
Acta Cybernetica 19 (2010) 765–805.

A Customised ASM Thesis for

Database Transformations

Klaus-Dieter Schewe∗ and Qing Wang†

Abstract

In order to establish a theoretical foundation for database transforma-
tions, we search for a universal computation model as an umbrella for queries
and updates. As updates are fundamentally distinct from queries in many re-
spects, computation models for queries cannot be simply extended to database
transformations. This motivates the question whether Abstract State Ma-
chines (ASMs) can be used to characterise database transformations in gen-
eral. In this paper we start examining the differences between database trans-
formations and algorithms, which give rise to the formalisation of five postu-
lates for database transformations. Then a variant of ASMs called Database
Abstract State Machines (DB-ASMs) is developed, and we prove that DB-
ASMs capture database transformations, i.e. the main result of the paper
is that every database transformation stipulated by the postulates can be
behaviourally simulated by a DB-ASM.

Keywords: Abstract State Machine, database transformation, ASM thesis

1 Introduction

According to [2] a database transformation is a binary relation on database in-
stances that encompass queries and updates. In general, a database transformation
can be non-deterministic, but it must be recursively enumerable and generic in the
sense that it preserves isomorphisms. The problem addressed in this article is to
completely characterise the algorithms that transform input databases into output
databases.

Abstract State Machines (ASMs) provide a universal computation model that
formalises the notion of (sequential or parallel) algorithm [5, 10]. In his seminal
work on the sequential ASM thesis Gurevich points out the difference between a
computable function in the recursion-theoretic sense and an algorithm. Strictly
speaking, many algorithms in numerical mathematics, e.g. Newton’s algorithm for

∗Software Competence Center Hagenberg, Hagenberg, Austria and Johannes-Kepler-
University Linz, Research Institute for Applied Knowledge Processing, Linz, Austria, E-mail:
kd.schewe@scch.at, kd.schewe@faw.at
†University of Otago, Dunedin, New Zealand, E-mail: qing.wang@otago.ac.nz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

766 Klaus-Dieter Schewe and Qing Wang

determining zeros of a differentiable function f : R→ R, do not define computable
functions, as they deal with non-denumerable sets. Only if restricted to a countable
subset – such as floating-point numbers instead of real numbers – and properly
encoded can we get a computable function. Thus, we are actually aiming at a
complete characterisation of database transformation algorithms, but nonetheless
we stick to the commonly used term of database transformation.

1.1 Contributions

Analogous to the seminal work on the ASM thesis this article contains two major
contributions. The first one is a characterisation of database transformations by a
set of simple and intuitive postulates. These postulates should cover all database
transformations, and thus leave sufficient latitude to specify the specific character-
istics of data models such as the standard relational data model, object oriented
data models, and databases based on the eXtensible Markup Language (XML). In
forthcoming studies we will elaborate the details for these models – for XML this
has been done in [16].

The second contribution is a variant of ASMs, which we call Database Abstract
State Machines (DB-ASMs). We show that DB-ASMs can capture exactly database
transformations stipulated by the postulates. That is, we first show that DB-ASMs
satisfy the postulates, and then that any object satisfying the postulates can be
simulated by a DB-ASM.

We start with examining database transformations in the light of the postulates
for sequential algorithms1 defined in [10]. Firstly, database transformations should
terminate, which implies that a run will always be finite and reach a final state.
Furthermore, in order to take into consideration not only deterministic but also
non-deterministic database transformations the requirement of a one-step transition
function has to be relaxed. We will permit a relation instead, leading to a slightly
modified sequential time postulate. The necessity for non-determinism arises among
others from the creation of objects [18].

According to the abstract state postulate for ASMs states are first-order struc-
tures, and the sets of states used for an algorithm are invariant under isomorphisms.
This notion of state must capture databases in general. Therefore, we will cus-
tomize the abstract state postulate requesting that a state is composed out of a
finite database component and an arbitrary algorithmic component that are linked
via bridge functions. This picks up a fundamental idea from meta-finite model
theory [9].

Same as for the parallel ASM thesis we have to refer explicitly to the back-
ground of a computation, which contains everything that is needed to perform the
computation, but is not yet captured by the state. For instance, truth values and
their connectives, and a value ⊥ to denote undefinedness constitute necessary el-
ements in a background. Furthermore, for database transformations we have to
capture constructs that are determined by the used data model, so we will have to

1In Gurevich’s theory sequential algorithms still permit bounded parallelism, whereas parallel
algorithms are understood to capture even unbounded parallelism.

A Customised ASM Thesis for Database Transformations 767

deal with type constructors, and with functions defined on such types. This will
lead us to the background postulate for database transformations.

The fourth postulate needed for the sequential ASM thesis, the bounded explo-
ration postulate, requires that there is a finite set of terms called bounded explo-
ration witness, and only these terms can be updated in a one-step transformation.
The generalisation of this postulate to the case of parallel algorithms in the parallel
ASM thesis [5] leads to several significantly more complex postulates. As database
transformations are intrinsically parallel computations, though an implementation
may be sequential, we have to adopt parts of these more complex postulates. The
adoption will only be partial, as the parallelism in database transformations – ex-
cluding for now the area of parallel databases – is rather limited; it merely amounts
to the same computation on different data.

Regarding the restricted form of parallelism needed for database transforma-
tions we capture this by location operators, which generalise aggregation functions
and cumulative updates. With these location operators we actually deal with meta-
finite structures with multiset operations as defined in [9]. In doing so, we have
to consider update multisets, which are reduced to update sets by means of the
location operators. Furthermore, depending on the data model used and thus on
the actual background signature we may use complex values, e.g. tree-structured
values, which leads to the problem of partial updates [11], i.e. we have to ensure
that parallel updates to different parts of a tree (or database object, in general) can
be synchronised. Dealing with partial updates actually is subsumed in the notion
of consistent update set. Taking these ingredients together we obtain a slightly
modified bounded exploration postulate.

The fifth postulate addresses non-determinism. As we permit non-determinism,
equivalence of substructures may indeed be destroyed, but the non-determinism
postulate ensures that non-determinism is restricted by depending only on the
database part and not on the algorithmic part. However, bridge functions need to
be restricted accordingly.

We then define DB-ASMs. Naturally, the permitted non-determinism requires
the presence of a choice construct, while the restricted parallelism leads to a let con-
struct that binds locations to location operators and a forall construct that allows
the creation of a finite number of parallel subcomputations. For DB-ASMs we first
show that they satisfy the postulates for database transformations. Our main result
then shows that DB-ASMs capture database transformations, i.e. every database
transformation stipulated by the postulates can be behaviourally simulated by a
DB-ASM.

1.2 Background and Previous Work

With the upcoming of query languages for object oriented databases [1] the view
that a query transforms databases over an input database schema into databases
over an output schema that is disjoint from the input schema had to be relaxed by
considering queries as transformations from an input schema to an extended output
schema that preserve the input. From here it is a very small step to consider

768 Klaus-Dieter Schewe and Qing Wang

database transformations in general [2]. Since then a lot of research has been
undertaken aiming at a logical characterisation of database transformations, e.g.
[1, 17, 20, 18].

As discussed in [1], database transformations should satisfy criteria such as
well-typedness, effective computability, genericity and functionality. However, most
research with respect to these properties was conducted only for queries. According
to [19] extending these results to updates is by no means straightforward. So far,
there is not yet a computation model that can serve as a theoretical foundation for
database transformations in general. In this article we aim at such a general model
exploiting the theory of ASMs.

This article extends and corrects a preliminary conference publication [21]. In
our previous work we tried to focus on tree-based databases, and therefore described
states by higher-order structures. In this article, however, we capture databases in
general, and therefore stay with first-order structures, while everything needed to
express the specific needs of a data model is subsumed by the inclusion of back-
ground structures, which among others provide the necessary type constructors.
Furthermore, we took up the idea from [22] to exploit meta-finite states [9]. In our
previous work we were not able to handle such bridge functions properly. Finally,
we polished the postulate capturing non-determinism.

1.3 Organisation of the Article

The remainder of this article is organised as follows. We begin with an illustrative
example in Section 2. Then in Section 3 we present in detail our five postulates for
database transformations. We motivate the postulates with examples that highlight
the specific problems of developing a customised ASM thesis for database transfor-
mations. In addition we discuss the differences to the postulates in the sequential
and parallel ASM theses. In Section 4 we present the DB-ASM variant of ASMs,
and show that DB-ASMs satisfy the postulates. While this is relatively easy to
achieve, we prove the converse in Section 5, i.e. DB-ASMs capture all database
transformations. We conclude in Section 6 with a summary and discussion of fur-
ther research, for which our current result is only the basis.

2 Illustrative Example

In this section we will provide an example to illustrate how a database transfor-
mation can be characterised by the five postulates and to answer the question of
what a simulating DB-ASM for a database transformation should look like. The
intention is to help the understanding of formal definitions presented in Section 3
and Section 4.

Example 1. Let us consider the weighted graph shown in Figure 1 and the
database transformation “find the cheapest costs to reach other cities from the
city C”, where a node in the graph denotes a city and an arrow between two nodes
denotes the transportation cost from one city to another.

A Customised ASM Thesis for Database Transformations 769

Figure 1: A weight graph with cities

Suppose that we choose the relational data model to represent the weighted
graph in a database. That is, the relations City and Route in Figure 2 contain the
information for cities and the transportation costs between two cities, respectively.
Furthermore, we need the relation Visited to keep track of cities that have already
been visited during the intermediate computation of a database transformation and
the relation Result to store the final result. Now we discuss how to characterise
this database transformation by using the five postulates.

• The sequential time postulate defines that this database transformation is a
step-by-step computation which proceeds by one-step transitions from states
to their successor states. A run of this database transformation is a finite
sequence of states. If a run starts from an initial state that has the relations
as shown in Figure 2, then it may terminate at a final state that has the
relations as shown in Figure 3.

• The abstract state postulate defines that each state of this database trans-
formation consists of the database part that contains four relations City,
Route, Visited and Result, the algorithmic part that is an infinite struc-
ture (R,+, ·,max,min,

∑
,
∏

) and a bridge function fb : ci → i for i = 0, ..., 5.
The purpose of the bridge function fb is to interpret abstract elements of the
attribute Cost in the relation Route of the database part with real numbers
from the algorithmic part.

• The background postulate defines the background of this database trans-
formation to reflect the choice of the relational data model and the use of
relational algebra for query rewriting and optimisation at the implementa-
tion level. Therefore, each state should contain a background class defined by
the background signature including at least type constructor symbols for the
relational data model (i.e., finite tuple (·) and finite set {·}) and relational
algebraic operators (i.e.,σ (selection), π (projection), ./ (join), ∪ (union),
− (difference), % (renaming)), a set of base domains and a set of algebraic
identities for rewriting query expressions.

• The bounded exploration postulate defines that, regardless of the chosen

770 Klaus-Dieter Schewe and Qing Wang

database language, etc, there must exist a fixed, finite set of access terms
for this database transformation, which should include at least (City(x,y),
true), (Route(x,y,z), true), (Visited(x), false), (Result(x,y,z), true) to ac-
cess elements in the database part of a state. Furthermore, for any two
different states, if they have the same interpretation for such a set of access
terms, then the database transformation much create the same set of update
sets over these two states at one-step transitions.

• The bounded exploration postulate defines that at any one-step transition
the number of successor states to a state is finite, depending on access terms
that can access elements from the database part of a state in a generic way.

City

Cid Name
i1 A
i2 B
i3 C
i4 D
i5 E

Route

FromCid ToCid Cost
i1 i2 c1
i1 i5 c4
i2 i3 c2
i2 i4 c1
...

Visited

Cid

Result

Cid TotalCost LastStop

Figure 2: The relations in an initial state

City

Cid Name
i1 A
i2 B
i3 C
i4 D
i5 E

Route

FromCid ToCid Cost
i1 i2 c1
i1 i5 c4
i2 i3 c2
i2 i4 c1
...

Visited

Cid
i3
i4
i2
i5
i1

Result

Cid TotalCost LastStop
i1 c5 i5
i2 c3 i4
i3 c0 null
i4 c1 i3
i5 c3 i4

Figure 3: The relations in a final state

As one of important results in this paper is the development of DB-ASMs that
can capture exactly all database transformations stipulated by the postulates, we

A Customised ASM Thesis for Database Transformations 771

implement Dijkstra’s algorithm in a DB-ASM to simulate the database transfor-
mation discussed in Example 1.

