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Abstract

Database transformations consist of queries and updates which are two fundamental
types of computations in any databases - the first provides the capability to retrieve data
and the second is used to maintain databases in light of ever-changing application domains.
In the theoretical studies of database transformations, considerable effort has been directed
towards exploiting the close ties between database queries and mathematical logics. It is
widely acknowledged that a logic-based perspective for database queries can provide a yard-
stick for measuring the expressiveness and complexity of query languages. Furthermore,
mathematical logics encourage the expedited development of declarative query languages
that have the advantage of separating the logical concerns of a query from its implemen-
tation details. However, in sharp contrast to elegant theories of database queries resulting
from extensive studies over the years, the understanding of logical foundations of database
updates is paltry.

With the rising popularity of web-based applications and service-oriented architectures,
the development of database theories in these new contexts must address new challenges,
which frequently call for establishing a theoretical framework that unifies both queries and
updates over complex-value databases. More specifically, in rich Web application architec-
tures, queries themselves are not sufficient to support data processing; interactive integra-
tion among Web-accessible services requires the compositionality of queries and updates;
the increasing complexity of application domains demands more flexible data structures
than ubiquitous relations, which leads to complex-values represented by arbitrary nesting
of various type constructors (e.g., set, list, multiset and tuple). Therefore, a theoretical
framework of database transformations plays an important role in investigating a broad
range of problems arising from extensions of query languages with update facilities, such
as, database compilers and optimisers.

To date, there has been only limited research into a unifying formalisation of database
queries and updates. The previous findings reveal that it is very difficult to characterise
common features of database queries and updates in a way which is meaningful for further
theoretical investigations. However, the advent of the sequential Abstract State Machine
(ASM) thesis capturing sequential algorithms sheds light on the study of database transfor-
mations. Observing that the class of computations described by database transformations
may be formalised as algorithms respecting database principles, I am inspired by using
abstract state machines to characterise database transformations. In doing so, this dis-
sertation aims to lay down the foundations for establishing a theoretical framework of
database transformations in the context of complex-value databases.

My first major contribution in this dissertation is to propose a complete characterisa-
tion of database transformations over complex-value databases from an algorithmic point
of view. Five intuitive postulates are defined for highlighting the essence of database
transformations. Furthermore, a formal computation model for database transformations,
called database Abstract State Machines (DB-ASMs), is developed. It turns out that every
database transformation characterised by the postulates can be behaviourally simulated
by a DB-ASM with the same signature and background, and vice versa. My second major
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contribution is a logical formalisation for DB-ASMs. In spite of bounded non-determinism
permitted by DB-ASMs, the logic for DB-ASMs is proven to be sound and complete. This
is due to the finiteness condition stipulated on the database part of a state, which thereby
leads to the finiteness of update sets in one-step transitions. These findings empower the
use of various verification tools for studying the properties of database transformations
over complex-value databases.

To identify different subclasses of database transformations, I investigate the customi-
sation of backgrounds. The relational and tree-based backgrounds are formalised for char-
acterising relational and XML database transformations, respectively. For the relational
backgrounds, I focus on the connection between the constructivity of backgrounds and the
representation of relational algebra which is widely used for query rewriting and optimi-
sation at an internal implementation level in commercial database systems. Furthermore,
I develop an elegant computation model for XML database transformations, called XML
machines, which incorporates weak Monadic Second-Order (MSO) logic into DB-ASM
rules and can specify XML database transformations at a flexible abstraction level. It
is found that incorporating MSO logic into DB-ASM rules can not actually increase the
expressiveness of XML machines.

Finally, I address the partial update problem in the context of complex-value databases.
In database transformations over complex-value databases, bounded parallelism is intrinsic
and complex data structures form the core of each data model. Thus, the problem of partial
updates arises naturally. Due to the ability to arbitrarily nest type constructors in a data
model, the assumption on the disjointness of locations must be lifted. While, in principle,
locations defined in a standard way bound to complex values are independent from each
other, I also consider each position within a complex value as a location. This extension
naturally leads to a dependency relation among locations. Then, I propose an efficient
approach for checking the consistency of a given set of partial updates, which involves two
stages. The first stage uses an algebraic approach to normalise shared updates based on
the compatibility of operators, while the second stage checks the compatibility of clusters
by integrating exclusive updates level-by-level. I show that partial updates can be applied
in aggregate computing for optimisation.
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Chapter 1

Introduction

This chapter serves three purposes: motivating the research problems, defining the research
objectives and summarising the significant research outcomes.

First of all, I discuss the motivation for considering database queries and updates in
a unifying framework. The interactive and intimate relationships between queries and
updates in several database paradigms are demonstrated via a running example. Several
difficult issues in establishing such a unifying framework are highlighted. Then I present
the major objectives of this dissertation. In particular, I clarify the scope of the research
by identifying the class of computations referred to by the term database transformation
and discuss several reasons why Abstract State Machine is appropriate as a methodol-
ogy for investigating the characterisation of database transformations. Finally, a detailed
overview for subsequent chapters is provided. The focus is particularly on the problems
encountered during my investigation, the solutions proposed for resolving the problems
and the summaries of the main results.

1.1 Motivation

The study of database queries has always been a central theme for database theoreticians.
From a computational point of view, a query to a relational database transforms database
instances over an input schema into database instances over an output schema, in which
input and output schemata are considered to be completely independent from each other.
Since the introduction of relational calculus – a fragment of the first-order logic – as a
query language over relational databases, investigations on the logical grounds of database
queries have attracted much attention from database communities. In theoretical studies,
it has been well acknowledged that a logic-based perspective for database queries can
provide a yardstick for measuring the expressiveness and complexity of query languages.
Additionally, an immediate consequence of applying mathematical logics in the database
area is the expedited development of declarative query languages that has the advantage
of separating the logical concerns of a query from its implementation details. When the
logic of a query is described by certain declarative query language, the issues of query
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CHAPTER 1. INTRODUCTION

optimisation can be handled by a database system with little to rely on the expertise of
database developers. More specifically, a database system first translates a declarative
query into an algebraic expression, then applies various optimisation rules predefined in
the system to rewrite an algebraic expression, and finally executes the optimised algebraic
expression with improved database performance. In relational database systems, relational
algebra is such an algebraic language facilitating the optimisation of relational database
queries.

However, query languages themselves are not sufficient for most database applications.
Because the world modelled by databases is not static, database instances themselves
change over time. Thus, updates effectuating these changes play an important role, and
often, database queries and updates turn out to have intimate connections. For instance, a
relation may be updated by using matched tuples from another (possibly the same) relation
on a join operation over several specified attributes, tuples of a relation may be deleted
based on some selection criteria, etc. On the one hand, such connections between queries
and updates justify the support for the embedding of queries in updates as a fundamental
feature in all major commercial relational database systems. On the other hand, it brings
up considerable concerns on the theoretical foundations for database updates. In sharp
contrast to the elegant and fruitful theories for database queries, the theoretical foundations
for database updates, and more generally for a unifying framework encompassing both
queries and updates are still lacking.

The following example is taken from an Oracle database application. It illustrates the
close relationship between queries and updates in relational databases.

Example 1.1.1. Consider a relational database schema consisting of the following four
relation schemata: Publication, Person, AcademicUnit and Authorship such that

• Publication = {PubID,Title,Year,Category,File,Mime,NoOfDownload},

• Person = {PersonID,Fname,Sname,Address},

• AcademicUnit = {UnitID,Name,ParentID,OldID} and

• Authorship = {PubID,UnitID,PersonID,Order}.

Assume that the authorship of publications is still associated with old academic unit
IDs stored in the attribute OldID of AcademicUnit. To change all the academic unit
IDs kept in the attribute UnitID of AcademicUnit to the new unit IDs, we may use the
following statement1.

UPDATE Authorship a
SET a.UnitID = ( SELECT b.UnitID

FROM AcademicUnit b
WHERE a.UnitID = b.OldID);

1Assume that there is a unique constraint on the attribute OldID of AcademicUnit.
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1.1. MOTIVATION

In the past decades, the interests arising from the development of object-oriented appli-
cations and programming languages that utilise objects have driven the studies of object-
based databases. There are several principal arguments for justifying an object-based
approach to database systems: (i) to enrich the ability of modelling various business ob-
jects in a database; (ii) to minimise the possible mismatch between the data model used
in an application and the data model supported by a database; (iii) to support the native
management of objects in a database. The emergence of query languages with extended
technologies for handling object-based databases [3] required the view on database queries
to be somehow relaxed: a query is considered as a binary relation from database instances
over an input schema to database instances over an extended output schema which preserve
the database instance over the input schema. This relaxation reflects the significance of ob-
ject creation, during a computation and in a final result, for increasing the expressiveness of
query languages and the capability of data modelling. Behind the scenes, object identifiers
play an essential role in object-based databases, functioning as a powerful programming
and modelling primitive for set manipulation, structure sharing, update or the encoding
of cyclicity [3]. An object identifier is assigned to each object at the time of creation. As
object identifier is an implementation notion for internal complex structures [3, 124], it
leads to the non-deterministic choice on object identifers. Therefore, the need of assigning
object identifiers to new objects blurs the distinction between queries and updates. More
specifically, a database computation accomplishing certain functionality in the presence of
objects may be formalised as a query in one language, as an update in another language,
or as the mix of queries and updates in a language different from both of them.

The following example illustrates how a computation task can be implemented as
queries and updates in different database languages, respectively.

Example 1.1.2. Let us consider the relation schema AcademicUnit provided in Example
1.1.1 again. Suppose we have an inclusion constraint stating that values in the attribute
ParentID should be values in the attribute UnitID. Then AcademicUnit may contain
recursive structures. Instead of modelling academic units as tuples in a relation over
AcademicUnit = {UnitID,Name,ParentID,OldId}, they may also be modelled as objects
in a class AcademicUnits such that each object has a unique object identifier (i.e., a unit
id) together with an unit name, a set of its child units and an old unit id.

Let S1 and S2 be two database instances representing the same set of academic units
from a relational point of view and from an object-based point of view, respectively. Trans-
forming the database instance S1 into the database instance S2 is a common task under-
taken by database applications. We will show that this task may be implemented in several
different ways.

Let us first have a look at how it can be achieved in Oracle applications. Oracle
provides the object technology which is a thin layer of abstraction built over the relational
technology.

CREATE TYPE tAcademicUnit;

CREATE TYPE tAcademicUnits AS table of ref tAcademicUnit;

3



CHAPTER 1. INTRODUCTION

CREATE TYPE tAcademicUnit AS object (
Name varchar2,
ChildID tAcademicUnits

OldID varchar2 );

CREATE TABLE AcademicUnits (
AcademicUnit tAcademicUnit );

INSERT INTO AcademicUnits

SELECT tAcademicUnit(Name, null, OldID)
FROM AcademicUnit;

UPDATE AcademicUnits b
SET b.AcademicUnit.ChildID=(

CAST(
MULTISET(

SELECT ref(a)
FROM AcademicUnits a,

AcademicUnit c,
AcademicUnit d

WHERE a.AcademicUnit.Name = c.Name
AND d.UnitID = c.ParentID
AND d.Name = b.AcademicUnit.Name)

AS tAcademicUnits)
);

To accomplish such a transformation, a more powerful query language Identity Query
Language (IQL) [3] can also be used. As demonstrated by Example 1.2 in [3], there exists a
desired query for this transformation in which four stages occur sequentially or in parallel
with inflationary semantics [1, 3]:

(1) A set of distinct names of academic units is produced;

(2) A pair of object identifiers per name is produced such that the first one is assigned
to an object representing an academic unit while the second one is assigned to an
object which will have a set of child academic unit objects but is still empty at this
stage;

(3) For two objects corresponding to a pair of object identifiers, object identifiers of
objects representing child academic units of the first object are nested into the value
of the second object;

(4) A set of objects representing academic units are generated as desired, whose values
consist of name of an academic unit, a set of object identifiers referring to its child
academic unit objects and an old unit id.
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1.1. MOTIVATION

In recent years, web-based applications are rapidly emerging. A lot of research focuses
on investigating service-oriented architectures (SOA), treating functionality as interoper-
able services, in particular, web services. Broadly speaking, web services can in fact be
anything relating to software systems: simple functions, database manipulations, Applica-
tion Programming Interfaces or fully functional Web Information Systems. By means of
exposing a database and the data logic in a database as web services, well-known database
vendors such as Oracle, IBM, and Microsoft, etc. provide database web services technol-
ogy as a data-centric approach to web services. In general, there are two viewpoints for
database web services: as service provider to allow the access to a database via web ser-
vices mechanisms and as service consumer to allow a database program such as a database
query or update to invoke a web service. A database can simultaneously play the role of
a service provider and consumer. With the desired characteristic that services can be eas-
ily assembled into more complex (possibly unanticipated) services, database web services
should be closed under compositions. However, in order to achieve such compositionality
among queries and updates, a formal framework for database computations unifying both
queries and updates needs to be established.

The following scenario demonstrates the close interplay between queries and updates
during a composition of web services implemented as Oracle database applications.

Example 1.1.3. Based on the relational database schema presented in Example 1.1.1, let
us consider two web services downloadPublication and findPublication:

• downloadPublication first downloads the content of publications, and then in-
creases values in the attribute NoOfDownload of Publication for these publications
by 1;

• findPublication finds the ids of publications according to a condition on the at-
tribute Title of Publication2.

The following is one possible implementation of the two services using Oracle PL/SQL,
where Oracle provides a mechanism WPG DOCLOAD to download content files directly
from a database.

TYPE PubidType IS ref cursor RETURN Publication.PubID%TYPE;

PROCEDURE downloadPublication(
IDcursor IN PubidType)

AS
vPubID Publication.PubID%TYPE;
vFile Publication.File%TYPE;
vMime Publication.Mime%TYPE

BEGIN

2This service can be generalised to be a search engine service based on more complicated conditions.
To simplify the discussion, here only the condition on the attribute Title is considered.
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OPEN IDcursor;
LOOP

FETCH IDcursor
INTO vPubID;
EXIT WHEN IDcursor%NOTFOUND;
SELECT File, Mime

INTO vFile, vMime
FROM Publication

WHERE PubID = vPubID;

OWA UTIL.mime header(vMime,FALSE);
HTP.p(‘Content-length: ’ ‖ DBMS LOB.getlength(vFile));
OWA UTIL.http header close;

WPG DOCLOAD.download file(vFile);

UPDATE Publication

SET NoOfDownload=vNoOfDownload+1
WHERE PubID=vPubID;

COMMIT;
END LOOP;
CLOSE IDcursor;

END downloadPublication;

PROCEDURE findPublication(
Description IN VARCHAR2,
IDcursor OUT PubidType)

AS
BEGIN

OPEN IDcursor FOR
SELECT PubID

FROM Publication

WHERE Title like ‘%′ ‖ Description ‖ ‘%′;
END findPublication;

A web service getPublication that downloads the content of publications whose
titles match some entered description can be created as a composition of two web services
downloadPublication and findPublication as follows:

downloadPublication(findPublication(Description)).

In order to show the details of publications after downloading them, the above web
service getPublication may be further composed with another web service called show-

Publication which may present the metadata of these publications along with the up-
to-date numbers of downloads.
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1.1. MOTIVATION

In database theory, the term database transformation is used to refer to a unifying
treatment for computable queries and updates. More precisely, a database transformation
is defined as a binary relation on database instances over an input schema and database
instances over an output schema in which certain criteria should be satisfied, such as well-
typedness, effective computability, genericity and functionality [2, 10]. Unifying queries and
updates into a general framework is very appealing to database communities, however, it
remains a challenging problem. A great amount of research aimed at formalising different
classes of database transformations, e.g. [3, 146, 148, 150]. Nevertheless, very little progress
has been made with respect to understanding the theoretical foundation of database trans-
formations. Many investigations have yielded meaningful findings in the case of queries.
Unfortunately, extending these results to updates is by no means straightforward [149]. In
this dissertation, I investigate database transformations from an algorithmic point of view.
Hence, in the remainder of the dissertation, the term “database transformation” is in fact
used to refer to database transformation algorithms.

Abstract State Machines (ASMs) provide a universal computation model that formalises
the notion of (sequential or parallel) algorithm [27, 82]. In Gurevich’s seminal work [82]
on the sequential ASM thesis, he pointed out the differences between a computable func-
tion in the recursion-theoretic sense and an algorithm. Strictly speaking, many algorithms
in numerical mathematics, e.g., Newton’s algorithm for determining zeros of a differen-
tiable function f : R → R, do not define computable functions, as they deal with non-
denumerable sets. Only when restricted to a countable subset – such as floating-point
numbers instead of real numbers – and properly encoded can algorithms be considered
as computable functions. Analogous to the fact that an algorithm is more than a com-
putable function, there is more to a database transformation algorithm than a database
transformation defined over input and output database instances.

In formalising a unifying framework for database transformations, several issues have
to be taken into consideration. As raised in [149], the compositionality of database trans-
formations is a difficult problem in the object-oriented paradigm. This is due to the unique
identification of objects by object identifiers. The connection between an object and its
object identifier is permanent, meaning that object identifiers can never be separated from
objects once they have been assigned. However, the mechanism of assigning object iden-
tifiers to objects is entirely controlled by the underlying system, which makes objects
difficult to be arbitrarily composed in the way that values can. The second issue is the
non-determinism caused by the de facto view on object identifiers, i.e., the representation
of object identifiers is irrelevant and only the interrelationship between objects matters
[2]. In fact, the degree of non-determinism in a class of database transformations is one
of critical factors which determine the upper bound of the expressiveness of associated
languages. Apart from these two issues, it has also been perceived that there is a mis-
match between the declarative semantics of query languages and the operational semantics
of update languages. Unlike many query languages which can describe what a program
should accomplish rather than specify how to accomplish, update languages usually require
explicit specifications of operations and control flow in order to handle a problem. The
obvious question is how to integrate different semantics within one database language?
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CHAPTER 1. INTRODUCTION

To the best of my knowledge, there does not exist a formal computation model specify-
ing both queries and updates over complex-value databases at a flexible abstraction level.
Finding such a formal computation model is an important starting point for the formal
investigation into theoretical properties of database transformations.

1.2 Objectives

The goal of this dissertation is to establish a formal and unifying framework for computa-
tions over complex-value databases. To accomplish this goal, the following objectives are
set.

• The first and most important objective is to study how database transformations
can be characterised in a robust mathematical way and to consider what kind of
computation model is an appropriate formalism for database transformations.

• The second objective is to study the logical reasoning for properties of the compu-
tation model formalised in the first objective. In particular, I aim at establishing
a sound and complete proof system for the logical characterisation proposed for
database transformations.

• The third objective is to study two important subclasses of database transformations:
relational and XML database transformations within the theoretical framework es-
tablished in this dissertation.

• The last objective is to investigate the partial update problem arising from database
transformations on complex-value databases.

My investigation is governed by the following: (i) what class of computations is meant
by the notion of database transformation used in this dissertation; (ii) why the methodology
of ASMs can serve as an appropriate foundation for the study of database transformations.
I will discuss them in the following subsections.

1.2.1 Scope

To clarify the scope of this research, it is important to identify the class of computa-
tions called database transformations. Generally speaking, there are several principles that
distinguish database transformations from other classes of computations in one or more
aspects. Firstly, database transformations are abstract by nature, i.e., regardless of specific
representations, database transformations are only concerned with structural properties of
a database. This abstract point of view on computations is generally identified as the
genericity principle in database communities. A variety of definitions of genericity have
been proposed with the aim of classifying database computations into different subclasses.
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In this respect, I will take a more liberal view: preserving the genericity of database trans-
formations only in terms of equivalence of substructures. Furthermore, database computa-
tions are typically considered over finite structures. This perspective is motivated by the
finiteness of practical databases, and it then enriches theoretical knowledge about finite
structures, for example, finite model theory, descriptive complexity theory, etc. Although
finiteness is a dominant view for database structures, it fails to describe structural parts
that are needed in connection with algorithmic properties. In order to study database
transformations in a framework that has all the capability of dealing with algorithmic is-
sues, I extend the view on a structure of databases from a finite structure to a meta-finite
structure [74] consisting of a finite database part and an infinite algorithmic part intercon-
nected in a rather restricted manner. Furthermore, to account for computations over all
sorts of data models in this framework, database transformations in this dissertation are
studied in a rich context of complex-value databases, which ideally may serve as the upper
bound of other data models used in database applications.

In terms of various programming languages, database transformations represent a class
of computations lying between general-purpose programming languages (such as C, C++,
Jave, PhP, etc.) which are Turing-complete, and domain specific languages (such as SQL,
RC, RA, XPath, etc.) which are designed for particular application domains. On one
side, general-purpose programming languages do not have an ability to efficiently process
information stored in a database; on the other side, domain specific languages may lack
strong flow of control. A selective combination of functionalities from both sides while
still respecting database principles is the key in characterising the class of computations
represented by database transformations.

1.2.2 Methodology

Abstract State Machine (ASM) is a formal specification language. The sequential ASM
thesis [82] shows that it can capture all the sequential algorithms, thus ASMs are accepted
as a universal computation model formalising the notion of algorithm. In this study,
the ASM methodology sheds light on how to establish a formal framework for database
transformations. Intuitively, the idea originates from the observation that the class of
computations described by database transformations may be formalised as a customisation
of ASMs respecting database principles.

There are several good reasons why ASMs are particularly suitable for specifying
database transformations.

One of the main advantages of ASMs is the flexibility of specification at any level of
abstraction. It thus provides the capability of smoothly combining the declarative purity of
queries with the procedural style of updates. More precisely, ASMs allow a mixed style in
which declarative and procedural semantics can be used for different parts of a computation
model according to specific requirements. Extending a query language by incorporating
additional update functionality may lead to a more powerful language that has declarative
parts spread over procedural parts, e.g., Data Manipulation Language in SQL, XQuery
with update facility, etc.
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ASMs also allow for a refinement of a high level specification for database transforma-
tions into a level where transactions can be made explicit [47, 101]. Therefore, a database
transformation can be initiated from the end users’ point of view by using ASMs to specify
the ground requirements. After that, through iterative refinement procedures the specified
database transformation can be fine-tuned into an executable database transaction which
may consist of one or more update and query statements.

In terms of computability, ASM is a Turing-complete language. Therefore, ASMs are
powerful enough for investigating problems that are difficult in the field of database re-
search, as long as certain restrictions are appropriately imposed to ensure the compliance of
database principles. Moreover, it is also possible to identify a fragment of ASMs satisfying
some properties and then use its strengths for investigating more specific problems. The
findings in the sequential and parallel ASM theses [27, 82] exemplify such an approach to
precisely characterise different notions of algorithms. In this sense, by considering database
transformations as special kinds of algorithms, ASMs shed light on how to characterise
database transformations.

1.3 Detailed Overview

The following is a detailed description of what will be presented in the remainder of this
dissertation.

Chapter 2 provides a literature review on the related works. In particular, a historical
development of the theory on database transformations, several relevant characterisation
theorems of ASMs, typical abstract computation models developed in database theory and
their connections to logics are presented.

Chapter 3 addresses the question of how ASMs can be used to characterise database
transformations in general. I start by examining database transformations in the light of
the postulates for sequential algorithms3 defined in [82]. As a result, five intuitive postulates
for database transformations are defined: the sequential time postulate, the abstract state
postulate, the background postulate, the bounded exploration postulate and the bounded
non-determinism postulate.

Pragmatically, database transformations must terminate. This implies that a run will
always be finite and a final state can always be reached. Furthermore, in order to take into
consideration not only deterministic but also non-deterministic database transformations,
the requirement of a one-step transition function has to be relaxed. For this, a one-step
transition relation over states is permitted, leading to a slightly modified sequential time
postulate. The necessity for non-determinism arises, among others, from the creation of
objects [148]. Nevertheless, the degree of permissible non-determinism will be severely
limited by further postulates.

3In Gurevich’s theory sequential algorithms permit only bounded parallelism, whereas parallel algo-
rithms are understood to capture even unbounded parallelism.
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According to the abstract state postulate for ASMs, states are first-order structures and
the sets of states used for an algorithm are invariant under isomorphisms. In general, this
notion of state must capture all databases, and in particular, we must take the following
issue into account: not only logical structures in databases but also auxiliary structures
for computing need to be captured in a state. Therefore, I will customise the abstract state
postulate by requiring that a state is composed of a finite database part and a possibly
infinite algorithmic part linked via bridge functions. This approach indeed engages a
fundamental idea from meta-finite model theory [74].

The third postulate in the sequential ASM thesis, the bounded exploration postulate,
requires that there is a finite set of terms (i.e., the bounded exploration witness) and only
these can be updated in a one-step transformation. The generalisation of this postulate
to the case of parallel algorithms in the parallel ASM thesis [27] leads to several signif-
icantly more complex postulates. As database transformations are intrinsically parallel
computations, though an implementation may be sequential, I will adopt parts of these
more complex postulates. The adoption will only be partial, as the parallelism in database
transformations is rather limited in practice; it merely amounts to the same computation
on different sets of data.

Analogous to the parallel ASM thesis, the background of a computation, which contains
everything that is needed to perform the computation, but is not yet captured by the states,
has to be explicitly stated. For instance, truth values and their connectives, and a value ⊥
to denote undefinedness constitute necessary elements in a background. Furthermore, for
database transformations, constructs that are determined by the used data model must be
captured, so type constructors will have to be considered, along with functions defined on
such types. This leads to the background postulate for database transformations.

Regarding the restricted form of parallelism needed for database transformations, I
capture this by location operators, which generalise aggregation functions and cumulative
updates. With these location operators I actually deal with meta-finite structures with
multiset operations as defined in [74]. In doing so, update multisets have to be considered,
which are then reduced to update sets by means of applying location operators. Further-
more, depending on the data model used and thus on the actual background signature,
complex values (e.g., tree-structured values) may be used, which gives rise to the problem
of partial updates [89]. That is, how to ensure that parallel updates to different parts of
a complex-value (e.g., a tree) are synchronised. Dealing with partial updates actually is
encompassed in the notion of consistent update set. Taking these ingredients together, a
slightly modified bounded exploration postulate is obtained.

The fifth postulate, called the genericity postulate, addresses how the longstanding
genericity principle from database theory limits the degree of non-determinism allowed in
computations. My approach is to require all equivalent substructures to appear as sub-
structures in one of the states reachable by a one-step transition whenever a substructure
is preserved by the one-step transition. With the involvement of non-determinism, equiva-
lence of substructures may indeed be destroyed, but the genericity postulate ensures that
this can only be done in very limited ways, for example, by creating new identifiers.

In the rest of this chapter, a variant of Abstract State Machines, called database Ab-
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stract State Machines (DB-ASMs), is defined. Naturally, the permitted non-determinism
requires the presence of a choice-construct, while the restricted parallelism leads to a let-
construct that binds locations to location operators. I first show that DB-ASMs satisfy the
five postulates for database transformations and proceed to show the converse that every
database transformation stipulated by the postulates can be behaviourally simulated by a
DB-ASM. This establishes the correctness of the DB-ASM formalisation.

Two important outcomes in this chapter are:

Theorem 3.2.1 Each DB-ASM M defines a database transformation T with the same
signature and background as M .

Theorem 3.3.1 For every database transformation T , there exists an equivalent DB-
ASM M .

In Chapter 4 two specific theoretical frameworks for relational and XML database
transformations are developed, built upon the general characterisation of database trans-
formations by DB-ASMs. This leads to two major contributions: Firstly, the relational
and tree-based backgrounds that are necessary for modeling relational and XML data are
presented, which tailor DB-ASMs for capturing relational and XML database transforma-
tions, respectively. Secondly, a more elegant computational model, called XML machines,
is developed which mainly differs from the DB-ASM model by the use of weak monadic
second-order logic in forall and choice rules. It is shown that XML machines are, in fact,
behaviourally equivalent to the DB-ASM model with tree-based backgrounds.

Theorem 4.5.1 XML Machines with a tree-based background that consists of a tree
background class Ktree and a set Γ̃tree of tree type schemes capture exactly all XML
database transformations with the same signature and background.

The specific backgrounds for relational and XML database transformations are for-
malised separately as follows:.

• For the relational backgrounds of relational database transformations, I begin with
an introduction to the relational model, i.e., the Relational Data Model (RDM) and
the Nested Relational Data Model (NRDM). After defining relational background
classes and relational type schemes, the focus is on investigating the constructivity
of relational backgrounds within the framework defined by Blass and Gurevich [29].
I exploit that the use of relational algebra in relational databases for query execution
and optimisation at an internal implementation level requires its algebraic operators
and set of algebra identities to be included in the relational backgrounds for relational
database transformations.

• For the tree-based backgrounds of XML database transformations, I start by defining
unranked trees using child and sibling relations. This is tailored towards XML trees
by labelling and value functions. In order to provide more flexible operations on XML
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trees, contexts are introduced to support the freedom of selecting tree portions of
interest, along with the use of subtrees. Furthermore, a many-sorted algebra on XML
trees is defined, i.e. list of trees, contexts and labels, extending known tree algebras
[41, 157]. Due to the finiteness of the database part in a state, XML trees are assumed
to be always finite. Therefore, hereditarily finite trees with the functions required
for trees and the functions used in hedge algebra operations together form the major
components for tree-based backgrounds. Furthermore, in order to capture schemata
for XML documents, I adopt extended document type definitions (EDTDs) [116],
which, according to [111], generalise many other XML schema definition languages.
These further add tree typing schemes to tree-based backgrounds. Nevertheless, for
XML database transformations only initial and final states adhering to given typing
schemes are required.

The second contribution in this chapter is the development of an alternative model
of computation for XML database transformations, which exploits weak monadic second-
order logic (MSO). Pragmatically speaking, the use of weak MSO formulae in forall and
choice rules permits more flexible access to the database. Moreover, weak MSO logic is
linked to regular tree languages [65, 140]: a set of trees is regular iff it is in weak MSO
logic with k successors. As XML is intrinsically connected with regular languages, a lot
of research has been done to link XML with automata and defining logics. It turns out
that (weak) MSO logic has stood out as being a natural and important logic in such
computations over tree-based structures, including XML database transformations.

As weak MSO logic subsumes first-order logic, it is straightforward to see that this
natural model of XML machines captures all transformations that can be expressed by the
DB-ASM model with tree-based backgrounds. As the result in Theorem 3.3.1 states that
DB-ASMs capture all database transformations as defined by the five intuitive postulates,
it should also not come as a surprise that XML machines are in fact equivalent to DB-
ASMs with tree-based backgrounds. Since the hard part of the proof is already captured
by the main characterisation theorem in Theorem 3.3.1, it remains only to show that XML
machines satisfy the five postulates.

Chapter 5 presents a logical characterisation for DB-ASMs, and thus for database
transformations in general, in accordance with the results in Chapter 3. The main con-
tribution of this chapter is the establishment of a sound and complete proof system for
the logic for DB-ASMs, which can be turned into a tool for reasoning about database
transformations.

The following theorems have been proven in this chapter in relation to the proof system
as defined in Section 5.3.

Theorem 5.4.1 (soundness) Let M be a DB-ASM and Φ be a set of sentences. If ϕ is
derivable from a set Φ of formulae with respect to M (i.e., Φ ⊢M ϕ), then a formula ϕ is
implied by a set Φ of formulae with respect to M (i.e., Φ |=M ϕ).
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Theorem 5.5.1 (completeness) Let M be a DB-ASM and Φ be a set of sentences. If
a formula ϕ is implied by a set Φ of formulae with respect to M (i.e., Φ |=M ϕ), then ϕ is
derivable from a set Φ of formulae with respect to M (i.e., Φ ⊢M ϕ).

Since the rules of DB-ASMs exclude call rules, there is no iteration involved in each
computation. Therefore, DB-ASMs may be treated in a similar way to hierarchical ASMs
defined in [134] with the following extensions:

• states defined as meta-finite structures, instead of first-order structures,

• restricted non-determinism permitted by using only database variables in choice rules
which range over the database part of a meta-finite state, and

• multiset operations provided by using ρ-terms and let rules over meta-finite states.

Consequently, the logic for DB-ASMs extends the logic for ASMs presented in [134] in
several aspects:

• Firstly, the logic for DB-ASMs is built upon the logic of meta-finite structures, which
is beyond the first-order logic due to the introduction of multiset operations. The
formalisation of multiset operations is captured by the notion of ρ-terms that allows
an inductive construction between formulae and terms. The use of ρ-terms greatly
enhances the expressive power of the logic for DB-ASMs since aggregate computing
in database applications can be easily expressed by using ρ-terms. Nevertheless, the
presence of ρ-terms also greatly increases the complexity of the completeness proof for
the proposed proof system. To handle this problem, I will use an inductive argument
to construct structures based on the nested depth of ρ-terms. This piece of work is
presented in Section 5.5.

• Secondly, the non-determinism accompanied with the use of choice rules poses a
further challenging problem. As discussed in [134] for the logic for ASMs, it is
improbable that there is a natural and simple approach to introduce non-determinism
into the logic for ASMs. Fortunately, DB-ASMs are restricted to have qualifiers only
over the database part of a state which is a finite structure. This implies that
any update set or multiset yielded by a DB-ASM rule must be finite. Based on
the finiteness of update sets, I use the modal operator [∆] for each update set ∆
generated by a DB-ASM rule r, rather than the modal operator [r] for a rule r. By
introducing [∆] into the extended formulae of the logic for DB-ASMs, it is shown
that non-deterministic database transformations can also be captured.

Chapter 6 examines the problem of partial updates in the context of complex-value
databases. In many database applications over complex-value databases, the notion of lo-
cation lends itself to a variety of perspectives based on the underlying data models. There-
fore, to improve the naturalness and efficiency of database transformations in complex-value
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databases, I extend the notion of location by allowing auxiliary functions to be subloca-
tions referring to a position within a complex value bounded to another location. Both
locations in the sense of the standard ASMs and their sublocations are defined to be par-
tial locations in this dissertation. Based on this extended view of partial locations, the
dependency relation among partial locations has to be taken into account.

I specify data manipulations in a database transformation in terms of two kinds of par-
tial updates on partial locations: shared updates and exclusive updates. Then the problem
of partial updates can be circumvented by permiting only sets of partial updates which are
consistent. However, having dependency relations among partial locations imposes some
difficulties in the consistency checking of partial updates. The standard definition for the
consistency of an update set has to be revised, as two partial updates with distinct but
non-disjoint locations may still be conflicting.

The contribution of this chapter is the development of a systematic approach for con-
sistency checking of partial updates on partial locations. This approach consists of two
stages, first handling shared updates and second dealing with exclusive updates.

• Stage One - normalisation of shared updates

This stage checks the operator-compatibility among shared updates. To improve the
performance of database transformations, it is highly desirable to check the operator-
compatibility of shared updates by utilising the schema information rather than ex-
amining possible database instances. For this reason, I propose an algebraic approach
that exploits the compatibility of operators in Opt(∆̈ℓ) = {µ|(ℓ, b, µ) ∈ ∆̈ℓ} for a mul-
tiset ∆̈ℓ of shared updates to the same location ℓ. The following result is obtained.

Theorem 6.4.1 A non-empty multiset ∆̈ℓ of shared updates on the same location ℓ
is operator-compatible if either |∆̈ℓ| = 1 holds, or there exists a µ ∈ Opt(∆̈ℓ) such
that, for all µ1 ∈ Opt(∆̈ℓ), µ1 � µ (i.e., µ1 is compatible to µ) holds.

If ∆̈ℓ is operator-compatible, then it can be normalised into an update set norm(∆̈)
containing only exclusive updates. This provides us with input for the second stage.

• Stage two - integration of exclusive updates

This stage checks the compatibility of clusters of updates. Starting from a normalised
update set, a family of clusters may be obtained by partitioning updates based on
the dependence and subsumption relations among locations. Every cluster is said
to be below some location ℓ in which ℓ is a location in the cluster subsuming every
location in that cluster. For each cluster below a location ℓ, its consistency can be
determined according to the following Theorem.

Theorem 6.5.1 Let ∆ℓ be a cluster below the location ℓ. If ∆ℓ is “level-by-level”
value-compatible, then ∆ℓ is consistent.
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Chapter 7 provides a brief summary and assessment of the main results presented in
this dissertation, and discusses some problems which are of interest for the future work.
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Chapter 2

Literature Review

This chapter presents an overview of the related work. We start with a review of significant
research findings in the area of database transformations. Several completeness criteria
proposed in the literature for expressing different classes of database transformations are
outlined. After that, we introduce the theory of Abstract State Machines (ASMs) with a
focus on various characterisation theorems defined for different classes of algorithms and
their representation by ASMs. In order to present a general picture of the development of
generic computation models in database theory, we examine a variety of abstract machines
tailored for database computations. In particular, some possible extensions for structures
beyond finiteness and the connections between expressibility and logics are highlighted.

2.1 Database Transformations

In database theory, the study of database transformations dates back to relational database
queries which originate from the seminal paper of Codd [57]. In this and later papers
[56, 58, 59], a theoretical foundation for relational databases is established. Codd proposed
a relational model of data in which a database is treated as a finite collection of finite
structures. He also suggested two fundamental query languages for relational databases:
relational calculus and relational algebra. Codd’s theorem states that relational algebra
and domain-independent relational calculus queries are precisely equivalent in expressive
power, as both capture exactly the class of first-order queries over relational structures. A
query language is called relationally complete if it can express all first-order queries.

Characterising relational database queries in a way independent from any specific lan-
guage, Bancilhon [19] and Paredaens [117] independently discovered a criterion for com-
pleteness of relational query languages commonly known as BP-completeness. A relational
query language is called BP-complete if the following conditions are satisfied for any input-
output pair (Sin, Sout) of relational structures of a query:

• Adom(Sout) ⊆ Adom(Sin), and

• Aut(Sin) ⊆ Aut(Sout);
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where Adom(S) denotes the active domain of S (i.e., the set of constants appearing in S),
and Aut(S) denotes the automorphism group of S (i.e., the group of all functions from S
to itself which preserve the structure of S).

The second condition requires the preservation of symmetry of the input in the output.
This condition and the principles that Aho and Ullman [15] considered a query language
must obey were generalised to invariants under isomorphisms by Chandra and Harel [52].
Invariants under isomorphisms exactly captures the abstract nature of computations in
database applications by dealing with the logical properties rather than the interpretations
of domain elements. This has led to the well-known genericity principle in database theory
[98].

Apart from preserving database isomorphisms, Chandra and Harel [52] extended the
criterion of BP-completeness to the class of computable queries by treating queries as par-
tial recursive functions between finite, relational structures. Their notion of completeness
remedied the deficiency of Codd’s idea of relational completeness whose inability to express
the transitive closure property was noted by Aho and Ullman in [15]. In order to demon-
strate their proposed notion of completeness for relational query languages, Chandra and
Harel [52] developed a simple but complete programming language (called QL) that can be
thought of as relational algebra augmented with the power of iteration. This emerged the
first computationally complete query language. The most interesting part of the language
is a mechanism for providing the power of iteration. A straightforward addition of an iter-
ative construct such as least fixpoint or while operator to the relational algebra or calculus
still leads to queries in PSPACE and does not suffice to simulate unbounded space on a
tape of Turing machines [99, 152]. The approach Chandra and Harel [52] adopted in the
language QL is to utilise unranked relation variables that are able to simulate counters.

The results of Chandra and Harel have inspired two branches of research into the
completeness of database transformations. The first branch concentrates on exploiting the
expressive power of database transformations by generalising the completeness criteria to
object-creating or update languages, in which the genericity principle used by Chandra
and Harel for relational query languages has to be re-considered due to the presence of
newly created objects in object-creating languages or explicitly specified values in update
languages. The second branch focuses on understanding the expressibility of database
transformations, that is, their completeness in terms of logics and their computational
complexity. The paper by Van den Bussche et al. [150] provides a good survey of research
results in the first branch. In the following, we will briefly introduce main results concerning
the completeness criteria. As for achievements in the second branch, we will present an
overview in Section 2.3.

In contrast to the mature and elegant theory of relational database queries resulting
from extensive studies over the years, the understanding of database updates in relational
databases is paltry. As a first step towards a formal investigation of database updates,
Abiteboul and Vianu [9] initiated a study on the relationship between update languages
and existing query languages. A notion of update completeness was proposed, which is not
directly comparable but closely related to completeness of query languages as defined by
Chandra and Harel [52]. Both deterministic and non-deterministic updates were considered

18



2.1. DATABASE TRANSFORMATIONS

from a transactional point of view. In order to deal with constants explicitly introduced
by updates which may or may not be in the active domain of a database, the genericity
property was relaxed to allow for the interpretation of a finite number of constants. A
weaker version of genericity called C-genericity was introduced, which requires invariants
under isomorphisms that fix a finite set C of constants.

In database theory, the formal usage of database transformations with binary rela-
tions on database structures defined by database programs first appeared in Abiteboul
and Vianu’s technical report [10]. With the term of database transformation, Abiteboul
and Vianu on the one hand unified database queries and updates under one umbrella, and
on the other hand widened the relational view for databases to complex-value databases.
In the papers [11, 12], Abiteboul and Vianu employed the mechanism of value invention to
introduce new domain elements, with which they were able to propose two complete lan-
guages in the sense of Chandra and Harel’s completeness criterion: a procedural language
in [11] and a logical programming language in [12]. In the case of deterministic database
transformations, new invented values are only allowed to occur in “temporary” relations
of a computation. This means, for any input-output pair (Sin, Sout) of instances associ-
ated with a deterministic database transformation the condition Adom(Sout) ⊆ Adom(Sin)
holds.

Shortly after that, Abiteboul and Kanellakis [2] also applied the mechanism of value
invention for the study of the object-oriented paradigm. The model they developed con-
sists of a structural part that generalised many previously introduced complex-value data
models, and an operational part (called IQL) that was shown to contain many popu-
lar, declarative query formalisms. In connection with set manipulations, the use of value
invention appeared to be an intuitive way of creating object identifiers, which becomes
the essential part of representing and manipulating complex structures in object-based
databases. Nevertheless, the presence of new objects in an output instance gives rise
to the issue of non-deterministic choice over newly created object identifiers. Therefore,
the completeness of Chandra and Harel needed to be re-formulated for the object-oriented
paradigm. Abiteboul and Kanellakis [2] came up with the solution to formulate the concept
of determinate transformation by specifying conditions that a binary relation on database
structures should satisfy, in order to qualify as a database transformation. These conditions
described some desirable properties of database transformations: well-typedness, effective
computability, genericity and functionality respectively. A determinate transformation is
indeed a non-deterministic transformation that has output instances equivalent up to the
renaming of new domain elements. Apart from the extension to allow the presence of ob-
ject identifiers that were not in the input instance in the output instances, object identifiers
were considered as atomic elements and only their interrelationships matter.

IQL is complete in the sense of Chandra and Harel’s completeness criterion. Unfor-
tunately, IQL is not complete for determinate transformations unless a construct dealing
with copy elimination is explicitly added to the language [2, 63]. Motivated by this un-
satisfactory situation, the class of constructive transformations was discovered by Van den
Bussche [146, 150]. The characterisation of constructive transformations simply requires
that all input-output pairs of instances associated with a determinate transformation must
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satisfy a condition formulated by Andries and Paredaens in [17]. This condition gener-
alises the condition of Bancilhon [19] and Paredaens [117] for the relational structures to
the context of structures with object creation. More specifically, for an input-output pair
(Sin, Sout) of instances such that Adom(Sin) ⊆ Adom(Sout), there must exist an exten-
sion homomorphism from Aut(Sin) to Aut(Sout). In [150] Van den Bussche et al. showed
that the expressiveness of the database transformation languages GOOD [91], IQL [2, 3]
and FO+new+while (a minimal language defined as the closure of first-order logic un-
der unbounded looping and associating new domain elements to tuples and sets of values)
are equivalent, and complete with respect to constructive transformations. Furthermore,
they established a close correspondence between object creation and the construction of
hereditarily finite sets over the domain elements. This reconciles two different views for
value invention: the pure object-creation perspective and the perspective of treating com-
plex objects as unbounded value structures built up by recursively applying set and tuple
constructors [62, 96, 97].

In contrast to the class of constructive transformations which further restricts the deter-
minacy criterion of Abiteboul and Kanellakis, Van den Bussche [146, 148] also introduced
the class of semi-deterministic transformations via a relaxation of the criterion. A semi-
deterministic transformation is a non-deterministic transformation that has isomorphic
output instances via isomorphisms that are automorphisms of the input instance. Aug-
menting IQL with a choice operator such as witness in [2, 148] or swap-choice in [92],
the resulting language is complete in terms of the criterion of semi-deterministic trans-
formations. In [149] Van den Bussche and Van Gucht tried to extend the concept of
semi-determinism from queries to arbitrarily updates; however, they were hindered by sev-
eral problems, such as: (1) how the composition of two semi-deterministic transformations
should be defined; (2) what a language that is complete for semi-deterministic transfor-
mations should look like. Thus, they concluded that queries and updates may have some
fundamental distinctions. The question of whether there exists a framework unifying both
queries and updates has since been open.

The goal of this thesis is to investigate this problem from an algorithmic point of
view. More specifically, database transformations are considered in terms of algorithms
rather than merely computable functions. By employing the method of Abstract State
Machines (ASMs) we open the way to unifying queries and updates in an elegant theoretical
framework. In the next section, we will present some interesting research results relating
to characterisation theorems for different notions of algorithms and their simulations by a
variant of Abstract State Machines.

With the rise of the Extensible Markup Language (XML) as a standard for data ex-
change on the World Wide Web, XQuery [40] is emerging as a de-facto standard for query-
ing XML data. Nevertheless, to provide sufficient support for Web-based applications in a
service-oriented computing environment, flexible interactions between queries and updates
over XML documents are highly demanded. As XML documents are commonly regarded
as trees, it becomes important to study the properties of database transformations over
tree structures. Over the last decade, a lot of research effort has been put in this area
[6, 42, 53, 64, 121, 24]. However, the emphasis was usually on querying, while updates
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were neglected. Several extensions of XQuery to encompass updates that we are aware
of [23, 50, 51, 70, 137] generally use explicit snapshot semantics to control the evaluation
order of updates at certain level of snapshot granularity, which are often accompanied with
some restrictions on the expression usage and the design of error handling. It turns out
that a well-founded theory with high-level specification for XML database transformations
including updates is still missing. In terms of object-creation results in tree structures,
Van den Bussche made an observation in [147] which asserts that tree nodes that are not
necessarily existing in an input database can be constructed via node construction ex-
pressions of an XML transformation language, in which case determinate and constructive
transformations capture exactly the same class of database transformations.

The structures of a collection of related XML documents may be constrained by the
presence of some XML schema, and such an XML schema acts as types imposed on XML
database transformations. In the literature, there are several formalisms for describing
schema information of an XML document, e.g., Document Type Definition (DTD) and
its variations [16, 116], XML Schema [25, 142], RELAX NG [55, 54], etc. The paper [16]
provides a good survey for various restrictions and extensions on DTD, and the papers
[104, 111] provide an extensive coverage for an overall comparison of some popular schema
formalisms.

