, testing theglilage specification and
implementing reference implementations. The dew®meed to know how to

perform these tasks, as well as the relevant krdyeldor supporting the process.

» Developed and managed processes for performinggi®jAlthough the library of
method content is developed, the developers stididnto select a development

process. The creation of the process is basedeoretise of the method contents.

» Configuration of a cohesive process framework,amsted for specific projectin
reality, as different projects have different scopand characteristics, it is
impossible to determine one process that can beutea for any project. SPEM
supports modelling variability, so developers cafirge their own extensions for

the reused method contents.

 Enactment of a process for development proje&tprocess known as guidance
must be deployed and must be able to be accessdatiebprocess enactment
systems (the workflow engines that the developetsraanagers used every day).

SPEM defines how a process will be enacted vieetbgstems.

Figure 13 illustrates the workflow using SPEM modelstarts from creating method
contents, which includes the atomic concepts tt@ahfa development process, such as
products, activities, and guidelines. Then theseepts are used to create processes for a
general domain, for example, a process for geri#sal development. When developing a
particular project, the developers can customiggogess that fits a particular project.
Finally, these models can be accessed by otheegtrojanagement tools and should be
enacted to the real development activities. Theeefine development process is not just a
document, but also a working system that developeed to interact with in normal

development activity.

73

\f) \f N\

Method content | Examples Processes Examples
Agile Process for

development J2EE

Standard contents development

representation ,
reusable libraries and

Develop and manage
processes for projects Process for
Embedded
system
development

JUnit guidance

method content

i

- J

i i

~
[Configure a process customised for a particular

project needs

\ 4

N
Create project plan templates for enactment of
process in context of a customised project.

Figure 13: Overview of SPEM.

Many tools have implemented SPEM and support thiaeitien of the SPEM model in
an easy to use and easy to deploy way. The majas p& the SPEM standard are
implemented by an open source project, namely ttigde Process Framework (EPF).
Due to its completeness and wide accessibility, Eff&= was selected as the tool for
defining the DSL development process.

4.3.2 Method content

Method content describes the basic elements of BVSRodel. It defines the basic
vocabulary in the development process, which iretudoncepts such as Roles, Tasks,
Work Product, and guideline definitions.

Section 2.2 introduced the three roles involvedhe DSL lifecycle: The language
engineer, the language tool engineer and the lgyygyuser. They are involved in two
processes, namely the development of the languadeh& use thereof. Here, this thesis
concentrate on the development process of the &gegu

The development of the language specification & d¢bre activity of this process;
because other activities performed by language ¢ogineers and language users are all

depend on the existence and quality of the langapgeification.

74

The process of language specification developmeaitteg the language engineers to
create a language specification via ALF by increisieAn increment of the language
specification is initialised by creating a featusé the language specification, or by
modifying a feature of an existing language speation. The increment finishes when the
language engineers have completed the necessangtasd validating of the new feature;
thus, they can assume the feature has been impledhsaccessfully. An increment of the
language specification may involve one or moreatien. Each of the iterations delivers a
successful working language specification at thek en

An iteration is separated into four phases, as shiowigure 14. As these phases are
collections of activities, each takes a set of potsl as input and outputs certain products,

as can be seen in Figure 15.
] -] -] - ||
Develop abstract syntax Develop hehavioural semantics Check language specification Test language specification

Figure 14: Phases of DSL development.

D ' Develop abstract ’ Meta-model

Requirements
q syntax //

%

\ ///
N\

Develop
behavioural
semantics

P 7

/g\@x /' Check language
\ specification Analysis results

~/
Language specificatiq

I
\Q@t \
7

= ' q Test results
D -m@ Test language
Test cases specification D

Reference
implementation

Analysis models

i

i

Figure 15: Products and process phases.

Starting with the requirements that were generdégdhe language users, the first

phase,develops abstract syntaxwhich creates ameta-model that forms part othe

75

language specification The meta-model is then used as the input to déeelop
behavioural semanticsphase, which delivers the complete language spatidn.

The language specifications the most important product, and is the finadurct of
the process. Because ALF is selected as the larg@iag defining the language
specification, the definition of a language speaifion in FQLS can be narrowed as
follows: A language specification is a set of models thdindehe concepts of a domain-
specific language. It consists of abstract syntad dehavioural semantics, which are
defined as executable meta-models captured by ALF.

An unverified language specification contains sgtitaand semantic errors. Thus,
there are two phases €hecking language specificationand testing language
specification These deliver analysis models, analysis restdt, results and reference
implementation. These are not products that wiltddeased to the public, but the internal
products that assist in the development of thedagg specification.

The analysis modelsare the models for analysis purposes. All intemrakxternal
representations of the language specification, gxitee original models that are intended
for analysis purposes only, can be categorisetagtecal models.

Both the analysis and the testing phases produtarteesults. The results may not be
accessible to language users, but they help tdifgemrors and bad practices.

The reference implementationserves two purposes, namely as a tool for testiag
design of the DSL, and as a tool for language tmslelopers to test the DSL or, if the
reference implementation is mature enough, it cantie real implementation of the
language.

Given the understanding of the products, the detdieach phase are introduced below.
Develop abstract syntax

The first component of a language that should hesldped is debatable. Selic [137]
suggested always starting to design using a semartidel, thus encouraging developers
to think about designing the semantics at an esdge, which avoids inconsistent design
decisions that could occur when designing themegmrate things. Selic’s suggestion
raises the importance of semantics. Treating seosaats additional work may cause
problems; however, it also indicates that many U@gg designers start by designing
syntax. In fact, starting by designing syntax isoaxmon approach and is applied by [25,
156, 80].

76

Developing abstract syntax is listed as the fiestktof the language specification
development process. It is possible that the doraleady has a type of language that is
but not formalised, or that migrating an existin§lDto model-base is required. In both
cases, the syntax should be considered first. Whitiad, when defining a language
specification as an executable meta-model, syntadxsamantics are not separate and are
linked from the beginning. The semantic definitisses the abstract syntax concepts as the

vocabulary.

o LB, B e

Create meta-model Add constraints to the meta-model

Figure 16: Developing abstract syntax.

Figure 16 illustrates these activities. The firdivaty when designing abstract syntax is
to create the meta-model The meta-model may originate from two differenurces:
Either it is designed from scratch, or it is imgalirebuilt according to an existing
representation of the language syntax. When ciggdlia meta-model from scratch, the
language engineers need to work closely with tlgglirements and the domain experts,
and to abstract the domain to a set of entitiggpates and relationships. This process
should follow the experiences and best practiceslamguage design and domain
engineering.

When formalising a language specification to an AldSed representation, the meta-
model may already exist, but be defined as andtnarat, such as BNF grammar or XML
schema. Such languages capture the abstract siyetgxit is possible to convert such
representations into an ALF programme by represgnén element as a class, and
containing/reference relationships as associatibtamy works, such as Xtext, EMFtext
and EMF could convert a BNF grammar/XML schemaridcaore model. Regardless of
the tools that have been used, it is possible tivel@ meta-model from other formats of
defining the abstract syntax with reasonable effort

Once there is a meta-model, the next activity @dd constraints to the meta-model
These constraints define a well-formed model. M&thnologies can be used to define
constraints, and OCL is the standard constraiguage for UML-like meta-models. Thus,
a strategy for defining constraints needs to bénddfbefore developing strategies. The
explanation of how to add constraints to ALF isadletl in Section 5.1.2, which introduces
three different ways of adding constraints to arFAdpecification. These are adding them

77

as additional files, using extended ALF, and defjnconstraints as semantics. When the
constraints are developed, the output of this tagke abstract syntax definition, which is

an ALF programme representation. This ALF progransmeady to have semantics added.
Develop behavioural semantics

The purpose of this phase is to create the behali@@mantics of an ALF-based
language specification, adding operations and hebes/to the abstract syntax definition.
The input of the task is the abstract syntax dedinj and the output is a completed
language definition.

Because of the complexity of developing semantiestask is split into five activities,

as shown in Figure 17.

o . B 5] — 5

Understand requirement details Decide semantics definition stratecy Create semantics definition architecture

l
B . B —e

Idertify abstract activities Develop behaviours

Figure 17: Develop behavioural semantics.

The first activity is tounderstand the requirement details In various scenarios, the
requirement can be gathered from the domain expedsthe knowledge of the language
engineers. No matter how these requirements aneigat, a deep understanding is the first
step of developing the expected language specditatstead of an incorrect specification.
When formalising a language, the requirement iarelebecause it is already defined in
another format.

The second activity is tadecide the semantic definition strategy Semantic
specification is a type of programme and it invelvaeany design decisions. There are
many ways of implementing the same semantics. Hewyekiis does not imply there are
no rules for design decisions. Before implementimg semantics, several questions need
to be clarified, for example, how to deal with semis variation points. A full list of the
guestions and guidelines on developing behaviocsgalantics is listed in Appendix B,
where interested readers can check in detail.

The next activity is tocreate semantic definition architecture. An executable
language specification is also a kind of softwaleys, it follows the general rules of

software design. Specifically, the language engmegeed to decide how to attach

78

behaviours to the meta-model and how the statedmadi the runtime model should be
build if needed.

The last activity is talevelop the behavioursWith regard to the requirements and the
decisions and rules given above, the language eegincan develop the language

semantics.

Checking the language specification

55 55
Configure built-in static checkerz Implemert external checking strategy
=5 5]

Perform built-in checks Perform external checking

75

Reszalve errars

Figure 18: Checking language specification.

Figure 18 illustrates the activities in tbkecking language specificatiorphase. The
first activity is to configure built-in static checkers During the task of developing
behavioural semantics, the language engineerseal#uoidarchitecture, the coding style and
ways of dealing with various issues. Since theicstdteckers indicated that there were
various errors and bad practices to check, depgratinthe language engineers’ decisions,
something that could be considered as an errortrbglacceptable in other circumstances.
For example, a checker that forces developersdalaga style or UML styles needs to be

turned on or off.

79

The next activity is tgerform built-in checks. According the configuration, the static
checkers will perform the selected checks on thguage specification and report errors
and warnings to the editor. the internal checksdafined as checks that do not involve
translating the language specification to otherasgntations. Because these kinds of
checks do not need to consider translation andagessacking, such checks are easier to
implement than ones performed by external checkers.

Concurrent with the use of built-in checkers, i thhnguage engineers decided to use
external checkers, these could be done via anitgctivat implements an external
checking strategy External checks, as discussed above, are morelerrthan internal
checks. When considering an external check, thguige engineers should have a
particular checking property in mind, as well as &pproach that will be taken for external
checks. There are several possible scenarios, deygeon what is to be checked. An
interface of fUML and Ecore is provided, but did ndegrate any other analysis approach.
The reason is that there is no external analysas mieeds to be performed for every
language specification. The selection of concretalysis and the way of annotating
analysis results are left to the language engineers

The next activity is tgerform external checking Once the checking tools have been
decided, and the necessary transformations andtirgpdools have been developed and
tested, the language engineers need to perforicheks.

The final step is toesolve the errorsreported by the checkers. However, resolving
errors is not really the final step; it is only theal step of the iteration. The checking and

resolution of errors should be repeated until mthier issues are found.
Testing language specification

Although the language specification has been silitichecked, these kinds of checks
can only discover syntactic errors. Semantic ercarsalso be detected, but most semantic
errors are just incorrect semantics that are npeeted by the users. Since the correctness
of the language specification is actually deciddwmthe standard is released, a semantic
error that remains in the release stage would legtaat effort to fix. As a result, the
language specification needs to be tested to setheththe semantics reflect the language
engineers’ intentions.

Language specification is an executable meta-mobeltest such a specification,
several sub-tasks must be executed in order totecraatest suite for a language

specification.

80

E5

Implementing test strategy

_I :1 _I :1
. &5 . 5
Generate executor Run test cazes
I ;‘ I ;‘ =
55 55 55
Implement abstract activities Refine behavioural semantics Identify repeated errors and updste the static checkers
_I :\
5
Develop test cases

Figure 19: Testing language specification.

Figure 19 illustrates the process of testing lagguspecification. The first activity is to
implement a test strategy An executor enables testing; a programme canedested
without an executor. However, an executor alonexas enough, as a framework for
supporting it is also needed. Since a DSL undeeldgwent is not like a GPL for which a
testing framework such as JUnit exists, enablingpraatic unit testing requires the
creation of a framework. Language engineers maya@lssider manual testing.

When executing a test case of a GPL, which isyfattaight forward, the unit being
tested is given relevant inputs and executions;diénelopers then analyse whether the
outputs were expected. In comparison, languagefs@tion as a whole is a large black
box in which inputs can be complex and outputs nm@&ybe obvious. The inputs are a DSL
programme and the language engineer must definérebalt’ that is to be analysed.
Executing the DSL programme may cause the exetotoutput something to an output
channel. This is an output of the DSL programmé,idnot necessarily the result that the
language engineer wants to analyse. The DSL prageamay not have output in terms of
its own input. As an abstract model, the DSL progree may only result in the internal

81

states being changed. In such a case, the languageeer needs to test the internal states
of the language executor.

The next activity is t@enerate an executarThe language specification is sufficiently
detailed for any GPL that has the same structusdhealanguage specification to generate
an application, and the behaviours are also tram&fd into GPL implementation. Chapter
7 demonstrates this via a code generator that gesedava. This executor is completed in
the next activity and is used for testing the laagpispecification.

Depending on the completeness of the languagef&adicin, the language engineers
may need tamplement abstract activities As indicated above, unspecified behaviours
are defined as abstract activities in FQLS. Howgeteemake the reference implementation
executable and to produce the expected resulte tladsstract activities need to be
implemented. Depending on the purpose of the getnanplementation, when it is a
prototype to show how the standard works, the implatation does not need to be as
complete as a real implementation. On the othed hiithe generated implementation is
the basis of a real language executor, then mawesssuch as efficiency, the quality of
the generated code and the use of the API or idganust be considered. However,
creating a language implementation of a languagedsird is out of the scope of the
language specification developed.

When the language reference implementation is rdadyexecution, the language
engineers need tevelop test cased.anguage developers can create input models using
the generated model editor. When the input modelxieated, the expected result should
also be created. When working with domain expéhtsy should confirm the result. It is
possible that the language engineers’ understandiniifferent from that of the domain
experts, thus creating incorrect test cases argingagem via an incorrect executor. Good
practice [142] suggests building tools for the domexperts so that they can build the test
cases and the expected result directly.

Then the final activity isto run the test casesand torefine the behavioural
semantics When a test case fails, the language engineemsidshmake the necessary
changes in the language specification and regenénatspecification rather than modify
the generated code. When the language specificatiamges, the implementation of
abstract activities may also need to be changed.

There is another optional task, whichasdentify repeated errors and to update the
static checker FQLS is designed to allow the language engineersdd new rules or

algorithms for static checking. When testing anfthieg the language specification, it is

82

possible that types of errors can occur repeatéullfact, when developing the case study
in Chapter 8, it is identified that many errorstticause the executor to fail are small
mistakes that could be checked at the languagéefispéion level with little effort when
compared to leaving this to being identified atgle@erated implementation stage.

4.4 Summary

FQLS is a framework that uses ALF to define botBtazt syntax and behavioural
semantics, which performs static checks on theuagg specification, and enables the
generation of reference implementation for tesinignguage specification. To apply the
idea, the software architecture of FQLS, which pies support to define DSL syntax and
semantics via ALF, is illustrated. Finally, a sofiw development process, which is
captured by SPEM, is proposed. This process defimegoles, products, activities and

guidelines in DSL specification development.

83

Chapter 5.

Defining DSLs using FQLS

In the last chapter, the development process andrithitecture of FQLS is introduced.
Thereafter, Chapter 5, Chapter 6 and Chapter 7agxghie layers of FQLS in detail. This
chapter introduces how to use ALF as a method fmelea DSL by starting from
introducing the principles in Section 5.1. In ordeillustrate these principles, Section 5.2
gives an example of a Petri net language, whicdened as a meta-model and the
abstract state machine transition rules. In Sedi@) the same example is then defined
using ALF language, with explanations regarding weys in which ALF units can
represent a meta-model, how it can be integratéd ®CL, and methods of defining
behavioural semantics as operations. Finally, 8ech.4 discusses how an ALF-based
definition can simplify consistency checking and ywht is an interoperable,

understandable and expressive language specificatio

5.1 Defining DSL via ALF

As introduced in Section 3.2, fUML defines the satits by itself, and is able to
define higher level UML semantics. Hence, therents doubt that fUML can give
semantics to UML concepts. However, there is thestion of whether or not it can be
used to give semantics to the meta-model elemén3Sas. In order to represent the
behavioural semantics in an operational way, thetnmoportant requirement is a language
that can specify basic behaviours, for examplegchzdculations, conditions and loops. As
long as these basic behaviours are provided, thglex behaviours can be composed
using them.

The semantics that a language can express deperttieoexpressiveness of the
semantics definition language. Existing action leages supports variable assignments,
sequential execution, conditional statements godomell; what they do not support well is
to specify concurrency and communications. In campa, fUML supports the basic

behaviours in the same way as other action langudigalso natively support concurrency

84

and communications. This means that fUML can sgea&if even wider ranges of DSL
semantics than existing action languages in a sinvpay.

In order to demonstrate that a DSL specification ba defined via ALF/fUML, the
rest of this section provides principles of howus® ALF to represent the abstract syntax,

the static semantics and the behavioural semaoit@$anguage specification.

5.1.1 Representing abstract syntax by ALF

Since FQLS aims to use ALF as the single technoltmyepresent a language
specification, it is needed that abstract syntaa l@nguage must be able to be defined via
ALF. While MOF is the usual way to capture meta-glsdALF provides similar concepts
of classifiers, attributes and associations. Tlesethe basic elements for representing a
meta-model. Because ALF is a concrete syntax fMliLits kernel package is compatible
with the UML 2 meta-model, and MOF imporisiL::Classes::Kernel from the UML
meta-model. Thus, the kernel classes of fUML andAvEDe treated as the same meta-
classes. This means that, though UML class modelsMOF models exists in different
meta-levels, they are the same thing and have dhee sexpressiveness. Hence, it is
possible to use ALF to represent a meta-model bgting ALF as a meta-modelling

language. Defining a meta-model uses ALF beconmmagktforward work.

5.1.2 Representing static semantics by ALF

Static semantics are additional constraints ofntie¢a-model. If the model is captured
directly by MOF or an Ecore meta-model, there asysvof adding OCL constraints.
Certain specially designed syntax for representiogpre, such as Kermeta [18] and
Emfatic, has a method for adding OCL for represengpre- and post-conditions and
invariance, such as the example in Listing 1. Alilo ALF has the same expressive
power as OCL, it also supports OCL collection egpiens; however, there is no way of
directly integrating OCLSs.

In order to allow constraints in meta-model, thidbsection proposes three ways to
include OCLs in a ALF program, and discusses thenefits and drawbacks.

The first way is to add OCLs as an additional vigwhe models. Because ALF units
are just a concrete syntax, the real meta-mode} tepresent can add OCLs. The
published language standard can then contain deparss, namely the abstract syntax
defined by ALF or just a MOF model, the behaviowaantics defined by ALF, and the

static semantics, defined by OCLs. A compiled fUNhodel is then created from these

85

specifications for machine processes. Although timsthod could represent static
semantics, it makes consistency checking necesslawever, much of the research (as
summarised in [93]) suggests that consistency c¢hgdkr UML is not easy.

The second way is to extend ALF syntax so thaait support OCLs. By creating a
large meta-model that contains the abstract synfaklLF and OCL, all aspects of a
language specification can be integrated as onendgtd ALF programme, and
consistency checking is easy because it is restkicHowever, this breaks the
interoperability of the specification, because ¢éxéended ALF is not compatible with the
OMG standard.

The third way is to use the existing features oFAb represent static semantics. OCL
is used for querying models or constraint modeleeWquerying models, developers can
use OCL to specify derived properties, which are fmoperties of which values are
derived from other properties. When giving modasstraints, OCL expressions define
invariance, pre-conditions and post-conditions. @éflithese can be specified as special
operations on a model, and can be defined as bmiraviDerived properties can be
substituted as assignments in the constructorseo€lass. Pre- and post-conditions can be
substituted as ‘if’ statements, and invariance banwritten as a validation that must be
performed before changing the model.

This method does not necessitate the loss of ipéeability and consistency. However,
this will make the behavioural semantics speciitcaimore complex, and it is difficult to
verify the static semantics by other tools.

Inspired by the f/@inline " and “//@parallel " annotations, a compromised solution
is included in the FQLS, which supports adding Q€lthe language specification in the
same place while still maintaining interoperabilifjnese annotations start with an inline
comment symbol; therefore, if a tool does not suppleese annotations, they will be
ignored and the programme will still remain a vatitbgramme. Following the same

principle, an OCL annotation is added to ALF:
[@CL(" invariance ")
By using this method, the language specificatiom loa physically unified as one file.

When checking its correctness, some crosscheckd tede performed on the ALF

programme, as well as on the OCLs. This is detafiedubsection 7.3.2.

86

5.1.3 Representing behavioural semantics via FQLS

After a meta-model has already been defined by A€, next step is to attach
behaviours to the meta-model. Learning from exgsapproaches, there are three ways to
attach detailed behaviours to a meta-model usinga@ion language, namely direct
attachment, attachment as separate rules andragachia a run-time meta-model.

The first method,direct attachmentas shown in Figure 20, attaches behaviours
directly to the abstract syntax model. General matael definition languages, such as
MOF or Ecore, all have the ability to define operas’ interfaces as members of classes.
There is no default method of expressing detailgllbliours; however, if the operations
can be extended, it is natural to be able to defletiled behaviours. By defining
semantics as the operations body of a meta-modegnglete executable meta-model

standing for the language specification is created.

Semantics +definedBy | Executable Meta-Model ALF

+definedBy

Language Specification Abstract Syntax

Figure 20: Attaching behaviours directly to meta-model operations.

Direct attachment is the simplest way to attachabmurs, and results in a unified,
executable meta-model. However, this method needbdnge the abstract syntax model
by adding operations, which is not expected ifthek is to add semantics to an existing
meta-model. It is common that the abstract syntexdiready been published and used by
many other tools before language developers cthatormal semantic specification. As a
result, modifying the meta-model breaks the interapility of the language specification.

The second methodttaches behaviours as an aspect of the syatsing the idea of
aspect weaving. Because adding operations to thgaab syntax model modified the
original model, it is possible to define the sen@nseparately in order to avoid this, and
to use an aspect weaver to combine. Although tpisears similar to translational
semantics, there are fundamental differences: yhéas and semantics of translational
approaches are defined using different meta-modbeis,the weaving approach defines
syntax and semantics using the same meta-modslmuch easier to develop an aspect
weaver for a bidirectional transformation from spnto semantics.

This approach does not need to add operationstalibtract syntax. However, it also

has some limitations. One problem is that diretgtchiment does not permit the full use of

87

the signal and concurrent programming of ALF. ALRlyoallows activities and the
classifier behaviour of active classes to use ‘jpt&tatements for receiving signals. If the
language developers wish to use a signal-driveneirexithe semantic model, they have to

define their own signal management infrastructure.

package DSML[|21 Executable metamodel approachZU

Semantics -defineBy | ALFACctivity

Meta-Model

+definedBy

Language Specification Abstract Syntax

ALFActivity

E ble Meta-Model

Aspect weaver

Meta-Model

Figure 21: Attaching behaviours as separate operation rules.

The other problem is that the developers cannéréifitiate between runtime concepts
and structural concepts. The abstract syntax defihe structural view of the language;
however, depending on the DSL, it is possible that concepts that are processed are
instance level concepts when executing the languegeexample, as illustrated in Figure
22, a language containariables and Statements . AssignStatement has a left hand
and a right hand reference. The execution semaotiassignStatement copy the value
of the right hand variable to the left hand vamaldlhe copy is on the instance level value,
which means a class that represents instance denekepts has to be added, as in Figure
23.

At the abstract syntax model level, the variablesdoot have an attribute calledite’
because, in the DSL programme, the variables dyedatlarations and the runtime value
does not need to be specified. Thgect class is the instance of threriable and has a
value property that theariable class does not have. Thecus manipulates the instance
level concepts, rather than changing the origimag@amme model. This design permits
running many instances of the same programme. mmngry, it is often necessary to

separate runtime concepts from structural concepts.

88

package runtime concepts| | 21 structural and runtimeu

Program +statements| Statement AssignStatement

*

+eftHand
Variable

+variables +rightHand
*

Figure 22: Variable and Statements meta-model.

package runtime concepts| runtimeu
Program +statements| Statement AssignStatement
*
+leftHand
. Variable
+variables +rightHand
*
+variable
+objects|*
. Object
Locus +objects !
+value

Figure 23: Variable and Statements run-time meta-model.

Because the separation of structural and runtinmeejuts is necessary, a widely used
approach is to create the semantics of a modellinguage by starting from a runtime
meta-model by adding new instance level classemtbher package, and then importing
the abstract syntax (the method for defining thmasgics of fUML [55] is an example).
As illustrated in Figure 24, the runtime meta-moc&inbines structural and runtime level
concepts, making it possible to attach behaviauthe runtime meta-model. Since all the

models are defined using ALF, the language spedifin is still a unified model.

89

package DSML[|21 Executable metamodel approachu

Instance Concept

Semantics Runtime Meta-model Method

\ .
\lmport N definedBy
~

| ~ -
Language Specification Abstract Syntax Meta-Model definedBy N ALF

Figure 24: Attaching behaviours to a run-time meta-model.

A runtime model does not change the abstract syntadel; thus, it does not break the
interoperability. By extending the abstract syntagdel, language engineers can use the
full expressiveness of ALF, using active classes signals for communication. Although
creating a runtime meta-model involves extra wdinke, work is necessary for separating
structural and runtime concepts.

In summary, if a simple DSL already representsinuatievel concepts and there is no
need to add any concepts, it is better to use tdag@chment, or weaving behaviour and
structure together. However, if runtime conceptsdn® be added, then a runtime meta-
model is necessary. The BPEL case study in Ch&pikustrates an example of using a

run-time meta-model.

5.2 Defining a Petri net language

After the discussion of how a language specificattan be represented as an ALF
program, this section provides an example of ai etr language, and represents it by
ALF in the next section.

Petri net is a mathematical modelling language ifdormation flow, which was
originally defined by formal language [115]. Petats have been widely used as the basic
example of DSML development. Works like those 841133, 157] all used Petri net as
an example. As this example’s syntax and semahtgs been exhaustively studied and
are widely understandable, this example is alsd teseemonstrate the definition method.

There are many ways of creating a meta-model thstracts Petri nets. For example,
the meta-models used by [132] and [96] are slighiferent. The Petri Net Markup
Language (PNML) [14] was created in order to stadida the representation of Petri nets,

90

and has become an ISO standard for defining Petd. The standard provides XML-
based syntax, together with an official meta-mdueled definition implemented by Ecore.

As a standard, PNML intends to define all typedPefri nets, regardless of whether
these are basic Petri nets, coloured or high-IBeéli nets. Thus, the language is designed
to be a somewhat abstract definition that contdires net, arcs, nodes and graphics.
Additional information, such as legal labels, idinled as an extension called Petri Net
Type Definition (PNTD). A PNTD is an instance oPaIML, and that the PNML meta-
model is an abstract class or interface.

Figure 25 shows the meta-model of a simple PNTDwimch the classlace is
labelled ‘initialMarking ". The abstract syntax for the PNTD is the standaabel,
transformed to remove concepts related to con@gteax, such as positions and shapes.
This shows that, conceptually, FetriNet containsArcs , Transitions and Places
whereTransitions ~ andPlaces generalise the concept®bde. The associations between
Arc andNode enable navigation through the Petri net. Theahitarking of a net can be
defined using thénitialMarking attribute of aPlace that indicates how many tokens

are initially located at &lace .

package pnmlExampld meta-modelu

NamedElement PnObject Transition
+name : String

objects *

PetriNet

Place

Node +initialMarking : Integer
Arc

+target +inArcs

+source +oUutArcs

*

Figure 25: The meta-model of a PNTD.

In additional to the abstract syntax, the modeludes static semantics expressed in
OCL. The OCL constraint shown below prevents an lkking a Place to a Place or a

Transition to a Transition.

context Arc inv:

(source.ocllsKindOf(Place) and target.oclisKindOf(T ransition)) or
(source.ocllsKindOf(Transition) and target.ocllsKin dOf(Place))

Listing 1: OCL added to Petri net meta-model.

91

Behavioural semantics for the PNTD have been adeiat@n ASM formalism that is
similar to that used to define the semantics of BR&7]. This ASM is created by
mapping the concepts in the abstract syntax toctmeepts in ASM via a “by name”
association between the two technical spaces. Uldéses are mapped as a Universe in
the ASM, with a generalisation relationship mapfed sub-set relationship; for example,

classPnObject andNode are mapped as shown below:

Universe: Node c PnObject
Universe: Transition € Node
Attributes and properties are mapped to a functioth their parent class as a

parameter. For exampleamedElement.name is translated to

name: NamedElement — String

Since the mapping from UML classes to universesfandtions are straight forward,
they are omitted due to limited usefulness. Thesiteon rules and important functions are

listed below:

1. RUNPETRINET

2 (p € PetriNet) =

3. letactiveTransition = getActiveTransition(p) in
4

FIRH activeTransition)

. FIRE
(t € Transition) =

5

6

7. forall p € getSourcePlaces(t) do
8 token(p) :=token(p) — 1

9

. forall p € getSourcePlaces(t) do
10. token(p) := token(p) + 1

11. getActiveTransition (p € PetriNet,t € Transition) =
12. Je € getTransitions(p) isActive(e)

13.isActive(t € Transtion) —

True,Ve € getSourcePlaces(t) token(e) >0
14.

False,else

92

Listing 2: Semantics of Petri net defined by ASM.

This behavioural semantic specification has sevdrdiberate inconsistencies and
errors, including:

» Syntax error: A function name is spelled incorng¢ilranstion in line 13 should

beTransition. If an ASM syntax checker supports the syntax absuch an error
will result in a syntax error.

* Inconsistency with the meta-model: In lines 8 afd the function of getting the
token from aPlace is named token ” rather than fhitialMarking ", which
means that the same property appears under diffeg@nes in the syntax and
semantic definitions. An ASM syntax checker willtrimd this error, because the

ASM specification is a valid specification withits itechnical space.

* Logical error: The rule FIRE should decrease thealmer of tokens in the sources
by one and increase those in the targets by orexeldre,getSourcePlaces(t) in
line 9 should bgetTargetPlaces(t).

These errors can be found by a careful review ef gpecification. However, the

specification of a DSL can be large, running todreds of pages, so not all mistakes will

be identified by a review process.

5.3 Defining Petri net language via ALF

In this section, PNTD introduced in the previoustism is defined using ALF as an
executable meta-model. The definition starts fn@presenting the abstract syntax of
PNTD.

It is possible to establish a mapping and use Adrépresenting a meta-model in a
similar way to other textual representations ofanebdelling languages, such as Emfatic
or KM3. The following code defines a class:

public abstract class NamedElement{
publ i ¢ name:String;

}
In the example above, the Java-like syntax defmelass, an attribute (can specify the

multiplicity), the type of attribute and thebstract attribute of the class.

Generalisation can be defined using theetializes " keyword.

abstract class PnObject speci al i zes NamedElement{}

93

When defines a reference, th@pose” keyword illustrates that the referenced object

is composed by the parent object.
public cl ass PetriNet speci al i zes NamedElement{
publ i c objects: conpose PnObject[*];

The associations betwearc andNode can be defined as:

publ i c assoc Arc_Node_ Source{
publ i ¢ source:Node;
publ i c outArcs:Arc[*];

}
By the same method, all the classes and theinoakitips can be defined as shown in

Figure 25. These result in a meta-model capturedAbly syntax. While defining the
abstract syntax, the OCL constraints can also dedtb the ALF program.

When defining behavioural semantics, the PNTD maslelready describing a Petri
net instance, there is no need to add more instaooeepts; thus, behaviours can be
directly attached to this model. In order to realisis approach, four operations are added
to the original meta-model, as shown in Figure Plee behaviours are captured in the

operations.

package pnmlExampld |21 executable meta—modelu

NamedElement PnObject Transition
+name : String
. +isActive() : boolean
? +ob1y * +ire()
PetriNet
+runPetriNet()

+getTransitions() : Transition [*]
+getActiveTransition() : Transition

Place

Node +initialMarking : Intege

Arc +arget +inArcs

+source +outArcs

*

Figure 26: Executable meta-model of PNTD.