Assume that, we have nullary function symbols @startcity, @infinity, initial,
finished and mvalue in the state signature and @startcity=C, @infinity is a prede-
fined number that should be big enough to be distinguished from the calculated
cost numbers and initial=0 in every initial state of the database transformation.
Then a simulating DB-ASM is presented in Figure 4.

par if initial=0 then seq
forall x with City(x,y) do

if x=@startcity then
Result(x, 0, null):=true

else
Result(x,@infinity,null):=true

endif enddo
par initial:=1 finished:=0 endpar

endseq endif
if initial=1∧finished=0 then seq

finished:=1
let θ(mvalue)=min in

forall y with ∃ x,y. Result(x,y,z)∧ y< @infinity∧¬ Visited(x) do
par mvalue:=fb(y) finished:=0 endpar

enddo
endlet
if finished=0 then

choose x with ∃y,z.Result(x,y,z)∧fb(y)=mvalue do seq
Visited(x):=true
forall y,y

′
,z

′
,z with Route(x,y,z)∧ Result(y,y

′
,z

′
)∧

mvalue+fb(z)< fb(y
′
)∧¬ Visited(y) do seq

f(y):=new()
par

Result(y,f(y),x):=true
Result(y,y

′
,z

′
):=false

fb(f(y)):=mvalue+fb(z)
endpar

endseq enddo
endseq enddo

endif
endseq endif

endpar

Figure 4: A simulating DB-ASM

772 Klaus-Dieter Schewe and Qing Wang

3 Postulates for Database Transformations

In this section we will formally introduce the five postulates for database transfor-
mations: the sequential time postulate, the abstract state postulate, the background
postulate, the bounded exploration postulate, and the bounded non-determinism pos-
tulate.

Definition 1. A database transformation is an object satisfying the sequential
time postulate, the abstract state postulate, the background postulate, the bounded
exploration postulate, and the bounded non-determinism postulate.

3.1 Sequential Time

As in [10] and [5] we assume that a database transformation same as any algorithm
proceeds step-wise on a set of states. It starts somewhere, which gives us a set of
initial states. However, while it makes perfect sense to consider non-terminating
algorithms, we want to consider only terminating database transformations, for
which we add a set of final states. As discussed in [10] this is more a technicality
as far as the work in this paper is concerned, but we aim at embedding our results
into a theory of database systems, in which many database transformations have
to co-exist.

Furthermore, we deviate from the sequential time postulate in the sequential
and parallel ASM theses by using a one-step transition relation on states as in
bounded-choice sequential algorithms [12] instead of a transformation function.
This introduces non-determinism into database transformations, which will be lim-
ited by further postulates. In fact we will only permit non-deterministic choice
among the finite answer to a query. The major reason for the non-determinism in
database transformations is the need for creating objects in some data models as
discussed intensively in [19, 17, 18].

Postulate 1 (sequential time postulate). A database transformation t is associated
with a non-empty set of states St together with non-empty subsets It and Ft of
initial and final states, respectively, and a one-step transition relation τt over St,
i.e. τt ⊆ St × St.

The sequential time postulate allows us to define the notion of a run in analogy
to sequential and parallel algorithms. As we require termination, a run must be
finite ending in a final state, which should be the first final state that is reached.
Nevertheless, we permit the initial state in a run to be also a final state. The
motivation behind this is that database transformations, though treated in isolation
in this paper, are associated with a database system, in which each run of a database
transformation produces a state transition, and the final state of that transition
becomes the initial state for another transition, etc. leading to an infinite sequence
of states that results from running a set of database transformations in a serial (or
serialisable) way. This view of database systems has been stressed in [14].

A Customised ASM Thesis for Database Transformations 773

Definition 2. A run of a database transformation t is a finite sequence S0, . . . , Sf
of states with S0 ∈ It, Sf ∈ Ft, Si /∈ Ft for 0 < i < f , and (Si, Si+1) ∈ τt for all
i = 0, . . . , f − 1.

We will consider database transformations only up to behavioural equivalence.

Definition 3. Database transformations t1 and t2 are behaviourally equivalent iff
St1 = St2 , It1 = It2 , Ft1 = Ft2 and τt1 = τt2 hold.

Obviously, behaviourally equivalent database transformations have the same
runs.

3.2 Abstract States

The abstract state postulate is an adaptation of the corresponding postulate for Ab-
stract State Machines [10], according to which states are first-order structures, i.e.
sets of (partial) functions, some of which may be marked as relational. These func-
tions are interpretations of function symbols given by some signature. Following
[10] it is assumed that each signature contains the equality sign, and nullary names
true, false, undef, a unary name Bool, and the names of the usual Boolean opera-
tions. With the exception of undef all these logic names are relational. Equality,
truth values and Boolean operations are interpreted in a fixed way in all states. In
particular, partial functions are captured by the undefinedness value ⊥ associated
with undef.

Definition 4. A signature Σ is a set of function symbols, each associated with
a fixed arity. A structure over Σ consists of a set B, called the base set of the
structure together with interpretations of all function symbols in Σ, i.e. if f ∈ Σ
has arity k, then it will be interpreted by a function from Bk to B.

Let X be a structure over Σ. For each term t ∈ Σ we use valX(t) to denote the
interpretation of t in the structure X.

Definition 5. An isomorphism from structure X to structure Y is defined by
a bijection σ : BX → BY between the base sets that extends to functions by
σ(valX(f(b1, . . . , bk))) = valY (f(σ(b1), . . . , σ(bk))). A Z-isomorphism for Z ⊆
BX ∩ BY is an isomorphism σ from X to Y that fixes Z, i.e. σ(b) = b for all
b ∈ Z.

As the base set B contains a value ⊥ representing undefinedness, partial func-
tions are captured in the usual way. Furthermore, relations are captured by letting
valX(f(a1, . . . , ak)) = true mean that (a1, . . . , ak) is in the relation f of X, and
valX(f(a1, . . . , ak)) = false mean that it is not.

Z-isomorphisms are needed when dealing with constants in the base set that are
represented by 0-ary function symbols. However, an automorphism σ of a structure
X fixes all values a ∈ B that are represented by ground terms, i.e. if a = valX(t)
holds for some ground term t, then σ(a) = a holds for each automorphism σ of

774 Klaus-Dieter Schewe and Qing Wang

X. Thus, Z-isomorphisms can be neglected, as we could always add syntactic
surrogates, i.e. 0-ary function symbols for all elements of Z to the signature Σ.

Taking structures as states reflects common practice in mathematics, where
almost all theories are based on first-order structures. Variables are special cases
of function symbols of arity 0, and constants are the same, but unchangeable.

In the case of databases we have to take care of two specific problems that affect
the definition of states. The first problem is the intrinsic finiteness of databases. For
this it is tempting to adopt Finite Model Theory [8] and consequently require that
states for database transformations are finite structures. This would, however,
not capture the full picture. For instance, a simple query counting the number
of tuples in a relation would require natural numbers in the base set, and any
restriction to a finite set would already rule out some database transformations.
Fortunately, in order to deal with this problem Grädel and Gurevich proposed
the use of meta-finite structures [9], henceforth meta-finite states, in which we
may consider actual database entries as being merely surrogates for real values.
This permits the database to remain finite while adding functions that interpret
database entries in possibly infinite domains, and at the same time generalises most
of the result achieved in Finite Model Theory to meta-finite models. We adopt
this model, and consequently there will be three kinds of function symbols, those
representing the database, those representing everything outside the database, and
bridge functions that map surrogates in the database to values outside the database
in possibly infinite domains.

There is one little sublety here that we also have to take care of. In object-
oriented databases we may make use of object identifiers, in tree-based databases
we may require identifiers for tree nodes, and in both cases there is a need to
create new identifiers. As discussed in [10] the creation of new values in principle
is no problem, as we can assume an infinite set of reserve values existing in the
background of a database transformation, from which such new values are taken,
but it is not a priori clear how many such values will be needed. In the subsection
on backgrounds we will further clarify this matter. Therefore, this problem can be
circumvented by requiring that only the active database domain is finite, i.e. the
set of values of the base set appearing in the database part of the structure.

The second database-specific problem is the presence of a data model that
prescribes how a database should look like. In case of the relational model we
would have to deal simply with relations, while in case of object-oriented and
XML-based databases we need constructors for complex values such as finite sets,
multisets, maps, arrays, union, trees, etc. We will deal with the consequences for
states separately in the subsection on backgrounds.

Definition 6. The signature Σ of a meta-finite structure is composed as a disjoint
union consisting of a sub-signature Σdb (called database part), a sub-signature Σa
(called algorithmic part) and a finite set of bridge function symbols each with a
fixed arity, i.e. Σt = Σdb∪Σa∪{f1, . . . , f`}. The base set of a meta-finite strcuture
S is B = Bextdb ∪ Ba with interpretation of function symbols in Σdb and Σa over
Bdb ⊆ Bextdb and Ba, respectively, with Bdb depending on S. The interpretation of a

A Customised ASM Thesis for Database Transformations 775

bridge function symbol of arity k defines a function from Bkdb to Ba. With respect
to such states S the restriction to Σdb is a finite structure, i.e. Bdb is finite.

Postulate 2 (abstract state postulate). All states S ∈ St of a database trans-
formation t are meta-finite structures over the same signature Σt, and whenever
(S, S′) ∈ τt holds, the states S and S′ have the same base set B. The sets St, It
and Ft are closed under isomorphisms, and for (S1, S

′
1) ∈ τt each isomorphism σ

from S1 to S2 is also an isomorphism from S′1 to S′2 = σ(S′1) with (S2, S
′
2) ∈ τt.

The abstract state postulate is an adaptation of the analogous postulate from
[10, 5] to further consider states as being meta-finite structures, the presence of
final states and the fact that one-step transition is a binary relation.

Example 2. Consider a database, in which we represent persons with their name
and age. In the sub-signature Σdb we would thus have a binary function symbol
person. In addition, Σa could contain a unary function symbol even, and we
would have two bridge functions fname and fage for the interpretation of the two
components of persons.

In a structure, we would get Bdb = Dname ∪Dage ∪ {true, false} as a union of
three disjoint, finite sets, and Ba = N ∪A∗ as the union of the set of non-negative
integers and the set of character strings over some alphabet A, both infinite.

The function symbol person would be interpreted by a function Dname×Dage →
{true, false}, and even would be interpreted by a function N → {true, false}.
The bridge function symbols would be interpreted as functions Dname → A∗ and
Dage → N, respectively.

Using this representation of a finite relation of persons with name and age, a
query such as “List the names of all persons with even age” would be possible,
provided we add a unary function symbol names to the signature to pick up the
result.

Similarly, a query such as “List the names of all persons who are older than
average” would require 0-ary function symbols age sum, count , and average age as
well as a binary function symbol > in the algorithmic part of the signature.

In the abstract state postulate above we adopt the idea of meta-finite states,
but we do not restrict the database part of the state to be relational, so we can
capture data models other than the relational one as well.

Let us finally look at genericity as expressed by the preservation of isomor-
phisms in successor states. In the sequential ASM thesis sequential algorithms are
deterministic, so a state S has a unique successor state τ(S). Then the abstract
state postulate implies that an automorphism σ of S is also an automorphism of
τ(S). In the abstract state postulate for database transformations (i.e., Postulate
2), however, there can be more than one successor state of S, as τt is a relation.
Now, if σ is an automorphism of S, and (S, S′) ∈ τt holds, we obtain an isomor-
phism σ from S′ to S′′ = σ(S′) with (S, S′′) ∈ τt. Thus, an automorphism of S
induces a permutation of the successor states of S.

776 Klaus-Dieter Schewe and Qing Wang

3.3 Updates

The definitions of locations, updates, update sets and update multisets are the
same as for ASMs [6].

Definition 7. For a database transformation t let S be a state of t, f a dynamic
function symbol of arity n in the state signature of t, and a1, ..., an, v be elements
in the base set of S. Then f(a1, ..., an) is called a location of t. The interpretation
of a location ` in S is called the content of ` in S, denoted by valS(`). An update
of t is a pair (`, v), where ` is a location and v is an update value. An update set is
a set of updates; an update multiset is a multiset of updates.

An update is trivial in a state S if its location content in S is the same with its
update value, while an update set is trivial if all of its updates are trivial.

An update set ∆ is consistent if it does not contain conflicting updates, i.e. for
all (`, v), (`, v′) ∈ ∆ we have v = v′.

Using a location function (denoted by θ) that assigns a location operator or ⊥
to each location, an update multiset can be reduced to an update set. It is further
possible to construct for each (S, S′) ∈ τt a minimal update set ∆(t, S, S′) such that
applying this update set to the state S will produce the state S′. More precisely,
if S is a state of the database transformation t and ∆ is a consistent update set
for the signature of t, then there exists a unique state S′ = S + ∆ resulting from
updating S with ∆: we simply have

valS+∆(`) =

{
v if (`, v) ∈ ∆

valS(`) else

If ∆ is not consistent, we let S+∆ be undefined. Note that this last point is dif-
ferent from the treatment of inconsistent update sets in [10], but as discussed there
the difference is a mere technicality as long as we concentrate on a single database
transformation. Same as with final states the distinction only becomes necessary
when placed into the context of persistence with several concurrent database trans-
formations, and a serialisability request. In that case a computation that gets stuck
and thus has to be aborted (this is the case, when S + ∆ is undefined) has to be
distinguished from a computation that produces the same state S over and over
again (this is the case, if S + ∆ is defined as S in case of ∆ being inconsistent as
in [10]).