2.2 ASMs and the Characterisation of Algorithms

Abstract State Machines (ASMs), formerly called evolving algebra, were introduced by
Gurevich [78]. The formal semantics of ASMs was presented in [80, 81]. The initial in-
tention for inventing ASMs was to develop an analogue to Church’s thesis for formalising
algorithms at a flexible abstraction level. The capability to model algorithms at differ-
ent abstraction levels distinguishes ASMs from other computation models (such as, Turing
Machines [143], Schönhage storage modification machines [128], Kolmogorov-Uspensky ma-
chines [103], etc), which are usually fixed to a certain level of abstraction. As a simple but
powerful specification method, ASMs is supported by both a well-founded theoretical foun-
dations and extensive applications in various areas of computer science. The universality
and mathematical rigor of computation models described by ASMs have been extensively
discussed in [27, 32, 47, 82, 119, 134] and verified by a large number of industry appli-
cations, such as, hardware and software architectures [71, 113], programming languages
[135], protocols and security [22, 122] - just to mention a few. For more information on
historical surveys and bibliographies of ASMs, the reader may refer to the ASM web site
[94]. In brief, the advent of ASM sheds light on establishing a bridge between theoretical
computation models and practical system engineering methodology. In this section we will
focus on providing an overview for characterising algorithms in the context of ASMs.

It was in [80] that Gurevich conjectured that ASMs can simulate any algorithm in
lock-step at any arbitrary abstraction level. States of an algorithm are abstracted to first-
order structures, independent from any specific representations. In addition to sequential
algorithms and their extensions, the tentative definitions for non-sequential computations

21



CHAPTER 2. LITERATURE REVIEW

such as parallel and distributed algorithms were also provided. More specifically, both
sequential and parallel algorithms are single-agent computations moving from an initial
state to its next state, and go on until a final state is reached. Nevertheless, each step
of sequential algorithms allows only a bounded amount of work to be done, whereas par-
allel algorithms are free from such restriction. This means that a single step of parallel
algorithms may involve a number of invisible auxiliary agents. In contrast, distributed
algorithms are considered to be multi-agent computations with partially ordered runs [84].
Agents in a distributed algorithm can share functions with each other and also have co-
operative actions. It has been proven that ASMs and their extensions formalise certain
notions of “algorithm”, e.g., sequential and parallel algorithms have been proved in the pa-
pers [82] and [27] respectively. A restricted but important class of “small-step” distributed
algorithms was proven in [72]. However, the characterisation for capturing more general
distributed algorithms still remains a challenging problem.

The sequential ASM thesis of Gurevich [82] established the characterisation theorem
for sequential algorithms, i.e., every sequential algorithm can be simulated, step for step,
by a sequential ASM and vice versa. Sequential algorithms are defined in terms of three
postulates: sequential time, abstract state and bounded-exploration, which characterise se-
quential algorithms in full generality. Following this work, the sequential ASM thesis was
extended to a number of characterisation theorems targeted at different classes of algo-
rithms [27, 28, 30, 31, 34, 35, 90]. Similar to the sequential ASM thesis, it was asserted
that every algorithm in a class is behaviourally equivalent to a variant ASM customised
to such a class. These extensions take into account various issues that may possibly arise
in different classes of algorithms, such as the interaction with the environment, the back-
ground of computations, and non-determinism. In the following, we present these issues
in turn.

In accordance with the sequential time postulate, an algorithm computes in a sequence
of discrete steps where each step is a transition between two states. For a deterministic al-
gorithm, there exists at most one possible state transition from any state and the one-step
transformations are represented as function mappings. A non-deterministic algorithm, in
contrast, may have a set of successor states relating to a state during one-step transforma-
tions. In [90], a complete characterisation for bounded-choice sequential algorithms was
provided. It permits a restricted form of non-determinism in which finitely many states
were considered as successors of a state by the transition relation. To reflect differences in
the non-deterministic version, the authors reformulated the sequential time, abstract state
and bounded-exploration postulates into the nondeterministic sequential time, nondeter-
ministic abstract state and bounded choice postulates, respectively.

Constrained by the bounded-exploration postulate, any single step of a sequential al-
gorithm can only explore a finite number of elements in a state. This number is entirely
bounded by the algorithm itself and thus independent from the state, the environment
and so forth. In order to distinguish algorithms with this feature from other algorithms
that may have more complicated work involved in a single step between two states, al-
gorithms satisfying the bounded-exploration postulate were called small-step algorithms
while algorithms that have no bound on the amount of work done during a single step were
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called wide-step algorithms [83]. The charactersation theorem for wide-step algorithms
that exhibit unbounded parallelism but only bounded sequentiality within a single step is
presented in [27](also called parallel algorithms in [80]); it is constituted of six postulates:
sequential time, abstract state, background, proclets, bounded sequentiality and updates.
The sequential time and abstract state postulates are the same as for the sequential ASM
thesis. The proclets and bounded sequentiality postulates address what can be done within
a wide step. More specifically, a wide step of a parallel algorithm consists of a hierarchy of
sub-steps in which a sub-step can be split into an unbounded number of smaller steps and
go on until the split steps are small-steps of certain sequential algorithms. Blass and Gure-
vich coined the term proclet for referring to such sequential algorithms with small-steps.
Each proclet must satisfy the postulates for sequential algorithms, and work in a local
state that consists of a global state and some specific part. All proclets execute the same
sequential algorithm in possibly different local states; moreover, the times taken to split
into sub-steps in the hierarchy of a wide-step is bounded entirely by the algorithm itself.
The updates postulate states that the updates produced by all the proclets contribute to
the update set leading to the next global state. The background postulate asserts that
a richer background is needed for parallel algorithms, i.e., each state must contain multi-
sets, ordered pairs, boolean values, etc., and standard functions to manipulate them and
a closed term Proclets for the set of proclets. Most parallel algorithms satisfy these pos-
tulates, however, parallel algorithms with the creation of components on the fly cannot be
captured by them. This flaw was repaired in [32] by liberalizing the prior postulates to
allow proclets to create additional proclets on the fly.

The problem of partial updates was first observed by the group on Foundations of
Software Engineering at Microsoft Research during the development of the executable
specification language AsmL [85, 86] that is built upon the theory of ASMs. In a nutshell,
the problem is caused by two factors: complex objects and parallel modifications. The
framework developed in [27] for parallel algorithms eliminates partial updates by viewing
them as messages to proclets that integrate partial updates into appropriate total updates
as noted in Remark 10.4. of [27]. However, the problem of partial updates does arise
as an indispensably interesting phenomenon of algorithms that involve a certain degree
of parallelism. In [87], Gurevich and Tillmann conducted a formal investigation on the
problem of partial updates over data types counter, set and map. An algebraic framework
is established by defining particles to be unary operations over a datatype and the parallel
composition of particles to be an abstraction of order-independent sequential composition.
However, this treatment of the parallel composition of particles fails to address partial
updates over the data type sequence, as exemplified in [88]. This limitation motivated
Gurevich and Tillmann to search for a more general solution for the problem of partial
updates. In [88, 89], Gurevich and Tillmann proposed applicative algebras to address the
partial update problem in a general algebraic framework. It turned out that the approach
used in [87] was a special kind of an applicative algebra. Moreover, the problem of partial
updates over sequences and labeled ordered trees was shown to be solvable in this new
framework.

Another issue arising in the characterisation of parallel algorithms concerns the back-
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ground of computations. Each parallel algorithm must have a background containing
multisets and ordered pairs of its members, etc., as stated in the background postulate
[27]. In [36], ASMs with set-theoretic background were studied, in which a base set is ex-
panded to include all hereditarily finite sets built from the atoms. However, backgrounds
are not issues relating only to parallel algorithms. In general, any algorithms such as those
occurring in programming languages are associated with a specific background, no matter
whether they are sequential, parallel or distributed in the sense of the classification in
[80]. As pointed out by Blass and Gurevich in [26, 29], the purpose of investigating back-
ground structures of computations is two-fold. One is to describe the specific environment
of an algorithm, such as built-in data types, predefined elements or operations, etc. The
other is to formalise the view of elements newly imported from the reserve of a state in a
computation. Blass and Gurevich initialised the formal discussion on various backgrounds
of algorithms in [26]. By using the notion of background class, Blass and Gurevich [26]
captured the class of structures that can be constructed on top of atoms without putting
any structure (except equality) on the atoms themselves in a particular background. As
part of the motivation for seeking a general definition for background class, several com-
mon background classes in connection with constructors such as set, string, list, etc. were
exemplified as well, (called set, string and list backgrounds, respectively). However, it
was shown by Tatiana Yavorskaya that the definition for background class was not precise
enough. As a result, Blass and Gurevich reviewed the problem of background classes in
[29], in which they generalised the theory of background structures presented in [26]. It
leads to a more general framework for background classes, in which several properties like
equivalence, finitary, constructivity, etc., of background classes were further scrutinised.

By considering different sorts of interactions between algorithms and environments, the
characterisation theorem of algorithms can also be extended. Algorithms interacting with
environments are classified as interactive algorithms, and have been investigated in [28, 30,
31, 34, 35]. There were two points of interest when dealing with the interaction between
an algorithm and its environment. The first issue is whether the interaction is inter-
step or intra-step. Inter-step means that algorithms can interact with their environments
only between steps, while intra-step means that algorithms can also interact with their
environments during a step. The second issue is whether the interactions are ordinary.
An ordinary algorithm has the following features: (1) a step (either small or wide) will
not finish until all queries from that step have been answered; (2) the information from
the environment cannot be used except for answers to queries. The papers [28, 30, 31]
formulate the postulates, a variant of abstract state machines and the characterisation
theorem for ordinary, interactive, small-step algorithms, respectively. The overall result
is that ordinary, interactive, small-step ASMs were shown to be behaviourally equivalent
to ordinary, interactive, small-step algorithms. This work has been further generalised
to arbitrary interactive, small-step algorithms in [33, 34, 35]. The papers [18, 83] give a
systematic discussion of a variety of interactive algorithms that have been studied in the
literature.
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2.3 Generic Computation Models in Database Theory

To investigate queries and updates over abstract domains, several generic computation
models have been developed in database theory. In this section, we briefly present some of
the research results related to their expressibility in terms of logics, and their perspectives
for the underlying structures.

2.3.1 Abstract Machines

The study of abstract machines in relation to databases was initiated by Abiteboul and
Vianu [13]. A generic computation model, called relational machine, was developed to ad-
dress the mismatch between the generic nature of database computations and the classical
complexity measures based on Turing Machines. Augmented with a relational store, i.e., a
finite set of fixed-arity relations, a Turing machine is extended to a relational machine in
which the relational store can only be modified via a first-order query. Therefore, relational
machines are in fact computation devices that embed a relational database query language
in a host programming language. Two versions of relational machines were discussed by
Abiteboul and Vianu [13], differing only in the interactions between the Turing tape and
the relational store. It was shown that the weaker version (called GMloose) is a powerful
extension of many well-known query languages, such as fixpoint and while queries, but
not computationally complete. For example, the parity of an input set cannot be com-
puted by GMloose. The strong version (called GM) is complete with the involvement of
parallelism, and the output can only be generated after all results from subcomputations
have been integrated to ensure the genericity of the computation. Based on relational ma-
chines, computability or complexity of relational database languages can be analyzed over
abstract structures without any presumed order over database domains. In contrast to
Turing Machines that operate on a sequential encoding of structures, relational machines
handle abstract structures in a generic way. This leads to the discerning power of rela-
tional machines, i.e., the power to distinguish between different pieces of their input [8].
Therefore, Turing machines may naturally measure complexity in terms of the size of such
an encoded input, but relational machines can only measure the size of an input with re-
spect to their discerning powers. Several complexity classes for generic computations were
defined as generic analogy of classical complexity classes. An infinitary logic was related
to relational machines in the paper [7]. It turns out that relational machines correspond
to the natural effective fragment of infinitary logic, and other well-known query languages
are related to infinitary logic using syntactic restrictions formulated in language-theoretic
terms. The relationship between logics, relational machines and complexity was further
studied in [8, 14].

Generalising relational machines with reflection, Abiteboul et al. [4, 5] suggested the
use of reflective relational machine to deal with the dynamic generation of queries in a
host programming language. A query in reflective relational machines can be constructed
(partially or fully) by a program rather than a programmer. In essence, a reflective re-
lational machine consists of a Turing machine component operating sequentially and a
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relational computation counted as one parallel step. Abiteboul et al. [4, 5] showed that
reflective relational machines capture parallel models of computation from a practical point
of view, and the reflection allows machines to express more parallelism than non-reflective
ones. Subsequently, the connections between reflective relational machines and parallel
complexity classes were addressed in [4]. In the paper [14] it was shown that in terms of a
fixed number of variables allowed on the Turing tape the relational machine cannot obtain
additional power for the augmentation with reflection. This line of research was continued
in [4, 5], which investigate the expressive power of reflective machines when the number of
variables that can be used is restricted. Their study revealed that the power of reflection
relies on having an unbounded number of variables used in queries.

Taking into account numerical queries that have values queried over natural numbers,
there is another direction to extend the power of (reflective) relational machines. One tricky
issue relating to numerical queries is that numerical values occurring in computations
are not necessarily in the domain of the given structure. This can lead to structures
of computation going beyond finiteness. In order to take the computation of numerical
queries into account, Torres [144] defined an extension of the reflective relational machine,
called untyped reflective relational machine, and proved in [52] that the extended relational
machines are complete in terms of both typed and untyped queries, i.e., queries of fixed arity
and of unfixed arity, respectively. In another paper [145], Torres further developed the
notion of reflective counting machine based on reflective relational machines to investigate
a hierarchy of computable queries over relational databases, in terms of the preservation of
equality of theories in fragments of the first-order logic with bounded number of variables
and counting quantifiers.

In order to investigate the computability of queries in the presence of external func-
tions, relational machines have also been extended for databases with nested relations and
external functions, called relational machines for complex objects [136]. The result showed
that relational machines are complete on nested relations, although they are known to be
incomplete on flat relations.

2.3.2 Expressibility and Logics

Compared with classical computation models like Turing machines, the most significant
contribution of (reflective) relational machines is that they are computation devices op-
erating directly on abstract structures rather than encodings of structures. This generic
viewpoint for database computations coincides with the logical view for computations over
unordered structures. Driven by the interest of investigating a logic that captures a nat-
ural fragment of Polynomial-time (PTime) algorithmic problems over abstract structures
without the presence of a linear order, Blass et al. [36] developed a computation model
over relational databases which was later called BGS model in [38]. The BGS model is
a variant of ASMs with a universe containing all hereditarily finite sets built from the
atoms. Blass et al. [36] attempted to capture the choiceless fragment of PTime algorith-
mic problems by replacing arbitrary choice with parallel execution in the BGS model that
do not distinguish between isomorphic structures. The resulting logic, called Choiceless
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Polynomial Time logic (C̃PT), still does not capture all PTime algorithmic problems but
has been shown to be strictly more expressive than the fixed-point logic in which PTime
computations over linearly ordered structures are definable [99, 152]. Continuing with the
consideration of polynomial-time computations over unordered structures, the same au-
thors further studied in [37] an extension of the logic C̃PT because they had observed that

C̃PT could not express cardinality properties such as counting of or computing the evenness
of the number of elements in a set. They added counting terms into the logic. By exam-
ining several algorithmic problems residing at the border of the known complexity classes
contained in PTime algorithmic problems [37], the extended logic (called C̃PT+Card) is
found to be strictly more expressive than the logic developed by Cai et al. [49], which is
an extension of the fixed-point logic with counting terms being able to express cardinality
properties. The connections between the BGS model and other computational complete
query languages such as QL [52] and whilenew [1] are discussed in-depth in [38]. Their
results showed that the BGS model is powerful enough to express all computable queries
in relational databases. In terms of polynomial-time computations, BGS is strictly more
powerful than QL and whilenew. A language extending whilenew by set-based invention
and BGS can simulate each other with only linear-step, polynomial-space overhead. Ac-
cording to the results from [13, 150] that IQL is polynomial-time equivalent to whilenew,
it follows that IQL and BGS are also PTime equivalent.

To extend the application of logics from queries to updates, a number of logical for-
malisms have been developed to provide the reasoning for both states and state changes
in a computation model [45, 151]. A popular approach was to take dynamic logic as a
starting point and then to define the declarative semantics for logical formulae based on
Kripke structures. It led to the development of the database dynamic logic (DDL) and
propositional database dynamic logic (PDDL) by Spruit et al. [130, 132, 131]. DDL has
atomic updates for inserting, deleting and updating tuples in predicates and for functions,
whereas PDDL has two kinds of atomic updates: passive and active updates. Passive
updates change the truth value of an atom while active updates compute derived updates
using a logic program. In [133] Spruit et al. further proposed regular first-order update
logic (FUL), which is a generalised version of dynamic logic tailored for specification of
database updates. A state of FUL is viewed as a set of non-modal formulae. Unlike stan-
dard dynamic logic, predicate and function symbols rather than variables are updateable
in FUL. Two instantiations of FUL were also discussed by the authors. One is called
relational algebra update logic (RAUL) which is an extension of relational algebra with
assignments as atomic updates. Another is DDL which can be obtained by parameterizing
FUL by two kinds of atomic updates: bulk updates to predicates and assignment updates
to functions. It was shown that DDL is also “update complete” in terms of the update
completeness criterion proposed by Abiteboul and Vianu [9].

The emergence of transaction logic [43, 44, 46] manifests a quite different but very ele-
gant approach for dealing with the dynamics of database computations. Transaction logic
is an extension of classical predicate logic by adding operators serial conjunction, parallel
conjunction, etc. to account for transactional features. At the same time, transaction
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logic retains the oracles for data and transition, i.e., there are no any assumptions about
states and updates on states of a database. It was also shown that transaction logic has a
sound and complete proof theory. As transaction logic adopts a transactional perspective,
and is therefore powerful in specifying database transactions at many levels of detail. In
doing so, transaction logic turns out to be a general logic for database transactions that
is able to take care of all kinds of transactional features. Nevertheless, it is not a logic
dedicated to characterising the effect of updates on states, which is at the core of database
transformations as described in Section 2.1.

As we alluded to before, ASMs turn out to be a promising approach for the specification
of database transformations. The logical foundations for ASMs have been well studied
from several perspectives [76, 77, 120, 127, 134]. Groenboom and Renardel de Lavalette
presented a logic called modal logic of creation and modication (MLCM) in [76], which is
a multimodal predicate logic intended to capture the ideas behind ASMs. On the basis of
MLCM the authors also developed a language called formal language for evolving algebras
(FLEA) in [77]. Instead of values of variables, states of an MLCM are represented by
mathematical structures expressed in terms of dynamic functions. Renardel de Lavalette
generalise in [120] the logic MLCM and other variations from [69] to modification and
creation logic (MCL) for which there exists a sound and complete axiomatisation. In
[127], an extension of dynamic logic with update of functions, extension of universes and
simultaneous execution(called EDL) is presented, which allows statements about ASMs to
be directly represented. A logic complete for hierarchical ASMs i.e., ASMs that do not
contain recursive rule definitions, was developed by Stärk and Nanchen [134]. This logic
differs from other logics for ASMs in two respects: (1) the consistency of updates has
been accounted for in the reasoning part of the logic; (2) modal operators are allowed to
be eliminated in certain cases. Nanchen [112] also applied this logic for the verification of
access and update properties of a certain class of ASMs. In this dissertation, we will extend
the logic for hierarchical ASMs towards the characterisation of database transformations,
which allow a limited form of non-determinism to be captured.

2.3.3 Beyond Finiteness of Structures

In relational database theory, structures of a database computation have predominantly
been regarded as being finite, and deeply studied in the field of finite model theory [68, 79].
The typical example is relational databases. In association with a set {Di}i∈[1,n] of domains,
a relational database consists of a finite set of relations defined to be the subsets of cartesian
products of some domains, i.e., R ⊆ D1 × ... × Dk for k ≤ n. Although domains maybe
countably infinite, only a finite number of elements occur in the finite number of relations
of a relational database. By ignoring elements of infinite domains that do not occur in any
relations, a relational database is in fact a finite structure.

The view of databases as finite structures greatly inspires the development of finite
model theory. Fruitful results on the relationship between logical definability and compu-
tational complexity over finite structures were found in [73]. Nevertheless, when handling
algorithmic issues that often arise from applying algorithmic toolboxes in database-related
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problems, the finiteness condition on database structures turns out to be too restrictive.
There are several database applications in which certain kind of infinity is indispensable.
Firstly, database computations over finite structures may deal with new elements from
countably infinite domains, outside of the original finite structure. For instance, counting
queries produce natural numbers even if no natural number occurs in a finite structure,
and aggregation and arithmetic operations can generate elements that are not the elements
of a finite structure. Moreover, finite structures may have invariant properties which pos-
sibly have infinite elements implied in satisfying them, such as, numerical invariants of
geometric objects or database constraints. Last but by no means least, every database
computation either implicitly or explicitly lives in a certain background that supplies all
necessary information relating to the computation and usually exists in the form of infinite
structures.

To remedy such deficiencies, several extensions on finite structures have been suggested
in the literature (e.g., [74, 52, 75]). A common idea among these extensions is to treat
finite structures as the primary part, and to provide extra finite or infinite structures as the
secondary part. In order to relate the primary and secondary parts together, several kinds
of terms, formulae or functions are defined. More specifically, it was Chandra and Harel
[52] who first observed limitations of finite structures in database theory. They proposed a
notion of an extended database which extends finite structures by adding another countable,
enumerable domain containing interpreted features such as numbers, strings and so forth.
The main intention of their study was to provide a more general framework that can capture
queries with interpreted elements but no further study was carried on to study the internal
part of the added domain. Another kind of extension was largely driven by the efforts to
solve the problem of expressing cardinality properties [49, 75, 100, 114, 115, 144, 145, 37].
For example, Grädel and Otto [75] developed a two-sorted structure which adjoins a one-
sorted finite structure with an additional finite numerical domain, and adds the terms
expressing cardinality properties. They aimed to study the expressive power of logical
languages that involve induction with counting on such structures. A promising line of work
is meta-finite model theory proposed by Grädel and Gurevich [74]. They formalised several
variations of meta-finite structures, which all consist of: a primary part that is a finite
structure, a secondary part that may be a finite or infinite structure, and a set of weight
functions from the primary part into the secondary part. Among these variations, meta-
finite structures with multiset operations are of most interest to us due to its naturalness
and generality.
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Chapter 3

Foundations of Database
Transformations

According to [10] a database transformation is a binary relation on database instances
that encompass queries and updates. In general, a database transformation can be non-
deterministic, but it must be recursively enumerable and generic in the sense of preserving
isomorphisms. Instead of viewing database transformations as computable functions, the
focus of this chapter is to completely characterise the algorithms that transform input
databases into output databases. It is analogous to the seminal work on the sequential
ASM thesis [82].

This chapter has two tasks. The first one is to characterise database transformations
by a set of simple and intuitive postulates. These postulates should cover all database
transformations while leaving sufficient latitude to specify the specific characteristics of
data models such as the relational, object-oriented, object-relational and semi-structured
data models. We present five postulates along with a detailed explanation in Section 3.1.
The second task is to develop a general computation model for database transformations.
This is a crucial step towards establishing a unifying theoretical framework. In Section
3.2 a variant of ASMs is developed for database transformations, which we call database
Abstract State Machines (DB-ASMs). We show that DB-ASMs satisfy the five postulates.
This is relatively easy to achieve while the converse, that all computations stipulated by the
five postulates for database transformations can be simulated by a behaviourally equivalent
DB-ASM, is much harder. The proof for this result, that DB-ASMs capture all database
transformations, is presented in Section 3.3.

3.1 Postulates for Database Transformations

We formally introduce the five postulates for database transformations, which are the
sequential time postulate, the abstract state postulate, the background postulate, the bounded
exploration postulate, and the bounded non-determinism postulate.

Definition 3.1.1. An object satisfying these five postulates is a database transformation.
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3.1.1 Sequential Time

As in [27] and [82] a database transformation, the same as any algorithm, proceeds step-
wise on a set of states. It starts somewhere, which gives us a set of initial states. Although it
makes perfect sense to consider non-terminating algorithms, we will only consider database
transformations which terminate somewhere, and thus associate with it a set of final states.
As discussed in [82] this restriction is more a technicality as far as the work in this disserta-
tion is concerned, but is necessary in light of our aim to embed the results into a theory of
database systems, in which many database transformations have to co-exist and interplay
with each other.

Deviating from the sequential time postulate in the sequential and parallel ASM the-
ses, a one-step transition relation on states is used for database transformations, as in
the characterisation of bounded-choice sequential algorithms [90], rather than a one-step
transformation function on states. Doing so introduces non-determinism into database
transformations. However, the extent of permissible non-determinism will be limited by
further postulates. In fact, only non-deterministic choice among the finite answers to
a query is permitted. Non-determinism in database transformations becomes important
when we are faced with object creation in certain data models, as discussed intensively in
[146, 148, 149].

Postulate 3.1.1 (sequential time postulate). A database transformation T is associated
with a non-empty set of states ST together with non-empty subsets IT and FT of initial and
final states, respectively, and a one-step transition relation δT over ST , i.e., δT ⊆ ST ×ST .

The sequential time postulate allows us to define the notion of a run as analogous to
sequential and parallel algorithms. As termination is required, a run must be finite, ending
at the first final state that is reached. Nevertheless, an initial state in a run is permitted
to also be a final state. The motivation behind this is that database transformations are
always associated with a database system, in which each run of a database transformation
produces a state transition. The final state of a transition becomes the initial state for
another transition, leading to an infinite sequence of states that result from running a set
of database transformations in a serial (or serialisable) way. This view of database systems
has been stressed in [107, 108, 109].

Definition 3.1.2. A run of a database transformation T is a finite sequence S0, . . . , Sf

of states with S0 ∈ IT , Sf ∈ FT , Si /∈ FT for 0 < i < f , and (Si, Si+1) ∈ δT for all
i = 0, . . . , f − 1.

Database transformations will be considered only up to behavioural equivalence.

Definition 3.1.3. Database transformations T1 and T2 are behaviourally equivalent if
ST1

= ST2
, IT1

= IT2
, FT1

= FT2
and δT1

= δT2
hold.

In accordance with Definition 3.1.3, we know that behaviourally equivalent database
transformations have the same runs.
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3.1.2 Abstract States

The abstract state postulate is an adaptation of the corresponding postulate for sequential
algorithms [82], according to which states are first-order structures, i.e. sets of (partial)
functions, some of which may be marked as relational. These functions are interpretations
of function symbols given by some signature. Following [82] we assume that each signature
in a computation background (i.e., background signature as will be discussed in Subsection
3.1.3) contains the nullary symbols true, false, undef, a unary symbol Bool, the equality
sign symbol and the symbols of the usual Boolean operations. With the exception of undef
all these logic symbols are relational. Equality, truth values and Boolean operations are
interpreted in a fixed way in all states.

Taking structures as states reflects a common practice in mathematics, where almost all
theories are based on first-order structures. Variables are special cases of function symbols
of arity 0, and constants are the same, but unchangeable. A function symbol is called
dynamic if the function is changeable in states; otherwise, it is called static.

Definition 3.1.4. A signature Υ is a set of function symbols, each associated with a fixed
arity. A structure over Υ consists of a set B, called the base set of the structure, together
with interpretations of all function symbols in Υ, i.e. if f ∈ Υ has arity k, then it will be
interpreted by a function from Bk to B.

Let S be a structure over Υ. For each ground term t ∈ Υ we use valS(t) to denote the
interpretation of t in the structure S.

Definition 3.1.5. An isomorphism from structure SX to structure SY is defined by
a bijection ς : BSX

→ BSY
between the base sets that extends to functions by

ς(valSX
(f(b1, . . . , bk))) = valSY

(f(ς(b1), . . . , ς(bk))). A Z-isomorphism for Z ⊆ BSX
∩ BSY

is an isomorphism ς from SX to SY that fixes Z, i.e. ς(b) = b for all b ∈ Z.

As the base set B contains a value ⊥ representing undefinedness, partial functions are
captured by the undefinedness value ⊥ associated with undef. Furthermore, relations are
captured by letting valSX

(f(a1, . . . , ak)) = true mean that (a1, . . . , ak) is in the relation f
of SX , and valSX

(f(a1, . . . , ak)) = false that it is not.
Z-isomorphisms are needed when dealing with constants in the base set that are repre-

sented by 0-ary function symbols. However, an automorphism ς of a structure SX fixes all
values a ∈ B that are represented by ground terms. If a = valSX

(t) holds for some ground
term t, then ς(a) = a holds for each automorphism ς of SX . Thus, Z-isomorphisms can be
neglected, as we could always add syntactic surrogates, i.e. 0-ary function symbols for all
elements of Z to the signature Υ.

In the case of database transformations, two specific issues that affect the definition of
states have to be taken care of.

The first database-specific issue is the intrinsic finiteness of databases. It is tempting
to adopt finite model theory [66] and require that states for database transformations
are finite structures. For instance, a state could be modelled by a finite set of finite
relations [1] in the relational data model. This would not, however, capture the full picture.
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For example, a simple query counting the number of tuples in a relation would require
natural numbers in the base set, and any restriction to a finite set would already rule
out some database transformations. While finite structures avoid dealing with some odd
problems, thus ensuring that query results are always finite, they put undesired limitations
on the notion of states. In order to deal with this problem, we adopt the concept of
meta-finite structures proposed by Grädel and Gurevich [74], henceforth called meta-finite
states, in which actual database entries are treated merely as surrogates for real values,
and consequently there will be three kinds of function symbols: those representing the
database, those representing everything outside the database, and bridge functions that
map surrogates in the database to values outside the database in possibly infinite domains.
This permits the database to remain finite while allowing database entries to be interpreted
in possibly infinite domains. Of particular importance is that we are able to generalise most
of the results achieved in finite model theory to meta-finite models but avoid undesired
complications coming from the infinity of the structure.

There is a subtlety here that needs to be addressed. In object-oriented databases
identifiers for objects may be used. In tree-based databases identifiers for tree nodes may
be required. Hence, in both cases there is a need to create new identifiers. As discussed in
[82] the creation of new values is not a problem in principle. We can assume a set of reserve
values from which these new identifiers can be taken. Nevertheless, it is not a-priori clear
how many such values will be needed. This problem can be circumvented by requiring
that only the active database domain is finite, that is, the set of elements from the base
set appearing in the database part of a state.

The second database-specific issue is the presence of a data model that prescribes what
a database should look like and what databases are meaningful. In the case of the relational
model we would have to deal simply with relations, while in the cases of object-oriented
and tree-based databases constructors for complex values such as finite sets, multisets,
maps, arrays, union, trees and so on are needed. The consequences that this has on states
will be separately addressed in Subsection 3.1.3 on the background postulate.

Definition 3.1.6. The signature Υ of a meta-finite structure is composed as a disjoint
union consisting of a sub-signature Υdb (called database part), a sub-signature Υa (called
algorithmic part), and a finite set of bridge function symbols each with a fixed arity, i.e.
Υ = Υdb∪Υa∪{f1, . . . , fℓ}. The base set of a meta-finite structure S is B = Bext

db ∪Ba with
interpretation of function symbols in Υdb and Υa over Bdb ⊆ Bext

db and Ba, respectively,
with Bdb depending on the state S. The interpretation of a bridge function symbol of arity
k defines a function from Bk

db to Ba. With respect to such states S the restriction to Υdb

is a finite structure, i.e. Bdb is finite.

Postulate 3.1.2 (abstract state postulate). Every database transformation T satisfies the
following conditions:

• All states S ∈ ST are meta-finite structures over the same signature Υ.

• Whenever (S, S ′) ∈ δT holds, the states S and S ′ have the same base set B.
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• The sets ST , IT and FT are closed under isomorphisms, and for (S1, S
′
1) ∈ δT each

isomorphism ς from S1 to S2 is also an isomorphism from S ′
1 to S ′

2 = ς(S ′
1) with

(S2, S
′
2) ∈ δT .

The abstract state postulate is an adaptation of the analogous postulate from [27, 82]
to further consider states as being meta-finite structures, the presence of final states and
the fact that one-step transition is a binary relation.

Example 3.1.1. Let us consider a database with the relational database schema shown
in Example 1.1.1. From an abstract state point of view, we would get Bdb = Dn ∪ Dc ∪
Db ∪ {true, false} as a union of four disjoint, finite sets, and Ba = R ∪ Σ as the union of
the set R of rational numbers and the set Σ∗ of character strings over an alphabet Σ, both
infinite.

We would have the sub-signature Υdb containing four function symbols: Publication,
Person, AcademicUnit and Authorship. These function symbols are all relational
and would be interpreted by

• Publication: Dn ×Dc ×Dn ×Dc ×Db ×Dc ×Dn → {true, false},

• Person: Dn ×Dc ×Dc ×Dc → {true, false},

• AcademicUnit: Dn ×Dc ×Dn ×Dn → {true, false},

• Authorship: Dn ×Dn ×Dn ×Dn → {true, false}.

The sub-signature Υa could contain function symbols for subtraction, addition, division,
multiplication and others, for example, a binary function symbol > for an ordering relation,
and a unary function symbol Even for an even function. The function symbol Even would
be interpreted by a function N → {true, false} such that

Even(n)= true if n is even, and false otherwise.

As for the bridge functions, we would have the function symbols fnum, fchar and fblob

for the interpretation of elements in the domains Dn, Dc and Db, respectively.

• fnum: Dn → N,

• fchar: Dc → Σ∗,

• fblob: Db → R.

Using this representation of finite relations for Publication, Person,
AcademicUnit and Authorship, a query such as “List all publications with an
even number of authors” would be possible, provided we add a unary function symbol
Result to the sub-signature Υdb to pick up the result.

Similarly, a query such as “List the names of all persons whose publications have been
downloaded the most number of times” would require unary function symbols Max and
Count in the algorithmic part of the signature.
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We adopt the idea of meta-finite states in the abstract state postulate, but we do not
restrict the database part of a state to be relational. Consequently, we can capture data
models other than the relational one.

Let us finally look at genericity as expressed by the preservation of isomorphisms in
successor states. In the sequential ASM thesis sequential algorithms are considered to be
deterministic, so a state S has a unique successor state S

′

. It means that, by the abstract
state postulate for sequential algorithms, an automorphism ς of S is also an automorphism
of S

′

. In our abstract state postulate for database transformations (i.e., Postulate 3.1.2),
however, there can be more than one successor state of S, as δT is a relation. Now, if ς is
an automorphism of S, and (S, S ′) ∈ δT holds, we obtain an isomorphism ς from S ′ to S ′′

where S ′′ = ς(S ′) with (S, S ′′) ∈ δT . Thus, an automorphism of S induces a permutation
of the successor states of S.

3.1.3 Backgrounds

The postulates 3.1.1 and 3.1.2 are in line with the sequential and parallel ASM theses
[27, 82], and with the exception of allowing non-determinism in the sequential time pos-
tulate and the reference to meta-finite structures in the abstract state postulate there is
nothing in these postulates that makes a big difference to postulates for sequential algo-
rithms. The next postulate, however, is less obvious, as it refers to the background of a
computation, which contains everything that is needed to perform the computation, but
is not yet captured by states. For instance, truth values and their connectives, and a value
⊥ to denote undefinedness constitute necessary elements in a background.

For database transformations, in particular, we have to capture constructs that are de-
termined by the used data model, for example, relational, object-oriented, object-relational
or semi-structured data models. That means, we will have to deal with type constructors
and with functions defined on such type constructors. Furthermore, when we allow values
(e.g. identifiers) to be created non-deterministically, we would like to take these values
out of an infinite set of reserve values. Once created, these values become active, and we
assume they can never be used again for this purpose.

Let us take the following example, which was used in [3] to illustrate a data model
that generalises most of known complex object data models. In this model a distinction is
made between abstract identifiers and constants. These elements stem from disjoint base
domains, which together constitute the base set of database transformations. With the
addition of constructors for tuples, sets, multisets, lists, et cetera, domains of arbitrar-
ily nested complex-values can be built upon the base domains. For instance, a domain
D(Int,{String}) over base domains Int and String would represent complex-values consisting
of an integer and a set of strings.

Example 3.1.2. Suppose that the state of a database has a universe containing abstract
identifiers from domains D1 = {oeve, oadam}, D2 = {ocain, oabel, oseth, oother}, D3 = {onk

|k =
1, ..., 5}, D4 = {omk

|k = 1, ..., 3}, D5 = {od1
, od2

} and constants from domains String and
Bool. Furthermore, assume constructors {·} for finite sets with unfixed arity, tuples (·)
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with arity up to 3, and union ⊔ with arity 2.
Let the signature of states have function names 1st-generation, 2nd-generation, name,

occupation, descendant, and relation names founded-lineage, ancestor-of-celebrity such that

• 1st-generation: D1 → D(nam:D3,spou:D1,children:{D2}),

• 2nd-generation: D2 → D(nam:D3,occu:D4),

• founded-lineage: 2nd-gen: D2 → Bool,

• ancestor-of-celebrity : anc: D2 × desc: D5 → Bool,

• name: D3 → DString,

• occupation: D4 → D{String},

• descendant : D5 → DString⊔(spou:String).

The interpretation of function and relation names is as follows:

• for 1st-generation, oeve 7→ (nam: on1
, spou: oadam, children: {ocain, oabel, oseth, oother})

and oadam 7→ (nam: on2
, spou: oeve, children: {ocain, oabel, oseth, oother}),

• for 2nd-generation, ocain 7→ (nam: on3
, occu: om1

), oseth 7→ (nam: on4
, occu: om2

)
and iabel 7→ (nam: on5

, occu: om3
),

• for founded-lineage, it is {(2nd-gen: ocain), (2nd-gen: oseth), (2nd-gen: oother)},

• for ancestor-of-celebrity, it is {(anc: oseth, desc: od1
), (anc: ocain, desc: od2

)},

• for name, on1
7→ Eve, on2

7→ Adam, on3
7→ Cain, on4

7→ Seth and on5
7→ Abel,

• for occupation, om1
7→ {Farmer, Nomad, Artisan}, om2

7→ {} and om3
7→ {Shepherd},

• for descendant, od1
7→ Noah and od2

7→ (spou: Ada).

That is, objects of 1st-generation are described by a name, a reference to a spouse,
and a set of references to children. Objects of 2nd-generation are described by a name
and a set of professions, and objects of descendant are described by a name only or a
tuple with a name. The founded-lineage defines a set of objects of 2nd-generation, and
ancestor-of-celebrity is a simple binary relation.

Suppose we want to create a new object with a new identifier inD3. For this, we obtain a
new identifier o3 ∈ D3, from the set of reserve values. Then we set name(o3) := Isaac and
ancestor-of-celebrity(oseth, o3) := true to update name and ancestor-of-celebrity (taking
false as the default value for all other cases). Similarly, with founded-lineage(oother) :=
false we would delete oother from the founded-lineage relation.
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Following [27] we use background classes to define structures provided by backgrounds,
which will then become part of states. Background classes themselves are determined by
background signatures that consist of constructor symbols and function symbols. Function
symbols are associated with a fixed arity as in Definition 3.1.4, but for constructor symbols
we permit the arity to be unfixed or bounded.

Definition 3.1.7. Let D be a set of base domains and ΥK a background signature. Then
a background class K with ΥK over D is constituted by

• the universe U =
⋃

D∈D
′ D of elements, where D

′

is the smallest set with D ⊆ D
′

satisfying the following properties for each constructor symbol xy ∈ ΥK :

– if xy ∈ ΥK has unfixed arity, then

∗ xDy ∈ D
′

for all D ∈ D
′

, and xa1, . . . , amy ∈ xDy for every m ∈ N and
a1, . . . , am ∈ D, and

∗ A
xy

∈ D
′

with A
xy

=
⋃

xDy∈D′

xDy;

– if xy ∈ ΥK has bounded arity n, then xD1, . . . , Dmy ∈ D
′

for all m ≤ n and
Di ∈ D

′

(1 ≤ i ≤ m), and xa1, . . . , amy ∈ xD1, . . . , Dmy for every m ∈ N and
a1, . . . , am ∈ D;

– if xy ∈ ΥK has fixed arity n, then xD1, . . . , Dny ∈ D
′

for all Di ∈ D
′

and
xa1, . . . , any ∈ xD1, . . . , Dny for all ai ∈ Di (1 ≤ i ≤ n),

• and an interpretation of function symbols in ΥK over U .

To help a better understanding of the notion background class, we provide several
examples in the following.

Example 3.1.3. Let us consider the BGS model proposed in [38]. The BGS model has
elements from the domain D of an input structure, as well as hereditarily finite sets built
over D, i.e., the set HF (D) of hereditarily finite sets over D is the smallest set such that
if a1, ..., an ∈ D ∪HF (D), then {a1, ..., an} ∈ D ∪HF (D).

In the background of the BGS model, there is a set D of base domains such that D =⋃
D. The background signature ΥBGS

K contains a set constructor {·} with unfixed arity.
Hence, the background class of the BGS model consists of the universe UBGS = D∪HF (D)
and the interpretation of function symbols in ΥBGS

K over UBGS .

Example 3.1.4. Let us consider the type system used in [3] with some slight modifications.
Type expressions are defined by

τ = τλ | τD | τP | (A1 : τ1, . . . , Ak : τk) | {τ} | τ1 ⊔ τ2 | τ1 ⊓ τ2

.
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The interpretation of these type expressions (denoted as [[τ ]]) is formally defined as
follows:

[[τλ]] = ∅

[[τD]] = α(τD)

[[τP ]] = β(τP )

[[(A1 : τ1, ..., Ak : τk)]] = {(A1 : a1, ..., Ak : ak) | ai ∈ [[τi]], i = 1, ..., k}

[[{τ}]] = {{a1, ..., aj} | j ≥ 0 and ai ∈ [[τ ]], i = 1, ..., j}

[[τ1 ⊔ τ2]] = [[τ1]] ∪ [[τ2]]

[[τ1 ⊓ τ2]] = [[τ1]] ∩ [[τ2]]

So τλ is a trivial type denoting the empty set ∅. τD and τP represent a base type for
constants and a class type for objects, respectively. α and β are functions mapping each
base type to a possibly infinite set of constants, and each class type to a finite set of objects,
respectively. There are constructor symbols (·) for finite tuples with bounded arity k, finite
sets {·} with unfixed arity, as well as unions ⊔ and intersections ⊓, both of arity 2.

In addition to these, the types are associated with function symbols ∈ of arity 2 denoting
set membership, πi (1 ≤ i ≤ k) of arity k denoting projection functions on tuples, and ∪
and ∩, both of arity 2 denoting union and intersection, respectively.

For every database transformation, a binary tuple constructor (, ) is indispensable. This
is due to the formalisation of update that is a pair of a location and an update value as will
be defined in Definition 3.1.8. Furthermore, the type constructor for finite multisets plays
a critical role in the background of a database transformation. A database transformation
may have many subcomputations running in parallel, which may yield identical updates.
As we will introduce later, by assigning a location operator to a location, a collection of
(possibly identical) updates to the location yielded during a computation can be aggregated
to a single update to that location. Thus, we need the type constructor for finite multisets
to collect all the updates generated by a database transformation in one-step transitions.

The following are several multiset operations from [27]. We use the constructor symbol
{{·}} for finite multisets with unfixed arity. Let x and y be two multisets, and M be a set
of multisets. Then,

• x⊎ y returns a multiset that has members from x and y, and the occurrence of each
member is the sum of the occurrences of such a member in x and in y.

•
⊎

M returns a multiset that has members from all elements of M, and the occurrence
of each member is the sum of the occurrences of such a member in all elements of
M.

• AsSet(x) returns a set that has the same members as x, such that

AsSet(x) = {a| a ∈ x}
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• Ix is defined by

Ix =

{
a if x = {{a}}

⊥ otherwise

Given the base set of a state S, we can add the required Booleans and ⊥, partition
them into base domains, then apply the construction provided in Definition 3.1.7 to obtain
a much larger base set, and interpret functions symbols in the signature of S with respect
to this enlarged base set.

Postulate 3.1.3 (background postulate). Each state of a database transformation T must
contain

• an infinite set of reserve values,

• truth values and their connectives, the equality predicate, the undefinedness value
⊥, and

• a background class K defined by a background signature ΥK that contains at least

– a binary tuple constructor (, ), a multiset constructor {{·}}, and

– function symbols for operations such as pairing and projection for pairs, and
empty multiset {{}}, singleton {{x}}, binary multiset union ⊎, general multiset
union

⊎
x, AsSet , and Ix (“the unique”) on multisets.

The minimum requirements in the background postulate are the same as for parallel
algorithms [27], but we do not limit other constructors that will be in the background class
in order to capture any request in data models.

3.1.4 Updates

The definitions of location, location content, update, update set and update multiset are
the same as for ASMs [47].

Definition 3.1.8. For a database transformation T , let S be a state of T , f be a dynamic
function symbol of arity n in the state signature of T and a1, ..., an, b be elements in the
base set of S. Then,

• f(a1, ..., an) is called a location of T . The interpretation of ℓ in S is called the content
of ℓ in S, denoted by valS(ℓ).

• An update of T is a pair (ℓ, b), where ℓ is a location and b is called the update value
of ℓ. An update set ∆ is a set of updates. An update multiset ∆̈ is a multiset of
updates.
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• An update is trivial in a state S if its location content in S is the same as its update
value, while an update set is trivial if all of its updates are trivial.

• An update set ∆ is consistent if it does not contain conflicting updates, i.e. for all
(ℓ, b), (ℓ, b′) ∈ ∆ we have b = b′.

It is possible to construct for each (S, S ′) ∈ δT a minimal update set ∆(T, S, S ′) such
that applying this update set to the state S will produce the state S ′. More precisely, if
S is a state of the database transformation T and ∆ is a consistent update set for the
signature of T , then there exists a unique state S ′ = S+∆ resulting from updating S with
∆: we simply have

valS+∆(ℓ) =

{
b if (ℓ, b) ∈ ∆

valS(ℓ) else

If ∆ is not consistent, we let S + ∆ be undefined. Note that this last point is different
from the treatment of inconsistent update sets in [82]. However, as discussed there the
difference is a mere technicality as long as we concentrate on a single database transforma-
tion. The same as the addition of final states in database transformations, the distinction
only becomes necessary when placed into the context of persistence with several concurrent
database transformations, and a serialisability request. In that case a computation that
gets stuck and thus has to be aborted (this is the case, when S + ∆ is undefined) has to
be distinguished from a computation that produces the same state S over and over again
(this is the case, if S + ∆ is defined as S in case of ∆ being inconsistent as in [82]).

Lemma 3.1.1. Let S, S ′ ∈ ST be states of the database transformation T with the same
base set. Then there exists a unique, minimal consistent update set ∆(T, S, S ′) with S ′ =
S + ∆(T, S, S ′).