Then the body of the operations can be developadekample, ifransiton class,
an operatiorisActive IS needed to tell whether a transition’s sourceed all have a
mark, so that the transition is ready to be fifElis can be specified in OCL as a derived

function
self.inArcs->forAll(e|e.source.oclAsType(Place).ini tialMarking>0)
It can also be written using ALF syntax

publ i c isActive():Boolean{
r et ur n this.inArcs

94

->forAll e (((Place)e.source).initialMarking>0);

}
The code below is the complete ALF definition of fetri net language.

public abstract class NamedElement{
publ i ¢ name:String;

public cl ass PetriNet speci al i zes NamedElement{
publ i c objects: conpose PnObject[*];
publ i ¢ runPetriNet (){

| et activeTransition:Transition = t hi s.getActiveTransition();
activeTransition.fire();
}
publ i ¢ getActiveTransition():Transition {
r et ur n this.getTransitions()-> sel ect e (e.isActive())->at(0);
}

publ i ¢ getTransitions(): Transition[*]{
return this.objects-> select e(e instanceof Transition);
}

}

abstract class PnObject special i zes NamedElement{}
abstract class Node specializes PnObject{}
/¥ @CL("(source.ocllsKindOf(Place) and target.oclisKindOf(Transition))
or (source.ocllskindOf(Transition) and target.oclls KindOf(Place))") */
cl ass Arc speci al i zes PnObject{}
publ i c assoc Arc_Node_ Source{
publ i ¢ source:Node;
publ i ¢ outArcs:Arc[*];

publ i c assoc Arc_Node_Target{
publ i c target:Node;
publ i ¢ inArcs:Arc[*];

cl ass Place speci al i zes Node{
publ i c initialMarking:Integer;

cl ass Transition speci al i zes Node{
publ i c isActive():Boolean{
return this.inArcs-> forAll e (((Place)e.source).initialMarking>0);

}
publ i c fire(){
for (Arcarcin: t hi s.inArcs){
| et place:Place = (Place)arcin.source;
place.initialMarking--;

for (Arc arcOut: t hi s.outArcs){
| et place:Place = (Place)arcOut.target;
place.initialMarking++;
}
}
}

Listing 3: ALF specification of the PNTD.

95

It is also possible to define the behavioural seinams separated activities. In order to
use this approach, the behavioural semantics direedeas ALF activities that manipulate
the input model. Five activities (shown in Figui® 2an be added and one of them can be
defined as the start activity.

E public activity runPetrilNet (inout pt: PetrilNet) {}

4 public activity getActiveTransition (inout pt:Petrilet) {}

5 public activity getTransitions(inout pt:PetriNet) :Transition[*]{}
6 public activity isActive (in transition:Transition) :Boolean {}

7 public activity fire(inout transition:Transition) {}

Figure 27: Defining semantics as activities.

5.4 Discussion

This subsection discusses the relevant qualityfeatthat the definition layer supports,
and explains why using ALF would reduce the fiveb types of errors given in the ASM-

based Petri net specification.
Consistency

There was a debate regarding the use of either la-viawed modelling language,
such as UML, or a single-viewed modelling language, such as single diagram
approach [114], for software modelling. The onegdian approach, although providing
greater understandability and a higher correctmates is not sufficient for modelling a
complex software system. It supports the modelbhgmaller views, such as structures
and detailed behaviour, but does not support highesl behaviours (e.g. state machines),
composition, deployment or requirements. Althoughsi possible to create a unified
language for all aspects of a software systemjta@-model of the modelling language
will be complex and the model quality will be ddtilt to maintain due to the complexity
thereof.

Compared to a software system, a language spdioficeaontains fewer components,
mainly in terms of abstract syntax and behavious@mantics. The common
inconsistencies are inconsistent syntax and semarddels, because they are defined in
different languages. In order to check such insiascies, a common approach is to
create a composite meta-model that composes thaxsgnd semantics specification, then
validates the composed model and traces the efroms the composed model to the

> UML is multi viewed, but the UML meta-model could bring all views together. However, the UML standard
does not force the checking of the syntax validation. Hence, the unified meta-model of UML does not make
the validation of the consistency of UML easier.

96

original model. Thus, before automatic consistermtyecking can be provided, the

language engineers need to

» Link the syntax and semantics model by transforomati which is a significant

amount of challenging work.

» As the translations and traces may also contaorgrthey must also be validated

and maintained.

In comparison, ALF already provides a model thah capture both syntax and
semantics; thus, the translations, traces and lgessirors that could occur during the
process are eliminated. In an ALF programme, detgahconsistency is as difficult as is
maintaining the correctness of the syntax. Theegfibrthe language engineer resolves all
syntactic errors of a language specification by BQihconsistency is eliminated.

Let us now return to the semantics of the Petrithat contains intentional errors,
presented in Section 5.2. The ASM version of thefBPNonsists of an abstract syntax
specification that is defined by a class diagram arbehavioural semantic specification
defined by ASM. The first error is a syntax err@ name typo. Such syntactic errors of a
language are easier to check by a parser or a aatightor, as shown in Figure 28. If the
ALF specification has a basic syntax checker, sacherror can be found, as in the

example shown in Figure 28.

: public runPetriNet ()|{
@ G [|unknown type name Transtionjt activeTransition:Transtion = this.getActiveTransition();
Q10 activeTransition.fire():

11 1 |

Figure 28: Checking name typos.

Consider the second error, which is an inconsigtdretween syntax and semantics.
The inconsistency is due to different views of laage specification using different names
to refer to the same attribute. Such an inconsigtenll not be detected by a syntax error
checker, since both the syntax and semantic spatidn are correct in terms of the
specification language. Moving on to the ALF versid the same error - the semantics
(operations) using different names from the abssgotax (class structures) for the same
attribute - occurs, such an error will cause aaymrror (a name refers to a non-existent
property) that is easier to be identified by a par€ompared to a parser, the other ways
usually requires additional methods. Figure 29 shbaw the ALF editor can detect such

an error.

97

39 public fire(){

4(for (Arc arcIn : this.infArcs){

41 let place:Place = (Place)arclIn.source;
W2 [property token does not find in t‘r'pelclass'-.'alidationT‘r'pe’name=PL€EH

43 1

44 for (Arc arcOut: this.outlZrcs) |

45 let place:Place = (Place)arcCut.target;

146 place.tokenf+;
48)

Figure 29: Checking non-existent properties.

Interoperability

As they are backed by the Object Management Grarg supported by many large
tool vendors in the modelling community and have éxisting resources of UML, ALF
and fUML are considered to be interoperable teabgiek.

Since ALF is an interoperable format that is supgmbrby industrials, it makes
language specification reuse and language speiceomposition possible. If the PNTD,
for example, were to be extended to a hierarchedti net, the classes and operations
could be reused as normal object-oriented prograsmwith inherited classes, override
operations and polymorphisms. This is more difficithe base language specification is

procedural based, or even defined using differ@mjliages.
Understandability

ALF is designed to be an understandable language Wade group of users. Although
it is not expected that users who are not famwigh programming and who are therefore
not the intended audience of a language specificatbuld understand it, advanced users,

language tool engineers and language engineesd| aaeget audiences of ALF.
Expressiveness

Expressiveness gives the language engineers thatopjy to create semantics in a
higher-level language, instead of worrying abouplementation. An expressive language
does not guarantee that the users of the langudlydewelop high quality products but,
with the process discussed in Section 4.3.2 andgthéelines in Appendix B, it will
certainly be beneficial when defining concurrenhdgours and working with sequences

and associations, resulting in code that is smaherless complex.

98

5.5 Summary

In summary, defining a DSL using FQLS includes niefy a DSL as an executable
meta-model, which is represented by ALF syntax.thslas syntax is defined as classes and
their relationships. Static semantics can be cegdtury using an aspect weaver, by
extending ALF syntax, or by representing constgimh behavioural semantics.
Behaviours are attached to the abstract syntaxrbgtcittachment, using an aspect weaver,
or by creating a runtime meta-model.

In order to demonstrate the method, a Petri nanpl@awas illustrated, first defined by
translational semantics using a class diagrampsegbased transformation and an ASM
rules for behavioural semantics. The ALF speciitcabf the same language is provided
thereafter. Why the ALF-based specification is dreih consistency, interoperability,
understandablity and expressiveness is discussed.

The next chapter discuss describes how static sisag/used in FQLS to maintain the

correctness of a ALF-based language specification.

99

Chapter 6.

Static analysis of DSL specifications using FQLS

Using ALF as a method for defining language speaiions leads to a more
understandable specification that has improvedistamey and correctness and which is
more interoperable. However, these benefits stidchthe developers' efforts in order to
achieve them. As discussed in Chapter 4, an autonmregthod of error reporting is an
important aspect of creating a high quality languagpecification, which requires
performing a static analysis of the language sp&tibn via the analysis layer of FQLS.

In this chapter, the types of errors that would uocth an ALF-based language
specification are first discussed in Section 6.fteAidentifying these errors, in Section 6.2,
how these errors can be statically checked by FQESIemonstrated, by using the built-in
checkers that traverse the syntax tree and perfgp® checks. Thereafter, Section 6.3
explains how to transform an ALF specification ifitdML, which enables the reuse of

UML analysis approaches.

6.1 Extended static checking

This section tries to answer a question: What kiofistatic analysis are required?
Because a static analyser targets a particulardirdror by looking for a bug pattern, this
question can be answered by examining the kindsrrairs that can appear in an ALF
specification. Research into the kinds of erromat ttan occur in an ALF specification
starts by sourcing errors from two different catggg® a static code analyser for other
languages, and our experience of using ALF.

The first source of errors comes from the statidecanalysers for other programming
languages, particularly those of Java. Java ict#leas a major source because that ALF,
as a programming language that is similar to Jalvares the same kind of errors as Java.

Therefore, the errors that can be checked by Jade analysers are analysed.

100

The Java code analysers that are analysed are WgndBO], PMD [27] and
CheckStylé®. Each has a list of the errors they can checkchvih@nges from common
causes of bugs and styles, to bad practices (drcbde smells’, as described in [98]). If
the same error occurs in ALF, the error is liste@dgossible target for a static analyser.

Table 2 lists the errors that are migrated fronaldghed static checkers. Since they
only requires efforts to implement, they are nottiwp to be introduced in the main body
of the thesis. The details of these errors arediss Appendix C.

NETLE]

Syntax errors

Class implements the same classes as super class

An Activity that has a return part must define aume
statement

Type errors

Unused/unwritten class members or variables

Compare two objects when they are not comparable

Method names differ only in capitalisation

Class defines an attribute that masks a superatagsute

Unnecessary type check done using instanceof aperat

Obvious infinite loop

Impossible cast

Table 2: Errors identified from established checker

The other source of errors comes from our expegiemaising ALF. ALF has its own
features that can cause errors, especially sople tieatures that are syntactically similar
to Java, but which have different behaviours inaJaivhen developing the BPEL case
study, some errors that were encountered couldrompeatedly. These errors were
identified as features of the static analyser; #swound that the effort involved in
implementing the checker was less than that ofrimmthem manually.

Table 3 lists the errors that are identified frdme BPEL case study. Their details are
introduced in the following paragraphs.

10 http://checkstyle.sourceforge.net/

101

NEIE]

Wrongly placed accept statement

Accepting a signal that is not defined in a sigeakption

An OCL expression cannot be interpreted.

Empty code block

Blocked active class thread by signal deficiency

Use of a local variable without declaration

Try to compare a collection with null

Access a collection by index when the collectiondsa sequence

Ambiguous ! operator

Check java naming rules

Practical rules regarding sequence expressions

Table 3: Errors identified in the BPEL case study.
Wrongly placed accept statement

An accept statement is a special statement thatewiporarily stop the execution of
the active object, which will be resumed when tigaal it is waiting for arrives. Since it
stops the execution of an active object, it mugteap in an active object. ALF constrains
only the classifier behaviour of an active class,aopure activity, because activity is
treated as a classifier that is active. Howeveis gasy to forget this and to put accept
statements into a normal operation. For examplejimgoa code block that contains an

accept statement to a new operation, as in Li&gjng incorrect.

public active cl ass Test{
public receive signal SignalTest{}

}dof
accept (SignalTest);
/1 do sonet hi ng

Listing 4: Correct accept statement.

102

public active cl ass Test{
public receive signal SignalTest{}
pri vat e receiveSignal(){

accept (SignalTest); /Il ncorrect
}
}do{
t hi s.receiveSignal();
/1 do sonet hi ng
}

Listing 5: Incorrect accept statement.
Accepting a signal that is not defined in a signakception

This error happens when an accept statement triascept a signal that is not defined
as a signal reception of the enclosed class. AL§ tina ways of defining a signal

reception; one is to define the signal and itspgoa in the same place, as below:
public active class A{

public receive signal SignalTest{}
}do{

accept (SignalTest);

The other way is to define the signal separatedygedow:

public active class A{
public receive SignalTest;
}do{
accept (SignalTest);

}
public signal SignalTest{}

If an accept statement tries to accept a signalishaot a reception of the active class,
it indicates either the signal reception is missiagthat the target name is wrong. For

example,
public active class A{
}do{
accept (SignalTest); /1 mssing signal reception

}
An OCL expression cannot be interpreted.

Section 5.1.2 introduces the three ways that apqgsed to specify static semantics via
ALF. When defining static semantics by OCL separdtem the ALF specification or
embedding OCL to ALF, the OCLs can also experiegrcers. When an OCL interpreter

cannot interpret the OCL expression, this errot gl reported.

103

Blocked active class thread by signal deficiency

As discussed previously, an accept statement st@psxecution of the active object
that contains the accept statement. If the langeageeers wish to continue the execution
of that active object, another object must sendstgeals for which it is waiting. If such a
signal is missing, then the active class is bloatee to signal deficiency.

It is not easy to eliminate blocked active classms)sidering the complexity of a

programme. However, it is possible to check a paldr kind of deficiency.
public active class A{

public receive signal SignalContinue{}

}dof
accept (SignalContinue){
/1 do sonet hi ng

}

public active cl ass B{

}dof
let a:A= newA();
a.SignalContinue(); []------- 1

For instance, assume that the code above is a etemgbllection of the ALF
programme. The code block contains two active elagsandB. The active objects will
not be blocked, because an instancs will send the signal ta whens is instantiated. If
statement 1 is deleted, then class waiting for aSignalContinue . However, such a
signal is not sent by any instances of the entioggamme, which indicates an error of
signal deficiency.

As a result, the check scans the complete prograname creates an error message if
an active class waits for a signal that is not bgrdany other classes.

Use of a local variable without declaration

In ALF, the local name can be declared as in amadyc language, when it is first
assigned a value like

a= "fdsafsa" ;// a was not declared before

In the assignment statement above, the type Ssiogitted. However, it is better to
avoid it, because static type checks can reveas.buge implicit type, especially when

indicating the type of the variable is not easy nwmke static type checks difficult.

104

Try to compare a collection with null

When testing whether a collection is empty, it iomg to compare the collection to

null. The correct way is to invoke theEmpty() method. The code below shows an

instance:
i f (structuedActivity.activities==null) /I not correct
i f (strucutedActivity.activities->iSEmpty()) /'l correct

Access a collection by index when the collectionm®t a sequence.

ALF defines a sequence using the syntax below:

public cl ass Scope{
publ i c activities: Activity[*] sequence;

where a sequence keyword is the same as
publ i c activities: Activity[*] ordered nonuni que;

A property is non-ordered by default. This does affect the processing of each
element of the list if the order is not importakiowever, it does cause an error when
accessing non-ordered multiple properties via samyandex operator (“[* and “]"). When
this happens, no correct result is guaranteed: &jhén source reference implementation
will return a value in the list, but it does nowkéahe index of the desired one.

This check performs checks on the array accessatmpeand reports errors if the target

it tries to access is not ordered. In the Petriexa@mple, the multiple properties are a non-

ordered collection. Thus, the Mansition.fire() , accessing an arc by the index is
wrong:
cl ass Transition speci al i zes Node{
publ i c fire(){
| et firstArc:Arc = this.inArcs[0]; /'l wrong
1.
}

}

Check java naming rules.

This rule checks whether a name in the ALF texf@ons to Java naming rules. It is
useful when generating the testing executor. Siheenaming rules of ALF and Java are
different, it is possible that a legal name in Alvifl cause a syntax error or an ambiguity
error. An obvious example is that it is legal torreaan ALF variabletfy ”, which will
result in the generated code not being compiledti#er unobvious example is to give an

ALF class the same name as a clagavinlang package, such aBrocess’ , which will

105

result in the generated code usgagh.lang.Process in default, rather than using the
Process class defined by the language engineer.

The rule contains the follow sub rules:

* Names are not reserved Java hames

» The first letter of the class is capitalised

» The first letter of variables/operations is notitajzed.
» Signals start with a keyword signal.

Practical rules regarding sequence expressions

The sequence expressions of ALF are powerful bectlusy give ALF the same
expressiveness as OCL. Sequence expression casibedefined as lambda expressions.
However, current Java does not support lambda ssiores’, which makes generating
Java code from ALF sequence expressions a diffiagk. It can be done by generating an
interface with an anonymous function, which wilhtge the generated code because each
sequence expression results in an interface wigmdomly generated name. Some JVM
based Java-like languages, such as Scala and >demport lambda expression; however,
using a language other than Java makes the reus&MBfimpossible. Finally, FQLS
supports the generation of sequence expression®CGlss embedded in Java with
limitations. The details of the generation areddtrced in Chapter 7. In order to enable

our approach of code generation, the following domas must be satisfied.
* Avoid sequence expressions in a normal ALF block.
» Put sequence expression into a new operation tiyahas a return statement.

For example, such sequence expressions shouldmedy

publ i ¢ operation (){
/'l some code
| et flag:Boolean = sequence -> forAl'l e (e>0);
/'l some code

However, sequence expressions can be used if thajefined in a separate method by
generating sequence expressions as OCLs; for erartipt list below will generate
working EMF code in FQLS.

" Java aimed to support closure by project lambda (http://openjdk.java.net/projects/lambda/) in Java 7
(2011); however, it was delayed until Java 8, which was released in 2014 - clearly too late for this thesis.

106

publ i ¢ operation(){
/'l some code
| et flag:Boolean = createFlag(sequence);

}

pri vat e createFlag(i n sequence: any[*]):Boolean{
ret urn sequence-> forAll e (e>0);

}

Thus, a checker can be implemented to check whttbarse of a sequence expression
meets the limitation. This option should be turreedif generating code for Java 7 or

below is desired.

6.2 Building static code analysers

Once the errors that need to be checked have deatified, the next step is to build
static checkers that validate these errors. Mamyasyic errors mean that the programme
cannot be parsed as a valid syntax tree. Theses kafderrors do not need the
implementation of a validator, because the ALFa@ditcluded in the tool chain of FQLS
is built upon Xtext, which automatically generategparser that validates lexical errors.
The details regarding the way in which Xtext getesaa parser are omitted, as this is
outside of the scope.

On the other hand, many of the errors listed inti8ec6.1 should be checked by
building customised validators. Fortunately, Xtgxovides a plugin mechanism to add
customised validation rules in a declarative styld. class that generalises
AbstractDeclaritiveValidator can add a&@cCheckannotation to an operation. The input
of such an operation is a class from the languagf@model. In the body of the operation,
the input class instance is examined using any dethods necessary and, if any error or
warning is found, the operation should tell the@dio report specific error messages. For
example, the list below shows a validating rulet ttlaecks whether an operation of an
ALF programme should have a return statemepérationDefinitionOrStub Is a class
from the ALF meta-model. If it has a return parh{gh means the operation should return
a value) and the body of the operation does not laaneturn statement, the validating rule

will report an error.

107

@Check

public void validateOperationDefinitionOrStub(OperationDefinit ionOrStub
operation){

AlfFinder finder = new AlfFinder();
i f (operation.getReturnPart()!= nul |
&& (! finder.hasReturnStatement(operation))){
error("The operation must return a result", ope ration, nul |,
INSIGNIFICANT_INDEX);

Listing 6: Validating rule for testing the return statement.

When the ALF editor is running, the Xtext framewoakitomatically invokes the
validating operations with relevant input. For exden every instance of
OperationDefinitionOrStub will be passed to the validating rule in Listingad be
validated. The mechanism of the Xtext validatorvmes a framework to perform
validation on special elements of the ALF meta-nhode the developers only need to
implement how to identify the errors, rather thamwhhese rules are invoked or how the
errors are rendered in the editor.

The validation framework of Xtext enables the additof customised validation rules
to a language in a simple way. It is necessary émtion that, although it is called a
declarative validator, the logic for querying theFAmodels, finding errors and reporting
errors is still performed by imperative code. Theoes listed in Section 6.1 can all be
validated by validating operations that range fisexeral to hundreds of lines of Java code.

The validators and the helper classes form a Jaeckage. To demonstrate how a
validator is implemented, the validator that redate type errors is taken as an example.
The class diagram is illustrated in Figure 30. disvehosen because it is the most complex
validator, and the helper classes are used by v#iigiators.

108

package Validators[|21 class]J

AbstractDeclaritiveValidator TypeFactory
e 7 I
<<use>>_ |
re <<|_jse>>l
b
ALFJavaValidator |
i << >> \Z
+validate() — S<use Y
+.0) — . AlfFinder
\ 7
<<use>> <<yse>> -~
\ -
7
N -

TypeResolver

Figure 30: Validation package.

AbstractDeclaritiveValidator is a base class provided by the Xtext framewdsk. |
subclasses can use tl@Check annotation and are managed by the Xtext framework.
ALFJavaValidator IS an example that contains validating operations.

Because many different rules need to query theulagg specification, the queries are
separated in thelfFinder class.AlfFinder provides helper operations that, when given
an input model from the language specificatiorymet. special model that can be used for

analysis purposes. For instance,
publ i ¢ Statement findStatement(EObject exp)
This operation will find the statement that consaithe input object. Some statements

are only correct when their enclosed expressioasoéra certain type. Here is another

example:
publ i ¢ EObject findNameDefinition(NameExpression exp)

When given a name expression, it is necessaryntb its definition; whether it is a
local variable, a class member, or a parametethdfe is no definition of the name
expression, it returns null.

To check type errors, the complete ALF instance ehalfirst traversed. The models
that could be a type are identified and their types recorded. Basic types that are
supported by the ALF standard are included, as agedny classifiers that can be used as a
type. Each of the expressions is then scannedth@ntype of the expression is resolved by

the clasSypeResolver

109

TypeResolver is a class that computes the type of the inpuresgion. When the
input expression has type errors, it will recode dénrors, which can then be retrieved by
the callers. TheTypeFactory class provides the relevant utility operationsgchsias
creating a specific validation type, or the stafperations that compare two types to see
whether they are compatible.

By using these classes, rules related to type shedn be implemented. The
implementation details are omitted, since theyraeinnovative. On the other hand, the

numerous small checkers, as a whole, enhance #igyqf a language specification.

6.3 Bridging FQLS specification with f{UML

Since the built-in checkers validate types and ayritees, it is possible to create a
checker for most of the errors listed in Sectioh &Vhile these checkers are targeted for
the most frequent errors, these checkers take Abgrammes as input. They can only
analyse errors by querying the ALF programme. Iheotwords, the errors and bad
practices targeted by the built-in static checlsttare the same feature, in that they can be
identified by querying the syntax tree of the ALlBgramme.

Formal static analysis method can verify some pitagselike deadlocks or inefficient
use of resources. They are also desired becaubeksuts of errors reduce the quality of
the language specification. Moreover, the resudtytproduced is usually sound, which
gives extra confidence of the quality. In ordemp&rform formal analysis on a language
specification specified via ALF, it is needed tadige ALF to an analysis domain.

A direct mapping from ALF to an analysis domain daa created. Since there are
many possible candidates, each of the mappingsresgsignificant effort to develop. In
addition, such developments require the formal sgic&in order to transform them. The
semantic basis of ALF is fUML, which means if angéormation from ALF to an analysis
domain is desired; this can be done by firstly $farm to fUML, and then transforms
fUML models to any desired analysis models.

There is another reason why fUML is a promisingdidate of analysis domain. Since
the release, significant works have been done own thoformally analyse or to verify a
fUML models, which are listed in Table 4, specifyithe property that can be verified and

the input model required for that approach.

110

Name Input model Analysis

[20, 21] UML/EMF Satisfiability, Liveliness, deficiency, reddancy

[158] fUML Data flow analysis

[118, 120] UML/fUML Executability, satisfiability

[2] fUML Deadlock Checking

[11] fUML Performance analysis

[90] fUML Control- and data-flow, resources, and timne
dimensions

Table 4: fUML analysis approaches

The establishment of fUML analysis approaches mefas approach that bridges
ALF and fUML exists, the fUML analysis approaches d®e reused, thus saves the effort
to develop the mappings individually. Fortunatehgpping from ALF to fUML is defined
in its language standard. However, the transfoonatis not a straightforward
implementation. The transformation, rather thameiefined in a rigid way, is defined by
text, which needs to be interpreted and formalidadtotal, ALF and fUML contain
hundreds of classes, and mapping is not a simplgpimg. One ALF element can be
mapped to a group of fUML nodes, edges, structuredes and classifiers, and these
fUML elements can be owned by different groups. sihihe nature of ALF makes the
transformation complex and challenging.

In order to create such a transformation, the ¥ahg parts of this section discuss the
choice of model transformation languages, and toen the transformation is created and

the results are demonstrated.

6.3.1 Atlas Transformation Language

To develop such a transformation, it is necessargdlect a model transformation
language. There are several commercial or opercsoprojects that can be used to
transform models, as shown in Table 5. They shiandas features, such as providing a
mechanism to define transformation rules. Most leént support so-calledhybrid
transformation which enables the use of both declarative anceratjve styles to define

transformation rules.

111

Name Feature

ATL [73] Widely used, supports hybrid rules, actively depelb by the Atlanmod
team.

QVT [53] OMG standard. Contains three languages. Suppadbotsdnules

Kermeta [18] Supports imperative style transformation.

Epsilon m2m [82] Has the ability to interoperate with other memlzdrthe Epsilon languagp
family.

Henshin [7] Uses in-place graph transformation to define datha rules

Table 5: Transformation languages.

Of these transformation languages, ATL and QVT e most acceptable model
transformation languages. While QVT is a languagindd as an OMG standard, which
forms the model-to-model part of the MDA proces¥,TQs somewhat complex as it is
split into three different languages, namely QVTatienal, QVT operational and QVT
core. Within three of the languages, only QVT operal has a usable open-source
implementation in the Eclipse ecosystem. In congoari ATL is a model transformation
language that has a large user community. It sapgoiorid rules, which are powerful
enough for a complex transformation, yet still kebp transformation simple to read.
Hence, ATL is selected as the language for implémegithe transformation.

Although ATL is selected as the means of implenmgnthe transformation, this does
not mean that the idea can only be realised by AQ\/T and any other mature model
transformations can do the job. The model transébion implemented in this section is a

demonstration of a possible solution.

6.3.2 Mapping ALF to fUML

A model transformation needs to define its inpupat meta-models, the source/target
models, and the transformation rules. Figure 3lvshan overview of the transformation.

This process involves four rounds of transformatj@nd three meta-models are used.

ALF grammar fumL

generats g | CDn orm to' CD” AT

Conform to

\(/ Corrorm t0.
1 xText ’ |
|

M2M ~M2M ‘
linking \

fUML instance
model

ALFgrammar ALFinstance
instance model model

Figure 31: ALF text to model transformation.

112

The ALF meta-model and the fUML meta-models arerEdmplementations of the
standard, imported from the CMOF files given on @dG website by the EMF standard
import wizard. The errors that happened in the ipg process were solved manually.

The transformation starts from the ALF text. Thetfround transforms from text to the
ALF grammar model, which is done automatically kgx. A model that conforms to the
grammar meta-model is passed to the transformé&tom the definition layer of FQLS.

The grammar model is different from the ALF metad®lodefined in the standard,
because it still contains the verbose classesatieabnly meaningful for parsing. Thus, the
next step is to translate the grammar model to Algta-model. This process, if compared
to traditional language development, is similacdéostructing an abstract syntax tree from
a syntax tree.

The grammar of ALF is divided into expressions,testeents and units. When
constructing the grammar, the units and statemametsdentical; thus, the transformation
rules mainly copy the contents. However, the exgioes of the grammar model and the
ALF meta-model are different. To ensure that thergnar is an LL(*) gramméfthat can
be parsed, the class representative of expressiorrbose. For instance, an expression

“operandl + operand2 " in the grammar model will be:

package AlfGrammar| |2 |Additive u

AdditiveExpression
+op : String .ﬂ

MultiplicativeExpression +exp | UnaryExpression

Figure 32: An example in the ALF grammar meta-model.

In the ALF meta-model, expressions are resolveaigooper representation:

2 Xtext uses ANLTR 3 as its parser generator, which supports LL(*) grammar.

113

package AlfMetamodell AIfMetamodeIArithmetircExpression]J

ArithmeticExpression

+operator : String

+operandl

+operand2

Expression

Figure 33: Arithmetic expression models in the ALF meta-model.

The M2M linking transformation mainly contains ttransformation that resolves the

expressions. This transformation will create an Ahgtance model, which is ready to be

transformed to fUML.

The last round of transformation compiles the Aldstance model and the fUML

instance model. The ALF standard has defined hewrtapping should be done. Although

this is informative, it is not intuitive if implenméed by a model-to-model transformation

language.

Table 6 summarises the simple ALF programme andcdsesponding UML

representation. This table helps to give an idd#oaf concepts from ALF are translated.

StructuredActivityNode similarly to

a normal code block, but without the

control flows.

ALF code fUML models

Activity Activity with parameters mapping tp
ParameterNode .

Code block Maps to 3|
StructuredActivityNode , with each
of the statement inside mapped to multiple
StructuredActivityNode that are
linked by control flows.

Parallel code block Maps to al

Literal expression

Maps to ValuSpecificationAction

114

binary expression

The operands are mapped to fUM
normal. The result of the operands
lined to a
BehaviourallnvocationAction that
invokes the corresponding calculati
action defined in the standard moq

library.

L a

Are

jel

method call

Maps to a

BehaviourallnvocationAction

return statement

The expression part of the rg
statement is mapped to nodes and e
that are enclosed in
StructuredActivityNode . The result
source of that expression has a data f
linked to the return parameter node of

activity.

turn

lges

ow
he

sequence expression

sequence

-> sel ect variable
(expression)

==parallel==

ﬁﬁstructured_bb
expression mappings

result=ource

resultSource
Sequence expression is mapped t
ExpansionRegion , as the exampl

figure.

192

signal sending

Maps to a SendSignalAction

Signal receiving

Maps to an AcceptEventAction

Loop Statement

Maps to LoopNode with the body

maps to the body of the LoopNode, 3
the test codition maps to the Condition

the LoopNode.

nd

of

Table 6: Mapping between ALF code and fUML models.

115

The table shows that one ALF concept can be mappeadgroup of UML nodes and
edges. However, the containers for these UML nedesedges that are derived from the
same ALF class can be different. For example, m standard (page 347), mapping
expressions indicates that an expression stateisemapped to a structured activity node
that contains the activity nodes and edges thatransformed from the expression. This is
realised by identifying the owner of the target mlsdvhen writing the ATL rules.

By using this transformation, ALF text can be tfansied into fUML models, and can
be analysed or tested in a fUML executor if theyleage engineers desire. Returning to the

Petri net example, for the operatigmActiveTransition() , the code is

publ i ¢ getActiveTransition(): Transition{
return this.getTransitions()
-> sel ect e (e.isActive())->at(0);

Figure 34 shows the transformation result of theerafon. The operation
getActiveTransition is mapped to a UML operation, of which method baslyan
activity that contains the nodes and edges. Theatipa contains one statement (a return
statement), which maps to a structured activityenibht contains the nodes and edges that
are derived from the expression of the return staté. This expression is mapped to a
ReadSelfAction . The call togetTransitions() maps to aallOperationAction . The
selected expression maps toeapansionRegion , with the conditions mapped inside the
ExpansionRegion . The at() operation is an operation that comes from the dstiah
fUML library, which maps to acallFunctionAction that return the value with the

correct index.

116

(activity getActiveTransition(net : Net [1]) : Transition [0..1][@ getActiveTransition U
<<structured>>
<<readSelf>>
.—) readSeflAction(-
this) getTransitions :
net getTransitione
[n
<<parallel>> expansion.in <<structured>>
expansion 520
<<valueSpecification>>
% expansionForkl w
ransition_parameter
isActiveTransition : list callFunctionGet index
isActivitiedTransitic“'h —y : ListGet lh
edge2 - owned by structured node

eturn_parameter result

flecisionFlowSelectActive

>
decisior?f
owSelect
Active
[true]
expansion.out
edgel - owned by activity
J
S result : Transition

Figure 34: Compiled fUML model of get Acti veTransi ti on.

6.4 Summary

In this chapter, the components of the analysisrlay FQLS were presented in detail.
The errors that could occur in an ALF specificatwere identified, and ways of building
these checkers using Xtext were discussed. Thergaftransformer from ALF to fUML

was proposed and demonstrated by implementingahasTL transformation application.

117

Chapter 7.

Executing DSL specifications using FQLS

In the previous chapter, the static analysis ofléinguage specification was performed
without executing the specification. Although theogess of detecting the problems is
automatic, these static analyses are limited bygldhg syntax errors, bad practices and
some semantic errors. The semantic errors thaiareasily analysed by checkers require
the language designers to identify them. When #masmtics specification reaches a
sufficiently complex stage, it is difficult to véyiits real execution result manually. On the
other hand, an executable semantics specificatiinprovide an automatic method for
language developers to derive the execution results

Executability of the language specification is aighe most important requirements
as it enables testing and thus enhances the qoélibhe language specification. Testing a
language specification involves creating testinggpammes of the language specification,
then executing the programmes and checking whétieeresult is as expected. Thus, the
task of testing language specification not onlyoles an executor, but other tools as well.

Just because a language specification is execudge not mean that software that
can execute the language specification exists. Wguage specification defines the
language executor at the conceptual level, arftkis implemented as a piece of software.

In practice, language specification is the guidaiheclanguage engineers use to create
a reference implementation of the language. A esfeg implementation of a language

specification should
* Give the language designer a tool for testing éimgliage specification.
» Give the readers a standard tool to understankhiigeiage.

» Give the tool developers a starting point that tbag use as a basis for creating

other tools.

However, the relationship between a language spatidn and its implementation
does not happen automatically. The release ofgukege specification is not required to be

accompanied by a reference implementation. In facis possible that a language

118

specification, or at least part of it, is never letpented, even by the time it replaced by a
newer version.