Lemma 1. Let S, S′ ∈ St be states of the database transformation t with the same
base set. Then there exists a unique, minimal consistent update set ∆(t, S, S′) with
S′ = S + ∆(t, S, S′).

Note that the minimality of the update set implies the absence of trivial updates.

Proof. Let Loc∆ = {` | valS(`) 6= valS′(`)} be the set of locations, on which the
two states differ. Then the update set ∆(t, S, S′) = {(`, valS′(`) | ` ∈ Loc∆} is the
one needed.

A Customised ASM Thesis for Database Transformations 777

Let us now look at the one-step transition relation τt of a database transforma-
tion t. As we permit non-determinism, i.e. there may be more than one successor
state of a state S, we need a set of update sets. Therefore, define

∆(t, S) = {∆(t, S, S′) | (S, S′) ∈ τt}

for a database transformation t and a state S ∈ St.
Let us take a brief look at the effect of isomorphisms on update sets and

sets of update sets. For this, any isomorphism σ can be extended to updates
(f(a1, . . . , an), b) by defining σ((f(a1, . . . , an), b)) = (f(σ(a1), . . . , σ(an)), σ(b)),
and to sets by defining σ({u1, . . . , uk}) = {σ(u1), . . . , σ(uk)}.

Lemma 2. Let S1 be a state of a database transformation t and σ be an isomor-
phism from S1 to S2. Then ∆(t, S2, σ(S′1)) = σ(∆(t, S1, S

′
1)) for all (S1, S

′
1) ∈ τt,

and consequently ∆(t, S2) = σ(∆(t, S1)).

Proof. According to the abstract state postulate all (S2, S
′
2) ∈ τt have the form

(σ(S1), σ(S′1)) with (S1, S
′
1) ∈ τt. Then valσ(S1)σ(`) = σ(valS1

(`)) and analogously
for S′1. So

Loc∆2
= {` | valS2

(`) 6= valS′
2
(`)} = {σ(`) | valS1

(`) 6= valS′
1
(`)} = σ(Loc∆1

),

and

∆(t, S2, S
′
2) ={(`, valS′

2
(`)) | ` ∈ Loc∆2

} =

{(σ(`
′
), σ(valS′

1
(`

′
))) | σ(`

′
) ∈ σ(Loc∆1)} = σ(∆(t, S1, S

′
1)).

3.4 Backgrounds

The postulates 1 and 2 are in line with the sequential and parallel ASM theses
[10, 5], and with the exception of allowing non-determinism in the sequential time
postulate and the reference to meta-finite structures in the abstract state postulate
there is nothing in these postulates that makes a big difference to postulates for
sequential algorithms. The next postulate, however, is less obvious, as it refers
to the background of a computation, which contains everything that is needed to
perform the computation, but is not yet captured by the state. For instance, truth
values and their connectives, and a value ⊥ to denote undefinedness constitute
necessary elements in a background.

For database transformations, in particular, we have to capture constructs that
are determined by the used data model, e.g. relational, object-oriented, object-
relational or semi-structured, i.e. we will have to deal with type constructors, and
with functions defined on such types. Furthermore, when we allow values, e.g.
identifiers to be created non-deterministically, we would like to take these values
out of an infinite set of reserve values. Once created, these values become active,
and we can assume they can never be used again for this purpose.

778 Klaus-Dieter Schewe and Qing Wang

Let us take the following example, which was used in [1] to illustrate a data
model that generalises most of known complex object data models. In this model a
distinction is made between abstract identifiers and constants. These elements stem
from disjoint base domains, which together constitute the base set for database
transformations. With the addition of constructors for records, sets, multisets,
lists, etc. domains of arbitrarily nested complex values can be built upon the base
domains. For instance, a domain D(Int,{String}) over base domains Int and String
would represent complex record values consisting of an integer and a set of strings.

Example 3. Suppose that the state of a database has a universe containing
abstract identifiers from domains I1 = {ieve, iadam}, I2 = {icain, iabel, iseth, iother},
I3 = {ink

|k = 1, ..., 5}, I4 = {iok |k = 1, ..., 3}, I5 = {id1 , id2} and constants
from domains String and Bool. Furthermore, assume that we have the following
constructors: finite sets {·} with unfixed arity, records (·) with arity up to 3, and
union ∪ with arity 2.

Let the state signature contain function names 1st-generation, 2nd-generation,
name, occupation, descendant, and relation names founded-lineage, ancestor-of-
celebrity such that

• 1st-generation: I1 → D(nam:I3,spou:I1,children:{I2}),

• 2nd-generation: I2 → D(nam:I3,occu:I4),

• founded-lineage: 2nd-gen:I2 → Bool,

• ancestor-of-celebrity : anc:I2× desc:I5 → Bool,

• name: I3 → DString,

• occupation: I4 → D{String},

• descendant : I5 → DString∪(spou:String).

The interpretation of function and relation names in the state signature is as
follows:

• for 1st-generation, ieve 7→ (nam: in1 , spou: iadam, children: {icain, iabel, iseth,
iother}) and iadam 7→ (nam:in2

, spou: ieve, children:{icain, iabel, iseth, iother}),

• for 2nd-generation, icain 7→ (nam: in3
, occu: io1), iseth 7→ (nam: in4

, occu:
io2) and iabel 7→ (nam: in5

, occu: io3),

• for founded-lineage, it is {(2nd-gen: icain),(2nd-gen: iseth),(2nd-gen: iother)},

• for ancestor-of-celebrity, it is {(anc: iseth, desc: id1), (anc: icain, desc: id2)},

• for name, in1 7→ Eve, in2 7→ Adam, in3 7→ Cain, in4 7→ Seth and in5 7→ Abel,

• for occupation, io1 7→ {Farmer, Nomad, Artisan}, io2 7→ {} and io3 7→
{Shepherd},

A Customised ASM Thesis for Database Transformations 779

• for descendant, id1 7→ Noah and id2 7→ (spou: Ada).

That is, objects of 1st-generation are described by a name, a reference to a
spouse, and a set of references to children. Objects of 2nd-generation are described
by a name and a set of professions, and objects of descendant are described by a
name only or a record with a name. The founded-lineage defines a subset of the
second generation, and ancestor-of-celebrity is a simple binary relation.

Suppose, we want to create a new object with a new identifier in I3. For
this, we obtain a new identifier i3 ∈ I3, from the set of reserve values. We then
set name(i3) := Isaac and ancestor-of-celebrity(iseth, i3) := true to update name
and ancestor-of-celebrity (taking false as the default value for all other cases).
Similarly, with founded-lineage(iother) := false we would delete iother from the
founded-lineage relation.

Following [5] we use background classes to define backgrounds, which will then
become part of states. Background classes themselves are determined by back-
ground signatures that consist of constructor symbols and function symbols. Func-
tion symbols are associated with a fixed arity as in Definition 4, but for constructor
symbols we permit the arity to be unfixed or bounded.

Definition 8. Let D be a set of base domains and VK a background signature,
then a background class K with VK over D is constituted by

• the universe U =
⋃
D∈DD of elements, where D is the smallest set withD ⊆ D

satisfying the following properties for each constructor symbol xy ∈ VK :

– If xy ∈ VK has unfixed arity, then xDy ∈ D for all D ∈ D, and
xa1, . . . , amy ∈ xDy for every m ∈ N and a1, . . . , am ∈ D.

– If xy ∈ VK has unfixed arity, then Axy ∈ D with Axy =
⋃

xDy∈D
xDy.

– If xy ∈ VK has bounded arity n, then xD1, . . . , Dmy ∈ D for all m ≤ n
and Di ∈ D (1 ≤ i ≤ m), and xa1, . . . , amy ∈ xD1, . . . , Dmy for every
m ∈ N and a1, . . . , am ∈ D.

– If xy ∈ VK has fixed arity n, then xD1, . . . , Dny ∈ D for all Di ∈ D
(1 ≤ i ≤ n), and xa1, . . . , any ∈ xD1, . . . , Dny for all a1, . . . , an ∈ D.

• and an interpretation of function symbols in VK over U .

Example 4. Let us consider the type system used in [1] with some slight modifi-
cations. Type expressions are defined as follows:

τ = λ | D | P | (A1 : τ1, . . . , Ak : τk) | {τ} | τ1 t τ2 | τ1 u τ2

The semantics of these type expressions, denoted as [[τ]], is formally defined as

780 Klaus-Dieter Schewe and Qing Wang

follows:

[[λ]] = ∅
[[D]] = ξ1(D)

[[P]] = ξ2(P)

[[(A1 : τ1, ..., Ak : τk)]] = {(A1 : v1, ..., Ak : vk) | vi ∈ [[τi]], i = 1, ..., k}
[[{τ}]] = {{v1, ..., vj} | j ≥ 0 and vi ∈ [[τ]], i = 1, ..., j}

[[τ1 t τ2]] = [[τ1]] ∪ [[τ2]]

[[τ1 u τ2]] = [[τ1]] ∩ [[τ2]]

So λ is a trivial type denoting the empty set ∅. D and P represent a base type
for constants and a class type for objects, respectively, and ξ1 and ξ2 are functions
mapping each base type to a possibly infinite set of constants, and each class type
to a finite set of objects, respectively. In addition to these, there are constructor
symbols – records (·) with bounded arity k, finite sets {·} with unfixed arity, as
well as unions t and intersections u, both of arity 2.

The types are associated with function symbols ∈ of arity 2 denoting set mem-
bership, πi (1 ≤ i ≤ k) of arity k denoting projection functions on records, and ∪
and ∩, both of arity 2 denoting union and intersection, respectively.

For every database transformation, a binary tuple constructor (,) is indispens-
able. This is due to the formalisation of update that is a pair of a location and an
update value as defined in Definition 7. The type constructor for finite multisets
also plays a critical role in database transformations since a database transfor-
mation may have many subcomputations running in parallel, which yield possibly
identical updates. As we will introduce later, by assigning location operators to
locations, identical updates yielded during a computation can be aggregated to
form a final update in an update set yielded by a one-step transition. Therefore,
we need the type constructor for finite multisets to collect all updates generated
during parallel computations.

The following are several multiset operations [5]. We use the constructor symbol
〈·〉 for finite multisets with unfixed arity. Let x and y be two multisets, and M be
a set of multisets.

• x] y returns a multiset that has members from x and y, and the occurrence
of each member is the sum of the occurrences of such a member in x and in
y.

•
⊎
M returns a multiset that has members from all elements of M , and the

occurrence of each member is the sum of the occurrences of such a member
in all elements of M .

• AsSet(x) returns a set that has the same members as x, such that

AsSet(x) = {a| a ∈ x}

A Customised ASM Thesis for Database Transformations 781

• Ix is defined by

Ix =

{
a if x = 〈a〉
⊥ otherwise

Postulate 3 (background postulate). Each state of a database transformation t
must contain

• an infinite set of reserve values,

• truth values and their connectives, the equality predicate, the undefinedness
value ⊥, and

• a background class K defined by a background signature VK that contains
at least a binary tuple constructor (·), a finite multiset constructor 〈·〉, and
function symbols for operations such as pairing and projection for pairs, and
empty multiset 〈〉, singleton 〈x〉, binary multiset union], general multiset
union

⊎
, AsSet, and Ix on multisets.

The minimum requirements in the background postulate are the same as for
parallel algorithms [5], but we leave it open how many other constructors will be
in a background class in order to capture any request in data models.

Given the base set of a state S, we can add truth values and ⊥, and partition
them into base domains. Then the background class K contained in S can be
obtained by applying the construction provided in Definition 8 to get a much larger
base set and to interpret functions symbols in VK with respect to this enlarged base
set.

3.5 Bounded Exploration

The bounded exploration postulate for sequential algorithms requests that only
finitely many terms can be updated in an elementary step [10]. For parallel algo-
rithms this postulate becomes significantly more complicated, as basic constituents
not involving any parallelism (so-called “proclets”) have to be considered [5].

For database transformations the problem lies somehow in between. Compu-
tations are intrinsically parallel, even though implementations may be sequential,
but the parallelism is restricted in the sense that all branches execute de facto the
same computation. We will capture this by means of location operators, which
generalise aggregation functions as in [7] and cumulative updates.

The idea behind location operators is inspired by the synchronisation of parallel
updates in [5]. First, updates generated by parallel computations define an update
multiset, then all updates to the same location are merged by means of a location
operator to reduce the update multiset to an update set.

Definition 9. Let M(D) be the set of all non-empty multisets over a domain D,
then a location operator ρ over M(D) consists of a unary function fα : D → D,

782 Klaus-Dieter Schewe and Qing Wang

a commutative and associative binary operation � over D, and a unary function
fβ : D → D, which define ρ(m) = fβ(fα(b1) � · · · � fα(bn)) for m = 〈b1, ..., bn〉 ∈
M(D).