Note that the minimality of the update set implies the absence of trivial updates.

Proof. Let Loc∆ = {ℓ | valS(ℓ) 6= valS′(ℓ)} be the set of locations, on which the two states
differ. Then the update set ∆(T, S, S ′) = {(ℓ, valS′(ℓ) | ℓ ∈ Loc∆} is the one needed.

Let us now look at the one-step transition relation δT of a database transformation T .
As we permit non-determinism, i.e. there may be more than one successor state of a state
S, we need sets of update sets. Therefore, for a database transformation T and a state
S ∈ ST , we define

∆(T, S) = {∆(T, S, S ′) | (S, S ′) ∈ δT}

.
Let us take a brief look at the effect of isomorphisms on update sets and sets of update

sets. For this, any isomorphism ς can be extended to updates (f(a1, . . . , an), b) by defining
ς((f(a1, . . . , an), b)) = (f(ς(a1), . . . , ς(an)), ς(b)), and to sets by defining ς({u1, . . . , uk}) =
{ς(u1), . . . , ς(uk)}.
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Lemma 3.1.2. Let S1 be a state of a database transformation T and ς be an isomor-
phism from S1 to S2. Then ∆(T, S2, ς(S

′
1)) = ς(∆(T, S1, S

′
1)) for all (S1, S

′
1) ∈ δT , and

consequently ∆(T, S2) = ς(∆(T, S1)).

Proof. According to the abstract state postulate all (S2, S
′
2) ∈ δT have the form

(ς(S1), ς(S
′
1)) with (S1, S

′
1) ∈ δT . Then valς(S1)ς(ℓ) = ς(valS1

(ℓ)) and analogously for
S ′

1. So

Loc∆2
= {ℓ | valS2

(ℓ) 6= valS′

2
(ℓ)} = {ς(ℓ) | valS1

(ℓ) 6= valS′

1
(ℓ)} = ς(Loc∆1

),

and

∆(T, S2, S
′
2) ={(ℓ, valS′

2
(ℓ)) | ℓ ∈ Loc∆2

} =

{(ς(ℓ), ς(valS′

1
(ℓ))) | ℓ ∈ Loc∆1

} = ς(∆(T, S1, S
′
1)).

3.1.5 Bounded Exploration

The bounded exploration postulate for sequential algorithms requests that only a finite
number of terms can be updated in an elementary step [82]. For parallel algorithms this
postulate becomes significantly more complicated, as basic constituents not involving any
parallelism (so-called “proclets”) have to be considered [27].

For database transformations the problem lies somewhere in between. Computations
are intrinsically parallel, even though implementations may be sequential, but the paral-
lelism is restricted in the sense that all branches execute de facto the same computation.
We will capture this by means of location operators, which generalise aggregation func-
tions as in [60]. Depending on the data model used and thus on the actual background
signature, complex values such as tree-structured values may be involved in computations.
As a consequence, we have to cope with the problem of partial updates [89], that is, the
synchronisation of updates to different parts of the same tree-structured values or more
generally complex database objects.

Location operators define operations on multisets and as such form an important part of
logics for meta-finite structures [74]. They allow us to express in a simple way the intrinsic
parallelism in many database aggregate functions such as building sums or average values
over query results, select maximum or minimum, and even structural recursion on sets,
multisets, lists or trees.

Definition 3.1.9. Let D, D
′

and D
′′

be the domains, and M(D) be the set of all non-
empty multisets over D. Then a location operator ρ over M(D) consists of a unary function
fα : D → D

′

, a commutative and associative binary operation ⊙ over D
′

, and a unary
function fβ : D

′

→ D
′′

, which define ρ(b) = fβ(fα(a1)⊙· · ·⊙fα(an)) for b = {{a1, ..., an}} ∈
M(D).
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Using a location function (denoted by θ) that assigns a location operator or ⊥ to each
location, an update multiset can be reduced to an update set. The idea behind location
operators is inspired by the synchronisation of parallel updates in [27]. First, updates
generated by parallel computations define an update multiset, then all updates to the
same location are merged by means of a location operator to reduce the update multiset
to an update set.

Definition 3.1.10. Let ∆̈ be an update multiset. Then an update set ∆ can be obtained
by reducing ∆̈ such that

∆ = {(ℓ, b)|θ(ℓ) = ρ and b = ρ(
⊎

(ℓ,b′ )∈∆̈

{{b
′

}})}

∪{(ℓ, b)|θ(ℓ) = ⊥ and (ℓ, b) ∈ ∆̈}

We provide several examples to illustrate that location operators can be applied in many
different ways. They turn out to be a powerful tool to handle dynamically-constructed
values in parallel.

Example 3.1.5. The standard aggregate functions provided in relational databases are
location operators. Let us have a look at sum and avg in detail.

• sum is a location operator using the unary function fα(a) = a, the commutative
and associative +-operation for ⊙, i.e., a1 ⊙ a2 = a1 + a2, and the unary function
fβ(a) = a.

• avg is also a location operator with fα(a) = (a, 1), (a1, b1)⊙(a2, b2) = (a1+a2, b1+b2),
and fβ(a, b) = a÷ b.

Example 3.1.6. XMLAgg is an aggregate function supported by Oracle XML DB, which
produces a forest of XML elements from a collection of XML elements. The following
statement produces a Publications element containing Title elements whose contents are
the titles of publications in the academic unit “Computer Science”. Moreover, the titles of
publications are ordered by their publication IDs.

SELECT XMLElement(“Publications”,
XMLAgg(XMLElement(“Title”,a.Title)

ORDER BY a.PubID))
AS ComputerScienceReport

FROM Publication a,
AcademicUnit b,
Authorship c

WHERE c.UnitID = b.UnitID
AND a.PubID=c.PubID
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AND b.Name = “Computer Science”;

The result of executing the above statement can be something as follows:

ComputerScienceReport

-----------------------------------------------------------

<Publications>

<Title>XML Machines</Title>

<Title>A Hedge Algebra for XML Trees</Title>

<Title>Abstract State Services</Title>

<Title>Partial Updates in Complex-value Databases</Title>

</Publications>

XMLAgg is a location operator with fα(a) = a (i.e., the identity function), ⊙ as the
operation for returning a forest of XML elements along with the values used for ordering
them if the ORDER BY clause is used, i.e., (a1, b1) ⊙ (a2, b2) = {{(a1, b1), (a2, b2)}}, and
fβ(a) = a

′

for a = {{(a1, b1), ..., (an, bn)}} generating a forest of XML elements referring to
a1, ..., an in an order given by b1, ..., bn in a.

The nested calls to XMLAgg can be used to reflect the hierarchical structure among
elements. When using XMLElement and XMLAgg together, all of the XML fragments
identified by the query can be aggregated into a single, well-formed XML document.

Example 3.1.7. Consider the evaluation of a first-order formula ∀x ∈ D1∃y ∈ D2ϕ(x, y).
Assume that the evaluation result will be stored at the location ℓ. Let the cardinalities of
D1 and D2 be n1 and n2, respectively. Then there are two nested parallel computations
involved in the evaluation. The inner parallel computation for a specific value ai ∈ D1

(i ∈ [1, n1]) has n2 parallel branches, each of which evaluates a term ϕ(ai, bj) for the
various values bj ∈ D2 (j ∈ [1, n2]), thus producing an update multiset with n2 updates
(ℓ, true) or (ℓ, false). Using θ(ℓ) =

∨
(logical OR) to assign a location operator

∨
to ℓ – in

this case fα and fβ are the identity function, and ⊙ is ∨ – evaluates the inner existentially
quantified formula, thereby producing another update multiset with n1 entries (ℓ, true) or
(ℓ, false). Using θ(ℓ) =

∧
(logical AND) to assign a location operator

∧
to ℓ again, this

update multiset is reduced to a set with a single update.

If a database transformation T uses location operators, they must be defined in the
algorithmic part of the state signature of T .

The problem of partial updates [87, 88, 89] refers to computations over complex-value
databases that may produce updates at different levels of abstraction. An immediate
consequence of such updates is that atomicity of locations is no longer guaranteed in
general, and clashes may arise due to the overlapping, subsumption or dependence among
locations. Chapter 6 will be dedicated to the discussion of the partial update problem
in detail. However, the issues relating to inconsistent update sets are irrelevant to the
proof of the characterisation theorem in Section 3.3 as pointed out in [27, 82]. In fact,
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the problem of partial updates is subsumed by the problem of providing consistent update
sets, in which there cannot be pairs (ℓ, b1) and (ℓ, b2) with b1 6= b2.

The bounded exploration postulate in [82] for sequential algorithms is motivated by the
sequential accessibility principle, which could be phrased as the request that each location
must be uniquely identifiable. Leaving aside the discussion of how to deal logically with
partially defined terms, unique identifiability can be obtained by using terms of the form
Ix.ϕ(x) with a formula ϕ, in which x is the only free variable. Such terms have to be
interpreted as “the unique x satisfying formula ϕ(x)”, which of course may be undefined if
no such x exists or more than one exist. According to the abstract state postulate defined
for database transformations the sequential accessibility principle must be preserved for
the algorithmic part of a meta-finite state.

In principle, the claim of unique identifiability also applies to databases, as emphasised
by Beeri and Thalheim in [21]. Unique identifiability has to be claimed for the basic up-
datable units in a database, for example, objects in [124]. Unique identifiability, however,
does not necessarily apply to all elements in a database. Sets of logically indistinguishable
locations may be updated simultaneously. Nevertheless, for databases only logical prop-
erties are relevant – this is the so-called “genericity principle” in database theory [20] –
and therefore, it must still be possible to use terms to access elements and locations in the
database part of a state. These terms, however, may be non-ground, containing variables.
If a non-ground term identifies more than one location in a state S, these locations will be
called accessible in parallel.

Definition 3.1.11. Let S be a state of the database transformation T .

• An element a of S is accessible if there is a ground term t in the signature of S that
is interpreted as a in the state S.

• A location f(a1, . . . , an) is accessible if the elements a1, . . . , an are all accessible.

• An update (f(a1, . . . , an), b) is accessible if the location f(a1, . . . , an) and the element
b are accessible.

• Locations f(a1
1, . . . , a

1
n), . . . , f(am

1 , . . . , a
m
n ) with f ∈ Υdb are accessible in parallel if

there exists a term t
′

and an accessible element b
′

, such that the values for which t
′

is interpreted by b
′

in S are f(a1
1, . . . , a

1
n), . . . , f(am

1 , . . . , a
m
n ).

• Updates (f(a1
1, . . . , a

1
n), b), . . . , (f(am

1 , . . . , a
m
n ), b) with f ∈ Υdb are accessible in par-

allel if f(a1
1, . . . , a

1
n), . . . , f(am

1 , . . . , a
m
n ) are accessible in parallel and b is accessible.

The first three items of Definition 3.1.11 are exactly the same as defined in [82, Defini-
tion 5.3]. The last two items formalise our discussion above.

Example 3.1.8. Take a database transformation T with a ternary predicate symbol R in
its signature. Let the interpretation of R in a state S be {(a, a, b), (a, b, c), (b, b, a), (b, a, c)}.
Then R(a, a, b) and R(b, b, a) are accessible in parallel using the term R(x, x, y) and the
accessible element true.
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The bounded exploration postulate in the sequential ASM thesis [82] uses a finite set of
ground terms as a bounded exploration witness in the sense that whenever states S1 and S2

coincide over this set of ground terms the update set produced by the sequential algorithm
is the same in these states. The intuition behind the postulate is that only the part of a
state that is given by means of the bounded exploration witness will actually be explored
by the algorithm.

The fact that only finitely many locations can be explored remains the same for database
transformations. However, permitting parallel accessibility within the database part of a
state forces us to slightly change our view on the bounded exploration witness. For this
we need access terms.

A variable assignment ζ for state S is a finite function which assigns elements in the
base set of S to a finite number of variables. If ζ is a variable assignment, then ζ [x1 7→
b1, . . . , xk 7→ bk] is another variable assignment defined by

ζ [x1 7→ b1, . . . , xk 7→ bk](x) =

{
bi if x = xi(i = 1, . . . , k)

ζ(x) else

For convenience, we use the notation valS,ζ(t) for the interpretation of a term t in a
state S under a variable assignment ζ , and refer to database variables as variables that
must be interpreted by elements in Bdb.

Definition 3.1.12. An access term is either a ground term tα or a pair (tβ, tα) of terms,
the variables x1, . . . , xn in which must be database variables, referring to the arguments of
some dynamic function symbol f ∈ Υdb ∪ {f1, ..., fℓ}.

• The interpretation of (tβ, tα) in a state S is the set of locations

{f(a1, . . . , an) | valS,ζ(tβ) = valS,ζ(tα) with ζ = {x1 7→ a1, . . . , xn 7→ an}}.

Structures S1 and S2 coincide over a set Twit of access terms if the interpretation of
each (tβ , tα) ∈ Twit over S1 and S2 are equal.

Instead of writing (tβ, tα) for an access term, we should in fact write (f, tβ, tα). For
simplicity we drop the function symbol f and assume it is implicitly given.

Due to our request that the database part of a state is always finite there will be
a maximum number n1 of elements that are accessible in parallel. Furthermore, there
is always a number n2 such that n2 variables are sufficient to describe the updates of a
database transformation, and n2 can be taken to be minimal. Then for each state S the
upper boundary of exploration is O(nn2

1 ), where n1 depends on S. Taking these together
we obtain our fourth postulate.

Postulate 3.1.4 (bounded exploration postulate). For a database transformation T there
exists a fixed, finite set Twit of access terms of T such that ∆(T, S1) = ∆(T, S2) holds
whenever the states S1 and S2 coincide over Twit.
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Same as in the sequential ASM thesis we continue calling the set Twit of access terms a
bounded exploration witness. The only difference to the bounded exploration postulate for
sequential algorithms in [82] is the use of access terms (tβ, tα), whereas in the sequential
ASM thesis only ground terms are considered. Access terms of the form (tβ , tα) are actually
equivalent to closed set comprehension terms {f(x1, . . . , xn) | tβ = tα}, i.e. they express
first-order queries similar to relational calculus. Due to the fact that the database part of
a state is a finite structure the set of locations defined by an access term is always finite.
However, building terms on top of the state signature does not yet capture such terms.
Access terms for the algorithmic part can still only be ground terms, otherwise finiteness
cannot be guaranteed. Therefore, the modified Postulate 3.1.4 still expresses the same
intention that the bounded exploration postulate for sequential algorithms does, i.e. only
finitely many locations can be updated at a time, and these locations are determined by
finitely many terms that appear in some way in the textual description of the database
transformation.

3.1.6 Bounded Non-determinism

The last postulate addresses the question of how non-determinism is permitted in a
database transformation. To handle this, we need to further clarify the relationship be-
tween access terms and the internal structure of states. As defined in the abstract state
postulate, a state of a database transformation is a meta-finite structure consisting of two
parts: the database part and algorithmic part, which are linked via a fixed, finite number
of bridge functions. Hence, in terms of a database transformation T with a set of its states,
we consider that a ground access term tα of T is allowed to only access the algorithmic
part of states, while a non-ground access term (tβ, tα) may access either the database or
the algorithmic parts.

Example 3.1.9. Let us consider Example 3.1.1, in which we have Person ∈ Υdb, Even

and + ∈ Υa, fnum as a bridge function and Ba = R ∪ Σ. The terms 2, 7.8, +(3, 9)
and Even(9) may become ground access terms. The terms (Person(x, y, z, z

′

), true),
(fnum(x), 8), (+(fnum(x), fnum(y)), 20) and (Even(fnum(x)), false) may become non-
ground access terms.

We formally elaborate these two kinds of access terms in terms of a signature Υ =
Υdb ∪Υa ∪ {f1, ..., fℓ} and a base set B of states, i.e., B = Bdb ∪Ba. A ground access term
tα is a ground term that can be defined as follows:

• t ∈ Ba is a ground term, and

• f(t1, ..., tn), for n-ary function symbol f ∈ Υa and ground terms t1, ..., tn, is a ground
term.

A non-ground access term (tβ, tα) is a pair of terms, in which at least one of them is a non-
ground term that is inductively defined by applying function symbols from Υ over database
variables in accordance with the definition of a meta-finite structure as in Definition 3.1.6.
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Before explaining how the bound of non-determinism is imposed in database transfor-
mations, we define equivalent substructures in the following sense.

Definition 3.1.13. Given two structures S ′ and S of the same signature Υ, a structure
S ′ is a substructure of the structure S (notation: S ′ � S) if

• the base set B′ of S ′ is a subset of the base set B of S, i.e., B′ ⊆ B, and

• for each function symbol f of arity n in the signature Υ the restriction of
valS(f(x1, ..., xn)) to B′ results in valS′(f(x1, ..., xn)).

Substructures S1, S2 � S are equivalent (notation: S1 ≡ S2) if there exists an auto-
morphism ς ∈ Aut(S) with ς(S1) = S2. The equivalence class of a substructure S ′ in the
structure S is the subset of all substructures of S which are equivalent to S ′.

Example 3.1.10. Let us consider a simple ternary relation schema R. Suppose our
database contains R(a, a, b1), R(b, b, a1), R(c1, c, c2). Then R(a, a, b1) defines a substructure
with base set {a, b1}. This substructure is equivalent to the substructure R(b, b, a1), as the
isomorphism defined by the permutation (a, b)(b1, a1) just swaps the two substructures.

If, however, we have a second relation schema R
′

, and the database contains only
R

′

(a, b1) and R
′

(c, c), then the restriction to {a, b1} defines a substructure containing
R(a, a, b1) and R

′

(a, b1), whereas the restriction to {b, a1} defines a substructure R(b, b, a1)
– these substructures are no longer equivalent.

If the database contained also R
′

(b, a1), the two restrictions would again define equiv-
alent substructures.

Let us start with the case where states have no bridge functions. We want to restrict
non-determinism to only accessing elements in the database part of a state that is a fi-
nite structure. By the abstract state postulate, different branches reflect all the possible
choices, which thus captures the genericity of database transformations (i.e., preserved
under isomorphisms [20]). Any isomorphism between states gives rise to an isomorphism
between successor states. Consequently, whenever a substructure of the database part is
preserved in some successor state, then each equivalent substructure of the database part is
preserved in some (possibly same) successor state. This is because the automorphism that
interchanges two equivalent substructures permutes successor states, according to Defini-
tion 3.1.13. Nevertheless, it is also possible that there is a successor state, in which none
of the equivalent substructures in the database part is preserved.

Example 3.1.11. Let us consider the relation R = {(a, a, b1), (b, b, a1), (c1, c, c2)} in Ex-
ample 3.1.10 again.

• Suppose that we non-deterministically delete a tuple from R in a state S. Then
there will be three successor states of S with R = {(b, b, a1), (c1, c, c2)}, R =
{(a, a, b1), (c1, c, c2)} or R = {(a, a, b1), (b, b, a1)}, respectively. It is clear to see that
not all of the successor states are isomorphic.
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• If we non-deterministically select two tuples from R in a state S and delete them.
Then we will also get three successor states of S: R = {(b, b, a1)}, R = {(a, a, b1)} or
R = {(c1, c, c2)}. In this case, in terms of the equivalence class {(a, a, b1), (b, b, a1)},
none of the equivalent substructures are preserved in the successor state of S with
R = {(c1, c, c2)}.

In the case that states have bridge functions, however, the situation becomes a bit
tricky because bridge functions define substructures of the algorithmic part based on sub-
structures of the database part. Thus non-determinism caused by non-deterministically
selecting elements in the database part may also result in the non-deterministic changes on
substructures of the algorithmic part. Nevertheless, the distinction between the database
and algorithmic parts is that non-determinism cannot arise from the algorithmic part by
selecting non-deterministically substructures to the algorithmic part of a state.

Example 3.1.12. Let us consider the relation R = {(a, a, b1), (b, b, a1), (c1, c, c2)} in Ex-
ample 3.1.10. Assume that there exist a bridge function fnum = {(a, 4), (a1, 6), (b, 3),
(b1, 1)(c, 5), (c1, 8), (c2, 7)} and {Even, Odd, Test} ⊆ Υa.

We may use the non-ground access terms (R(x, y, z), true), (Even(fnum(x)), true)
and (Odd(fnum(z)), true) with the formula R(x, y, z) ∧ Even(fnum(x)) ∧ Odd(fnum(z))
to retrieve out the tuples (a, a, b1) and (c1, c, c2) in R.

Then we can non-deterministically generate updates on function Test by non-
deterministically selecting one of these two tuples. For example, two update sets
{(Test(4), 1)} and {(Test(8), 7)} may be created by using (Test(x), z) together with
the formula R(x, y, z) ∧ Even(fnum(x)) ∧ Odd(fnum(z)).

Therefore, substructures of its algorithmic part may or may not be preserved in the
successor states of a state. This indeed can be explained under a border view on equivalence
classes defined in terms of a state taking all of the database part, the algorithmic part and
bridge functions into consideration. The rationale that whenever a substructure of a state
is preserved in some successor state, each equivalent substructure of a state is preserved
in some (possibly same) successor state is still captured by the abstract state postulate in
the same way as in the case without bridge functions.

Now we formalise the bounded non-determinism postulate to capture these ideas by
properly defining the presence of non-ground access terms. In doing so, we put a severe
restriction on the non-determinism in the transition relation δT .

Postulate 3.1.5 (bounded non-determinism postulate). If there are states S1, S2 and
S3 ∈ ST with (S1, S2) ∈ δT , (S1, S3) ∈ δT and S2 6= S3, then there exists an access term of
the form (tβ , tα) in Twit.

According to this postulate, if a database transformation T over some state S1 has
non-determinism (i.e., ∆(T, S1) contains more than one update set), then we must have
a non-ground access term in the bounded exploration witness of T . Alternatively, if the
bounded exploration witness of T contains only ground access terms, then T can only
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access the algorithmic part of a state and cannot have non-determinism. The bounded non-
determinism postulate is motivated by the intrinsic non-determinism in database queries
and updates that permit identifier creation. This will become clear in the proof of our
main result in Section 3.3, according to which the bounded non-determinism postulate
enforces that only the bounded choice among database elements can be the source of non-
determinism.

Remark 3.1.1. Van den Bussche defined the notions of determinacy and semi-
determinism: a determinate query preserves the input database, whereas a semi-
deterministic database transformation produces isomorphic outputs and thus preserves the
input database up to an automorphism [146, 148]. In the sense of Van den Bussche an in-
put database would define a substructure, and by the bounded non-determinism postulate
preserving this substructure implies that each automorphism of the input database defines
an isomorphism between the possible successor states, but not all of successor states will
be isomorphic. Hence, database transformations characterised by five postulates subsume
semi-deterministic transformations. In the same way they captures the insertion of new
objects with a choice of identifiers as worked out for generic updates in [124].

3.1.7 Final Remarks

Naturally, for a database transformation, the decisive part is the progression of the database
part of states, whereas the algorithmic part could be understood as playing only a support-
ing role. Nonetheless, the postulates for database transformations permit transformations,
in which the major computation happens on the algorithmic part. In the extreme case
we could even only manipulate the algorithmic part. This implies that our model actually
subsumes all sequential algorithms. Furthermore, all extensions such as genericity, meta-
finite states, location operators, bounded exploration with non-ground terms and bounded
non-determinism only affect the database part. This will become more apparent in the
next two sections, when we present a variant of ASMs capturing exactly database trans-
formations as stipulated by the five postulates. On the other hand, our model of database
transformations does not capture parallel algorithms, as the bounded exploration postulate
excludes unbounded parallelism.

3.2 Database Abstract State Machines

In this section we define a variant of Abstract State Machines, which we call database
Abstract State Machines, and show that DB-ASMs satisfy the postulates of a database
transformation. In the next section we will address the more challenging problem showing
the converse of this result.
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3.2.1 DB-ASM Rules and Update Sets Generated by Them

We first define DB-ASM rules. If r is a DB-ASM rule and S is a state (i.e., a Υ-structure
for the signature Υ of r), we associate a set ∆(r, S) of update sets with r and S. For
convenience, we also use the notation ∆̈(r, S) for a set of update multisets defined by r
and S. DB-ASM rules may involve variables, so in the following definition we also use the
notation ∆(r, S, ζ) for a set of update sets that depends on a variable assignment ζ , and
analogously ∆̈(r, S, ζ) for a set of update multisets.

For the signature Υ, we adopt the requirements of the abstract state postulate. That
is, it comprises a sub-signature Υdb for the database part, a sub-signature Υa for the algo-
rithmic part, and bridge functions {f1, . . . , fℓ}. For states we assume that the requirement
in the abstract state postulate, according to which the restriction to Υdb results in a finite
structure, is satisfied. Furthermore, we assume a background in the sense of the background
postulate being defined.

The notation var(t) is used to denote the set of variables occurring in a term t. Similar
to free variables occurring in formulae we can define the set fr(r) of free variables appearing
in a DB-ASM rule r, with variables being bound by forall and choice rules. A rule r is
called closed iff fr(r) = ∅.

Definition 3.2.1. The set R of DB-ASM rules over a signature Υ = Υdb∪Υa∪{f1, . . . , fℓ}
and associated sets of update sets (with respect to states as in Postulate 3.1.2 with a
background as in Postulate 3.1.3) are defined as follows:

• If t0, . . . , tn are terms over Υ, and f is a n-ary dynamic function symbol in Υ, then

f(t1, . . . , tn) := t0 is a rule r in R called assignment rule with fr(r) =
n⋃

i=0

var(ti),

where var(ti) is the set of variables occurring in the terms ti (i = 0, . . . , n).

For a state S over Υ and a variable assignment ζ for fr(r) we obtain

∆(r, S, ζ) = {{(f(a1, . . . , an), a0)}}

with ai = valS,ζ(ti) (i = 0, . . . , n), and

∆̈(r, S, ζ) = {{{(f(a1, . . . , an), a0)}}}

• If ϕ is a first-order formula of Υ without free variables and r′ ∈ R is a DB-ASM
rule, then if ϕ then r′ endif is a rule r in R called conditional rule with fr(r) =
fr(ϕ) ∪ fr(r′).

For a state S over Υ and a variable assignment ζ for the variables in fr(r), we obtain

∆̈(r, S, ζ) =

{
∆̈(r′, S, ζ) if valS,ζ(ϕ) = true

∅ else
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and

∆(r, S, ζ) =

{
∆(r′, S, ζ) if valS,ζ(ϕ) = true

∅ else

• If ϕ is a first-order formula of Υ with only database variables, {x1, . . . , xk} ⊆ fr(ϕ)
and r′ ∈ R is a DB-ASM rule, then forall x1, . . . , xk with ϕ do r′ enddo is a rule
r in R called forall rule with fr(r) = (fr(r′) ∪ fr(ϕ)) − {x1, . . . , xk}.

For a state S over Υ and a variable assignment ζ for the variables in fr(r), let B =
{(b1, . . . , bk) | valS,ζ[x1 7→b1,...,xk 7→bk](ϕ) = true} and M denote the set of mappings α
from B to

⋃
{∆(r′, S, ζ [x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B} with α(b1, . . . , bk) ∈

∆(r′, S, ζ [x1 7→ b1, . . . , xk 7→ bk]). Then each α ∈ M defines an update set ∆α =⋃
{α(b1, . . . , bk) | (b1, . . . , bk) ∈ B}, from which we obtain

∆(r, S, ζ) = {∆α | α ∈ M}.

Analogously, let M̈ denote the set of mappings α̈ from B to
⋃
{∆̈(r′, S, ζ [x1 7→

b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B} with α̈(b1, . . . , bk) ∈ ∆̈(r′, S, ζ [x1 7→ b1, . . . , xk 7→
bk]). Then each α̈ ∈ M̈ defines an update multiset ∆̈α̈ =

⊎
{α̈(b1, . . . , bk) |

(b1, . . . , bk) ∈ B}, which finally gives

∆̈(r, S, ζ) = {∆̈α̈ | α̈ ∈ M̈}.

• If r1, . . . , rn are rules in R, then the rule r defined as par r1 . . . rn endpar is a rule

in R, called parallel rule with fr(r) =
n⋃

i=1

fr(ri).

For a state S over Υ and a variable assignment ζ for the variables in fr(r) we obtain

∆(r, S, ζ) = {∆1 ∪ · · · ∪ ∆n | ∆i ∈ ∆(ri, S, ζ) for i = 1, . . . , n}

and

∆̈(r, S, ζ) = {∆̈1 ⊎ · · · ⊎ ∆̈n | ∆̈i ∈ ∆̈(ri, S, ζ) for i = 1, . . . , n}.

• If ϕ is a first-order formula of Υ with only database variables, {x1, . . . , xk} ⊆ fr(ϕ)
and r′ ∈ R is a DB-ASM rule, then choose x1, . . . , xk with ϕ do r′ enddo is a rule
r in R called choice rule with fr(r) = (fr(r′) ∪ fr(ϕ)) − {x1, . . . , xk}.

For a state S over Υ and a variable assignment ζ for the variables in fr(r) let
B = {(b1, . . . , bk) | valS,ζ[x1 7→b1,...,xk 7→bk](ϕ) = true}. Then we obtain

∆(r, S, ζ) =
⋃

{∆(r′, S, ζ [x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B}.

and

∆̈(r, S, ζ) =
⋃

{∆̈(r′, S, ζ [x1 7→ b1, . . . , xk 7→ bk]) | (b1, . . . , bk) ∈ B}.
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• If r1, r2 are rules in R, then the rule r defined as seq r1 r2 endseq is a rule in R,
called sequence rule with fr(r) = fr(r1) ∪ fr(r2).

For a state S over Υ and a variable assignment ζ for the variables in fr(r), we obtain

∆(r, S, ζ) = {∆1 ⊘ ∆2 | ∆1 ∈ ∆(r1, S, ζ) and ∆2 ∈ ∆(r2, S + ∆1, ζ)}

with update sets defined as

∆1 ⊘ ∆2 = ∆2 ∪ {(ℓ, v) ∈ ∆1 | ¬∃v
′.(ℓ, v′) ∈ ∆2},

and

∆̈(r, S, ζ) = {∆̈1 ⊘ ∆̈2 | ∆̈1 ∈ ∆̈(r1, S, ζ) and ∆̈2 ∈ ∆̈(r2, S + AsSet(∆̈1), ζ)}

with update multisets defined as

∆̈1 ⊘ ∆̈2 = ∆̈2 ⊎ {{(ℓ, v) ∈ ∆̈1 | ¬∃v
′.(ℓ, v′) ∈ ∆̈2}}.

• If r′ ∈ R is a DB-ASM rule and θ is a location function that assigns location operators
ρ to terms t with var(t) ⊆ fr(r′), then let θ(t) = ρ in r′ endlet is a DB-ASM rule
r ∈ R called let rule with fr(r) = fr(r′).

For a state S over Υ and a variable assignment ζ for the variables in fr(r) let

∆̈(r′, S, ζ) = {∆̈1, . . . , ∆̈n} with update multisets ∆̈i = ∆̈
(t)
i ⊎ ∆̈−

i such that the first
of these two multisubsets contains the updates to locations valS,ζ(t), while the second
one contains updates to all other locations. We define

∆̈
(r)
i = {(ℓ, a) | ℓ = valS,ζ(t), a = θ(t)({{a1, . . . , ak | (ℓ, ai) ∈ ∆̈

(t)
i }})} ⊎ ∆̈−

i

and

∆
(r)
i = {(ℓ, a) | ℓ = valS,ζ(t), a = θ(t)({{a1, . . . , ak | (ℓ, ai) ∈ ∆̈

(t)
i }})} ∪ ∆−

i ,

with ∆−
i = {(ℓ, a) | (ℓ, a) ∈ ∆̈−

i }. This finally gives

∆̈(r, S, ζ) = {∆̈(r)
1 , . . . , ∆̈(r)

n } and ∆(r, S, ζ) = {∆(r)
1 , . . . ,∆(r)

n }.

Note that only assignment rules “create” updates in update sets and multisets, only
choice rules introduce non-determinism, let rules reduce update multisets to update sets
by letting updates to the same location collapse to a single update using assigned loca-
tion operators, whereas all other rules just rearrange these updates into different sets and
multisets, respectively. The sequence operator seq is associative, so we can also use more
complex sequence rules seq r1 . . . rn endseq.
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Example 3.2.1. Consider the following DB-ASM rule

forall x with ∃z.R(x, x, z)

do

let θ(f(x)) = sum in

forall y with R(x, x, y)

do

f(x) := 1

enddo

endlet

enddo
using sum as a shortcut for the location operator (id,+, id). If the state contains the
tuples R(a, a, b), R(a, a, b

′

), R(c, c, a
′

), R(b, b, c), R(b, b, a
′

), R(b, b, b), R(b
′

, a
′

, a), then first
the update multisets {{(a, 1), (a, 1)}}, {{(c, 1)}}, {{(b, 1), (b, 1), (b, 1)}} are produced by means
of the forall rules, which are then collapsed to the update set {(a, 2), (c, 1), (b, 3)} using
the sum-operator in the let rule. Thus, for x such that there are tuples R(x, x, y) in the
database, then number of such tuples is counted and assigned to f(x).

Let us denote the inner and outer forall rules as r1 and r2, respectively. Then we have
fr(r1) = ({x}∪fr(R(x, x, y)))−{y} = {x} and fr(r2) = ({x}∪fr(∃z.R(x, x, z)))−{x} =
∅. Hence this DB-ASM rule is closed.

Lemma 3.2.1. Let r be a DB-ASM rule and ς : S1 → S2 be an isomorphism between
states S1 and S2. Let S ′

1 = S1 + ∆ be a successor state of S1 for some ∆ ∈ ∆(r, S1). Then
we have ς(∆) ∈ ∆(r, S2), and ς : S ′

1 → S ′
2 = S2 + ς(∆) is an isomorphism between the

successor states S ′
1 and S ′

2.

Proof. We proceed by structural induction on the rule r. So we start with an assignment
rule f(t1, . . . , tn) := t0. Then we must take ∆ = {(f(a1, . . . , an), a0)} with ai = valS1

(ti)
for i = 0, . . . , n. For any location ℓ, we have

valS′

1
(ℓ) =

{
a0 if ℓ = f(a1, . . . , an)

valS1
(ℓ) else

.

With ς(∆) = {(f(ς(a1), . . . , ς(an)), ς(a0))} we obtain valS′

2
(ς(ℓ)) ={

ς(a0) if ℓ = f(a1, . . . , an)

valS2
(ς(ℓ)) else

= ς(valS′

1
(ℓ)), which gives S ′

2 = ς(S ′
1) as desired.

The same argument applies to update multisets.

For a conditional rule r = if ϕ then r′ endif, let ζ2 = ς ◦ ζ1. Then valS1,ζ1(ϕ) = true
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iff valS2,ζ2(ϕ) = true. This implies

S2 + ∆(r, S2, ζ2)

=

{
S2 + ς(∆(r′, S1, ζ1)) if valS2,ζ2(ϕ) = true

S2 else

=

{
ς(S1 + ∆(r′, S1, ζ1)) if valS1,ζ1(ϕ) = true

ς(S2) else

= ς(S1 + ∆(r, S1, ζ1)).

The other cases are proven analogously.

3.2.2 Database Abstract State Machines

We are now prepared to define DB-ASMs and show that they satisfy the five postulates
for database transformations from the previous section.

Definition 3.2.2. A database Abstract State Machine (DB-ASM) M over signature Υ of
states as in Postulate 3.1.2 and with a background as in Postulate 3.1.3 consists of

• a set SM of states over Υ, non-empty subsets IM ⊆ SM of initial states, and FM ⊆ SM

of final states, satisfying the requirements in Postulate 3.1.2,

• a closed DB-ASM rule rM over Υ, and

• a binary relation δM over SM determined by rM such that

{Si+1 | (Si, Si+1) ∈ δM} = {Si + ∆ | ∆ ∈ ∆(rM , Si)}

holds.

For the convenience of discussion, we define the substitution for terms.

Definition 3.2.3. Let t be a term, x be a variable, a be a constant and f be a function
symbol. Then,

• x[t/x
′

] =

{
t if x = x

′

x else

• a[t/x
′

] = a

• f(t1, ..., tn)[t/x
′

] = f(t1[t/x
′

], ..., tn[t/x
′

])

The substitution of a term t for a variable x in a formula ϕ (denoted as ϕ[t/x]) is
defined by the rule of substitution. That is,
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• ϕ[t/x] is the result of replacing all free instances of x by t in ϕ provided that no free
variable of t becomes bound after substitution.

Theorem 3.2.1. Each DB-ASM M defines a database transformation T with the same
signature and background as M .

Proof. We have to show that the five postulates for database transformations are satisfied.
As for the sequential time and background postulates (i.e., Postulates 3.1.1 and 3.1.3), these
are already built into the definition of a DB-ASM. The same holds for the abstract state
postulate (i.e., Postulate 3.1.2) as far as the definition of states is concerned, and the
preservation of isomorphisms follows from Lemma 3.2.1. So, we have to concentrate on the
bounded exploration and the bounded non-determinism postulates (i.e., Postulates 3.1.4
and 3.1.5).

Regarding bounded exploration we noted above that the assignment rules within the
DB-ASM rule r that defines πM are decisive for the update set ∆(r, S) for any state S.
Hence, if f(t1, . . . , tn) := t0 is an assignment occurring within r, and valS,ζ(ti) = valS′,ζ(ti)
holds for all i = 0, . . . , n and all variable assignments ζ that have to be considered, then
we obtain ∆(r, S) = ∆(r, S ′).

We use this to define a bounded exploration witness Twit. If ti is ground, we add the
access term ti to Twit. If ti is not ground, then the corresponding assignment rule must
appear within the scope of forall and choice rules introducing the database variables in
ti, as r is closed. Thus, variables in ti are bound by a a first-order formula ϕ, i.e. for
fr(ti) = {x1, . . . , xk} the relevant variable assignments are ζ = {x1 7→ b1, . . . , xk 7→ bk}
with valS,ζ(ϕ) = true. Bringing ϕ into a form that only uses conjunction, negation and
existential quantification with atoms tβi

= tαi
(i = 1, . . . , ℓ), we can extract a set of access

terms {(tβ1
, t1), . . . , (tβℓ

, tℓ)} such that if S and S ′ coincide on these access terms, they will
also coincide on the formula ϕ. This is possible, as we evaluate access terms by sets, so
conjunction corresponds to union, existential quantification to projection, and negation to
building the (finite) complement. We add all the access terms (tβ1

, tα1
), . . . , (tβℓ

, tαℓ
) to

Twit.

More precisely, if ϕ is a conjunction ϕ1 ∧ ϕ2, then ∆(r, S1) = ∆(r, S2) will hold, if
{(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} holds (with ζ =
{x1 7→ b1, . . . , xk 7→ bk}). If Ti is a set of access terms such that whenever S1 and S2 coincide
on Ti, then {(b1, . . . , bk) | valS1,ζ(ϕi) = true} = {(b1, . . . , bk) | valS2,ζ(ϕi) = true} will hold
(i = 1, 2), then T1 ∪ T2 is a set of access terms such that whenever S1 and S2 coincide on
T1∪T2, then {(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} will hold.

Similarly, a set of access terms for ψ with the desired property will also be a witness for
ϕ = ¬ψ, and

⋃
bk+1∈Bdb

Tbk+1
with sets of access terms Tbk+1

for ψ[tk+1/xk+1] with valS(tk+1) =

bk+1 defines a finite set of access terms for ϕ = ∃xk+1ψ. In this way, we can restrict ourselves
to atomic formulae, which are equations and thus give rise to canonical access terms.

Then by construction, if S and S ′ coincide on Twit, we obtain ∆(r, S) = ∆(r, S ′). As
there are only finitely many assignments rules within r and only finitely many choice and
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forall rules defining the variables in such assignments, the set Twit of access terms must be
finite, i.e. r satisfies the bounded exploration postulate.

Regarding bounded non-determinism, assuming that M does not satisfy the bounded
non-determinism postulate. It means that there does not exist a non-ground access term
(tβ, tα) in Twit. According to our remark above r must contain a choice rule choose
x1, . . . , xk with ϕ do r′ enddo. Hence, it implies that there exist at least one non-ground
access term in Twit contradicting our assumption.

3.3 A Characterisation Theorem

In this section we want to show that DB-ASMs capture all database transformations. This
constitutes the converse of Theorem 3.2.1, i.e. that every database transformation can
be behaviouraly simulated by a DB-ASM. We start with some preliminaries that are only
slight adaptations of corresponding definitions and results for the sequential ASM-thesis,
except that the term critical value has to be defined differently due to the use of variables
in access terms. We then show first that a one-step transition from a state to successor
states can be expressed by a DB-ASM rule. Here we heavily rely on the abstract state
postulate and the bounded non-determinism postulate, which allows us to deal with the
restricted non-determinism appropriately.

In a second step we generalise the proof to the complete database transformation using
a construction that is similar to the one used in the sequential ASM-thesis. Again, the
fact that our bounded exploration witness contains non-ground terms makes up most of
the difficulty.

3.3.1 Critical Terms and Critical Elements

Throughout this section we only deal with consistent update sets, which define the pro-
gression of states in a run. We now start providing the key link from updates as implied
by the state transitions to DB-ASM rules. Same as the previous subsection this is only a
slight extension to the work done for the sequential ASM thesis.

Definition 3.3.1. Let Twit be a bounded exploration witness for the database trans-
formation T . A term that is constructed out of the subterms of tα ∈ Twit and vari-
ables x1, . . . , xk, for which there are access terms (tβ1

, tα1
), . . . , (tβℓ

, tαℓ
) ∈ Twit such that

ℓ⋃
i=1

fr(tβi
) ∪ fr(tαi

) = {x1, . . . , xk} holds is called a critical term.

From a bounded exploration witness, a set CT of critical terms can be obtained. This
definition differs from the one given in [82] in that we consider also non-ground terms. For
access terms in Twit we cannot simply require closure under subterms, as coincidence of
structures on Twit does not carry over to subterms of “associative” access terms (tβ , tα).
Therefore, we need a different approach to define critical elements.
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If tct is a critical term, let (tβ1
, tα1

), . . . , (tβℓ
, tαℓ

) be the access terms used in its
definition. For a state S choose b1, . . . , bk ∈ Bdb with valS,ζ(tβi

) = valS,ζ(tαi
) with

ζ = {x1 7→ b1, . . . , xk 7→ bk} for i = 1, . . . , ℓ, and let a = valS,{x1 7→b1,...,xk 7→bk}(tct).

Definition 3.3.2. For each state S of a database transformation T , the elements a of C̄S

constructed in this way are called the critical elements of S.

Let CS = {valS(t) | t ∈ Twit} ∪ {true, false,⊥} for a state S of the database transfor-
mation T . Let

BS = {ai | f(a1, . . . , an) ∈ valS(tβ, tα) for some access term (tβ, tα) ∈ Twit}.

Let C̄S denote the background closure of CS ∪BS containing all complex values that can
be constructed out of CS ∪BS using the constructors and function symbols (interpreted in
S) in ΥK . Then C̄S will be the set of critical elements of the state S. The following lemma
and its proof are analogous to the result in [82, Lemma 6.2].

Lemma 3.3.1. For all updates (f(a1, . . . , an), a0) ∈ ∆(T, S, S ′) and (S, S ′) ∈ δT the values
a0, . . . , an are critical elements of S.

Proof. Assume one of the ai is not critical. Then choose a structure S1 by replacing ai

with a fresh value b without changing anything else. Thus, S1 is a state isomorphic to S
by the abstract state postulate.

Let (tβ, tα) be an access term in Twit. Then we must have valS(tβ, tα) = valS1
(tβ , tα), so

S and S1 coincide on Twit. From the bounded exploration postulate we obtain ∆(T, S) =
∆(T, S1) and thus (f(a1, . . . , an), a0) ∈ ∆(T, S1, S

′
1) for some (S1, S

′
1) ∈ δT .

However, ai does not appear in the structure S1, and hence cannot appear in S ′
1 either,

nor in ∆(T, S1, S
′
1), which gives a contradiction.

3.3.2 Rules for One-Step Updates

In [82] it is a straightforward consequence of Lemma 6.2 that individual updates can be
represented by assignments rules, and consistent update sets by par-blocks of assignment
rules. In our case showing that ∆(T, S) can be represented by a DB-ASM rule requires
a bit more work, which relies heavily on the abstract state postulate and the bounded
non-determinism postulate. We address this in the next lemma.

Lemma 3.3.2. Let T be a database transformation. For every state S ∈ ST there exists
a rule rS such that ∆(T, S) = ∆(rS, S), and rS only uses critical terms.

Proof. ∆(T, S) is a set of update sets. Let {S1, . . . , Sm} = {S ′ | (S, S ′) ∈ δT}. Then
∆(T, S) = {∆(T, S, Si) | 1 ≤ i ≤ m}.

Now consider any update u = (f(a1, . . . , an), a0) ∈ ∆(T, S, Si) for some i ∈ {1, . . . , m}.
According to Lemma 3.3.1 the values a0, . . . , an are critical and hence representable by
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terms involving variables from access terms in Twit, i.e. ai = valS,ζ(ti) with either fr(ti) ⊆
{x1, . . . , xk}, ζ = {x1 7→ b1, . . . , xk 7→ bk} and

(b1, . . . , bk) ∈ Bu = {(b1, . . . , bk) ∈ Bk
db |

∧

1≤i≤ℓ

valS,ζ(tβi
) = valS,ζ(tαi

)}

with access terms (tβi
, tαi

) ∈ Twit (i = 1, . . . , ℓ) and fr(tβi
) ⊆ {x1, . . . , xk}, or ti is a

ground critical term.
Therefore, we distinguish two cases:

I. At least one of the terms t0, . . . , tn is not a ground term.

II. All terms t0, . . . , tn are ground terms.

Case I. We first assume that none of terms t0, . . . , tn contain location operators. The
access terms (tβi

, tαi
) define a finite set of locations

L = {f(a1, . . . , an) | ai = valS,ζ(ti) for i = 1, . . . , n, and

ζ = {x1 7→ b1, . . . , xk 7→ bk} for (b1, . . . , bk) ∈ Bu}.

However, instead of looking at updates at these locations we switch to a relational
perspective, i.e. we replace f ∈ Υ with arity n by a relation symbol Rf of arity n + 1,
so fS(a1, . . . , an) = a0 holds iff Rf

S(a1, . . . , an, a0) = true. A non-trivial update u =
(f(a1, . . . , an), a0) is accordingly represented by two relational updates

ud = (Rf(a1, . . . , an, fS(a1, . . . , an)), false) and ui = (Rf(a1, . . . , an, a0), true).

So, instead of locations in L we consider locations in Lpre ∪ Lpost with

Lpre ={Rf(a1, . . . , an, a0) | ai = valS,ζ(ti) for 1 ≤ i ≤ n,

a0 = valS,ζ(f(t1, . . . , tn)) for ζ = {x1 7→ b1, . . . , xk 7→ bk}

and (b1, . . . , bk) ∈ Bu}

and

Lpost ={Rf(a1, . . . , an, a0) | ai = valS,ζ(ti) for 0 ≤ i ≤ n

for ζ = {x1 7→ b1, . . . , xk 7→ bk} and (b1, . . . , bk) ∈ Bu}.