Given the importance of a reference implementatimme reason for the absence
thereof is the cost. If the language specificatisncomposed of text, a reference
implementation needs to be developed manually.nidefithe language specification as an
executable meta-model enables the language spificto act as a reference
implementation. However, this is only possiblehié tanguage specification is sufficiently
detailed for execution and if certain tools areilade.

As discussed in Section 4.2.3, FQLS uses code gemerto create a reference
implementation of the language specification. ®&ci.1 introduces the architecture of the
code generation project. Section 7.2 demonstraes$ransformation from ALF structural
aspects to Java code. Following this, the lasi@ediscusses the method of transforming

behavioural aspects of ALF into Java code.

7.1 Architecture of the code generation project

Directly generating Java from ALF is time-consumaryd can involve a large degree
of development because there are many featured Bftat do not have straightforward
mapping. It is not worth reinventing features, sashways of managing bi-directional
references, as when one end changes the othemesdab. Thus a solution is to generate
an Ecore model from ALF. Ecore models are necedsargenerating DSL model editors
and validators. Furthermore, EMF can generate H#eeton of the Java code that
represents the Ecore model. Then Java statememtbecgenerated directly from ALF
statements. The Java statements use the skeleteratgd by EMF.

fUML and Ecore share many similarities when definstructural models. Although
some classifiers, such as signals/associationsotibave a direct translation, they can be
translated to similar concepts. For instance, aggons can be translated to references.
Thus, it is possible to develop a similar modehtodel transformation that bridges ALF
and Ecore. However, Ecore lacks the ability to rkefbehaviours, which makes it

impossible to translate ALF to Ecore without losbehavioural model definitiohs

B The experimental EMF project Xcore includes basic variable assignment, loops and conditional
statements, which could be used to define detailed behaviours. However, Xcore has limitations in many
places, such as lacking of concurrency support, no exception handling and limited documentations.

119

In order to support the reference implementatiomegation, the ALF to Ecore model
transformation is designed as a model-to-text foansation, rather than as a model-to-
model transformation. The reference implementataguires generating Java code from
ALF, which is more suitable as a M2T transformatidhe generated code is coupled with
the Java skeleton generated by EMF. If the strat@spects of ALF are transformed to
Ecore using an m2m transformation while the behaaiocaspects of ALF are transformed
to Java using an m2t transformation, it is too clexgo integrate. Hence, it is more
suitable to create an M2T transformation that deeth both the structural and the
behavioural aspects of the language specification.

The following two paragraphs introduces Emfatic #uteleo, both of them are key
technologies that enable the transformation. Aftbat, the architecture of the

transformation is explained.
Emfatic

Emfatic [29] is one candidate for the textual reprdation of Ecore, and there are
many other choices. It is chosen because it supfirbre annotations well. It directly
supports adding Ecore annotations to the Emfdes,fiwhich means an Emfatic file can
contain the structure of the models, the OCL ardibdy of the operations. The body of
the operations is specified @MGenmodelannotations as Java statements. Thus, this Emfatic
file acts as an intermediate format. In additidve Emfatic file can be directly loaded by
EMF, and the code generation is smoothly integrgtestt as in generating Java code from
a normal Ecore file. Although a similar effect che achieved by the other textual
representations of Ecore, the author believes Eenfabvides the best solution as it does

not need to cross check between the textual remiessn of Ecore and the genmodel.
Acceleo

Acceled” is a code generation language. Compared to sitaitguages, Acceleo is an
implementation of the OMG M2T standard [47], whialkans its syntax is template-based,
uses OCL as its querying language, and is compatith the standard. It is possible to
implement the M2T transformation in any other M2anduage, such as JET,
AndroMDA ', Xtend*’, or Epsilon Generation Languages [129]. The varidd2T

languages have their own features, but their syistasot compatible with the OMGM2T

" http://www.eclipse.org/acceleo/
 https://www.eclipse.org/modeling/m2t/?project=jet
16 http://www.andromda.org/index.html

v http://www.eclipse.org/xtend/

120

standard. Since interoperability is a fundamergguirement of a language specification,
building the complete framework by technologiest thee compatible with industry

standard will make them easier to adapt and uratedst

Architecture

DSL specification defined by (Ef:]:?;zc'vsm:gx) SRRl
ALF with OCL y
Units Classes Instance editor
(Abstract syntax) Model to text
Generate
OCL annotation » 0CL annotation > Validator
(Static semantics)
Activities & Operations Genmodel Executor
(Behavioural)
semantics) annotation

Figure 35: Generating Java code.

As illustrated in Figure 35, the code generatorksaas two-round code generation.
The first round transforms FQLS models to an Ecooglel. The structural definition in
ALF can be translated as one-to-one mapping, amdéhavioural definition is translated
to Java code embedded as the body of operatiores trihsformation is done by using
Acceleo M2T, which creates an Emfatic file. Theo®&t round of transformation is the

standard code generation of EMF, which generates dade from the Ecore model.
=% alf2emf
+l-Bh JRE System Library [JavasE-1.6]
+-B Plug-in Dependencies
=558 arc
= alf2emf
+ m Activator.java
+ 'B GenExpression.java
=4 alf2emf.main
+ m Generate.java
4| generate.mtl
Al generateBlock,mtl
A generateExp.mi

Figure 36: Project structure of the executor generator.

Figure 36 above shows the structure of the Accelede generation project. The
packagealf2emf.main ~ contains the code generation templat®serate.java is the
class that initialises the code generation fram&ywahich loads the input ALF mode and
loads the.mtl templates. There are three template files, namgeherate.mtl
generateBlock.mtl andgenerateExp.mtl . As the names suggesggnerate.mtl is the
starting point for the code generation, which degithe location of the output Emfatic file.

It also contains the generating structural aspetct&mfatic files, namely the classes and

121

class members. Finally, generate.mtl also genesateg Java files, which act as glue code
or adaptors.

GenerateBlock.mtl maps ALF statements to Java statements. When aR AL
statement contains expressions, it also invokesgéherateExp.mtl template, which
transforms ALF expressions into Java ExpressiGasExpression.java provides some
low-level detailed code generation tweaks.

This and the next section explain the details efdbde generation. They are divided as

two parts: the structural aspects, and the behealiaspects.

7.2 From ALF structural aspects to Emfatic

This section explains the mapping of structuraleatp of ALF to Emfatic in detail.
The concepts in ALF that are similar to Emfatic disted firstly, following by the
mapping of advanced concepts.

When representing classifiers, ALF has a richerabotary than has Ecore. Class,
enumeration and datatype have correspondent canicelgtore.

Table 7 summaries a general mapping of structunatepts from ALF to Ecore. Basic
types are mapped from ALF types to Ecore types.tiplidities are mapped in the same
way as in ALF, because they are the same in tefrasreept and differ only with regard

to syntax.
Class class
signal/signal reception class extends Signal
active class class extends ActiveClass
Enum enum
Attribute attribute
Association reference
Operation operation
Parameter parameter

Table 7: Mapping from ALF to Emfatic.
Signals/signal reception
The table also shows that some concepts, suchgaalsiand active classes, do not

have corresponding concepts. To solve this probéebgse class for all the classifiers that

do not have a corresponding Ecore concept is a@e@@nsider the signal definition in an

122

ALF programme. In reality, signal instances arecsgeobjects that can receive/send
signals by using an invocation expression or are@icstatement. They do not have any
special properties; thus, they can be represerstedcdass. By creating an interface called
Signal and then transforming an ALF signal defomtito an Ecore class that implements

the Signal interface, a signal definition can bewated by an Ecore class.
Active class

Another, more complex example, is transforming db&ve class in ALF. The active
class starts its classifier behaviour when a nestairce of the active class has been created.
The most similar concept in Java is a thread. Tttevea class also needs to manage
incoming/outgoing signals, as it is possible tceree signals before the object goes to a
waiting signal state. As the internal communicatiorchanism is a semantic variation
point of fUML, the detail of inter object communtaan is left to the tool implementer to
interpret. A simple message exchange model is ushdreby each active object has a
gueue that stores the incoming signals. Once agpastatement has received a particular
signal, that signal will be removed from the que&@ally, a Java interface can be

implemented:

public interface ActiveClass ext ends EObject,Runnable {
EList<Signal_> getMessageQueue();
voi d run();

} /I ActiveClass

Thus, when generating Emfatic code from ALF, anvactlass is mapped as a normal

class that extends tletiveClass interface:

abstract class Execution ext ends ActiveClass {...

The classifier behaviour of the active class is peapto the content of then()
method. When an active object is created, a negaththat executes tihen() method is
created in the generate Java implementation.

An ALF active class can define signal receptioms] ather objects can send signals to
the active object. The syntax for sending a signabn active object is the same as

invoking it to an operation, for example

public active cl ass Test{

public receive signal SignalTest{}
}do{}
Assuming test is an instance of Test, sendingignalTest to test can be written as
test.SignalTest();

123

Thus, signal invoking is mapped as an operation #aals a signal instance to the
message queue of the active object. This meanatbigial reception is transformed into
an operation with the same signal name; when invok®e operation causes the same

effect as being sent a signal, adding a signahints to its own message queue.
Attribute/association

As shown in Table 7, attributes in ALF and Ecore #te same concept; thus, an
attribute in ALF is mapped as an attribute in Ectivat has the same name, type and

multiplicity. In the Petri net examplejace.initialmarking is defined as
publ i c initialMarking:Integer;
and will generate Emfatic code like this:
at tr Integer initialMarking;

Translating ALF associations is a direct transfdram In ALF, associations are
classifiers that have the same root class as classgnals and data types. An ALF
association has its own name and visibility in &#ddito the other properties of a classifier,
and it can have multiple associations.

In the previous sections, a limitation is set tbaly bi-directional association is
allowed in an FQLS specification. One reason isdiffeculty of mapping it to Ecore and,
most importantly, a multiple association does navéha semantic basis in fUML. If
multiple associations are eliminated in ALF, theselst assembly of an ALF association is
a bi-directional reference in Ecore, which can dmya member of a class. Thus, given the
association ends of an ALF association, the tranmsiton needs to identify the correct
Ecore classes that contain the reference ends.ufiskie is applied to identify relevant
associations and to generate references in thetirfifa. When translating an ALF class
to an Ecore class, the code generator transformatthibutes first. It then looks up the
complete model, and finds those associations thee lone association end that is the
target class. Depending on the associations fotlhmel,generator finally generates the
references.

In the Petri net example, the associations betwegn andnodes :

publ i c assoc Arc_Node_ Source{
publ i ¢ source:Node;
publ i c outArcs:Arc[*];

publ i c assoc Arc_Node_Target{
publ i c target:Node;

124

publ i c inArcs:Arc[*];

will be translated to the following Emfatic code:

cl ass Arc ext ends PnObject

{
r ef Node#outArcs source;
r ef Node#inArcs target;
}
abstract class Node extends PnObject
{
r ef Arc[*]#source outArcs;
r ef Arc[*J#target inArcs;
}

7.3 From ALF’s behavioural aspects to Emfatic

This section continues the explanation of the cgdeeration from ALF to Java,
focusing on the behavioural aspects of the maphtirgtly, the scope of the mapping is
defined. Following that, the mappings of statemeanis$ expressions are explained.

In Java, methods are the only way of defining dediabehaviours of the programmes.
By contrast, ALF inherited the UML method of defigi behaviours. The basic unit for
defining behaviours is ‘activities’, which is eqalent to the concept of a Java method that
also has parameter lists and a body block thaaamnstatements. Activities are the basic
unit of behaviours, can be invoked by invocatiorpressions, and do not need to be
wrapped by a class.

An ALF operation is a member of a classifier. Anivae class not only has operations,
but also contains the classifieehaviour. Although operations and classifier béahag
are defined in a similar way to activities in terafsyntax, they are actually a definition of
the operation and a definition of an activity. Cdesing this difference, various basic
behaviour units need to be represented in Javautitbsing their original meaning.

As indicated previously, there is no perfect waytrahsforming ALF to Java without
adding specific information or losing informatiomecause this is the nature of
implementing a specification. A code generator gates code automatically, but there are

still many implementation decisions that are basedhe developers’ choice. Although it

125

would be nice to provide all options and consideisaues regarding the transformation of
logic, as well as the implementation efficiencyré®d, this is more of a development issue
and, as such, is of no benefit to this thesis.

Therefore, the code generator’'s scope is limitdds Tode generator is to make the
specification testable, to prove the idea thad passible to generate a language prototype
with limited effort, and to suggest that this pitygfe can give language designers a better
way of testing and analysing semantic errors. Téskeayeneration attempts to retain the
original meaning; however, when it is necessarg,génerated code may have to apply an
inefficient or naive implementation. It tries toh@éeve this by making the look and feel of
the generated code similar to that of the origlaF code, which means the generated
Java code is similar to the original ALF code,lssythave the same structures. By making
the ALF and Java codes similar, it is easier toudethe code generator. In addition, when
implementing abstract activities, having cleareteasomakes development easier.

Following the principles discussed in the previqasagraph, the next paragraphs
introduce the details of statement generation. mbshe statements are revealed to be
translated to their Java equivalents, while comristatements are transformed in a

simple way to preserve the original statement sirec

7.3.1 Generating statements

An ALF operation is mapped to a Java operation liezdéhey share many similarities.
The parameter lists were also translated, whicleigead a similar Java operation from the
ALF operation. When translating classifier behavjooecause an ALF active class is
translated into a Java class that implementsRtim@able interface, translating classifier
behaviour to aun() operation that realises tiRannable interface will result in a similar
effect to that of an ALF active object.

Some activities do not belong to any class, sita&y tcan be invoked without an
instance, which is similar to a public static metho Java. Thus, all the standalone
activities are translated to the public static rmodththat is contained by the class
GlobalActivities

Table 8 shows that many statements can be transtorsimply by some syntax
tweaking, while others, such as break statementsotl require any transformation at all.
The challenging aspects are translating the statisméhat Java does not have and
translating expressions contained in the statemsimse some ALF expressions cannot be

directly mapped.
126

ALF statement Java code

normal if statement if (condition) {}

else {}
while (condition) while (condition)
do {statements} while(condition); do {statements} while(condition);
normal for statement For
for (Type iterator in collection) for (Type iterator : collection)
local name definition Type a = initialValue;

let a:Type = initialValue;

break; break;
return expression; return expression
inline statement statements

*@inline(language=Java) statements
*

Table 8: Mapping from ALF statements to Java.

One ALF statement is mapped to a Java statementp & segment of a Java

programme that simulates the function of the Al&esnhent.
Accept statements

Accept statements that are simulated in Java mgusiwhile loop’ continue to check
the content of th&essageQueue, defined in theactiveClass class. When another thread
has invoked the signal-received method and theabigateived is one of the signals for
which the current active object is waiting, thedimf the compound accept statement
(translated to Java) is executed, and then breatksfahe while loop. The following code

shows an example:

accept (sigl:StartSignal){

/I code bl ock 1

} or accept (sig2:EndSignal){
/I code bl ock 2

}
is translated to
whi | e(true){
i f (messageQueue.size()==0){
try {

Thread.sleep(100);
} cat ch (InterruptedException e) {}
1} else{
Signal_ signal_ = messageQueue.get(0);
messageQueue.remove(0);
i f (signal_ i nst anceof StartSignal){

127

// code block 1

br eak;
} el se if (signal_ i nst anceof EndSignal){
/'l code bl ock 2
br eak;

}

} /1if nessage
Y/ /while true

Annotated statement/concurrent ‘if’ statement

The statements that deal with concurrency are #nellpl annotated statement and the
concurrent ‘if’ statement. Translating them intovaavhile preserving their concurrency
requires implementing each of the concurrent statésnas a new thread starts with a new
implementation of an anonymoutannable inner class. However, such an anonymous
inner class can only access final local variabfdd: does not have such constraints. It is
possible to design a mechanism that passes rellaahtvariables to it - one possible way
IS to create a local final array that containsrdferred local variable, and which passes the
array instead of the variable itself. However, saamechanism is error-prone, and makes
the generated code much more complex than thateobtiginal ALF. This is conflicts
with our purpose, which is to generate similar code

Finally, in this prototype, the parallel statemeats translated as normal statement
blocks. Concurrent ‘if’ statements are transforme@ set of normal ‘if’ statements. This
means that such concurrent statements are actogllgmented as a sequence execution,
which is not in conflict with the ALF language stiamd, since it does not constrain
methods of implementing real concurrency. On thieeiothand, the omission of real
concurrent behaviours in the implementation isrdtfiy a limitation of the current code

generator.

7.3.2 Generate expressions

The approach to generating expressions has the peanwple as that of generating
statements. ThegenerateExp.mtl template reconstructs Java expressions from thé AL
expression model, because of the difference betwsa and ALF syntax. It adds
syntactic changes to the Java code, because tleegemdrated from expressions interacts
with the code generated by EMF. In the followinggmraphs, the mapping from ALF

expressions to Java expressions is introduced.

128

Named expressionsuch as classifier names, local variable namdsparameters are
printed exactly as is.

Value specificationdike numbers, strings and enum values, are ftinte

An invocation expressiotries to invoke an activity that is mapped to ahod call of
the corresponding static operation in thiebalActivity class. If it tries to invoke a
signal reception or a normal operation call, itmapped to a call to the relevant Java
method.

An instance creation expressig@tne ‘new’ operator) is mapped as a call to tleaton
method of the factory class.

| et n:Node = newNode();

will generate
Node n = GenptnetFactory.eINSTANCE.createNode();

If the new object is an active object, the relevdta code also initialises a thread that
executes its classifier behaviour.

An ALF property access expressimmapped to a call to its getter Java methods.

//assune node is an instance of the Node cl ass
| et a:Arc = node.source;

is translated to
Arc a = node.getSource();

In the same way, amssignment expressioof which the left hand side is a property, is
mapped to an invocation of its setter method.

//assune a is an instance of Arc

node.source = a;
is mapped to
node.setSource(a);

Since EMF uses lists to represent multiplicity, thdex access expression in ALF,
which is the “[" “]” syntax for accessing an ind@t a collection, is mapped to a call to
List.get(index) . Similarly, a call to the standard model librafyAdlF is mapped to a

similar method in Java.
/lassune arcs is a sequence collection
arcs -> isEmpty();
is mapped tarcs.isEmpty()
GenExpressions.java provided the helper methods, such as string métipo
(capitalise/lowercase names, delete empty space®rorat comments), and complex

condition tests that can be invoked by the codeggion templates.

129

Generating OCL expression

One challenging type of generation is how to deith wequence expressions in ALF.
Sequence expressions in ALF are OCL-like, such atec#collect/forAll/exists
expressions. Because Java does not support lampdession, sequence expressions are
difficult to translate into Java. Because the aurkeersion of JDK does not support lambda
expression, there are two ways to achieve the sdfeet as an ALF sequence expression
in Java.

The first is to create a code block that produeaastically equivalent results using
loops and condition statements. However, considetitat sequence expression can be
chained (Listing 7), or can be nested (Listingi@jplementing sequence expression chain
or nested sequence expression using loops wiltefe@avily nested code. For example,
the chained expression will generate a three legst for each loop; inside each loop are
the statements that calculate the expression andtdtements for generating the result of
the sequence expression, as shown in Listing 9.

Directly produce semantically equivalent resultsnamtainable code. Ideally, the code
of the generated executor does not need to be aaal, because it is lower level
artefacts. The language developers should maitt&mmodels and the code generators.
However, generating clean and maintainable codéliddesired. The generated code can
be used for debugging the code generator. In addithey may also be reused when
developing another reference implementation by mM®E approach. Hence, another

way is selected to generate OCL expression.

sequence

-> sel ect x (expressionl)
-> col | ect x (expression2)
-> forAll x(expression3)

Listing 7: Chained sequence expression.

sequence -> sel ect x (createList(x)-> forAll y(fty)))

Listing 8: Nested sequence expression.

sequence-> sel ect x (expression)
List local = new List();
f or (Object x:sequence){
TypeOfExpression e = expression;
i f (expression) local.add(x);

Listing 9: Generating code from sequence expressions.

130

The other way of implementing ALF sequence expogssis trying to interpret the
ALF sequence expression in Java. Although mappmgla sequence expression in Java
is not straightforward, it is very easy to map As€quence expressions to OCL, because
the ALF sequence expression is designed to havealihigy of OCL expressions. ALF
sequence expressions are differ only at the camengttax level; for example, the chained

expression in Listing 10 can be expressed in OCL as

sequence
-> select (x|expressionl)
-> collect (x|expression2)
-> forall (x|expression3)

Listing 10: Generating OCL from ALF sequence expressions.

Therefore, ALF sequence expressions can be transtbinto OCL, and OCLs can be
evaluated dynamically in Java. This is the appraheh FQLS applied: An ALF sequence
expression is transformed into an OCL expressiard the result of the OCL is
dynamically evaluated as a query of the input moBet instance, returning to the Petri
net example, the content ofansition::isActive() IS a sequence expression. It is
translated into an Emfatic operation with the cohteanslated as OCL (see Listing 11).
The content of dynamically evaluated OCL expressionthe input model is delegated to

EMF code generation.

cl ass Transition speci al i zes Node{
publ i c isActive():Boolean{

return this.inArcs-> forAll e (((Place)e.source).initialMarking>0);

translates to:

cl ass Transition ext ends Node

{

/ | @XCL(body= "self.inArcs->
forAll(e|e.source.oclAsType(Place).initialMarking>0)")

op Boolean isActive ();

Listing 11: Sequence expression translates to OCL embedded in Emfatic.

It is worth mentioning that this approach is onlypmctical solution. It suffers two
main limitations. The first is that the use of abFAsequence expression has to be limited
as the expression of a return statement, contdipech operation that contains only such a

131

return statement. The second is that the evaluatiaghe OCL expression is based on an
EMF OCL project. Hence, its limitations are alsargd.

Since an ALF sequence expression can easily besepted by project-lambda in Java,
implementing sequence expressions in JDK8 is maskeethan it is in JDK7. Hence, the
OCL generation approach is only temporary, andcdd improved by using JDKS8 in

future work.
Eclipse Ul extension

The code generator also generates an Eclipse ©hgwrin skeleton for executing the
instance model. The language engineer needs taoaoathe Eclipse plugin project to add
the action to create a new menu action. When #madwork recognises an Ecore instance
model as a DSL instance that has associated semdefinition, it will display an
additional menu to execute the instance model. Wherstarting action is performed, it
executes the classifier behaviour of the root efittstance model by default, and logs the
execution steps.

Finally, by generating an implementation of the D§iecification, the DSL designer
can test the implementation; should an error bexdpuhe designer could modify the
specification and regenerate the implementations ifakes identifying runtime and logic

errors at an earlier stage possible.

7.4 Discussion

Having established the details of the executioredayhis section provides some
discussions about it. The contribution of this dleaps highlighted by linking it to the
complete FQLS. After that the discussion moves @revaluation. Finally, how future

advances of technology would change FQLS is disclss
Contribution

This chapter presents the execution layer of FQhSyhich the ALF executor is
implemented by code generation. Only the code @g¢ioeritself does not form a novel
contribution; however, the code generation is a w@yadd executability to language
specifications via ALF, which is an undividable fpairthe FQLS.

By adding the execution layer, a language definedALF becomes testable. The
testing performed on the specification will reveare errors, and will increase the quality
of the language specification eventually. For ins&a going back to the Petri net example

132

presented in Chapter 5, the ASM version of the stigcg specification contains a
semantic error that wrongly calculates the tokdnglaces. Such an error will be revealed

if the simplest test case is executed.
Evaluation

Considering the efficiency of the code generatiog, $peed of the generation and the
resources it takes are reasonable. The small erangoe generated to Java just like a
normal EMF generation project, and in Chapter 8, BREL case study is evaluated, which
contains more than 2000 lines of ALF code, gensrtlteusands lines of code within
seconds. The efficiency of the generated referemg#ementation is also reasonable.
Small examples as well as more complex instanceelnaare tested; the time between
loading the instance model and giving out the fasadcution result is not delayed.

The efficiency of the code generation is largelpatalent on the efficiency of EMF,
which is demonstrated to be stable and efficientayy projects. On the other hand, the
efficiency of code generation and execution is ant important factor for language
specification development, because the main purpbdse language specification is to
communicate to its shareholders. Creating an efficimplementation of the language is
outside the development cycle of language spetiics.

The correctness of the code generation is evaluatezhecking the correctness of the
language specification it produced. This is dethite Chapter 9 after the complete BPEL

case study is introduced.
Further changes

The FQLS approach reuses EMF in order to reusentiere tools and simplify the
creation of a reference implementation. On the rottend, reusing EMF also brings a
challenge of covering the complete ALF languagedsdad. The method of transforming
ALF sequence expressions to OCLs has limitationshvprevents the language engineers
to use them freely. The reason is the lacking milar concepts in Java. After the release
of Java 8 and the newest EMF, ALF sequence expressian be mapped to lambda
expressions easily. This means that supporting ttampletely is only an implementation

issue.

133

Another issue that may affect the design of thecetten layer is the development of
better ALF tools. The ALF tools are still in itsrBastage. In terms of executing ALF

program, the only available choi¢ésare
* The ALF open source reference implementation.
o e-alf [91]

« IBM Rational Software Architect®, also support ALSyntax as an action

languag®’.

They have been tested. None of the open sourcdd tan be adapted to load an
instance model to a complex ALF program successfiilhe commercial tools appear to
have a better editor but the mechanism of execusiarot clear, thus it is impossible to
integrate with it.

The lacking of available tools is one but not thdyoreason that FQLS chooses to
generate Java code. Although not likely to happeraishort timescale, if a fully-
functioned ALF executor is available, generatinggaa implementation is still useful due
to the requirement to separate specifications fimplementations. Hence, if a good ALF
executor is created, it is a further work to ingggrthis to FQLS in order to provide better
integrated testing, but the code generator will a@mas the starting point of an

implementation.

7.5 Summary

This chapter discussed the components of the ewrecldyer of FQLS. The code
generator that generates Java from ALF code waeduted. The ALF code is first
translated to Emfatic code by an Acceleo projecapping from the ALF concepts to
Ecore concepts and Java concepts was listed. Tdeeganeration can also generate the Ul

extension of Eclipse, giving the model editor ateagion menu to be executed.

'® Distributed Systems Engineering (http://www.distributed-systems.de/) presents a tool chain in
CodeGen2014 that claims to support the editing and execution of ALF. However, the tool is still under
internal evaluation and is not yet shown on their official website.

B https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/b7da455c-5c51-
4706-91c9-dcca9923c303/page/910cd642-c59a-47d7-9739-7459941a9e2b/attachment/9ba9af70-22fa-
4756-8128-5ec8a3a08c2d/media/uml%20actional%20language%20in%20rsa.pdf

134

Chapter 8.

Case study: Formalising Business Process Execution
Language

The previous four chapters introduced each compooieRQLS and illustrated how
this framework could help to provide quality asswe for language specification
development, using a Petri net example. In thiphathe framework is demonstrated by
applying it to a more complex and realistic DSL he tBusiness Process Execution
Language (BPEL). This case study is used as a denation of FQLS, as well as a source
for the evaluation of FQLS, which will be conductadChapter 9.

The case study of formalising BPEL consists of filllowing sections: Section 8.1
introduces BPEL and its related standards for welviee composition. Section 8.2
introduces the scope of the case study. There&tation 8.3 defines the abstract syntax
of BPEL by establishing mapping from the XML defion to a meta-model definition.
Section 8.4 uses the development process to digftnbehavioural semantics of BPEL by
creating a runtime meta-model, adding behaviours performing quality assurance

checks.

8.1 Introduction to WS-BPEL

In order to understand the case study that deBfREsL by FQLS, this section provides
an introduction of BPEL and related standards. Three subsections introduces the

definitions, the structures, and the life cycleegécuting a BPEL process.

8.1.1 Compositing web services with BPEL

Web services are widely accepted as a communicaigthod by many organisations.
The ubiquitous applications of web services pronaoset of technologies that aim to build
web services in an easier and more standard wag. t€bhnologies promoted by
worldwide standardisation organisations, such a€CVéBd OASIS, have gained wide

support. They are chosen as the domain of thisstasy.

135

W3C [58] defines a web service aa “software system designed to support
interoperable machine-to-machine interaction over natwork. It has an interface
described in a machine-processable format (spedificWSDL)! According to this
definition, web services need interfaces to comatei with each other, and the interface
is defined as a WSDL file.

WSDL is a standard for defining an interoperabteriiace for machine communication.
A WSDL interface includes the input, output, ancke thault message, which are
independent of the implementation of the web servic web service with a WSDL file
describes its own features in a machine-readablaera

Many features of the web are provided by web sesvitn business organisations, web
services are used for communication and for achgevbusiness goals. Because
interoperability is one goal of web services, thare the requirements that integrate
different web service systems and which compobiésd different web services to realise
business logic that is more complex. This is theppse of BPEL.

BPEL defines a model for describing the interactietween the business process and
its partners, and these interactions are perforthesugh WSDL interfaces. A BPEL
process defines a set of primitive partner linkajables in the data process, handlers for
errors and events and, most importantly, the exbbaitactivities that form a business
process. The data process technology in the XMhnelogy space, such as XPath and
XSLT, are directly supported to be used inside & Bprocess.

Many servers support the deployment of a BPEL m®dacluding as Apache OBt
GlassFisf', and ActiveVO$> These projects support deploying a new BPEL m®de
the server, and deal efficiently with web requeSpecifically, they support long time
transactions, which means that a process may wradt fesponse message days after it was
first instantiated, and compensate for such lomg tiransactions.

Although a BPEL process is expressed in XML, thsr@o official concrete syntax
except XML. Since the XML syntax is verbose, EclipBPEL designer projett,
Netbeans SO, and many other tools have provided similar ucidfigraphical notation

support. Simon et al. [141] also proposed a textiaiman readable notation for

% http://ode.apache.org/

! https://glassfish.java.net/

%2 http://www.activevos.com/
2 http://www.eclipse.org/bpel/
24 https://soa.netbeans.org/

136

representing BPEL. In this thesis, the graphicaitay of Eclipse BPEL is used to
demonstrate BPEL process examples.

8.1.2 Structure of a BPEL process

An example of a BPEL process is listed in Figurer@presented by the Eclipse BPEL
designer graphical syntax. The graphical syntaindsfthe activities and fault handlers.

However, a complete BPEL process contains fourspartamely partner links, variables,
handlers, and activity.

cannotCompleteOrder
& Reply = [FaultHandler |
> Sequence
@ | Receive
- Sequence © Sequence : Sequence
& Invoke = Assign & Invoke
N N
& Invoke & Twoke & Invoke
@ | Receive & | Receive = _ [ACthlty]

| Reply

Figure 37: Graphical syntax of BPEL.

The first block of the XML file defines the partniemks as a reference to a particular
partner link type that is defined in a WSDL file.plrt type is similar to an interface type,
in that it contains operations. Similar to the gp@ns in programming languages, they
have input parameters and output parameters, an@roauce a fault message. The type
of parameter is defined as a WSDL message, whicapsulates the XML data type of the
message. The WSDL file then defines the partnértijpes, which include the role name

of the service. By linking a port type to a rolerestricts the operations that a role can

137

invoke. Finally the WSDL file contains the physisattings of the web service, including
the physical web address of the web service.

Figure 38 illustrates the relationship between BREId WSDL. A partner link is
defined by declaring its partner link type andritde. Both of these are defined in the
WSDL file. The partner link type then refers to artptype definition. The port type
defines a set of operations that contains paras)edad these operations are interfaces that
can be invoked as a web service. The web serviegfaces defined in a WSDL file are
platform independent from its physical URL and itgplementation technology, thus

enabling the change of the implementation or ofphgsical address without changing the

interfaces.
[bpel \
<bpws:partnerLinks >
<bpws:partnerLink myRole ="purchaseService" Orderprocessing.bpel

name="purchasing" partnerLinkType ns:purchasingLT" />

_</ bpws:partnerLinks > l J

<plInk:partnerLinkType name="purchasingLT" >
<plnk:role name="purchaseService"
pos:purchaseOrderPT" >

portType

</ plnk:partnerLinkType >
3 purchaseOrderPT

Orderprocessing.wsd|

i sendPurchaseOrder

customerInfo (L] customerinfo
1 input
1 purchaseOrder [E] purchaseOrder
& sutput 1 TVC [E] Trvoice

K | cannotCompleteOrder ' problemInfo (2] CrderFault /

Figure 38: BPEL and WSDL.

The next element defines the variables. The vasabefine the spaces for holding the
data that need to be processed in the businessgsro&s with the concept of variables in
GPLs, the execution engine can read and updateatne of the variable. The variables
are typed, and the type must be an XML type or &DWBiessage type. For example, the
following line defines a variable, the name of whis Invoice, and the type is defined as

an XSD typéns:InvMessage , which is defined in a schema file.

138

<bpws:variable messageType ="Ins:InvMessage" name="Invoice" />

Variables can be manipulated using an XML querygleye, using XPath by default,
and are mainly used ussign activity. When invoking an external web servicebeing
invoked by other web services, the value input antput parameters are stored in
variables.

Handlers are started when their triggers have he#alised; thereafter the activity
defined in the handlers is started and the normacwion may be terminated. The
handlers can be defined inside a process or a sty (introduced in Table 9).

Handlers Introduction
Fault handler A fault handler will be started when a fault isawn. The norma

execution terminates thereafter. It defines a fddhding activity tha

handles the errors.

Event handler An event handler is triggered by events, includimge events (after &
certain time elapse or a certain time is reached)assage events (when the

process receives certain messages).

Compensation A compensation handler is started when the prosgsises to undo al|

handler the operations it has already executed. This isallysuriggered by g

"compensate" activity.