If a database transformation uses location operators, they must be defined in
the algorithmic part of states requested in Postulate 2.

Example 5. sum is a location operator with fα(v) = v, v1 � v2 = v1 + v2, and
fβ(v) = v. Another example is avg with fα(v) = (v, 1), (v1, w1) � (v2, w2) =
(v1 + v2, w1 + w2), and fβ((v, w)) = v ÷ w.

Location operators define operations on multisets, and as such form an impor-
tant part of logics for meta-finite structures [9]. They permit to express in a simple
way the restricted parallelism in many database aggregate functions such as build-
ing sums or average values over query results, selecting maximum or minimum, and
even structural recursion on sets, multisets, lists or trees.

Example 6. Consider the evaluation of a Boolean formula ∀x ∈ D1∃y ∈ D2ϕ(x, y).
Assume the evaluation result will be stored at location `. Let the cardinalities of D1

and D2 be n1 and n2, respectively. Then there are two nested parallel computations
involved in the evaluation. The inner parallel computation for a specific value
ui ∈ D1 (i ∈ [1, n1]) has n2 parallel branches, each of which evaluating a term
ϕ(ui, vj) for the various values vj ∈ D2 (j ∈ [1, n2]), thus producing an update
multiset with n2 updates (`, true) or (`, false). Using θ(`) =

∨
(logical OR) as

location operator – in this case fα and fβ are the identity function, and � is ∨
– evaluates the inner existentially quantified formula, thereby producing another
update multiset with n1 entries (`, true) or (`, false). Using the location operator
θ(`) =

∧
(logical AND) reduces this update multiset to a set with a single update.

Depending on the data model used and thus on the actual background signature
we may use complex values, e.g. tree-structured values. As a consequence we have
to cope with the problem of partial updates [11], e.g. the synchronisation of updates
to different parts of the same tree values, or more generally complex database
objects. Since updates may produced at different levels of abstraction, overlapping
locations can lead to clashes. However, the issues relating to inconsistent update
sets are irrelevant for the proof of the characterization theorem in Section 5 as
shown in [5, 10]. That is, the problem of partial updates is subsumed by the
problem of providing consistent update sets, in which there cannot be pairs (`, v1)
and (`, v2) with v1 6= v2.

The bounded exploration postulate in [10] for sequential algorithms is motivated
by the sequential accessibility principle, which could be phrased as the request that
each location must be uniquely identifiable. Leaving aside the discussion how to
deal logically with partially defined terms unique identifiability can be obtained by
using terms of the form Ix.ϕ(x) with a formula ϕ, in which x is the only free variable.
Such terms have to be interpreted as “the unique x satisfying formula ϕ(x)”, which
of course may be undefined, if no such x exists or more than one exist. According to

A Customised ASM Thesis for Database Transformations 783

the modified abstract state postulate 2 for database transformations the sequential
accessibility principle must be preserved for the algorithmic part of the structure.

In principle, the claim of unique identifiability also applies to databases, as em-
phasised by Beeri and Thalheim in [4]. More precisely, unique identifiability has to
be claimed for the basic updatable units in a database, e.g. objects in [15]. Unique
identifiability, however, does not necessarily apply to all elements in a database.
Sets of logically indistinguishable locations may be updated simultaneously. Nev-
ertheless, for databases only logical properties are relevant – this is the so-called
“genericity principle” in database theory [3] – and therefore, it must still be possi-
ble to use terms to access elements and locations in the database part of a state.
These terms, however, may be non-ground. If a non-ground term identifies more
than one location in a state S, these locations will be called accessible in parallel.

Definition 10. Let S be a state of the database transformation t. An element a
of S is accessible if there is a ground term α in the signature of S that is interpreted
as a in S. A location f(a1, . . . , an) is accessible if the elements a1, . . . , an are all
accessible. An update (f(a1, . . . , an), b) is accessible if the location f(a1, . . . , an)
and the element b are accessible.

Locations f(a1
1, . . . , a

1
n), . . . , f(am1 , . . . , a

m
n) with f ∈ Σdb are accessible in par-

allel if there exists a term α and an accessible element b
′
, such that the values for

which α is interpreted by b
′

in S are f(a1
1, . . . , a

1
n), . . . , f(am1 , . . . , a

m
n).

Updates (f(a1
1, . . . , a

1
n), b), . . . , (f(am1 , . . . , a

m
n), b) with f ∈ Σdb are accessible

in parallel iff f(a1
1, . . . , a

1
n), . . . , f(am1 , . . . , a

m
n) are accessible in parallel and b is

accessible.

The first part of Definition 10 is exactly the same as defined in [10, Definition
5.3]. The second part formalises our discussion above.

Example 7. Take a database transformation t with a ternary predicate symbol
R in its signature. Let the interpretation of R in a state S be {(a, a, b), (a, b, c),
(b, b, a), (b, a, c)}. Then R(a, a, b) and R(b, b, a) are accessible in parallel using the
term R(x, x, y) and the accessible element true.

The bounded exploration postulate in the sequential ASM thesis in [10] uses a
finite set of ground terms as bounded exploration witness in the sense that whenever
states S1 and S2 coincide over this set of ground terms the update set produced
by the sequential algorithm is the same in these states. The intuition behind the
postulate is that only the part of a state that is given by means of the witness will
actually be explored by the algorithm.

The fact that only finitely many locations can be explored remains the same
for database transformations. However, permitting parallel accessibility within the
database part of a state forces us to slightly change our view on the bounded
exploration witness. For this we need access terms.

Definition 11. An access term is either a ground term α or a pair (β, α) of terms,
the variables x1, . . . , xn in which must be database variables, referring to the argu-
ments of some dynamic function symbol f ∈ Σdb ∪ {f1, ..., f`}. The interpretation

784 Klaus-Dieter Schewe and Qing Wang

of (β, α) in a state S is the set of locations

{f(a1, . . . , an) | valS,ζ(β) = valS,ζ(α) with ζ = {x1 7→ a1, . . . , xn 7→ an}}.

Structures S1 and S2 coincide over a set T of access terms if the interpretation
of each α ∈ T and each (β, α) ∈ T over S1 and S2 are equal.

Instead of writing (β, α) for an access term, we should in fact write (f, β, α),
but for simplicity we drop the function symbol f and assume it is implicitly given.

Due to our request that the database part of a state is always finite there will
be a maximum number m of elements that are accessible in parallel. Furthermore,
there is always a number n such that n variables are sufficient to describe the
updates of a database transformation, and n can be taken to be minimal. Then for
each state S the upper boundary of exploration is O(mn), where m depends on S.
Taking these together we obtain our fourth postulate.

Postulate 4 (bounded exploration postulate). For a database transformation t
there exists a fixed, finite set T of access terms of t such that ∆(t, S1) = ∆(t, S2)
holds whenever the states S1 and S2 coincide over T .

As in the sequential ASM thesis we continue calling the set T of access terms a
bounded exploration witness. The only difference to the bounded exploration postu-
late for sequential algorithms in [10] is the use of access terms (β, α), whereas in the
sequential ASM thesis only ground terms are considered. Access terms of the form
(β, α) are actually equivalent to closed set comprehension terms {f(x1, . . . , xn) |
β = α}, i.e. they express first-order queries to the database similar to the relational
calculus, and due to the fact that the database part of a state is a finite structure
the set of locations defined by an access term is always finite. However, building
terms on top of the state signature does not yet capture such terms. Access terms
for the algorithmic part can still only be ground terms, otherwise finiteness cannot
be guaranteed. Therefore, the modified Postulate 4 still expresses the same inten-
tion as the bounded exploration postulate for sequential algorithms does, i.e. only
finitely many locations can be updated at a time, and these locations are deter-
mined by finitely many terms that appear in some way in the textual description
of a database transformation.

3.6 Bounded Non-determinism

The last postulate addresses the question of how non-determinism is permitted in a
database transformation. To handle this, we need to further clarify the relationship
between access terms and states. As defined in the abstract state postulate, every
state of a database transformation is a meta-finite structure consisting of two parts:
the database part and algorithmic part, which are linked via a fixed, finite number
of bridge functions. To restrict non-determinism in a database transformation t,
we consider that ground access terms of t can access only the algorithmic part
of a state, while non-ground access terms of t can access both the database and
algorithmic parts of a state. Furthermore, variables in non-ground access terms are
limited to range merely over the database part.

A Customised ASM Thesis for Database Transformations 785

Example 8. Let us look back Example 2 again. We would have

• 2, 7.8, +(3, 9) and Even(9) as ground access terms, and

• (Person(x, y, z, z
′
), true), (fnum(x), 8), (+(fnum(x), fnum(y)), 20) and

(Even(fnum(x)), false) as non-ground access terms.

Given a meta-finite structure with the signature Σ = Σdb ∪Σa ∪{f1, ..., f`} and
the base set B, i.e., B = Bdb ∪Ba, we now formally define access terms.

Definition 12. A ground access term is defined by the following rules:

• α ∈ Ba is a ground access term, and

• f(α1, ..., αn) for n-ary function symbol f ∈ Σa and ground access terms
α1, ..., αn is a ground access term.

A non-ground access term is a pair (β, α) of terms, in which at least one of
them is a non-ground term inductively defined by applying function symbols from
Σ over variables in accordance with the definition of a meta-finite structure as in
Definition 6.

We define equivalent substructures in the following sense.

Definition 13. Given two structures S′ and S of the same signature Σ, a structure
S′ is a substructure of the structure S (notation: S′ � S) if

• the base set B′ of S′ is a subset of the base set B of S, i.e., B′ ⊆ B, and

• for each function symbol f of arity n in the signature Σ the restriction of
valS(f(x1, ..., xn)) to B′ results in valS′(f(x1, ..., xn)).

Substructures S1, S2 � S are equivalent (notation: S1 ≡ S2) if there exists
an automorphism σ ∈ Aut(S) with σ(S1) = S2. The equivalence class of a sub-
structure S′ in the structure S is the subset of all substructures of S which are
equivalent to S′.

Example 9. Let us consider a simple ternary relation schema R. Suppose our
database contains R(a, a, b1), R(b, b, a1), R(c1, c, c2). Then R(a, a, b1) defines a sub-
structure with base set {a, b1}. This substructure is equivalent to the substructure
R(b, b, a1), as the isomorphism defined by the permutation (a, b)(b1, a1) just swaps
the two substructures.

If, however, we have a second relation schema R
′
, and the database contains

only R
′
(a, b1) and R

′
(c, c), then the restriction to {a, b1} defines a substructure

containing R(a, a, b1) and R
′
(a, b1), whereas the restriction to {b, a1} defines a

substructure R(b, b, a1) – these substructures are no longer equivalent.
If the database contained also R

′
(b, a1), the two restrictions would again define

equivalent substructures.

786 Klaus-Dieter Schewe and Qing Wang

Now we need to discuss the relationship between access terms and states, and
explain how non-determinism can be restricted in a database transformation via
access terms. Let us start with the simple case that states have no bridge func-
tions and thereby only elements in the database part of a state are accessible in
parallel via the interpretation of non-ground access terms. As the abstract state
postulate captures the genericity of database transformations (i.e., preserved under
isomorphisms [3]), an isomorphism between two states gives rise to an isomorphism
between their corresponding successor states. Consequently, whenever a substruc-
ture S

′
of the database part is preserved in some successor state, each substructure

in the equivalence class of S
′

is preserved in some (possibly same) isomorphic suc-
cessor state. This is because the automorphism that interchanges two equivalent
substructures permutes successor states, according to Definition 13. Nevertheless,
it is also possible that there exists a successor state, in which none of substructures
in the equivalence class of S

′
is preserved.

Example 10. Let us consider the relation R = {(a, a, b1), (b, b, a1), (c1, c, c2)} in
Example 9 again.

• Suppose that we non-deterministically delete a tuple from R in a state S.
Then there will be three successor states of S with R = {(b, b, a1), (c1, c, c2)},
R = {(a, a, b1), (c1, c, c2)} or R = {(a, a, b1), (b, b, a1)}, respectively. It is
clear to see that for the equivalent substructures R(b, b, a1) and R(a, a, b1),
whenever one of them is preserved in some successor state, another one is
preserved in some (possibly same) isomorphic successor state. Note that not
all of the successor states are isomorphic.

• If we non-deterministically select two tuples from R in a state S and delete
them. Then we will also get three successor states of S: R = {(b, b, a1)},
R = {(a, a, b1)} or R = {(c1, c, c2)}. In this case, in terms of the equivalence
class {(a, a, b1), (b, b, a1)}, none of the equivalent substructures are preserved
in the successor state of S with R = {(c1, c, c2)}.

In the case that states have bridge functions, however, the situation becomes
a bit tricky because bridge functions define substructures of the algorithmic part
based on substructures of the database part. Thus non-determinism caused by
non-deterministically selecting elements in the database part may also result in the
non-deterministic changes on substructures of the algorithmic part. Nevertheless,
the distinction between the database and algorithmic parts is that non-determinism
cannot arise from the algorithmic part by selecting non-deterministically substruc-
tures in the algorithmic part of a state.