Furthermore, we may assume that the set Bu is minimal in the sense that we may not
find additional access terms that would define a subset B′

u ( Bu still containing the value
tuple (b1, . . . , bk) that is needed to define the update u.

Then each tuple (a1, . . . , an, a0) ∈ Lpre ∪Lpost defines a substructure of S with base set
B′ = {a0, . . . , an, true, false} and all functions (in fact: relations) restricted to this base
set. In doing so all substructures defined by Lpre (and analogously by Lpost) are pairwise
equivalent, and the induced isomorphisms are defined by permutations of tuples in Bu. If
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they were not equivalent, we could find a distinguishing access term (tβℓ+1
, tαℓ+1

) ∈ Twit

that would define a subset B′
u ( Bu thereby violating the minimality assumption for Bu.

Let Epre and Epost denote these equivalence classes of substructures, respectively.
If ℓ′ ∈ L is not updated in Si – hence, corresponding locations in Lpre and Lpost are

neither updated – then the substructures Sℓ′ in Epre (and Epost, respectively) that are
defined by ℓ′ are preserved in Si, i.e. Sℓ′ � Si. From Lemma 3.1.2 we can get that
ς(∆(T, S)) = ∆(T, ς(S)) = ∆(T, S) for the case that ς is an automorphism of S. It
means that for an update in ∆(T, S, Sj) there is a translated update (by means of ς) in
∆(T, S, ς(Sj)). Then we conclude that for all Sj (j = 1, . . . , m) there is some ℓ′′ ∈ L with
Sℓ′′ � Sj , and each Sℓ′′ ∈ Epre (and Sℓ′′ ∈ Epost, respectively) is preserved in some Sj. In
particular, there is also some successor state Sj of S with Sℓ � Sj for u = (ℓ, a0).

Thus, we obtain two subcases:

1) If ℓ is updated in all S1, . . . , Sm, i.e. there exist values a1
0, . . . , a

m
0 with (ℓ, ai

0) ∈
∆(T, S, Si) for all i = 1, . . . , m, then all ℓ′ ∈ L are also updated in all Si. If (ℓ, ai

0)
is represented by the assignment rule f(t1, . . . , tn) := ti0 with x1, . . . , xk interpreted
by (b1, . . . , bk) ∈ Bu, then the fact that almost all substructures defined by these
interpretations of t1, . . . , tn and any value other than ai

0 are preserved – and hence by
virtue of Lemma 3.1.2 as we explained before equivalent substructures are preserved
in the other Sj – implies that each instantiation of the rule f(t1, . . . , tn) := ti0 with
values from Bu defines an update in one of the update sets ∆(T, S, Sj). Hence these
updates can be collectively represented by the rule

choose x1, . . . , xk with tβ1
(x1) = tα1

(x1) ∧ · · · ∧ tβℓ
(xℓ) = tαℓ

(xℓ)

do f(t1, . . . , tn) := ti0 enddo

Here the x1, . . . , xℓ denote tuples of variables among x1, . . . , xk appearing in
tβ1
, . . . , tβℓ

, respectively. In case all the terms ti0 for i = 1, . . . , m are identical (to say

t0), we obtain in fact the rule r
(u)
S as

choose x1, . . . , xk with tβ1
(x1) = tα1

(x1) ∧ · · · ∧ tβℓ
(xℓ) = tαℓ

(xℓ)

do f(t1, . . . , tn) := t0 enddo

In general, however, it is possible that different terms ti0 must be chosen, so all

updates to locations in L are represented by the rule r
(u)
S , which becomes

choose x
(1)
1 , . . . , x

(1)
k , . . . , x

(m)
1 , . . . , x

(m)
k

with
∧

1≤j1<j2≤m

(x
(j1)
1 , . . . , x

(j1)
k ) 6= (x

(j2)
1 , . . . , x

(j2)
k )

∧
∧

1≤j≤m

tβ1
(x

(j)
1 ) = tα1

(x
(j)
1 ) ∧ · · · ∧ tβℓ

(x
(j)
ℓ ) = tαℓ

(x
(j)
ℓ )

do

par

60



3.3. A CHARACTERISATION THEOREM

f(t1, . . . , tn)[x
(1)
1 /x1, . . . , x

(1)
k /xk] := t10[x

(1)
1 /x1, . . . , x

(1)
k /xk]

...
...

f(t1, . . . , tn)[x
(m)
1 /x1, . . . , x

(m)
k /xk] := tm0 [x

(m)
1 /x1, . . . , x

(m)
k /xk]

endpar

enddo

2) If only ℓ is updated in Si, but no other ℓ′ ∈ L is, then only one ℓ′ ∈ L is updated in
each Sj for j = 1, . . . , m. Analogously, if m− i locations in L are not updated, then
i locations in L are updated in each Sj for j = 1, . . . , m. Using exactly the same
arguments as in case 1), we now can represent these updates collectively by the rule

r
(u)
S , which now becomes

choose x
(1)
1 , . . . , x

(1)
k , . . . , x

(i)
1 , . . . , x

(i)
k

with
∧

1≤j1<j2≤i

(x
(j1)
1 , . . . , x

(j1)
k ) 6= (x

(j2)
1 , . . . , x

(j2)
k )

∧
∧

1≤j≤i

tβ1
(x

(j)
1 ) = tα1

(x
(j)
1 ) ∧ · · · ∧ tβℓ

(x
(j)
ℓ ) = tαℓ

(x
(j)
ℓ )

do

par

f(t1, . . . , tn)[x
(1)
1 /x1, . . . , x

(1)
k /xk] := t10[x

(1)
1 /x1, . . . , x

(1)
k /xk]

...
...

f(t1, . . . , tn)[x
(i)
1 /x1, . . . , x

(i)
k /xk] := ti0[x

(i)
1 /x1, . . . , x

(i)
k /xk]

endpar

enddo

By exploiting Lemma 3.1.2, we showed how to create a proper choice rule with respect
to Bu that is minimal. However, the created choice rule does not capture all update sets
in ∆(T, S). If there exists another update in an update set that is not in the orbit of
∆(T, S, Si) (1 ≤ i ≤ m) under ς, we can use the same argument to obtain another choice
rule. As the orbits are disjoint, we end up with a choice of choice rules, which can be
combined into a single choice rule. The underlying condition for constructing such a single
choice rule is the finiteness of ∆(T, S), i.e., there are only finitely many update sets created
by T over state S. This can be assured by Lemma 3.3.1 and the bounded non-determinism
postulate. It is sufficient to consider the subset CT ′ ⊆ CT defined by closed terms in Twit

and their subterms and tuple terms defined by some set of access terms in Twit. Hence, as
Twit is finite, CT ′ is also finite, and consequently there can only be finitely many branches
from the database part of the state S, which is a finite structure.

Now we revise the previous assumption that none of terms t0, . . . , tn contain location
operators to a general case, i.e., location operators may appear in the terms t0, ..., tn of an
assignment rule f(t1, ..., tn) := t0. Let fℓ be a unary function symbol such that xti = fℓ(i),
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then, without loss of generality, we can replace the terms t1, ..., tn of an assignment rule
f(t1, ..., tn) := t0 with the variables xt1 , ..., xtn , such that

par
xt1 := t1

...
xtn := tn

endpar;
f(xt1 , ..., xtn) := t0

It means that we can simplify the construction of rules for updates which may corre-
spond to terms with location operators by only considering the case that location operators
appear at the right hand side of an assignment rule. If a term ti (i ∈ [1, n]) at the left
hand side contains a location operator, by the above translation, we may treat it as being
a term at the right hand side of another assignment rule again.

Suppose that the outermost function symbol of term t0 is a location operator ρ,
e.g.,t0 = ρ(m) where m = {{t

′

0| for all values a = (a1, ..., ap) in y = (y1, ..., yp) such that
valS,ζ[x1 7→b1,...,xk 7→bk](ϕ(x, a)) = true}}, and x denotes a tuple of variables among x1, ..., xk.
Then for each assignment rule f(xt1 , ..., xtn) := t0 in which t0 contains a location operator
as described before, we can construct the following rule to remove the location operator ρ
by a let rule and a forall rule:

let θ(f(xt1 , ..., xtn)) = ρ in
forall y1,...,yp with ϕ(x, y)
do

f(xt1 , ..., xtn) := t
′

0

enddo;
endlet

This construction can be conducted iteratively. If the outermost function symbol of the
above term t

′

0 is a location operator, then we need to construct a rule in a similar way to
replace the assignment rule f(xt1 , ..., xtn) := t

′

0. This procedure continues until the right
hand side of an assignment rule is a term without any location operator.

Case II. In case of a simple update f(t1, . . . , tn) := t0 without free variables we consider the
substructure defined by {a1, . . . , an, valS(f(t1, . . . , tn)), true, false} as before. However, in
this case it is the only substructure in its equivalence class. Furthermore, the substructure
can be represented by ground access terms.

According to the bounded non-determinism postulate, we know that, if the location
ℓ = f(a1, . . . , an) were not updated in some Sj with j ∈ {1, . . . , m}, the same would apply
for all Si (i = 1, . . . , m) contradicting the fact that the update (ℓ, a0) appears in one Si.
Consequently, (f(a1, . . . , an), a0) ∈ ∆(T, S, Si) for all i = 1, . . . , m, and these updates can

be collectively represented by the simple assignment rule r
(u)
S , which now becomes

f(t1, . . . , tn) := t0.
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Finally, we construct rS by using the par-construct:

rS = par r
(u1)
S . . . r

(up)
S endpar

for {u1, . . . , up} =
m⋃

i=1

∆(T, S, Si).

3.3.3 Rules for Multiple-Step Updates

Let us now extend Lemma 3.3.2 to the construction of a DB-ASM rule that captures the
complete behaviour of a database transformation T . For this fix a bounded exploration
witness Twit and the set CT of critical terms derived from it. Furthermore, for a state S
of T fix the rule rS as in Lemma 3.3.2.

For tct ∈ CT , let (tβ1
, tα1

), . . . , (tβℓ
, tαℓ

) be the access terms in Twit defining fr(tct) =
{x1, . . . , xk}. For a state S ∈ ST define

valS(tct) = {valS,ζ(tct) | ζ = (x1 7→ b1, . . ., xk 7→ bk) and
∧

1≤i≤ℓ

valS,ζ(tβi
) = valS,ζ(tαi

)}.

The following two lemmata extend Lemma 3.3.2 first to states that coincide with S on
critical terms, then to isomorphic states.

Lemma 3.3.3. Let S, S ′ ∈ ST be states that coincide on the set CT of critical terms.
Then ∆(rS, S

′) = ∆(T, S ′) holds.

Proof. As S and S ′ coincide on CT , they also coincide on Twit, which gives ∆(T, S) =
∆(T, S ′) by the bounded exploration postulate. Furthermore, we have ∆(rS, S) = ∆(T, S)
by Lemma 3.3.2. As rS uses only critical terms, the updates produced in state S must
be the same as those produced in state S ′, i.e. ∆(rS, S) = ∆(rS, S

′), which proves the
lemma.

Lemma 3.3.4. Let S, S1, S2 be states with S1 isomorphic to S2 and ∆(rS, S2) = ∆(T, S2).
Then also ∆(rS, S1) = ∆(T, S1) holds.

Proof. Let ς denote an isomorphism from S1 to S2. Then ∆(rS, S2) = ς(∆(rS, S1)) holds by
Lemma 3.1.2, and the same applies to ∆(T, S2) = ς(∆(T, S1)). As we presume ∆(rS, S2) =
∆(T, S2), we obtain ς(∆(rS, S1)) = ς(∆(T, S1)) and hence ∆(rS, S1) = ∆(T, S1), as ς is an
isomorphism.

Next, in the spirit of [82] we want to extend the equality of sets of update sets for T
and rS to a larger class of states by exploiting the finiteness of the bounded exploration
witness Twit. For this, we define the notion of T -equivalence similar to the corresponding
notion for the sequential ASM thesis, with the difference being that in our case we cannot
take Twit, but must base our definition and the following lemma on CT .

63



CHAPTER 3. FOUNDATIONS OF DATABASE TRANSFORMATIONS

Definition 3.3.3. States S, S ′ ∈ ST are called T -similar iff ES = ES′ holds, where ES is
an equivalence relation on CT defined by

ES(tct1 , tct2) ⇔ valS(tct1) = valS(tct2).

Lemma 3.3.5. We have ∆(rS, S
′) = ∆(T, S ′) for every state S ′ that is T -similar to S.

Proof. Replace every element in S ′ that also belongs to S by a fresh element. This defines
a structure S1 isomorphic to S ′ and disjoint from S. By the abstract state postulate S1 is
a state of T . Furthermore, by construction S1 is also T -similar to S ′ and hence also to S.

Now define a structure S2 isomorphic to S1 such that valS2
(tct) = valS(tct) holds for

all critical terms tct ∈ CT . This is possible, as S and S1 are T -similar, i.e. we have
valS(tct1) = valS(tct2) iff valS1

(tct1) = valS1
(tct2) for all critical terms tct1 , tct2 . By the

abstract state postulate S2 is also a state of T .
Using Lemma 3.3.3 we conclude ∆(rS, S2) = ∆(T, S2), and by Lemma 3.3.4 we obtain

∆(rS, S
′) = ∆(T, S ′) as claimed.

We are now able to prove our main result, first generalising Lemma 3.3.2 to multiple-
step updates in the next lemma, from which the proof of the main characterisation theorem
is straightforward.

Lemma 3.3.6. Let T be a database transformation with signature Υ. Then there exists
a DB-ASM rule r over Υ, with same background as T such that ∆(r, S) = ∆(T, S) holds
for all states S ∈ ST .

Proof. In order to decide whether equivalence relations ES and ES′ coincide for states
S, S ′ ∈ ST it is sufficient to consider the subset CT ′ ⊆ CT defined by closed terms in
Twit and their subterms and tuple terms (x1, . . . , xk) ∈ CT that are defined by some set
of access terms in Twit. Hence, as Twit is finite, CT ′ is also finite, and by the bounded
non-determinism postulate there can only be finitely many such equivalence relations. Let
these be ES1

, . . . , ESn
for states S1, . . . , Sn ∈ ST .

For i = 1, . . . , n we construct first-order formulae ϕi such that valS(ϕi) = true holds
iff S is T -similar to Si. For this let CT ′ = {tct1 , . . . , tctm}, and define terms

t̄ctj =





tctj if tctj is closed

〈(x1, . . . , xk) |
∧

1≤i≤ℓ

tβi
= tαi

〉 if tctj = (x1, . . . , xk) with variables taken

from (tβ1
, tα1

), . . . , (tβℓ
, tαℓ

)

exploiting the fact that the background structures provide constructors for multisets and
pairs (and thus also tuples). Then

ϕi =
∧

1≤j1,j2≤m
ESi

(tctj1
,tctj2

)

t̄ctj1 = t̄ctj2 ∧
∧

1≤j1,j2≤m
¬ESi

(tctj1
,tctj2

)

t̄ctj1 6= t̄ctj2

asserts that ES = ESi
holds. Now define the rule r by
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par if ϕ1 then rS1
endif

if ϕ2 then rS2
endif

...
if ϕn then rSn

endif
endpar

If S ∈ ST is any state of T , then S is T -equivalent to exactly one Si (1 ≤ i ≤ n), which
implies valS(ϕj) = true iff j = i, and hence ∆(r, S) = ∆(rSi

, S) = ∆(T, S) by Lemma
3.3.5.

Theorem 3.3.1. For every database transformation T there exists an equivalent DB-ASM
M .

Proof. By Lemma 3.3.6 there is a DB-ASM rule r with ∆(r, S) = ∆(T, S) for all S ∈ ST .
Define M with the same signature and background as T (and hence SM = ST ), IM = IT ,
FM = FT , and program δM = r.

Note that for the proof of Theorem 3.3.1 we constructed a DB-ASM rule that does not
use sequence nor let rules, so by Theorem 3.2.1 these two constructions can be considered
to be merely “syntactic sugar”. However, as discussed before the let rules are actually more
than that, as they capture aggregate updates that exploit parallelism. Whether this can
be extended to capture various aspects of parallelism, thus looking deeper inside database
transformations, is an open problem.
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Chapter 4

Relational and XML Database
Transformations

In this chapter, we discuss database transformations over relational and XML databases.
Relational databases are widely recognised as an efficient technology for data man-

agement. The first task of this chapter is to specify a computational model for database
transformations on relational databases. The approach we adopt here is to customise the
background postulate with a relational background. In particular, we exploit relational al-
gebra for organising query execution and optimisation at an internal implementation level,
in terms of the constructivity of a relational background. It turns out that DB-ASMs with
relational backgrounds characterise relational database transformations. Every relational
database transformation (i.e. a database transformation over a relational database satis-
fying the five postulates) can be behaviourally simulated by a DB-ASM with a relational
background and vice versa. We also identify and compare several subclasses of relational
database transformations characterised by such relational backgrounds.

For XML databases most current approaches that deal with XML documents have a
fixed abstraction level. It means that each node or edge of interest must be explicitly
identified in a database transformation. In order to accommodate the diversity of user
requirements by providing a more intuitive, user-friendly and less implementation-specific
computation model, manipulations on XML trees at an arbitrary flexible abstraction level
would be desirable. It is appealing to have manipulations such as deleting, modifying or
inserting subtrees, copying and replacing contexts, etc. on portions of a tree. Therefore,
the second task of this chapter is to investigate XML database transformations with an
emphasis on structured data updates. This task naturally brings up the following two
questions:

• What may be an appropriate computation model for XML database transformations
at a flexible abstraction level?

• Is the class of algorithms captured by this computation model the same as XML
database transformations stipulated by the postulates with the same signature and
background?
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To answer these questions, we develop a tree-based background that customises the
background postulate for XML database transformations at a flexible abstraction level.
Then we exploit weak Monadic Second-Order (MSO) logic as a means to define an alter-
native, more elegant way of expressing XML database transformations. It is revealed that
incorporating MSO logic into DB-ASM rules can not actually increase the expressiveness
of XML machines.

The rest of the chapter is organised as follows. We discuss relational backgrounds and
relational database transformations in Section 4.1. In Section 4.2 we formally define XML
trees, XML contexts and a tree algebra. They give rise to type constructors and functions
that must be considered as part of a tree-based background class. In Section 4.3, weak
MSO logic is introduced, which adds further requirements to tree-based backgrounds. The
final definition of tree-based backgrounds, which also comprise tree type schemes in order
to capture schema information based on EDTDs, is presented in Section 4.4. Linking tree-
based backgrounds with DB-ASMs gives the first computational model for XML database
transformations. The alternative computational model of XML machines which exploit
weak MSO logic is introduced in Section 4.5. The proof for the main result that the model
of XML machines is equivalent to the DB-ASM model with tree-based backgrounds is
presented in Subsection 4.5.2.

4.1 Relational Database Transformations

Relational database transformations are the most ubiquitous class of database transfor-
mations, in which states are formalised on the basis of relations. In this section, we ad-
dress two issues concerning relational database transformations: (i) to clarify computation
backgrounds specific to relational database transformations, which we call relational back-
grounds; (ii) to investigate how relational backgrounds interact with relational schemata,
and thereby impose restrictions on the underlying states.

4.1.1 Relational Model

The Relational Data Model (RDM) was proposed by Edgar Codd [56, 57]. Let D = {Di}i∈I

be a family of atomic domains containing all kinds of possible values. Then a relation
schema R consists of a finite, non-empty set attr(R) of attributes and a domain assignment
dom : attr(R) → D. A tuple over a relation schema R is a mapping

αt : attr(R) →
⋃

Di∈D

Di

with αt(A) ∈ dom(A) for all A ∈ attr(R). A relation I(R) over a relation schema R is
a finite set of tuples over R. A relational database schema ℜ is a finite, non-empty set
of relation schemata, and a relational database instance I(ℜ) over a relational database
schema ℜ assigns to each R ∈ ℜ a relation I(R) over R.
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First normal form is an important criterion for a relation schema to be well-designed. It
restricts that attributes in any relation schema may only be associated with atomic values.
A relaxation of this condition naturally generalises the RDM to the Nested Relational Data
Model (NRDM), which permits relations to be the values of relation-valued attributes. With
the presence of relation-valued attributes, nest and unnest operations are indispensable in
the NRDM. They serve to shift from a relation to its subrelations, or vice versa. The NRDM
was first formulated by Makinouchi [110], and it has since been extensively investigated in
various works, e.g. [141, 123, 105].

A nested relation schema R is inductively defined to be a pair (attr(R), dom) of a finite,
non-empty set attr(R) of attributes and a domain assignment dom such that

• attr(R) consists of

– a set {A1, ..., An} of atomic attributes, and

– a set {R1, ..., Rm} of relation-valued attributes that are nested relation schemata,

• dom associates an atomic domain dom(Ai) ∈ D to each Ai ∈ attr(R), and a schema
domain dom(Rj) to each Rj ∈ attr(R), where the definition of schema domain is as
follows.

Let P(D) denote the power set of D. A schema domain dom(R) over a nested relation
schema R is recursively defined by

• For R = {A1, ..., Ak}, dom(R) = P(dom(A1) × ...× dom(Ak));

• For R = {A1, ..., An, R1, ..., Rm}, dom(R) = P(dom(A1)× ...×dom(An)×dom(R1)×
...× dom(Rm)).

Let R be a nested relation schema. A tuple over R is a mapping

αt : attr(R) →
⋃

A∈attr(R)

dom(A) ∪
⋃

R
′∈attr(R)

dom(R
′

)

with αt(A) ∈ dom(A) for each atomic attribute A ∈ attr(R) and αt(R
′

) ∈ dom(R
′

) for
each relation-valued attribute R

′

∈ attr(R). A nested relation I(R) over R is a finite set of
tuples over R. A nested relational database schema ℜ is a finite, non-empty set of nested
relation schemata, and a nested relational database instance I(ℜ) over a nested relational
database schema ℜ assigns to each R ∈ ℜ a nested relation I(R) over R.

A fundamental assumption of relational models is that data is structured as relations
(i.e., as subsets of the cartesian product of certain domains). Therefore, both the RDM
and the NRDM are varieties of relational models. The RDM is clearly just a special case
of the NRDM in which there are no relation-valued attributes.
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4.1.2 Relational Background Class

A relational background class provides all possible elements which can take part in a
relational database transformation together with all operations that can be used to enact
transformations on these elements. In addition to this, a relational type scheme controls
the way in which states of a relational database transformation are instantiated.

We start by defining the signature of a relational background.

Definition 4.1.1. A relational background signature Υrel
K comprises

• type constructors for finite tuple (·), finite set {·} and binary label :,

• a finite set of static function symbols containing at least ∅ (empty set), {x} (singleton
set), ∪ (set union), and ∈ (set membership) to deal with set-based operations, and

• type constructors and function symbols as requested in Postulate 3.1.3.

The set D of atomic domains in a relational model contains a finite, non-empty set
of attribute names, and by default D also contains the Boolean domain, i.e., Bool. The
type constructors {·}, (·) and : are used in a rather restricted but mixed way to construct
relational background structures.

Definition 4.1.2. A relational background class Krel consists of

• a relational background signature Υrel
K ,

• a set D of atomic domains, and

• a relational background structure with Υrel
K over D as defined in Definition 3.1.7.

4.1.3 Relational Type Schemes

The basic building blocks of a relational type scheme are atomic value types (e.g., Integer,
String, Date, Bool) which are called atomic domains in a relational model. Without loss
of generality, we will use D to refer to both a family of atomic value types in a relational
type scheme and a set of atomic domains in a relational model, depending on the context.

A relational type scheme has two type constructors: tuple (·) and set {·}. Let A be
a finite set of attributes consisting of a subset AA ⊆ A of atomic attributes and a subset
AR ⊆ A of relation-valued attributes. Furthermore, AA ∩ AR = ∅. Then, a type in a
relational type scheme over D can be inductively defined by

• τ :≡ AA : D|AR : τR, and

• τR :≡ {(τ1, ..., τk)},

where AA ∈ AA, AR ∈ AR and D ∈ D.
The interpretation of a type τ (expressed by [[τ ]]) is a collection of values, which are

either atomic or complex, inductively defined by
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• [[AA : D]] = AA : D,

• [[AR : τR]] = AR : [[τR]],

• [[{(τ1, ..., τk)}]] = P(
⋃

ai∈[[τi]],i=1,...,k

{(a1, . . . , ak)}).

There are two kinds of label types: AA : D labelled as a type for an atomic attribute
and AR : τR labelled as a type for a relation-valued attribute. Correspondingly, the inter-
pretation of type AA : D is a set of values from atomic domains with a label AA, while the
interpretation of type AR : τR is a set of values from the interpretation of type τR with a
label AR. A type {(τ1, ..., τk)} is interpreted as a set of relations that have attributes of
types τ1, ..., τk in order.

Definition 4.1.3. Let ℜ be a set of relation symbols in the signature of a state. Then a
relational type scheme is a pair (T, typ) consisting of

• a finite, non-empty set T of types defined by the above system, and

• a type assignment typ : ℜ → T that associates a type typ(R) ∈ T to each relation
symbol R ∈ ℜ.

Database transformations are normally considered to be associated with a pair of
database schemata: input and output database schemata. These schemata are reflected
into a relational background via a relational type scheme as follows. All dynamic relational
symbols in the state signature are categorised into three kinds: in, out and temp, corre-
sponding to relational symbols in an input database schema, in an output database schema
and additionally auxiliary relational symbols, respectively. That is, ℜ = ℜin∪ℜout∪ℜtemp.
By defining a relational type scheme, each relational symbol is restricted to a specific type
that remains fixed during a database transformation and a (nested) relation schema is
represented by such a type. ℜout and ℜtemp may be empty and ℜin contains at least one
relational symbol. Relational symbols in ℜtemp are used for facilitating computations and
exist only temporarily in intermediate stages of a database transformation.

Example 4.1.1. Consider an input database schema ℜin = {R1} where R1 = {A1 : {A11 :
D11, A12 : D22}, A2 : D2, A3 : D3} and an output database schema ℜout = {R1, R2} where
R2 = {A2 : D2}. A database transformation starting from I(ℜin) and ending at I(ℜout)
may have two relational type schemes (T1, typ1) and (T2, typ2) associated with input and
output database schemata, respectively, such that

• typ1(R1) = τ1, typ2(R1) = τ1 and typ2(R2) = τ2, and

– τ1 = {(A1 : {(A11 : D11, A12 : D22)}, A2 : D2, A3 : D3)},

– τ2 = {(A2 : D2)},

where both τ1 and τ2 are in T1 and T2, and T1 = T2.
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4.1.4 Constructivity of Relational Backgrounds

By the term relational background, we refer to the background that is needed by compu-
tations over states described with relational models. In [29], two general purposes that a
background may serve were discussed: (1) to describe available structures a computation
may use and (2) to deal with new elements imported into states. These purposes are
certainly valid for a relational background. Nevertheless, the notion of state thus far is
too general to reflect the specific data environment of a database, for instance, database
schemata, data integrity, etc. For this, we can restrict relational backgrounds via the
provision of relational type schemes to define admissible states of a relational database
transformation.

Definition 4.1.4. A relational background is a pair (Krel, Γ̃rel) consisting of a relational
background class Krel and a set Γ̃rel of relational type schemes.

In the following we continue to exploit the constructivity of relational backgrounds.
By constructivity we mean the way that a background structure can be constructed from
the atoms. Several notions of constructivity for backgrounds have been proposed by Blass
and Gurevich [29]. Following their notions, we discuss the constructivity of relational
backgrounds in terms of Relational Algebra (RA) since the algebraic properties of RA
have been widely used for query optimisation in relational databases.

From weakest to strongest, we recall the notions of constuctivity defined by Blass and
Gurevich [29]. The set atom(S) of atoms in a state S consists of the elements in the base
domains of S. The notation atom(t) denotes the set of all atoms occurring in a term t.

Definition 4.1.5. A background class K is rigid relative to atoms if the only automor-
phism that fixes all the atoms is the identity function.

Definition 4.1.6. A background class K is explicitly atom-generated if the smallest sub-
structure that contains all the atoms is K itself.

It is easy to see that each explicitly atom-generated background K is rigid relative to
atoms. Moreover, all elements of an explicitly atom-generated background class are values
of terms with atoms assigned to variables as values. Based on the notion of explicitly
atom-generated, the notion of freely atom-generated is defined.

Definition 4.1.7. A background class K is freely atom-generated via a subset Υ0 ⊆ Υ

and a set
︷︸︸︷
ID of identities over Υ0 if

• K is explicitly atom-generated, and

• two terms are equal (i.e., have the same value) in K if the equality can be derived

from the identities in
︷︸︸︷
ID .
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From an algebraic point of view, when considering functional symbols as algebraic
operators, the set of identities would correspond to algebraic identities capturing equiv-
alences between algebraic terms in a background class. Such a set of algebraic identities
defines an equivalence relationship over terms in which two terms are equivalent if one
term can be rewritten to the other based on these identities. Let term(K) be a set of
all terms of a background class K. Then this kind of equivalence relation is called t-
equivalent (denoted as ∼t: term(K)2 → {true, false}). On the other hand, given two
terms t1 and t2 of a background class K, t1 and t2 are called i -equivalent (denoted as
∼i: term(K)2 → {true, false}) if the interpretation of t1 and t2 yields the same value
under the isomorphisms of K. Therefore, the set of algebraic identities is sound iff for all
t1, t2 ∈ term(K), t1 ∼t t2 implies t1 ∼i t2, and the set of algebraic identities is complete iff
for all t1, t2 ∈ term(K), t1 ∼i t2 implies t1 ∼t t2.

For database transformations, the existence of algebraic identities in a background
class is not trivial. Indeed, a set of complete and sound algebraic identities provides
a way to capture all semantically equivalent one-step transformations, which is useful
for optimising the implementation of database transformations. In the following we take
RA as an example to illustrate the presence of algebraic identities in most of relational
backgrounds.

Relational Algebra (RA) is a data manipulation language in the RDM. It has six
primitive operators defined on the basis of set theory. The operators are unary or bi-
nary (i.e. take as input one or two relations) but always result in a single output re-
lation which may or not be over a different relation schema to those of the input rela-
tions. Let S be a state, RE be a binary equality relation over atoms in S such that
RE = {(a, a)|a ∈ atom(S)}1, relation symbols R1, R2 and R3 be assigned with the same
type typ(R1) = typ(R2) = typ(R3) = {(A1 : D1, ..., An : Dn)}. Then the operators of RA
are defined by

• selection:

– σAi=a(R1) = {t|t ∈ I(R1) ∧ t(Ai) = a} or

– σAi=Aj
(R1) = {t|t ∈ I(R1) ∧ t(Ai) = t(Aj)},

where attr(σAi=a(R1)) = attr(σAi=Aj
(R1)) = attr(R1);

• projection:

– πA(R1) = {t|∃t
′

∈ I(R1)∀A ∈ A.t(A) = t
′

(A)},

where attr(πA(R1)) = A for A ⊆ attr(R1);

1RE is used for testing the equality of two atoms.
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• natural join:

– R1 ⊲⊳ R2 = {t|∃t1 ∈ I(R1), t2 ∈ I(R2)∀A ∈ attr(R1).t(A) = t1(A) ∧ ∀A
′

∈
attr(R2).t(A

′

) = t2(A
′

)},

where attr(R1 ⊲⊳ R2) = attr(R1) ∪ attr(R2);

• set union:

– R1 ∪ R2 = {t|t ∈ I(R1) ∨ t ∈ I(R2)},

where attr(R1 ∪R2) = attr(R1) = attr(R2);

• set different :

– R1 − R2 = {t|t ∈ I(R1) ∧ t /∈ I(R2)},

where attr(R1 −R2) = attr(R1) = attr(R2);

• renaming :

– ̺Ai 7→A
′ (R1) = {t|∃t

′

∈ I(R1).t(A
′

) = t
′

(Ai) ∧ ∀A ∈ attr(R1) − {Ai}.t(A) =
t′(A)},

where attr(̺Ai 7→A
′ (R1)) = attr(R1) − {Ai} ∪ {A

′

}.

These operators provide a means of transforming relational databases and thus need
to be included in the relational background of RA. Furthermore, the background class of
RA is explicitly atom-generated as all its elements can be obtained as closed terms with
atoms assigned to variables as values. Since the second condition in Definition 4.1.7 is also
satisfied, the background class of RA is freely atom-generated.

Let us consider elements of a relational background class for RA as terms. The set of
terms of RA can be defined inductively by applying function symbols for its operators over
relations at the database part of a state:

t ≡ R | σAi=a(t) | σAi=Aj
(t) | πA(t) | t1 ⊲⊳ t2 | t1 ∪ t2 | t1 − t2 | ̺Ai→A

′ (t).

In this sense, query expressions of RA are terms under compositions of algebraic oper-
ations. They can be optimised by rewriting query expressions in accordance with a set of
relational algebraic identities. This is the rationale of query optimisation implemented in
most of commercial relational databases. The following are some identities used in RA.

• idempotent laws :
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– σϕ(σϕ(R)) = σϕ(R)

– πA(πA(R)) = πA(R)

– R ⊲⊳ R = R

– R ∪R = R

• commutative laws :

– σϕ1
(σϕ2

(R)) = σϕ2
(σϕ1

(R))

– R1 ⊲⊳ R2 = R2 ⊲⊳ R1

– R1 ∪ R2 = R2 ∪R1 provided attr(R1) = attr(R2)

• associative laws :

– (R1 ⊲⊳ R2) ⊲⊳ R3 = R1 ⊲⊳ (R2 ⊲⊳ R3)

– (R1 ∪ R2) ∪R3 = R1 ∪ (R2 ∪ R3) provided attr(R1) = attr(R2) = attr(R3)

• identity laws :

– R ∪ ∅ = R

– R − ∅ = R

• conjunctive laws :

– σϕ1
(σϕ2

(R)) = σϕ2∧ϕ1
(R))

• other laws:

– πA1
(πA2

(R)) = πA1
(R) (provided A1 ⊆ A2)

– σϕ(πA(R)) = πA(σϕ(R)) (provided for every attribute A
′

occurring in ϕ A
′

∈ A)

– ......

By adding an assignment rule R := t for a relational symbol R ∈ ℜout and a term t,
the query results of RA can be stored. As a well-known fact, a relational database man-
agement system uses more or less similar relational algebra operations for query execution
and optimisation at an internal implementation level. Therefore, it is a common prac-
tice that relational algebra operations and identities are part of a relational background.
Nevertheless, the expressive power of RA as a standalone database query language is still
rather limited, for example, RA can not express the query transitive closure as no recursion
mechanism is provided by RA.
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4.1.5 Relational Database Transformations

Formally, we define relational database transformations as follows.

Definition 4.1.8. A relational database transformation is a database transformation with
a relational background (Krel, Γ̃rel), satisfying the following conditions:

• the database part of the state signature contains a finite, non-empty set of relational
symbols,

• the database part of each initial or final state is a relational database instance over
an input or output relational database schema defined by the relational type scheme
Γ̃rel, respectively.

Intuitively speaking, a relational database transformation describes a process starting
from a relational database instance constrained by an input relational schema, processing
them in accordance with the postulates defined in Section 3.1 and terminating with a
relational database instance constrained by an output relational schema. RA can be seen
as one subclass of relational database transformations. By similarly formalising terms
and backgrounds for other relational query languages, we arrive at different subclasses of
relational database transformations.

We begin with Query Language (QL), which is a “complete” language in the sense of
Chandra and Harel’s definition of completeness proposed in [52]. QL concerns only the
computations over finite relations residing at the database part of a state. Operations
related to an infinite domain at the algorithmic part are disregarded. The terminology
of QL has a procedural style like procedural programming languages. QL can essentially
be regarded as being the closure of RA under certain programming primitives such as
sequential composition and iteration with the ability to test for emptiness. Therefore, we
present the syntax and semantics of QL by modifying and extending the definition of RA.

Let S be a state, R ∈ ℜ and RE ∈ ℜ be a binary equality relation extending the one
in RA such that RE = {(a, a)|a ∈ atom(S) ∪ P(atom(S))}2. Then the terms of QL are
defined inductively in the same way as the terms of RA, such that

t ≡ R | σAi=a(t) | σAi=Aj
(t) | πA(t) | t1 ⊲⊳ t2 | t1 ∪ t2 | t1 − t2 | ̺Ai→A

′ (t).

The programs of QL extend the assignment rules of RA by adding sequential composi-
tion and while construct,

p ≡ R := t | p1; p2 | while R do p.

2The extension of RE over P(atom(S)) is to provide the capability for testing the emptyness of a
relation by utilising unranked relation variables. In doing so, counters can be simulated.
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Semantically, p1; p2 denotes that p1 and p2 are executed sequentially, and while R do p
denotes that while R is an empty set then program p is executed. Thus, QL is equipped
with the capability to deal with recursion by the use of while construct and counters
simulated by operating on the ranks of relations and testing their emptiness. In doing so,
the query transitive closure is expressible in QL. Despite all this, QL is still not expressive
enough to deal with some common relational queries involving generalised aggregations,
for instance, the query counting that counts the number of tuples in a relation satisfying
certain conditions, or the query summation that sums up values of an attribute of relations
under specified conditions.

The background of QL includes all the function symbols for relational algebra operators
and the set of relational algebraic identities. Furthermore, it extends the computation
background of RA by adding the extended equality relation and a function symbol for
the test of empty relation in the background signature. The background class of QL is
explicitly atom-generated.

The observed limited expressiveness of QL motivated Chandra and Harel to propose
an extension called Extended Query Language (EQL) in [52]. The intention is to take
operations over potentially infinite domains into consideration. This naturally leads to
consideration of a meta-finite structure where not only the database part but also the
algorithmic part of a state play a role in computations.

Let S be a state with the signature Υ = Υdb ∪ Υa ∪ {f1, ..., fℓ}, R ∈ ℜ, RE ∈ ℜ
and RE = {(a, a)|a ∈ atom(S) ∪ ∪P(atom(S))}. Then the terms of EQL are defined by
enlarging the terms of QL such that

(1) terms in the database part are closed under algebraic operators,

t ≡ R | σAi=a(t) | σAi=Aj
(t) | πA(t) | t1 ⊲⊳ t2 | t1 ∪ t2 | t1 − t2 | ̺Ai→A

′ (t).

(2) f(t1, ..., tn) is a term in the algorithmic part for n-ary f ∈ {f1, ..., fℓ} and t1, ..., tn are
terms in the database part, and

(3) f(t1, ..., tn) is a term in the algorithmic part for n-ary f ∈ Υa and t1, ..., tn are terms
in the algorithmic part.

The programs of EQL are exactly the same as those of QL. They are,

p ≡ R := t | p1; p2 | while R do p.

With the additional terms obtained by applying bridge and algorithmic functions, EQL
is expressive enough to capture generalised aggregations. For instance, the query counting
can be expressed in EQL by defining a bridge function card : D → N and an algorithmic
function sum over N in the background. The background of EQL should include all
the function symbols for relational algebra operators and the set of relational algebraic
identities. However, different from the backgrounds of RA and QL, the background of
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EQL requires a type constructor for finite multiset as it is indispensable to capture the
cardinality of elements occurring in a set. The inclusion of a type constructor for finite
multiset and function symbols for its operations in a computation background serves as
the basis for expressing generalised aggregation computing.

We use DB-ASMrel to refer to the restricted class of DB-ASMs for relational database
transformations. More precisely, a DB-ASMrel is a DB-ASM in which

• the background is a relational background (Krel, Γ̃rel), and

• the database part of a state is a relational database instance.

Theorem 4.1.1. DB-ASMs with relational backgrounds (Krel, Γ̃rel), in which initial and
final states are relational database instances of an input and output relational database
schema defined by the relational type scheme Γ̃rel, respectively, capture exactly all relational
database transformations with the same signature and relational background (Krel, Γ̃rel).

Proof. This theorem is a direct consequence of Theorems 3.2.1 and 3.3.1.

By taking the terms of EQL as the terms of DB-ASMrel, DB-ASMrel can express all
the queries captured by EQL. The program constructs provided in EQL can be simulated
by using DB-ASMrel rules. More specifically, an assignment rule of DB-ASMrel is more
general than the one used in EQL since an assignment rule R := t of DB-ASMrel may
have R ∈ ℜin ∪ ℜout ∪ ℜtemp. It means that an assignment rule of DB-ASMrel can be
used to update input relations in addition to enacting queries over them. A sequential rule
of EQL can be simulated by a sequence rule of DB-ASMrel. The power of the recursion
provided by the while construct and the testing for emptiness in EQL can be supplied by
using conditional and choice rules under recursively iterations in DB-ASMrel. With the
presence of choice rules of DB-ASMrel, certain kinds of non-deterministic queries can also
be expressed. Therefore, the following corollary is a straightforward result.

Corollary 4.1.1. RA ( QL ( EQL ( DB-ASMrel

4.2 Trees and Tree Algebra

As XML documents are often represented as trees, XML database transformations have to
perform computations on trees. Thus tree values have to be available in the base set, and
operations on such trees must be available for the definition of terms. Furthermore, tree
values and operations have to be defined in the background. In this section, we provide all
the necessary constituents of the backgrounds for XML database transformations, which
leads to the definition of tree background class in Section 4.4.
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4.2.1 Trees and Contexts

It is common to regard an XML document as an unranked tree, in which nodes may have
an unbounded but finite number of children nodes.

Definition 4.2.1. An unranked tree γ is a structure (Oγ,≺c,≺s), consisting of

• a finite, non-empty set Oγ of node identifiers, called tree domain,

• ordering relations ≺c and ≺s over Oγ called child relation and sibling relation, re-
spectively, satisfying the following conditions:

– there exists a unique, distinguished node or ∈ Oγ (called the root of the tree)
such that for all o ∈ Oγ − {or} there is exactly one o′ ∈ Oγ with o′ ≺c o, and

– whenever o1 ≺s o2 holds, then there is some o ∈ Oγ with o ≺c oi for i = 1, 2.

The relations ≺c and ≺s are irreflexive (x 6≺ x).

For x1 ≺c x2 we say that x2 is a child of x1; for x1 ≺s x2 we say that x2 is the next
sibling to the right of x1.

In order to obtain XML trees from this, we require the nodes of an unranked tree to be
labelled, and the leaves, i.e. nodes without children, to be associated with values. Let us
fix a finite, non-empty set Σ of labels, and a finite family {τi}i∈I of data types. Each data
type τi is associated with a value domain Dτi

. The corresponding universe U contains all
possible values of these data types, i.e. U =

⋃
i∈I

Dτi
.

Definition 4.2.2. An XML tree tγ (over the set Σ of labels with values in the universe
U) is a triple (γ, ω, υ) consisting of

• an unranked tree γ = (Oγ ,≺c,≺s),

• a total label function ω: Oγ → Σ, and

• a partial value function υ: Oγ → U such that

– whenever υ is defined on o, o is a leaf in γ.

We use root(tγ) to denote the root node of an XML tree tγ . Given two XML trees
t1 and t2, t1 is the subtree of t2 if the following properties are satisfied: (1) Ot1 ⊆ Ot2 ,
(2) o1 ≺c o2 holds in t1 iff it holds in t2, (3) o1 ≺s o2 holds in t1 iff it holds in t2, (4)
ωt1(o

′) = ωt2(o
′) holds for all o′ ∈ Ot1 , and (5) either υt1(o

′) = υt2(o
′) holds or otherwise

both sides are undefined for all o′ ∈ Ot1 . t1 is said to be the largest subtree of t2 at node o,
denoted as ô, iff (1) t1 is the subtree of t2 with root(t1) = o and (2) there does not exist an
XML tree t3 with t3 6= t1 and t3 6= t2 such that t1 is the subtree of t3 and t3 is the subtree
of t2. The set of all XML trees over Σ – neglecting the universe U – is denoted as T (Σ).
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A sequence t1, ..., tk of XML trees is called an XML hedge or simply a hedge, and a
multiset {{t1, ..., tk}} of XML trees is called an XML forest or simply a forest. The notion
of a forest is indispensable in situations where order is irrelevant, (e.g. when representing
attributes of a node) or where duplicates are desirable (e.g. for computations in parallel
on identical subtrees). Let ε denote the empty hedge.

As observed at the beginning of the chapter, in order to define flexible operations on
XML trees, it is necessary to be able to select tree portions of interest. One such portion
is subtree, but occasionally we will need more general structures. This will be supported
by XML contexts.

Definition 4.2.3. An XML context tc over the set of labels Σ (ξ /∈ Σ) is an unranked
tree over Σ ∪ {ξ} such that for each tree

• exactly one leaf node is labelled with the symbol ξ and has undefined value, and

• all other nodes in a tree are labelled and valued in the same way as an XML tree
defined in Definition 4.2.2.

The context with a single node labelled by ξ is called the trivial context (also denoted
as ξ). Similarly, the set of all XML contexts over Σ is denoted as T (Σ ∪ {ξ}).

We can now define substitution operations that replace a subtree of an XML tree
or context by a new XML tree or context. When defining these substitutions, we have
to ensure that the special label ξ occurs at most once in the result. For this reason,
substitution from some XML context, whether it be by XML tree or context, will always
be carried out for the node labelled ξ. This leads to the following distinction between four
kinds of substitutions:

Tree-to-tree substitution

For an XML tree tγ1
∈ T (Σ1) with a node o ∈ Oγ1

and an XML tree tγ2
∈ T (Σ2),

the result tγ1
[tγ2

/ô] of substituting tγ2
for the subtree rooted at o is an XML tree in

T (Σ1 ∪ Σ2).

Tree-to-context substitution

For an XML tree tγ1
∈ T (Σ1) with a node o ∈ Oγ1

, the result tγ1
[ξ/ô] of substituting

the trivial context ξ for the subtree rooted at o is an XML context in T (Σ1 ∪ {ξ}).

Context-to-context substitution

For an XML context tc1 ∈ T (Σ1 ∪ {ξ}) and an XML context tc2 ∈ T (Σ2 ∪ {ξ}), the
result tc1 [tc2/ξ] of substituting tc2 for the node labelled ξ in tc1 is an XML context in
T (Σ1 ∪ Σ2 ∪ {ξ}).

Context-to-tree substitution

For an XML context tc1 ∈ T (Σ1 ∪ {ξ}) and an XML tree tγ2
∈ T (Σ2), the result

tc1[tγ2
/ξ] of substituting tγ2

for the node labelled by ξ in tc1 is an XML tree in
T (Σ1 ∪ Σ2).
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Figure 4.1: XML tree portions

The correspondence between an XML document and an XML tree is straightforward.
Each element of an XML document corresponds to a node of the XML tree and the subele-
ments of an element define the children nodes of the node corresponding to the element.
The nodes for elements are labeled by element names and character data of an XML doc-
ument correspond to values of leaves in an XML tree. As our main focus is on structural
properties of an XML document, attributes are handled as if they are subelements (i.e.
they are not taken into particular consideration to simplify the discussion).