Table 9: BPEL handlers

The next element consists of activities. Table hd dable 11 give a list of the
activities of BPEL. These activities are categatises basic activities and structural
activities. Basic activities enable the exchangemassages to external web services,
provide data process actions such as assigningv#buwariables, and special activities for
error handling, such as throwing a fault messageic&ired activities are containers of
other activities. When a structured activity stagt®xecute, it starts its child activities by
its semantics. The example defines a processdhaives messages from the external web
services, usingflow activity to invoke external web services and watfor responding

messages in parallel.

139

Basic activity

Introduction

Empty An Empty activity does nothing, as the name suggédistan be used ag a
placeholder, or can be used as an activity tofjoim links.

Assign An Assign activity defines a specification for maumiating the data. If
copies data from one part to another, where thts gan be a variable, an
expression or a literal value.

Receive A Receive activity receives a message from itsifipdgpartner link ang
assigns the received message content to a variable.

Reply A Reply activity sends a response to a previousigeived two-way
(request-response) request.

Invoke An Invoke activity invokes an operation of a parttiek with input
message. Depending on the type of output, it cao edceive a responge
message from the partner link.

Terminate Terminates the process instance.

Throw A Throw activity throws a fault that indicates amernal error. The fault
is then dealt with by a fault handler.

Waiting A Waiting activity causes the process instance & for a period, or tq
wait until a certain time point.

Compensate A Compensate activity can only appear in a faufidher, which will starf

the compensate handlers according to the sequdnereoution, and wil

thus undo the work being done by the instance.

Table 10: BPEL basic activities.

140

Structured activity Introduction

Sequence A Sequence activity executes its contained aatiwisequentially|
in other words, the completion of the previous \afstitriggers the

start of the next activity.

Flow A Flow activity executes its contained activities parallel with
regard to the flow link definition. Flow links andead path

elimination are introduced in Subsection 8.4.5.

Switch A Switch activity defines a logic branch. The fibsainch in which

the condition expression evaluates to true is drecu

While A While activity repeatedly executes its containexfivity until

its condition expression evaluates as false.

Pick A Pick activity is similar to a Receive activityh& difference is
that it can receive different types of messaged,cam define different

enclosed activities for each type of message.

Scope A Scope is similar to a sub-process, as it can @dme handlers,
variables and partner links, but the variables padner links onlyf

work within its scope.

Table 11: BPEL structured activities.

8.1.3 Execution of a BPEL process

A BPEL process is defined as stdteless client-server model of request-response o
uncorrelated one-way interactiohgl47]. The process is the guidance and instructar
the BPEL execution engine in terms of managingitiséances of the BPEL process. A
process instance starts when an activity receivesva message. The activity must be
either receive activity or pick activity with itxréateinstance ” attribute set to ‘yes’.
Such an activity is also called a start activityd ao other activity can be placed before it.

After the instance is started by the start actjwity execution engine of BPEL needs to
initialise the process instance. If a process lbaeation sets, they will first be initialised
(see Subsection 8.4.3 Communication and Subse8téid Correlations for the detailed
semantics of correlations). If these activitiestaomany handlers, the handlers will then be
installed before executing the activities.

The process instance then executes the enclosedyact the process. The example

contains a sequence activity, and the activitiesoittains will be executed sequentially.

141

After receiving a message via the receive activitg, flow activity begins and starts all its
containing activities in parallel.

A business process instance finishes either noynmallabnormally. When the main
activity of the process and other handlers finistheut propagating faults, the process
instance ends normally. On the other hand, if awtfoccurs, the relevant fault handler
will be started and, depending on the activitieghe fault handler, the process may be

compensated to undo the work it has done. In situation, the process ends abnormally.

8.2 Scope of the case study

In this section, the scope and the architectuteetase study are defined. Since BPEL
is a complex language that have two major versiaiated to other web service languages
and can be extended, it is necessary to limit thpes of the case study, and clearly define
what would be included and what will not.

Firstly, it is needed to answer what should be udetl. The case study is a
formalisation of an existing DSL. Unlike creatind&L from scratch, the requirement of
the DSL is clear: It is the BPEL standard [147]eTBPEL standard defines its abstract
syntax as an XML schema, while defining the exerutsemantics as text. Both the
abstract syntax and execution semantics are giestr by examples. The following

paragraphs discuss each aspects of the standaskplagh the decisions have been made.
Abstract syntax

Rebuilding the language specification of BPEL byLBSQstarts with building the
abstract syntax. The mapping from XML schema andr Alructures is straightforward.
An XML element is mapped to a MOF class, with btites mapped to an attribute that
belongs to the same MOF class. The containing efedancing relationships of XML are
also similar to those of MOF. Such a translatios alaeady been developed by the BPEL
designer project, which included an Ecore mod@&REL.

Static semantics

Another concern is the static semantics of BPELs Titvolves which version of BPEL
to implement, since there are certain differencetsveen BPEL 1.1 and BPEL 2.0. The
BPEL 1.1 standard does not consider the additime#ilformedness of the meta-model; or
at least it does not define it explicitly. BPEL has defined the well-formedness rules in a

clearer and more explicit way as text.

142

There are existing works that attempt to formattse static semantics, such as OCL
expression [3]. FQLS supports one way of extendkig- with OCL expression
definitions, and the same way of defining well feaness can be applied. Because
completely re-implementing static semantics is idetshe scope, the static semantics are

excluded.
BPEL 1.1 and 2.0

While BPEL1.1 and 2.0 shares many similar conceptse are several differences. In
the process life cycle, the execution workflow doeschange, but some new activities are
added and some activities are renamed more sensibly

BPEL 1.1 BPEL 2.0

switch if .. then .. else

terminate exit

Table 12: Differences between BPEL 1.1 and 2.0.

Added in BPEL 2.0 ‘
Compensate scope Similar to Compensate, but only compensates for the

specified scope, rather than the complete process.

=

rethrow Similar to the Throw activity, which can be usedai

fault handler.

repeat until Similar to the While activity, which evaluates the

condition after executing its enclosed activity.

foreach Similar to the While activity, of which the ending
condition is to execute the enclosed activity ataier

number of times.

Table 13: Added concepts in BPEL 2.0.

The activities that appear in both 1.1 and 2.0saigported. The relevant research in
BPEL 1.1 is more complete and mature than that@f Ror BPEL 1.1, Stahl [145] and
Fahland and Reisig [37, 38] are identified, whighs to use various methods of semantic
definition, but 2.0-based approaches are not ifledtiHence, using BPEL 1.1 as the base
will enable this case study to be compared to nhgr approaches. The comparison with
other semantic definition approaches of BPEL 1.@ns of the experiments performed in
Chapter 9.

In addition, the semantics of thepeat untiland theforeachactivities can easily be
represented by while activity with a changed condition. The same alapgens to the

143

embedded fault handler in an invoke activity, whislequivalent to a scope activity that

contains an invoke activity and a fault handler.

Semantics of abstract processes and extensions

There are two kinds of the BPEL process, the nomREL process and the abstract
BPEL process. The difference is that an abstradEBprocess can hide certain details,
such as the detailed specification of partner lildsa result, an abstract BPEL process is
not meant to be executable, while an executableLBi?&cess is ready to be deployed to a
server as a new specification of web services.alimeof the abstract process is to explain
the process. Due to the lack of relevant infornmgtihe process is not executable; thus,
defining the execution semantics is meaninglessacklen this thesis, the focus is only on
the executable BPEL process.

The extension mechanism can extend the BPEL pracéssiew concepts. Execution
engine developers can use this mechanism to pradad@nced activities that are not
officially supported by the standard. The behawabsemantics of the extensions are

outside of our scope for formalising the BPEL staddHence, it is omitted.

Semantics of related standards

BPEL is not a standalone language; many placesaicotite composition of another
language. XPath, WSDL and XML schema are commoséduanguages that are related
to BPEL. BPEL uses XPath for querying data and miagathe incoming/outgoing
messages, and changing the value of the variabhesBPEL partner link definition needs
to refer to WSDL files so that the BPEL executiongi@e can query information, such as
parameters and message types about external wabeserAn XML schema is used for
defining the message types. While BPEL is linkethvgieveral other DSLs, defining the
other DSLs are clearly outside of the scope ofBREL definition. Hence, the abstract
syntax of the other DSLs are simplified. A sim@di meta-model of WSDL is built and
imported to a BPEL meta-model, and an XPath exjmess treated as a black box, the
semantics of which are defined as abstract aasuiti

By defining the scope of the case study, it is fisgto create a meta-model of BPEL

via ALF. Hence, it is possible to began to devdlopabstract syntax.

144

8.3 Defining abstract syntax

The language specification of BPEL starts from #gestion. Following the software
development process proposed in Chapter 4, theagbsyntax is defined as a meta-model.
Since WSDL is an indispensible part of BPEL, a daseta-model of WSDL is firstly
presented, following by the BPEL meta-model.

Figure 39 illustrates the meta-model of the WSDIhijoh is used to define external
web services. In reality, port types, service lighes and messages can be defined in

different XML files, and the types can be typeXML Schema name spaces.

package bpel[wsdl u
WSDL
+1ole Role
*
+portType
+serviceLinkTypes /|\:myRole
+poftTypes
+messages|* +properties|* * +partnefRole
MessageType Property PortType ServiceLinkType
+name : String +name : String +name : String
+type : String 1
+se iceLinkType'
Output
MessageReference +output
+name : String 0.1 +opefations| *
+ault 0.1 Operation PartnerLink
T Fault +name : String
+input
Input |0..1

Figure 39: Abstract syntax of WSDL.

ThePortType class comprises thuperation list, and is a type of external web service.
The operations define the interfaces for commuiunabetween web services, including
the input, output and fault parameters, and thegypf the parameters are defined as
MessageTypes .

Property IS a special kind of message that is similar ® ‘tterived attributes’ in an

MOF-based meta-model. It uses query language tmedef particular manipulation of

145

message contents. Properties are used in BPEL wasyaof generating correlation
instances.

The ServiceLinkType encapsulates an external web service and defihtge garties
that are involved in an interaction with the webveze. The partners are defined as roles.
For example, a web service that receives a re@mesprovides information with regard to
that request, two roles are involved, namely thé wervice that provides the service,
which may be given a role name likerviceProvider' , and the partner that invokes the
service, which can be given a role name likgefit ”. The PartnerLink class is the

same class in Figure 40 and it bridges the two /imetdels.

- Receive Invoke Repl
(oo oo (][] [t

+set[1 0.x

Correla@
+correlationSet| 0..* Process

EventHandler [keventHandlers

0———— Scope

PartnerActivity

PartnerLink

+partnerLinks|0..* +partnerLink

Throw

+aultHandle

5(0..%
- Variable Empty

+compensationHandler
0.1

CompensationHandler v/
bctivity

+activities| Q.

FaultHandler

Assign

Wait

+parent 0..1

StructuredActivity

Pick

we

’While’ ’Sequence ’ ’ Flow’ ’Switch ’

BT

Figure 40: Abstract syntax of BPEL.
Figure 40 shows the meta-model of the BPEL abstsyotax. The meta-model
proposed by Eclipse BPEL designer project is reused is simplified by removing
irrelevant concepts, such as the full definitionWwEDL, XPath and XSLT. The meta-
model has a similar structure to that of the XMlhesma defined in the standard. The

Scope is the basic unit that acts as a container of leasdvariables, partner links and

146

activities. ThepProcess , which represents a BPEL process, is a sub-clasgope. A
Scope also inherits fromSaructuredActivity and amctivity

The activities listed in Table 10 and Table 11 defined as sub-classes of an
Activity . When they share similar behaviours, they arenddfias being inherited from
the same class. For example, the activitiesRedfeive , Invoke and Reply need to
communicate with other partner links, thus shatwefpaviours. These are categorised as
PartnerActivity

Finally, it is possible to build the meta-model ¥WaF. Readers who are interested can
find the ALF definition of the meta-model in the pgndix.

8.4 Defining behavioural semantics

The next step in formalising BPEL is to develophthavioural semantics. Since the
requirement is derived from the standard, a styafeg defining semantics needs to be
chosen, designing the architecture of semantiestiiying abstract activities and, finally,
developing the behaviours. This section begins Witiiding a runtime meta-model in
subsection 8.4.1. The behavioural semantic desimitof BPEL is presented from
Subsection 8.4.2 to Subsection 8.4.8.

8.4.1 Execution model overview

As indicated in Subsection 5.1.3, there are thragswof attaching behaviours to the
meta-model, namely adding operations directly, @gldoehaviours as activities, and
adding operations to a runtime meta-model. The s&osaof BPEL require adding
instance level concepts because, while executiBfPBEL process, the execution engine
creates new instances of the process and managgsitistances. Thus, it is necessary to

create a runtime meta-model and add the behaviolit.s

147

Link | +link Linkinstance

] | ScopeExecution

+links|0..* +doAction(Variablelnstance

+inishing(execution : Execution)
+faulted(faultinfo : Faultinfo)
+handleEvent(info : Messagelnfo

Flow | +flow FlowExecution +compensateScope()
+createExecutions() Hallzhle
+doAction() -
+finishing(execution : Execution) Activity
+activity_ T
MessageManager Process
/ v
+sendToExecution(request : MessageRequest, info : Messagelnfo StructuredExecution
+messageManagel
<<use>>77
- s
<<enumeration> - +parent 0..1
Stat StructuredExecutions)
ate +execution
DISABLED -
ENABLED +executions
RUNNING 0.* Execution
COMPLETED Locus —rexecutiont
FAULTED I +propagateDPE()
TERMINATED +1un() " |+allLinksActivitied() : Boolean
COMPENSATING +doAction()
STOPPED +running() : Boolean
N - : sexgnotifyTargets(succ : Boolean)
correlationManager Executions | —|+throwFault(faultinfo : Faultinfo)
CorrelationManager +enable()
+terminate()
+initiate(variable : Variablelnstance, correlation : Correlation) +complete(linkSucc : Boolean)
+createlnstance(variable : Variablelnstance, correlation : Correlation +isAllDetermined() : Boolean
+finishing(execution : Execution

Figure 41: Runtime meta-model of BPEL.

Figure 41 lists the class diagram of the runtiméasmeodel. The process level concepts,
such as variables, activities and correlations, hall’e corresponding instance level
concepts. For example, for each subtypenaivity , an Execution class is created to
represent the instance level modebWExecution corresponding telow activity).

To express the execution semantics of BPEL, aditiagcorresponding instance class
to the meta-model is not enough. The BPEL spetifinadefines the architecture for
managing process instances and ways of passingcarmdlating messages between
activity instances. Thus, it is natural to credte tlass ofLocus, which is a virtual
machine for managing instances. It provides theygraint for the semantic specification.
As an active class, the class starts when itsnostés created.

As described above, a BPEL process instance coneatesi with its external web
services by exchanging WSDL messages. The d&ssageManager manages the
incoming and outgoing messages. When incoming rgessaare received, the

MessageManager must dispatch the message to the correct inst&ben there are many

148

instances waiting for the same type of messagesMtdsageManager identifies the
correct target instance by calculating a uniquentifier from the incoming message,
which is called correlations.

A PartnerActivity (the class diagram is illustrated in Figure 39 &iglre 40) can
define correlations. When the business procegssstantiated, the correlation instance can
be calculated by operating the incoming messagerVillirther messages are received, the
execution engine dispatches the message to thenoes that have the same correlation
instance. In Figure 41, theorrelationManager class defines the behaviours related to

the correlations.

8.4.2 Variables

The basic data structure with which a BPEL process interact is messages. The
execution of a BPEL process involves exchangingsagss between partner links. Thus,
it is necessary to provide a method for holdings¢henessages for exchanging or
manipulating, and these are the variables. A BP&iliable has a name that identifies it,
and a message type that references a messageddifitiee WSDL documents. At the
abstract syntax level, as which other programmamgliages, the variable is the definition
of a data structure which needs to be instantiasegin object for storing message instances.

When executing a process, a process instance sreateblelnstances, which
reference the original variable definition, and g¥his given memory space for storing the
message contentariableinstances is then used as the atomic data that is exchanged

between different BPEL activity instances.

8.4.3 Communication

In the BPEL execution model, two kinds of commutiara are needed. The first is
external communication. This process needs to camuate with external web services.
For example, a BPEL instance can receive extereakages and can reply to external web
services. The communication is done via WSDL messaand the WSDL message is text.
In this case study, theessageManager class is in charge of external communication.

Communication with external web services involve® tbasic behaviours, namely
sending a message to an external web service,emeil/ing a message from an external
server. While sending to externals is quite striddgtvard, by invoking the remote
operation calls defined in the WSDL web serviceerdng a message can lead to two

different behaviours. This could result in the naggsbeing sent to an execution that is

149

waiting for this particular message, or could resala new business process instance
being created.

When an execution that requests an external messageexecution informs the
MessageManager regarding the message it is requestiMgssageManger saves the
information, and when it receives a message, itpaes the current message requests,
and tries to map the message to the correct instddefault message mapping is via
message type and, if ambiguity happens, the ctioetawill be used.

There is an unclear definition of who is in chaog&reating new instances. The BPEL
standard specifies that a starting activity creaasew instance when receiving a new
message. Referring to the standard [147],

“The creation of a process instance in BPEL4AWS lvgags implicit; activities that
receive messages (that is, receiveactivities aokiggtivities) can be annotated to indicate
that the occurrence of that activity causes a nestance of the business process to be
created. This is done by setting the createlnstatticeute of such an activity to "yes".
When a message is received by such an activity, an instance of the business process is
created if it does not already exist.”

According to the standard, an instance will be te@avhen a receive activity receives
a message. However, such an instance of the reaetixgty does not exist before it can
receive a message. Fahland [38]also discusseditidsassumed that an instance is created
before the receive activity receives any messalgeshis thesis, a similar approach is
applied: When the BPEL process is deployed (wherittus class is created and started),
the Locus immediately creates a BPEL process inst#mat waits for the message for the
start activity. The created instance requests teesage by sendinggnalRequest to
MessageManager . When the start activity receives a message]l# tiee Locus to create
another BPEL instance that waits for further atyivi

In addition to external communication, internal coumication between executions are
also needed. In our execution model, each instahdee activity (executions) runs as an
independent thread. These need to communicatéetcarg executions; for instance, when
an execution finishes, it needs to inform its comathat the execution is completed.
Another example is when a fault occurs. HwepeExecution needs to be informed, so
that theScopeExecution ~ will start the fault handler. Internal communicetiis performed

using signals and signal receptions.

150

8.4.4 Semantics of Basic Execution

state machine basic execution [=5 basic execution U

DISABLED
l/signaIStart

SignalTerminated
ENABLED +———> TERMINATED

SignaILinkActivit};d SignalTerminated

RUNNING FAULTED
l SignalFaulted

COMPLETED

Figure 42: State machine of basic execution.

The Execution class is an instance of an activity. It associ#ttesoriginal activity in
the abstract syntax and provides operations focudians. The process of executing a
BPEL process is to create top-level execution fiteeess execution, which is a sub-class
of ScopeExecution). The activated execution creates the containedudons, and each
of the executions is executed in parallel befoliadpstopped.

Figure 42 illustrates an abstraction of the intestates of an execution. Because the
executions are instantiated as a referenced triseieans that each execution is contained
by a structured execution. The structured execuonesponsible for instantiating its
contained executions; for example, a sequence Bmacuneeds to create executions
sequentially. Hence, the structured execution masi#lge executions it contains, which is
called the parent execution.The contained execisgicalled the child execution.

When an execution is created, its default stalB$ABLED. Its parent execution then
sends aSignalStart signal and the state transits to ENABLED. Thempeteling on
whether the child execution has flow links, it ditg transits to RUNNING, or could wait
for the flow links. Depending on the result of tle&ecution, it could be ended as
TERMINATED, FAULTED if it exists abnormally or COMEETED, if it exists normally.

When the Execution transfers from ENABLED to RUNNMBN The execution waits for
a SignalLinkActivited signal. This is because, when an execution starteay not

transit to RUNNING, because it is contained Iiloav , and there are previous links.

151

Consider awitch or Pick activity that is contained by a Flow activity. Whthe flow
execution executing all its contained executiontersnthe ENABLED state, the Flow
execution will be complete if all of its child exdons complete a normal execution flow.
However, not all of them will be executed. For amste, in Figure 43, only one of the
execution paths will be successfully executed, Hred other executions in other paths
should be ignored. The behaviour for checking wéethn execution contained by a
FlowExecution should be executed or ignored is calledDead Path Eliminatior{DPE).
When such an execution finishes, it needs to infalirthe executions that have a link as a
target whether the execution is successful or not.

T main

& | receivelnput

&) Pick
OnMessage OnMessage
<§> Inevokel <§> Invoke2

H\, 5,

42| Replyl | Reply2

= Assign

| replyQutput
@®

Figure 43: A flow activity that contains pick activity and links.

The works ofpopagateDPE() and notifyTargets() are defined as operations in the
Execution class, and activity specification behaxsoare defined as the sub classes of

Execution.

152

package bpel[| &1 basic execution u

Execution <<enumeration>
. State
EmptyExecution +propagateDPE() SRR
- +allLinksActivitied() : Boolean ENABLED
+doAction() +doAction() RUNNING
+running() : Boolean COMPLETED
+notifyTargets(succ : Boolean) FAULTED
+throwFault(faultinfo : Faultinfo) TERMINATED
senable(COMPENSATING
erminate() STOPPED
; ; +complete(linkSucc : Boolean)
AssignExecution | n+isAllDetermined() : Boolean
+inishing(execution : Execution
+doAssign()
+doAction() T
ReplyExecution InvokeExecution ReceiveExecution TerminateExecution WaitExecution
HEBREL +running() +receiving(info : Messagelnfo) +doAction() +doAction()
+initCorrelation() +initCorrelation()
+doAction()

Figure 44: Basic executions from runtime meta-models.

A pattern is used for realising the state machpexigied in Figure 44. Operations that
have the same name as a state transform the ex@susiate as the name suggests. For
instancegnable() involves the necessary behaviours to transfornstifite to ENABLED,
while running() transforms its state to RUNNING, as degsinate() . All executions
exceptScopeExecution share the same semantics for enabling and tenmgpahus, they
can be reused.

The operation sets its state to ENABLE and, wheradtivity does not have a source
link that indicates that the execution is not neledden waiting for a link to activate the
execution) it will automatically transmit to rungify sendingSignalLinkActivited to

itself.

153

publ i c enable(){
i f (this.state==State.DISABLED){
t hi s.setState(State.ENABLED);
i f (this.activity_.sources->isEmpty()){
t hi s.SignalLinkActivited();

}
P .
publ i c terminate(){
t hi s.setState(State. TERMINATED);

The operation contains various behaviours of diffieractivities. Obviously, the
contents ofunning() will depend on the activity. However, the semant€slead path
elimination are performed before the actual behagioThus, theunning() operation
contains the behaviours of dead path eliminatiome &ctual behaviour of running an
execution is placed in thiwAction() operation.

In Listing 12, the class oEmptyExecution is presented, which demonstrates the
pattern that is used by all executions. The statésni@ the classifier behaviour defines a
loop that will receive signals until a signal tleauses the loop ends, at which point the
active object will end. BecausemptyExecution does nothing, it sets the state to
RUNNING and then completes the execution. This $idkee mechanism such as
performing the dead path elimination, and forcepubthe activity-specific behaviours to
the doAction() method. The other basic executions listed in Tal®lehave similar "do
blocks". Their specific behavioural semantics canrépresented as ALF code. Readers

can refer to the Appendix A for details.

154

public active class EmptyExecution speci al i zes Execution {

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
t hi s.complete(true);

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}
or accept (SignalLinkActivited){
t hi s.running();
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;

Listing 12: EmptyExecution.

155

8.4.5 Semantics of Structured activities

package bpel[structured executions u

Execution

+propagateDPE()
+allLinksActivitied() : Boolean
+doAction()

+running() : Boolean
+notifyTargets(succ : Boolean)
+throwFault(faultinfo : Faultinfo)
+enable()

+terminate()

+complete(linkSucc : Boolean)
+isAllDetermined() : Boolean
+inishing(execution : Execution

T

StructuredExecution kg

ScopeExecution

WhileExecution —D +doAction()

- +aIICh|IdF|n|m§d() :Booleaf) +finishing(execution : Execution)
+doAction()) i +terminateChilds() +faulted(faultinfo : Faultinfo)
+inishing(execution : Execution) +terminate() +handleEvent(info : Messagelnfo

T l[+compensateScope()
PickExecution | | SwitchExecution FlowExecution SequenceExecution
+doAction() +doAction() +createExecutions() +doAction()

+doAction() +inishing(execution : Execution
+inishing(execution : Execution

Figure 45: Structured executions.

Structured activities are different from basic ates because they deal with their
child activities. A basic activity is completed whigis execution ends. A structured activity
needs its child activities to ses@nalChildFinished to it.

Listing 13 shows an example of the pattern of tlassifier behaviour of a structured
activity. When receiving 8ignalChildFinished signal, the active class decides whether

to wait for further child activity to be finishedr completes the activity.

156

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sig:SignalChildFinished){
completed = t hi s.finishing(sig.execution);
}

or accept (SignalTerminate){
t hi s.terminate();

completed = true;
}
}
}
Listing 13: Classifier behaviour of structured activity.
The list below shows &lowExecution::doAction() operation. The last statement
sends signals concurrently to alhildExecution . This enables the semantics for

executing all activities in a Flow activity in pdeh

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
t hi s.createExecutions();
t hi s.childExecution.SignalStart();

Listing 14 shows the ALF programme for dealing wilynalChildFinished ,
depending on whether the child execution is finishermally or negatively. If the child
execution finishes negatively, tRewExecution terminates all activated children, sets its
state to FAULTED and informs its parent. If all thehildren are finished, the

FlowExecution — also finishes normally.

157

publ i c finishing(i n execution:Execution):Boolean{
| et completed:Boolean = fal se;
i f (execution.state==State.FAULTED){
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.terminateChilds();

t hi s.parentExecution.SignalChildFinished(t hi s);
return true;
}
i f (this.allChildFinished() && t hi s.state==State. RUNNING){
completed = true;
t hi s.complete(true);
}

r et ur n completed,;

Listing 14: Finishing operation.

8.4.6 Semantics of Scope and Process

state machine scope|[@scope u

DISABLED

SignalStart

ENABLED omalTerminated e MINATED

SignalLinkActivit};d SignalTerminated1
RUNNING FAULTED

SignalFaulted.
J/SignalChiIdFinished

COMPLETED +————> COMPENSATING————> STOPPED
SignalCompensate

[compensating completed]

Figure 46: State machine of ScopeExecution.

A BPEL process is a special kind of Scope. A Scoge also define variables and

partner links, but such variables or partners argy available within the Scope. With

regard to the instance of a Scope, HwepeExecution class is responsible for error

handling, event handling and compensation handling.

158

A fault can be thrown by a Throw activity when attegnal partner service returns a
fault message or when runtime errors that are pedn the standard occur. The fault is
passed to its enclosestopeExecution and, if the enclosedcopeExecution does not
define a fault handler, it will be passed to thghleir-level enclosed scope until the process
instance. If a fault handler does not exist, thé&eBlhstance should create a default fault
handler for that fault.

Event handlers define special kinds of activitiiseir enclosed activity will start when
it is triggered by an event. A norms&tructuredExecution , such as the&lowExecution
or SequenceExecution , when child execution starts, will only wait farmination signals.
When starting @copeExecution , it requests messages that trigger an event haindia
the MessageManager . When such messages are sent to the scopesctheExecution
manages the creation of the execution of the dvamdlier activity.

Apart from other structured activities, when thelcthactivity finishes and the scope
transits to the COMPLETED state, the active obgeas not quit and is not destroyed, but
still waits for compensation. This is because a BBibcess is a long-term transaction and
may take a long time to find that something is wyowhile the executions that have
already been executed need to be cancelled inotim@ensation handler activity. In order
to express a mechanism of compensation handlingpr@ess instance has a
CompensationStack. When aScopeExecution transits to the COMPLETED state, it also
registers itself to the compensation stack. WhenngpensateExecution — activates, it will
send signals sequentially to all teeopeExecutions in the compensation stack, and the
compensating handler activity of tlseope will be instantiated to the process of any

compensating work.

159

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
t hi s.running();
}

or accept (sigFinish:SignalChildFinished){
completed = t hi s.childFinish(sigFinish.execution);
}

or accept (sigReceive:SignalReceive){
t hi s.handleEvent(sigReceive.info);
}

or accept (sigFault:SignalFaulted){
t hi s.faulted(sigFault.faultinfo);
}

or accept (sigCompensate:SignalCompensate){
t hi s.compensateExecution =
sigCompensate.compensateExecution;
t hi s.compensateScope();
}

or accept (SignalTerminate){
t hi s.terminate();

completed = true;
}
or accept (SignalCompleted){
completed = true;
}
Il accept
} /lwhile

8.4.7 Correlations

The MessageMangaer is responsible for dispatching incoming message8RPEL
process instances and for dispatching the incommiegsages to a particular execution that
can receive a message. Because the process muisvithaa start activity, if only one
activity receives the external message, every nessage will result in the creation of a
new process instance. On the other hand, if maaa tine Receive activity exists in a
BPEL process, thalessageManager needs to correlate the received messages to the
correct instance. This is done by using correlationthe BPEL process.

To dispatch the message to the correct processadingty that receives a message
requires the identification of a unique identifi€his is done by usinmessage properties
A message property queries the incoming message egstain XPath query and generates

a unique identifier for the message. For examplpyre 47 is a simple BPEL process that

160

contains two Receive activities. The first receivactivity (ReceiveMl,
createlnstance="yes’) receives a message in which the type is M1, whithtrigger
the execution engine to create a new process iestahhe second receive activity
(ReceiveM2, createlnstance="no’), in which the receive message type is M2, will no
result in a new instance. Supposing that the messag incoming, as shown in Figure 48,
the first two messages of type M1 will create twogess instances (Instance 1 and
Instance 2). Both are waiting for a message thaty@e M2. In this situation, the message
manager must know which instance it should send.

Message M1 contains an attribute called ID, ansl libiconsists of shared information
with M2. The shared information does not need tothee same, as long as it can be

computed by XPath expressions to create a unique ID

5 MiSin

| ReceiveM1
| ReceiveM?
Business logic here

& calbackClient

—

@

Figure 47: example of correlations

161

Incoming message type Locus
p M1(ID=001)
M1(ID=002)
M2(M1ID=002)
Incoming message type Locus
(:A M1(1D=002) ‘/ Instance 1 A
‘|/ State: waiting for
message M2
l2(h12 De002) Correlation Instance:
{001
Incoming message type Locus
— M2(M1ID=002) 4 Instance 1 N\ [Instance 2
*‘l/ State: waiting for State: waiting for
message M2 message M2
Correlation Instance: Correlation Instance:
{001 002
A

Figure 48: lllustration of correlations.

In order to send the messages to correct instaiocdbe example in Figure 47, the

BPEL process can define a correlation set as

<correlationSets>
<correlationSet name="correlationSet1" properties ="ID M1ID"/>

</correlationSets>
In theReceive activity, it must also specify the correlation set

<receive hame="ReceiveM1” ...>
<correlations>
<correlation set="correlationSet1” initiate="ye s"/>
</correlations>

</receive>

By adding the correlations, th@essageManager can now correctly despatch the
information to Instance 2, because the incomingsamgs has the same correlation instance
as instance 2.

After understanding the semantics of correlatidims,next step is to use ALF to define

these semantics. The relevant concepts, nametglationinstance, are added. In

162

addition, when dispatching messages to an instaihgegerforms a check to validate
whether the relevant correlation definition is skd. The following code shows
MessageManager::requrestMessage() , which is invoked when @&eceive or Pick

execution is executed.
pri vat e requestMessage(i n execution:Execution, in
messagelnfo:Messagelnfo){
/linternal execution request message
/lfind the a incoming message that has the correct type
| et info:Messagelnfo = t hi s.findMessagelnfo(messagelnfo);
| et request:MessageRequest = new MessageRequest
(execution,
messagelnfo.message.type,
messagelnfo.portType,
messagelnfo.operation
)i
/lwhen there is no instance request the message typ e, or correlation
/lis not satisfied
i f (info==" null |]!(t hi s.correlationSatisfied(execution,info))){
/ladd this message to waiting queue
t hi s.messageRequests->add(request);
} el se{
/Isend the message to the relevant instance
t hi s.sendToExecution(request,info);

}
8.4.8 Abstract activities

Some of the concepts are outside of the scopelarigquage specification when these
concepts are platform-specific. In the languageci§pation, these are represented as
abstract activities, which only specify the inteda instead of the detailed method of
achieving the result. For example, theit activity and theeventHandler all involve the
use of time, particularly when waiting for a pauter length of time, or when waiting until

a particular time point.

public activity waitFor(i n duration:DurationExpression){}
public activity waitUntil(i n deadline:DeadlineExpression){}

Other examples include the behaviours regarding wiweeb service should do when it
is invoked and how the Xpath is evaluated, as thpgse of a case study is to define the

semantics of BPEL, rather than web services or Xp&Yhen generating reference

163

implementation prototypes, these operations can ii@lemented in the Java

implementation for testing.

8.5 Checking and testing the language specification

The previous sections introduced a language spatin that formalised BPEL to a
model based specification. The specification coistanore than 1300 lines of code. The
process of developing this specification is asdidig the static checkers, and is tested
iteratively when one feature has been developete$tyng the generated prototype. This
section summarises checking and testing duringip&ementation stage.