Example 11. For the relation R = {(a, a, b1), (b, b, a1), (c1, c, c2)} in Example 9, we
assume that there exists a bridge function fnum = {(a, 4), (a1, 6), (b, 3), (b1, 1)(c, 5),
(c1, 8), (c2, 7)} and {Even, Odd, Test} ⊆ Σa. First we can use the non-ground
access terms (Odd(fnum(z)), true), (Even(fnum(x)), true) and (R(x, y, z), true)
with the formula R(x, y, z) ∧ Even(fnum(x)) ∧Odd(fnum(z)) to retrieve out the
tuples (a, a, b1) and (c1, c, c2) in R.

A Customised ASM Thesis for Database Transformations 787

Then we can non-deterministically generate updates on function Test by non-
deterministically selecting one of these two tuples. For example, two update sets
{(Test(4), 1)} and {(Test(8), 7)} may be created by using the access term
(Test(fnum(x)), fnum(z)) together with the formula R(x, y, z)∧ Even(fnum(x))
∧Odd(fnum(z)).

Therefore, for a state of database transformations, substructures of its algorith-
mic part may or may not be preserved in its successor states. This indeed can
be explained under a broader view on equivalence classes, i.e., they are defined in
terms of a state taking all of the database part, the algorithmic part and bridge
functions into consideration. Then the rationale that whenever a substructure of
a state is preserved in some successor state, each substructure in the equivalence
class of that substructure is preserved in some (possibly same) isomorphic successor
state can still be captured by the abstract state postulate in the same way as in
the case without bridge functions.

Now we formalise the bounded non-determinism postulate to capture these ideas
by properly defining the presence of non-ground access terms. In doing so, we put
a severe restriction on the non-determinism in the transition relation τt.

Postulate 5 (bounded non-determinism postulate). For a database transforma-
tion t, if there are states S1, S2 and S3 ∈ St with (S1, S2) ∈ τt, (S1, S3) ∈ τt
and S2 6= S3, then there exists a non-ground access term of the form (β, α) in the
bounded exploration witness of t.

According to this bounded non-determinism postulate, if a database transfor-
mation t over some state S1 has non-determinism (i.e., ∆(t, S1) contains more than
one update set), then we must have a non-ground access term in the bounded
exploration witness of t. Alternatively, if the bounded exploration witness of t con-
tains only ground access terms, then t can access only the algorithmic part of a
state and cannot have non-determinism. The bounded non-determinism postulate
is motivated by the necessity of non-determinism in database queries and updates
to permit identifier creation. This will become clear in the proof of our main result
in Section 5, according to which the bounded non-determinism postulate enforces
that only the bounded choice among database elements can be the source of non-
determinism.

Remark 1. In [17, 18] Van den Bussche defined the notions of determinacy and
semi-determinism - a determinate transformation preserves the input database,
whereas a semi-deterministic transformation produces isomorphic outputs and thus
preserves the input database up to an automorphism. In the sense of Van den
Bussche an input database would define a substructure, and by the bounded non-
determinism postulate preserving this substructure implies that each automorphism
of the input database defines an isomorphism between the possible successor states,
but not all of successor states will be isomorphic. Hence, database transformations
characterised by five postulates subsume semi-deterministic transformations. In
the same way they captures the insertion of new objects with a choice of identifiers
as worked out for generic updates in [15].

788 Klaus-Dieter Schewe and Qing Wang

3.7 Final Remarks

Naturally, for a database transformation the decisive part is the progression of the
database part of states, whereas the algorithmic part could be understood as playing
only a supporting role. Nonetheless, the postulates for database transformations
in this section permit transformations, in which the major computation happens
on the algorithmic part. In the extreme case we could even only manipulate the
algorithmic part. This implies that our model actually subsumes all sequential algo-
rithms. Furthermore, all extensions such as bounded non-determinism, meta-finite
states, location operators and bounded exploration with non-ground terms only
affect the database part. This will become more apparent in the next two sections,
when we present a variant of ASMs capturing exactly database transformations
as stipulated by the five postulates. On the other hand, our model of database
transformations does not capture parallel algorithms, as the bounded exploration
postulate excludes unbounded parallelism.

4 Database Abstract State Machines

In this section we define a variant of Abstract State Machines, called Database Ab-
stract State Machines, and show that DB-ASMs satisfy the postulates of a database
transformation. In the next section we will address the more challenging problem
showing the converse of this result.

4.1 DB-ASM Rules and Update Sets Generated by Them

First we define DB-ASM rules r, and if S is a state, i.e. a Σ-structure for the
signature Σ of r, we associate a set ∆(r, S) of update sets with r and S. For
convenience, we also use the notation ∆̈(r, S) for a set of update multisets defined
by r and S.

For the signature Σ we adopt the requirements of the abstract state postulate,
i.e. it comprises a sub-signature Σdb for the database part, a sub-signature Σa for
the algorithmic part, and bridge functions {f1, . . . , f`}. For states we assume that
the requirement in the abstract state postulate, according to which the restriction to
Σdb results in a finite structure, is satisfied. Furthermore, we assume a background
in the sense of the background postulate being defined.

DB-ASM rules may involve variables, so in the following definition we also
use the notations ∆(r, S, ζ) for a set of update sets that depends on a variable
assignment ζ, and analogously ∆̈(r, S, ζ) for a set of update multisets. If ζ is a
variable assignment, then ζ[x1 7→ b1, . . . , xk 7→ bk] is another variable assignment
defined by

ζ[x1 7→ b1, . . . , xk 7→ bk](x) =

{
bi if x = xi(i = 1, . . . , k)

ζ(x) else

We refer to database variables as variables that must be interpreted by values in
Bdb. The notation var(t) is used to denote the set of variables occurring in a term

A Customised ASM Thesis for Database Transformations 789

t. Similar to free variables occurring in formulae we can define the set fr(r) of free
variables appearing in a DB-ASM rule r. A rule r is called closed if fr(r) = ∅.

Definition 14. The set R of DB-ASM rules over a signature Σ = Σdb ∪ Σa ∪
{f1, . . . , f`} and associated sets of update sets (with respect to states as in Postulate
2 with a background as in Postulate 3) are defined as follows:

• If t0, . . . , tn are terms over Σ, and f is a n-ary dynamic function symbol
in Σ, then f(t1, . . . , tn) := t0 is a rule r in R called assignment rule with

fr(r) =
n⋃
i=0

var(ti). For a state S over Σ and a variable assignment ζ for

fr(r) we obtain

∆(r, S, ζ) = {{(f(a1, . . . , an), a0)}}

with ai = valS,ζ(ti) (i = 0, . . . , n), and

∆̈(r, S, ζ) = {〈(f(a1, . . . , an), a0)〉}

• If ϕ is a Boolean term and r′ ∈ R is a DB-ASM rule, then if ϕ then r′ endif
is a rule r in R called conditional rule with fr(r) = fr(ϕ)∪fr(r′). For a state
S over Σ and a variable assignment ζ for the variables in fr(r), we obtain

∆̈(r, S, ζ) =

{
∆̈(r′, S, ζ) if valS,ζ(ϕ) = true

∅ else

and

∆(r, S, ζ) =

{
∆(r′, S, ζ) if valS,ζ(ϕ) = true

∅ else

• If ϕ is a Boolean term with only database variables, {x1, . . . , xk} ⊆ fr(ϕ)
and r′ ∈ R is a DB-ASM rule, then forall x1, . . . , xk with ϕ do r′ enddo is
a rule r in R called forall rule with fr(r) = (fr(r′) ∪ fr(ϕ))− {x1, . . . , xk}.
For a state S over Σ and a variable assignment ζ for the variables in fr(r) let
B = {(b1, . . . , bk) | valS,ζ[x1 7→b1,...,xk 7→bk](ϕ) = true} and W denote the set of
mappings η from B to

⋃
{∆(r′, S, ζ[x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B}

with η(b1, . . . , bk) ∈ ∆(r′, S, ζ[x1 7→ b1, . . . , xk 7→ bk]). Then each η ∈ W
defines an update set ∆η =

⋃
{η(b1, . . . , bk) | (b1, . . . , bk) ∈ B}, from which

we obtain
∆(r, S, ζ) = {∆η | η ∈ W}.

Analogously, let Ẅ denote the set of mappings η̈ from B to
⋃
{∆̈(r′, S, ζ[x1 7→

b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B} with η̈(b1, . . . , bk) ∈ ∆̈(r′, S, ζ[x1 7→
b1, . . . , xk 7→ bk]). Then each η̈ ∈ Ẅ defines an update multiset ∆̈η̈ =⊎
{η̈(b1, . . . , bk) | (b1, . . . , bk) ∈ B}, which finally gives

∆̈(r, S, ζ) = {∆̈η̈ | η̈ ∈ Ẅ}.

790 Klaus-Dieter Schewe and Qing Wang

• If r1, . . . , rn are rules in R, then the rule r defined as par r1 . . . rn endpar is

a rule in R, called parallel rule with fr(r) =
n⋃
i=1

fr(ri). For a state S over Σ

and a variable assignment ζ for the variables in fr(r) we obtain

∆(r, S, ζ) = {∆1 ∪ · · · ∪∆n | ∆i ∈ ∆(ri, S, ζ) for i = 1, . . . , n}

and

∆̈(r, S, ζ) = {∆̈1] · · ·] ∆̈n | ∆̈i ∈ ∆̈(ri, S, ζ) for i = 1, . . . , n}.

• If ϕ is a Boolean term with only database variables, {x1, . . . , xk} ⊆ fr(ϕ)
and r′ ∈ R is a DB-ASM rule, then choose x1, . . . , xk with ϕ do r′ enddo
is a rule r in R called choice rule with fr(r) = (fr(r′)∪fr(ϕ))−{x1, . . . , xk}.
For a state S over Σ and a variable assignment ζ for the variables in fr(r)
let B = {(b1, . . . , bk) | valS,ζ[x1 7→b1,...,xk 7→bk](ϕ) = true}. Then we obtain

∆(r, S, ζ) =
⋃
{∆(r′, S, ζ[x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B}.

and

∆̈(r, S, ζ) =
⋃
{∆̈(r′, S, ζ[x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B}.

• If r1, r2 are rules in R, then the rule r defined as seq r1 r2 endseq is a rule
in R, called sequence rule with fr(r) = fr(r1)∪ fr(r2). For a state S over Σ
and a variable assignment ζ for the variables in fr(r) we obtain

∆(r, S, ζ) = {∆1 �∆2 | ∆1 ∈ ∆(r1, S, ζ) and ∆2 ∈ ∆(r2, S + ∆1, ζ)}

with update sets defined as

∆1 �∆2 = ∆2 ∪ {(`, v) ∈ ∆1 | ¬∃v′.(`, v′) ∈ ∆2 and v 6= v′}

and

∆̈(r, S, ζ) = {∆̈1 � ∆̈2 | ∆̈1 ∈ ∆̈(r1, S, ζ) and ∆̈2 ∈ ∆̈(r2, S +AsSet(∆̈1), ζ)}

with update multisets defined as

∆̈1 � ∆̈2 = ∆̈2] 〈(`, v) ∈ ∆̈1 | ¬∃v′.(`, v′) ∈ ∆̈2 and v 6= v′〉.

• If r′ ∈ R is a DB-ASM rule and θ is a location function that assigns location
operators ρ to terms t with var(t) ⊆ fr(r′), then let θ(t) = ρ in r′ endlet
is a rule r ∈ R called let rule with fr(r) = fr(r′). For a state S over
Σ and a variable assignment ζ for the variables in fr(r) let ∆̈(r′, S, ζ) =

A Customised ASM Thesis for Database Transformations 791

{∆̈1, . . . , ∆̈n} with update multisets ∆̈i = ∆̈
(t)
i] ∆̈−i such that the first of

these two multisubsets contains the updates to locations valS,ζ(t), while the
second one contains updates to all other locations. Define

∆̈
(r)
i = 〈(`, v) | ` = valS,ζ(t), v = ρ(〈v1, . . . , vk | (`, vi) ∈ ∆̈

(t)
i 〉)〉] ∆̈−i

and

∆
(r)
i = {(`, v) | ` = valS,ζ(t), v = ρ(〈v1, . . . , vk | (`, vi) ∈ ∆̈

(t)
i 〉)} ∪∆−i ,

with ∆−i = {(`, v) | (`, v) ∈ ∆̈−i }. This finally gives

∆̈(r, S, ζ) = {∆̈(r)
1 , . . . , ∆̈(r)

n } and ∆(r, S, ζ) = {∆(r)
1 , . . . ,∆(r)

n }.