4.2.2 Tree Selector Constructs

To enable manipulation over XML trees at higher levels than individual nodes and edges,
we need some tree constructs that are able to select arbitrary tree portions of interest. For
this, we provide two selector constructs: subtree and context.

Definition 4.2.4. Let tγ = (γ, ω, υ) be an XML tree. Then the constructs subtree and
context are defined as follows:

• context is a binary, partial function defined on pairs (o1, o2) of distinct nodes with
oi ∈ Oγ (i = 1, 2) such that o1 is an ancestor of o2 (i.e. o1 ≺∗

c o2 holds for the
transitive closure ≺∗

c of ≺c). We have

context(o1, o2) = ô1[ξ/ô2].

• subtree is a unary function defined on Oγ. We have

subtree(o) = ô.

Example 4.2.1. Consider the XML tree tγ shown in Figure 4.1. Suppose that we want
to select

1. a subtree, rooted at a node labelled by b, which has exactly two children nodes
labelled by a, and
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2. a context, defined by a subtree that is rooted at a node labelled by b, in which a
subtree with a root also labelled by b is substituted by the trivial context ξ.

For (1) using DB-ASM rules we could build the following computational fragment:

forall x with ∃x1, x2.((x ≺c x1) ∧ (x ≺c x2) ∧ ω(x) = b ∧ ω(x1) = a ∧ ω(x2) = a∧
x1 6= x2 ∧ ∀x3((x ≺c x3) ∧ ω(x3) = a⇒ (x3 = x1 ∨ x3 = x2)))

do
t1 := subtree(x) ; . . .

enddo

Of course, the formula in the with-clause has to be interpreted using the XML tree
tγ with variables bound to identifiers in the tree domain Oγ . Furthermore, ≺c has to be
interpreted by the children relation, and ω by the labelling function. Such formulae and
their interpretations will be discussed in Section 4.3.

Similarly, for (2) we could use the following fragment of a DB-ASM rule:

forall x with (x ≺∗
c x1) ∧ ω(x) = b ∧ ω(x1) = b

do
t2 := context(x, x1) ; . . .

enddo

The two resulting tree portions of interest are highlighted in Figure 4.1. The left tree
portion corresponds to the subtree requested in (1), while the right tree portion corresponds
to the context requested in (2).

The use of the tree selector constructs context(x1, x2) and subtree(x), along with the
tree algebra operations which we will introduce in the next subsection, allows us to extract
and recombine portions of an existing XML tree to form new XML trees. This enables
a flexible level of abstraction for XML database transformations beyond manipulation of
nodes and edges.

4.2.3 Tree Algebra

To manipulate over tree structures, we need operators on forests or hedges. This motivates
us to take into account tree algebras. These algebras have, however, been developed
for many different purposes. For instance, the forest algebra by Mikolaj Bojanczyk and
Igor Walukiewicz in [41] aims at providing an algebraic framework for studying logical
definability of different classes of tree languages, while the tree algebra for binary ranked
trees by Wilke in [157] was defined for characterising the class of frontier-testable tree
languages satisfying conditions such as “there exists a natural number k such that any two
trees with the same set of subtrees of depth at most k either belong both to the language
or both not”. In this subsection, we will develop an XML tree algebra that adapts features
from these existing tree algebras towards the setting of XML trees. The main motivation
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of the XML tree algebra is to find an algebraic approach that can manipulate portions of a
tree structure at a highly flexible abstraction level, such as subtrees and contexts. In doing
so, individual nodes and edges are considered to be special cases of subtrees and contexts.

We now define a many-sorted algebra using three sorts: L for labels, H for hedges,
and C for contexts, along with a set {fι, fν , fς , f̺, fκ, fϑ, fη} of function symbols with the
following signatures:

- fι : L ×H → H

- fν : L × C → C

- fς : H × C → C

- f̺ : H× C → C

- fκ : H ×H → H

- fϑ : C × C → C

- fη : C × H → H

Given a fixed set Σ of labels and two special symbols ε and ξ, the set T of terms over
Σ∪{ε, ξ} comprises label terms, hedge terms, and context terms. That is, T = TL∪TH∪TC ,
where TL, TH and TC stand for the sets of terms over sorts L, H and C, respectively.

• The set TL of label terms is simply the set of labels, i.e. TL = Σ.

• The set TH of hedge terms is defined by:

– T s
H ⊆ TH where T s

H is the set of tree terms corresponding to XML trees,

– ε ∈ T s
H ,

– t〈t
′

〉 ∈ T s
H for t ∈ Σ and t

′

∈ TH , and

– t1, ..., tn ∈ TH for ti ∈ T s
H (i = 1, ..., n).

• The set of context terms TC is the smallest set with

– ξ ∈ TC , and

– t〈t1, ..., tn〉 ∈ TC for a label t ∈ Σ and terms t1, ..., tn ∈ T s
H ∪TC such that exactly

one ti (i = 1, . . . , n) is a context term in TC .

Correspondingly, tree, hedge and context terms represent XML trees, hedges and con-
texts that were defined earlier. In accordance with the first condition in the definition of
hedge terms, XML trees can be identified with hedges of length 1. Moreover, the last con-
dition in the definition of context terms guarantees that all context terms contain exactly
one ξ. Trees and contexts have a root, but hedges do not (unless they can be identified
with a tree). For hedges of the form t〈ε〉, we use t as a notational shortcut, if there is no
confusion with the label term t. Furthermore, we use #t to denote the sort of term t.
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Example 4.2.2. Let Σ = {a, b, c}. Then we have

• a, b and c are terms of sort L,

• a〈b〈b〉, c〈a〉〉 and b〈c〉, a〈a〈b〉, b〉 are terms of sort H, and

• a〈a〈b〉, ξ, c〉 and a〈a〈b, ξ〉, c〉 are terms of sort C.

Intuitively speaking, the functions fι and fν extend hedges and contexts upwards with
labels, and fς and f̺ incorporate hedges into non-trivial contexts from left or right, re-
spectively, which takes care of the order of subtrees arising in XML (see Example 4.2.3
to follow). The function fκ denotes hedge juxtaposition, and likewise fϑ denotes context
composition. The function fη denotes context substitution, i.e. substituting the variable ξ
in a context with a hedge, which leads to a tree.

Figure 4.2, in which tree terms are represented by triangles and context terms by
triangles with a dot for ξ, provides further illustration of these functions. The following is
their formal definitions:

fι(t, (t1, . . . , tn)) = t〈t1, . . . , tn〉 (4.1)

(The case n = 0 leads to t〈ε〉 on the right hand side.)

fν(t, t
′

) = t〈t
′

〉 (4.2)

fς((t1, . . . , tn), t〈t′1, . . . , t
′
m〉) = t〈t1, . . . , tn, t

′
1, . . . , t

′
m〉 (4.3)

f̺((t1, . . . , tn), t〈t′1, . . . , t
′
m〉) = t〈t′1, . . . , t

′
m, t1, . . . , tn〉 (4.4)

fκ((t1, . . . , tn), (t1, . . . , tm)) = t1, . . . , tn, t
1, . . . , tm (4.5)

fϑ(t, t
′

) = t[t
′

/ξ] (4.6)

fη(t, (t1, . . . , tn)) = t[t1, . . . , tn/ξ] (4.7)

Example 4.2.3. Let us have a look at Figure 4.3. Given a context term t2 = a〈b, ξ〉 and
a hedge term t1 = b〈c〉, b〈c〉, we obtain

• the context in (i) by fς(t1, t2) = a〈b〈c〉, b〈c〉, b, ξ〉, and

• the context in (ii) by f̺(t1, t2) = a〈b, ξ, b〈c〉, b〈c〉〉.

We can now investigate equivalences among terms. The proof of the following proposi-
tion is straightforward.

Proposition 4.2.1. The XML tree algebra satisfies the following equations for terms
t1, t2, t3 ∈ T of appropriate sorts (i.e., whenever one of the terms in the equation is defined,
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Figure 4.2: XML tree algebra
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Figure 4.3: An illustration of functions fς(t1, t2) and f̺(t1, t2)

the other one is defined, too, and equality holds):

fη(fϑ(t1, t2), t3) = fη(t1, fη(t2, t3)) (4.8)

fϑ(fϑ(t1, t2), t3) = fϑ(t1, fϑ(t2, t3)) (4.9)

fκ(fκ(t1, t2), t3) = fκ(t1, fκ(t2, t3)) (4.10)

fη(fν(t1, t2), t3) = fι(t1, fη(t2, t3)) (4.11)

fς(t1, fς(t2, t3)) = fς(fκ(t1, t2), t3) (4.12)

f̺(t1, f̺(t2, t3)) = f̺(fκ(t2, t1), t3) (4.13)

f̺(t3, fς(t1, t2)) = fς(t1, f̺(t3, t2)) (4.14)

Example 4.2.4. To illustrate the correctness of equation (4.11) (i.e., fη(fν(t1, t2), t3) =
fι(t1, fη(t2, t3))), let us take t1 = b, t2 = a〈b, ξ〉 and t3 = b〈c〉. Then

• the left hand side becomes

fη(fν(t1, t2), t3) = fη(fν(b, a〈b, ξ〉), b〈c〉) = fη(b〈a〈b, ξ〉〉, b〈c〉) = b〈a〈b, b〈c〉〉〉

• the right hand side becomes

fι(t1, fη(t2, t3)) = fι(b, fη(a〈b, ξ〉, b〈c〉)) = fι(b, a〈b, b〈c〉〉) = b〈a〈b, b〈c〉〉〉
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Remark 4.2.1. In terms of manipulating tree structures, our tree algebra is powerful
enough to express operations provided by the forest algebra [41] and Wilke’s tree algebra
[157]. For example, the operations ιA(a), λA(a, t) and ρA(a, t) in [157] can be expressed as
ι(a, ε), ρ(δ(a, ξ)) and ς(δ(a, ξ)), respectively, in our tree algebra.

4.3 Weak Monadic Second-Order Logic

In Example 4.2.1, we have already seen formulae that can give rise to node identifiers,
which then in turn can be used to construct tree portions of interest. In a sense, this
illustrates the use of logic for navigating within an XML tree to identify tree portions
of interest. Such navigation capability when used in conjunction with XML tree algebra
enables us to specify manipulation over tree structures. In this section, we concentrate on
the logical part.

We begin with providing a weak MSO logic over finite and unranked trees adopting
from [61] in which second-order variables can be quantified only over finite sets. There are
several reasons for choosing such a logic in our study.

Firstly, the use of MSO logic is motivated by its close correspondence to regular lan-
guages, which is known since early work of Büchi. Büchi [48] observed that a set of strings
is regular iff it is definable in weak MSO logic with one successor. After that, Doner [65],
Thatcher and Wright [140] extended this result to the case of trees. That is, a set of trees
is regular iff it is definable in weak MSO logic with k successors. Nowadays, MSO logic has
become important for XML database theory. The paper [61] provides a good introduction
to these results.

Furthermore, we choose the weak version of MSO logic because DB-ASMs are restricted
to use database variables in forall and choice rules, which must be interpreted by values
in the database part of a state. Due to the abstract state postulate (i.e., Postulate 3.1.2),
a finiteness condition is stipulated on the database part of any state of database transfor-
mations.

In most XML query and transformation languages, XPath [24] plays a key role in
navigating tree structures. The navigational core of XPath2.0 captures the first-order
logic. Some extensions on XPath, by adding transitive closure operators or using fixed-
point operators, have been shown to be expressively complete for MSO logic or fragments of
MSO logic [39, 138, 139]. For example, an extension called “regular XPath” with a Kleene
star operator for transitive closure is complete with respect to the first-order logic extended
with monadic transitive closure, which is strictly less expressive than MSO logic (over XML
trees) [139, 139]. As we plan to study the effects of increasing the expressiveness of the logic
incorporated in DB-ASM rules on the expressive power of the resulting computation model,
MSO logic as an expressive logic over tree structures turns out to be a good candidate.
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4.3.1 Tree Formulae

Let XFO denote the set of first-variables expressed by lower-case letters and XSO denote
the set of second-order variables expressed by upper-case letters. Using abstract syntax,
the formulae of MSOX are defined by

ϕ ≡ x1 = x2 | υ(x1) = υ(x2) | ω(x1) = a | x ∈ X | x1 ≺c x2 | x1 ≺s x2 |

¬ϕ | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∃X.ϕ (4.15)

with x, x1, x2 ∈ XFO, X ∈ XSO, unary function symbols υ and ω, a ∈ Σ and binary
predicate symbols ≺c and ≺s.

We interpret formulae of MSOX for a given XML tree tγ = (γ, ωt, υt) over the set
Σ of labels with γ = (Ot

γ ,≺
t
c,≺

t
s). Naturally, the function symbols ω and υ should be

interpreted by the labelling and value functions ωt and υt, respectively, and the predicate
symbols ≺c and ≺s should have interpretations in accordance with the children and sibling
relations ≺t

c and ≺t
s, respectively.

Furthermore, we need a variable assignment ζ : XFO∪XSO → Oγ∪P(Oγ) mapping first-
order variables x to node identifiers ζ(x) ∈ Oγ , and second-order variablesX to sets of node
identifiers ζ(X) ⊆ P(Oγ). As usual, ζ [x 7→ o] (and ζ [X 7→ O], respectively) denotes the
modified variable assignment, which equals ζ on all variables except the first-order variable
x (or the second-order variable X, respectively), for which we have ζ [x 7→ o](x) = o (and
ζ [X 7→ O](X) = O, respectively).

With the XML tree tγ and a variable assignment ζ , we obtain the interpretation valtγ ,ζ

on terms and formulae as follows. Terms in the logic have the form x,X or v(x) where x
is a first-order variable, X is a second-order variable and v(x) is the value of some node
associated with a first-order variable x, such that they are interpreted as

• valtγ ,ζ(x) = ζ(x),

• valtγ ,ζ(X) = ζ(X), and

• valtγ ,ζ(υ(x)) = υt(ζ(x)).

For formula ϕ, we use [[ϕ]]tγ ,ζ to denote its interpretation by a truth value and obtain:

• [[t1 = t2]]tγ ,ζ = true iff valtγ ,ζ(t1) = valtγ ,ζ(t2) holds for the terms t1 and t2,

• [[ω(x) = a]]tγ ,ζ = true holds iff ωt(valtγ ,ζ(x)) = a,

• [[x ∈ X]]tγ ,ζ = true iff valtγ ,ζ(x) ∈ valtγ ,ζ(X),

• [[¬ϕ]]tγ ,ζ = true iff [[ϕ]]tγ ,ζ = false,

• [[ϕ1 ∧ ϕ2]]tγ ,ζ = true iff [[ϕ1]]tγ ,ζ = true and [[ϕ2]]tγ ,ζ = true,

• [[∃x.ϕ]]tγ ,ζ = true iff [[ϕ]]tγ ,ζ[x 7→o] = true holds for some o ∈ Oγ ,
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• [[∃X.ϕ]]tγ ,ζ = true iff [[ϕ]]tγ ,ζ[X 7→O] = true for some finite O ⊆ Oγ ,

• [[x1 ≺c x2]]tγ ,ζ = true iff valtγ ,ζ(x2) is a child node of valtγ ,ζ(x1) in tγ , i.e. valtγ ,ζ(x1) ≺t
c

valtγ ,ζ(x2) holds, and

• [[x1 ≺s x2]]tγ ,ζ = true iff valtγ ,ζ(x2) is the next sibling to the right of valtγ ,ζ(x1) in tγ ,
i.e. valtγ ,ζ(x1) ≺t

s valtγ ,ζ(x2) holds.

The syntax of MSOX can be enriched by adding ϕ1∨ϕ2, ∀x.ϕ, ∀X.ϕ, ϕ1 ⇒ ϕ2, ϕ1 ⇔ ϕ2

as abbreviations for other MSOX formulae in the usual way. Likewise, the definition of
bound and free variables of MSOX formulae is also standard. We use the notation fr(ϕ)
for the set of free variables in formula ϕ.

Definition 4.3.1. Given an XML tree tγ and a MSOX formula ϕ with fr(ϕ) =
{x1, . . . , xn}, then ϕ is said to be satisfiable in tγ with respect to the variable assignment
ζ if [[ϕ]]tγ ,ζ = true.

4.3.2 Formulae in DB-ASMs with Trees

Straightforwardly, we can incorporate the logic MSOX into the framework of DB-ASMs.
When using XML trees as values in the base set of a DB-ASM, the logic MSOX is not
sufficient, as we have to take more than one such tree into account. Fortunately, this only
requires an extension for the atomic formulae, i.e., those formulae appearing in the first
line of Equation (4.15) above.

Because of their intimate connection to the definition of XML trees, the specific function
and predicate symbols for XML trees, (i.e. υ, ω, ≺c and ≺s) need to be extended by adding
an XML tree as an additional argument. Thus, we obtain function symbols υ

′

, ω
′

, ≺
′

c and
≺

′

s of arity 2, 2, 3 and 3, respectively. That is,

• υ
′

(x1, x2) denotes the value at leaf node x2 in the tree x1,

• ω
′

(x1, x2) denotes the label of node x2 in the tree x1,

• x1 ≺
′

c (x)x2 denotes the (truth) value of x1 ≺c x2 in the tree x, and

• x1 ≺
′

s (x)x2 denotes the (truth) value of x1 ≺s x2 in the tree x.

Together with any other function symbols that are defined as part of the background
signature and variables, we can build the set of terms. For this, variables now have to be
sorted including sorts for node identifiers and sets of node identifiers, plus sorts for labels,
hedges, contexts, etc.

• The set of atomic formulae then consists of formulae of the form t1 = t2, x ∈ X,
x1 ≺

′

c (x
′

)x2 and x1 ≺
′

s (x
′

)x2 with

– terms ti (i = 1, 2) of the same sort,
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– x, xi (i = 1, 2) of sort “node identifier”,

– X of sort “ set of node identifier”, and

– x
′

of sort tree.

• The set of formulae is then built upon atomic formulae in the usual way using nega-
tion, conjunction and existential quantification plus the usual shortcuts as mentioned
previously.

4.4 XML Database Transformations

In this section, we develop the general notion of XML database transformation. As outlined
in Chapter 3, the customisation for a particular data model requires the definition of
adequate backgrounds. We approach this in two steps. Firstly, we define tree background
classes which build upon the XML tree algebra and weak MSO logic of the previous two
sections. Then, we add tree type schemes to capture schema information which is based on
EDTDs [116]. Thus, any object satisfying the postulates defined in Postulates 3.1.1, 3.1.2,
3.1.3, 3.1.4 and 3.1.5 with tree-based backgrounds (as defined in this section) is deemed to
be an XML database transformation.

Using the same tree-based backgrounds, we obtain a computational model for XML
database transformations on the basis of DB-ASMs, which were introduced in Chapter 3.
From Theorems 3.2.1 and 3.3.1, we obtain that DB-ASMs with tree-based backgrounds
capture exactly all XML database transformations.

4.4.1 Tree Background Classes

The background for an XML database transformation describes all available tree structures
that may be used within an XML database transformation. Such backgrounds will be called
tree-based backgrounds. In order to define tree-based backgrounds, a background signature
(i.e. constructor symbols and function symbols) is first required.

Definition 4.4.1. A tree-based background signature Υtree
K contains at least

• a finite tuple constructor (·), a finite set constructor {·}, a finite hedge constructor
, . . . , and a finite tree constructor 〈·〉,

• function symbols root, ≺c,≺s, ω and υ to define XML trees,

• function symbols context and subtree for the selection of tree portions,

• function symbols ε (empty hedge), ξ (trivial context),

• function symbols fι, fν , fς , f̺, fκ, fη and fϑ as defined by the XML tree algebra,

90



4.4. XML DATABASE TRANSFORMATIONS

• function symbols ∅ (empty set), {x} (singleton set), ∪ (set union), and ∈ (set mem-
bership) to deal with sets of node identifiers, and

• constructor symbols and function symbols as requested in the background postulate,
i.e., Postulate 3.1.3.

In the sense of [47], all function symbols in a background signature are static, i.e. their
interpretation is fixed and does not permit updates. On the other hand, the interpretation
of functions symbols defined in the signature of underlying states can be updated.

Next we need a universe of elements, for which a set D of base domains is required
analogous to Definition 3.1.7. Let us fix a set Σ of labels and a tree domain O (i.e. a set
of node identifiers). Then Σ defines one of the base domains and O defines a tree universe
as well as a set of contexts.

Definition 4.4.2. The tree universe over O is the set HFT (O) of hereditarily finite trees
over O which is the smallest set such that

• if t1, . . . , tn ∈ O ∪HFT (O), then t〈t1, . . . , tn〉 ∈ HFT (O) for t ∈ O.

For n = 0 in this definition we obtain trivial trees t〈ε〉 ∈ HFT (O). If we identify
t〈ε〉 with t, we have in fact O ⊆ HFT (O). Each finite tree in a tree universe is indeed
a tree skeleton in the sense that none of the nodes are labelled or assigned with values.
By viewing hereditarily finite trees in HFT (O) as special kinds of hereditarily finite lists,
which can be interpreted as hereditarily finite sets by the Kuratowski encoding [150], the
tree universe can also be treated as a special case of hereditarily finite sets.

In the spirit of Definition 4.4.2 we can define a set of contexts over O as follows.

Definition 4.4.3. The set of contexts over O is the smallest set HFT (O, ξ) with

• ξ ∈ HFT (O, ξ) and

• t〈t1, . . . , tn〉 ∈ HFT (O, ξ), where

– t ∈ O,

– exactly one ti ∈ HFT (O, ξ) for i ∈ [1, n] is a context, and

– all others tj ∈ HFT (O) for j = 1, ..., n and j 6= i are hereditarily finite trees.

In addition to the set Σ of labels, the tree universe HFT (O) and the set of contexts
HFT (O, ξ) define two more base domains.

Definition 4.4.4. A tree background class Ktree consists of

• a background signature Υtree
K ,

• a set D of base domains with Σ ∈ D, HFT (O) ∈ D, HFT (O, ξ) ∈ D, and

• a tree background structure over Υtree
K and D, which is a structure consisting of a

universe U as defined in Definition 3.1.7 and an interpretation of function symbols
in Υtree

K over U .
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4.4.2 XML Schemata

XML documents may be associated with a schema formalism, for example, Document Type
Definitions (DTDs), XML Schema, Extended Document Type Definitions (EDTDs) and
so forth. Following the discussion in [111], we concentrate on EDTDs, as they generalise
several popular formalisms. Research on EDTDs have also investigated how streaming
XML documents can be validated using visibly pushdown automata or ASMs [125, 126,
129]. Adopting the discussion here to other XML schema formalisms is straightforward.

Given a set Σ of labels, the set of regular languages over Σ is denoted as reg(Σ).
We first define DTDs in an abstract way following [116]. In particular, we abstract from
specific syntax of opening and closing tags and blur the distinction between subelements
and attributes.

Definition 4.4.5. A document type definition (DTD) consists of

• a finite, non-empty set Σ of labels,

• a root ar ∈ Σ, and

• a mapping β : Σ → reg(Σ) assigning to each a ∈ Σ a regular language over Σ.

Note that this is called labelled ordered tree object type definition in [116].

Example 4.4.1. (adapted from [116]) Consider the following DTD:

〈!DOCTYPE dealer [
〈!ELEMENT dealer (used cars, new cars)〉
〈!ELEMENT used cars (ad∗)〉
〈!ELEMENT new cars (ad∗)〉
〈!ELEMENT ad ((model, year)|(model))〉
〈!ELEMENT model (#PCDATA)〉
〈!ELEMENT year (#PCDATA)〉

]〉

Using Definition 4.4.5, we can represent this DTD by the set of labels Σ = {root, dealer,
used cars, new cars, ad,model, year} with root ‘root’ and associated regular languages

- root: dealer

- dealer: used cars new cars

- used cars: ad∗

- new cars: ad∗

- ad: model year?
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The assigned languages are

β(root) = β(dealer) β(dealer) = dealer β(used cars) β(new cars)

β(used cars) = used cars β(ad)∗ β(ad) = ad β(model) (β(year) ∪ {ǫ})

β(new cars) = new cars β(ad)∗ β(model) = {model}

and β(year) = {year}

The simplicity of DTDs has contributed greatly to its popularity among practitioners.
However, it is also well-known that DTD is highly restricted in terms of what it can express.
For instance, the DTD in Example 4.4.1 can not state that the ‘year’ tag must be present
only for used cars. This could be avoided by having two different tags such as ‘ad used’ and
‘ad new’. Extending DTD to Extended Document Type Definition (introduced in [116] as
specialised labelled ordered tree object type definition) takes care of this problem.

Definition 4.4.6. An extended document type definition (EDTD) consists of

• a DTD (Σ′, ar, β), and

• a mapping α : Σ′ → Σ with another finite, non-empty set Σ of labels.

We can use the elements in Σ′ to fine-tune the desired structure of XML document
adhering to a given EDTD, while α(a) defines the actual tag that is to be used. In our
example above, we could use ‘ad used’ and ‘ad new’ as elements of Σ′ with both being
mapped by α to ‘ad’ in Σ – all other elements of Σ′ would be mapped to themselves.

Therefore, α captures specialisations between elements. Abstractly, we are not con-
cerned with the particular name of a specialised element. Instead, we are more interested
in knowing which element it is a specialisation of. Accordingly, we adopt the notational
convention to write ab for elements in Σ′ where α(ab) = a. Normally, the superscript b
of ab is then called the type of the element, but to simplify the development in the next
subsection we refer to ab ∈ Σ′ as the type. If α−1(a) contains only one element, we omit
the superscript and assume that α maps a to itself.

Example 4.4.2. (adapted from [116]) The following denotes an EDTD with Σ =
{root, dealer, used cars, new cars, ad,model, year}:

- root: dealer

- dealer: used cars new cars

- used cars: (adu)∗

- new cars: (adn)∗

- adu: model year

93



CHAPTER 4. RELATIONAL AND XML DATABASE TRANSFORMATIONS

- adn: model

In any XML document adhering to this EDTD we would indeed have ‘model’ and ‘year’
for each used car, but only ‘model’ for new cars.

Definition 4.4.7. Let tγ be an XML tree over Σ′, G1 = (Σ′, ar, β) be a DTD and
G2 = (Σ, G1, α) be an EDTD. Then,

• tγ is said to satisfy G1 if the root of tγ is labelled as ar, and a1 . . . an ∈ α(o) for each
o ∈ Oγ labelled by a with children nodes labelled by a1, . . . , an.

• The tree tγ is said to satisfy G2 if there exists an XML tree t′γ over Σ′ satisfying G1

such that α(t′γ) = tγ.

Here, we applied β to a whole XML tree, which must be understood as the canonical
extension from node labels to trees.

We denote the set of XML trees satisfying a DTD or EDTD G as sat(G), which
can be considered as a regular language over Σ. Nevertheless, the set {sat(G) |
G is a DTD over Σ} does not capture all the regular languages over Σ. This, however,
holds for all XML trees satisfying an EDTD over Σ by straightforwardly applying the
results in [116]:

Theorem 4.4.1. (Papakonstantinou and Vianu [116]) A set of XML trees equals sat(G)
for some EDTD G over Σ iff it is a regular tree language over Σ.

This result further justifies our choice to base the discussion of schema formalisms for
XML database transformations on EDTDs.

4.4.3 Tree Type Schemes

As seen in the previous subsection, the labels of nodes in an XML tree are insufficient
to express typing. Instead, we have to provide types in addition. In order to capture
EDTDs we will define such types by type names (in Σ′) and an association with regular
expressions that are closed under union (∪), concatenation (|) and Kleene star (*). For an
EDTD G2 = (Σ, G1, α) with G1 = (Σ′, ar, β), the set of type names associated with XML
trees in sat(G2) is Σ′. Furthermore, each type name a ∈ Σ′ is associated with a regular
expression over Σ′.

Definition 4.4.8. Let D be a set of base domains with Σ ∈ D, HFT (O) ∈ D and
HFT (O, ξ) ∈ D. Let G2 = (Σ, G1, α) be an EDTD with G1 = (Σ′, ar, β). Then a tree type
scheme over D with respect to G2 is a triple (Σ′, typn, type) consisting of

• a finite, non-empty set Σ′ of type names,

• a type name assignment typn : O → Σ′ that associates with each node o ∈ O a type
name typn(o) in Σ

′

, and
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• a type expression assignment type : Σ′ → reg(Σ′) that associates with each type
name a ∈ Σ′ a regular expression type(a) over Σ′.

We write a(τ) to denote a type name a ∈ Σ′ together with its type expression τ =
type(a). a(τ) is interpreted by the set of trees {t〈t

′

〉 | t ∈ O, ω(t) = α(a), t
′

∈ [[τ ]]}, in
which [[τ ]] denotes the interpretation of the τ by a set of hedges defined as follows:

[[∅]] = ∅ (4.16)

[[ǫ]] = {ε} (4.17)

[[a]] = {o〈ε〉 | o ∈ O | ω(o) = α(a)} (4.18)

[[τ1 | τ2]] = [[τ1]] ∪ [[τ2]] (4.19)

[[τ1τ2]] = {κ(t1, t2) | ti ∈ [τi]] for i = 1, 2} (4.20)

[[τ ∗]] = {κ(t1, κ(t2, . . . , κ(tn−1, tn) . . . )) | n ∈ N, ti ∈ [τ ]]} (4.21)

Most database queries and updates require a pair of database schemata to restrain input
and output databases, respectively. Therefore, a tree-based background should provide at
least two tree type schemes that are associated with initial and final states, respectively.

Definition 4.4.9. A tree-based background is a pair (Ktree, Γ̃tree) consisting of

• a tree background class Ktree, and

• a set Γ̃tree of tree type schemes.

4.4.4 DB-ASMs for XML Database Transformations

Let us finally link the discussion of tree-based backgrounds with the postulates for database
transformations and DB-ASMs as presented in Chapter 3. Following common practice, we
treat XML database schemata and instances separately.

Definition 4.4.10. An XML database schema is a finite, non-empty set D of EDTDs,
while an XML database instance I(D) over D is a finite, non-empty set of XML trees such
that the following two conditions must both be satisfied:

• each XML tree tγ ∈ I(D) is associated with an EDTD G ∈ D such that tγ ∈ sat(G);

• each EDTD G ∈ D has at least one XML tree tγ ∈ I(D) such that tγ ∈ sat(G).

Thus, informally speaking, an XML database is a finite, unordered collection of XML
trees, each of which should be associated with a tree name uniquely identifiable in a
state, corresponding to the name of an XML document. Thus, we assume that in a state
signature there is a finite, non-empty set of tree names, which are unary (and dynamic)
function symbols.

Definition 4.4.11. An XML database transformation is a database transformation with
a tree-based background (Ktree, Γ̃tree) such that the following conditions are satisfied:
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• the database part of the state signature contains a finite, non-empty set of unary
function symbols representing tree names,

• the database part of each initial and final state satisfies the conditions of Definition
4.4.10 with EDTDs defined by the tree type schemes in Γ̃tree.

In essence, an XML database transformation describes a process starting from some
XML trees that are constrained by an input schema, processing them in accordance with
database postulates defined in Section 3.1 and terminating with some XML trees that are
constrained by an output schema.

The following theorem is a direct consequence of Theorems 3.2.1 and 3.3.1.

Theorem 4.4.2. DB-ASMs with tree-based backgrounds (Ktree, Γ̃tree), in which initial and
final states satisfy the conditions of Definition 4.4.10 with EDTDs defined by the tree type
schemes in Γ̃tree capture exactly all XML database transformations.

Remark 4.4.1. For XML database transformations that do not impose any schema con-
straints on input and output XML database instances, Theorem 4.4.2 still holds by simply
removing the conditions of Definition 4.4.10 with EDTDs defined by the tree type schemes
in Γ̃tree for initial and final states. The reason of taking the schema information into
consideration for XML database transformations is to show how such constraints can be
captured in a tree-based background class. By working on this more restricted case, we
can indeed easily extend our results to more general cases.

4.5 XML Machines

In this section, we present an alternative computational model for XML, which is called
XML machines. The tree-based DB-ASM model from the previous section does not ex-
ploit weak MSO logic discussed in Section 4.3. The fact that it nonetheless captures all
XML database transformation is mainly attributed to the power of DB-ASM rules. Using
MSOX , however, permits more sophisticated navigation over XML trees. Thus, one of the
extensions of XML machines is the incorporation of MSOX formulae in forall and choice
rules. Besides this, we add partial update rules, which is purely for convenience as it does
not add any additional expressive power. The other rules used by XML machines are the
same as those in the tree-based DB-ASM model.

4.5.1 Extended Rules

As XML trees are unranked, a node may have an unbounded number of children nodes.
To access all of them, we have two choices. One possibility is to process the children nodes
sequentially one by one using an unbounded loop. The alternative is to execute in parallel
an unbounded number of processes, one for each child. The former approach requires only
standard total updates, whereas the latter one involves partial updates. For the sake of
simplicity and naturalness of the computation model, the latter becomes our choice.
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Using an unbounded number of parallel processes, we need an operator to merge two
hedges into one. Using hedge juxtaposition by means of the algebric operation κ is one
possibility, but we run into the problem that the order may not be the desired one. There-
fore, we consider hedges as forests by ignoring the order and using simply forest union ∪.
The non-determinism provided by choice rules can be exploited for this, i.e. choose any
order for the resulting forest to turn it back into a hedge. In doing so, ∪ is defined over
sort H (i.e. ∪ : H2 → H) and becomes part of the background.

With these preliminary remarks, we can now define MSO-rules analogous to DB-ASM
rules from Definition 3.2.1. In the following definition, the formulae ϕ always refer to
formulae with trees as discussed in Section 4.3. That is, the logic MSOX is included and
equations between terms defined by the state signature can also be used.

Definition 4.5.1. The set RMSO of MSO-rules over a signature Υ = Υdb∪Υa∪{f1, . . . , fℓ}
and a tree-based background Ktree is defined as follows:

• If t is a term over Υ and t
′

is a location in Υ such that #t
′

= #t, then

t
′

:= t

is a rule r in RMSO called assignment rule with fr(r) = var(t) ∪ var(t
′

), where
var(t) and var(t

′

) are the sets of variables occurring in the term t and the location
t
′

, respectively.

• If t is a term over Υ, t
′

is a location in Υ and ∪ is a binary operator such that
#t

′

= #t and ∪ : #t× #t→ #t
′

, then

t
′

⇇∪ t

is a rule r in RMSO called partial assignment rule with fr(r) = var(t)∪var(t
′

), where
var(t) and var(t

′

) are the sets of variables occurring in the term t and the location
t
′

, respectively.

• If ϕ is a formula and r′ ∈ RMSO is an MSO-rule, then

if ϕ then r′ endif

is a rule r in RMSO called conditional rule with fr(r) = fr(ϕ) ∪ fr(r′).

• If ϕ is a formula with only database variables, {x1, . . . , xk, X1, . . . , Xm} ⊆ fr(ϕ) and
r′ ∈ R is an MSO-rule, then

forall x1, . . . , xk, X1, . . . , Xm with ϕ do r′ enddo
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is a rule r in RMSO called forall rule with fr(r) = (fr(r′) ∪ fr(ϕ)) −
{x1, . . . , xk, X1, . . . , Xm}.

• If r1, r2 are rules in RMSO, then

par r1 . . . rn endpar

is a rule r in RMSO, called parallel rule with fr(r) =
⋃

1≤i≤n

fr(ri).

• If ϕ is a formula with only database variables, {x1, . . . , xk, X1, . . . , Xm} ⊆ fr(ϕ) and
r′ ∈ RMSO is an MSO-rule, then

choose x1, . . . , xk, X1, . . . , Xm with ϕ do r′ enddo

is an MSO-rule r in RMSO called choice rule with fr(r) = (fr(r′) ∪ fr(ϕ)) −
{x1, . . . , xk, X1, . . . , Xm}.

• If r1, r2 are rules in RMSO, then

seq r1 r2 endseq

is a rule r in RMSO, called sequence rule with fr(r) = fr(r1) ∪ fr(r2).

• If r′ is a rule in RMSO and θ is a location function that assigns location operators ρ
to terms t with var(t) ⊆ fr(r′), then

let θ(t) = ρ in r′ endlet

is a rule r in RMSO called let rule with fr(r) = fr(r′).

The definition of associated sets of update sets ∆(r, S) for a closed MSO-rule r with
respect to a state S is again straightforward. We only explain the non-standard case of
partial assignment rules.

For this, let S be a state over Υ and ζ be a variable assignment for fr(r). We then
obtain

∆(t
′

⇇
∪ t, S, ζ) = {{(ℓ, a,∪)}}

with ℓ = valS,ζ(t
′

) and a = valS,ζ(t). That is, we obtain a single update set with a single
partial assignment to the location ℓ. As this rule r can appear as part of a complex MSO-
rule without free variables, the variable assignment ζ will be determined by the context
and the partial update will become an element of larger update sets ∆. Then, for a state
S, the value of location ℓ in the successor state S + ∆ becomes
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Figure 4.4: An XML tree and results of tree operations

valS+∆(ℓ) = valS(ℓ) ∪
⋃

(ℓ,v,∪)∈∆

v ,

if the value on the right hand side is defined unambiguously, otherwise valS+∆(ℓ) will be
undefined.

Example 4.5.1. Consider the XML tree (i) in Figure 4.4 and assume it is assigned to
the variable (tree name) xexa. The following MSO-rule will construct the XML tree in (ii)
from subtrees of the given XML tree:

t1 := ǫ ;
forall x,y,z with ≺c (xexa, root(xexa), x)∧ ≺c (xexa, x, y)∧ ≺c (xexa, x, z)

∧ω(xexa, x) = b ∧ ω(xexa, y) = c ∧ ω(xexa, z) = a
do

t1 ⇇∪ fι(c, fκ(subtree(xexa, y), subtree(xexa, z))) ;
enddo ;

output := fι(r, t1)

Similarly, the XML tree (iii) in Figure 4.4 is obtained after executing the following
MSO-rule:

t1 := ǫ ;
forall x,y with ≺c (xexa, root(xexa), x)∧ ≺c (xexa, x, y)∧

ω(xexa, x) = b ∧ ω(xexa, y) = c
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do
t1 ⇇∪ fη(context(xexa, x, y), fι(b, ε)) ;

enddo ;
output := fι(r, fκ(fι(c, ε), t1))

Example 4.5.2. The following MSO-rule constructs the XML tree in Figure 4.5 from
subtrees of the given XML tree in Figure 4.4(i), each of which is rooted at a node labeled
as b with at least two descendant nodes labeled as a and c, respectively.

t1 := ǫ ;
forall x with ω(texa, x) = b ∧ ∃X.(∀x1, x2.((x1 ∈ X∧ ≺c (texa, x1, x2)

⇒ x2 ∈ X) ∧ ∀x1.(≺c (texa, x, x1) ⇒ x1 ∈ X)))
∧∃y, z.(ω(texa, y) = c ∧ ω(texa, z) = a ∧ y ∈ X ∧ z ∈ X)

do t1 ⇇∪ subtree(texa, x) enddo;
output := ι(d, t1)

Figure 4.5: Another result of tree operations

Definition 4.5.2. An XML Machine M over signature Υ as in Postulate 3.1.2 with a
tree-based background (Ktree, Γ̃tree) as in Definition 4.4.9 consists of

• a set SM of states over Υ satisfying the requirements in Postulate 3.1.2 and closed
under isomorphisms,

• non-empty subsets IM ⊆ SM of initial states, and FM ⊆ SM of final states, both also
closed under isomorphisms and satisfying the conditions of Definition 4.4.10 with
EDTDs defined by the tree type schemes in Γ̃tree,

• a program pM defined by a closed MSO-rule r over Υ, and

• a binary relation δM over SM determined by pM such that

{Si+1 | (Si, Si+1) ∈ δM} = {Si + ∆ | ∆ ∈ ∆(pM , Si)}

holds.
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4.5.2 Behavioural Equivalence

In the following we will show the behavioural equivalence between DB-ASMs with tree-
based backgrounds and the computation model for XML (i.e., XML Machines) as intro-
duced in the last subsection.

Theorem 4.5.1. The XML Machines with a tree-based background (Ktree, Γ̃tree) capture
exactly all XML database transformations with the same signature and background.

Proof. According to Theorem 4.4.2, each XML database transformation can be repre-
sented by a behaviourally equivalent DB-ASM with the same tree-based background and
signature, and vice versa. Since DB-ASMs differ from XML Machines only by the fact that
DB-ASM rules are more restrictive than MSO-rules (they do not permit MSOX formulae
in forall and choice rules), such a DB-ASM is in fact also an XML Machine.

Thus, it suffices to show that XML Machines satisfy the postulates for XML database
transformations defined in Postulates 3.1.1 (sequential time postulate), 3.1.2 (abstract
state postulate), 3.1.3 (background postulate), 3.1.4 (bounded exploration postulate) and
3.1.5 (bounded non-determinism postulate). The first three of these postulates are already
captured by the definitions of XML Machines and tree-based background, so we have to
consider only the bounded exploration and bounded non-determinism postulates.

Regarding bounded exploration we note that the assignment rules within the MSO-rule
r that defines pM are decisive for the set of update set ∆(r, S) for any state S. Hence,
if f(t1, . . . , tn) := t0 is an assignment rule occurring within r, and valS,ζ(ti) = valS′,ζ(ti)
holds for all i = 0, . . . , n and all variable assignments ζ that have to be considered, then
we obtain ∆(r, S) = ∆(r, S ′).

We use this to define a bounded exploration witness Twit. If ti is ground, we add the ac-
cess term ti to Twit. If ti is not ground, then the corresponding assignment rule must appear
within the scope of the forall and choice rules introducing the database variables in ti, as r
is closed. Thus, variables in ti are bound by a formula ϕ. That is, for fr(ti) = {x1, . . . , xk}
the relevant variable assignments are ζ = {x1 7→ b1, . . . , xk 7→ bk} with valS,ζ(ϕ) = true.
Bringing ϕ into a form that only uses conjunction, negation and existential quantification,
we can extract a set of access terms {(tβ1

, tα1
), . . . , (tβℓ

, tαℓ
)} such that if S and S ′ coincide

on these access terms, they will also coincide on the formula ϕ. This is possible, as we
evaluate access terms by sets, so conjunction corresponds to union, existential quantifica-
tion to projection, and negation to building the (finite) complement. We add all the access
terms (tβ1

, tα1
), . . . , (tβℓ

, tαℓ
) to Twit.

More precisely, if ϕ is a conjunction ϕ1 ∧ ϕ2, then ∆(r, S1) = ∆(r, S2) will hold, if
{(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} holds (with ζ =
{x1 7→ b1, . . . , xk 7→ bk}). If Ti is a set of access terms such that whenever S1 and S2 coincide
on Ti, then {(b1, . . . , bk) | valS1,ζ(ϕi) = true} = {(b1, . . . , bk) | valS2,ζ(ϕi) = true} will hold
(i = 1, 2), then T1 ∪ T2 is a set of access terms such that whenever S1 and S2 coincide
on T1 ∪ T2, then {(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} will
hold.

101



CHAPTER 4. RELATIONAL AND XML DATABASE TRANSFORMATIONS

Similarly, a set of access terms for ψ with the desired property will also be a witness for
ϕ = ¬ψ, and

⋃
bk+1∈Bdb

Tbk+1
with sets of access terms Tbk+1

for ψ[tk+1/xk+1] with valS(tk+1) =

bk+1 defines a finite set of access terms for ϕ = ∃xk+1ψ. In this way, we can restrict ourselves
to atomic formulae, which are equations and thus give rise to canonical access terms.

Then by construction, if S and S ′ coincide on Twit, we obtain ∆(r, S) = ∆(r, S ′). As
there are only a finite number of assignments rules within r and only a finite number of
choice and forall rules defining the variables in such assignments, the set Twit of access
terms must be finite, i.e. r satisfies the bounded exploration postulate.

Regarding bounded non-determinism, assuming that XML machines do not satisfy the
bounded non-determinism postulate. It means that there does not exist a non-ground
access term (tβ , tα) in Twit. According to our remark above r must contain a choice rule
choose x1, . . . , xk with ϕ do r′ enddo. Hence, it implies that there exist at least one
non-ground access term in Twit contradicting our assumption.
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Chapter 5

Database Transformation Logic

In this chapter our task is to investigate the logical characterisation of DB-ASMs, and
thereby to define a logic for DB-ASMs. Particularly, we establish a sound and complete
proof system for such a logic. Recall that, in Chapter 3, it has been shown that a database
transformation is behaviourally equivalent to a DB-ASM and vice versa. Therefore, a
rigorous proof system for the logic for DB-ASMs can offer vast advantages in reasoning
about database transformations, such as verifying the correctness of specification, deriving
static or dynamic properties, determining the equivalence of programs, comparing the
expressive power of computation models, etc.

Since states of a database transformation are meta-finite structures as stipulated by
the abstract state postulate (i.e., Postulate 3.1.2), we begin by introducing the logic of
meta-finite states in Section 5.1. In its most general form, the logic of meta-finite states is
parameterised by a logic for finite structures, and its syntax and semantics are presented
in Subsections 5.1.1 and 5.1.2, respectively. Due to the presence of ρ-terms which formalise
multiset-operations in the algorithmic part of a meta-finite state, the expressive power of
the logic for meta-finite states has been greatly enhanced.

In Section 5.2 we define a logic for DB-ASMs. The syntax and semantics are provided
in Subsections 5.2.1 and 5.2.1, which correspondingly extend the syntax and semantics of
the logic of meta-finite states. Subsequently, a detailed discussion on various properties
of the logic for DB-ASMs, such as, non-determinism, consistency, definedness, and update
sets and multisets, is presented in Subsections 5.2.3 - 5.2.7. The most challenging problem
we face is the handling of non-deterministic update sets associated with DB-ASM rules.
This is resolved by the addition of the modal operator [ ] for an update set. The approach
works well because update sets yielded by DB-ASM rules are assured to be finite.

The formalisation of a proof system for the logic for DB-ASMs is presented in Sec-
tion 5.3. In spite of the inclusion of second-order formulae in the logic for DB-ASMs, the
finiteness of domains that quantifiers are restricted to allows us to show that there exists a
transition from the logic for DB-ASMs to the first-order logic in Subsection 5.5.1. Similar
to the hierarchical ASMs which have no cycles in the dependency graph of rule declara-
tions, there is no recursion in any DB-ASM rule. Therefore, we are able to present two
alternative completeness proofs for the logic for DB-ASMs: by Henkin construction and
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by transforming into definitional extension of the first-order logic. These two approaches
are elaborated in Subsections 5.5.2 and 5.5.3, respectively.