As introduced in Chapter 8, an Emfatic file thahtains structural and behavioural
aspects of the specification is generated. Theopyo¢ can load a BPEL process and
execute it; however, this prototype also needsitieract with external web services. Thus,
it is needed to set up a test environment to sitewaternal web services. The messages it
sends need to be configured according to the testsc If the tested BPEL processes
invoke or reply to an external web service, sudmab@®urs must be logged.

To enable these requirements, the meta-model of MWBDextended with testing

messages, which are defined as following:

* When testing a BPEL process, the developer camalefisequence of incoming

messages. These messages will be sent tm¢he class when initialised.

* Given the WSDL port type, the developer can comBgthe message that the
operation will reply. For example, the developean ceeate a sequence of messages
whereby, when the operation is called, a messateisequence will be sent back.

The use of this operation can simulate a normady repa fault reply.

Finally, the executor can be generated. To makeexieeutor executable, the abstract
activities need to be implemented since the impieat®n thereof is omitted in the
language specification. Once these activities amplamented, a working reference
implementation of the language specification isiagtd. Testing instance models can be
created via the Eclipse in-place model editor, amédcute them using the generated
Eclipse plugin. If any modifications need to be mdded, the language designer can

modify the language specification and regenerageyghving.

164

8.6 Summary

This chapter demonstrates the FQLS using a cadg sfuBPEL. While the complete
language specification of BPEL is listed in Appenéj this chapter provides a guide as to
how this specification is created from the officgédndard. The case study is a proof that
FQLS is capable of defining a practical real-wdddguage. In the next chapter, the case
study is evaluated in terms of quality, provingtth&QLS can develop a language

specification while maintaining high-level quality.

165

Chapter 9.

Evaluation

This Chapter evaluates FQLS. While evaluating FQh&re are two types of products
that require evaluation. As the FQLS promises thaeoe the quality of language
specification development, in order to evaluate, tthee quality of a language specification
that is defined via FQLS must be evaluated. Funtoee, the quality of the FQLS,
especially the software component it has includésh needs evaluation.

This chapter starts from evaluating the BPEL sjpeatibn that is developed in the
previous chapter. In Section 9.2, the quality loé QLS is evaluated in terms of

robustness. Finally, Section 9.3 discusses thédtrans of FQLS.

9.1 Evaluating the ALF-based BPEL specification

The BPEL case study produces a realistic examplearmf ALF-based BPEL
specification. Evaluating the quality of the BPHiesification is a method to evaluate the
quality of the framework. With regard to the quafi¢atures proposed in Section 2.4.3, the
interoperability, the model-based features and éhecutability are features of the
language specification technique, which was alreaabcessed by FQLS. On the other
hand, the correctness, the consistency, and therstaddability require further evaluation.

This section firstly evaluates the syntactic camess and consistency of the BPEL
specification by checking its syntax validity usirgnother ALF implementation.
Following that, the semantic correctness of the BBgecification is evaluated by testing
cases, both from our design and from open sourgjegis. Finally, the understandability

of the specification is evaluated by using softwakdrics.

166

9.1.1 Syntactic correctness/consistency evaluation

When evaluating the correctness of an ALF spedcifioa two kinds of correctness
must be considered. The first is syntactic coressnin other words, whether the ALF
specification conforms to the meta-model of ALFaeTsecond is semantic correctness, in
other words, wether the ALF specification reallypmsses the semantics of BPEL.

When defining a language using various technolodies consistency between syntax
models and semantic models must be ensured. Omthee hand, if the language is
defined in one language, such inconsistency ermils be revealed as syntactic
incorrectness. This is one of the fundamental rem$ar designing the FQLS. Thus, it can
be assumed that the consistency will be ensurt#teifanguage specification is correct in
terms of syntax.

If the ALF-based BPEL specification is successfylérsed, the editor will not report
any kind of error. However, it is possible that <F editor produced false negatives,
which means that some errors are missed. In oal@liminate this, ALF open-source
reference implementation is used as a benchmarkhelf ALF open-source reference
implementation successfully parsed the BPEL filéhaiit reporting errors, the syntactic
correctness of the BPEL specification is assured.

The ALF open source reference implementation isl @sefollows:

* Remove the annotations that the current ALF operurceo reference

implementation does not support, nam@iyline statements an@oOcCistatements.

* Remove the@parallel annotation, but keep the annotated block, sinee th

@parallel annotation is also not supported.
» Parse the file by running the parsing commandénctmmand line.

The ALF-based BPEL specification successfully pdsee parsing and constraint
checking stage. In conclusion, the ALF-based BPgé&cHication is correct in terms of

syntax.

9.1.2 Evaluating semantic correctness by testing

Semantic correctness concerns whether the speimficauly represents the language
developers’ intentions and can be declared to beecbby the language developers.
However, this is often not the case, as the redergtanding of the DSL semantics relies
on the language developers’ explanation. Many D®imantics are based on the

167

knowledge of domain experts. In such cases, thgukge developers do not create
language semantics, but capture the domain experntstledge and formalise them into a
machine processable format.

In both cases (evaluated either by domain expertdamguage developers), the
semantic correctness of a language specificatitesren people’s justification. People can
be language developers or domain experts. As thd Bfa well-implemented technology,
and its execution result is clearly defined in #tandard, it is possible to inspect the

correctness of the execution manually via testimdj@serving the result.
Testing by design test cases

36 testing files are created by the Ecore instaadd®r for testing the correctness of the
BPEL specification.The test cases are designedflect various activities. The following

steps are used for testing the BPEL processes.
* Predefine the expected execution behaviour ofasing model.
» Execute the testing model.
* Analyse the log file manually to check whether tbsult is the correct behaviour.

The BPEL specification successfully passed alldhest cases. This suggests that the

BPEL case study produces expected behaviours.
Testing by real BPEL processes

The BPEL specification is tested according to wuasidest cases. However, the
expected behaviour of the test cases is derived fvar understanding of the language
specification. It is possible that our understagdia wrong. In this case, the BPEL
specification could produce a result that is déférfrom that of the language standard’s
authors. In a real scenario of DSL development, dbenain experts are involved in
judging whether the language specification provithesexpected result. However, in our
project, this is infeasible because there is nesxto a domain expert.

Fortunately, BPEL is a well-implemented languageheré are open source
implementations of BPEL, and they conform to theglaage standard, while being used
for commercial projects. The result produced by atume BPEL execution engine is
assumed to be the correct behaviour.

Thus, the hypothesis of this experiment is thatgmmrerated BPEL prototype produces

the correct behaviour when executing processes ddrirect behaviour can be achieved

168

by executing the same process files in a BPEL implgation. This is achieved via the
following steps.

Firstly, it is necessary to select certain BPELcpsses for testing. It will be more
convincing if the test cases are real test casssatie not designed by the authors, but by
other developers.

Such BPEL process can be found in open sourcegisoj@oogle code and github.com
are searched for BPEL files and Many of them arendip but also that most are fairly
simple and contain only certain activities (such iagoking two web services and
combining the received data) that are enclosed iseguential activity. The author
attempted to search for BPEL files that are mormplex, and which are defined as
follows. This process should have more complexrmss logic and should use fault and
compensation handlers. It is better to use nest@okes and correlations.

Then the BPEL files that contained a fault handied an event handler are searched.
20 files are obtained, most of which are clearbt fdes for BPEL tools. As testing real
process used in real projects is desired, thess flere also eliminated. Finally, the
Bookstore project is selected, which is a web serthat orders purchases of books. Table
14 lists the files that are used for testing, ofolithree come from the bookstore project,
and one is the standing example of the officiainen document [106].

The Apache ODE is selected as the execution emyiado its integration with Eclipse.
The testing environment is listed in Table 15. ApmODE (Orchestration Director Engine)
is an implementation of BPEL, which supports theaetion of both BPEL 1.1 and 2.0
standards. After deploying a BPEL process file fraéhe ODE, the process is visible as a
normal web service. When it receives messages,Affeche ODE will perform the
execution, evaluating data and invoking the exlenad services.

As testing the BPEL processes in Table 14 is déstreese needed to be deployed to
an Apache ODE server. The process files interaitt and are composed of web services,
to which accesses are not gained. However, basétkd/WSDL files, the interfaces of the
web service are revealed. It is possible to buddthy web services that have the same
interface as the required web service, and whiokiige a meaningful response.

Test file Source

ShippingService.bpel BPEL primer [106]

OrderBook.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/

ShipmentBook.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/

onlineBookStore.bpel http://wangyuhere.googlecode.com/svn/trunk/ID2208/OnlineBookStoreBpel/

Table 14: Testing files

169

Environment Version ‘

Operating Windows XP SP3
system
Eclipse Helios with BPEL designer project

Apache Tomcat v7.0
Apache ODE v1l.3

Table 15: Environments

Finally, relevant web services are built by Java &m deploy them to an Apache
Tomcat server with ODE plugin, then simulated reggi¢hat triggered different execution
paths of the process, such as a normal flow, @spanse that causes a fault and runs a
negative flow. The log files are analysed and ttevities that were executed are recorded,
the sequence of the execution and the data tralnsferen activities.

Then the Ecore instance editor is used to rebbigdsame process, giving it the same
request model and executing it. Its log file sholat the sequence of the execution of the
activities and the transfer of the messages ixpsoted.

By passing these test cases, the generated pretmygemonstrated that the expected
behaviours are processed. As the prototype is elkrirom the ALF-based BPEL
specification, if the BPEL specification is incasteor if the code generation is incorrect,
both will result in the prototype having unexpechethaviours.

Thus, it is possible to conclude that the langusggezification is consistent and correct.

9.1.3 Evaluating model quality by software metrics

Language specifications are also models. The gquddgreof should have the same
feature as other models. Mohagheghi et al. [108]msarised methods of assessing model
quality. The first method is manual inspection. Whnanual inspection is a good way of
evaluating understandability, it would be nice tesign an experiment and to recruit
volunteers to manually inspect the understandghiereof. However, limited time and
resources makes finding the developers of langspgeifications difficult, because there
are not many developers that are familiar with n@daend DSLs. Thus, an evaluation
method that does not require manual inspectioeesiad.

The other way of assessing model quality is toecblmetrics from models. Various
software metrics can reveal the quality featurethefsoftware under study. This chapter is
more interested in evaluating the understandalulitthe BPEL case study. Many factors

can impact on the understandability of models,udirig the organisation of diagrams and

170

models, the familiarity of the users and the madsimplicity or complexity [103]. Of
these three types, the complexity of the modelskmamevealed by software metrics, as
agreed by Gruhn and Laue [59]. The understandalofitthe models is related to the
complexity metrics. Since complexity metrics haweet used successfully in predicting
the understandability, as well as in the cost anrerate, the evaluation of the
understandability of the ALF-based BPEL specifimatis carried out by evaluating the
complexity metrics.

Software metrics have proved effectiveness in etadg the traditional programme,
including structurally oriented programming [97,013&nd object-oriented programming
[152]. Many works have tried to adapt the same icgeto models. For example, Gruhn
and Laue [59] discussed ways of evaluating the ¢exity of business process models
using several metrics, including size, the conftolw complexity, and the cognitive
complexity. [95, 89] applied similar metrics foradysing various domain models. These
works clearly show that it is feasible to applyditeonal complexity metrics to models.

The ALF-based BPEL specification can be seen axaoutable meta-model, and can
also be seen as an object-oriented programme. é&sopisly discussed, both views can
feasibly apply complexity metrics to the specifioat Thus, the task of the evaluation is to
calculate the complexity metrics of the BPEL speation.

Our hypothesis is that, compared to other impleataris of the BPEL semantic
specification, the ALF-based BPEL specification haslower metrics in software

complexity.
Comparable specifications

Evaluating the complexity of the ALF-based BPEL afieation requires the
comparison of the specification with other BPEL dfieations. Thus, it is possible to
establish metrics and to compare them. The offisehantic specification of BPEL is
based on text, which makes it impossible to comgarf€ortunately, there are two other
works that formalise BPEL semantics. Fahland andiR§38] specified the semantics of
BPEL using an ASM language. The ASM specificatisrcieated by first mapping the
BPEL meta-model manually to an abstract state machind then using a combination of
mathematical language and procedural executiors tolespecify semantics. Stahl [145]
used the Petri net for the same purpose. The mgdemantic specification consists of

many Petri net diagrams. Both can be categorisdthaslational semantics. As a result,

171

the ASM specification and the Petri net specifmatare considered to be comparable
implementations of the ALF specification.

Since the complexity of the three specificationti ae calculated and will repeatedly
be referenced in the remainder of the thesis, thie-Based BPEL specification produced
in the case study will be referred to as the ALEc#ation, Fahland and Reisig [37]
(complete specification in [38]), will be referréd as the ASM specification, and Stahl

[145] will be referred to as the Petri net speaifion.
Coverage of the official standard

The three BPEL semantics specifications are reBeaocks; therefore, not all parts of
the official documents are covered. Of the threscBjgations, ALF and ASM have similar
coverage. Activities, handlers, instances, cori@tat and message management are all
defined. However, ASM specification has many alestfanctions whereby only the
interface is defined and the semantics are defyetthe text. The ALF-based specification
also contains certain abstract functions, but theselimited to the functions that the
semantics intentionally left undefined, or the setita that are dependent on the
implementation platform. Hence, the amount of austfunctions in the ALF specification
is significantly smaller. The Petri net specificatidid not define instances, correlations or
message management; therefore it has significéegly coverage than the other two. Of
the three specifications, only ALF specificatiorfides both the abstract syntax and the

behavioural semantics.
Size analysis

The most commonly used metrics for measuring the af a programme are the lines
of code. These are the most commonly cited softweeteics [111]. The Lines of Code are
measured by first remove any empty lines and consndrhe line numbers were then
calculated. However, since the ALF specificatiorcludes the syntax, the semantic
definition and the definition of a WSDL meta-mod&EM specification only defines the
semantics. Thus, to make the comparison fair, #iimition of the BPEL meta-model, the
WSDL meta-model is removed from the specificatibnf any other classes that are
related to behaviours, such as the execution dlassnstance class and managers, remain.
By doing this, Table 16 lists the Lines of codeshaf two specifications.

ALF ASM
LOC - complete 1588 1506
LOC - exclude syntax 1318 1498

172

| Number of methods 121 147 |
Table 16: LOC comparison.

Table 16 shows the size of the ALF specificatiorterms of LOC and the number of
methods. Although the size of the specificationas only affected by the technology for
defining the specification, it can also be affectsdthe design of the specification, the
skills of the developer, and the coverage of thecjgation. Considering that the coverage
of the ALF specification is better than that of k&M specification, and that the design of
the specification is similar, both are derived frtme same official language specification.
Thus, it is concluded that the ALF specificationsimaller in size than that of the ASM

specification.
Cyclomatic Complexity analysis

Cyclomatic Complexity [97] believes that the conxie of the control flow graph
could reflect the complexity of the programme. lddiéion, the metric is language
independent and could even measure graphs. If grggrome were to be translated into a
control graph, assuming that the count of nodes, ithe count of edge would lee
Cyclomatic Complexity (CC), defined as

CC=e—n+2

A practical method included in [97] for calculatir@C is counting the number of
control structures (if, for, while, logical and,, @tc.). The Cycomatic complexity can be
calculated by the following formula.

CC =count+1

This formula is used for calculating the Cyclomatiemplexity of a single-entry-
single-exit programme. In both the ALF and ASM speations, there are certain methods
that contain multiple-exit programmes. Howeveryé¢hare various ways of calculating the
Cyclomatic Complexity of a multiple-exit programm&ccording to Henderson-Sellers
and Tegarden [66], Cyclomatic complexity could dated to multiple exist programmes
just by consisting as an existing as a controlcsting>. Thus, the count of structures is
defined as

count = sum(conditional statements) + sum(loop statements)

+ sum(logical operators) + sum(exits)

>t is also identify that [64] suggests a different way of calculating the complexity. However, the multiple
exit points only appear a few times in the ALF specification, and do not exist in the ASM specification.
Applying [64]’'s work will not affect the conclusions, because this will only reduce the complexity of the ALF
specification.

173

Here, the conditional statements are defined asnalorconditional statements,
including if/switch, and accept statements are aisated in the same way as switch
statements. Loop statements include for/while/doilevHoops. Finally,The Total
Cyclomatic Complexity (TCG3$ defined as the summarised CC of the entireeptpj

Kk
TCC=ZCCi—k+1
i=1

The above method is used in order to collect thec@ynatic complexity of ALF and
ASM specification. The Petri net specification, lewer, is different from the other two.
Since it is not structured programming but graphsterms of the calculation of the
complexity of a Petri net, Mao’s [95] approach ppked by calculating the nodes and
edges.

Mao presents a technique to calculate the Cyclancatinplexity of a business process
that is defined as a Petri net. The method sinmelgt$ places and transitions as nodes, and
allows the link between them to be the edges. Blgutaing their numbers, the
Cyclomatic complexity of the Petri net can be dedivThis method was chosen due to the
limited work in applying Cyclomatic complexity teRi nets, and this is the exact method
that solves the same problem as ours.

The method for gathering the complexity metricstasfirst divide the language
specification into severatode units and then to gather the Cychomatic complexity
manually. A code unit contains the portion of thedfication that defines a specific topic.
The specifications are split into comparable codigsuA code unit in ALF specification
may contain one class or several related classésaaode unit of the ASM or the Petri
net specification may contain the rules or grapgbted in one subsection. Since the
architectures of the three specifications are dfig the code units are not guaranteed to
have the same semantics. However, each code Uigttsethe semantics of the same
BPEL structure, the semantics of which are similar.

Table 17 shows the result of the Cyclomatic compfexf the three specifications of
BPEL. Each line of the table stands for a code wifitthe language specification.
Considering the coverage of the specification, Rled¢ri net specification has the lowest
coverage of the official standard but the highesnglexity, which shows that a graph-
based language definition could increase the coxtpleand thus affect the

understandability of the language standard.

174

The ALF and ASM specification has similar coveraged their architectures are also
similar. It is clear that the ALF specificationtise least TCC of them. When looking at
each code unit, most of the CC of ALF is smallanthhat of ASM. When going deeply
into the code, if the code blocks are very simplee CC will make no significant
difference. For exampl®eply , Terminate , Empty, Wait , has nearly the same CC. When
the code unit become more complex, the ALF speatibo becomes simpler than the
ASM specification. There are exceptions; for exampheFlow, Invoke unit of ALF
specification is significantly more complex thamatlof ASM. The reason is that the ASM
has defined the fault and event handlers as aaepannit, while in the ALF specification,
the event handling is managed by the relevant iaciivstances that cannot be calculated

individually.
ALF ASM Petri Net

Reply 7 7 11
Flow 16 8 2
Flow Link * 31
Terminate 4 5 4
While 11 11 4
Invoke 24 13 35
Empty 4 5 2
Wait 5 5 6
Throw 4 4 2
Receive 9 7 13
Assign 10 30 11
Sequence 11 10 2
Switch 16 10 7
Pick 18 31 17
Scope a7 52 99
handlers”’ 23 42
process 10 9 8
Compensation 7 24 67
Message manager 26 36 0
Basic activity 24 26 0
Total 253 316 363

Table 17: Cychomatic complexity comparison.

*®*The ALF specification and ASM specification combines Flow link semantics with flow, and they are
combined with Flow semantics. Thus, the complexity of flow of ALF and ASM is greater than that of Petri
net.

" The ALF specification combined the semantics of fault handlers with scope, process and basic execution;
thus, there is no separate class to deal with a fault handler.

175

Cognitive complexity

Cychromatic complexity can reflect the physical pdewity of software; however, it
considers only the control and conditional flows tbe programme, whereas in the
specifications that are evaluated, there are cegttements that are different from the
normal definition of control flows, such as signatequence expressions and logical
expressions in ASM. Shao and Wang [139] also arghatisuch metrics did not reflect
the effort to understand the software. They progasenetric based on cognitive weight
that could evaluate programmes with more advantecttares. This could reflect the
cognitive and psychological complexity of softwdng considering both the internal
structures and the behaviours they process. Ircdke study, the cognitive complexity is
calculated by first assigning a cognitive weightatb the control structures, which are
shown in Table 18. The cognitive weights are catiegd according to the type of control
structure. Because ASM formalism and ALF languageehspecial control structures,

there is a column entitled “language”, which indésathe languages that such control

structures.
Category Language Control Structures Weight(W;)
Sequence Both Sequence 1
Branch Both if-then-else 2
Both case, if-elseif 3
Iteration Both for 3
Both While 3
Both do while 3
Function calls Both function calls 2
Both Recursion 3
Concurrency ALF Parallel 4
ASM on signal 4
ALF Accept 4
Sequence operation Both select/forAll/exists 4
ASM other logic structure 4

Table 18. Cognitive weights of control structures.
Cognitive complexity adds the cognitive weightsitsf q linear blocks. If a block
contains nested blocks, the cognitive weights afnedd by multiplying the cognitive

weights of the nested blocks. The total cognitiveeghit can be calculated by the formula

176

m

W, = zq: ﬂi w0,k i)l

j=1 Lk=1 i=1
wc(j, k, i) is the complexity weight of the statement.

The following steps are used to calculate thd tatgnitive complexity.
» The complexity of a code block is the sum of thégiveof the control flow.

* A statement that does not contain nested code ®lbak the weight specified in
Table 18.

» The complexity of a statement that has nested bémigks is the weight multiplied
by the sum of the nested blocks.

* The total cognitive complexity of a code unit i® tbum of the complexity of the
code blocks.

In order to explain how this works, the code frdra ALF specification is took and the
complexity thereof is calculated. The code below tie classifier behaviour of

AssignExecution and the complexity of each statement or code blschkritten as
comments
[l Total : 2+72=74
112
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
[3*24=72
whi | e (! completed){
|1 4% (2+2+2) =24
accept (SignalStart){
112

this.enable();

or accept (SignalLinkActivited){
112

this.running();
completed = true;

or accept (SignalTerminate){
112

this.term nate();
completed = true;

177

Table 19 listed the cognitive complexity of the Aldpecification and the ASM
specification. This table is similar to the table @ychromatic complexity. The ALF
specification is less complex than is the ASM sjeion in terms of total cognitive
complexity.

When looking into individual code units, the distriion of the complexity is revealed.
For simpler units, likavait andThrow, the complexity of ALF and ASM is similar. In fact
the ALF specification is slightly higher than that ASM. This is because the pattern of
receiving incoming signals uses a while loop, whiebults in the block always having a
nested loop that multiplies the compexity. In th8M specification, there is a specially
designed syntax for receiving the signal continbigushich results in the complexity of
receiving a signal being lower. However, for mooenplex code blocks, such as Assign,

Compensate, Scope and Sequence, the ALF spedfidadis a much smaller complexity.

Name ALF ASM
assign 117 278
compensate 113 665
correlation 8

empty 78 84
structured activity 300 236
flow 168 154
invoke 403 407
locus 360

message 244

pick 257 294
receive 201 156
reply 191 168
scope 553 959
sequence 163 428
switch 251 184
terminate 80 86
throw 99 70
wait 97 86
while 201 256
event handler 472
fault hander 460

178

Total 3884 5443

Table 19: Cognitive complexity comparison.

One reason that the ASM specification is more cemphan that of ALF is that its
nature makes the reuse of code difficult. Many codae duplicated. The ASM
specification also uses extremely complex logidebne the semantics as a post condition,

which makes the control flow complexity large.
Discussion

This section evaluated the physical lines of cade,Cychomatic complexity thereof,
and the cognitive complexity of the ALF-based BP§jecification of the ASM-based
BPEL semantic specification and a Petri net BPEmas#ic specification. The result
summarised in the tables clearly show the lowerplerity of the ALF specification, thus
validating the hypothesis.

Our method of using software metrics for evaluatthg complexity relies on the
assumption that the complexity metrics used arepaddent of language. This claim is
supported by other works; for example, McCabe @7 Shao and Wang [139] believe
that CC and cognitive complexity are language iedelent, while there are other metrics,
like the first complexity metrics proposed by Habsl [62], which are language dependent.

Although differences in the complexities betweenFAASM specifications are large
(the total cognitive complexity of ALF specificatios 28.6% less than that of ASM, and
the total Cychomatic complexity is 19.9% smalléhere is a concern that may affect
validity: the differences of the complexity are rmbven to be statistically significant.
However, evaluating the statistical significancesoftware metrics is still a challenging
topic, and cannot be done if a large code databamsts. Considering the age of ALF,
although such a large database is still missings inearly impossible to prove the

statistical significance of the complexity evaloati

9.2 Evaluating static checkers of the ALF Language

Specification Framework

The consistency, correctness and complexity oAihle-based BPEL specification are
evaluated in the previous section. These featueesha most important factors that affect
the quality of a language specification. It demaatst the effectiveness of producing a
high quality language specification using FQLS losea in the process of developing the

179

BPEL case study, the framework helped to identifgngn errors in the earlier stages.
Because some of the built-in static checkers weesigded and developed while
developing the BPEL case study, the true abilitthefstatic checkers needs to be tested in
a better way than using the author's report, sothigastatic checkers are not only useful to
the BPEL case study, but are generally relatedLte programmes.

Thus, in this experiment, the robustness of théicsttheckers was evaluated. The
robustness was defined as the built-in checker&SifF, which will still have expected
behaviour when given ALF programme from other sesirc

One widely used method for evaluating the statieckbrs is to use the static checker
to analyse a widely known open source project andnialyse its result, as per Findbug
[70]. The same principle holds when evaluatingaisichecker for ALF; however, ALF
does not have such a large open-source projedllfithe sample was collected from the
testing fil&® for the ALF open-source reference project anderadixtracting the source
code, the test files were placed in the ‘test-déo.

The test files of the ALF open-source referencele@mentation contain 25 test files
and four helper files. The content varies fromrape hello world, to evaluating complex
expressions and ALF-specific statements. Theseranoges can be treated as real
examples of ALF programmes. These test ALF filesewgpened using the ALF code
editor. By analysing the results, it can be seext these test files contain several bad

practices and possible errors.

* Many of the test files use variables without denlgathe type. This is considered to
be bad practice. Therefore, the result is a warrongpossibly an error, if the type

cannot be inferred by the static checker.

* Many variables are used without initialisation, tmadarly when used as an output

variable.

* In Expressions_Assignment_Feature.alf , line 34, there is a type error, where

c.y has atype Integer and cannot be assignedito.
* Expressions_Assignment_Feature_Indexed.alf , line 31, similar to the above.

* Expressions_Constructor_Destructor.alf. In lines 27, 28 and 34, the

constructor has the same name as a public memtreexemple:

%8 http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-Implementation/dist/test-x.zip

180

* public transferred: Boolean = false ;
* @Create public transferred(in employeelnfo: Employe e) {

* Expressions_Sequence_Expansion_Reduction.alf , from line 25: The

parameter name is the same as a keyword.

The bad practices identified above clearly show rieeessity of having basic static
checkers to assure the correctness of the programbezause the examples in the

standards have potential errors.

9.3 Limitations

FQLS uses fUML as its semantic basis. This indg#bat it is not possible to specify
the semantics that fUML cannot specify. The fUMBrstard [55] and Selic [137] both
summarise the limitations of fUML, in that it onlgupports event-driven, discrete
behaviours. If a DSL that simulates the physicatlvdnas continuous behaviours, such
semantics cannot be directly specifiable by fUMIlucls behaviours may possibly be
supported by certain profiles that remain unexpulore

Various arguments [111] imply that many complextetrics (including Cyclomatic
Complexity) are correlated to the size of the paogme; in other words, the LoC. If this is
true, an evaluation that uses metrics in the thesisld be less convincing. This is a
limitation of the evaluation method. Another wayesaluating the understandability is to
conduct an experiment that surveys language enginddis is extremely challenging
because the number of language engineers is limmed#ling the task almost impossible
because of limited resources and time.

The generated prototype also has a limitation, imethe generated prototype does not
ensure thread safety. EMF “can safely be used iti-thuveaded environments; however,
EMF does not, itself, ensure thread-safety in @pfitn model implementatiofis. The
prototype inherited the limitations of EMF; thusiridutes shared by multiple threads may

have race conditions.

2 http://wiki.eclipse.org/EMF/FAQ

181

9.4 Summary

This chapter evaluated the FQLS by confirming thgodthesis. The evaluation
demonstrated that the BPEL specification develdpe®QLS is a correct and consistent
specification and, compared to other implementatiaf the language, has lower
complexity that indicates better understandabilltye effectiveness of the static checkers
of ALF was also tested by examining the testingecotithe ALF open source reference

implementation.

182

Chapter 10.

Conclusion and further work

10.1 Conclusions

The journey of this thesis starts from the problemsdomain specific language
development. The current methods for developingalorapecific language specification,
especially a specification contains both abstrgtasc and behavioural semantics, deliver
language specifications that are in low qualitye Tgroblem of the quality of language
specifications leads to the research objectivekethesis.

The first research objective i36 investigate the requirements of a high quali§lLD
specification. By analysing existing approaches and existinggleage specifications,
Section proposes that the language specificatiamuldhhas consistency, correctness,
executability, understandability, expressivenessgroperability, and should be model-
based.

The second research objective T®©“design an approach that could define a DSL in a
unified manner, fulfil the requirements of a highatity DSL specificatioh The FQLS
approach introduced in Chapter 4 and detailed ter lahapters is the answer to this
objective.

The third research objective iSTd create a software development process that
applying the new definition approdcisuch a software development process is presented
in Section 4.3.

The last research objective i3d° develop a framework for supporting the software
development process that assists the developmendSb$. A software tool chain that
supports specification development, static checkimgj testing are presented in Chapter 5,
Chapter 6, and Chapter 7.

10.1.2 Summary of contributions

The scientific contribution of the thesis is thethwal for defining domain specific
language specification. Its purpose is to deliightguality language specification. The

goal is reached by using established technologesthe ALF, fUML, static analysis and

183

projects based on the Eclipse modelling framewbrkcontrast to other approaches, the
FQLS approach eliminates inconsistencies betwestraah syntax and semantics. It uses
expressive language and produces interoperable anderstandable language
specifications.

The thesis also contributes three technical aréa. first technical contribution is a
software architecture that supports the languageifsgation technique and the software
development process. It proposes a tool chain tbatains editor for the language
specification, static checkers for identifying es;omodel transformer which translates the
ALF specification to fUML models, and code generathat translates the ALF
specification to Java, which enables testing thguage semantics.

The second technical contribution is a softwareetment process that applies
guality assurance on the language specificatioglf itwhile developing the language
specification. The products, the roles, the tasid the guidelines of developing language
specifications are identified and captured by SPE&ta-model. The process proposes to
perform checks and testing directly on the speditn rather than leave them until
implementation stage, thus, makes identifying ernoran early stage.

The last technical contribution is that the caselgtdemonstrates that fUML can be
used to define the semantics of DSLs despite iiginal purpose is to define UML
semantics. The case study creates the first madsebBPEL specification that defines
abstract syntax and behavioural semantics in aeaniay.

10.1.2Summary of evaluation

To demonstrate that FQLS can produce a high quidityuage specification, a real
DSL — the BPEL is chosen as a case study. In tBe study, the abstract syntax and
behavioural semantics are defined by ALF, whilelgpg the software development
process and using the software tool chain. Whikelbping the language specification,
the specification is statically checked for synemd bad practices on going, and being
tested in each iteration.

Then this case study is used as a source for éi@ludhe experiments and results are

summarised as:

* The syntactical correctness of the specificationevaluated by checking the
syntactical correctness by the ALF open source emphtation. The semantic

184

correctness is demonstrated by running test caskseal process examples. Both

of the methods show no error in the ALF —based BBj#cification.

* The BPEL case study is evaluated by software nsgtaind the result is compared
to other approaches for defining BPEL. The ALF-lbB&EL specification is less
complex than the comparable specifications in lal selected metrics, which
suggests the FQLS method is better in understalitgtabi

* The static checkers are evaluated by checking thgrams presented in the ALF
open source implementation. Several bad practiGdsstiggest errors are identified.
This experiment shows the robustness of the stitéckers. They are not only

effective for checking errors in the BPEL specifiona.

The evaluation confirms that a language specificatiefined as the FQLS has better
guality in terms of correctness, consistency, ustdedability. Since the FQLS used an
interoperable, expressive language, the languageifgation that the FQLS produced

unifies abstract syntax and behavioural semarttieshypothesis of the thesis is confirmed.

10.2 Further work

The OMG is seeking the methods of defining the segiws of UML family by ALF.
Currently, the fUML standard defines the semangssrestricted Java code. It will be
much consist and precise, if the semantics areel@foy ALF. The “structures of Precise
Semantics of UML Composite Structures” [54] is arkuog on draft that describes the
semantics of UML composite structures (e.g. thenelgs of the composite diagrams and
the collaboration diagrams), using fUML as its vmdary. Eventually, the same work can
be extended to any language that is defined asa medel.

If ALF and fUML become a widely accepted way fofidang languages, it is possible
to reuse language definitions just like reuse saféancomponents. This direction can be

further researched in several routes

* Language composition. One requirement in languayeldpment is to composite
two different but similar languages into one lamgriathus the composited
language contains the expressiveness and the dengkepoth the languages. If

these two languages are defined by ALF, it is yikekat the process of composition

185

will be easier since they share many similaritiess also worth seeking automatic

ways to composite languages that are defined udifg

* Language evolution. DSLs change and evolve throuigtioeir life cycle. The
meta-model may be extended with new concepts, amgds to another model. The
semantics may change as well. Hence, it is wortteséarch on how FQLS could
support the development of an evolving languageiipation that still keeps the

quality of the specification.