Note that only assignment rules “create” updates in update sets and multisets,
only choice rules introduce non-determinism, let rules reduce update multisets to
update sets by letting updates to the same location collapse to a single update using
assigned location operators, whereas all other rules just rearrange these updates into
different sets and multisets, respectively. The sequence operator seq is associative,
so we can also use more complex sequence rules seq r1 . . . rn endseq.

Example 12. Consider the following DB-ASM rule
forall x with ∃z.R(x, x, z)
do

let θ(f(x)) = sum in
forall y with R(x, x, y)
do

f(x) := 1
enddo

endlet
enddo

using sum as a shortcut for the location operator (id,+, id). If the state contains
the tuples R(a, a, b), R(a, a, b

′
), R(c, c, a

′
), R(b, b, c), R(b, b, a

′
), R(b, b, b), R(b

′
, a

′
, a),

then first the update multisets 〈(a, 1), (a, 1)〉, 〈(c, 1)〉, 〈(b, 1), (b, 1), (b, 1)〉 are pro-
duced by means of the forall rules, which are then collapsed to the update set
{(a, 2), (c, 1), (b, 3)} using the sum-operator in the let rule. Thus, for x such that
there are tuples R(x, x, y) in the database, then number of such tuples is counted
and assigned to f(x).

Let us denote the inner and outer forall rules as r1 and r2, respectively. Then
we have

• fr(r1) = ({x} ∪ fr(R(x, x, y)))− {y} = {x} and

• fr(r2) = ({x} ∪ fr(∃z.R(x, x, z)))− {x} = ∅.

Hence this DB-ASM rule is closed.

792 Klaus-Dieter Schewe and Qing Wang

Lemma 3. Let r be a DB-ASM rule and σ : S1 → S2 be an isomorphism between
states S1 and S2. Let S′1 = S1 +∆ be a successor state of S1 for some ∆ ∈ ∆(r, S1).
Then we have σ(∆) ∈ ∆(r, S2), and σ : S′1 → S′2 = S2 + σ(∆) is an isomorphism
between the successor states S′1 and S′2.

Proof. We proceed by structural induction on the rule r. So we start with an
assignment rule f(t1, . . . , tn) := t0. Then we must take ∆ = {(f(a1, . . . , an), a0)}
with ai = valS1

(ti) for i = 0, . . . , n. Then we have

valS′
1
(`) =

{
a0 if ` = f(a1, . . . , an)

valS1
(`) else

for any location `. With σ(∆) = {(f(σ(a1), . . . , σ(an)), σ(a0))} we obtain

valS′
2
(σ(`)) =

{
σ(a0) if ` = f(a1, . . . , an)

valS2(σ(`)) else
= σ(valS′

1
(`)), which gives S′2 =

σ(S′1) as desired. The same argument applies to update multisets.
For a conditional rule r = if ϕ then r′ endif let ζ2 = σ(ζ1). Then valS1,ζ1(ϕ) =

true iff valS2,ζ2(ϕ) = true. This implies

S2 + ∆(r, S2, ζ2)

=

{
S2 + σ(∆(r′, S1, ζ1)) if valS2,ζ2(ϕ) = true

S2 else

=

{
σ(S1 + ∆(r′, S1, ζ1)) if valS1,ζ1(ϕ) = true

σ(S1) else

= σ(S1 + ∆(r, S1, ζ1)).

The other cases are proven analogously.

4.2 Database Abstract State Machines

We are now prepared to define DB-ASMs and show that they satisfy the five pos-
tulates for database transformations from the previous section.

Definition 15. A Database Abstract State Machine (DB-ASM)M over signature
Σ as in Postulate 2 and with a background as in Postulate 3 consists of

• a set SM of states over Σ, non-empty subsets IM ⊆ SM of initial states and
FM ⊆ SM of final states, satisfying the requirements in Postulate 2,

• a closed DB-ASM rule rM over Σ, and

• a binary relation τM over SM determined by rM such that

{Si+1 | (Si, Si+1) ∈ τM} = {Si + ∆ | ∆ ∈ ∆(rM, Si)}

holds.

A Customised ASM Thesis for Database Transformations 793

Theorem 6. Each DB-ASMM defines a database transformation t with the same
signature and background as M.

Proof. We have to show that the five postulates for database transformations are
satisfied. As for the sequential time and background postulates 1 and 3, these are
already built into the definition of a DB-ASM. The same holds for the abstract state
postulate 2 as far as the definition of states is concerned, and the preservation of
isomorphisms follows from Lemma 3. Thus, we have to concentrate on the bounded
exploration and bounded non-determinism postulates 4 and 5.

Regarding bounded exploration we noted above that assignment rules within a
DB-ASM rule r that defines τM are decisive for a set ∆(r, S) of update sets over
any state S. Hence, if f(t1, . . . , tn) := t0 is an assignment rule occurring within r,
and valS,ζ(ti) = valS′,ζ(ti) holds for all i = 0, . . . , n and all variable assignments ζ
that have to be considered, then we obtain ∆(r, S) = ∆(r, S′).

We use this to define a bounded exploration witness T . If ti is ground, we
add the access term α = ti to T . If ti is not ground, then the corresponding
assignment rule must appear within the scope of forall and choice rules introducing
the database variables in ti, as r is closed. Thus, variables in ti are bound by a
Boolean term ϕ, i.e. for fr(ti) = {x1, . . . , xk} the relevant variable assignments are
ζ = {x1 7→ b1, . . . , xk 7→ bk} with valS,ζ(ϕ) = true. Bringing ϕ into a form that
only uses conjunction, negation and existential quantification with atoms βi = αi
(i = 1, . . . , `), we can extract a set of access terms {(β1, α1), . . . , (β`, α`)} such that
if S and S′ coincide on these access terms, they will also coincide on the formula ϕ.
This is possible, as we evaluate access terms by sets, so conjunction corresponds to
union, existential quantification to projection, and negation to building the (finite)
complement. We add all the access terms (β1, α1), . . . , (β`, α`) to T .

More precisely, if ϕ is a conjunction ϕ1∧ϕ2, then ∆(r, S1) = ∆(r, S2) will hold,
if {(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} holds (with
ζ = {x1 7→ b1, . . . , xk 7→ bk}). If Ti is a set of access terms such that whenever
S1 and S2 coincide on Ti, then {(b1, . . . , bk) | valS1,ζ(ϕi) = true} = {(b1, . . . , bk) |
valS2,ζ(ϕi) = true} will hold (i = 1, 2), then T1 ∪ T2 is a set of access terms such
that whenever S1 and S2 coincide on T1 ∪ T2, then {(b1, . . . , bk) | valS1,ζ(ϕ) =
true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} will hold.

Similarly, a set of access terms for ψ with the desired property will also be a wit-
ness for ϕ = ¬ψ, and

⋃
bk+1∈Bdb

Tbk+1
with sets of access terms Tbk+1

for ψ[xk+1/tk+1]

with valS(tk+1) = bk+1 defines a finite set of access terms for ϕ = ∃xk+1ψ. In this
way, we can restrict ourselves to atomic formulae, which are equations and thus
give rise to canonical access terms.

Then by construction, if S and S′ coincide on T , we obtain ∆(r, S) = ∆(r, S′).
As there are only finitely many assignment rules within r and only finitely many
choice and forall rules defining the variables in such assignment rules, the set T of
access terms must be finite, i.e. r satisfies the bounded exploration postulate.

Regarding bounded non-determinism, assuming that M does not satisfy the
bounded non-determinism postulate. It means that there does not exist any non-
ground access term (β, α) in T even when ∆(r, S) contains more than one update

794 Klaus-Dieter Schewe and Qing Wang

sets. However, according to our remark above r must contain a choice rule choose
x1, . . . , xk with ϕ do r′ enddo. Hence, it implies that there exist at least one
non-ground access term in T contradicting our assumption.

5 A Characterisation Theorem

In this section we want to show that DB-ASMs capture all database transfor-
mations. This constitutes the converse of Theorem 6, i.e. that every database
transformation can be behaviouraly simulated by a DB-ASM. We start with some
preliminaries that are only slight adaptations of corresponding definitions and re-
sults for the sequential ASM-thesis, except that the term critical value has to be
defined differently due to the use of variables in access terms. We then show first
that a one-step transition from a state to successor states can be expressed by
a DB-ASM rule. Here we rely heavily on the abstract state postulate and the
bounded non-determinism postulate, which allows us to deal with the restricted
non-determinism appropriately.

In a second step we generalise the proof to the complete database transformation
using a construction that is similar to the one used in the sequential ASM-thesis.
Again, the fact that our bounded exploration witness contains non-ground terms
makes up most of the difficulty.

5.1 Critical Terms and Critical Elements

Throughout this section we only deal with consistent update sets, which define the
progression of states in a run. We now start providing the key link from updates as
implied by the state transitions to DB-ASM rules. Same as the previous subsection
this is only a slight extension to the work done for the sequential ASM thesis.

Definition 16. Let T be a bounded exploration witness for the database trans-
formation t. A term that is constructed out of the subterms of α ∈ T and variables
x1, . . . , xk, for which there are access terms (β1, α1), . . . , (β`, α`) ∈ T such that⋃̀
i=1

fr(βi) ∪ fr(αi) = {x1, . . . , xk} holds is called a critical term.

This definition differs from the one given in [10] in that we consider also non-
ground terms. For access terms in T we cannot simply require closure under sub-
terms, as coincidence of structures on T does not carry over to subterms of “as-
sociative” access terms (β, α). Therefore, we need a different approach to define
critical values.

If γ is a critical term, let (β1, α1), . . . , (β`, α`) be the access terms used in its
definition. For a state S choose b1, . . . , bk ∈ Bdb with valS,ζ(βi) = valS,ζ(αi) with
ζ = {x1 7→ b1, . . . , xk 7→ bk} for i = 1, . . . , `, and let a = valS,{x1 7→b1,...,xk 7→bk}(γ).

Definition 17. For each state S of a database transformation t, let CS =
{valS(α) | α ∈ T}∪ {true, false,⊥} and BS = {ai | f(a1, . . . , an) ∈ valS(β, α) for

A Customised ASM Thesis for Database Transformations 795

some access term (β, α) ∈ T}. Then C̄S is the background closure of CS ∪ BS
containing all complex values that can be constructed out of CS ∪ BS using the
constructors and function symbols (interpreted in S) in VK . The elements of C̄S
are called the critical elements of S.

The following lemma and its proof are analogous to the result in [10, Lemma 6.2].

Lemma 4. For all updates (f(a1, . . . , an), a0) ∈ ∆(t, S, S′) for (S, S′) ∈ τt the
values a0, . . . , an are critical elements of S.

Proof. Assume one of the ai is not critical. Then choose a structure S1 by re-
placing ai with a fresh value b without changing anything else. Thus, S1 is a state
isomorphic to S by the abstract state postulate.

Let (β, α) be an access term in T . Then we must have valS(β, α) = valS1(β, α),
so S and S1 coincide on T . From the bounded exploration postulate we obtain
∆(t, S) = ∆(t, S1) and thus (f(a1, . . . , an), a0) ∈ ∆(t, S1, S

′
1) for some (S1, S

′
1) ∈ τt.

However, ai does not appear in the structure S1, and hence cannot appear in
S′1 either, nor in ∆(t, S1, S

′
1), which gives a contradiction.

5.2 Rules for One-Step Updates

In [10] it is a straighforward consequence of Lemma 6.2 that individual updates
can be represented by assignments rules, and consistent update sets by par-blocks
of assignment rules. In our case showing that ∆(t, S) can be represented by a
DB-ASM rule requires a bit more work, which relies heavily on the abstract state
postulate and the bounded non-determinism postulate. We address this in the next
lemma.

Lemma 5. Let t be a database transformation. For every state S ∈ St there exists
a rule rS such that ∆(t, S) = ∆(rS , S), and rS only uses critical terms.

Proof. ∆(t, S) is a set of update sets. Let {S1, . . . , Sm} = {S′ | (S, S′) ∈ τt}. Then
∆(t, S) = {∆(t, S, Si) | 1 ≤ i ≤ m}.

Now consider any update u = (f(a1, . . . , an), a0) ∈ ∆(t, S, Si) for some i ∈
{1, . . . ,m}. According to Lemma 4 the values a0, . . . , an are critical and hence rep-
resentable by terms involving variables from access terms in T , i.e. ai = valS,ζ(ti)
with either fr(ti) ⊆ {x1, . . . , xk}, ζ = {x1 7→ b1, . . . , xk 7→ bk} and

(b1, . . . , bk) ∈ Bu = {(b1, . . . , bk) ∈ Bkdb |
∧

1≤i≤`

valS,ζ(βi) = valS,ζ(αi)}

with access terms (βi, αi) ∈ T (i = 1, . . . , `) and fr(βi) ⊆ {x1, . . . , xk}, or ti is
a ground critical term.