5.1 A Logic of Meta-finite States

In [74] Grädel and Gurevich extended a logic suitable for finite structures (e.g., first-order
logic, fixed point logic, the infinitary logic, etc.) to a logic of meta-finite structures. They
aimed at investigating the logical characterisation of meta-finite structures. On top of
their work, Hella et al. [93] extended an infinitary counting logic from Libkin [106] for
the purpose of studying the logical grounds of query languages with aggregation. In this
section we adopt the logic of meta-finite structures from [74] to characterise states of a
database transformation.

5.1.1 Syntax

Let us fix a logic L of finite structures and a countable set XFO = {x1, x2, ...} of first-order
variables. For simplicity, x, y,... are used to denote tuples of variables in XFO.

Definition 5.1.1. Let Υ = Υdb ∪ Υa ∪ {f1, . . . fℓ} be a signature of meta-finite states,
{ρ1, ..., ρm} ⊆ Υa be a set of location operators, and the variables in XFO be restricted to
range only over the database part of a meta-finite state (i.e., a finite structure as defined in
Postulate 3.1.2). The terms and formulae of the logic L(Υ,L) over meta-finite states with
signature Υ which is parameterised by the logic L are inductively defined by the following
rules.

• The set T of terms is constituted by the sets Tdb and Ta of terms over the database
and algorithmic parts called database terms and algorithmic terms, respectively (i.e.,
T = Tdb ∪ Ta), such that

(1) x ∈ Tdb, where x ∈ XFO and fr(x) = {x};

(2) f(t1, ..., tn) ∈ Tdb, where f ∈ Υdb is a n-ary function symbol, {t1, ..., tn} ⊆ Tdb,
and fr(f(t1, ..., tn)) =

⋃
1≤j≤n

fr(tj);

(3) f(t1, ..., tn) ∈ Ta, where f ∈ {f1, . . . fℓ} is a n-ary function symbol, {t1, ..., tn} ⊆
Tdb and fr(f(t1, ..., tn)) =

⋃
1≤j≤n

fr(tj);

(4) f(t1, ..., tn) ∈ Ta, where f ∈ Υa − {ρ1, ..., ρm} is a n-ary function symbol,
{t1, ..., tn} ⊆ Ta, and fr(f(t1, ..., tn)) =

⋃
1≤j≤n

fr(tj);

(5) ρx(t|ϕ(x, y)) ∈ Ta, where t ∈ Ta, ρ ∈ {ρ1, ..., ρm}, ϕ(x, y) ∈ Φ is a formula
defined in the following with fr(t) ⊆ fr(ϕ(x, y)) and fr(ρx(t|ϕ(x, y))) = y.
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• The set Φ of formulae consists of

(i) atomic formulae:

– t1 = t2 for either t1, t2 ∈ Tdb or t1, t2 ∈ Ta, and fr(t1 = t2) = fr(t1)∪fr(t2);

– P1(t1, ..., tn) for n-ary predicate symbol P1 ∈ Υdb, ti ∈ Tdb (i = 1, ..., n), and
fr(P1(t1, ..., tn)) =

⋃
1≤j≤n

fr(tj);

– P2(t1, ..., tn) for n-ary predicate symbol P2 ∈ Υa, ti ∈ Ta (i = 1, ..., n), and
fr(P2(t1, ..., tn)) =

⋃
1≤j≤n

fr(tj);

(ii) the set of formulae closed under all rules of the logic L for building formulae,
with the restriction on all variables in these formulae such that variables are
only permitted to range over the database part.

For the convenience of expression, the notations ρ-term referring to a term in the form
of ρx(t|ϕ(x, y)) and pure term referring to a term defined by only applying Rules (1)-(4)
(i.e., terms that do not contain any formulae and ρ-terms) are used. As defined in Rule
(5), ρ-terms are constructed on top of formulae, and can also be part of other formulae.
This may lead to an iterative creation between formulae and terms. In order to formally
express the nesting depth of ρ-terms, we associate a rank, called ρ-rank, with each term in
L(Υ,L) to describe the nesting depth of ρ-terms such that

• pure terms have ρ-rank 0;

• ρ-terms ρx(t|ϕ(x, y)) have ρ-rank n+1 if the maximal ρ-rank of t and terms in ϕ(x, y)
is n;

• terms built upon ρ-terms have ρ-rank n if the maximal ρ-rank of these ρ-terms is n.

5.1.2 Semantics

Assume that the notation [x 7→ ā] is used as a shorthand for [x1 7→ a1, . . . , xn 7→ an], where
x = (x1, . . . , xn) is a tuple of variables and ā = (a1, . . . , an) is a tuple of constants.

Definition 5.1.2. Let S be a meta-finite state of signature Υ with the base set B =
Bdb ∪Ba, and ζ be a variable assignment. The semantics for the terms and formulae of the
logic L(Υ,L) is inductively defined by

terms :

• valS,ζ[x 7→a](x) = a for a ∈ Bdb

• valS,ζ(f(t1, . . . , tn)) = f(valS,ζ(t1), . . . , valS,ζ(tn)) for j = 1, . . . , n;

– if f ∈ Υdb, then valS,ζ(ti) and f(valS,ζ(t1), . . . , valS,ζ(tn)) ∈ Bdb for i =
1, . . . , n;
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– if f ∈ Υa, then valS,ζ(ti) and f(valS,ζ(t1), . . . , valS,ζ(tn)) ∈ Ba for i =
1, . . . , n;

– if f ∈ {f1, . . . , fℓ}, then valS,ζ(ti) ∈ Bdb for i = 1, . . . , n and
f(valS,ζ(t1), . . . , valS,ζ(tn)) ∈ Ba

• valS,ζ[y 7→b̄](ρx(t|ϕ(x, y))) =




ρ({{valS,ζ[y 7→b̄,x 7→ā](t)| for all ā such that [[ϕ(x, y)]]S,ζ[y 7→b̄,x7→ā] = true}})

if there exists at least one ā such that [[ϕ(x, y)]]S,ζ[y 7→b̄,x 7→ā] = true;

⊥ otherwise.

formulae :

• [[t1 = t2]]S,ζ =

{
true if valS,ζ(t1) = valS,ζ(t2)

false otherwise

• [[Pi(t1, ..., tn)]]S,ζ =

{
true if (valS,ζ(t1), ..., valS,ζ(tn)) ∈ Pi

false otherwise
for i = 1, 2

Due to the restriction that all variables in L(Υ,L) can only range over Bdb, the finiteness
condition on the database part of a meta-finite state defined in the abstract state postulate
(i.e., Postulate 3.1.2) then implies that every multiset {{valS,ζ[y 7→b̄,x7→ā](t)| for all ā such that
[[ϕ(x, y)]]S,ζ[y 7→b̄,x7→ā] = true}} has a finite number of elements. Nevertheless, as ρ-terms are
built upon formulae by recursively applying Rules (1)-(5) and (i)-(ii) in Definition 5.1.1,
the logic L(Υ,L) is indeed very powerful. The following example illustrates the expressive
power of L(Υ,L) in aggregate computing of database applications.

Example 5.1.1. Let us consider a meta-finite state as described in Example 3.1.1. Recall
that there exists a relation schema Authorship = {PubID,UnitID,PersonID,Order} in
the database part. We also assume that the location operators max and sum are contained
in the algorithmic part. Then, the following two aggregate queries are able to be expressed
in L(Υ,L).

Q1: Calculate the total number of publications in the database.

sumx1
(1|∃x2, x3, x4.Authorship(x1, x2, x3, x4))

Alternatively, Q1 can be expressed by the following SQL statement:

SELECT sum(cnum) FROM

(SELECT count(distinct PubID) AS cnum, PubID FROM

Authorship

GROUP BY PubID)
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Q2: Find the author who has published the maximal number of publications in the
database.

maxx3
(sumx1

(1|∃x2, x4.Authorship(x1, x2, x3, x4))

|∃y1, y2, y4.Authorship(y1, y2, x3, y4))

In a similar way, Q2 can be expressed by the following SQL statement:

SELECT max(snum) FROM

(SELECT snum, a.PersonID FROM

Authorship a,

(SELECT sum(cnum) AS snum, PersonID FROM

(SELECT count(distinct PubID) AS cnum, PersonID, PubID FROM

Authorship

GROUP BY PubID, PersonID)

GROUP BY PersonID) b

WHERE a.PersonID=b.PersonID

GROUP BY a.PersonID)

Grädel and Gurevich [74] provided some examples showing that several computations
in an arithmetical structure such as counting equivalence classes, binary representations of
natural numbers, etc. are also definable in a logic of meta-finite states.

5.2 A Logic for DB-ASMs

We provide a logical characterisation for DB-ASMs in this section. The logic for DB-ASMs
(denoted as LL

M ) is a logic built upon the logic L(Υ,L) of meta-finite states, in which DB-
ASMs and meta-finite states have the same signature Υ. Our approach to develop the logic
LL

M is in the same spirit of the logic for ASMs as defined in [47], except for the following
distinctions.

• First of all, DB-ASMs are able to collect updates yielded in parallel computations
under the multiset semantics, i.e., update multisets, and then aggregate updates in
an update multiset to an update set by using location operators. These distinguished
features of DB-ASMs are captured by the logic for DB-ASMs via the use of ρ-terms.
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• Secondly, due to the importance of non-determinism for enhancing the expressive
power of database transformations, DB-ASMs take into account choice rules. Thus,
as a logic for DB-ASMs, LL

M has to handle all the issues around non-determinism
that have been identified as the source of problems in the completeness proof of the
logic for ASMs [47].

• The last difference is more of syntactical nature. To obtain more concise and nat-
ural expressions in the logic LL

M , we make update sets and multisets explicit in the
formalisation of LL

M ; furthermore, second-order variables are used by being bounded
to update sets or multisets. Nevertheless, restricted by the finiteness condition on
updates in an update set or multiset, when the logic L(Υ,L) of meta-finite states is
parameterised by the first-order logic, i.e., L=FO, LFO

M is not more expressive than
the first-order logic.

5.2.1 Syntax

Extending the syntax of the logic L(Υ,L) of meta-finite states we introduced in the previous
section, the syntax of the logic LL

M for DB-ASMs can be formalised as follows.

Definition 5.2.1. Let M be a DB-ASM over signature Υ. The set TM of terms in the
logic LL

M for DB-ASMs is defined in the same way as the set of terms in L(Υ,L) as defined
in Definition 5.5.1, and the set ΦM of formulae in the logic LL

M for DB-ASMs comprises all
formulae in L(Υ,L) as defined in Definition 5.5.1, and also the following extended formulae:

ϕ :≡ ∃X.ϕ |∀X.ϕ |
upd(r,∆)|upm(r, ∆̈)|
∆(f, t, t0)| ∆̈(f, t, t0, t

′

)|
def(r)| [∆]ϕ

The formulae ∃X.ϕ and ∀X.ϕ in LL

M are second-order formulae in which X is a second-
order variable bound to an update set ∆ or an update multiset ∆̈. The predicates upd(r,∆)
and upm(r, ∆̈) describe an update set ∆ and an update multiset ∆̈ generated by a rule
r of M , respectively. As discussed in Chapter 3, when applying forall and parallel rules
of a DB-ASM, updates produced in parallel computations may be identical and thus need
the multiset semantics. For this reason, both predicates upd(r,∆) and upm(r, ∆̈) are
included in LL

M . As for the predicates ∆(f, t, t0) and ∆̈(f, t, t0, t
′

), ∆(f, t, t0) describes
that an update (f(t), t0) exists in an update set ∆, while ∆̈(f, t, t0, t

′

) describes that an
update (f(t), t0) is the t

′

th occurrence in an update multiset ∆̈. The predicate def(r) is
used to formulate the definedness property of a rule r of M the same as used in [47].
Instead of introducing modal operators [ ] and 〈 〉 for a rule r, i.e., the formulae [r]ϕ and
〈r〉ϕ expressing the evaluation of ϕ over a state after executing the rule r on the current
state, we use [∆]ϕ to express the evaluation of ϕ over all states after executing the update
set ∆ on the current state. The connections between [r]ϕ, 〈r〉ϕ and [∆]ϕ will be further
explained in the next subsection.
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A formula is pure if it does not contain any extended formulae, i.e., ∃X.ϕ, ∀X.ϕ,
upd(r,∆), upm(r, ∆̈), ∆(f, t, t0), ∆̈(f, t, t0, t

′

), def(r) and [∆]ϕ. A formula or a term is
static if it does not contain any dynamic function symbols. The formulae occurring in
conditional, forall and choice rules of a DB-ASM M must be pure formulae in LL

M .

5.2.2 Semantics

We define the semantics for the extended formulae in the logic LL

M for DB-ASMs.

Definition 5.2.2. Let S be a meta-finite state of signature Υ, Fdyn be the set of all dynamic
function symbols in signature Υ and ζ be a variable assignment. Then the semantics for
the extended formulae of LL

M is defined by

• [[∃X.ϕ]]S,ζ =






true if [[ϕ]]S,ζ[X 7→P ] = true for some finite P ⊆ Fdyn ×Bn × B

or P ⊆ Fdyn ×Bn ×B × N (n is determined by X),

false otherwise

• [[∀X.ϕ]]S,ζ =





true if [[ϕ]]S,ζ[X 7→P ] = true for all finite P ⊆ Fdyn ×Bn ×B

or P ⊆ Fdyn ×Bn ×B × N (n is determined by X),

false otherwise

• [[upd(r,∆)]]S,ζ =

{
true if valS,ζ(∆) ∈ ∆(r, S, ζ),

false otherwise

• [[upm(r, ∆̈)]]S,ζ =

{
true if valS,ζ(∆̈) ∈ ∆̈(r, S, ζ),

false otherwise

• [[∆(f, t, t0)]]S,ζ =

{
true if (f, valS,ζ(t), valS,ζ(t0)) ∈ valS,ζ(∆),

false otherwise

• [[∆̈(f, t, t0, t
′

)]]S,ζ =





true if (f, valS,ζ(t), valS,ζ(t0), n) ∈ valS,ζ(∆̈) for some n ∈ N

and valS,ζ(t
′

) < n,

false otherwise

• [[def(r)]]S,ζ =

{
true if ∆(r, S, ζ) 6= ∅,

false otherwise

• [[[∆]ϕ]]S,ζ =





true if [[ϕ]]S+∆,ζ = true for each state after applying ∆ ∈ ∆(r, S, ζ)

over state S

false otherwise
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In LL

M we also use the expressions ψ1 ∨ψ2, ψ1 ⇒ ψ2, ψ1 ⇔ ψ2 and ∀x.ϕ as shortcuts in
the standard way. For the modal expressions [r]ϕ and 〈r〉ϕ with the following semantics:

• [[[r]ϕ]]S,ζ =

{
true if [[ϕ]]S+∆,ζ = true for all consistent ∆ ∈ ∆(r, S, ζ),

false otherwise

• [[〈r〉ϕ]]S,ζ =

{
false if [[ϕ]]S+∆,ζ = false for all consistent ∆ ∈ ∆(r, S, ζ),

true otherwise

they can be treated as the shortcuts in LL

M with the following logical equivalences:

[r]ϕ ≡ ∀∆.(upd(r,∆) ⇒ [∆]ϕ),

〈r〉ϕ ≡ ∃∆.(upd(r,∆) ∧ [∆]ϕ).

If ∆ is inconsistent, then the formula [∆]ϕ is interpreted as true in accordance with
its semantics in Definition 5.2.2. The reason for this is that there is no successor states to
the current state after applying an inconsistent update set over it. Therefore, the formula
[∆]ϕ in LL

M can be treated in a very similar way to the formula [r]ϕ in the logic for ASMs
[134].

Remark 5.2.1. In LL

M less-than-or-equal (denoted as ≤) and membership (denoted as ∈)
are used as predicates under a fixed interpretation defined in the standard way. Although
the second-order formulae ∃X.ϕ and ∀X.ϕ are included in LL

M , a second-order variable X
is always bound to an update set ∆ or an update multiset ∆̈ that must be finite.

More precisely, the finiteness of ∆ (denoted as fin(∆)) can be formulated as

• fin(∆) ⇔
∧

f∈Fdyn

∃x1, ..., xn, y1, ..., yn.(∆(f, x1, y1) ∧ ... ∧ ∆(f, xn, yn)∧

∀x, y.(∆(f, x, y) ⇒
∨

1≤i≤n

(x = xi ∧ y = yi))),

and similarly, the finiteness of ∆̈ (denoted as fin(∆̈)) can be formulated as

• fin(∆̈) ⇔
∧

f∈Fdyn

∃x1, ..., xn, y1, ..., yn, z1, ..., zn.(∆̈(f, x1, y1, z1) ∧ ... ∧ ∆̈(f, xn, yn, zn)∧

∀x, y, z.(∆̈(f, x, y, z) ⇒
∨

1≤i≤n

(x = xi ∧ y = yi ∧ z = zi))).

Thus, the formulae ∃X.ϕ and ∀X.ϕ can be expressed by the predicates ∆(f, x, y) and
∆̈(f, x, y, z). The predicates ∆(f, x, y) and ∆̈(f, x, y, z) can be replaced by using member-
ship ∈, less-than-or-equal ≤, fin(∆), fin(∆̈) and other first-order logic formulae, in which
fin(∆) and fin(∆̈) can again be replaced by using membership ∈ and less-than-or-equal ≤
predicates. It means that, due to the finiteness of update sets and multisets, we actually
still stay with the interpretation of the first-order logic in spite of the use of second-order
formulae in the syntax of LL

M .
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5.2.3 Non-determinism

Non-deterministic transitions manifest themselves as a challenging task in the logical for-
malisation for ASMs. In [47] Stärk and Nanchen analysed various possible problems en-
countered in the approaches they tried by taking non-determinism into consideration, and
they stated:

“Unfortunately, the formalisation of consistency cannot be applied directly to
non-deterministic ASMs. The formula Con(R) (as defined in Sect. 8.1.2) ex-
presses the property that the union of all possible update sets of R in a given
state is consistent. This is clearly not what is meant by consistency. Therefore,
in a logic for ASMs with choose one had to add Con(R) as an atomic formula
to the logic.”

This statement is not universally true. For update sets (or multisets) that contain only
finite updates, they can be made explicit in the formulae of a logic which captures non-
deterministic transitions. Then, the formalisation of consistency as defined in Sect. 8.1.2
of [47] can still be applied to such an explicitly specified update set ∆ yielded by a rule r
in the form of the formula con(r,∆), which will be defined in Subsection 5.2.4.

More precisely, our approach to the problem of non-determinism is based on the fol-
lowing observations:

• As a DB-ASM rule r may associate with a set ∆(r, S, ζ) of different update sets and
applying different update sets in ∆(r, S, ζ) leads to a set of different successor states
to the current state, we add the formula [∆]ϕ into the logic to express the property
that the formula ϕ is interpreted in the states after applying the update set ∆ over
the current state;

• The inclusion of the formulae [∆]ϕ, X.ϕ, ∀X.ϕ, upd(r,∆) and upm(r, ∆̈) in LL

M

empowers us to express the interpretation of a formula ϕ over all successor states or
over some successor state after applying a DB-ASM rule r.

• The formalisation of consistency can be captured by the formula con(r,∆) which is
specific to an update set ∆ yielded by a DB-ASM rule r, and is able to be extended
to two versions (i.e., weak version wcon(r) and strong version scon(r)) that describe
the consistency of a rule r defined in two different senses. We will discuss the details
in the next subsection.

• The underlying assumption of this approach is the finiteness of update sets and
multisets, which can be assured by the definition of DB-ASMs (see Definition 3.2.2
in Chapter 3).
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5.2.4 Consistency

In [47] Stärk and Nanchen used a predicate Con(r) as an abbreviation for the statement
that a rule r is defined and consistent. As a rule r in their work was considered to be
deterministic, there was no ambiguity with the reference to the update set associated with
r, i.e., a defined rule r is consistent iff the update set generated by r is consistent. However,
in the case of the logic for DB-ASMs, the presence of non-determinism makes the situation
a bit different.

Let r be a DB-ASM rule and ∆ be an update set. Then con(r,∆) is an abbreviation
of the following formula, representing that the update set ∆ generated by the rule r is
consistent.

con(r,∆) ≡ upd(r,∆) ∧
∧

f∈Fdyn

∀x, y, y
′

.(∆(f, x, y) ∧ ∆(f, x, y
′

) ⇒ y = y
′

)

From the above expression, it is clear that there is no any connection between the
formulae con(r,∆) and def(r). That is, if con(r,∆) is interpreted as true, it only means
that ∆ is an update set that can be (but not necessarily) yielded by the rule r. Since the
rule r may be non-deterministic, it is possible that rule r may yield an update set ∆ in
one case and may not terminate in another case.

In the formalisation of the logic for DB-ASMs, sometimes it is more convenient to use
the formula con(∆), which is the abbreviation defined by

con(∆) ≡
∧

f∈Fdyn

∀x, y, y
′

.(∆(f, x, y) ∧ ∆(f, x, y
′

) ⇒ y = y
′

)

In terms of the consistency of DB-ASM rules, there are two versions to be developed.

(1) A rule r is said to be weakly consistent (denoted as wcon(r)) iff r is defined and at
least one update set generated by r is consistent such that

• wcon(r) ≡ def(r) ∧ ∃∆.con(r,∆).

(2) A rule r is said to be strongly consistent (denoted as scon(r)) iff r is defined and every
update set generated by r is consistent such that

• scon(r) ≡ def(r) ∧ ∀∆.(upd(r,∆) ⇒con(r,∆)).

In the case that a rule r is deterministic, the weak notion of consistency coincides with
the strong notion of consistency, i.e., wcon(r) ⇔ scon(r). Clearly, if a rule r is not defined,
then it is neither weakly nor strongly consistent.
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5.2.5 Definedness

Recall that, a DB-ASM rule r is said to be defined in a state S under a variable assignment
ζ (i.e., [[def(r)]]S,ζ = true) if the rule r can generate at least one update set which may or
may not be consistent.

The properties of predicate def(r) are presented in Figure 5.1. Since the rules of DB-
ASMs exclude call rules of ASMs, there is no iteration involved in each computation.
Nevertheless, we have to take care of the additional effect on the definedness of a rule
caused by the possible non-determinism. This has been embodied in the definedness of the
choice and sequence rules in Axioms D5 and D6, respectively.

• For Axiom D5, it might be appealing to be formalised as follows:

def(choose z with ϕ do r enddo) ⇔ ∃z.(ϕ∧ def(r))

By this formalisation, a choice rule would not be defined if there does not exist any
value a for z such that the interpretation of ϕ[a/z] is true. Clearly, this violates the
definition of definedness for a rule since in this case a choice rule still yields an empty
update set. Therefore, Axiom D5 in Figure 5.1 takes care of this case by adding a
disjunctive condition ∀z.(¬ϕ) to the above formalisation.

• For Axiom D6, it should not be formulated as

def(seq r1 r2 endseq) ⇔ ∃∆.def(r1)∧upd(r1,∆) ∧ [∆]def(r2).

Suppose that the rule r1 yields two update sets ∆1 and ∆2, ∆1 is inconsistent and
∆2 is consistent. Furthermore, the rule r2 is not defined in the successor state that
is obtained by applying ∆2 over the current state. In this case, by the above formal-
isation, the sequence rule seq r1 r2 endseq would be interpreted as being defined
because ∆1 is inconsistent and [∆1]def(r2) is thus interpreted as being true. For this
reason, the formulation we propose for Axiom D6 becomes def(seq r1 r2 endseq)
⇔ def(r1) ∧ (wcon(r1) ⇒ 〈r1〉def(r2)). It says that either all update sets yielded by
rule r1 are inconsistent, or the rule r2 is defined in at least one of the successor states
after applying consistent update sets yielded by rule r1 over the current state.

5.2.6 Update Sets

Before presenting the axioms for update sets and multisets generated by DB-ASM rules,
we introduce two abbreviations inv(∆, f, x) and inv(∆̈, f, x) asserting that the update set
∆ and multiset ∆̈ do not have any update to the location of the function symbol f at the
argument x, respectively, such that
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D1. def(f(t) := t0)

D2. def(if ϕ then r endif) ⇔ ¬ϕ ∨ (ϕ∧ def(r))

D3. def(forall z with ϕ do r enddo) ⇔ ∀z.(ϕ⇒ def(r))

D4. def(par r1...rn endpar) ⇔ def(r1) ∧ · · · ∧def(rn)

D5. def(choose z with ϕ do r enddo) ⇔ ∃z.(ϕ∧ def(r)) ∨ ∀z.(¬ϕ)

D6. def(seq r1 r2 endseq) ⇔ def(r1) ∧ (wcon(r1) ⇒ 〈r1〉def(r2))

D7. def(let θ(t) = ρ in r endlet) ⇔ def(r)

Figure 5.1: Axioms for predicate def(r)

• inv(∆, f, x) ≡ ∀y.¬∆(f, x, y).

• inv(∆̈, f, x) ≡ ∀y, z.¬∆̈(f, x, y, z).

In association with a DB-ASM rule r, the properties of the predicate upd(r,∆) are
presented by Axioms U1-U7 in Figure 5.2.

Axiom U1 says that the update set yielded by an assignment rule f(t) := t0 contains
exactly one update (f, t, t0). Axiom U2 asserts that, if the formula ϕ is true in a conditional
rule if ϕ then r endif, then the update set yielded by the conditional rule is also an update
set yielded by rule r. Otherwise, the conditional rule yields only an empty update set ∆.

Axiom U3 states that the update set yielded by a forall rule forall z with ϕ do r
enddo is the union of a set of update sets where rule r under each distinct value a for
z such that the interpretation of ϕ[a/z] is true yields exactly one update set. Similarly,
Axiom U4 states that the update set yielded by a parallel rule par r1 . . . rn endpar is the
union of a set of update sets yielded by rules r1, ..., rn where each rule ri (i ∈ [1, n]) yields
exactly one update set. As a DB-ASM rule may be non-deterministic, a straightforward
extension from the formalisation of the forall and parallel rules used in the logic for ASMs
[134] would not work for Axioms U3 and U4. For example, the following formalisation
for a forall rule indeed asserts that the update set yielded by a forall rule is the union
of all possible update sets yielded by the rule r under all values a for z such that the
interpretation of ϕ[a/z] is true.

upd(forall z with ϕ do r enddo,∆) ⇔ def(forall z with ϕ do r enddo)
∧

∧
f∈Fdyn

∀x, y.(∆(f, x, y) ⇔ ∃z.(ϕ ∧ ∃∆
′

.(upd(r,∆
′

) ∧ ∆
′

(f, x, y))))
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U1. upd(f(t) := t0,∆) ⇔ ∆(f, t, t0) ∧ ∀x, y.(x 6= t ∨ y 6= t0 ⇒ ¬∆(f, x, y))∧∧
f 6=f

′∧f∈Fdyn∧f
′∈Fdyn,

∀x, y.¬∆(f
′

, x, y)

U2. upd(if ϕ then r endif,∆) ⇔ (ϕ∧upd(r,∆)) ∨ (¬ϕ ∧
∧

f∈Fdyn

∀x, y.¬∆(f, x, y))

U3. upd(forall z with ϕ do r enddo,∆) ⇔ def(forall z with ϕ do r enddo)∧
∆ =

⋃
z(∆

′

|ϕ∧upd(r,∆
′

))

U4. upd(par r1 . . . rn endpar,∆) ⇔ def(par r1 . . . rn endpar)∧
n∧

i=1

∃∆i.upd(ri,∆i)∧

∧
f∈Fdyn

∀x, y.(∆(f, x, y) ⇔
n∨

i=1

∆i(f, x, y))

U5. upd(choose z with ϕ do r enddo,∆) ⇔ def(choose z with ϕ do r enddo) ∧
∃z.(ϕ∧ upd(r,∆))∨(∀z.¬ϕ ∧

∧
f∈Fdyn

∀x, y.¬∆(f, x, y))

U6. upd(seq r1 r2 endseq,∆) ⇔ ∃∆1,∆2.upd(r1,∆1) ∧ [∆1]upd(r2,∆2)∧∧
f∈Fdyn

∀x, y.(∆(f, x, y) ⇔ (∆1(f, x, y) ∧ ([∆1]def(r2)∧inv(∆2, f, x)))

∨(con(∆1) ∧ [∆1]∆2(f, x, y)))

U7. upd(let θ(t) = ρ in r endlet,∆) ⇔ ∃∆̈.upm(r, ∆̈)∧∧
f∈Fdyn

∀x, y.(∆(f, x, y) ⇔ (f(x) 6= t ∧ ∃z.∆̈(f, x, y, z))

∨(f(x) = t ∧ y = ρy
′ (y

′

|∃z.∆̈(f, x, y
′

, z))))

Figure 5.2: Axioms for predicate upd(r,∆)
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Example 5.2.1. Let us consider a forall rule forall z with ϕ do r enddo which has two
distinct values a1 and a2 for z such that both ϕ[a1/z] and ϕ[a2/z] are interpreted to be
true. Assume that we have

• r[a1/z] is associated with two possible update sets {∆11,∆12}, and

• r[a2/z] is associated with two possible update sets {∆21,∆22}.

By the above incorrect axiom, it states that exactly one update set {∆11∪∆12∪∆21∪∆22}
is associated with the forall rule. Clearly, it is not right.

Instead, an update set for the forall rule should be the union of one update set from
{∆11,∆12} and another update set from {∆21,∆22}. In this case, the forall rule should be
associated with the following set of update sets:

{{∆11 ∪ ∆21}, {∆11 ∪ ∆22}, {∆12 ∪ ∆21}, {∆12 ∪ ∆22}}.

Axiom U5 asserts that an update set yielded by a choice rule choose z with ϕ do r
enddo is either an update set yielded by the rule r under a value a for the variable z such
that ϕ[a/z] is interpreted as true, or empty if the formula ϕ cannot be interpreted to be
true by any values for z.

Axiom U6 asserts that an update set yielded by a sequence rule seq r1 r2 endseq has
updates which are either in the update set ∆1 yielded by rule r1 in a state S and not in
the update set ∆2 yielded by the defined rule r2 executing over the successor state S+∆1,
or in ∆2 if ∆1 is consistent. The following formalisation for Axiom U6 would be incorrect.

upd(seq r1 r2 endseq,∆) ⇔ ∃∆1.upd(r1,∆1) ∧
∧

f∈Fdyn

∀x, y.(∆(f, x, y) ⇔

(∆1(f, x, y) ∧ ∀∆2.([∆1]upd(r2,∆2) ⇒inv(∆2, f, x)))

∨(con(∆1) ∧ ∃∆2([∆1]upd(r2,∆2) ∧ ∆2(f, x, y))))

The following example illustrates the problem of such a formalisation.

Example 5.2.2. Let S be a state, and r1 and r2 be two DB-ASM rules. Assume that the
rule r1 is executed over the state S, yielding only one update set ∆1 = {(f, t3, t3)} (i.e., r1
is deterministic). Thus, in the successor state S1 = S+ ∆1 of S, the location f(t3) has the
value t3. Now we continue to assume that the rule r2 executing over state S1 is associated
with a set {∆1

2,∆
2
2,∆

3
2} of update sets such that

• ∆1
2 = {(f, t1, t1)},

• ∆2
2 = {(f, t2, t2)},

• ∆3
2 = {(f, t3, t3)}.
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Therefore, it is obvious to see that the rule seq r1 r2 endseq executing over the state S
should be associated with a set {∆1,∆2,∆3} of update sets such that

• ∆1 = {(f, t1, t1), (f, t3, t3)},

• ∆2 = {(f, t2, t2), (f, t3, t3)},

• ∆3 = {(f, t3, t3)}.

However, the above formalisation asserts that the following update sets
{(f, t1, t1), (f, t2, t2), (f, t3, t3)} and {(f, t1, t1), (f, t2, t2)} could also be two associated up-
date sets of the rule seq r1 r2 endseq executing over the state S.

Axiom U7 asserts that an update multiset may be collapsed into an update set by
aggregating the update values of locations if these locations have been assigned a location
operator by a let rule, or ignoring the multiplicity of updates if their locations have no
assigned location operators.

5.2.7 Update Multisets

As formalised in Definition 3.2.1, a DB-ASM rule is also associated with a set of update
multisets. Axioms UM1-UM7 in Figure 5.3 assert how an update multiset is yielded by a
DB-ASM rule. Basically, the axioms for predicate upm(r, ∆̈) are defined in a similar way
to the axioms for predicate upd(r,∆), except for Axioms UM6 and UM7. So we explain
these two axioms in particular.

Axiom UM6 asserts that, for each update multiset ∆̈ yielded by a sequence rule seq
r1 r2 endseq, there exists an update multiset ∆̈1 yielded by the rule r1 over the current
state S and an update multiset ∆̈2 yielded by the rule r2 over the successor state S + ∆1,
where the update set ∆1 is obtained by ignoring the multiplicity of all updates in ∆̈1.
Furthermore, updates to each location f(x) in ∆̈ are either from ∆̈1 when there are no
updates to f(x) in update multiset ∆̈2, or from ∆̈2 when ∆1 is consistent.

Axiom UM7 asserts that an update multiset ∆̈ yielded by a let rule let θ(t) = ρ in r
endlet contains updates that are either aggregated from update values to the location t
in the update multiset ∆̈

′

yielded by rule r or exactly the same as updates in ∆̈
′

if their
locations have no assigned location operators. In contrast to Axiom U7, when a location
operator is not assigned to a location by the let rule, the multiplicity of updates will remain
in ∆̈.

Note that, as formalised in Definition 5.2.2, an update (f(t), t0) with the multiplic-
ity n in an update multiset ∆̈ implies that the formulae ∆̈(f, t, t0, 0), ..., ∆̈(f, t, t0, n − 1)
representing the occurred elements are evaluated to be true. To obtain the aggregated
value t

′

of an update (f(t), t
′

) in an update set, which comes from multiple updates
(f(t), t

′

1), ..., (f(t), t
′

n) in an update multiset ∆̈, we need a ρ-term ρy(y|∃z.∆̈(f, x, y, z))
such that valS,ζ[x7→t̄](ρy(y|∃z.∆̈(f, x, y, z))) = ρ({{t

′

1, ..., t
′

n}})= t
′

. Therefore, ρ-terms play a
vital role in formalising operations over a multiset.
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UM1. upm(f(t) := t0, ∆̈) ⇔ ∆̈(f, t, t0, 0) ∧ ∀x, y, z.(∆̈(f, x, y, z) ⇒ x = t ∧ y = t0∧
z = 0) ∧

∧
f 6=f

′∧f∈Fdyn∧f
′∈Fdyn

∀x, y, z.¬∆̈(f
′

, x, y, z)

UM2. upm(if ϕ then r endif,∆̈) ⇔ (ϕ∧upm(r, ∆̈))∨

(¬ϕ ∧
∧

f∈Fdyn

∀x, y, z.¬∆̈(f, x, y, z))

UM3. upm(forall z with ϕ do r enddo,∆̈) ⇔ def(forall z with ϕ do r enddo)∧
∆̈ =

⊎
z(∆̈

′

|ϕ∧upm(r, ∆̈
′

))

UM4. upm(par r1 . . . rn endpar,∆̈) ⇔ def(par r1 . . . rn endpar)∧
n∧

i=1

∃∆̈i.upm(ri, ∆̈i)∧

∧
f∈Fdyn

∀x, y, w
′

.(∆̈(f, x, y, w
′

) ⇔ w
′

<
∑

wi
max

(wi
max + 1|

n∨
i=1

∆̈i(f, x, y, w
i
max)

∧∀w.(∆̈i(f, x, y, w) ⇒ w ≤ wi
max)))

UM5. upm(choose z with ϕ do r enddo,∆̈) ⇔ ∃z.(ϕ∧ upm(r, ∆̈))

∨(∀z.¬ϕ ∧
∧

f∈Fdyn

∀x, y, z.¬∆̈(f, x, y, z))

UM6. upm(seq r1 r2 endseq, ∆̈) ⇔ ∃∆̈1, ∆̈2,∆1.upm(r1, ∆̈1) ∧ ∆1 = AsSet(∆̈1)∧

[∆1]upm(r2, ∆̈2) ∧
∧

f∈Fdyn

∀x, y, w.(∆̈(f, x, y, w) ⇔ (∆̈1(f, x, y, w)∧

([∆1]def(r2)∧inv(∆̈2, f, x))) ∨ (con(∆1) ∧ [∆1]∆̈2(f, x, y, w)))

UM7. upm(let θ(t) = ρ in r endlet,∆̈) ⇔ ∃∆̈
′

.upm(r, ∆̈
′

)∧∧
f∈Fdyn

∀x, y, z.(∆̈(f, x, y, z) ⇔ (f(x) 6= t ∧ ∆̈
′

(f, x, y, z))

∨(f(x) = t ∧ y = ρy
′ (y

′

|∃z.∆̈
′

(f, x, y
′

, z))))

Figure 5.3: Axioms for predicate upm(r,∆̈)
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Remark 5.2.2. The inclusion of the parameters ∆ and ∆̈ in the predicates upd(r,∆) and
upm(r, ∆̈) is important because a DB-ASM rule r may associate with multiple update sets
or multisets and we need a way to specify which update set or multiset yielded by rule r is
of our interest. Furthermore, the use of predicates upd(r,∆) and upm(r, ∆̈) provides the
capability to specify the interrelationship among update sets or multisets associated with
possibly different rules, e.g., Axioms U6, UM6 and UM7.

5.3 A Proof System

With the use of modal operator [ ] for an update set ∆ (i.e., [∆]), the logic for DB-ASMs
becomes a multi-modal logic. In doing so, we may use it to reason about properties of a
database transformation over different states of a run. Semantically, formulae of LL

M are
interpreted in states that are represented as a Kripke frame.

Definition 5.3.1. A Kripke frame is a pair (UK, RK) consisting of

• a universe UK that is a non-empty set of states, and

• a binary accessibility relation RK on UK such that (S, S
′

) ∈ RK for S, S
′

∈ UK.

Straightforwardly, a database transformation T can be regarded as a Kripke frame
(UK, RK) where a non-empty set ST of states is in UK and a one-step transition relation δT
corresponds to RK.

Before presenting the axioms and inference rules of a proof system for LL

M , we first
define the notions of implication and derivability.

Definition 5.3.2. Let M be a DB-ASM. Then a formula ϕ is said to be implied by a set
Ψ of formulae with respect to M (denoted as Ψ |=M ϕ) if for all states S and variable
assignments ζ of M , the following condition is satisfied.

• If [[ψ]]S,ζ = true for every ψ ∈ Ψ, then [[ϕ]]S,ζ = true.

A formula ϕ is called valid inM if [[ϕ]]S,ζ = true for all states S and variable assignments
ζ of M .

Definition 5.3.3. Let M be a DB-ASM. Then a formula ϕ is said to be derived from
a set Ψ of formulae with respect to M (denoted as Ψ ⊢M ϕ) if ϕ is derivable from Ψ
by successively applying the axioms and inference rules of the proof system defined in
Subsection 5.3.1.

We also need to define equivalence between two DB-ASM rules.

Definition 5.3.4. Let r1 and r2 be two DB-ASM rules. Then r1 and r2 are equivalent
(denoted as r1 ≃ r2) if, for all states and variable assignments, the following condition is
satisfied:
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∀∆.(upd(r1,∆) ⇔ upd(r2,∆)).

By the above definition, the fact that two rules r1 and r2 are either both defined or
both undefined can be derived. That is,

r1 ≃ r2 ⇒ (def(r1) ⇔ def(r2)).

As a straightforward consequence of Definition 5.3.4, the interpretation on weak and
strong consistencies of two equivalent rules r1 and r2 coincides. That is,

• wcon(r1)=wcon(r2), and

• scon(r1)=scon(r2).

5.3.1 Axioms and Inference Rules

We present a set of axioms and inference rules that constitute a proof system of the logic
for DB-ASMs.

• The following axioms assert the properties of def(r).

D1.-D7. in Figure 5.1

• The following axioms assert the properties of upd(r,∆).

U1.-U7. in Figure 5.2

• The following axioms assert the properties of upm(r, ∆̈).

UM1.-UM7. in Figure 5.3

• Axiom M1 and Rules M2-M3 are from the axiom system K of modal logic, which is
the weakest normal modal logic system [95]. More specifically, Axiom M1 is called
Distribution Axiom of K and Rule M2 is called Necessitation Rule of K. Rule M3 is
the inference rule called Modus Ponens in classical logic. By using these axiom and
rules together, we are able to derive all modal properties that are valid in Kripke
frames.

M1. [∆](ϕ⇒ ψ) ⇒ [∆]ϕ⇒ [∆]ψ

M2. ϕ ⊢ [∆]ϕ

M3. ϕ, ϕ⇒ ψ ⊢ ψ
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• Axiom M4 asserts that, if an update set ∆ is not consistent, then there is no successor
state after applying ∆ over the current state and thus [∆]ϕ is interpreted as true for
any formula ϕ. Since applying an update set ∆ over the current state is deterministic,
Axiom M5 describes the deterministic accessibility relation in terms of [∆].

M4. ¬con(∆) ⇒ [∆]ϕ

M5. ¬[∆]ϕ ⇔ [∆]¬ϕ

• Axiom M6 is also called Barcan Axiom, saying that all states in a run of a database
transformation have the same base set, and thus quantifiers in all states always range
over the same set of elements.

M6. ∀x.[∆]ϕ ⇒ [∆]∀x.ϕ

• Axioms M7 and M8 assert that the interpretation of static and pure formulae is the
same in all states of a database transformation, which is not affected by the execution
of any DB-ASM rule r. Note that, depending on the logic that is parameterised into
the logic of meta-finite states, static and pure formulae might not be first-order
formulae.

M7. con(r,∆) ∧ ϕ⇒ [∆]ϕ for static and pure ϕ

M8. con(r,∆) ∧ [∆]ϕ⇒ ϕ for static and pure ϕ

• Axiom A1 asserts that, if a consistent update set ∆ does not contain any update
to the location f(x), then the content of the location f(x) in a successor state after
applying the update set ∆ is the same as its content in the current state. Axiom
A2 asserts that, if a consistent update set ∆ does contain an update which updates
the content of the location f(x) to y, then the content of the location f(x) in the
successor state after applying the update set ∆ is equal to y. Axiom A3 says that,
if a DB-ASM rule r yields an update set ∆, then the rule r is defined. Axiom A4
says that, if a DB-ASM rule r yields an update multiset, then the rule r also yields
an update set.

A1. con(∆)∧inv(∆, f, x) ∧ f(x) = y ⇒ [∆]f(x) = y

A2. con(∆) ∧ ∆(f, x, y) ⇒ [∆]f(x) = y

A3. upd(r,∆) ⇒ def(r)

A4. upm(r, ∆̈) ⇒ ∃∆.upd(r,∆)

• The following are axiom schemes from classical logic.
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P1. ϕ⇒ (ψ ⇒ ϕ)

P2. (ϕ⇒ (ψ ⇒ χ)) ⇒ ((ϕ⇒ ψ) ⇒ (ϕ⇒ χ))

P3. (¬ϕ⇒ ¬ψ) ⇒ (ψ ⇒ ϕ)

• Axiom EG, called Existential Generalisation in classical logic, says that some static
term t satisfying a pure formula ϕ implies that there exists some element satisfying ϕ.
Axiom UI, called Universal Instantiation in classical logic, says that a pure formula
ϕ satisfied by all elements implies that there exists some static term t satisfying ϕ.
Note that, all the variables in LL

M are restricted to range only over elements in the
database part of a state, which are finite.

EG. ϕ[t/x] ⇒ ∃x.ϕ if ϕ is pure, t is static and x ranges over Bdb

UI. ∀x.ϕ⇒ ϕ[t/x] if ϕ is pure, t is static and x ranges over Bdb

• The following are the equality axioms from the first-order logic with equality. Axiom
EQ1 asserts the reflexivity property, Axiom EQ2 asserts the substitutions for func-
tions, Axiom EQ3 asserts the substitutions for predicates and Axiom EQ4 asserts
the substitutions for ρ-terms. Again, terms occurring in the axioms are restricted to
be static, which do not contain any dynamic function symbols.

EQ1. t = t for static term t

EQ2. t1 = tn+1 ∧ ... ∧ tn = t2n ⇒ f(t1, ..., tn) = f(tn+1, ..., t2n) for any function f
and static terms ti (i = 1, ..., 2n)

EQ3. t1 = tn+1 ∧ ... ∧ tn = t2n ⇒ p(t1, ..., tn) = p(tn+1, ..., t2n) for any predicate P
and static terms ti (i = 1, ..., 2n)

EQ4. t1 = t2 ∧ (ϕ1(x, y) ⇔ ϕ2(x, y)) ⇒ ρx(t1|ϕ1(x, y)) = ρx(t2|ϕ2(x, y)) for pure
formulae ϕi(x, y) and static terms ti (i = 1, 2)

• The following axiom is taken from dynamic logic, asserting that executing a sequence
rule equals to executing the rules inside the sequence rule sequentially.

DY1. [seq r1 r2 endseq]ϕ ⇔ [r1][r2]ϕ

• Axiom E is the extensionality axiom following Definition 5.3.4.

E. r1 ≃ r2 ⇒ ∀∆.upd(r1,∆) ⇔upd(r2,∆)
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5.4 Soundness

We prove the soundness of the proof system by deriving valid properties of other systems.

Lemma 5.4.1. The following modal axioms and rules used in the logic for ASMs [47] are
derivable in LL

M
1.

(1) [r](ϕ⇒ ψ) ⇒ [r]ϕ⇒ [r]ψ

(2) ϕ ⊢ [r]ϕ

(3) ¬wcon(r) ⇒ [r]ϕ

(4) [r]ϕ⇔ ¬[r]¬ϕ

Proof. We prove each property in the following.

• Proof for Property (1):

– By [r]ϕ = ∀∆.(upd(r,∆) ⇒ [∆]ϕ), we have

[r](ϕ⇒ ψ) ∧ [r]ϕ= ∀∆.(upd(r,∆) ⇒ [∆](ϕ⇒ ψ)) ∧ ∀∆.(upd(r,∆) ⇒ [∆]ϕ).

– By the axioms from classical logic, we have [r](ϕ⇒ ψ)∧[r]ϕ= ∀∆.(upd(r,∆) ⇒
([∆](ϕ⇒ ψ) ∧ [∆]ϕ)).

– Then by Axiom M1: [∆](ϕ⇒ ψ) ⇒ [∆]ϕ⇒ [∆]ψ, we can get ∀∆.(upd(r,∆) ⇒
([∆](ϕ⇒ ψ) ∧ [∆]ϕ))⇒ ∀∆.(upd(r,∆) ⇒ [∆]ψ).

Therefore, [r](ϕ⇒ ψ) ⇒ [r]ϕ⇒ [r]ψ is derivable.

• Proof for Property (2):

As discussed before, each DB-ASM rule is defined. Thus, for a DB-ASM rule r, we
assume that ∆(r, S, ζ) = {∆1, ...,∆n}.