Another direction of further research is continutagimprove the FQLS to provide

advanced supports for language developers. Theopmsgorks include:

* Adding automatic unit tests. Currently, testinglee by executing the test cases
and then checks the result manually. It is wortldéwelop an automatic testing

framework.

* Revising the ALF to Java code generation, genegafnom ALF sequence
expression to Java lambda expression. Using Javadia expression will avoid the
complex mechanism of generating OCL and limitatiohsequence expression.

* The Model Library of ALF is not fully implemented@hus, some built in data type,

such as BitString, Set, will report type not fowardor, which is not an error.

» Addressing known bugs. There are some known bugé, as failing to deal with

treaty ++ -- operators performed on a property sEexpression.

» Developing full support of the ALF model libraryh& Model Library of ALF is
not fully implemented. Thus, some built in datagyguch as BitString, Set, will

report type not found error, which is not an error.

186

Appendix A. Complete specification of BPEL

/
* BPEL META MODEL

* * * /

publ i ¢ enumState{DISABLED,ENABLED, RUNNING, COMPLETED,
FAULTED,TERMINATED, COMPENSATING, STOPPED}

I* WSDL */
public cl ass WSDL{
publ i c messages: conpose MessageType[*];

publ i c portTypes: conpose PortType[*];
publ i c properties: conpose Property[*];
publ i c serviceLinkTypes: conpose ServiceLinkType[*];

}

public cl ass ServiceLinkType{
publ i ¢ name:String;
public role: conpose Role[*];

}

public cl ass Role{
publ i ¢ name:String;
publ i c portType:PortType;

}

public cl ass MessageType{
publ i ¢ name:String;
publ i c parts: conpose Part[*];

}

public cl ass Message{
publ i c type:MessageType;
publ i c value:String;

}

public class Part{
publ i ¢ name:String;
publ i c typeName:String;
publ i c elementName:String;

}

public cl ass Property{
publ i ¢ name:String;
publ i c type:String;
}
public cl ass PortType{
publ i ¢ name:String;
publ i c operations: conpose Operation[*];

publ i ¢ invokeOperation(i nout operation:Operation, i nout
message:Message){

187

}
}

public cl ass Operation{
publ i ¢ name:String;
public input: conpose Input;
publ i c output: conpose Output;
publ i c fault: conpose Fault;

publ i c testRespondMessage: conpose Messagelnfo[*];

publ i c invoke(i n message:Message){

log("™ + message);
i f (this.testRespondMessage->size()>0 && t hi s.output!=" nul |){
| et messagelnfo:Messagelnfo = t hi s.testRespondMessage[0];
t hi s.testRespondMessage->remove(0);
messageManagerinstance().SignalReceiveMessage(m essagelnfo);
}
}
publ i c receiveResponse(i N message:Message){
log("™ +message+" received");
}

}

public abstract cl ass MessageReference{
publ i ¢ name:String;
publ i c messageType:MessageType;

public class Input specializes MessageReference{}
public class Output special i zes MessageReference{}
public class Fault special i zes MessageReference{}

[* ACTIVITIES */

public abstract cl ass Expression{
publ i ¢ body:String;
publ i ¢ expressionLanguage:String;

}
public cl ass BooleanExpression speci al i zes Expression{
privat e count:Integer;
publ i c eval():Boolean{
/levaluate the expression, omitted
i f (this.body== "true"){
return true;
}
el se
{ return false;}
}
}
publ i c cl ass DurationExpression speci al i zes Expression{}
publ i c cl ass DeadlineExpression speci al i zes Expression{}

public cl ass Variable{
publ i ¢ name:String;
publ i c value:String;

188

publ i c messageType:MessageType;
/I public setVariable(in message:Message){
1l this.value = message.value;
I}

publ i ¢ copyFrom(i n variable:Variable){

publ i c copyPart(i ninVar:Variable,
selfPart:Part){

}

publ i ¢ copylLiteral(i n literal:String,

publ i c getMessage():Message{

i n inPart:Part,

i n selfPart:Part){

| et message:Message = new Message();

message.value = t hi s.value;

message.type = t hi s.messageType;

ret ur n message,

}

public cl ass PartnerLink{
publ i ¢ name:String;
publ i c serviceLinkType:ServiceLinkType;
publ i ¢ myRole:Role;
publ i c partnerRole:Role;

}

public cl ass BPELProcess specializes Scope {

}

public abstract class Activity{
publ i ¢ name:String;

publ i ¢ joinCondition: conpose BooleanExpression;

publ i ¢ suppressJointFailure:Boolean =
publ i c enclosedScope():AbstractScope{
| et parent:Activity = container(

fal se;

t hi s);

whi | e (! (parent i nst anceof AbstractScope)){

parent = parent.container;

r et ur n (AbstractScope)parent;

}
}

/I public abstract class CorrelationActivity{
/I public correlations:compose Correlation[*];
I}
1
public cl ass Correlation{

publ i c set:CorrelationSet;

publ i c initiate:Boolean;

publ i c pattern:String;

189

in

public abstract cl ass AbstractScope speci al i zes StructuredActivity{

publ i c partnerLinks: conpose PartnerLink[*];

publ i c variables: conpose Variable[*];

publ i c faultHandler: conpose FaultHandler;

publ i c eventHandlers: conpose EventHandler;

publ i ¢ compensationHandler: conpose CompensationHandler;
publ i c correlationSet: conpose CorrelationSet[*];

}

publ i c cl ass CorrelationSet{
publ i ¢ name:String;
publ i c properties:Property[*];
}

public cl ass CompensationHandler{
publ i c activity_: conpose Activity;
}

public cl ass EventHandler{
publ i c events: conpose OnEvent[*];
}

public cl ass OnEvent{
publ i ¢ partnerLink:PartnerLink;
publ i c portType:PortType;
publ i ¢ operation:Operation;
publ i c messageType:MessageType;
publ i c scope: conpose Scope;

}

public cl ass Scope speci alizes AbstractScope{}

public cl ass Compensate speci al i zes Activity{}
1
/I public class CompensateScope specializes Activity{
/I public target:Scope;
I}
Il
publ i c assoc Link_Activity 1{
publ i ¢ sources:Link[*];
publ i c target:Activity;
}

publ i c assoc Link_Activity 2{
publ i c targets:Link[*];
publ i ¢ source:Activity;

}
public cl ass Link{}

publ i ¢ assoc StructuredActivity Activity{
publ i c container:StructuredActivity;

publ i c activities: conpose Activity[*] sequence;
}
public abstract class StructuredActivity speci al i zes Activity{
publ i ¢ primaryActivity():Activity{
return this.activities[0];
}
}

190

public assoc Flow_Link{
public links: conpose Link[*];
publ i c flow:Flow;

}
public class Flow specializes StructuredActivity{
}
public class While speci al i zes StructuredActivity{
publ i ¢ condition: conpose BooleanExpression;
}
public cl ass FaultHandler{
publ i c catch_: conpose Catch[*];
publ i c catchAll: conpose CatchAll;
}

public cl ass Catch{
publ i c faultName:String;
publ i c faultVariable:Variable;
publ i c faultMessageType:MessageType;

publ i c activity_: conpose Activity;
}
public cl ass CatchAll{

publ i c activity_: conpose Activity;
}

public cl ass Sequence speci al i zes StructuredActivity{}

public class Switch speci al i zes StructuredActivity{
public case_: conpose Case[*];
publ i c otherwise: conpose Activity;

}

public cl ass Case{
publ i ¢ condition: conpose BooleanExpression;
publ i c activity_: conpose Activity;

}

public class Pick specializes Activity{
/I public onMessage:compose OnMessage[*];
publ i c onEvent: conpose AbstractOnEvent[*];
}

public abstract cl ass AbstractOnEvent {
publ i c activity_: conpose Activity;
}

public cl ass OnMessage speci al i zes PartnerActivity,AbstractOnEvent{
/I public activity _:compose Activity;

}
public class OnAlarm speci al i zes AbstractOnEvent{

public for_: conpose DurationExpression;
publ i c until_: conpose DeadlineExpression;

}

public class Empty speci al i zes Activity{}

public cl ass Terminate speci al i zes Activity{}

191

public abstract cl ass PartnerActivity speci al i zes Activity{
publ i c partnerLink:PartnerLink;
publ i c operation:Operation;
publ i c variable:Variable;
publ i c portType:PortType;
publ i c correlations: conpose Correlation[*];

}

public cl ass Receive speci al i zes PartnerActivity{
publ i c createlnstance:Boolean;
}

public class Reply speci al i zes PartnerActivity{
publ i c faultName:String;
}

public class Invoke specializes PartnerActivity{
publ i c inputVariable:Variable;
publ i c outputVariable:Variable;

}

public class Throw specializes Activity{
publ i c faultName:String;
publ i c faultVariable:Variable;

}

public class Wait specializes Activity{
public for_: conmpose DurationExpression;
publ i c until_: conpose DeadlineExpression;

}

public class Assign speci al i zes Activity{
publ i c copy: compose Copy[*];
}

public class Copy{
public from_: conpose FromSpec;
publicto : conpose ToSpec;

}

public abstract cl ass FromSpec{}
public abstract class ToSpec{}

public cl ass FromVariablePart speci al i zes FromSpec{
publ i c variable:Variable;
publ i c part:Part;

}

public cl ass FromLiteral speci al i zes FromSpec{
publ i c literal:String;
}

public cl ass FromExpression speci al i zes FromSpec{
publ i ¢ expression:String;
}

public cl ass FromProperty speci al i zes FromSpec{
publ i c variable:Variable;
publ i c property:Property;

192

publ i c cl ass ToVariablePart speci al i zes ToSpec{
publ i c variable:Variable;
publ i c part:Part;

}

public cl ass ToProperty speci al i zes ToSpec{
publ i c variable:Variable;
publ i c property:Property;

}

/
* EXECUTIONS

*kkhkkkhkkhkkdkkkkk /

public abstract active class Execution{
publ i c state:State;
public receive signal SignalStart{}
public receive signal SignalTerminate{}
public receive signal SignalLinkActivited{}

/Isend SignalCompleted to its container
Il I OCL("
[Iself.activity _.sources->size()=0
Ilor
[Iself.activity_.sources
/[->collect(e|e.source.execution)
Il ->forAll(e|e.state=State:: COMPLETED)

78]
publ i c allLinksActivited():Boolean{
1l return this.activity_.sources
1 ->collect e (e.source.execution)
1l ->forAll e (e.state==State. COMPLETED)
1l || this.activity .sources->isEmpty();
i f (this.activity .sources->isEmpty()){
return true;
} else{
return this.isAllDetermined();
}
}
pri vat e isAllDetermined():Boolean{
| et allDetermined:Boolean = true;
| et flowExecution:FlowExecution =
(FlowExecution)locus().findExecution(instance(t hi s),(Flow) t hi s.activity .
sources[0].flow);
for (Linkl: t hi s.activity _.sources){

| et linklnstance:Linklnstance =
flowExecution.linkinstanceOf(l);
i f (! linkinstance.isDetermined){
allDetermined = fal se;
br eak;

r et ur n allDetermined;

publ i c popagateDPE():Boolean{
i f (this.activity .sources->isEmpty()){

193

return true;

}
i f (this.activity_.joinCondition== nul I){

/ldefault semantics:if one linkinstance(isDetermine
success)

| et flow:Flow = t hi s.activity .sources[0].flow;

| et flowExecution:FlowExecution =
(FlowExecution)locus().findExecution(instance(t hi s),flow);

for (Linkl: t hi s.activity_.sources){

| et linkinstance:Linkinstance =
flowExecution.linkinstanceOf(l);
i f (linkinstance.isDetermined && linkinstance.success
return true;
}
}

return fal se;
} else{

return this.activity_.joinCondition.eval();
}

}

public abstract doAction(){}
publ i ¢ running():Boolean{

i f (this.state==State. ENABLED && t hi s.allLinksActivited()){

| et linkSucc:Boolean = t hi s.popagateDPE();
i f (linkSucc){
t hi s.doAction();
} el sef
i f (this.activity_.suppressJointFailure){
t hi s.complete(fal se);
} el se{
t hi s.setState(State.FAULTED);
[IsuppressJointFailure

| et faultinfo:Faultinfo = new Faultinfo();
faultinfo.faultName = "bpws:joinFailure"
1l faultinfo.faultMessage = "";

t hi s.throwFault(faultinfo);
return true;

}
}
r et ur n llinkSucc;
}
return false;
}
publ i c notifyTargets(i n succ:Boolean){
1l for (Link link: this.activity _.targets){
1l link.target.execution.SignalLinkActivited();
1 }
1l this.activity_.targets->collect e

(e.target.execution.SignalLinkActivited());
i f (! this.activity .targets->isEmpty()){
| et flow:Flow = t hi s.activity_.targets[0].flow;
| et flowExecution:FlowExecution =
(FlowExecution)locus().findExecution(instance(t hi s),flow);
l@ parallel
for (Link link: t hi s.activity .targets){
| et linkinstance:LinkInstance =
flowExecution.linkinstanceOf(link);
linkinstance.sourceDetermined(true);

194

d and

It

linkInstance.success = sucgc;
}
}
}

publ i c setState(i n s:State):Boolean{
t hi s.state = s;
return true;

publ i ¢ throwFault(i n faultinfo:Faultinfo){
| et scopeExecution:ScopeExecution =
(ScopeExecution)locus().findExecution(instance(t hi s), thi s.activity_.enclo
sedScope());
scopeExecution.SignalFaulted(faultinfo);
/ldo something with the faultHandler.

}
publ i c enable(){

i f (this.state==State.DISABLED){
t hi s.setState(State. ENABLED);
i f (this.activity .sources->isEmpty()){
t hi s.SignalLinkActivited();
}
}

publ i c terminate(){
t hi s.setState(State. TERMINATED));

publ i c complete(i n linkSucc:Boolean){
t hi s.setState(State. COMPLETED);
/Isend parent
t hi s.parentExecution.SignalChildFinished(t hi s);
/Isend link targets
if (! this.activity .targets->isEmpty()){
t hi s.notifyTargets(linkSucc);
}

}
} dof}

publ i ¢ assoc Execution_Activity 1{
publ i ¢ execution:Execution[*];
publ i c activity_:Activity;

}

public active cl ass EmptyExecution speci al i zes Execution {

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
t hi s.complete(true);

}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
t hi s.running();

195

completed = true;

}

or accept (SignalTerminate){
t hi s.terminate();

completed = true;
}
}
}
public active cl ass AssignExecution speci al i zes Execution{
publ i c getAssign():Assign{
return (Assign) thi s.activity_;
}
publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
f or (Copy co: t hi s.getAssign().copy)}{
t hi s.doAssign(co.from_,co.to_);
}
t hi s.complete(true);
}
publ i ¢ doAssign(i nout fromSpec:FromSpec, i nout toSpec:ToSpec){
/ITODO assign value
i f (fromSpec i nst anceof FromVariablePart && toSpec i nst anceof
ToVariablePart){
| et frm:FromVariablePart = (FromVariablePart)fromSpec;
| et t:ToVariablePart = (ToVariablePart)toSpec;
i f (frm.part== nul | §
t.variable.copyFrom(frm.variable);
}
el se{
t.variable.copyPart(frm.variable,frm.part,t.pa rt);
} else if (fromSpec instanceof FromLiteral && toSpec i nst anceof
ToVariablePart){
| et frm:FromLiteral = (FromLiteral)fromSpec;
| et t:ToVariablePart = (ToVariablePart)toSpec;
t.variable.copyLiteral(frm.literal, t.part);
}
}
} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}
or accept (SignalLinkActivited){
t hi s.running();
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

196

public active cl ass ReplyExecution speci al i zes Execution{

publ i c getReply():Reply{
return (Reply) this.activity ;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
| et variable:Variable = t hi s.getReply().variable;
t hi s.getReply().operation.receiveResponse(variable.getM essage());
[init correlation

i f (! this.getReply().correlations->isEmpty()){
/Ithis.getReply().correlations
/l->selectcor (cor.initiate)
/[->collect vi (...)
f or (Correlation cor: t hi s.getReply().correlations){
i f (cor.initiate){
| et
vi:Variablelnstance=instance(t hi s).findVariablelnstance(variable);
instance(t hi s).correlationManager.initiate(vi,cor);
}

}
oo
t hi s.complete(true);

}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

public active class TerminateExecution speci al i zes Execution{

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
t hi s.setState(State. TERMINATED));
/Isend parent
t hi s.parentExecution.SignalTerminate();

}
} dof

t hi s.setState(State.DISABLED);

| et completed:Boolean = fal se;
whi | e (! completed){

accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
t hi s.running();

197

completed = true;

}
or accept (SignalTerminate){

t hi s.terminate();

completed = true;

}

}
}

public abstract active cl ass MessageReceiver{
public receive signal SignalReceive{
1l public message:Message;
publ i c info:Messagelnfo;

}
} dof}

public active cl ass InvokeExecution speci al i zes Execution,
MessageReceiver{
publ i c getinvoke():Invoke{
return (Invoke) thi s.activity_;

publ i ¢ running():Boolean{
/lchange the state to running if possible

/Isend the input message to external by messageMana gerinstance
| et completed:Boolean = fal se;
i f (this.state==State. ENABLED && t hi s.allLinksActivited(){
| et linkSucc:Boolean = t hi s.popagateDPE();
i f (linkSucc){
completed = t hi s.runningLinkSucc();
1 el sef
t hi s.complete(fal se);
}
}
r et ur n completed,;
}
pri vat e initCorrelation(){
f or (Correlation cor: t hi s.getinvoke().correlations){
i f (cor.initiate && (cor.pattern== “in" |
cor.pattern== "infout"){
| et
vi:Variablelnstance=instance(t hi s).findVariablelnstance(t hi s.getinvoke().
variable);
instance(t hi s).correlationManager.initiate(vi,cor);
}
}
}

pri vat e runningLinkSucc():Boolean{
t hi s.setState(State. RUNNING);
| et inputMessage:Message =
t hi s.getinvoke().inputVariable.getMessage();
| et messagelnfo:Messagelnfo = new Messagelnfo();
messagelnfo.message = inputMessage;
messagelnfo.operation = t hi s.getinvoke().operation;
messagelnfo.portType = t hi s.getinvoke().portType;
messageManagerinstance().SignalSendMessage(t hi s,messagelnfo);

/linit Correlation instances

198

i f (! this.getinvoke().correlations->isEmpty()){
t hi s.initCorrelation();

/lif the invoke expected responds, then do not comp lete, wait
for incoming message
/lelse complete the execution
i f (this.getinvoke().outputVariable== nul |){
t hi s.complete(true);
return true;

} else{
/Irequrest message
| et info:Messagelnfo = new Messagelnfo();

| et outputMessage:Message =
t hi s.getinvoke().outputVariable.getMessage();

info.portType = t hi s.getinvoke().portType;
info.operation = t hi s.getinvoke().operation;
info.message = outputMessage;

messageManagerinstance().SignalRequestMessage(t hi s, info);

return false;

pri vat e isOutputMessage(i n info:Messagelnfo):Boolean{
| et outputMessageType:MessageType =
t hi s.getinvoke().outputVariable.messageType;
r et ur n info.message.type==outputMessageType;

}
pri vat e isFaultMessage(i n info:Messagelnfo):Boolean{
| et operation:Operation = t hi s.getinvoke().operation;
i f (operation.fault== nul I){
return false;
} else/{
r et ur n operation.fault. messageType==info.message.type;
}
}
pri vat e receivingNormalFlow(i n info:Messagelnfo){
/Ithen assign the message value to the output messa ge
1l this.getlnvoke().outputVariable.setVariable(i nfo.message);
instance(t hi s).findVariableInstance(t hi s.getinvoke().outputVariable)
.copyMessage(info.message);
i f (! this.getinvoke().correlations->isEmpty()){
1l this.getlnvoke().correlations
I ->select cor 0
f or (Correlation cor: t hi s.getinvoke().correlations){
i f (cor.initiate && (cor.pattern== "out" ||
cor.pattern== "infout"){
| et vi:Variablelnstance=
instance(t hi s).findVariableInstance(t hi s.getinvoke().variable);
instance(t hi s).correlationManager.initiate(vi,cor);
}
}
}
t hi s.complete(true);
}

199

publ i c receiving(i n info:Messagelnfo){
/lif the message type is the output message
i f (this.isOutputMessage(info)){
t hi s.receivingNormalFlow(info);

/lelse if the message type is the fault message
el se i f (this.isFaultMessage(info)){
t hi s.setState(State.FAULTED);
| et faultMessage:Message = info.message;
| et faultinfo:Faultinfo = new Faultinfo();
faultinfo.faultName = faultMessage.type.name;
faultinfo.faultMessage = faultMessage;
t hi s.throwFault(faultinfo);

[/Ithen report fault this.throwFault
/Iset state to FAULTED

/ITODO else the execution received a wrong message, possiblely

runtime fault will be thrown.

}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sig:SignalReceive){
/lif there is no faults
t hi s.receiving(sig.info);

completed = true;

}

or accept (SignalTerminate){
t hi s.terminate();

completed = true;

}
}
}

public active cl ass ReceiveExecution speci al i zes Execution,
MessageReceiver{
publ i c getReceive():Receive{
return (Receive) thi s.activity_;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);

| et info:Messagelnfo = new Messagelnfo();

| et message:Message = new Message();
message.type = t hi s.getReceive().operation.input.messageType;
info.portType = t hi s.getReceive().portType;
info.operation = t hi s.getReceive().operation;
info.message = message;
messageManagerinstance().SignalRequestMessage(t hi s, info);

200

a

pri vat e initCorrelation(){

f or (Correlation cor: t hi s.getReceive().correlations){
i f (cor.initiate){
| et
vi:Variablelnstance=instance(t hi s).findVariablelnstance(t hi s.getReceive()
.variable);
instance(t hi s).correlationManager.initiate(vi,cor);
}
}
}
publ i c receiving(i n info:Messagelnfo):Boolean{

/lif it is a normal receive
/Icopy the data from the message to the variable

/lif receive an fault, the standard seems not defin ed.
1 if
(this.getReceive().operation.input.messageType==mes sage.type){
1l this.getReceive().variable.setVariable(info.me ssage);
instance(t hi s).findVariablelnstance(t hi s.getReceive().variable)
.copyMessage(info.message);
/linform locus to create another new instance that wait for the
message.
i f (this.getReceive().createlnstance){
locus().SignalCreatelnstance();
}

[linit correlation
if (! this.getReceive().correlations->isEmpty()){
t hi s.initCorrelation();

t hi s.complete(true);

return true;

I }
}
} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;

whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sig:SignalReceive){
/lif there is no faults
completed = t hi s.receiving(sig.info);
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

public active class ThrowExecution speci al i zes Execution{

publ i ¢ getThrow(): Throw{
return (Throw) thi s.activity ;

201

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);

1l let scopeExecution:ScopeExecution =
1l (ScopeExecution)this.activity _.enclosedScope ().execution;
1l scopeExecution.SignalFaulted(this.getThrow(). faultName,
null);//
| et faultinfo:Faultinfo = new Faultinfo();
faultinfo.faultName = t hi s.getThrow().faultName;
faultinfo.faultVariable = t hi s.getThrow().faultVariable;

t hi s.throwFault(faultinfo);
/Ithe normal flow ends
/@ parallel({
t hi s.setState(State.FAULTED);
/Isend parent
/Isend link targets
t hi s.parentExecution.SignalChildFinished(t hi s);

}
}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
t hi s.running();
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

public active cl ass WaitExecution speci al i zes Execution{
publ i ¢ getWait():Wait{
return (Wait) this.activity_;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
i f (this.getWait().for_!= nul |){
waitFor(t hi s.getWait().for_);
}

el se{
waitUntil(t hi s.getWait().until_);
}

t hi s.complete(true);
}
} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();

202

or accept (SignalLinkActivited){
t hi s.running();
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;

}
}
}

publ i ¢ assoc StructuredExecution_Execution{
publ i ¢ parentExecution:StructuredExecution;
publ i c childExecution: conpose Execution[*];

}

public abstract active class StructuredExecution speci al i zes
Execution{
public receive signal SignalChildFinished{
publ i ¢ execution:Execution;

/] @cL("
self.childExecution->forAll(e|e.state=State:: COMPLE TED)
or self.childExecution->exists(e|e.state=State::FAU LTED)
")
publ i ¢ allChildFinished():Boolean{
return this.childExecution-> forAl'l e(e.state==State. COMPLETED);

/Isend SignalCompleted to its container
/Isend SignalTerminate to its childExecution

publ i c terminateChilds(){
f or (Execution execution: t hi s.childExecution){
execution.SignalTerminate();

}
}

publ i c terminate(){
t hi s.terminateChilds();
t hi s.parentExecution.SignalTerminate();
t hi s.setState(State. TERMINATED));

}
} dof}

publ i c cl ass Linkinstance {

publ i c link:Link;

publ i c isDetermined:Boolean;

publ i c success:Boolean;

publ i ¢ sourceDetermined(i n isNeg:Boolean){
/ITODO transitionCondition
t hi s.isDetermined = true;
t hi s.success = isNeg;
| et targetActivity:Activity = t hi s.link.target;
| et targetExecution:Execution =

locus().findExecution(instance(t hi s.flowExecution),targetActivity);

i f (targetExecution!= nul |){
targetExecution.SignalLinkActivited();

}
}
}

203

publ i ¢ assoc FlowExecution_Linkinstance{
public links: conpose Linkinstance[*];
publ i c flowExecution:FlowExecution;

}
public active cl ass FlowExecution speci al i zes StructuredExecution{
publ i c linkinstanceOf(i n l:Link):LinkInstance{
1 this.links
1 ->select linkInstance (linkiInstance==I)
1 ->any();
f or (Linklnstance linkinstance: t hi s.links){

i f (linkinstance.link==I){
r et ur n linkinstance;
}
}

return null;

publ i ¢ getFlow():Flow{
return (Flow) this.activity_;

}
publ i c createExecutions(){
for (Linkl: t hi s.getFlow().links){
| et linkinstance:Linkinstance = new LinkInstance();
linkInstance.link=l;
linkInstance.isDetermined = fal se;
linkInstance.success = fal se;
linkInstance.flowExecution = this;
}
f or (Activity act: ((Flow) t hi s.activity).activities){
| et execution:Execution = createExecution(act);
t hi s.childExecution->add(execution);
[Istart execution in java
}
}

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
t hi s.createExecutions();
t hi s.childExecution.SignalStart();

}

publ i ¢ finishing(i n execution:Execution):Boolean{

| et completed:Boolean = fal se;

i f (execution.state==State.FAULTED){
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.terminateChilds();
t hi s.parentExecution.SignalChildFinished(t hi s);
return true;

}
i f (this.allChildFinished() && t hi s.state==State. RUNNING){
completed = true;
t hi s.complete(true);
}

204

r et ur n completed,;

}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sig:SignalChildFinished){
completed = t hi s.finishing(sig.execution);
}

or accept (SignalTerminate){
t hi s.terminate();
completed = true;

}
}
}

public active cl ass SequenceExecution speci al i zes StructuredExecution{

publ i ¢ getSequence():Sequence{
return (Sequence) thi s.activity ;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
| et execution:Execution =
createExecution(t hi s.getSequence().activities[0]);
execution.parentExecution = this;
execution.SignalStart();

}

publ i c finishing(i n execution:Execution):Boolean{
i f (execution.state==State.FAULTED){
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
return true;

el se i f (this.childExecution-
>size()== t hi s.getSequence().activities->size()
&& thi s.allChildFinished() && t hi s.state==State. RUNNING){
t hi s.complete(true);
return true;
}
el se{
| et prelndex:Integer = t hi s.getSequence().activities-
>indexOf(execution.activity);
| et nextActivity:Activity=
t hi s.getSequence().activities[prelndex+1];
| et childExecution:Execution = createExecution(nextAct ivity);
childExecution.parentExecution = this;
childExecution.SignalStart();
return false;

}
} [/ffinishing

205

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}

or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sig:SignalChildFinished){
completed = t hi s.finishing(sig.execution);
}

or accept (SignalTerminate){
t hi s.terminate();
completed = true;

}
}
}

public active cl ass SwitchExecution speci al i zes StructuredExecution{

publ i ¢ getSwitch():Switch{
return (Switch) thi s.activity_;

pri vat e createOtherwise():Execution{
| et execution:Execution = nul | ;
i f (this.getSwitch().otherwise== nul |){
/Icreate an empty
| et em:Empty= newEmpty();
em.name = "default otherwise" ;
execution = createExecution(em);
} else{
execution = createExecution(t hi s.getSwitch().otherwise);
}

r et ur n execution;

pri vat e informNegativeLink(i n cs:Case, i n execution:Execution){
i f (cs.activity !'=execution.activity)}
f or (Link link:cs.activity_.targets){
| et flow:Flow = link.flow;
| et flowExecution:FlowExecution =
(FlowExecution)locus().findExecution(instance(t hi s),flow);
| et linkinstance:Linkinstance =
flowExecution.linkinstanceOf(link);
linkinstance.sourceDetermined(fal se);

}
}
}

publ i ¢ doAction(){

t hi s.setState(State. RUNNING);
/Iselect the first case which condition evaluates t o true
| et execution:Execution = nul | ;
for (Casec: this.getSwitch().case){

i f (c.condition.eval()){

execution = createExecution(c.activity);

br eak;

206

}

}
/if no case eval to true
i f (execution==" nul |){
execution = t hi s.createOtherwise();
}
execution.parentExecution = this;

execution.SignalStart();

/IWhen cs.activity_is source to links, and if its condition
evaluates to false,
/lall the target executions must be informed that t he link is a
negative link
for (Casecs: this.getSwitch().case){
t hi s.informNegativeLink(cs,execution);
}
/ITODO othervise
publ i c finishing(i n execution:Execution){
i f (this.state==State. RUNNING &&
execution.state==State. COMPLETED){
t hi s.setState(State. COMPLETED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
[lif there is any links, send link finish to the ta rget of
the link
if (! this.activity .targets->isEmpty()){
t hi s.notifyTargets(true);
}
} else if (execution.state==State.FAULTED){
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
}
}
} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}
or accept (SignalLinkActivited){
t hi s.running();
}
or accept (sig:SignalChildFinished){
t hi s.finishing(sig.execution);
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}
public active cl ass PickExecution speci al i zes StructuredExecution,
MessageReceiver{

publ i c getPick():Pick{

207

return (Pick) this.activity_;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);

1l for (OnMessage onmsg:this.getPick().onMessage) {
f or (AbstractOnEvent onevent: t hi s.getPick().onEvent){

/lIrequest all the message

i f (onevent i nst anceof OnMessage){
| et onmsg:OnMessage = (OnMessage)onevent;
| et info:Messagelnfo = new Messagelnfo();
| et message:Message = new Message();

message.type = onmsg.operation.input.messageTy pe;

info.portType = onmsg.portType;

info.operation = onmsg.operation;

info.message = message;
messageManagerinstance().SignalRequestMessage(t hi s, info);

pri vat e createExecutionAndinformNegative(i n onmsg:OnMessage, in
messagelnfo:Messagelnfo){
i f (messagelnfo.message.type==onmsg.operation.input.m essageType
&& messagelnfo.portType==onmsg.portType
&& messagelnfo.operation==onmsg.operation)

| et execution:Execution = createExecution(onmsg.activi ty);
execution.parentExecution = this;
execution.SignalStart();
} else{
f or (Link link: onmsg.activity .targets){
| et flow:Flow = link.flow;
| et flowExecution:FlowExecution =

(FlowExecution)locus().findExecution(instance(t hi s),flow);
| et linkinstance:LinkInstance =
flowExecution.linkinstanceOf(link);

linkinstance.sourceDetermined(fal se);
}
}
}
publ i c receiving(i n messagelnfo:Messagelnfo){
/laccroding to the messageinfo , find the OnMessage, execute the
activity
f or (AbstractOnEvent onevent: t hi s.getPick().onEvent){
i f (onevent i nst anceof OnMessage){
t hi s.createExecutionAndinformNegative((OnMessage)oneven t,messagelnfo);
}
}
}
publ i c finishing(i n execution:Execution){

i f (this.state==State. RUNNING &&
execution.state==State. COMPLETED){
t hi s.complete(true);
} else if (execution.state==State.FAULTED)

208

t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
}
}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
| et firstOccured:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();
}
or accept (SignalLinkActivited){
completed = t hi s.running();
}

or accept (sigReceive:SignalReceive){
i f (! firstOccured){
t hi s.receiving(sigReceive.info);
firstOccured = true;
}
}
or accept (sig:SignalChildFinished){
t hi s.finishing(sig.execution);
completed = true;
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

public active cl ass WhileExecution speci al i zes StructuredExecution{

publ i ¢ getWhile():While{
return (While) thi s.activity ;

publ i ¢ doAction(){
t hi s.setState(State.RUNNING);
i f (this.getwWhile().condition.eval()){
t hi s.runWhile();
} else{
t hi s.complete(true);
}

}
publ i ¢ runWhile(){

| et execution:Execution =
createExecution(t hi s.getWhile().primaryActivity());
execution.parentExecution = this;
execution.SignalStart();

}

publ i c finishing(i n execution:Execution):Boolean{
i f (this.state==State. RUNNING &&
execution.state==State. COMPLETED){
i f (this.getWhile().condition.eval()){

209

t hi s.runWhile();
return fal se;
}
el se{
t hi s.complete(true);
return true;

} else{
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
return true;

}
}
} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;

whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();

}
or accept (SignalLinkActivited){
completed = t hi s.running();
completed = completed || (! t hi s.getWhile().condition.eval());
}
or accept (sig:SignalChildFinished){
completed = t hi s.finishing(sig.execution);
}

or accept (SignalTerminate){
t hi s.terminate();
completed = true;