Therefore, we distinguish two cases:

I. At least one of the terms t0, . . . , tn is not a ground term.

II. All terms t0, . . . , tn are ground terms.

796 Klaus-Dieter Schewe and Qing Wang

Case I. We first assume that none of terms t0, . . . , tn contain location operators.
The access terms (βi, αi) define a finite set of locations

L = {f(a1, . . . , an) | ai = valS,ζ(ti) for i = 1, . . . , n, and

ζ = {x1 7→ b1, . . . , xk 7→ bk} for (b1, . . . , bk) ∈ Bu}.

However, instead of looking at updates at these locations we switch to a rela-
tional perspective, i.e. we replace f ∈ Σ with arity n by a relation symbol Rf of
arity n + 1, so fS(a1, . . . , an) = a0 holds iff RfS(a1, . . . , an, a0) = true. A non-
trivial update u = (f(a1, . . . , an), a0) is accordingly represented by two relational
updates

ud = (Rf(a1, . . . , an, fS(a1, . . . , an)), false) and ui = (Rf(a1, . . . , an, a0), true).

So, instead of locations in L we consider locations in Lpre ∪ Lpost with

Lpre ={Rf(a1, . . . , an, a0) | ai = valS,ζ(ti) for 1 ≤ i ≤ n,
a0 = valS,ζ(f(t1, . . . , tn)) for ζ = {x1 7→ b1, . . . , xk 7→ bk}

and (b1, . . . , bk) ∈ Bu}

and

Lpost ={Rf(a1, . . . , an, a0) | ai = valS,ζ(ti) for 0 ≤ i ≤ n
for ζ = {x1 7→ b1, . . . , xk 7→ bk} and (b1, . . . , bk) ∈ Bu}.

Furthermore, we may assume that the set Bu is minimal in the sense that we
may not find additional access terms that would define a subset B′u (Bu still
containing the value tuple (b1, . . . , bk) that is needed to define the update u.

Then each tuple (a1, . . . , an, a0) ∈ Lpre ∪ Lpost defines a substructure of S
with base set B′ = {a0, . . . , an, true, false} and all functions (in fact: relations)
restricted to this base set. In doing so all substructures defined by Lpre (and
analogously by Lpost) are pairwise equivalent, and the induced isomorphisms are
defined by permutations of tuples in Bu. If they were not equivalent, we could
find a distinguishing access structure (β`+1, α`+1) ∈ T that would define a subset
B′u (Bu thereby violating the minimality assumption for Bu. Let Epre and Epost
denote these equivalence classes of substructures, respectively.

If `′ ∈ L is not updated in Si – hence, corresponding locations in Lpre and Lpost
are neither updated – then the substructures S`′ in Epre (and Epost, respectively)
that are defined by `′ are preserved in Si, i.e. S`′ � Si. From Lemma 2 we can
get that σ(∆(t, S)) = ∆(t, σ(S)) = ∆(t, S) for the case that σ is an automorphism
of S. It means that for an update in ∆(t, S, Si) there is a translated update (by
means of σ) in ∆(t, S, σ(Si)). Then we conclude that for every `′′ ∈ L there is some
successor state Sj = σ′(Si) of S with S`′′ � Sj for an automorphism σ′ of S that
maps S`′ to S`′′ , and each S`′′ ∈ Epre (and S`′′ ∈ Epost, respectively) is preserved
in some Sj . Thus, there is some successor state Sj of S with S` � Sj for u = (`, a0).

Then, we obtain two subcases:

A Customised ASM Thesis for Database Transformations 797

1) If ` is updated in all S1, . . . , Sm, i.e. there exist values a1
0, . . . , a

m
0 with (`, ai0) ∈

∆(t, S, Si) for all i = 1, . . . ,m, then all `′ ∈ L are also updated in all Si. If
(`, ai0) is represented by the assignment rule f(t1, . . . , tn) := ti0 with x1, . . . , xk
interpreted by (b1, . . . , bk) ∈ Bu, then the fact that almost all substructures
defined by these interpretations of t1, . . . , tn and any value other than ai0 are
preserved – and hence by virtue of Lemma 2 as we explained before equivalent
substructures are preserved in the other Sj – implies that each instantiation of
the rule f(t1, . . . , tn) := ti0 with values from Bu defines an update in one of the
update sets ∆(t, S, Sj). Hence these updates can be collectively represented
by the rule

choose x1, . . . , xk with β1(~x1) = α1(~x1) ∧ · · · ∧ β`(~x`) = α`(~x`)

do f(t1, . . . , tn) := ti0 enddo

Here the ~x1, . . . , ~x` denote vectors of variables among x1, . . . , xk appearing in
β1, . . . , β`, respectively. In case all the terms ti0 for i = 1, . . . ,m are identical

(to say t0), we obtain in fact the rule r
(u)
S as

choose x1, . . . , xk with β1(~x1) = α1(~x1) ∧ · · · ∧ β`(~x`) = α`(~x`)

do f(t1, . . . , tn) := t0 enddo

In general, however, it is possible that different terms ti0 must be chosen, so

all updates to locations in L are represented by the rule r
(u)
S , which becomes

choose x
(1)
1 , . . . , x

(1)
k , . . . , x

(m)
1 , . . . , x

(m)
k

with
∧

1≤j1<j2≤m
(x

(j1)
1 , . . . , x

(j1)
k) 6= (x

(j2)
1 , . . . , x

(j2)
k)

∧
∧

1≤j≤m
β1(~x

(j)
1) = α1(~x

(j)
1)∧· · ·∧β`(~x(j)

`) = α`(~x
(j)
`)

do par

f(t1, . . . , tn)[x
(1)
1 /x1, . . . , x

(1)
k /xk] := t10[x

(1)
1 /x1, . . . , x

(1)
k /xk]

...
...

f(t1, . . . , tn)[x
(m)
1 /x1, . . . , x

(m)
k /xk] := tm0 [x

(m)
1 /x1, . . . , x

(m)
k /xk]

endpar enddo

2) If only ` is updated in Si, but no other `′′ ∈ L is, then, for each `′ ∈ L, only `′

is updated in some Sj for j ∈ [1,m], which is isomorphic to Si. Analogously,
if only i locations in L are updated in Si, then for any {`1, ..., `i} ⊆ L there
is some state Sj for j ∈ [1,m], in which only locations `1 . . . `i are updated.
Using exactly the same arguments as in case 1), we now can represent these

updates collectively by the rule r
(u)
S , which now becomes

798 Klaus-Dieter Schewe and Qing Wang

choose x
(1)
1 , . . . , x

(1)
k , . . . , x

(i)
1 , . . . , x

(i)
k

with
∧

1≤j1<j2≤i
(x

(j1)
1 , . . . , x

(j1)
k) 6= (x

(j2)
1 , . . . , x

(j2)
k)

∧
∧

1≤j≤i
β1(~x

(j)
1) = α1(~x

(j)
1) ∧ · · · ∧ β`(~x(j)

`) = α`(~x
(j)
`)

do par

f(t1, . . . , tn)[x
(1)
1 /x1, . . . , x

(1)
k /xk] := t10[x

(1)
1 /x1, . . . , x

(1)
k /xk]

...
...

f(t1, . . . , tn)[x
(i)
1 /x1, . . . , x

(i)
k /xk] := ti0[x

(i)
1 /x1, . . . , x

(i)
k /xk]

endpar enddo

By exploiting Lemma 2, we showed how to create a proper choice rule with
respect to Bu that is minimal. However, the created choice rule does not capture
all update sets in ∆(t, S). If there exists another update in an update set that is
not in the orbit of ∆(t, S, Si) (1 ≤ i ≤ m) under σ, we can use the same argument
to obtain another choice rule. As the orbits are disjoint, we end up with a choice
of choice rules, which can be combined into a single choice rule. The underlying
condition for constructing such a single choice rule is the finiteness of ∆(t, S), i.e.,
there are only finitely many update sets created by t over state S. This can be
assured by Lemma 4 and the bounded non-determinism postulate. Consequently
there can only be finitely many successor states for each state S, depending on the
database part of S that is a finite structure.

Now we revise the previous assumption that none of terms t0, . . . , tn contain
location operators to a general case, i.e., location operators may appear in the
terms t0, ..., tn of an assignment rule f(t1, ..., tn) := t0. Let f` be a unary function
symbol such that xti = f`(i), then, without loss of generality, we can replace the
terms t1, ..., tn of an assignment rule f(t1, ..., tn) := t0 with the variables xt1 , ..., xtn ,
such that

seq
par

xt1 := t1
...

xtn := tn
endpar
f(xt1 , ..., xtn) := t0

endseq

It means that we can simplify the construction of rules for updates which may
correspond to terms with location operators by only considering the case that lo-
cation operators appear at the right hand side of an assignment rule. If a term ti
(i ∈ [1, n]) at the left hand side contains a location operator, by the above transla-
tion, we may treat it as being a term at the right hand side of another assignment
rule again.

A Customised ASM Thesis for Database Transformations 799

Suppose that the outermost function symbol of term t0 is a location operator
ρ, e.g.,t0 = ρ(m) where m = 〈t′0| for all values a = (a1, ..., ap) in y = (y1, ..., yp)
such that valS,ζ[x1 7→b1,...,xk 7→bk](ϕ(x, y)) = true〉, and x denotes a tuple of variables
among x1, ..., xk. Then for each assignment rule f(xt1 , ..., xtn) := t0 in which t0
contains a location operator as described before, we can construct the following
rule to remove the location operator ρ by a let rule and a forall rule:

let θ(f(xt1 , ..., xtn)) = ρ in

forall y1,...,yp with ϕ(x, y)

do

f(xt1 , ..., xtn) := t
′

0

enddo;

endlet

This construction can be conducted iteratively. If the outermost function sym-
bol of the above term t

′

0 is a location operator, then we need to construct a rule in
a similar way to replace the assignment rule f(xt1 , ..., xtn) := t

′

0. This procedure
continues until the right hand side of an assignment rule is a term without any
location operator.

Case II. In case of a simple update f(t1, . . . , tn) := t0 without free variables we
consider the substructure defined by {a1, . . . , an, valS(f(t1, . . . , tn)), true, false} as
before. However, in this case it is the only substructure in its equivalence class.
Furthermore, the substructure can be represented by ground access terms. Accord-
ing to the bounded non-determinism postulate, we know that, ground access terms
can access only the algorithmic part of a state and there is no non-determinism.
Consequently, (f(a1, . . . , an), a0) ∈ ∆(t, S, Si) for all i = 1, . . . ,m, and these up-

dates can be collectively represented by the simple assignment rule r
(u)
S , which now

becomes

f(t1, . . . , tn) := t0.

Finally, we construct rS by using the par-construct:

rS = par r
(u1)
S . . . r

(up)
S endpar

for {u1, . . . , up} =
m⋃
i=1

∆(t, S, Si).

5.3 Rules for Multiple-Steps Updates

Let us now extend Lemma 5 to the construction of a DB-ASM rule that captures
the complete behaviour of a database transformation t. According to Definition
16, a set of critical terms can be obtained from a bounded exploration witness. For
this fix a bounded exploration witness T and the set CT of critical terms derived
from it. Furthermore, for a state S of t fix the rule rS as in Lemma 5.

800 Klaus-Dieter Schewe and Qing Wang

For γ ∈ CT let (β1, α1), . . . , (β`, α`) be the access terms in T defining fr(γ) =
{x1, . . . , xk}. For a state S ∈ St define

valS(γ) = {valS,ζ(γ) | ζ = (x1 7→ b1, . . ., xk 7→ bk) and∧
1≤i≤`

valS,ζ(βi) = valS,ζ(αi)}.

The following two lemmata extend Lemma 5 first to state that coincide with S
on critical terms, then to isomorphic states.

Lemma 6. Let S, S′ ∈ St be states that coincide on the set CT of critical terms.
Then ∆(rS , S

′) = ∆(t, S′) holds.

Proof. As S and S′ coincide on CT , they also coincide on T , which gives ∆(t, S) =
∆(t, S′) by the bounded exploration postulate. Furthermore, we have ∆(rS , S) =
∆(t, S) by Lemma 5. As rS uses only critical terms, the updates produced in state
S must be the same as those produced in state S′, i.e. ∆(rS , S) = ∆(rS , S

′), which
proves the lemma.

Lemma 7. Let S, S1, S2 be states with S1 isomorphic to S2 and ∆(rS , S2) =
∆(t, S2). Then also ∆(rS , S1) = ∆(t, S1) holds.

Proof. Let σ denote an isomorphism from S1 to S2. Then ∆(rS , S2) = σ(∆(rS , S1))
holds by Lemma 2, and the same applies to ∆(t, S2) = σ(∆(t, S1)). As we presume
∆(rS , S2) = ∆(t, S2), we obtain σ(∆(rS , S1)) = σ(∆(t, S1)) and hence ∆(rS , S1) =
∆(t, S1), as σ is an isomorphism.