– By Rule M2: ϕ ⊢ [∆]ϕ, we have ϕ ⊢ [∆i]ϕ (i = 1, ..., n) for all update sets
{∆1, ..,∆n} generated by r, i.e., ϕ ⊢ ∀∆.(upd(r,∆) ⇒ [∆]ϕ).

– By the definition that [r]ϕ = ∀∆.(upd(r,∆) ⇒ [∆]ϕ), we can get ϕ ⊢ [r]ϕ.

Therefore, ϕ ⊢ [r]ϕ is derivable.

• Proof for Property (3):

1Property (3) and Property (4) are valid only under the assumption that the rule r is defined and
deterministic.
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– By wcon(r) ⇔ def(r)∧∃∆.con(r,∆) as defined in Subsection 5.2.4 and the fact
that def(r) is trivial for a DB-ASM rule r, we have ¬wcon(r) ⇔ ¬∃∆.con(r,∆).

– By con(r,∆) ⇔ (upd(r,∆)∧con(∆)), we have ¬wcon(r) ⇔ ¬∃∆.(upd(r,∆)∧
con(∆)).

– Since a rule r in [134] is deterministic and a DB-ASM rule is always defined, we
get ¬wcon(r) ⇔ ¬con(∆).

– By Axiom M4: ¬con(∆) ⇒ [∆]ϕ and the fact that a defined rule r in [134]
yields exactly one update set ∆, we get ¬wcon(r) ⇒ [r]ϕ.

Therefore, ¬wcon(r) ⇒ [r]ϕ is derivable if a rule r is defined and deterministic.

• Proof for Property (4):

– By [r]ϕ = ∀∆.(upd(r,∆) ⇒ [∆]ϕ), we have ¬[r]¬ϕ = ∃∆.(upd(r,∆)∧¬[∆]¬ϕ).

– By Axiom M5: ¬[∆]ϕ⇔ [∆]¬ϕ, we have ¬[r]¬ϕ = ∃∆.(upd(r,∆) ∧ [∆]ϕ).

– When the rule is defined and deterministic, it means that the interpretation of
the formula ∀∆.(upd(r,∆) ⇒ [∆]ϕ) coincides the interpretation of the formula
∃∆.(upd(r,∆) ∧ [∆]ϕ).

Therefore, [r]ϕ⇔ ¬[r]¬ϕ is derivable if a rule r is defined and deterministic.

Remark 5.4.1. The logic for ASMs [47] is deterministic by excluding the choice rule,
whereas the logic for DB-ASMs includes the choice rule. Therefore, the formula Con(R)
used by Axiom 5 (i.e., ¬Con(R) ⇒ [R]ϕ) in the logic for ASMs [47] indeed corresponds to
the weak version of the consistency (i.e., wcon(r)) in the context of the logic for DB-ASMs.

Lemma 5.4.2. The following properties are derivable in LL

M .

(5) con(r,∆) ∧ [∆]f(x) = y ⇒ ∆(f, x, y) ∨ (inv(∆, f, x) ∧ f(x) = y)

(6) con(r,∆) ∧ [∆]ϕ⇒ ¬[∆]¬ϕ

(7) [∆]∃x.ϕ ⇒ ∃x.[∆]ϕ

(8) [∆]ϕ1 ∧ [∆]ϕ2 ⇒ [∆](ϕ1 ∧ ϕ2)

Proof. Property (5) is derivable by applying Axioms A1 and A2. Property (6) is a straight-
forward result of Axiom M5. Property (7) can be derived by applying Axioms M5 and
M6. For Property (8), it is derivable by using Axioms M1-M3.
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Lemma 5.4.3. The following properties in [77] are also derivable in LL

M .

• x = t⇒ (y = t0 ⇔ [f(t) := t0]f(x) = y)

• x 6= t⇒ (y = f(x) ⇔ [f(t) := t0]f(x) = y)

However, the principles 41 and 42 mentioned in [47] are not derivable in our logic. In
DB-ASMs, two parallel computations may produce an update multiset in which there are
identical updates to a location assigned with a location operator. Therefore, the following
statement is not true.

[par r r endpar]ϕ ⇔ [r]ϕ

Example 5.4.1. Let S be a state. Suppose that firing a DB-ASM rule
r over S yields an update multiset ∆̈1={{(f1, a, 3, 0), (f1, a, 3, 1), (f2, a, 1, 0)}},
then firing the DB-ASM rule par r r endpar over S would yield ∆̈2 =
{{(f1, a, 3, 0), (f1, a, 3, 1), (f2, a, 1, 0), (f1, a, 3, 2), (f1, a, 3, 3), (f2, a, 1, 1)}}. If θ(f1(a)) = Π
and θ(f1(a)) = ⊥ where Π = (id,×, id) for the binary multiplication function × and the
identity function id, then

• applying rule r over S may lead to the update set ∆1 = {(f1, a, 9), (f2, a, 1)} such
that

– fS+∆1

1 (a) = Π(3, 3) = 9, and

– fS+∆1

2 (a) = 1.

• applying rule par r r endpar over S may lead to the update set ∆2 =
{(f1, a, 81), (f2, a, 1)} such that

– fS+∆2

1 (a) = Π(3, 3, 3, 3) = 81, and

– fS+∆2

2 (a) = 1.

Following the approach of defining the predicate joinable in [47], we define the predicate
joinable over two DB-ASM rules as follows. As DB-ASM rules are allowed to be non-
deterministic, the predicate joinable(r1, r2) means that there exists a pair of update sets
without conflicting updates, which are yielded by the rules r1 and r2, respectively. Then,
based on the use of predicate joinable, the properties in Lemma 5.4.4 are all derivable.

joinable(r1, r2) :≡ ∃∆1,∆2.(upd(r1,∆1)∧upd(r2,∆2)∧∧
f∈Fdyn

∀x, y, y
′

.(∆1(f, x, y) ∧ ∆2(f, x, y
′

) ⇒ y = y
′

))

Lemma 5.4.4. The following properties for weak consistency are derivable in LL

M .
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(9) wcon(f(t) := t0)

(10) wcon(if ϕ then r endif) ⇔ ¬ϕ ∨ (ϕ∧wcon(r))

(11) wcon(forall z with ϕ do r enddo) ⇔ ∀z.(ϕ⇒wcon(r)∧
∀z

′

.(ϕ[z
′

/z] ⇒joinable(r, r[z
′

/z])))

(12) wcon(par r1 . . . rn endpar) ⇔ wcon(r1) ∧ ...∧wcon(rn) ∧
∧

1≤i6=j≤n

joinable(ri, rj)

(13) wcon(choose z with ϕ do r enddo) ⇔ ∃z.(ϕ∧ wcon(r)) ∨ ∀z.(¬ϕ)

(14) wcon(seq r1 r2 endseq) ⇔ def(r1) ∧ ∃∆1.con(r1,∆1) ∧ [∆1]wcon(r2)

(15) wcon(let θ(t) = ρ in r endlet)⇔ ∃∆1,∆2.(def(r)∧upd(r,∆1)∧con(∆2)∧∨
f∈Fdyn

∀x, y.(∆1(f, x, y) ∧ f(x) 6= t⇔ ∆2(f, x, y)))

Property (17) in Lemma 5.4.5 asserts that formula ϕ
′

is interpreted to be true after
applying the rule choose z with ϕ do r enddo iff it is true in all successor states or it is
true in the current state if there is no any successor state.

Lemma 5.4.5. The following properties for the formula [r]ϕ are derivable in LL

M .

(16) [if ϕ then r endif ]ϕ
′

⇔ (ϕ ∧ [r]ϕ
′

) ∨ (¬ϕ ∧ ϕ
′

)

(17) [choose z with ϕ do r enddo]ϕ
′

⇔∀z.(ϕ⇒ [r]ϕ
′

) ∨ ∀z.(¬ϕ⇒ ϕ
′

)

Proof. These properties can be proven based on the logical equivalence [r]ϕ ≡
∀∆.(upd(r,∆) ⇒ [∆]ϕ) as follows.

• Proof for Property (16): We have [if ϕ then r endif ]ϕ
′

⇔ ∀∆.(upd(if ϕ then
r endif,∆) ⇒ [∆]ϕ

′

). Then by Axiom U2, we have [if ϕ then r endif ]ϕ
′

⇔
∀∆.(((ϕ∧upd(r,∆))∨(¬ϕ∧

∧
f∈Fdyn

∀x, y.¬∆(f, x, y))) ⇒ [∆]ϕ
′

). By (ϕ1∨ϕ2 ⇒ ϕ) ⇔

((ϕ1 ⇒ ϕ) ∨ (ϕ2 ⇒ ϕ)), we have [if ϕ then r endif ]ϕ
′

⇔ ∀∆.((((ϕ∧upd(r,∆)) ⇒
[∆]ϕ

′

)) ∨ ((¬ϕ ∧
∧

f∈Fdyn

∀x, y.¬∆(f, x, y)) ⇒ [∆]ϕ
′

)) ⇔ (ϕ ∧ [r]ϕ
′

) ∨ (¬ϕ ∧ ϕ
′

).

• Proof for Property (17): Using the same approach as in the proof for Property
(16), we have [choose z with ϕ do r enddo]ϕ

′

⇔ ∀∆.(upd(choose z with ϕ
do r enddo,∆) ⇒ [∆]ϕ

′

). Then by Axiom U5, we have [choose z with ϕ do r
enddo]ϕ

′

⇔ ∀∆.(def(choose z with ϕ do r enddo) ∧∃z.(ϕ∧ upd(r,∆))∨(∀z.¬ϕ∧∧
f∈Fdyn

∀x, y.¬∆(f, x, y))) ⇒ [∆]ϕ
′

). Then by (ϕ1∨ϕ2 ⇒ ϕ) ⇔ ((ϕ1 ⇒ ϕ)∨(ϕ2 ⇒ ϕ)),

we can prove that [choose z with ϕ do r enddo]ϕ
′

⇔∀z.(ϕ⇒ [r]ϕ
′

)∨∀z.(¬ϕ⇒ ϕ
′

).
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The properties in Lemma 5.4.6 state that a parallel composition is commutative and
associative while a sequential composition is associative.

Lemma 5.4.6. The following properties for parallel and sequential compositions are deriv-
able in LL

M .

(18) par r1 r2 endpar ≃ par r2 r1 endpar

(19) par (par r1 r2 endpar) r3 endpar ≃ par r1 (par r2 r3 endpar) endpar

(20) seq (seq r1 r2 endseq) r3 endseq ≃ seq r1 (seq r2 r3 endseq) endseq

Lemma 5.4.7. The extensionality axiom for transition rules in [134] is derivable in LL

M .

(21) r1 ≃ r2 ⇒ ([r1]ϕ⇔ [r2]ϕ)

Based on the above derivable properties, we have the following theorem for the sound-
ness of the proof system.

Theorem 5.4.1. Let M be a DB-ASM and Φ a set of sentences. If Φ ⊢M ϕ, then Φ |=M ϕ.

5.5 Completeness

In this section we discuss the completeness of the proof system defined in the previous
section. As specified in Definition 5.5.1, the logic L(Υ,L) of meta-finite states may be
parameterised by any logic L suitable for first-order structures. However, if a chosen logic
L is not complete, then the logic for DB-ASMs that is built upon the logic L(Υ,L) of
meta-finite states will not be complete as well. For this reason, we choose the first-order
logic which is well-known to be complete and investigate the completeness of the proof
system for the logic for DB-ASMs (i.e., LL

M for L = FO).
We start by embedding the first-order logic into the logic of meta-finite states. The

syntax and semantics of first-order formulae are defined in a standard way.

Definition 5.5.1. The terms and formulae of the logic L(Υ, FO) over meta-finite states
with signature Υ which is parameterised by the first-order logic are defined in the same way
as in Definitions 5.5.1 and 5.1.2, except for the replacement of Rule (ii) with the following
rule and the addition of the semantics for the following formulae:

• The set of formulae in L(Υ, FO) is closed under

– first-order logical connectives ¬,∧,∨,⇒,⇔ (i.e., ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1 ⇒
ψ2, ψ1 ⇔ ψ2) where

∗ fr(¬(ϕ)) = fr(ϕ), and
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∗ fr(ϕ1 con ϕ2) = fr(ϕ1) ∪ fr(ϕ2) for con ∈ {∧,∨,⇒,⇔},

– first-order quantifiers ∃ and ∀ (i.e., ∃x.ϕ and ∀x.ϕ) where

∗ fr(∃x.ϕ) = fr(ϕ) − {x}, and

∗ fr(∀x.ϕ) = fr(ϕ) − {x}.

• The semantics of these formulae is defined by

– [[¬ψ]]S,ζ =

{
true if [[ψ]]S,ζ = false

false otherwise

– [[ψ1 ∧ ψ2]]S,ζ =

{
true if [[ψ1]]S,ζ = true and [[ψ2]]S,ζ = true

false otherwise

– [[ψ1 ∨ ψ2]]S,ζ =

{
true if [[ψ1]]S,ζ = true or [[ψ2]]S,ζ = true

false otherwise

– [[ψ1 ⇒ ψ2]]S,ζ =

{
true if [[ψ1]]S,ζ = false or [[ψ2]]S,ζ = true

false otherwise

– [[ψ1 ⇔ ψ2]]S,ζ =






true if both [[ψ1]]S,ζ and [[ψ2]]S,ζ are true, or

both[[ψ1]]S,ζ and [[ψ2]]S,ζ are false

false otherwise

– [[∃x.ϕ]]S,ζ =

{
true if [[ϕ]]S,ζ[x 7→a] = true for at least one a ∈ Bdb

false otherwise

– [[∀x.ϕ]]S,ζ =

{
true if [[ϕ]]S,ζ[x 7→a] = true for every a ∈ Bdb

false otherwise

The syntax and semantics of LFO
M are defined on top of L(Υ, FO) as in Definitions 5.2.1

and 5.2.2.

5.5.1 Translation to FO Logic

Before presenting the completeness proofs for the proof system of LFO
M , we need to show

how second-order formulae in LFO
M can be translated into a many-sorted first-order logic.

It is well-known that a many-sorted first-order logic can again be reduced to a one-sorted
first-order logic [67]. Therefore, although second-order formulae are used in LFO

M , they do
not increase the expressive power of the logic. Instead, we add them only for the sake of
convenience and conciseness.

The following approach for translating LFO
M to a many-sorted first-order logic is quite

standard. Let us consider a many-sorted structure in which we have
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• an individual sort (with variables x1, x2, ...), and

• many predicate sorts such that for each n ∈ N, there is a n-ary predicate sort (with
variables Xn

1 , X
n
2 , ...).

An universe of the n-ary predicate sort is a set of n-ary relations over the universe of
the individual sort. The terms in LFO

M are all of the individual sort, except for variables
Xn

1 , X
n
2 , ... that are of the n-ary predicate sort.

The equality and inequality are used under a fixed interpretation and only between
terms of the individual sort. Furthermore, For each n ∈ N, there is a membership predicate
∈n which has the n+ 1 arguments of sort: the n-ary predicate sort and n individual sorts
such that

∈n (Xn, x1, ..., xn)

with the following semantics:

[[∈n (Xn, x1, ..., xn)]]S,ζ =

{
true if ([[x1]]S,ζ , ..., [[xn]]S,ζ) ∈ [[Xn]]S,ζ),

false otherwise.

Based on the use of predicate sorts and membership predicates, now we can translate
those extended formulae with the second-order syntax in LFO

M to formulae in a many-sorted
first-order logic, where Xn is of the n-arity predicate sort, and xi is of the individual sort:

• ∃X.ϕ and ∀X.ϕ can be translated to

– ∃X3.ϕ and ∀X3.ϕ if X is bound to an update set, or

– ∃X4.ϕ and ∀X4.ϕ if X is bound to an update multiset.

• upd(r,∆) can be translated to upd(r,X3
∆)

• upm(r, ∆̈) can be translated to upm(r,X4
∆̈
)

• ∆(f, x, y) can be translated to ∈3
∆ (X3, x1, ..., x3)

• ∆̈(f, x, y, z) can be translated to ∈4
∆̈

(X4, x1, ..., x4)

Without loss of generality, in the completeness proofs discussed in the following subsec-
tions, we will treat these second-order formulae as being many-sorted first-order formulae
in disguise.

Furthermore, in accordance with the approach used in [47], we associate a rank |ϕ| ∈ N
with each formula ϕ and a rank |r| ∈ N with each DB-ASM rule r, such that

• |t1 = t2| = 0
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• |P1(t1, ..., tn)| = |P2(t1, ..., tn)| = 0

• |∆(f, x, y)| = 0

• |∆̈(f, x, y, z)| = 0

• |¬ϕ| = |ϕ| + 1

• |ϕ1 con ϕ2| =max(|ϕ1, ϕ2|) + 1 for con ∈ {∧,∨,⇒}

• |∀x.ϕ| = |∃x.ϕ| = |ϕ| + 1

• |∃X.ϕ| = |∀X.ϕ| = |ϕ| + 1

• |upd(r,∆)| = |ϕ| + 1, if ϕ⇔upd(r,∆) is an instance of Axioms U1-U7

• |upm(r, ∆̈)| = |ϕ| + 1, if ϕ⇔upm(r, ∆̈) is an instance of Axioms UM1-UM7

• |[∆]ϕ| = |r| + |ϕ| + 1, if ∆ is generated by rule r

• |r| =max(|con(r,∆)|, |upd(r,∆)|, |upm(r, ∆̈)|, |inv(∆, f, x)|) + 1

5.5.2 Henkin Construction

In this subsection we present the completeness proof for the proof system of LFO
M based on

the Henkin model construction.
Let XH = {xh1

, xh2
, ...} be a countable set of fresh variables which is disjoint from

the signature ΥM of a DB-ASM M . Variables in XH serve as Henkin constants as in
the classical Henkin style completeness proof. By adjoining XH to ΥM , we expand the
signature ΥM with Henkin constants. That is, ΥMH = ΥM ∪ XH .

Definition 5.5.2. A set Ψ of formulae is satisfiable iff there exists a state S and a variable
assignment ζ such that [[ϕ]]S,ζ = true for each ϕ ∈ Ψ.

Definition 5.5.3. A set Ψ of formulae is inconsistent iff there exists a finite subset Ψ
′

⊆ Ψ
such that

∧
ϕ∈Ψ

′

ϕ⇒ ⊥ is derivable; otherwise, Ψ is consistent.

Definition 5.5.4. A set Ψ of formulae is maximally consistent iff the following two state-
ments are true:

• Ψ is consistent.

• If Ψ ∪ {ϕ} is consistent, then ϕ ∈ Ψ.

The set Ψ of formulae over ΥM can be extended to the set Ψ
′

of formulae over ΥMH

by using the following rule:

* For every formula ∃x.ϕ ∈ Ψ, there is a Henkin constant xh ∈ XH such that ϕ[xh/x] ∈ Ψ
′

.
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The above extension preserves the consistency of the set Ψ of formulae. Put it in other
words, if Ψ is consistent, then Ψ

′

must also be consistent.

Definition 5.5.5. The set Ψ
′

of formulae over ΥMH is said to contain witnesses iff for
each formula ∃x.ϕ ∈ Ψ

′

there exists ϕ[xh/x] ∈ Ψ
′

.

Furthermore, any set Ψ
′

of consistent formulae over ΥMH can be further expended to
a set Ψ

′′

of maximally consistent formulae over ΥMH such that Ψ
′

⊇ Ψ
′′

. Inductively
substituting quantified variables with Henkin constants may lead to a transformation from
formulae into sentences.

Lemma 5.5.1. For each maximal consistent set Ψ of formulae, it satisfies the following
statements.

(1) For each formula ϕ, either ϕ ∈ Ψ or ¬ϕ ∈ Ψ.

(2) If ϕ ∈ Ψ and ϕ⇒ ψ is derivable, then ψ ∈ Ψ.

Proof. The proof is straightforward.

• For Statement (1), assume that there is a formula ϕ
′

such that ϕ′ /∈ Ψ and ¬ϕ′ /∈ Ψ.
By Definition 5.5.4 and ϕ′ /∈ Ψ, we know that Ψ∪ {ϕ

′

} is not consistent. Therefore,
Ψ ∪ {¬ϕ

′

} must be consistent, which means that ¬ϕ′ ∈ Ψ. There is a contradiction.

• For Statement (2), we assume that ϕ ∈ Ψ and ϕ⇒ ψ is derivable, but ψ /∈ Ψ. Since
ψ /∈ Ψ, then ¬ψ ∈ Ψ. It mean that Ψ ∪ {¬ψ} is consistent. By the condition that
ϕ ∈ Ψ, we have {ϕ,¬ψ} ⊆ Ψ. However, because ϕ ⇒ ψ holds, ϕ ∧ ¬ψ ⇒ ⊥ is
derivable. This contradicts with the condition that Ψ is a maximal consistent set of
formulae.

Let Ψ be a set of formulae and r be a DB-ASM rule yielding an update set ∆. Then
we define Ψ∆

r to be a set of formulae such that

Ψ∆
r = {ϕ|[∆]ϕ ∈ Ψ}.

It means that, if Ψ is the set of formulae which are true in a state S and the update
set ∆ generated by the rule r over S is consistent, then Ψ∆

r is the set of formulae which
are true in a state S + ∆, i.e., a state after firing the update set ∆ over the state S.

Lemma 5.5.2. Let Ψ be a maximal consistent set of formulae that contains witnesses. If
con(r,∆) ∈ Ψ, then Ψ∆

r is a maximal consistent set of formulae, containing witnesses.

Proof. The proof will be proceeded in three steps.
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(1) The first step is to prove that Ψ∆
r is consistent. Assume that Ψ∆

r is inconsistent and
there is a finite subset Ψ

′

⊆ Ψ∆
r of formulae such that

∧
ϕ∈Ψ′

ϕ ⇒ ⊥ is derivable. By

Axiom M1, we get [∆](
∧

ϕ∈Ψ′

ϕ⇒ ⊥) ⇒ ([∆]
∧

ϕ∈Ψ′

ϕ⇒ [∆]⊥). By Rule M2, (
∧

ϕ∈Ψ′

ϕ⇒

⊥) ⇒ [∆](
∧

ϕ∈Ψ
′

ϕ⇒ ⊥) is derivable. Hence, by Rule M3, we have [∆]
∧

ϕ∈Ψ
′

ϕ⇒ [∆]⊥.

By Property (8) in Lemma 5.4.2,
∧

ϕ∈Ψ′

[∆]ϕ ⇒ [∆]
∧

ϕ∈Ψ′

ϕ ⇒ [∆]⊥. According to the

definition of Ψ∆
r , the formula [∆]ϕ is in Ψ for each ϕ ∈ Ψ

′

, and so
∧

ϕ∈Ψ′

[∆]ϕ ⇒ ⊥

should not be derivable. However, by an instance of Axiom M8 (i.e., con(r,∆) ∧
[∆]⊥ ⇒ ⊥) and the fact that con(r,∆) ∈ Ψ is the assumption of this lemma, we can
derive

∧
ϕ∈Ψ′

[∆]ϕ⇒ ⊥. There is a contradiction. Thus, Ψ∆
r is consistent.

(2) Secondly, we need to prove that Ψ∆
r is maximal consistent. That is, if Ψ∆

r ∪ {ϕ} is
consistent, then we need to show that ϕ ∈ Ψ∆

r . More precisely, by the definition of
Ψ∆

r , we have to show that [∆]ϕ ∈ Ψ. Since Ψ is maximal consistent, by Statement
(1) of Lemma 5.5.1, we know that either [∆]ϕ ∈ Ψ or ¬[∆]ϕ ∈ Ψ.

• Assume that [∆]ϕ ∈ Ψ. Then the proof for ϕ ∈ Ψ∆
r finishes because that is the

result we desire.

• Assume that ¬[∆]ϕ ∈ Ψ. By the instance ¬[∆]ϕ ⇒ [∆]¬ϕ of Axiom M5
and Statement (2) of Lemma 5.5.1 that Ψ is deductively closed, we can get
[∆]¬ϕ ∈ Ψ. By the definition of Ψ∆

r , it follows that ¬ϕ ∈ Ψ∆
r . However, this

implies that Ψ∆
r ∪ {¬ϕ} is consistent, which contradicts with the assumption

that Ψ∆
r ∪ {ϕ} is consistent. Thus, this case is not possible.

Based on the above results, we conclude that Ψ∆
r is maximal consistent.

(3) Finally, we need to prove that Ψ∆
r contains witnesses. Assume that ∃x.ϕ ∈ Ψ∆

r for
x /∈ fr(r). Then by the definition of Ψ∆

r , we get [∆]∃x.ϕ ∈ Ψ. By Property (7) in
Lemma 5.4.2 that shows [∆]∃x.ϕ ⇒ ∃x.[∆]ϕ for x /∈ fr(r), and Statement (2) of
Lemma 5.5.1 that Ψ is deductively closed, it follows that ∃x.[∆]ϕ ∈ Ψ. Because Ψ
contains witnesses, there exists a Henkin constant xh such that [∆]ϕ[xh/x] ∈ Ψ. By
the definition of Ψ∆

r , it implies that ϕ[xh/x] ∈ Ψ∆
r . The proof completes.

In terms of a maximal consistent set Ψ of formulae containing witnesses, we adopt the
approach presented in [47] to construct a state SΨ. First of all, we define an equivalence
relation ∼Ψ on the set of variables such that

x ∼Ψ y ≡ (x = y) ∈ Ψ.
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As a convention, we use ⌈x⌉Ψ to denote the equivalence class of a variable x and ⌈∼Ψ⌉ to
denote the set of all possible equivalence classes with respect to ∼Ψ in a state, respectively.
Let SΨ be a state which has the set ⌈∼Ψ⌉ as its universe. For two equivalence classes ⌈x⌉Ψ

and ⌈y⌉Ψ in ⌈∼Ψ⌉, we define that

fSΨ(⌈x⌉Ψ) = ⌈y⌉Ψ ≡ there exist x ∈ ⌈x⌉Ψ and y ∈ ⌈y⌉Ψ such that (f(x) = y) ∈ Ψ.

The function fSΨ is well-defined and total the same as discussed in [47]. That is, by
the derivable property of functions, i.e., (f(x1) = y1 ∧ f(x2) = y2 ∧ x1 = x2) ⇒ y1 = y2,
and Statement (2) of Lemma 5.5.1 that Ψ is deductively closed, we have,

(fSΨ(⌈x1⌉Ψ) = ⌈y1⌉Ψ ∧ fSΨ(⌈x2⌉Ψ) = ⌈y2⌉Ψ ∧ ⌈x1⌉Ψ = ⌈x2⌉Ψ) ⇒ ⌈y1⌉Ψ = ⌈y2⌉Ψ.

Furthermore, as Ψ contains witness, it means that, for each variable x, we have f(x) = xh

in Ψ with a Henkin constant xh. In this way, the function fSΨ can be treated as being
total.

Now we need to deal with terms. Since the terms of the logic LFO
M for DB-ASMs are the

same as the terms of the logic L(Υ, FO) of meta-finite states with the same signature, it
means that ρ-terms have to be handled in the construction of a state SΨ. From the syntax
and semantics of ρ-terms defined in Subsection 5.1.1, we know that the use of ρ-terms may
lead to nested constructions between formulae and terms. Therefore, we need to start with
the construction of a state SΨ where the ρ-ranks of all formulae in Ψ are 0 (i.e., no ρ-terms
in any formula of Ψ) and prove Lemma 5.5.3 based on the construction for terms that do
not contain any ρ-terms. After that, we extend the results of Lemma 5.5.3 to those in
Lemma 5.5.4, in which the state SΨρ

is constructed from terms that may have ρ-ranks at
most n ∈ N by using inductive arguments for constructing states level-by-level with respect
to ρ-ranks.

Let us begin with pure terms, i.e., terms that do not contain ρ-terms. We use ζ̃ for
a variable assignment which assigns an equivalence class ⌈x⌉Ψ to a variable x, [[t]]Ψ,eζ

and

[[ϕ]]Ψ,eζ
for the interpretations of a pure term t and a formula ϕ in state SΨ under ζ̃,

respectively. For a pure term t, the following property holds.

[[t]]Ψ,eζ
= ⌈x⌉Ψ ≡ (t = x) ∈ Ψ

Since for each pure term t, the formula t = x for a variable x may belong to Ψ, the set of
equivalence classes of terms is isomorphic to the set of equivalence classes of variables.

By treating natural numbers in the state SΨ as terms, the interpretation of functions
≤ and + over natural numbers can be fixed, such that

• ([[t1 ≤ t2]]Ψ,eζ
∧ [[t1]]Ψ,eζ

= ⌈x1⌉Ψ ∧ [[t2]]Ψ,eζ
= ⌈x2⌉Ψ) ⇒ ⌈x1⌉Ψ ≤ ⌈x2⌉Ψ, and

• ([[t1 + t2 = t3]]Ψ,eζ
∧ [[t1]]Ψ,eζ

= ⌈x1⌉Ψ ∧ [[t2]]Ψ,eζ
= ⌈x2⌉Ψ ∧ [[t3]]Ψ,eζ

= ⌈x3⌉Ψ) ⇒ ⌈x1⌉Ψ +
⌈x2⌉Ψ = ⌈x3⌉Ψ.
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Based on the equivalence classes of variables, the property of terms and the fixed
interpretation of functions ≤ and + as discussed before, all the possible update sets and
multisets in the state SΨ are determined. Thus, by the finiteness of update sets and
multisets, the interpretation of ∈3

∆ and ∈4
∆̈

is fixed in the state SΨ as well.

• The interpretation of the formula ∆(f, t, t0) in the state SΨ under ζ̃ has the following
property:

– (∆(f, [[t]]Ψ,eζ
, [[t0]]Ψ,eζ

)∧ [[t]]Ψ,eζ
= ⌈x⌉Ψ ∧ [[t0]]Ψ,eζ

= ⌈x0⌉Ψ) ⇒ ∆(f, ⌈x⌉Ψ, ⌈x0⌉Ψ), and

– ∆(f, ⌈x⌉Ψ, ⌈x0⌉Ψ) ⇒∈3
∆ (∆, f, ⌈x⌉Ψ, ⌈x0⌉Ψ)

• Similarly, the interpretation of the formula ∆̈(f, t, t0, t
′

) in the state SΨ under ζ̃ has
the following property:

– (∆̈(f, [[t]]Ψ,eζ
, [[t0]]Ψ,eζ

, [[t
′

]]Ψ,eζ
)∧ [[t]]Ψ,eζ

= ⌈x⌉Ψ∧ [[t0]]Ψ,eζ
= ⌈x0⌉Ψ∧ [[t

′

]]Ψ,eζ
= ⌈x

′

⌉Ψ) ⇒

∆̈(f, ⌈x⌉Ψ, ⌈x0⌉Ψ, ⌈x
′

⌉Ψ), and

– ∆̈(f, ⌈x⌉Ψ, ⌈x0⌉Ψ, ⌈x
′

⌉Ψ) ⇒∈4
∆̈

(∆̈, f, ⌈x⌉Ψ, ⌈x0⌉Ψ, ⌈x
′

⌉Ψ)

Lemma 5.5.3. Let ϕ be a formula. For any maximal consistent set Ψ of formulae which
contains witnesses but does not contain any ρ-terms, the following two statements are true:

(a). If ϕ ∈ Ψ, then [[ϕ]]Ψ,eζ
= true.

(b). If ¬ϕ ∈ Ψ, then [[ϕ]]Ψ,eζ
= false.

Proof. In a similar way to the approach used in [47], the proof is based on the induction
on the rank of a formula.

◦ The case of formula [∆]ϕ

Assume that Statements (a) and (b) are true for all formulae that have ranks less
than |[∆]ϕ|. Then we first need to prove the following statement for a DB-ASM rule
r.

§. If con(r,∆) ∈ Ψ, then ∆ is consistent and SΨ + ∆ = SΨ∆
r
.

Statement § says that if the formula con(r,∆) is in Ψ, then ∆ is a consistent update
set yielded by r in SΨ and the state SΨ∆

r
associated with the set Ψ∆

r of formulae is
equal to a state obtained by firing the update set ∆ over SΨ.

As con(r,∆) ∈ Ψ and |con(r,∆)| < |[∆]ϕ|, by the induction hypothesis (a) for
con(r,∆) ∈ Ψ, we get [[con(r,∆)]]Ψ,eζ

= true. It means that by definition that ∆

is a consistent update set yielded by applying rule r over SΨ under ζ̃. Then, by
Axiom M7 for static and pure formula x = y, (x = y) ⇒ [∆](x = y) can be
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derived. By Statement (2) of Lemma 5.5.1 that Ψ is deductively closed, we know
that, if x = y ∈ Ψ, then [∆](x = y) ∈ Ψ. By the definition of Ψ∆

r , it follows that
(x = y) ∈ Ψ∆

r . Therefore, the equivalent relation ∼Ψ is the same as the equivalent
relation ∼Ψ∆

r
and the universe of the structure SΨ is the same as the universe of the

structure SΨ∆
r
. That is, ⌈∼Ψ⌉ = ⌈∼Ψ∆

r
⌉.

Let x be an arbitrarily chosen variable. Now we have a look at the formula
inv(∆, f, x). By Statement (1) of Lemma 5.5.1, we know that either inv(∆, f, x)
or ¬inv(∆, f, x) belongs to Ψ.

• Assume that inv(∆, f, x) ∈ Ψ. Since |inv(∆, f, x)| < |[∆]ϕ|, by the induction
hypothesis (a) for inv(∆, f, x) ∈ Ψ, we can get [[inv(∆, f, x)]]Ψ,eζ

= true. It means
that there is no update for f at the argument ⌈x⌉Ψ in the update set ∆. So,
fSΨ+∆(⌈x⌉Ψ) = ⌈y⌉Ψ holds in the state after applying ∆ over SΨ, where y is a
variable such that (f(x) = y) ∈ Ψ. By Axiom A1 and Statement (2) of Lemma
5.5.1, we obtain [∆]f(x) = y ∈ Ψ. By the definition of Ψ∆

r , (f(x) = y) ∈ Ψ∆
r .

Therefore, f
S

Ψ∆
r (⌈x⌉Ψ) = ⌈y⌉Ψ and so f has the same value at [x]Ψ in both the

structure SΨ + ∆ and the structure SΨ∆
r
.

• Assume that ¬inv(∆, f, x) ∈ Ψ. By the definition of inv(∆, f, x), it means that
∃y∆(f, x, y) ∈ Ψ. As Ψ contains witnesses, there exists a Henkin constant xh

such that ∆(f, x, xh) ∈ Ψ. Since |∆(f, x, xh)| < |[∆]ϕ|, by the induction hypoth-
esis (a) for ∆(f, x, xh) ∈ Ψ, we know that [[∆(f, x, xh)]]Ψ,eζ

= true. Therefore,

((f, ⌈x⌉Ψ), ⌈xh⌉Ψ) ∈ ∆ and so fSΨ+∆(⌈x⌉Ψ) = ⌈xh⌉Ψ. According to Axiom
A2, we get [∆]f(x) = xh ∈ Ψ. Then, by the definition of Ψ∆

r , we know that

f(x) = xh ∈ Ψ∆
r . It means that f

S
Ψ∆

r (⌈x⌉Ψ) = ⌈xh⌉Ψ and the function f also
has the same value ⌈x⌉Ψ in both the structures SΨ + ∆ and the structure SΨ∆

r
.

So far, we have completed the proof for Statement §. In the following, we will continue
to prove the induction hypotheses (a) and (b) for the formulae [∆]ϕ, where ∆ is an
update set yielded by r.

• Assume that [∆]ϕ ∈ Ψ. By Statement (1) of Lemma 5.5.1, we know that either
con(r,∆) ∈ Ψ or ¬con(r,∆) ∈ Ψ.

– Assume that con(r,∆) ∈ Ψ. By Lemma 5.5.2, Ψ∆
r is maximal consistent,

containing witnesses. From the definition of Ψ∆
r , it follows that ϕ ∈ Ψ∆

r .
Since |ϕ| < |[∆]ϕ|, by the induction hypothesis (a) for ϕ ∈ Ψ∆

r , it follows
that [[ϕ]]Ψ∆

r ,eζ
= true. Thus, by Statement §, we obtain [[[∆]ϕ]]Ψ,eζ

= true.

– Assume that ¬con(r,∆) ∈ Ψ. Since |con(r,∆)| < |[∆]ϕ|, by the induction
hypothesis (b) for con(r,∆), it follows that [[con(r,∆)]]Ψ,eζ

= false. There-
fore, we obtain [[[∆]ϕ]]Ψ,eζ

= true.

• Assume that ¬[∆]ϕ ∈ Ψ. Since Ψ is deductively closed by Statement (2) of
Lemma 5.5.1 and Ψ is consistent, by Axioms M4 and M5, we have [∆]¬ϕ ∈ Ψ
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and con(r,∆) ∈ Ψ. Because con(r,∆) ∈ Ψ, by Lemma 5.5.2, it means that Ψ∆
r

is maximal consistent containing witnesses. By the definition of Ψ∆
r , we have

¬ϕ ∈ Ψ∆
r . By the induction hypothesis (b), it follows that [[ϕ]]Ψ∆

r ,eζ
= false. By

Statement § again, we obtain [[[∆]ϕ]]Ψ,eζ
= false.

◦ The case of formulae upd(r,∆) and upm(r, ∆̈)

• upd(r,∆):

As discussed in Subsection 5.5.1, second-order variables for ∆ can be translated
to variables of the 3-arity predicate sort in a many-sorted first-order logic. Be-
cause Ψ contains witnesses, there exists a variable X3

∆ such that the equation
X3

∆ = ∆ ∈ Ψ. Then for each formula upd(r,X3
∆), there exists a formula ϕ such

that upd(r,X3
∆) ⇔ ϕ is an instance of Axioms U1-U7. By the definition of the

ranks of formulae, we know that

|ϕ| < |upd(r,X3
∆)|.

– Assume that upd(r,X3
∆) ∈ Ψ. Since Ψ is deductively closed according to

Statement (2) of Lemma 5.5.1, the formula ϕ is also in Ψ. By the induction
hypothesis (a) for ϕ ∈ Ψ, it follows that [[ϕ]]Ψ,eζ

= true. As upd(r,X3
∆) ⇔ ϕ

is valid in any structure, so [[upd(r,X3
∆)]]Ψ,eζ

= true.

– Assume that ¬upd(r,X3
∆) ∈ Ψ. Similarly, since Ψ is deductively closed

according to Statement (2) of Lemma 5.5.1, the formula ¬ϕ is also in Ψ.
By the induction hypothesis (b) for ¬ϕ ∈ Ψ, it follows that [[ϕ]]Ψ,eζ

= false.

As upd(r,X3
∆) ⇔ ϕ is valid in any structure, so [[upd(r,X3

∆)]]Ψ,eζ
= false.

• upm(r, ∆̈):

The proof for upm(r, ∆̈) is similar to the proof for upd(r,∆) as above.

As discussed in Subsection 5.5.1, second-order variables for ∆̈ can be translated
to variables of the 4-arity predicate sort in a many-sorted first-order logic. Be-
cause Ψ contains witnesses, there exists a variable X4

∆̈
such that the equation

X4
∆̈

= ∆̈ ∈ Ψ. Then for each formula upm(r,X4
∆̈
), there exists a formula ϕ

′

such

that upm(r,X4
∆̈
) ⇔ ϕ

′

is an instance of Axioms UM1-UM7. By the definition
of the ranks of formulae, we know that

|ϕ
′

| < |upm(r,X4
∆̈
)|.

– Assume that upm(r,X4
∆̈
) ∈ Ψ. Since Ψ is deductively closed according

to Statement (2) of Lemma 5.5.1, the formula ϕ
′

is also in Ψ. By the
induction hypothesis (a) for ϕ

′

∈ Ψ, it follows that [[ϕ
′

]]Ψ,eζ
= true. As

upm(r,X4
∆̈
) ⇔ ϕ

′

is valid in any structure, so [[upm(r,X4
∆̈
)]]Ψ,eζ

= true.
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– Assume that ¬upm(r,X4
∆̈
) ∈ Ψ. Similarly, since Ψ is deductively closed

according to Statement (2) of Lemma 5.5.1, the formula ¬ϕ
′

is also in Ψ.
By the induction hypothesis (b) for ¬ϕ

′

∈ Ψ, it follows that [[ϕ
′

]]Ψ,eζ
= false.

As upm(r,X4
∆̈
) ⇔ ϕ

′

is valid in any structure, so [[upm(r,X4
∆̈
)]]Ψ,eζ

= false.

In the previous discussion, the property [[t]]Ψ,eζ
= ⌈x⌉Ψ ≡ (t = x) ∈ Ψ holds for a pure

term t. Now we need to extend the results of Lemma 5.5.3 to the more general case, i.e., a
state that may have ρ-terms. The approach we use is to first treat a ρ-term ρx(t|ϕ1(x, y))
as a term t1(y) with free variables y. That is, i.e.,

t1(y) ≡ ρx(t|ϕ1(x, y)).

Then for each ρ-term ρx(t|ϕ1(x, y)), we have the following formula

t1(y) = z ∧ ∃x.ϕ1(x, y).

As ρ-terms may be nested inductively, the above formula needs to be further extended
if t or ϕ1(x, y) in the ρ-term ρx(t|ϕ1(x, y)) has other ρ-terms. Assume that there is another
ρ-term ρ

′

x
′ (t

′

|ϕ2(x
′

, y
′

)) included in t or ϕ1(x, y). Then by using the shortcut t2(y
′

) for this
ρ-term, such that

t2(y
′

) ≡ ρ
′

x
′ (t

′

|ϕ2(x
′

, y
′

)),

we can extend the above formula to the following:

t1(y) = z ∧ ∃x.ϕ
′

1(x, y, z
′

) ∧ t2(y
′

) = z
′

∧ ∃x
′

.ϕ2(x
′

, y
′

).

with

ϕ
′

1(x, y, z
′

) ≡ ϕ1(x, y)[z
′

/ρ
′

x
′ (t

′

|ϕ2(x
′

, y
′

))].

In doing so, we can flatten the nesting constructions of each ρ-term into a set of formulae
over a state. In other words, for every set Ψ of formulae which contains witnesses and ρ-
terms, we can extend it to a set Ψρ of formulae which contains witnesses and formulae
in ρ-terms by using the above approach, without loss of generality. Furthermore, this
extension preserves the consistency of the set Ψ of formulae as well. That is, if Ψ is
consistent, then Ψρ must also be consistent.

Now based on the set Ψρ of formulae which contains witnesses and is maximal consis-
tent, we can define an equivalence relation ∼Ψρ

on the set of variables such that

x ∼Ψρ
y ≡ (x = y) ∈ Ψρ.
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Similarly, the equivalence class of a variable x is denoted as ⌈x⌉Ψρ
and the set of all

possible equivalence classes with respect to ∼Ψρ
in a state is denoted as ⌈∼Ψρ

⌉. Let SΨρ

be a state which has the set ⌈∼Ψρ
⌉ as its universe. For two equivalence classes ⌈x⌉Ψρ

and
⌈y⌉Ψρ

in ⌈∼Ψρ
⌉, we define that

fSΨρ (⌈x⌉Ψρ
) = ⌈y⌉Ψρ

≡ there exist x ∈ ⌈x⌉Ψρ
and y ∈ ⌈y⌉Ψρ

such that (f(x) = y) ∈ Ψρ.

The function fSΨ is well-defined and total the same as discussed in [47]. That is, by
the derivable property of functions (i.e., (f(x1) = y1 ∧ f(x2) = y2 ∧ x1 = x2) ⇒ y1 = y2)
and Statement (2) of Lemma 5.5.1 that Ψ is deductively closed, we have,

(fSΨρ(⌈x1⌉Ψρ
) = ⌈y1⌉Ψρ

∧ fSΨρ (⌈x2⌉Ψρ
) = ⌈y2⌉Ψρ

∧ ⌈x1⌉Ψρ
= ⌈x2⌉Ψρ

) ⇒ ⌈y1⌉Ψρ
= ⌈y2⌉Ψρ

.

Furthermore, as Ψρ contains witness, it means that, for each variable x, we have f(x) = xh

in Ψρ with a Henkin constant xh. In this way, the function fSΨρ can be treated as being
total.

In order to distinguish from the previous case where only pure terms are considered, we
use ζ̃ρ for a variable assignment which assigns an equivalence class ⌈x⌉Ψρ

to a variable x,
[[t]]Ψρ,eζρ

and [[ϕ]]Ψρ,eζρ
for the interpretations of a term t and a formula ϕ in state SΨρ

under

ζ̃ρ, respectively. For a ρ-term t
′

(y) ≡ ρx(t|ϕ(x, y)), the following property holds.

[[t
′

(y)]]Ψρ,eζρ
= ⌈x⌉Ψρ

≡ (t
′

(y) = x) ∈ Ψρ

Therefore, the set of equivalence classes of terms that may contain ρ-terms is also
isomorphic to the set of equivalence classes of variables.

Same as the way discussed before, the interpretation of functions ≤ and +, and the
interpretation of formulae ∆(f, t, t0), ∆̈(f, t, t0, t

′

), ∈3
∆ (∆, f, t, t0) and ∈4

∆̈
(∆̈, f, t, t0, t

′

)

are fixed in the state SΨρ
under ζ̃ρ.

Lemma 5.5.4. Let ϕ be a formula. For any maximal consistent set Ψρ of formulae con-
taining witnesses, the following two statements are true:

(a). If ϕ ∈ Ψρ, then [[ϕ]]Ψρ,eζρ
= true.

(b). If ¬ϕ ∈ Ψρ, then [[ϕ]]Ψρ,eζρ
= false.

Proof. The proof for this lemma is similar to the proof for Lemma 5.5.3. As the counterpart
of Statement § in Lemma 5.5.3 and the cases of formulae [∆]ϕ, upd(r,∆) and upm(r, ∆̈)
can be proven straightforwardly by following the ideas in Lemma 5.5.3, we skip the tedious
details here.

Theorem 5.5.1. Let M be a DB-ASM and Φ be a set of sentences. If Φ |=M ϕ, then
Φ ⊢M ϕ.
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Proof. Assume that a formula ϕ is implied by Φ but is not derivable from Φ (i.e., Φ |=M ϕ
and Φ 0M ϕ). By Lemma 5.5.1, there is a maximal consistent set Ψ of formulae containing
witnesses such that Φ∪{¬ϕ} ⊆ Ψ. According to Lemma 5.5.4, there is a state SΨρ

in which
[[[∆]ϕ]]Ψρ,eζρ

= false. Therefore, ϕ is not implied by Φ (i.e., Φ 6|=M ϕ). This contradicts

with the assumption that Φ |=M ϕ. Thus, the proof completes.

5.5.3 Definitional Extension of FO Logic

As DB-ASM is a variation of hierarchical ASM, which does not have recursive rule decla-
rations, in this subsection, we adopt G.R.Renardel de Lavalette’s approach to prove the
completeness of LFO

M . This approach was also used by Stärk and Nanchen in [47] to prove
the completeness of the logic for hierarchical ASMs.