}
}
}

public cl ass Faultinfo{
publ i c faultName:String;
publ i c faultMessage:Message;
publ i c faultVariable:Variable;

}

publ i ¢ assoc Variable_Variablelnstance{
publ i c variable:Variable;
publ i ¢ instance:Variablelnstance[*];

}

public cl ass Variablelnstance{
publ i c value:String;
publ i c copyMessage(i n message:Message){
t hi s.value = message.value;
log(this);
}
}

publ i c cl ass CompensationStack{

publ i c push(i nout exe:ScopeExecution){
*@ inline(java) "this.stack.push(exe)" */

publ i ¢ pop():ScopeExecution{

210

return null;
@ inline(ava) "
if (stack.empty())
return null;
else
return this.stack.pop();" */
}

}

public cl ass Portinstance{
publ i ¢ operation:Operation;
}

public active cl ass ScopeExecution speci al i zes StructuredExecution,
MessageReceiver{
public receive signal SignalFaulted{
publ i ¢ faultinfo:Faultinfo;
public receive signal SignalCompensateScope{}
public receive signal SignalCompensate{
publ i ¢ compensateExecution:CompensateExecution;

public receive signal SignalCompleted{}

pri vat e compensateExecution:CompensateExecution;

publ i c correlationManager: conpose CorrelationManager;
publ i c variablelnstances: conpose Variablelnstance[*];
publ i c portinstances: conpose Portinstance[*];

publ i ¢ compensationStack: conpose CompensationStack;

publ i c getScope():Scope{
return (Scope) this.activity ;

publ i ¢ getFaultHandler():FaultHandler{
return this.getScope().faultHandler;

}
publ i ¢ findFaultActivity(i n name:String):Activity{
i f (this.getFaultHandler()== nul |){
return null;
}
f or (Catch catch_: t hi s.getFaultHandler().catch_){
i f (catch_.faultName==name){
r et ur n catch_.activity_;
}
b |
i f (this.getFaultHandler().catchAll'= nul |){
return this.getFaultHandler().catchAll.activity_;
} else{
return null;
}
}
publ i c findVariablelnstance(i n variable:Variable):Variablelnstance{

/linstance = this.variablelnstances->select e
(e.variable==variable)->first();
| et instance:Variablelnstance = nul | ;

211

f or (Variablelnstance ins: t hi s.variablelnstances){
i f (ins.variable==variable){
instance = ins;

br eak;
}
oo
i f (instance== nul | }{
instance = new Variablelnstance();

instance.variable = variable;
t hi s.variablelnstances->add(instance);
r et ur n instance;
publ i ¢ doAction(){

t hi s.setState(State.RUNNING);

t hi s.compensationStack = new CompensationStack();
t hi s.correlationManager = new CorrelationManager();
initialisePartnerLinks(t hi s);

/ITODO install on alarm handlers
| et execution:Execution =
createExecution(t hi s.getScope().primaryActivity());
execution.parentExecution = this;
execution.SignalStart();
/linstall event handler
/lif event handler exists
i f (this.getScope().eventHandlers!= nul I){
f or (OnEvent event : t hi s.getScope().eventHandlers.events){
| et info:Messagelnfo = new Messagelnfo();
| et message:Message = new Message();
message.type = event.messageType;
info.message = message;
info.operation = event.operation;
info.portType = event.portType;
messageManagerinstance().SignalRequestMessage(t hi s, info);

publ i ¢ finishing(i n execution:Execution){
/ldo something with the event handlers
i f (this.state==State. RUNNING &&
execution.state==State. COMPLETED){
t hi s.complete(true);
/lterminate all fault handlers
[lintall compensation handler, put it to the stack
| et stack:CompensationStack =
instance(t hi s).compensationStack;
stack.push(t hi s);

el se i f (this.state==State. RUNNING &&
execution.state==State.FAULTED){
t hi s.setState(State.FAULTED);
/linform parent execution
t hi s.parentExecution.SignalChildFinished(t hi s);
}
el se if (this.state==State.FAULTED)
/Ithe fault activity finished
1 this.setState(State. COMPLETED);
/linform parent execution

212

t hi s.parentExecution.SignalChildFinished(t hi s);
[lif there is any links, send link finish to the ta rget of
the link
if (! this.activity .targets->isEmpty()){
t hi s.notifyTargets(true);

publ i c faulted(i n faultinfo:Faultinfo){
/I discuss: if fault is threw by normal flow, or ne gative flow.
i f (this.state==State. RUNNING)
/Iterminate all childs and event handlers
t hi s.setState(State.FAULTED);
t hi s.terminateChilds();
1l this.faultHandlerExecution.SignalFault(name,v ariable);
| et faultActivity:Activity =
t hi s.findFaultActivity(faultinfo.faultName);
i f (faultActivity== nul |){
/Ireport the fault to its upper scope
| et parentScopeExecution: ScopeExecution =

(ScopeExecution)locus().findExecution(instance(t hi s), thi s.getScope().encl
osedScope());
Il
(ScopeExecution)this.getScope().enclosedScope().ex ecution;
parentScopeExecution.SignalFaulted(faultinfo);
}
el se{

/Il create the instance of the activity in the fault
handler.
| et faultExecution:Execution =
createExecution(faultActivity);
faultExecution.parentExecution = this;
faultExecution.SignalStart();

}

el se i f (this.state==State.FAULTED)
/lthe fault is thrown by negative flow
/lthe parent scope of the scope deal with the fault
| et scopeExecution:ScopeExecution

(ScopeExecution) t hi s.getScope().enclosedScope().execution;
scopeExecution.SignalFaulted(faultinfo);

}
}
publ i ¢ handleEvent(i n info:Messagelnfo){
| et event: OnEvent = t hi s.findEventFromInfo(info);
| et execution:Execution = createExecution(event.scope) ;
execution.parentExecution = this;
execution.SignalStart();
execution.SignalLinkActivited();
}

/IOCL("self.getScope().eventHandlers.events
/I ->select(e|e.messageType=info.message.type and
e.operation=info.operation)->first()")
publ i ¢ findEventFrominfo(i n info:Messagelnfo):OnEvent{
f or (OnEvent event: t hi s.getScope().eventHandlers.events){
i f (event.operation==info.operation){
return event;

213

}

}
return null;
}
publ i ¢ isFaultHandlerActivity(i n act:Activity):Boolean{
| et result:Boolean = fal se;
i f (this.getFaultHandler()== nul I){
return fal se;
for (Catcha: this.getFaultHandler().catch_){
i f (a.activity_==act){
result= true;
br eak;
}
b . -
i f (this.getFaultHandler().catchAll.activity ==act)
{
result = true;
}
r et ur n result;
}

publ i ¢ compensateScope(){
i f (this.state==State. COMPLETED){
i f (this.getScope().compensationHandler!= nul |){
t hi s.setState(State. COMPENSATING);
| et execution:Execution =
createExecution(t hi s.getScope().compensationHandler.activity);

execution.parentExecution = this;
execution.SignalStart();
}
}
}
publ i ¢ childFinish(i n execution:Execution):Boolean{
| et completed:Boolean = fal se;
/IOnly when the finished execution is the execution in of its
sub activity.
/lif the child is the primary activity of the scope , it finish
succesfully or not
i f (execution.activity == t hi s.getScope().primaryActivity()

&& (execution.state==State. COMPLETED ||
execution.state==State.FAULTED)

A

t hi s.finishing(execution);

el se if (this.state==State. COMPENSATING){
t hi s.setState(State.STOPPED);
i f (this.compensateExecution!= nul |){
t hi s.compensateExecution.SignalCompensateNext();

completed = true;
/lif the execution is a succesfully finished fault handler.
el se i f (execution.state==State. COMPLETED
&& thi s.isFaultHandlerActivity(execution.activity)
i

t hi s.setState(State.FAULTED);
t hi s.parentExecution.SignalChildFinished(t hi s);

214

}

completed = true;

}

r et ur n completed,;

} dof

1
1
1

}
}

pub

t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (lcompleted){
accept (SignalStart){
t hi s.enable();

or accept (SignalLinkActivited){
t hi s.running();

or accept (sigFinish:SignalChildFinished){
completed = t hi s.childFinish(sigFinish.execution);

or accept (sigReceive:SignalReceive){
t hi s.handleEvent(sigReceive.info);

or accept (sigFault:SignalFaulted){
t hi s.faulted(sigFault.faultinfo);
}

or accept(sigOnAlarm:SignalAlarm){
[[start on alarm activity execution
}

or accept (sigCompensate:SignalCompensate){
t hi s.compensateExecution = sigCompensate.compensateExec
t hi s.compensateScope();
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
or accept (SignalCompleted){
completed = true;

/I accept
/Iwhile

lic active cl ass CompensateExecution speci al i zes Execution{
public receive signal SignalCompensateNext{}

publ i c getCompensate():Compensate{

ret urn (Compensate) t hi s.activity_;

publ i ¢ running():Boolean{

execute

/lexecute the scope's compensation handler's activi
/land execute all the scope's sub-scope compensatio

/lonly compensate completed scopes[standard p112]
t hi s.setState(State.RUNNING);

t hi s.compensateNext();

return false;

215

ution;

publ i ¢ compensateNext():Boolean{
| et stack:CompensationStack = instance(t hi s).compensationStack;
| et scopeExecution:ScopeExecution = stack.pop();
i f (scopeExecution!= nul I){
scopeExecution.SignalCompensate(t hi s);
return false;

}

}

} dof
t hi s.setState(State.DISABLED);
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalStart){
t hi s.enable();

return true;

}
or accept (SignalLinkActivited){

t hi s.running();
}
or accept (SignalCompensateNext){
completed = t hi s.compensateNext();
}
or accept (SignalTerminate){
t hi s.terminate();
completed = true;
}
}
}

public active class Locus specializes StructuredExecution,
MessageReceiver{

publ i c process : conpose BPELProcess;

publ i c messageManager: conmpose MessageManager;
publ i c testReceivedMessage: conpose Messagelnfo[*];
public wsdl: conpose WSDL,;

publ i c createMultiplelnstance:Boolean = fal se;

public receive signal SignalCreatelnstance{}

publ i c getAllScopes():ScopeExecution[*}{
r et ur n getAllElementsinCompensateStack();

publ i ¢ findExecution(i n instance:ScopeExecution, in
act:Activity):Execution{
r et ur n allContents(instance)
-> sel ect e(e instanceof Execution)
-> sel ect e (e.activity_==act)->first() ;
@ inline(ava) "
if (instance.getActivity ().equals(act)){
return instance;
}

Treelterator<EObject> iterator = instance.eAllCo ntents();
while (iterator.hasNext()){
EObject eobj = iterator.next();
if (eobj instanceof Execution &&
((Execution)eobj).getActivity_().equals(act)){
return (Execution)eobj ;
}

}

216

GlobalActivity.log(\\"[LocusImpl::findExecution] ERROR: didnot

find\\");
return null;" */
}
/I public findLinkStatus(in instance:ScopeExecutio n, in

link:Link):LinkInstance{
I
I}

publ i c createlnstanceMessagelnfo():Messagelnfo[*[{
| et infos:Messagelnfo[] = new Messagelnfo();

@ inline(java) "
EList<Messagelnfo> infos = new BasicEList<Messagelnfo>() ;" */

for (Receive re: t hi s.getCreatelnstanceReceive()){

| et message:Message = new Message();
message.type = re.operation.input.messageType;

| et messagelnfo:Messagelnfo = new Messagelnfo();
messagelnfo.message = message;
messagelnfo.operation = re.operation;
messagelnfo.portType = re.portType;
infos->add(messagelnfo);

}

r et ur n infos;

/ | @CL("Receive.allinstances()->select(e|e.createlnstance) -
>asOrderedSet()")
publ i c getCreatelnstanceReceive():Receive[*[{
@ inline(ava) "
Treelterator<EObject> iterator =
this.getProcess_().eAllContents();

EList<Receive> receives = new BasicEList<Receive >();
while (iterator.hasNext()){
EObject eobj = iterator.next();
if (eobj instanceof Receive &&
((Receive)eobj).getCreatelnstance()){
receives.add((Receive)eobj);
}
}
return receives;" */
return null;
}
pri vat e createlnstance(){
| et execution:Execution = createExecution (t hi s.process_);
execution.parentExecution = this;
execution.SignalStart();
}
} dof
t hi s.messageManager = new MessageManager();

@ inline(ava) "

GlobalActivity.setGlobalMessageManager(this.messa geManager);
GlobalActivity.setLocus(this);" */
f or (Messagelnfo info: t hi s.testReceivedMessage){

217

t hi s.messageManager.SignalReceiveMessage(info);

t hi s.SignalCreatelnstance();
i f (this.createMultiplelnstance){
| et completed:Boolean = fal se;
whi | e (! completed){
accept (SignalCreatelnstance){
t hi s.createlnstance();

}
or accept (sigChild:SignalChildFinished){
/[TODO compensation is not correct
f or (ScopeExecution exe: t hi s.getAllScopes()){
exe.SignalCompleted();
}
}
} else{
accept (SignalCreatelnstance){
| et execution:Execution = createExecution (t hi s.process_);
execution.parentExecution = this;

execution.SignalStart();

accept (SignalChildFinished){
/ITODO compensation is not correct
f or (ScopeExecution exec: t hi s.getAllIScopes()){
exec.SignalCompleted();

}
}
}

}

public cl ass Messagelnfo{
publ i c message: conpose Message;
publ i c portType:PortType;
publ i c operation:Operation;

}

publ i c cl ass CorrelationManager{
publ i c instances: conpose Correlationinstance[*];

publ i c initiate(i n variable:Variablelnstance, in
correlation:Correlation){
| et instance:Correlationinstance =
t hi s.createlnstance(variable,correlation);
t hi s.instances->add(instance);
log("Correlation initialised: " +variable.value);

publ i c createlnstance(i n variable:Variablelnstance, in
correlation:Correlation):Correlationlnstance{
| et correlationinstance:Correlationinstance = new
Correlationinstance();
correlationinstance.correlation = correlation;
correlationinstance.value = variable.value;
r et ur n correlationlnstance;

218

publ i ¢ assoc Correlation_Correlationinstance{
publ i c correlation:Correlation;
publ i c instance:Correlationinstance;

}

publ i c cl ass Correlationinstance{
publ i c value:String;
publ i c correlationSatisfied(i n messagelnfo:Messagelnfo):Boolean{
return this.value==messagelnfo.message.value;
@ inline(java) "return
this.getValue().equals(messagelnfo.getMessage().get Value());" */

}

public active class MessageManager{
public receive signal SignalReceiveMessage{
publ i ¢ messagelnfo:Messagelnfo;

public receive signal SignalRequestMessage{
publ i ¢ execution:Execution;
publ i ¢ messagelnfo:Messagelnfo;

public receive signal SignalSendMessage{
publ i ¢ execution:Execution;
publ i ¢ messagelnfo:Messagelnfo;

}

public receive signal SignalTerminateMessageManager{}

publ i c messageRequests: conpose MessageRequest[*];

publ i ¢ incomingMessage: conpose Messagelnfo[*];
publ i c findMessageRequest(in
messagelnfo:Messagelnfo):MessageRequest{
f or (MessageRequest request: t hi s.messageRequests){
i f (request.operation==messagelnfo.operation
&& t hi s.correlationSatisfied(request.execution,messagelnfo
A
Iif
(instance(request.execution).correlationManager.ins tances
/I ->exists e (e.correlationSatisfied(messagel nfo)))

/I return request;
r et ur n request;
}
}

return null;

publ i c correlationSatisfied(i n execution:Execution, in
messagelnfo:Messagelnfo):Boolean{
i f (execution i nst anceof ReceiveExecution
&&
((ReceiveExecution)execution).getReceive().createln stance){
return true;
}

| et correlationDefined:Boolean = fal se;

f or (Correlationinstance
ins:instance(execution).correlationManager.instance s){

219

correlationDefined = true;
i f (ins.correlationSatisfied(messagelnfo)){
return true;

}
}

r et ur n !correlationDefined;

/I("self.incomingMessage
/I ->select(e|e.portType=info.portType and
e.operation=info.operation)->first()")

publ i c findMessagelnfo(i n info:Messagelnfo):Messagelnfo{
f or (Messagelnfo e: t hi s.incomingMessage){
i f (e.operation==info.operation){
returne;
}
}
return null;

publ i c initialise(){
/linitialise messageRequests and incoming message;

@ inline(java)

“"this.incomingMessage = new BasicEList<Messagelnfo> 0;
this.messageRequests = new BasicEList<MessageRe quest>();
this.messageQueue = new BasicEList<Signal_>();"

*
}
publ i ¢ sendToExecution(i n request:MessageRequest, in

messagelnfo:Messagelnfo){

| et execution:Execution = request.execution;

i f (execution i nst anceof ReceiveExecution){

| et receiveExecution:ReceiveExecution =

(ReceiveExecution)execution;

receiveExecution.SignalReceive(messagelnfo);

} el se i f (execution i nst anceof ScopeExecution){
| et scopeExecution:ScopeExecution = (ScopeExecution)ex ecution;
scopeExecution.SignalReceive(messagelnfo);

el se i f (execution i nst anceof InvokeExecution){
| et invokeExecution:InvokeExecution =
(InvokeExecution)execution;
invokeExecution.SignalReceive(messagelnfo);

el se i f (execution i nst anceof PickExecution){
| et pickExecution:PickExecution = (PickExecution)execu tion;
pickExecution.SignalReceive(messagelnfo);

el se i f (execution i nst anceof Locus){
| et locus:Locus = (Locus)execution;
locus.SignalReceive(messagelnfo);

el se{
log("[MessageManager.sendToExecution]" +execution+ "does not
implemented”);
}
t hi s.incomingMessage->remove(messagelnfo);
t hi s.messageRequests->remove(request);
log("External message:" + messagelnfo.message + "sendto" +
request.execution);

220

pri vat e receiveMessage(i n messagelnfo:Messagelnfo){
/lIreceive message from external
log("External message received:" +messagelnfo.message);
| et request:MessageRequest= t hi s.findMessageRequest(messagelnfo);
i f (request=="nul |){
t hi s.incomingMessage->add(messagelnfo);
} else{
t hi s.sendToExecution(request, messagelnfo);
}

}

privat e requestMessage(i n execution:Execution, in
messagelnfo:Messagelnfo){
/linternal execution request message

| et info:Messagelnfo = t hi s.findMessagelnfo(messagelnfo);
| et request:MessageRequest = new MessageRequest
(execution,

messagelnfo.message.type,
messagelnfo.portType,
messagelnfo.operation
);
request.init(execution,
messagelnfo.message.type,
messagelnfo.portType,
messagelnfo.operation

);

i f (info==" null ||!
(t hi s.correlationSatisfied(execution,info))¥{
t hi s.messageRequests->add(request);
} else{
t hi s.sendToExecution(request,info);
}

log("Request received from " +request.execution);
}

} dof
t hi s.initialise();

| et completed:Boolean = fal se;
whi | e ('completed){
accept (sigReceive:SignalReceiveMessage){
t hi s.receiveMessage(sigReceive.messagelnfo);
}
or accept (sigRequest:SignalRequestMessage){
t hi s.requestMessage(sigRequest.execution,
sigRequest.messagelnfo);

or accept (sigSend:SignalSendMessage){
/linternal execution sends message to external

/Isend to a phsycal address if
sigSend.messagelnfo.operation.invoke(sigSend.messa gelnfo.message);
sendToPortInstance(instance(sigSend.execution),sig Send.messagelnfo);

} or accept (SignalTerminateMessageManager){
} completed = true;

221

}
}

public cl ass MessageRequest{
publ i ¢ execution:Execution;
publ i c messageType:MessageType;
publ i c portType:PortType;
publ i c operation:Operation;

@cr eat e publ i ¢ MessageRequest(
p:PortType, i n 0:0peration){
t hi s.execution = e;
t hi s.messageType = m;
t hi s.portType = p;
t hi s.operation = 0;

}

0:Operation){
t hi s.execution = e;
t hi s.messageType = m;
t hi s.portType = p;
t hi s.operation = 0;

publicinit(i n e:Execution, i n m:MessageType,

}
}

[*GLOBAL ACTIVITIES */

public activity createExecution(

i n e:Execution,

| et execution:Execution = nul | ;

i f (act instanceof Empty){

execution = new EmptyExecution();

}

el se if (act instanceof Receive){
execution = new ReceiveExecution();

}
1.

execution.activity = act;
r et ur n execution;

}

public activitylog(in message:String){

}

i n m:MessageType,

i n p:PortType,

i n act:Activity):Execution{

public activity messageManagerinstance():MessageManager{
r et ur n MessageManager. al | I nst ances()[0];

}

public activity correlationManager():CorrelationManager{

}

public activity pushCompensateStack(

}

public activity popCompensateStack():ScopeExecution{

}

i n scopeExecution:ScopeExecution){

public activity getAllElementsinCompensateStack():ScopeExecution[*

}

222

in

K

public activity emptyCompensateStack(){}

public activity nextCompensation(){

}

public activity container(i n model:any){}

public activity waitFor(i n duration:DurationExpression){}
public activity waitUntil(i n deadline:DeadlineExpression){}
public activity locus():Locus{

return Locus. alllnstances()->first();

}

public activity allContents(i n ob:any):any{}

public activity instance(i n execution:Execution):ScopeExecution{}
public activity logVariable(i n vi:Variablelnstance){}

public activity initialisePartnerLinks(i nout

scopeExecution:ScopeExecution){}

public activity sendToPortinstance(i nout instance:ScopeExecution,
info:Messagelnfo){}

223

Appendix B. Guidelines for the FQLS process

Decide the semantic definition strategy

The language engineers need to ask, what is theaprigoal of the specification?
Who will be the primary reader of the specificaoBy clarifying this, the

language engineers will have these goals in minitevdesigning the language.

How to deal with semantic variation points? Willethspecification contain
semantics that are intentionally left undefinedsdf they can be defined as an
abstract activity. Such an activity defines aniifasige that specifies the input and

output, but leaves the implementation details lettexr stage.

How to deal with the semantic variation points @GML? fUML explicitly defines
concurrency, time and inter-object communicationsamantic variation points.
This will not be a problem if such concepts are myolved in the language
specification. Depending on how much detail thegleage specification needs to
define, a language containing such concepts issrduded in our approach. As
mentioned, fUML's semantic variation points do rgive the implementation
details of these concepts, but many languages toewd to know how these
concepts are implemented. For example, BPEL comt&low activity, which
executes its enclosed activities concurrently. Thecurrency in BPEL has not
been explicitly defined either, which means it do@$ constrain the concurrent
execution model, which can be real concurrency mudti-core machine, or it can
just use a single core to schedule concurrencytefdre, it can use the concepts in
ALF to represent its concurrent concepts, and deansithe implementation of
concurrency as a low-level detail. Only those laggs that are critical for the
semantic variation points of fUML require speciasalission. For example, the
language engineers may need to explicitly defitter@ad schedule model and then

use this model for realising concurrent execution.

How to deal with semantics that are out of scop&® iE common when a DSL can
embed other DSLs; for example, an XML-based languzan reuse XPath as its
guery language. However, the way in which the XRatpression is going to be

evaluated and the way in which the query is exetcate out of the scope. In such a

224

case, the developers need to develop a way ofsepiiag the semantics that are
out of scope. For example, evaluating an XPathesgion can be defined as an
abstract activity, and it can then be used asrarlfbwithout knowing how it works.
Another occasion for using abstract activities leew some behaviour has already
been defined in another technical space, and tiguége specification just needs
to reuse the concept. In this case, the semaritig$ath may already be defined
by FQLS, which means that the concepts in XPath stanply be imported as
existing concepts.

Guideline: Behavioural semantics development

Limit the use of inline statements. Inline statetsegnable the embedding other
programming languages in ALF text. While this isngenient when generating
code that is difficult to represent in ALF, inliseatements can be detrimental to the
guality of the standard. They disrupt the interapdity and direct executability,
since a programme contains many inline statembatsare platform specific to the
inline language, and it is unlikely that an executat can understand all types of

inline statements will be available in the foreddeduture.

Limit the editing of generated code. Editing of geated code is easy to lose when
regenerating. Furthermore, manually editing geeérabde results in the models
expiring, causing the entire development procedsettome code-centric [80]. To
avoid this, Kelly and Tolvanen [76] suggested thanerated code should not be
edited or even looked at. When defining languageifipation in ALF, the only
exception to this is those activities that are letentionally undefined. These
activities should be implemented as an extensiorth® generated reference

implementation.

Unify code style before implementation. To balatioe opinions of the UML and
Java programming society, ALF supports both UMlelikyntax and Java-like
syntax. While this gives developers flexibility, #lso makes coding in two
different styles possible. Since one specificatiat contains different coding style
is not desirable, it is suggested that the languaggineers agree on a unified

coding style. Here follows a list of things to lmnsidered:

225

UML naming/general programme naming. UML namingmups the use of any
string as a qualified name, while most GPL namesg hmany constraints. Our
experience is that the use of unrestrained UML rsaca@ make the generated code
difficult to maintain, since long names and nantest tontain spaces need to be
converted to a more restrained format in most @uogning languages. When
using a special naming strategy for a GPL, the samest be checked to avoid

ambiguity when generating code (See platform smeeifors in Section 6.1).

UML statements/Java statements. Local variablendieins and for loops both
support the Java style and the UML style. Althotigk is not bad for a language

specification, it is preferable to agree on one.

Use sequence expression/prefer simple loops. Seguepressions are short and
expressive; thus, the use thereof is suggested language specification when
possible. However, if the language engineers haeeial conditions, especially
when the language specification will be used tcegate code that does not support
either lambda expressions or anonymous functitrey, may agree to avoid the use

of sequence expressions.

Agree on a consistent way of naming prefixes. Tlaeeeseven kinds of classifiers
in ALF, including signals and associations, and soofi them do not have a
corresponding concept in other languages. Givirgmtta name with a special

prefix can help to identify the original conceptevhdebugging the generated code.

Guideline for developing behaviours

Follow general good coding practices, such as piafgshorter operations to long

ones and using meaningful variable names.

Remember that the most important aim of a langusygecification is to be
understood by its readers. Thus, the developersiidhprefer readability to
efficiency. The programme should be well commented.

Abstract activities should be minimised. Leavingnyagaps in the language
specification will make the specification nearly possible to execute without
making an effort to implement the gaps in the ®fiee implementation.

226

Abstract activities should btomic This means ensuring that abstract activity is a
behaviour that is outside of the scope, and thesehare behaviours that do not

need to be specified in the language specification.

Guideline for creating semantics definition architeture

How to attach behaviours to the meta-model. It assible to add operations
directly to the abstract syntax model, to add #ety as supplements to the
abstract syntax model, or to create a runtime mmeidel. Each method has certain
benefits and drawbacks. Methods for attaching biebhes are introduced in detail
in Section 5.1.3.

If some concepts of the language represent stateepts, state machines of the
language need to be designed. In such a languageteon model, there should be
a class member of the concepts that representtéite of the object. The state
machine should be designed by deciding the sensawficthe states, and the

transition signals’ interfaces and conditions.

Guidelines for implements an external checking strigy

It is possible that a tool that could load ALF, fUNdr Ecore models is already
available, and that language engineers have detidede it. In such a situation,
the FQLS framework has already provided transfoionatfor f{UML and Ecore;

the language engineers need to create a mechamisepdrt errors. For example,
Ecore2CSP is a tool that checks for various casfléamd unsatisfiable concepts in
an Ecore model. The language engineers can trisaagha black box that loads an
Ecore model and produces a report of its findifggey then need to process the
findings, either by manually mapping the errorgha original model, or by using

an automatic mechanism.

It is possible that the language engineer couldddeto use a particular tool, but
that the input of that tool is not a format that éfamework directly supported. In
such a situation, the language engineers needfittede transformation, as well as

a mechanism to report errors.

227

* Itis possible that the language engineers do ae¢ fa tool, but that they know the
algorithm or could find an algorithm to do the jdthe checking is then completely

reliant on the language developers' ability.

228

Appendix C. List of errors sourced from static checkers
of other languages.

Class implements the same classes as super class

This is an error that can happen when the objdutritance design is wrong. For
exampleActivity is a base class angB and C are classes that inhesittivity . This is

defined below:

A speci al i zes Activity {...}
B specializes A{.}
C speci al i zes B, Activity {...}

When cC inheritanceB, C is already a subclass @ttivity . Making C also inherit

Activity IS not correct syntax.
An Activity that has a return part must define a return statement

A syntax error is when an operation that has armet@lue has no proper return
statement in the body of the operation. The simples of checking this kind of error is
that when an operation has a return type, its sedistatements must have at least one
return statement. This method can create falsetimega because when multiple exit
routes exist, the method must guarantee that e&dheopossible exits has a return

statement.
Empty code block

Any statement that can include a block of statemétitat is, if, while, for accept,
inline, switch) can be empty, and such empty blaokiscate a deficiency in semantics or
improper practices. Such errors can be checkeddding an OCL constraint to the ALF
meta-model, or can simply be checked by a modetlatlr, which will test whether a

statement block contains a statement or not.
Unused/unwritten class members or variables

When a class member (an attribute/a signal reagptioa local variable (includes the
parameters of an operation) is defined, but nesed wvithin their scope, this indicates that
such class members or variables are redundantaudidsbe removed.

Unwritten class members or variables are the mesnbewariables that are defined,
but the value thereof is never changed. This méaetsthe symbol that represents these
variables has never appeared in an assignmentsskpmeor areateLink — expression. An

unwritten member is not always bad practice, boait indicate design deficiency.

229

Compare two objects when they are not comparable

When checking the equality of two objects, for epéan
i f (a==b) {}
if the types ofa andb are not comparable (they have different stati@sypthis can

indicate something wrong in the specification.
Class defines an attribute that masks a superclasdtribute

An attribute masks a super-class attribute, whigams that an attribute has the same
name as a super-class attribute and causes timii@tof the super-class to be overridden.

Consider the following example:

public cl ass Vehicle{
publ i ¢ engine : Engine;

}

public class Lorry specializes Vehicle{
publ i c engine : LorryEngine;

Thelorry.engine attribute masks the same attribute with the saameenas its super-
class, which causes the same name to stand faratiff attributes of the class, hence

causing confusion.
Ambiguous ! operator

The ! Boolean operator has a higher calculatiooryi than does thénstanceof

operator. However, developers may forget this amie write code like:
i f (! parent i nst anceof AbstractScope)
This is equivalent to
i f (('parent) i nst anceof AbstractScope)
However, since the parent variable is not a Boognession, the developer is likely
to mean:
i f (! (parent i nst anceof AbstractScope))

This rule checks the type of the operand of thpedrator. If the type is not Boolean, the

checker issues a warning to the developer.
Unnecessary type check done using instanceof opevat

This error happens when using thatanceof operator, and the result of the
instanceof ~ expression can be deducted by analysing the $yquecof its operands. For

example:
Empty a;
if (@ instanceof Empty){...}

230

When usinginstanceof , it is unnecessary to check if an object is kndwrbe an
instance or a sub-class instance of a particulee.tyhe type of the left-hand-side and
right-hand-side operands can be decided statibgiliype checking if all the types of an
object can be determined. When the left-hand-sidesub-type of the right-hand-side, the
expression will always be true.

ALF does not force the type of an object to be aled, which means that, as with
other dynamic languages, the type of an object ordy be determined at runtime. In
addition, due to the effect of the classify statetnéhe type of an object can be changed
during the execution. Thus, the simple method ecking unnecessaiystanceof does

not guarantee completeness or soundness.
Obvious infinite loop

A loop without a termination is obviously a flaw the code. This simple rule only
checks a particular type of infinite loop, namelipap in which the exit condition is true

and there is no break statement inside the coddblde code below is an example

whi |l e (true)
/I no break statenent inside the code bl ock

}
Impossible cast
An impossible cast is defined as a type cast egmesfor example(CastedClass)
¢, in which the reference that has been cast is $sipte to be cast to the desired type.
Type casts can occur successfully between basi tgpes. When casting an object to
another type, the object must be a part of thestasigjss hierarchy, which is a super class
or a sub-class. In the example, if the checker lentve exact type of, and if it is not
possible to cast the type to the desired type ctmss$ is categorised as an impossible cast.
The static checker uses the type resolver to amdhestype of the expression that has
been cast. Although it is not always possible tdewsine the runtime type of an
expression, there are many special cases thatecahdetked, such as when the declaration

of the instance is close to the cast expression.
Method names differ only in capitalisation.

Method names that are only differentiated by céipdation, like doSomething() or
DoSomething(), are confusing. This check issues a warning if scehfusing names

appear.

231

Bibliography

[1] IEEE Standard for System and Software Veriimatand Validation, 2012.

[2] Islam Abdelhalim, James Sharp, Steve Schneidad Helen Treharne. Formal
Verification of Tokeneer Behaviours Modelled in fUlMJsing CSP. In Jin Dong
and Huibiao Zhu, editors;ormal Methods and Software Engineeringlume 6447
of Lecture Notes in Computer Scienpages 371-387. Springer Berlin / Heidelberg,
2010.

[3] David H. Akehurst. Validating BPEL Specificati®s Using OCL. Technical report,
University of Kent at Canterbury technical repd%-04, 2004.

[4] Scott Ambler.Agile modeling: effective practices for extremegseanming and the
unified processJohn Wiley & Sons, 2002.