Next, in the spirit of [10] we want to extend the equality of sets of update sets
for t and rS to a larger class of states by exploiting the finiteness of the bounded
exploration witness T . For this we define the notion of T -equivalence similar to the
corresponding notion for the sequential ASM thesis, with the difference that in our
case we cannot take T , but must base our definition and the following lemma on
CT .

Definition 18. States S, S′ ∈ St are called T -similar iff ES = ES′ holds, where
ES is an equivalence relation on CT defined by

ES(γ1, γ2) ⇔ valS(γ1) = valS(γ2).

Lemma 8. We have ∆(rS , S
′) = ∆(t, S′) for every state S′ that is T -similar to

S.

Proof. Replace every element in S′ that also belongs to S by a fresh element. This
defines a structure S1 isomorphic to S′ and disjoint from S. By the abstract state
postulate S1 is a state of t. Furthermore, by construction S1 is also T -similar to S′

and hence also to S.
Now define a structure S2 isomorphic to S1 such that valS2

(γ) = valS(γ) holds
for all critical terms γ ∈ CT . This is possible, as S and S1 are T -similar, i.e. we

A Customised ASM Thesis for Database Transformations 801

have valS(γ1) = valS(γ2) iff valS1(γ1) = valS1(γ2) for all critical terms γ1, γ2. By
the abstract state postulate S2 is also a state of t.

Using Lemma 6 we conclude ∆(rS , S2) = ∆(t, S2), and by Lemma 7 we obtain
∆(rS , S

′) = ∆(t, S′) as claimed.

We are now able to prove our main result, first generalising Lemma 5 to multiple-
steps updates in the next lemma, from which the proof of the main characterisation
theorem is straightforward.

Lemma 9. Let t be a database transformation with signature Σ. Then there exists
a DB-ASM rule r over Σ, with same background as t such that ∆(r, S) = ∆(t, S)
holds for all states S ∈ St.

Proof. In order to decide whether equivalence relations ES and ES′ coincide for
states S, S′ ∈ St it is sufficient to consider the subset CT ′ ⊆ CT defined by the
bounded exploration witness T as in Definition 16. Hence, as T is finite, CT ′ is also
finite, and consequently there can only be finitely many such equivalence relations.
Let these be ES1

, . . . , ESn
for states S1, . . . , Sn ∈ St.

For i = 1, . . . , n construct Boolean terms ϕi such that valS(ϕi) = true holds iff
S is T -similar to Si. For this let CT ′ = {γ1, . . . , γm}, and define terms

γ̄j =


γj if γj is closed

〈(x1, . . . , xk) |
∧

1≤i≤`
βi = αi〉 if γj = (x1, . . . , xk) with variables taken

from (β1, α1), . . . , (β`, α`)

exploiting the fact that the background structures provide constructors for multisets
and pairs (and thus also tuples). Then

ϕi =
∧

1≤j1,j2≤m
ESi

(γj1 ,γj2)

γ̄j1 = γ̄j2 ∧
∧

1≤j1,j2≤m
¬ESi

(γj1 ,γj2)

γ̄j1 6= γ̄j2

asserts that ES = ESi holds. Now define the rule r by

par if ϕ1 then rS1 endif
if ϕ2 then rS2 endif

...
if ϕn then rSn endif endpar

If S ∈ St is any state of t, then S is T -equivalent to exactly one Si (1 ≤ i ≤ n),
which implies valS(ϕj) = true iff j = i, and hence ∆(r, S) = ∆(rSi , S) = ∆(t, S)
by Lemma 8.

Theorem 7. For every database transformation t there exists an equivalent DB-
ASM M.

802 Klaus-Dieter Schewe and Qing Wang

Proof. By Lemma 9 there is a DB-ASM rule r with ∆(r, S) = ∆(t, S) for all
S ∈ St. Define M with the same signature and background as t (and hence
SM = St), IM = It, FM = Ft, and program πM = r.

Note that for the proof of Theorem 7 we constructed a DB-ASM rule that does
not use sequence rules, so by Theorem 6 this construction can be considered to
be merely “syntactic sugar”. As discussed before the let rules capture aggregate
updates that exploit parallelism. Whether this can be extended to capture various
aspects of parallelism, thus looking deeper inside database transformations, is an
open problem.

6 Discussion and Conclusions

In this article we presented a variant of Gurevich’s sequential ASM-thesis [10] deal-
ing with database transformations in general. In analogy to Gurevich’s seminal
work we formulated five intuitive postulates for database transformations, and dis-
cussed why database transformations should satisfy these postulates. We then de-
fined a variant of Abstract State Machines, which we called Database Abstract State
Machines (DB-ASMs), and showed that DB-ASMs capture exactly all database
transformations.

Despite many little technical differences of minor importance – such as final
states, finite runs, and undefined successor state in case of an inconsistent update
set – we stayed rather close to Gurevich’s seminal work, but added as much as we
felt is necessary to capture the essentials of database transformations as opposed
to sequential algorithms. The important differences to Gurevich’s sequential time
postulate are the permission of non-determinism in a limited form with limitations
enforced by the bounded non-determinism postulate, the exploitation of meta-finite
states to capture the finiteness of databases, and an extended bounded exploration
postulates, in which non-ground terms can appear in the bounded exploration wit-
ness.

Let us first summarise and discuss these important differences again. Regard-
ing states we stayed with Gurevich’s fundamental idea that states are first-order
structures. We only adopted the notion of meta-finiteness [9]. As for the sequential
ASM-thesis closure under isomorphisms is requested. So, apart from the incor-
poration of meta-finite states that are composed of a finite database part and a
usually infinite algorithmic part with bridge functions linking them we more or less
kept Gurevich’s abstract state postulate. The idea of using meta-finite states was
already expressed in our previous work in [22], but we were not yet able to handle
the bridge functions in a satisfactory way. This gap is now closed.

Though for database transformations the projection of a run to the database
part of states is most decisive, we did not build such a restriction into our model.
This in turn implies that all sequential algorithms are also captured by DB-ASMs.
Parallel algorithms, however, are not captured, as we only permit bounded paral-
lelism as in the sequential ASM thesis. Combining our insights on database trans-

A Customised ASM Thesis for Database Transformations 803

formations with the parallel ASM thesis, i.e. permitting unrestricted parallelism
on the algorithmic part of states, is a problem left for continued research.

Due to the permission of non-determinism that is restricted to choice among
query results we capture more than sequential algorithms. Even without the non-
determinism this is still the case because of the more general bounded exploration
witnesses and the exploitation of location operators, which permit a limited form
of parallelism by aggregating multisets of values.

In order to capture different data models, we originally thought of manipulating
the notion of state, e.g. in our first attempt in [21] we tried to employ higher-order
structures to capture tree-structured databases such as object-oriented and XML-
based databases. In this article, we formulated that different data models should
be captured by means of different background structures, which led us to formulate
a background postulate. We are currently investigating this approach in more
detail showing which particular constructors have to be present to capture data
models such as the relational, nested-relational, complex values, object-oriented
and XML models. The results achieved so far show that shifting specific data
model requirements to background structures does indeed do the trick; we hope to
be able to publish results shortly.

Nevertheless, we believe it is a promising idea for future research to consider
“playing” with the notion of states, maybe even not only within the context of
databases. For instance, for tree-based databases we may think of structures that
can be recognised by certain tree-automata, or we could investigate automatic
structures that are recognised by finite automata, etc. While these define restric-
tions to the general computational model, they may on one side provide interesting
links to various logics, and on the other side define the challenge to integrate these
automata into the formalism of DB-ASMs in order to capture exactly a particular
class of database transformations.

The logical links would be of particular interest for queries, for which declarative
approaches are preferred. In this paper we only touched the surface of queries in
our extension of Gurevich’s bounded exploration postulate. Instead of requesting
the existence of a finite set of ground terms that determines update sets (or sets of
update sets due to the assumed non-determinism) we widen this to a set of access
terms, which in a sense capture associative access that is considered to be essential
for databases. Nevertheless, there is still a big gap between access terms and
similarly the access conditions in choice and forall rules in DB-ASMs on one side
and highly declarative query languages. Bringing these different aspects together
is a challenge for future research.

Finally, the notion of database transformation developed in this paper is lim-
ited to sequential database transformations over centralised databases, i.e. aspects
of parallel and distributed databases have been neglected. With respect to par-
allelism we only considered aggregate update by means of location operators, i.e.
we accumulate a multiset of updates on a location and then let them collapse to
a single update. This form of parallelism is limited to the same computation on
different data. Capturing parallelism and distribution as used in the architecture
in [13] would require to investigate a more elaborate DB-ASM thesis picking up

804 Klaus-Dieter Schewe and Qing Wang

ideas from the parallel ASM thesis [5].

References

[1] Abiteboul, Serge and Kanellakis, Paris C. Object identity as a query language
primitive. Journal of the ACM, 45(5):798–842, 1998.

[2] Abiteboul, Serge and Vianu, Victor. Datalog extensions for database queries
and updates. Journal of Computer and Systems Science, 43(1):62–124, 1991.

[3] Beeri, Catriel, Milo, Tova, and Ta-Shma, Paula. On genericity and parametric-
ity (extended abstract). In PODS ’96: Proceedings of the Fifteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 104–116, New York, NY, USA, 1996. ACM.

[4] Beeri, Catriel and Thalheim, Bernhard. Identification as a primitive of data
models. In Polle, Torsten, Ripke, Torsten, and Schewe, Klaus-Dieter, edi-
tors, Fundamentals of Information Systems, pages 19–36. Kluwer Academic
Publishers, Boston Dordrecht London, 1999.

[5] Blass, Andreas and Gurevich, Jury. Abstract state machines capture parallel
algorithms. ACM Transactions on Computational Logic, 4(4):578–651, 2003.

[6] Börger, Egon and Stärk, Robert. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag, Berlin Heidelberg
New York, 2003.

[7] Cohen, Sara. User-defined aggregate functions: bridging theory and practice.
In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD International Con-
ference on the Management of Data, pages 49–60, New York, NY, USA, 2006.
ACM Press.

[8] Ebbinghaus, H.-D. and Flum, J. Finite Model Theory. Springer-Verlag, 2
edition, 1999.

[9] Grädel, Erich and Gurevich, Yuri. Metafinite model theory. Information and
Computation, 140(1), 1998.

[10] Gurevich, Jury. Sequential abstract state machines capture sequential algo-
rithms. ACM Transactions on Computational Logic, 1(1):77–111, 2000.

[11] Gurevich, Yuri and Tillmann, Nikolai. Partial updates. Theoretical Computer
Science, 336(2-3):311–342, 2005.

[12] Gurevich, Yuri and Yavorskaya, Tanya. On bounded exploration and bounded
nondeterminism. Technical Report MSR-TR-2006-07, Microsoft Research,
January 2006.

A Customised ASM Thesis for Database Transformations 805

[13] Kirchberg, M., Schewe, K.-D., Tretiakov, A., and Wang, R. A multi-level
architecture for distributed object bases. Data and Knowledge Engineering,
60(1):150–184, 2007.

[14] Ma, Hui, Schewe, Klaus-Dieter, Thalheim, Bernhard, and Wang, Qing. A
theory of data-intensive software services. Service Oriented Computing and
Applications, 3(4):263–283, 2009.

[15] Schewe, Klaus-Dieter and Thalheim, Bernhard. Fundamental concepts of ob-
ject oriented databases. Acta Cybernetica, 11(4):49–84, 1993.

[16] Schewe, Klaus-Dieter and Wang, Qing. XML database transformations. Jour-
nal of Universal Computer Science (to appear).

[17] Van den Bussche, J. Formal Aspects of Object Identity in Database Manipu-
lation. PhD thesis, University of Antwerp, 1993.

[18] Van den Bussche, Jan and Van Gucht, Dirk. Semi-determinism (extended
abstract). In PODS ’92: Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 191–201, New
York, NY, USA, 1992. ACM Press.

[19] Van den Bussche, Jan and Van Gucht, Dirk. Non-deterministic aspects of
object-creating database transformations. In Selected Papers from the Fourth
International Workshop on Foundations of Models and Languages for Data
and Objects, pages 3–16, London, UK, 1993. Springer-Verlag.

[20] Van Den Bussche, Jan, Van Gucht, Dirk, Andries, Marc, and Gyssens, Marc.
On the completeness of object-creating database transformation languages. J.
ACM, 44(2):272–319, 1997.

[21] Wang, Qing and Schewe, Klaus-Dieter. Axiomatization of database transfor-
mations. In Proceedings of the 14th International ASM Workshop (ASM 2007),
University of Agder, Norway, 2007.

[22] Wang, Qing and Schewe, Klaus-Dieter. Towards a logic for abstract metafi-
nite state machines. In Hartmann, Sven and Kern-Isberner, Gabriele, editors,
Foundations of Information and Knowledge Systems – 5th International Sym-
posium (FoIKS 2008), volume 4932 of Lecture Notes in Computer Science,
pages 365–380. Springer-Verlag, 2008.

Received 11th September 2009