[5] Jorge Aranda, Daniela Damian, and Arber Bori€ransition to Model-Driven
Engineering. In RobertB. France, Jirgen KazmeiaethMBreu, and Colin Atkinson,
editors,Model Driven Engineering Languages and Systemiime 7590 of ecture
Notes in Computer Sciengeages 692—708. Springer Berlin Heidelberg, 2012.

[6] Paolo Arcaini, Angelo Gargantini, Elvinia Rideene, and Patrizia Scandurra. A
model-driven process for engineering a toolset doformal method.Software:
Practice and Experiencd1(2):155-166, 2011.

[7] Thorsten Arendt, Enrico Biermann, Stefan JuraCkristian Krause, and Gabriele
Taentzer. Henshin: Advanced Concepts and Tools for In-PladdFEModel
Transformationsvolume 6394 ol ecture Notes in Computer Scienpages 121—
135. Springer Berlin / Heidelberg, 2010.

[8] Thomas Baar. An OCL Semantics Specified with TQVIn Proceedings,
MoDELS/UML 2006pages 1-6. Springer, 2006.

[9] Nils Bandener, Christian Soltenborn, and Gregogels. Extending DMM Behavior
Specifications for Visual Execution and DebuggilmgBrian Malloy, Steffen Staab,
and Mark van den Brand, editoSoftware Language Engineeringolume 6563 of
Lecture Notes in Computer Sciengages 357-376. Springer Berlin / Heidelberg,
2011.

[10] R. Bendraou, B. Combemale, X.Cregut, and M.&ervais. Definition of an
Executable SPEM 2.0. IBoftware Engineering Conference, 2007. APSEC 2007.
14th Asia-Pacificpages 390-397, Dec 2007.

232

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Luca Berardinelli, Philip Langer, and Tanja yahofer. Combining fUML and
Profiles for Non-functional Analysis Based on ModEkecution Traces. In
Proceedings of the 9th International ACM Sigsoftifecence on Quality of Software
Architectures Q0SA '13, pages 79-88, New York, NY, USA, 201EM.

Gerard Berry, Georges Gonthier, Ard Berry Gmar Gonthier, and Place Sophie
Laltte. The Esterel Synchronous Programming Langudgesign, Semantics,
Implementation, 1992.

Enrico Biermann, Claudia Ermel, and Gabriebeiitzer. Precise Semantics of EMF
Model Transformations by Graph Transformation. Ireysztof Czarnecki, lleana
Ober, Jean-Michel Bruel, Axel Uhl, and Markus Vdélteditors, Model Driven
Engineering Languages and Systewslume 5301 ofLecture Notes in Computer
Sciencepages 53-67. Springer Berlin / Heidelberg, 2008.

Jonathan Billington, Soren Christensen, Kees \Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christiarh8te and Michael Weber. The
Petri Net Markup Language: Concepts, Technologg, Bools. In Wil van der Aalst
and Eike Best, editorgpplications and Theory of Petri Nets 20@8lume 2679 of
Lecture Notes in Computer Sciengages 483-505. Springer Berlin / Heidelberg,
2003.

Conrad Bock and Michael Gruninger. PSL: A satitadomain for flow models.
Software and Systems Modelidg209-231, 2005.

Marco Brambilla, Jordi Cabot, and Manuel Winmmélodel-driven software
engineering in practiceMorgan & Claypool Publishers, 2012.

M.G.J. Brand, A. Deursen, J. Heering, H.A. goM. Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinfl, Visser, and J. Visser. The
Asf+Sdf Meta-environment: A Component-Based Languadpevelopment
Environment. In Reinhard Wilhelm, edita@ompiler Constructionvolume 2027 of
Lecture Notes in Computer Sciengmges 365-370. Springer Berlin Heidelberg,
2001.

Lionel Briand, Clay Williams, Pierre-Alain Migr, Franck Fleurey, and Jean-Marc
JézéquelWeaving Executability into Object-Oriented Metagaages volume 3713
of Lecture Notes in Computer Scienpages 264—278. Springer Berlin / Heidelberg,
2005.

233

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

B.R. Bryant, J. Gray, M. Mernik, P.J. Clark&®.B. France, and G. Karsai.
Challenges and directions in formalizing the semanbf modeling languages.
Computer Science and Information SysteB(®):225-253, 2011.

Jordi Cabot, Robert Claris #243, and DanigdrRi Verification of UML/OCL Class
Diagrams using Constraint Programming. $oftware Testing Verification and
Validation Workshop, 2008. ICSTW '08. IEEE Interoaal Conference gnpages
73—-80. IEEE Computer Society, 2008.

Jordi Cabot, Robert Claris6, and Daniel RidodLtoCSP: a tool for the formal
verification of UML/OCL models using constraint gramming. InProceedings of
the twenty-second IEEE/ACM international conferermre Automated software
engineering ASE '07, pages 547-548, New York, NY, USA, 20R8TM.

Eric Cariou, Cyril Ballagny, Alexandre Feugasd Franck Barbier. Contracts for
Model Execution Verification. IECMFA pages 3-18, 2011.

Michel Chaudron, José Rivera, José Romero, Antbnio Vallecillo. Behavior,
Time and Viewpoint Consistency: Three ChallengesM®E, volume 5421 of
Lecture Notes in Computer Scienpages 60—65. Springer Berlin / Heidelberg, 2009.
Kai Chen, Janos Sztipanovits, and Sandeep Medmward a semantic anchoring
infrastructure for domain-specific modeling langesgIn Proceedings of the 5th
ACM international conference on Embedded softwpages 35-43. ACM, 2005.
Tony Clark, Paul Sammut, and James Willaksplied metamodelling: A foundation
for language driven development, Second edit@iBaTEVA, 2008.

Benoit Combemale, Xavier Crégut, Pierre-Loaréhe, and Xavier Thirioux. Essay
on Semantics Definition in MDE - An Instrumented phpach for Model
Verification. Journal of Software4(9):943-958, 2009.

T. CopelandPMD applied Centennial Books, 2005.

Simone André da Costa and Leila Ribeiro. Vieafion of graph grammars using a
logical approachScience of Computer Programmjng Press, Corrected Proof.—,
2010.

Chris Daly. Emfatic Language Reference. hitpaw.eclipse.org/gmt/epsilon/doc/-
articles/emfatic/, 2004.

Juan delLara and Hans Vangheluwe. Definingualisnotations and their
manipulation through meta-modelling and graph fiamnsation. Journal of Visual
Languages & Computind.5(3-4):309-330, 2004.

234

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Frédéric Kurtev Ilvan Bézivin Jean PierantoAltonso Di Ruscio, Davide Jouault.
Extending AMMA for Supporting Dynamic Semantics Sifieations of DSLs.
Technical report, Laboratoire d’Informatique de MarAtlantique, 2006.

W.J. Dzidek, E. Arisholm, and L.C. Briand. Ae&listic Empirical Evaluation of the
Costs and Benefits of UML in Software Maintenan8eftware Engineering, IEEE
Transactions on34(3):407 —432, may-june 2008.

S. Efftinge and M. Voélter. oAW xText: A frameuk for textual DSLs. I'Workshop
on Modeling Symposium at Eclipse Summotume 32, 2006.

M. Elaasar and L. Briand. An Overview of UML ofisistency Management.
Technical report, Department of Systems and Comitrigineering 1125 Colonel-
By Drive, Ottawa, Ontatio, K1S 5B6 Canada, 2004.

Gregor Engels, Jan Hendrik Hausmann, Reikokele@and Stefan Sauer. Dynamic
meta modeling: a graphical approach to the operatisemantics of behavioral
diagrams in UML. InPProceedings of the 3rd international conferenceTbe unified
modeling language: advancing the standatdML’00, pages 323-337, Berlin,
Heidelberg, 2000. Springer-Verlag.

R. Esser and J.W. Janneck. Moses-a tool $oiitgisual modeling of discrete-event
systems. InHuman-Centric Computing Languages and Environmer2801.
Proceedings IEEE Symposia,gages 272 —-279, 2001.

D. Fahland and W. Reisig. ASM-based semarficsBPEL: The negative control
flow. In Proc. 12th International Workshop on Abstract Steli@chines pages 131—
151, 2005.

Dirk Fahland. Complete Abstract Operationalmaatics for the Web Service
Business Process Execution Language. InformatikcBer 190, Humboldt-
Universitat zu Berlin, September 2005.

Eclipse Foundation. Graphical Modeling Projé&MP). http://www.eclipse.org/-
modeling/gmp/, 2011.

Angelo Gargantini, Elvinia Riccobene, and Rar Scandurra. A semantic
framework for metamodel-based languagéaitomated Software Engineering
16(3):415-454, 2009.

Amir Ghamarian, Maarten de Mol, Arend Rensildduardo Zambon, and Maria
Zimakova. Modelling and analysis using GROOVHternational Journal on
Software Tools for Technology Transfer (ST FI)}-26, 2011.

235

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

U. Glasser, R. Gotzhein, and A. Prinz. Thenfal semantics of SDL-2000: Status
and perspective€omputer Networks12(3):343 — 358, 2003.

R.C. GronbackEclipse modeling project: a domain-specific langeidgolkit The
Eclipse series. Addison-Wesley, 2009.

Object Management Group. UML 1.4 with Action erBantics.
http://www.omg.org/cgi-bin/doc?ptc/02-01-09, 2002.

Object Management Group. MDA Specifications.
http://www.omg.org/mda/specs.htm, 2003.

Object Management Group. Object Constraint dusage, Version 2.0. http://-
www.omg.org/spec/OCL/2.0/, 2006.

Object Management Group. MOF Model To Text nafarmation Language
(MOFM2T), 1.0. http://www.omg.org/spec/MOFM2T/1.@008.

Object Management Group. Software & Systemsc&ss Engineering Metamodel
Specification (SPEM) Version 2.0. http://www.omgyspec/SPEM/2.0/, 2008.
Object Management Group. Ontology Definition efdmodel (ODM).
http://www.omg.org/spec/ODM/1.0/, 2009.

Object Management Group. Action Language Fourfelational UML (ALF) 1.0 -
Beta 1. www.omg.org/spec/ALF/, 2010.

Object Management Group. OMG’s MetaObject Hgcihttp://www.omg.org/mof/,
2010.

Object Management Group. Business Process Matd Notation (BPMN) Version
2.0. http://www.omg.org/spec/BPMN/2.0/, 2011.

Object Management Group. Documents Associdtéith Meta Object Facility
(MOF) 2.0 Query/View/Transformation, V1.1. http:mw.omg.org/spec/QVT/1.1/,
2011.

Object Management Group. Precise SemantiddME Composite Structures RFP.
http://www.omg.org/cgi-bin/doc?ad/11-12-07, 2011.

Object Management Group. Semantics Of A Fotiodal Subset For Executable
UML Models (FUML), Version 1.0. http://www.omg.ospgec/FUML/1.0/, 2011.
Object Management Group. UML Profile For MARTHEodeling And Analysis Of
Real-Time Embedded Systems. http://www.omg.org/8paRTE/, 2011.

Object Management Group. OMG Systems ModelingLanguage.
http://www.omgsysml.org/, 2012.

236

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

W3C Working Group. Web Services Glossary. ipwvw.w3.0rg/TR/2004/NOTE-
ws-gloss-20040211/#webservice, 2004.

Volker Gruhn and Ralf Laue. Complexity metrics business process modelsinn
W. Abramowicz, H.C. Mayr (Eds.), 9th Internation@bnference on Business
Information Systems (BIS 2006), Lecture Notesforimatics pages 1-12, 2006.

Y Gurevich, B Rossman, and W Schulte. Semaeasisence of AsmLTheoretical
Computer Scien¢843(3):370-412, 2005.

Christian Hahn and Klaus Fischer. The Formam&ntics of the Domain Specific
Modeling Language for Multiagent Systems. In Midhaeck and Jorge Gomez-
Sanz, editorsAgent-Oriented Software Engineering, I¥olume 5386 ofLecture
Notes in Computer Sciengeages 145-158. Springer Berlin / Heidelberg, 2009
Maurice Howard Halsteadlements of software scienosmlume 19. Elsevier New
York, 1977.

Kevin Hammond and Greg Michaelson. Hume: A RamSpecific Language for
Real-Time Embedded Systems. In Frank Pfenning arthi¢ Smaragdakis, editors,
Generative Programming and Component Engineerv@gume 2830 ofLecture
Notes in Computer Sciengeages 37-56. Springer Berlin Heidelberg, 2003.
Warren A Harrison. Applying McCabe’s complgxitmeasure to multiple-exit
programsSoftware: Practice and Experienck4(10):1004-1007, 1984.

Constance Heitmeyer. On the Need for Practie@imal Methods. Inn Formal
Techniques in RealTime and Real-Time Fault-Tole@ygtems, Proc., 5th Intern.
Symposium (FTRTFT'9®ages 18-26. Springer Verlag, 1998.

B. Henderson-Sellers and D. Tegarden. Ther#tmal extension of two versions of
cyclomatic complexity to multiple entrylexit modsleSoftware Quality Journal
3(4):253-269, 1994.

Alan Hevner and Samir ChatterjeBesign Research in Information Systems
Springer, 2010.

Alan R. Hevner, Salvatore T. March, Jinsook?and Sudha Ram. Design science in
information systems researdilS Q, 28(1):75-105, March 2004.

Peter Olveczky, José Rivera, Francisco Duran, and Antovilecillo. On the
Behavioral Semantics of Real-Time Domain Specifsudal Languagesvolume
6381 of Lecture Notes in Computer Sciengeges 174-190. Springer Berlin /
Heidelberg, 2010.

237

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

David Hovemeyer and William Pugh. Finding bugs easy. SIGPLAN Not.
39(12):92-106, December 2004.

John Hutchinson, Jon Whittle, Mark Rouncefieldnd Steinar Kristoffersen.
Empirical assessment of MDE in industry.Rnoceedings of the 33rd International
Conference on Software Engineerin@SE '11, pages 471-480, New York, NY,
USA, 2011. ACM.

S. C. Johnson. Lint, a C Program CheckeilC®OMP. SCI. TECH. RERages 78—
1273, 1978.

Frédéric Jouault, Freddy Allilaire, Jean Béajvand Ivan Kurtev. ATL: A model
transformation toolScience of Computer Programmjit(1-2):31 — 39, 2008.
Lennart C.L. Kats and Eelco Visser. The Sprdfanguage Workbench: Rules for
Declarative Specification of Languages and IDE&SPLAN Not. 45(10):444-463,
October 2010.

Steven Kelly and Risto Pohjonen. Worst Pradgifor Domain-Specific Modeling.
IEEE Software26:22—29, 2009.

Steven Kelly and Juha-Pekka Tolvan®amain-Specific Modeling: Enabling Full
Code GenerationWiley-IEEE Computer Society Press, 2008.

Pierre Kelsen and Qin Ma. A Lightweight Appcbafor Defining the Formal
Semantics of a Modeling Language. In Krzysztof @Geaki, lleana Ober, Jean-
Michel Bruel, Axel Uhl, and Markus Volter, editor8jodel Driven Engineering
Languages and Systemwlume 5301 of_ecture Notes in Computer Scienpages
690-704. Springer Berlin / Heidelberg, 2008.

Gregor Kiczales, John Lamping, Anurag Mendlmekzhris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-orienfgogramming. In Mehmet
Aksit and Satoshi Matsuoka, editolsCOOP’97 Object-Oriented Programming
volume 1241 ot ecture Notes in Computer Scienpages 220-242. Springer Berlin
/ Heidelberg, 1997.

A.G. Kleppe. A Language Description is Moreatha Metamodel. InFourth
International Workshop on Software Language Enginge Grenoble, France,
October 2007. megaplanet.org.

Anneke G Kleppe. Software language engineering: creating domain-gjec
languages using metamodefgidison-Wesley Professional, 2009.

238

[81] Dimitrios Kolovos. An Extensible Platform for Specification of Inteige
Languages for Model Manageme®hD thesis, Department of Computer Science,
The University of York, 2008.

[82] DimitriosS. Kolovos, RichardF. Paige, and FRénC. Polack. The Epsilon
Transformation Language. In Antonio Vallecillo, fJ&fray, and Alfonso Pierantonio,
editors, Theory and Practice of Model Transformatipv®lume 5063 ofLecture
Notes in Computer Sciengeages 46—60. Springer Berlin Heidelberg, 2008.

[83] Fabrice Kordon and Yann Thierry-Mieg. Expegen in Model Driven Verification
of Behavior with UML. In Christine Choppy and Ole§okolsky, editors,
Foundations of Computer Software. Future Trends Bechniques for Development
volume 6028 ot.ecture Notes in Computer Scienpages 181-200. Springer Berlin
/ Heidelberg, 2010.

[84] T.Kosar, N. Oliveira, M. Mernik, V.J.M. Peraj M. CrepinSek, C.D. Da, and R.P.
Henriques. Comparing general-purpose and domaicifgpelanguages: An
empirical studyComputer Science and Information Systen(®):247—-264, 2010.

[85] Sabine KuskeA Formal Semantics of UML State Machines Based tactBred
Graph Transformationvolume 2185 ot ecture Notes in Computer Scienpages
241-256-256. Springer Berlin / Heidelberg, 2001.

[86] Formal Methods laboratory University of Milan. ASMETA. http://-
asmeta.sourceforge.net/, 2010.

[87] Qinan Lai and Andy Carpenter. Defining andify@ng behaviour of domain specific
language with fUML. InProceedings of the Fourth Workshop on Behaviour
Modelling - Foundations and ApplicationBM-FA '12, pages 1:1-1:7, New York,
NY, USA, 2012. ACM.

[88] Qinan Lai and Andy Carpenter. Static Analyaisd Testing of Executable DSL
Specification. InProceedings of 1st International Conference on Mdtéeven
Engineering and Software Developme@13.

[89] Kristian Bisgaard Lassen and Wil M.P. van d&alst. Complexity metrics for
Workflow nets.Information and Software Technolqdi (3):610 — 626, 2009.

[90] Yoann Laurent, Reda Bendraou, Souheib Baaaind Marie-Pierre Gervais.
Formalization of fUML: An Application to Process Ncation. In Matthias Jarke,
John Mylopoulos, Christoph Quix, Colette Rolland,anviis Manolopoulos,

Haralambos Mouratidis, and Jennifer Horkoff, edifoAdvanced Information

239

Systems Engineeringgolume 8484 ofLecture Notes in Computer Sciengages
347-363. Springer International Publishing, 2014.

[91] C.L. Lazr, I. Lazr, B. Parv, S. Motogna, and I.G. Czibula. Tool Supgor fUML
Models.International Journal of Computers CommunicationC&ntrol, 5(5):775—
782, 2010.

[92] Antonio Menezes Leitdo. From Lisp S-expressiom Java source cod€omputer
Science and Information Systems/Com5(%):19-38, 2008.

[93] Francisco J. Lucas, Fernando Molina, and Amiar@oval. A systematic review of
UML model consistency managemenhformation and Software Technolqgy
51(12):1631 — 1645, 20009.

[94] Geoffrey Mainland and Greg Morrisett. Nikokembedding compiled GPU functions
in Haskell.SIGPLAN Not.45(11):67—-78, September 2010.

[95] Chengying Mao. Complexity Analysis for PetretNbased Business Process in Web
Service Composition. Iiservice Oriented System Engineering (SOSE), 20ftB Fi
IEEE International Symposium ppages 193-196. IEEE, 2010.

[96] Tanja Mayerhofer, Philip Langer, and Manuelnier. Towards xMOF: executable
DSMLs based on fUML. IfProceedings of the 2012 workshop on Domain-specific
modeling DSM "12, pages 1-6, New York, NY, USA, 2012. ACM.

[97] ThomasJ. McCabe. A complexity measur8oftware Engineering, I|EEE
Transactions on4(4):308-320, 1976.

[98] Steve McConnelliCode completeO’Reilly Media, Inc., 2004.

[99] Stephen J MelloiMDA distilled: principles of model-driven architece. Addison-
Wesley Professional, 2004.

[100] Marjan Mernik, Jan Heering, and Anthony Mo&te. When and how to develop
domain-specific languageACM Comput. Sury37(4):316—-344, 2005.

[101] P. Mohagheghi and J. Aagedal. Evaluating @ual Model-Driven Engineering. In
International Workshop on Modeling in Software HwgEring (MISE'07) ICSE
Workshop page 6, may 2007.

[102] Parastoo Mohagheghi and Vegard Dehlen. Wherthe Proof? - A Review of
Experiences from Applying MDE in Industry. In Inaclteferdecker and Alan
Hartman, editors,Model Driven Architecture - Foundations and Apptioas
volume 5095 ot ecture Notes in Computer Scienpages 432—443. Springer Berlin
/ Heidelberg, 2008.

240

[103] Parastoo Mohagheghi, Vegard Dehlen, and Tapl®&l Definitions and approaches to
model quality in model-based software developmem teview of literature.
Information and Software Technolodpi(12):1646 — 1669, 2009.

[104] Pierre-Alain Muller, Frédéric Fondement, aBenoit Baudry. Modeling Modeling.
In Andy Schirr and Bran Selic, editoidpdel Driven Engineering Languages and
Systemsvolume 5795 ot ecture Notes in Computer Scienpages 2—-16. Springer
Berlin Heidelberg, 2009.

[105] H.James Nelson and DavidE. Monarchi. Ensurthg quality of conceptual
representationsSoftware Quality Journall5(2):213-233, 2007.

[106] OASIS. Web Services Business Process Exatutanguage Version 2.0 Primer.
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsh@ed-Primer.html, 2007.

[107] Technical University of Berlin. The AttribideGraph Grammar System. http://-
user.cs.tu-berlin.de/~gragra/agg/, 2010.

[108] University of lllinois at Urbana-Champaign. h& Maude System. http://-
maude.cs.uiuc.edu/, 2010.

[109] University of Maribor. LISA. http://labraj.ismb.si/lisa/index.html, 2006.

[110] Greg O’Keefe. Improving the Definition of UMLN Oscar Nierstrasz, Jon Whittle,
David Harel, and Gianna Reggio, editdvigdel Driven Engineering Languages and
Systemsvolume 4199 of.ecture Notes in Computer Scienpages 42-56. Springer
Berlin / Heidelberg, 2006.

[111] Andy Oram and Greg WilsoMaking SoftwareO’Reilly, 2010.

[112] Richard F. Paige, Dimitrios S. Kolovos, andrfa A.C. Polack. Metamodelling for
Grammarware Researchers. In Krzysztof Czarnecki @ddel Hedin, editors,
Software Language Engineeringolume 7745 ofLecture Notes in Computer
Sciencepages 64-82. Springer Berlin Heidelberg, 2013.

[113] P.R. Panda. SystemC - a modeling platformpetipg multiple design abstractions.
In System Synthesis, 2001. Proceedings. The l4thn&tienal Symposium on
pages 75-80, 2001.

[114] M. Peleg and D. Dori. The model multiplicppyoblem: experimenting with real-time
specification methodsSoftware Engineering, IEEE Transactions @6(8):742—-759,
2000.

[115] James L. Peterson. Petri N&8&&M Comput. Sury9(3):223-252, 1977.

[116] Marian Petre. UML in practice. 185th International Conference on Software
Engineering (ICSE 20132013.

241

[117] Elena Planas, Jordi Cabot, and Cristina Goméerifying Action Semantics
Specifications in UML Behavioral Models. In Paswan Eck, Jaap Gordijn, and
Roel Wieringa, editorsAdvanced Information Systems Engineerwv@ume 5565 of
Lecture Notes in Computer Scienpages 125-140. Springer Berlin / Heidelberg,
20009.

[118] Elena Planas, Jordi Cabot, and Cristina Gomgghtweight Verification of
Executable Models. I80th International Conference on Conceptual ModelER
2011) 2011.

[119] Elena Planas, Jordi Cabot, Cristina GomezhdfsGuerra, and Juan de Lara.
Lightweight Executability Analysis of Graph Transfmation Rules. Visual
Languages and Human-Centric Computing, IEEE Sympwosin 0:127-130, 2010.

[120] Elena Planas, David Sanchez-Mendoza, JordiofCaand Cristina Gémez. Alf-
Verifier: An Eclipse Plugin for Verifying AlffUML EKecutable Models. In Silvana
Castano, Panos Vassiliadis, LaksV. Lakshmanan, KiwhglLi Lee, editors,
Advances in Conceptual Modelingolume 7518 ofLecture Notes in Computer
Sciencepages 378-382. Springer Berlin Heidelberg, 2012.

[121] G. D. Plotkin. A Structural Approach to Optoaal Semantics, 1981.

[122] Andreas Prinz, Markus Scheidgen, and MereteitT A Model-Based Standard for
SDL. In Emmanuel Gaudin, Elie Najm, and Rick Resaditors,SDL 2007: Design
for Dependable System#lume 4745 of_ecture Notes in Computer Scienpages
1-18. Springer Berlin / Heidelberg, 2007.

[123] Raman Ramsin and Richard F. Paige. Procedsresl review of object oriented
software development methodologiedCM Comput. Sury. 40(1):3:1-3:89,
February 2008.

[124] W3C Recommendation. OwWL Web Ontology Language
http://mww.w3.0org/TR/owl-features/, 2004.

[125] Arend Rensink.The Edge of Graph Transformation - Graphs for Bétaal
Specification volume 5765 otecture Notes in Computer Scienpages 6—32-32.
Springer Berlin / Heidelberg, 2010.

[126] Arend Rensink, Akos Schmidt, and Daniel Varr¥lodel Checking Graph
Transformations: A Comparison of Two Approaches.Hartmut Ehrig, Gregor
Engels, Francesco Parisi-Presicce, and Grzegorzerf®erg, editors,Graph
Transformationsvolume 3256 ol ecture Notes in Computer Sciengages 219—
222. Springer Berlin / Heidelberg, 2004.

242

[127] Elvinia Riccobene and Patrizia Scandurra. Vifea executability into UML class
models at PIM level. IProceedings of the 1st Workshop on Behaviour Modgeih
Model-Driven ArchitectureBM-MDA '09, pages 1:1-1:9, New York, NY, USA,
2009. ACM.

[128] José E. Riverdn the semantics of real-time Domain Specific MioaddLanguages
PhD thesis, Universidad de Malaga, 2010.

[129] Louis M. Rose, Richard F. Paige, Dimitriosk®lovos, and Fiona A.C. Polack. The
Epsilon Generation Language. In Ina Schieferdectet Alan Hartman, editors,
Model Driven Architecture - Foundations and Apptioas volume 5095 of ecture
Notes in Computer Sciengeages 1-16. Springer Berlin Heidelberg, 2008.

[130] Matti Rossi and Sjaak Brinkkemper. Complexitetrics for systems development
methods and techniqudaformation System21(2):209 — 227, 1996.

[131] Daniel A. Sadilek and Guido Wachsmuth. UsBrmmarware Languages to Define
Operational Semantics of Modelled Languages. Inl Walst, John Mylopoulos,
Norman M. Sadeh, Michael J. Shaw, Clemens Szypenskinuel Oriol, and
Bertrand Meyer, editor)bjects, Components, Models and Pattentdume 33 of
Lecture Notes in Business Information Processpages 348-356. Springer Berlin
Heidelberg, 2009.

[132] Markus Scheidgen and Joachim Fischer. Humampcehensible and machine
processable specifications of operational semantitsProceedings of the 3rd
European conference on Model driven architecturgftations and applications
ECMDA-FA’07, pages 157-171, Berlin, Heidelberg, 208pringer-Verlag.

[133] Ina Schieferdecker, Alan Hartman, Daniel &#di and Guido Wachsmuth.
Prototyping Visual Interpreters and Debuggers fooniain-Specific Modelling
Languages volume 5095 ofLecture Notes in Computer Scienqeages 63-78.
Springer Berlin / Heidelberg, 2008.

[134] Douglas C Schmidt. Model-driven engineerit@OMPUTER-IEEE COMPUTER
SOCIETY;39(2):25, 2006.

[135] E. Seidewitz. What models me&uftware, IEEE20(5):26—-32, 2003.

[136] B. Selic. A Systematic Approach to Domain-8fie Language Design Using UML.
In Object and Component-Oriented Real-Time Distribut&dmputing, 2007.
ISORC '07. 10th IEEE International Symposium jpages 2—9, 2007.

[137] Bran Selic. The Theory and Practice of MadglLanguage Design for Model-Based

Software Engineering - A Personal Perspective.d@ioJFernandes, Ralf LaAmmel,

243

Joost Visser, and Jodo Saraiva, edito@enerative and Transformational
Techniques in Software Engineering Nblume 6491 of ecture Notes in Computer
Sciencepages 290-321. Springer Berlin / Heidelberg, 2011

[138] Traian Florin SerbanutaA REWRITING APPROACH TO CONCURRENT
PROGRAMMING LANGUAGE DESIGN AND SEMANT.IESD thesis, University
of lllinois at Urbana-Champaign, 2011.

[139] Jinggiu Shao and Yingxu Wang. A new measursaftware complexity based on
cognitive weights.Electrical and Computer Engineering, Canadian Jalrmof,
28(2):69-74, 2003.

[140] Keng Siau and M. Rossi. Evaluation of infotima modeling methods-a review. In
System Sciences, 1998., Proceedings of the Thmy-Hawaii International
Conference oywvolume 5, pages 314 —322 vol.5, jan 1998.

[141] Balazs Simon, Balazs Goldschmidt, and Karkilyndorosi. A Human Readable
Platform Independent Domain Specific Language fBEB. In Filip Zavoral, Jakub
Yaghob, Pit Pichappan, and Eyas El-Qawasmeh, sdifdetworked Digital
Technologiesvolume 87 ofCommunications in Computer and Information Scignce
pages 537-544. Springer Berlin Heidelberg, 2010.

[142] Christian Soltenborn and Gregor Engel$owards Test-Driven Semantics
Specification volume 5795 otecture Notes in Computer Scienpages 378-392.
Springer Berlin / Heidelberg, 2009.

[143] Model Driven Solutions. Action Language for MU (Alf) Open Source
Implementation. http://modeldriven.org/alf/, regtron 06/06/2013, 2013.

[144] Jonathan Sprinkle, Marjan Mernik, Juha-PeRkdvanen, and Diomidis Spinellis.
Guest Editors’ Introduction: What Kinds of Nails étka Domain-Specific Hammer?
IEEE Software26:15-18, 2009.

[145] Christian Stahl. A Petri Net Semantics for BP Technical report, Humboldt-
Universitat zu Berlin, 2005.

[146] OASIS standard. RELAX NG Specification. hitrelaxng.org/spec-20011203.html,
2001.

[147] OASIS standard. Web Services Business Prdggssution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbped-2S.html, 2007.

[148] Dave SteinbergeEMF : Eclipse Modeling FrameworkAddison-Wesley, Boston,
Mass. ; London, 2nd ed., rev. and updated. edi#6A9.

244

[149] Yu Sun, Jules White, and Jeff Gray. Model nBfarmation by Demonstration.
Model Driven Engineering Languages and Systdin85:712—-726, 2009.

[150] Gerson Sunyé, Francois Pennaneac’h, Wai-NMiog Alain Le Guennec, and Jean-
Marc Jézéquel. Using UML Action Semantics for Exable Modeling and Beyond.
In Klaus Dittrich, Andreas Geppert, and Moira Nerrieditors, Advanced
Information Systems Engineeringolume 2068 ofLecture Notes in Computer
Sciencepages 433-447. Springer Berlin / Heidelberg, 2001

[151]Hideaki Takeda, Paul Veerkamp, and Hiroyukski&kawa. Modeling design process.
Al magazine11(4):37, 1990.

[152] D.P. Tegarden, S.D. Sheetz, and D.E. Monaréfifectiveness of traditional
software metrics for object-oriented systemsSystem Sciences, 1992. Proceedings
of the Twenty-Fifth Hawaii International Conferenme volume iv, pages 359 —368
vol.4, jan 1992.

[153] International Telecommunication Union. ITURecommendation Z.100 Annex F
SDL Formal Definition, 2000.

[154] V. Vaishnavi and W. Kuechler. Design ScierRResearch in Information Systems.
January 20, 2004, last updated November 11, 2012.RL:U
http://www.desrist.org/design-research-in-inforrnatsystems/, 2004.

[155] Arie van Deursen, Paul Klint, and Joost Visseomain-specific languages: an
annotated bibliographyACM SIGPLAN Notices35(6):26—36, June 2000.

[156] Markus VoelterDSL Engineering - Designing, Implementing and Udbamain-
Specific Languagesislbook.org, 2013.

[157] Guido Wachsmuth. Modelling the Operationalm@atics of Domain-Specific
Modelling Languages. In Ralf Lammel, Joost Vissand Jodo Saraiva, editors,
Generative and Transformational Techniques in So#wEngineering LI volume
5235 of Lecture Notes in Computer Sciengeges 506-520. Springer Berlin /
Heidelberg, 2008.

[158] Tabinda Waheed, Muhammad Igbal, and ZafarikM&lata Flow Analysis of UML
Action Semantics for Executable Models. In Ina 8tdndecker and Alan Hartman,
editors,Model Driven Architecture - Foundations and Apptioas, volume 5095 of
Lecture Notes in Computer Scienpages 79—-93. Springer Berlin / Heidelberg, 2008.

[159] Jon Whittle, John Hutchinson, and Mark Rodimeté. The State of Practice in
Model-Driven EngineeringSoftware, IEEE31(3):79-85, May 2014.

245

[160] Claas Wilke and Birgit Demuth. UML is stilh¢onsistent! How to improve OCL
Constraints in the UML 2.3 Superstructutglectronic Communications of the
EASST44:1-19, 2011.

[161] Yingzhou Zhang and Baowen Xu. A survey of aatit description frameworks for
programming languageSIGPLAN Not.39(3):14-30, 2004.

246