Basically, the idea is to show that LFO
M is a definitional extension of the first-order logic

by translating formulae ϕ of LFO
M into formulae ϕ

′

of the first-order logic, in which the
following two properties hold:

1. ϕ⇔ ϕ
′

is derivable in LFO
M , and

2. if ϕ is derivable in LFO
M , then ϕ

′

is derivable in the first-order logic.

Therefore, we need to show that all the formulae in LFO
M which are not first-order

formulae can be translated into first-order formulae based on derivable equivalence in LFO
M .

First of all, the following principles in [134] for obtaining the general atomic formulae
are applicable in our translation.

t1 = t2 ⇔ ∃x.(t1 = x ∧ t2 = x) (5.1)

f(t) = t0 ⇔ ∃x, y.(t = x ∧ t0 = y ∧ f(x) = y) (5.2)

p(t1, ..., tn) ⇔ ∃x1, ..., xn.(t1 = x1 ∧ ... ∧ tn = xn ∧ p(x1, ...xn)) (5.3)

upd(r,∆) ⇔ ∃X3.(X3 = ∆ ∧ upd(r,X3)) (5.4)

upm(r, ∆̈) ⇔ ∃X4.(X4 = ∆̈ ∧ upm(r,X4)) (5.5)

∆(f, t, t0) ⇔ ∃x, y.(x = t ∧ y = t0 ∧ ∆(f, x, y)) (5.6)

∆̈(f, t, t0, t
′

) ⇔ ∃x, y, z.(x = t ∧ y = t0 ∧ z = t
′

∧ ∆̈(f, x, y, z)) (5.7)

It was shown in Subsection 5.5.1 that the second-order formulae used in LFO
M can

be translated into first-order formulae. Therefore, atomic formulae in the definitional
extension of the first-order logic after the translation can be restricted to be the following:

• x = y

• f(x) = y
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• P (x1, ...xn)

• upd(r,X3
∆)

• upm(r,X4
∆̈
)

• ∈3
∆ (X3, x1, ..., x3)

• ∈4
∆̈

(X4, x1, ..., x4)

With respect to the extended formulae in LFO
M , we still need to eliminate the formulae

def(r) and [∆]ϕ. As DB-ASM rules have no recursive definitions, the presence of def(r) is
trivial. It means that def(r) can be replaced with the constant true as proposed in [134].
For the modal operator [∆] in the formula [∆]ϕ, we use the following equivalences which
are derivable from LFO

M .

[∆]x = y ⇔ (con(∆) ⇒ x = y) (5.8)

[∆]f(x) = y ⇔ (con(∆) ⇒ ∆(f, x, y)) ∨ (inv(∆, f, x) ∧ f(x) = y) (5.9)

[∆]p(x1, ..., xn) ⇔ (con(∆) ⇒ p(x1, ..., xn)) (5.10)

[∆]¬ϕ ⇔ (con(∆) ⇒ ¬[∆]ϕ) (5.11)

[∆](ϕ ∧ ψ) ⇔ ([∆]ϕ ∧ [∆]ψ) (5.12)

[∆](ϕ ∨ ψ) ⇔ ([∆]ϕ ∨ [∆]ψ) (5.13)

[∆](ϕ⇒ ψ) ⇔ ([∆]ϕ⇒ [∆]ψ) (5.14)

[∆]∀x.ϕ ⇔ ∀x.[∆]ϕ (5.15)

[∆]∃x.ϕ ⇔ ∃x.[∆]ϕ (5.16)

There is one thing worth to be mentioned. According to the semantics of formula [∆]ϕ
defined in Definition 5.2.2, [[[∆]ϕ]]S,ζ = true if [[ϕ]]S+∆,ζ = true for each state after applying
a consistent ∆. Thus the following formalisation for the equivalent formula of [∆]x = y
would not be correct.

[∆]x = y ⇔ (con(∆) ∧ x = y).

When ∆ is inconsistent, [∆]x = y should be interpreted as true because of no successor
states. However, the above incorrect formalisation says that [∆]x = y should be interpreted
as false when ∆ is inconsistent. The same reason applies for the formalisation of the
equivalent formulae of [∆]f(x) = y, [∆]p(x1, ..., xn) and [∆]¬ϕ.

The following Theorems 5.5.2 and 5.5.3 about the completeness and compactness of
LFO

M are straightforward results following the properties of the first-order logic.

Theorem 5.5.2. Let M be a DB-ASM and Φ be a set of sentences. If Φ |=M ϕ, then
Φ ⊢M ϕ.

Theorem 5.5.3. If each finite subset of a set Φ of formulae is satisfiable, then Φ is
satisfiable.
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Chapter 6

Partial Database Updates

In this chapter, we investigate the partial update problem in the context of complex-value
databases. In database transformations, bounded parallelism is intrinsic and complex data
structures form the core of each data model. Thus, the problem of partial updates arises
naturally.

In Section 6.1, we first provide an example to illustrate the partial update problem
encountered in a nested relational database which is built upon the NRDM discussed in
Chapter 4. Then, we extend the discussion to the partial update problem in association
with various type constructors used in a data model of complex-value databases.

The applicative algebra proposed by Gurevich and Tillmann [87, 88, 89] which addresses
the partial update problem in a general setting is recalled in Section 6.2. However, using
applicative algebras is not as smooth as its simple definition suggests. The root of the
difficulties stems from the fact that it is common in data models to permit the arbitrary
nesting of complex-value constructors. That is, an object in a complex-value database
may be of a type built upon intricate nesting of a variety of type constructors over base
types. Consequently, we need particles for each position in a complex value, and each
nested structure requires its own parallel composition operation. Therefore, we have to
deal with the theoretical possibility of infinitely many applicative algebras, which requires
a mechanism for the construction of such algebras out of algebras for parts of the type of
every object in a complex-value database. This leads to the question of how to efficiently
check consistency for sets of partial updates.

In view of these problems, we propose an alternative solution to the problem of partial
updates. The preliminaries such as the definition of partial locations, partial updates,
and different kinds of dependencies among partial locations are handled in Section 6.3. In
order to reflect a natural and flexible computing environment for database transformations,
we relax the disjointness assumption on the notion of location. While, in principle, the
locations bound to complex values are not independent from each other, we may consider
each position within a complex value as a sublocation, which for simplicity of terminology
we prefer to call also location. Then a partial update to a location is in fact a (partial)
update to a sublocation.

In doing so, we can transform the problems of consistency checking and parallel com-
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position into two stages: normalisation of shared updates and integration of total updates,
which are discussed in Section 6.4 and Section 6.5, correspondingly. The first stage deals
with compatibility of operators in shared updates and the second one deals with compati-
bility of clusters of exclusive updates.

We discuss the applications of partial updates in aggregate computing in Section 6.6.

6.1 The Problems

This section is to illustrate several typical partial update problems that may happen in
complex-value databases. We begin with modifications on tuples in a relation since tuples
represent a common view for locations in the relational model. As will be revealed in the
following example, parallel manipulations on distinct attributes of a tuple are prohibited
if only tuples are permissible locations in a state.

Example 6.1.1. Let S be a state containing a nested relation schema R = {A1 : {A11 :
D11, A12 : D22}, A2 : D2, A3 : D3} and a nested relation I(R) over R as shown in Figure 6.1.
Then we have the locations R({(a11, a12), (a

′

11, a12)}, b, c1), R({(a21, a22), (a
′

21, a22)}, b, c2)
and R({(a31, a32)}, b3, c3), such that

• valS(R({(a11, a12), (a
′

11, a12)}, b, c1)) = true

• valS(R({(a21, a22), (a
′

21, a22)}, b, c2)) = true

• valS(R({(a31, a32)}, b3, c3)) = true

Suppose that two update manipulations execute in parallel to modify values of at-
tributes A2 and A3 in the same tuple. For example, the right rule in Figure 6.1
changes the attribute value b3 in the third tuple to b. Meanwhile, the left rule in Fig-
ure 6.1 changes the attribute value c3 in the same tuple to c2. The left and right rules
yield pairs of updates {(R({[a31, a32)}, b3, c3), false), (R({(a31, a32)}, b3, c2), true)} and
{(R({(a31, a32)}, b, c3), true), (R({(a31, a32)}, b3, c3), false)}, respectively. Since these two
update manipulation are running in parallel, after the consistency checking and parallel
composition, we get an update set ∆ = {(R({(a31, a32)}, b, c3), true), (R({(a31, a32)}, b3, c3),
false), (R({(a31, a32)}, b3, c2), true)}.

However, applying the update set ∆ in state S results in replacing the tuple
R({(a31, a32)}, b3, c3) by two tuples R({(a31, a32)}, b, c3), R({(a31, a32)}, b3, c2) rather than
a single tuple R({(a31, a32)}, b, c2) as expected in the resulting relation.

In order to solve this partial update problem on attributes, a straightforward solution is
to add a finite number of attribute functions as locations for accessing attributes of tuples.
Thus, in a state of relational database transformations, locations are extended to either
an n-ary relational function symbol R with n arguments such as R(a1, ..., an), or a unary
attribute function symbol with an argument in the form of fR.A1....Ak

(o) for a relation name
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I(R)
A1 A2 A3

A11 A12

{(a11, a12), b c1
(a

′

11, a12)}
{(a21, a22), b c2
(a

′

21, a22)}
{(a31, a32)} b3 c3

forall x, y, z with R(x, y, z) ∧ y = b3
do

par
R(x, y, z) := false
R(x, y, c2) := true

endpar
enddo

forall x, y, z with R(x, y, z) ∧ y = b3
do

par
R(x, y, z) := false
R(x, b, z) := true

endpar
enddo

Figure 6.1: A problem of partial updates on attributes of a nested relation

R, attributes A1, . . . , Ak and an identifier o. Note that, the addition of attribute functions
cannot replace the existence of relational functions. To delete a tuple from or add a tuple
into a relation, we must still use relational functions. Attribute functions can only be
used to modify the values of attributes, including NULL values. For the same reason,
both relational functions and attribute functions are needed for a subrelation residing in a
relation-valued attribute.

The following example illustrates how values of distinct attributes in the same tuple
can be modified in parallel by using this approach.

Example 6.1.2. Let us consider again the nested relation I(R) in Figure 6.2. Assume
that oi (i = 1, 2, 3) are the identifiers of the tuples in the relation I(R) and oij (j = 1, 2)
are the identifers of the nested tuples in the subrelations in the attribute A1 of tuples
oi, respectively. Furthermore, we assume that there is a set of attribute functions with
a one-to-one corresponding to the set A(R) = {A1, A1.A11, A1.A12, A2, A3} of attributes
contained in R, i.e., for each Ak ∈ A(R), fR.Ak

(x) = y for a tuple identifier x in I(R) and
a value y in the domain of Ak. More concretely, the interpretation of attribute functions
over I(R) in state S is as follows.

• valS(fR.A1
(o1)) = {(a11, a12), (a

′

11, a12)}
valS(fR.A1

(o2)) = {(a21, a22), (a
′

21, a22)}
valS(fR.A1

(o3)) = {(a31, a32)}

• valS(fR.A2
(o1)) = b valS(fR.A2

(o2)) = b valS(fR.A2
(o3)) = b3
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I(R)
A1 A2 A3

A11 A12

o1 o11 {(a11, a12), b c1
o12 (a

′

11, a12)}
o2 o21 {(a21, a22), b c2

o22 (a
′

21, a22)}
o3 o31 {(a31, a32)} b3 c3

forall x with R(x) ∧ fR.A2
(x) = b3 do

par
fR.A2

(x) := b
fR.A3

(x) := c2
endpar

enddo

Figure 6.2: A program updating two attributes in parallel

• valS(fR.A3
(o1)) = c1 valS(fR.A3

(o2)) = c2 valS(fR.A3
(o3)) = c3

• valS(fR.A1.A11
(o11)) = a11 valS(fR.A1.A11

(o12)) = a
′

11

valS(fR.A1.A11
(o21)) = a21 valS(fR.A1.A11

(o22)) = a
′

21

valS(fR.A1.A11
(o31)) = a31

• valS(fR.A1.A12
(o11)) = a12 valS(fR.A1.A12

(o12)) = a12

valS(fR.A1.A12
(o21)) = a22 valS(fR.A1.A12

(o22)) = a22

valS(fR.A1.A12
(o31)) = a32

Apart from the relational functions presented in Example 6.1.1, we also need the fol-
lowing relational functions referring to the sub-tuples in the relation I(R).

• valS(fR
′
.A1

(o1)(a11, a12)) = true

valS(fR
′
.A1

(o1)(a
′

11, a12)) = true
valS(fR

′
.A1

(o2)(a21, a22)) = true

valS(fR
′
.A1

(o2)(a
′

21, a22)) = true
valS(fR

′
.A1

(o3)(a31, a32)) = true

Using this approach, the rule in Figure 6.2 is able to modify values of attributes A2

and A3 of the same tuple in parallel.
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The nested relation is just one example of complex-value databases. Other complex-
value data models are possible by allowing arbitrary nesting of further type constructors
such as list and multiset over base domains of a database transformation. The general
idea is to similarly extend locations for each type constructor to be considered. Next we
propose the locations necessary for two other common type constructors: list and multiset.

To change attribute values that are lists of elements, there are several approaches.
Following the terminology in [89], we call a position of a list as the number referring to
an element of the list, and a place of a list to be before the first element, between two
adjacent elements or after the last element of the list, which both start from zero and
counts from left-to-right. Let us take the list [b11, b12] as an example. There are three
positions in [b11, b12], where the element b11 is in position 0 and the element b12 is in
position 1. Moreover, the list [b11, b12] has three places, where place 0 is just before the
element b11, place 1 is between the elements b11 and b12 and place 2 is after the element b12.
In our discussion, we prefer to consider that, for a finite list s with length n, the locations
of s are in the form of fs(k, k) for k = 0, . . . , n and fs(k, k + 1) for k = 0, . . . , n− 1. That
is, a location fs(k, k) indicates an insertion point of the list s, while a location fs(k, k+ 1)
targets an element in the list to be modified or deleted. The symbol ↓ is used to indicate
a deletion operation.

Similarly, there are also various ways to add locations for accessing attribute values
which are multisets of elements. Here, we define multisets by associating a multiset with a
pair (D, f), where D is a domain of elements and f : D → N is a function from D to the
set of natural numbers. Correspondingly, the locations referring to elements of a multiset
M can be expressed as unary functions in the form of fM(x) and an update (fM(x), y)
specifies that the element x has the number y of occurrence in the multiset M. If y is
zero, i.e., (fM(x), 0), then we say that the element x does not exist in the multiset M. In
other words, the update says to remove x from the multiset M. The following example
illustrates how to specify updates to lists and multisets using such locations.

Example 6.1.3. Let N (D2) be the set of all finite lists over the domain D2 and, similarly,
M(D3) be the set of all finite multisets over the domain D3. Suppose that we modify the
relation I(R) in Figure 6.2 to be a relation I(R

′

) in Figure 6.3 by associating the attribute
A2 with the domain N (D2) and associating the attribute A3 with the domain M(D3).
Then, the attribute functions for attributes A2 and A3 need to be changed correspondingly.
That is,

• valS(fR
′
.A2

(o1)) = [b11, b12]

• valS(fR
′
.A2

(o2)) = [b21, b22, b23]

• valS(fR
′
.A2

(o3)) = [b3]

• valS(fR
′
.A3

(o1)) = {{c1, c1}}

• valS(fR
′
.A3

(o2)) = {{c21, c22, c22}}
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I(R
′

)
A1 A2 A3

A11 A12

o1 o11 {(a11, a12), [b11, b12] {{c1, c1}}
o12 (a

′

11, a12)}
o2 o21 {(a21, a22), [b21, b22, b23] {{c21, c22, c22}}

o22 (a
′

21, a22)}
o3 o31 {(a31, a32)} [b3] {{c31, c32, c33}}

Figure 6.3: A relation in complex-value databases

• valS(fR
′
.A3

(o3)) = {{c31, c32, c33}}

With respect to the value [b11, b12] of attribute A2 in the tuple o1, we may have a set of
the locations {fR

′
.A2

(o1)(k, k)|k = 0, 1, 2} ∪ {fR
′
.A2

(o1)(k, k + 1)|k = 0, 1}.

• To insert an element b
′

11 just before b11, the update would be (fR
′
.A2

(o1)(0, 0), b
′

11).

• To replace the element b11 with b
′

11, the update would be (fR
′
.A2

(o1)(0, 1), b
′

11).

• To delete the element b11, the update would be (fR
′
.A2

(o1)(0, 1), ↓).

As discussed before, for the value {{c21, c22, c22}} of attribute A3 in the tuple o2, we may
have at least two locations fR

′
.A3

(o2)(c21) and fR
′
.A3

(o1)(c22).

• To add a new element c23 with the multiplicity 3, the update would be
(fR

′
.A3

(o2)(c23), 3).

• To modify the multiplicity of the element c22 to be 1, the update would be
(fR

′
.A3

(o2)(c22), 1).

• To delete the element c22 from the multiset, the update would be (fR
′
.A3

(o2)(c22), 0).

In addition, we may want to increase the multiplicity of an element in a multiset by a
number k. In this case, we do not care about the original number of occurrence as long as
the multiplicity of the element has been increased by k. For this kind of modification, it
would be natural to associate an additional operator with an update so as to describe how
the multiplicity will be changed, for example, increase or decrease.

The above approach of adding attribute functions works quite well in resolving the
problem of partial updates on distinct attributes of a tuple or a subtuple. Nevertheless, the
co-existence of locations R(a1, ..., an) for relational functions and fR.A1....Ak

(o) for attribute
functions give rise to new problems as illustrated by the following example.
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par
forall x with R(x) ∧ fR.A2

(x) = b3 do
fR.A2

(x) := b
enddo
forall x, y, z with R(x, y, z) ∧ y = b3 do
R(x, y, z) := false

enddo
endpar

Figure 6.4: A problem of partial updates after adding attribute functions

Example 6.1.4. In Figure 6.4 we have another rule executing over the nested relation
I(R) shown in Figure 6.2. Then the rule yields an update set containing two updates
(fR.A2

(o3), b) and (R({(a31, a32)}, b3, c3), false). By using the standard definition for a
consistent update set, we know that this update set is consistent. However, they are
actually conflicting each other: The update (fR.A2

(o3), b) intends to change the value of
attribute A2 of the tuple with identifier o3 to b, while the update (R({(a31, a32)}, b3, c3),
false) intends to delete this tuple.

6.2 Applicative Algebra

In this section, we first recall the solution for the partial update problem proposed by
Gurevich and Tillmann [87, 88, 89]. Then, we discuss the limitations of applying their
solution in the context of complex-value databases.

6.2.1 General Framework

In [89], Gurevich and Tillmann have defined applicative algebra as a general algebraic
framework for partial updates.

Definition 6.2.1. An applicative algebra A consists of

• elements, which comprise a trivial element λ and a non-empty set of elements of a
type τ ,

• a monoid of total unary operations (called particles) over τ with functional compo-
sition and the identity operation id, including a trivial particle λ, and

– f(λ) = λ for every particle f , and

– λ(x) = λ for every element x.

• a parallel composition operation Ω, which assigns a particle ΩM to each finite mul-
tiset M of particles, such that the following conditions are satisfied:
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– Ω{{f}} = f ,

– Ω(M⊎ {{id}}) = ΩM, and

– Ω(M⊎ {{λ}}) = λ.

As particles may come in families, a particle f of a family F is given by a tuple (y1, ..., yn)
of parameters which is called the control of f in F , and denoted by f [y1, ..., yn](x).

Definition 6.2.2. A multiset M of particles is consistent if ΩM 6= λ.

Applicative algebra describes a collection of parallel modifications over elements of a
type τ . In Gurevich’s and Tillmann’s work [87, 89], a partial update is a pair (ℓ, f) of
a location ℓ of some type τ and a particle f over τ . For convenience, we say that such
a partial update is of type τ . Therefore, an applicative algebra over a type τ becomes a
general framework for handling all possible particles which may occur in partial updates
of type τ . As this framework leaves the definition of ΩM = λ open, it is empowered with
full generality.

By characterising the algebraic properties of ΩM, different classes of applicative alge-
bras can be identified. There is an old framework developed by Gurevich and Tillmann in
[87], targeted for partial updates in the cases of types counter, set and map. As discussed
in [88, 89], this old framework can be regarded as a special class of applicative algebras,
called functional applicative algebra.

Definition 6.2.3. For any two particles f1 and f2 over the same type, f1 and f2 commute
if (f1◦f2)(x) = (f2◦f1)(x) for all x of that type, and f1 and f2 malcommute if (f1◦f2)(x) 6=
(f2 ◦ f1)(x) for all x of that type.

Definition 6.2.4. A functional applicative algebra is an applicative algebra where

Ω{{f1, . . . , fn}} =

{
f1 ◦ · · · ◦ fn if all fi, fj commute (1 ≤ i 6= j ≤ n),

λ otherwise.

A functional applicative algebra is called apt if every nontrivial particle maps nontrivial
elements to nontrivial elements, and every nontrivial particles f1, f2 either commute or
malcommute.

Lemma 6.2.1. (Gurevich and Tillmann [87]). Let M be a multiset of particles of an apt
functional applicative algebra. Then M is consistent iff every two members of M commute.

Intuitively, a functional applicative algebra states that a multiset of particles of a type
τ is consistent if the functional composition of them is order-independent. Although this
approach was successfully applied on types counter, set and map, it has been pointed
out in [88, 89] that a functional applicative algebra is too restrictive for particles of type
sequence. More specifically, for two compatible modifications f1, f2 over type sequence such

148



6.2. APPLICATIVE ALGEBRA

that Ω{{f1, f2}} 6= λ, it is still possible that f1 ◦ f2 6= f2 ◦ f1 holds, i.e., different orders of
executing sequential compositions of particles leads to different results.

A solution for the partial update problem over type sequence in the setting of applicative
algebra was proposed in [89]. Let A be an applicative algebra over type τ , which contains
at least two nontrivial elements. Then an applicative algebra seq(A) over type sequence is
defined by:

• seq(A) has infinitely many nontrivial elements that are finite sequences over τ , to-
gether with the trivial sequence λ.

• seq(A) has three families of particles: substitution, alteration and position particles.

– substitution particle sub[a, s1, s2] for a ∈ N, a sequence s1 of unary predicates
over A and a nontrivial replacement sequence s2;

– alteration particle alter[a, f ] for a ∈ N and a particle f of A;

– position particles pos[a] for a ∈ N.

• for a multiset M of particles, ΩM = λ if either of the following conditions holds.

– M contains particles f1, f2 such that neither f1 < f2 nor f1 > f2, and f1 is a
substitution and f2 is either a substitution or an alteration particle.

– M contains particles alter[a, f
′

1], . . . , alter[a, f
′

n] with the same a such that
Ω{{f

′

1, . . . , f
′

n}} = λ in A.

Let ♯s denote the length of a sequence s. Then a substitution particle sub[a, s1, s2] is

• an insertion at a with s2 if s1 is empty,

• a deletion from a to a+ ♯s1 − 1 if s1 is not empty but s2 is empty, or

• a replacement from a to a+ ♯s1 − 1 with s2 if both s1 and s2 are nonempty.

An alteration particle alter[a, f ] alters the element of A at a with the particle f of A. A
position particle pos[a] checks whether the position a is present in a file. A particle f1 is
to the left of f2, denoted as f1 < f2, if the part of a file that f1 involves is to the left of the
part of a file that f2 involves.

6.2.2 Limitations

In the context of establishing applicative algebra, there is an important assumption that
locations of partial updates are disjoint. Let M be a multiset of particles, Loc(M) be
the set of locations occurring in M and Mℓ be a submultiset of M such that Mℓ =
{{(f, ℓ)|(f, ℓ) ∈ M}}. Then, by the disjointness condition of locations, we have,

ΩM 6= λ iff ΩMℓ 6= λ for each ℓ ∈ Loc(M).
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However, if we remove the assumption that locations in a state are disjoint, then ΩM
may be λ even when ΩMℓ 6= λ for each ℓ ∈ Loc(M). This has been exemplified in Example
6.1.4, where the location R({(a31, a32)}, b3, c3) subsume the location fR.A2

(o3) and the two
updates (fR.A2

(o3), b) and (R({(a31, a32)}, b3, c3), false) are not consistent. That is, due to
the arbitrary nesting of complex-value constructors, locations of complex-value database
are often defined at multiple abstraction levels and thereby non-disjoint. In fact, allowing
locations of different abstraction levels plays a vital role in supporting the requests of
updating complex-values of a database at different granularity.

This brings us to the question of how to utilise the approach of applicative algebra
to solve the partial update problem in the setting of non-disjoint locations. A cursory
investigation reveals two possible approaches:

• Straightforwardly, we can convert a multiset of partial updates that have non-disjoint
locations into a multiset of partial updates that have disjoint locations. Then ap-
plicative algebras can be applied to different types in a similar way as suggested in
[89].

• The second one is to establish a mechanism for the nested construction of applicative
algebras out of applicative algebras in accordance with complex data structures used
in the data models of complex-value databases.

In other words, the first approach suggests to transform updates with nested locations
into updates with nested modifications but disjoint locations. Because all sorts of particles
used to modify the nested internal structure of an element have to be defined on the
outermost type of the element, this immediately leads to particles with complicated controls
which are necessary to encode the nested modifications. Generally, the more complicated
a type, the more complex the encoding of controls for particles. As a consequence of this,
it is imperative to define a notion of the parallel composition operation for partial updates
with the nested structures in their controls. Pragmatically, this turns out to be hard to
implement in a complex-value database environment. The following example illustrates a
possible way of encoding the nested modifications into the controls of particles.

Example 6.2.1. Recall the relation I(R
′

) of the complex-value database provided in Fig-
ure 6.3. Assume that the set of disjoint locations chosen in this example is in the form
of the relational function symbol R

′

with three arguments, and there are four updates
(fR

′
.A2

(o3)(0, 0), b
′

3), (fR
′
.A2

(o3)(1, 1), b
′′

3), (fR
′
.A1.A11

(o21), a
′

21) and (fR
′
.A3

(o3)(c31), 2).
Now we need to convert these four updates into updates with the location

R
′

({(a31, a32)}, [b3], {{c31, c32, c33}}). To achieve this, we have to encode the parameters
of locations into the controls of particles, such as,

• f [R
′

.A2, (list insert(0, 0, b
′

3))](x)

• f [R
′

.A2, (list insert(1, 1, b
′′

3))](x)

• f [R
′

.A1.A11, (replace value(o21, a
′

21))](x)
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• f [R
′

.A3, (modify multiset(c31, 2))](x)

where list insert(x1, x2, y) inserts y into the place between x1 and x2 of a list,
replace value(x, y) replaces the specified attribute value in a tuple with identifier x with
y, and modify multiset(x, y) modifies the multiplicity of element x in a multiset to be
y.

Therefore, from an algebraic point of view, we still need to establish algebras out of
algebras for handling the nested controls of particles in the first approach. This would be
similar to but worse than directly establishing algebras out of algebras for locations because
the notion of control of a particle is very confusing. How should we formalise particles
with nested controls, in which elements from the base set of a database transformation
might appear, without violating the abstract state and genericity postulates requested by
a database transformation?

Now we look into the second approach. To help the illustration, we will still base the
discussion on the relation I(R

′

) in Figure 6.3.

Example 6.2.2. We know that the relation I(R
′

) in Figure 6.3 has the following schema:

R
′

= {A1 : {A11 : D11, A12 : D22}, A2 : N (D2), A3 : M(D3)},

and the associated type:

typ(R
′

) = {(A1 : {(A11 : D11, A12 : D22)}, A2 : N (D2), A3 : M(D3))}.

Assume that Ai (i = 11, 12, 2, 3) are applicative algebras built upon the domainsDi, and
we use the notations set(A), tup(A), seq(A) andmul(A) to denote applicative algebras built
upon an applicative algebras A for types set, tuple, sequence and multiset, respectively.
Then by the type typ(R

′

), the construction for the following nested applicative algebra
needs to be established.

set(tup(set(tup(A11,A12)), seq(A2), mul(A3)))

This kind of construction is quite complicated. Furthermore, there are several issues
which need to be further explored.

• How to properly reflect the consistency and integration of partial updates at a par-
ticular level in the consistency and integration of partial updates at higher levels?

• Is there an efficient algorithm that can handle the consistency and integration of a
multiset of partial updates at different abstraction levels?

In the rest of this chapter, we will develop a customised and efficient mechanism to
handle the partial update problem in the context of complex-value databases.
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6.3 Preliminaries

In order to deal with the problems discussed in the previous section, we first have to relax
the standard notion of location, and then formally define partial updates.

6.3.1 Partial Locations

To avoid the confusion with the standard notion of location used in ASMs (see Definition
3.1.8), here we call such locations prime locations of a database transformation. While, in
principle, prime locations bound to complex values are independent from each other, we
may consider each position within a complex value as a non-prime location. For this, we
need to add some auxiliary function symbols into the signature of a state.

Definition 6.3.1. Let S be a state of a database transformation, f be an auxiliary
dynamic function symbol of arity n in the state signature and a1, ..., an be elements in the
base set of S. Then f(a1, ..., an) is called a non-prime location of S.

Definition 6.3.2. A location ℓ1 subsumes a location ℓ2 (notation: ℓ2 ⊑ ℓ1) if

• for all states S of a database transformation, valS(ℓ1) uniquely determines valS(ℓ2).

We call a location ℓ2 the sublocation of a location ℓ1 if ℓ2 ⊑ ℓ1 holds. A location is the
sublocation of itself. Furthermore, there is a trivial sublocation ℓ⊥ for every location.

Example 6.3.1. fR
′
.A2

(o3)(0, 0), fR
′
.A2

(o3)(1, 1) and fR
′
.A3

(o3)(c31) discussed in Ex-
ample 6.2.1 are the non-prime locations. Moreover, they are the sublocations of
R

′

({(a31, a32)}, [b3], {{c31, c32, c33}}).

From a constructive point of view, a prime location may be considered as an algebraic
structure in which its sublocations refer to parts of the structure. Since such a structure
is always constructed by using type constructors like set, tuple, list, multiset, etc. from a
specific data model, we only allow sublocations of a prime location, which either subsume
or disjoint one another, to be partial locations by the following definition. This restriction
is more a technicality so that we can focus on discussing the integration and consistency
checking of partial updates. Extending to the general case would be straightforward after
adding a decomposition procedure to eliminate sublocations that are overlapping but do
not subsume one another.

Example 6.3.2. For the prime location ℓ = R
′

({(a31, a32)}, [b3], {{c31, c32, c33}}) in the
relation I(R

′

) of Figure 6.3, it would be possible to consider fR
′
.A2

(o3)(0, 2) as a sublocation
of ℓ. However, we will treat it as a shortcut for a collection of partial locations, i.e.,
{fR

′
.A2

(o3)(0, 1), fR
′
.A2

(o3)(1, 1), fR
′
.A2

(o3)(1, 2)}, rather than a partial location itself.

Before presenting the formal definition of partial locations, we need to define two oper-
ations ⊔ℓ and ⊓ℓ. Let ℓ1, ℓ2, ℓ3 be three (prime or non-prime) locations. Then ℓ1 ⊔ℓ ℓ2 = ℓ3
if ℓ1 ⊑ ℓ3, ℓ2 ⊑ ℓ3 and there is no other ℓ ∈ Lℓ such that ℓ 6= ℓ3, ℓ1 ⊑ ℓ, ℓ2 ⊑ ℓ and ℓ ⊑ ℓ3.
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The operation ⊓ℓ can be similarly defined, that is, ℓ1⊓ℓ ℓ2 = ℓ3 if ℓ3 ⊑ ℓ1, ℓ3 ⊑ ℓ2 and there
is no other ℓ ∈ Lℓ such that ℓ 6= ℓ3, ℓ ⊑ ℓ1, ℓ ⊑ ℓ2 and ℓ3 ⊑ ℓ. We say ℓ1 ⊓ℓ ℓ2 = ℓ⊥ if ℓ1
and ℓ2 are disjoint, i.e., neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1 hold.

Definition 6.3.3. Let S be a state of a database transformation. Then the set of partial
locations of S is the smallest set such that

• each prime location is a partial location, and

• if each prime location ℓ is an algebraic structure (Lℓ,⊔,⊓, ℓ, ℓ⊥) satisfying the follow-
ing conditions, then each sublocation of ℓ is a partial location.

– (Lℓ,⊔ℓ,⊓ℓ) is a lattice, consisting of a set Lℓ of all sublocations of ℓ, and two
binary operations ⊔ℓ (i.e., join) and ⊓ℓ (i.e., meet) on Lℓ,

– ℓ is the identity element for the join operation ⊔ℓ,

– ℓ⊥ is the identity element for the meet operation ⊓ℓ, and

– for any ℓ1 and ℓ2 in Lℓ, one of the following conditions must be satisfied:

∗ ℓ1 ⊔ℓ ℓ2 = ℓ1,

∗ ℓ1 ⊔ℓ ℓ2 = ℓ2,

∗ ℓ1 ⊓ℓ ℓ2 = ℓ⊥.

Example 6.3.3. Let us consider the prime location R
′

({(a31, a32)}, [b3], {{c31, c32, c33}}) in
the relation I(R

′

) of Figure 6.3. This prime location can be regarded as an algebraic
structure illustrated in Figure 6.5, where the label i of a node in the picture at the top
corresponds to the index i of the sublocation ℓi in the table at the bottom. All conditions
required by Definition 6.3.3 are satisfied, therefore, these sublocations are partial locations.

In addition to the subsumption relation, one partial location may be dependent on
another partial location, i.e., there exists the dependence relation over partial locations of
a state.

Definition 6.3.4. A location ℓ1 depends on a location ℓ2 (notation: ℓ2�ℓ1) if valS(ℓ2) = ⊥
implies valS(ℓ1) = ⊥ for all states S.

The dependency relation � is said to be strict on the location ℓ, if, for all ℓ1, ℓ2, ℓ3 ∈
Lℓ = {ℓ′ | ℓ′ ⊑ ℓ}, we have that whenever ℓ1 � ℓ2 and ℓ1 � ℓ3 hold, then either ℓ2 � ℓ3 or
ℓ3 � ℓ2 holds as well.

However, such a dependency may also occur without nesting, the prominent examples
being sequences and trees.

Example 6.3.4. Consider the partial locations fR
′
.A2

(o3)(0, 0), fR
′
.A2

(o3)(0, 1) and

fR
′
.A2

(o3)(1, 1) in the relation I(R
′

) of Figure 6.3. As fR
′
.A2

(o3)(k
′

1, k
′

2) � fR
′
.A2

(o3)(k1, k2)

holds for k
′

1 < k2, the dependency relation � is strict on fR
′
.A2

(o3).
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ℓ0 R
′

({(a31, a32)}, [b3], {{c31, c32, c33}})
ℓ1 fR

′
.A1

(o3)
ℓ2 fR

′
.A2

(o3)
ℓ3 fR

′
.A3

(o3)
ℓ11 fR

′
.A1

(o3)(a31, a32)
ℓ111 fR

′
.A1.A11

(o31)
ℓ112 fR

′
.A1.A12

(o31)
ℓ21 fR

′
.A2

(o3)(0, 0)
ℓ22 fR

′
.A2

(o3)(0, 1)
ℓ23 fR

′
.A2

(o3)(1, 1)
ℓ31 fR

′
.A3

(o3)(c31)
ℓ32 fR

′
.A3

(o3)(c32)
ℓ33 fR

′
.A3

(o3)(c33)
ℓ⊥

Figure 6.5: An algebraic structure of a prime location
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B+-trees provide examples for non-strict dependency relations that are at the same
time not induced by subsumption.

A partial location ℓ2 that is subsumed by a partial location ℓ1 certainly depends on it
in the sense that if it is bound to a value other than ⊥ (representing undefinedness), then
also ℓ1 cannot be bound to ⊥. So the following lemma is straightforward.

Lemma 6.3.1. For two partial locations ℓ1, ℓ2 with ℓ2 ⊑ ℓ1 we also have ℓ1 � ℓ2.

Proof. Let S be a state. As valS(ℓ1) uniquely determines valS(ℓ2), clearly, valS(l1) = ⊥
implies valS(l2) = ⊥. That is, ℓ2 depends on ℓ1, i.e. ℓ1 � ℓ2.

6.3.2 Partial Updates

To formalise the definition of partial updates, we associate a type with each partial location
ℓ = f(a1, ..., an), such that the type τ(ℓ) of f(a1, ..., an) is the codomain of the function
f : D1×...×Dn → D, i.e., τ(ℓ) = D. Therefore, a type of partial locations can be a built-in
type provided by database systems, such as String, Int, Date, etc., a complex-value type
constructed by using type constructors in a data model, such as set, tuple, list and multiset
constructors, or a customised type defined by users, i.e., user-defined types (UDTs) used
in database applications.

Example 6.3.5. Reconsider the partial locations ℓ1 = fR
′
.A1

(o3), ℓ2 = fR
′
.A2

(o3) and

ℓ3 = fR
′
.A3

(o3) in Example 6.3.3 and the relation I(R
′

) in Figure 6.3. They have the
following types:

• τ(ℓ1) = P(NT 2(D11, D12)),

• τ(ℓ2) = N (D2), and

• τ(ℓ3) = M(D3),

where P(D), N (D) and M(D) denote the set of all subsets, lists and multisets over the
domain D, and NT 2(D1, D2) denotes the set of all 2-ary tuples over the domains D1 and
D2.

Instead of particles, we will formalise partial updates of a database transformation in
terms of two types: exclusive and shared updates.

Definition 6.3.5. An exclusive update is a pair (ℓ, b) consisting of a location ℓ and a value
b of the same type τ as ℓ. A shared update is a triple (ℓ, b, µ) consisting of

• a location ℓ of type τ ,

• a value b of type τ , and

• a binary operator µ : τ × τ → τ .
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For a state S and an update set ∆ containing a single (exclusive or shared) update, we
have

valS+∆(ℓ) =

{
b if ∆ = {(ℓ, b)}

µ(valS(ℓ), b) if ∆ = {(ℓ, b, µ)}

Although exclusive updates have the similar form to updates of ASMs defined in a
standard way, exclusive updates are allowed to have partial locations. It means that
the locations of two exclusive updates may have a dependency relationship, whereas the
locations of two standard updates of ASMs are assumed to be independent. Therefore, the
notion of exclusive update generalises the notion of update in ASMs. Updates defined in
ASMs become exclusive updates to prime locations in our definition.

In a shared update (ℓ, b, µ), the binary operator µ is used to specify how the value
b partially affects the content of ℓ in a state. When multiple partial updates are gen-
erated to the same location simultaneously, a multiset of partial updates is obtained.
For example, a location ℓ of type N may associate with a multiset of shared updates
{{(ℓ, 10,+), (ℓ, 10,+), (ℓ, 5,−)}} (i.e., increase the content of ℓ by 10 twice and decrease the
content of ℓ by 5 once). Another reason for the introduction of a binary operator µ in a
shared update is more specific to the requirements of database transformations. Let us
elaborate this point by the following example.

Example 6.3.6. Suppose that we have two partial updates (ℓ, 5,+) and (ℓ, 1,×), which
may also be expressed by particles: incr[5](x) and times[1](x). Assume that we define
ΩMℓ = λ iff the functional composition of particles in M is order-independent. In this
case, as ℓ is a type of N (become a type counter if using the terminology of [89]), this
definition of the parallel composition operation for particles associated with ℓ is quite
reasonable.

According to the above definition, we may conclude that these two particles are consis-
tent, and therefore two partial updates are consistent. However, an important principle of
database transformations is the genericity principle which are stipulated by the abstract
state and genericity postulates. Respecting these principles mean that, if two partial up-
dates (ℓ, 5,+) and (ℓ, 1,×) are consistent, then any two partial updates (ℓ, ς(5),+) and
(ℓ, ς(1),×) should also be consistent, where ς is a permutation over elements in base do-
mains of a database transformation. Obviously, this is not correct. If we swap the elements
1 and 5, then (ℓ, 1,+) and (ℓ, 5,×) are not consistent.

The use of a binary operator µ in shared updates helps us to separate the concerns
relating to database instance and database schema. By this separation, the consistency
checking of incompatible operators can be conducted at a database schema level, which
will be further discussed in the next section. So this viewpoint is efficient in practice,
particularly for those database applications with large data-sets.

The border between shared and exclusive updates lies in whether the modifications are
intended to share with each other. An exclusive update (ℓ, b) may be regarded as a special
kind of shared update (ℓ, b, µ), where µ is a projection function on pairs of values of type τ .
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Nonetheless, we prefer to separate the treatment of exclusive and shared updates, as only
the latter ones require considerable care for consistency checking of operators. Because of
the separation, we provide different update rules to generate exclusive and shared updates.

Definition 6.3.6. Let t1 and t2 be terms of type τ , and µ be a binary operator over type
τ . Then the partial update rules take one of the following two forms

• the rule for exclusive updates:

t1 ⇇ t2;

• the rule for shared updates:

t1 ⇇µ t2.

Semantically, the partial update rules generate updates in a multiset. Let S be a state
and ζ be a variable assignment. Then

• ∆̈(t1 ⇇ t2, S, ζ) = {{(ℓ, b)}} and

• ∆̈(t1 ⇇µ t2, S, ζ) = {{(ℓ, b, µ)}},

where ℓ = t1[a1/x1, . . . , an/xn] for var(t1) = {x1, . . . , xn} and ζ(xi) = ai (i = 0, . . . , n),
and valS,ζ(t2) = b.

Remark 6.3.1. The addition of auxiliary functions as locations of a state requires a shifted
view for partial updates in our definition. In contrast to an update (ℓ, b) defined in standard
ASMs, in which valS+{(ℓ,b)}(ℓ) = b holds for every state S, the partial updates considered
here do not satisfy such a condition.

This can be illustrated by the following example.

Example 6.3.7. Consider a state S that contains the relation I(R
′

) in Figure 6.3 and
the partial updates (fR

′
.A2

(o3)(0, 0), d31) and (fR
′
.A2

(o3)(0, 1), d32). Applying these par-
tial updates will change the value of attribute A2 at the tuple with identifier o3 from
[d3] in the state S to [d31, d32] in the successor state S

′

= S + {(fR
′
.A2

(o3)(0, 0), d31),
(fR

′
.A2

(o3)(0, 1), d32)}. However, valS′ (fR
′
.A2

(o3)(0, 0)) 6= d31 and valS′ (fR
′
.A2

(o3)(0, 1)) 6=
d32. Instead, we may say, valS′ (fR

′
.A2

(o3)(0, 0)) = null and valS′ (fR
′
.A2

(o3)(0, 1)) = d31.

For convenience, we will call partial location as location in the rest of this chapter.
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6.4 Normalisation of Shared Updates

Normalisation of a multiset ∆̈ of partial updates is the process of merging all shared updates
to the same location into a single exclusive update. Thus, ∆̈ is transformed into an update
set ∆ containing only exclusive updates.

Definition 6.4.1. An update multiset ∆̈ is in the normal form if each update in it is an
exclusive update with multiplicity 1.

As a convention, let Loc(∆̈) and Opt(∆̈) denote the set of locations and the set of
operators occurring in an update multiset ∆̈, respectively, i.e., Loc(∆̈) = {ℓ|(ℓ, b, µ) ∈ ∆̈}
and Opt(∆̈) = {µ|(ℓ, b, µ) ∈ ∆̈}, and ∆̈ℓ denotes the submultiset of an update multiset
∆̈ containing all shared updates that have the location ℓ, i.e., ∆̈ℓ = {{u|u ∈ ∆̈ and u =
(ℓ, b, µ)}}.

6.4.1 Operator-Compatibility

The notion of operator-compatible addresses the inconsistencies arising from shared up-
dates to the same location in an update multiset, no matter which abstraction level their
locations reside at and whether they are dependent on other locations in the same update
multiset.

We begin with some intuitive operators coming from elementary arithmetic.

Example 6.4.1. Let Q∗ be the set of rational numbers excluding zero and R be the set of
real numbers. Then addition + and substraction − are operators over R, and multiplication
× and division ÷ are operators over Q∗, respectively. Suppose that ℓ is a location of type
Q∗, then the following modifications can be executed in parallel.

par
ℓ ⇇+ b1
ℓ ⇇− b2
ℓ ⇇× b3
ℓ ⇇÷ b4

endpar

For this rule, the update multiset ∆̈ℓ = {{(ℓ, b1,+), (ℓ, b2,−), (ℓ, b3,×), (ℓ, b4,÷)}} is ob-
tained. The operators in the submultisets {{(ℓ, b1,+), (ℓ, b2,−)}} and {{(ℓ, b3,×), (ℓ, b4,÷)}}
are compatible. Nevertheless, the operators in ∆̈ℓ is not compatible, because applying
updates in ∆̈ℓ in different orders yields different results.

Many languages developed for database manipulations have set-theoretic operations,
such as Structured Query Language (SQL), Relational Algebra (RA), etc. The partial-
update problem relating to set-theoretic operations is about the parallel manipulations on
sets via various set-based operations. The following example provides a simple scenario
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in which, after a main computation initialises a set of subcomputations, each of subcom-
putations may yield a set of values which is then put into the final result by using union
operations in parallel.

Example 6.4.2. Let P(D) be the powerset of the domain D. Then the set-based opera-
tions: union ∪, intersection ∩, difference −, symmetric difference ⋄, etc. can be regarded as
common operators over domain P(D). The following rule produces an operator-compatible
update multiset {{(ℓ, {b1, b2},∪), (ℓ, {b2, b3, b4},∪)}}.

par
ℓ ⇇∪ {b1, b2}
ℓ ⇇∪ {b2, b3, b4}

endpar

These examples motivate a straightforward definition of operator-compatibility in terms
of order-independent application of shared updates to the same location, that is, we expect
the same result regardless of the order in which shared updates in a given update multiset
is applied.

Definition 6.4.2. Let ∆̈ℓ = {{(ℓ, ai, µi) | i = 1, ..., k}} be a multiset of shared updates to
the same location ℓ. Then ∆̈ℓ is operator-compatible if for any two permutations (p1, ..., pk)
and (q1, ..., qk), we have for all x

µpk
(...µp1

(x, ap1
)..., apk

) = µqk
(...µq1

(x, aq1
)..., aqk

).

An update multiset ∆̈ is operator-compatible if ∆̈ℓ is operator-compatible for each
ℓ ∈ Loc(∆̈).

The notion of being order-independent in Definition 6.4.2 does not apply to the whole
update multiset ∆̈, as locations may depend on each other. Two shared updates to distinct
but dependent locations may generate different results when applied in different orders.
Furthermore, as illustrated in Example 6.4.1, the order-independence of operators is easy
to check when the number of shared updates is small. However, in case of a large number
of shared updates, compatibility checking by means of exploring all possible orderings is
far too time-consuming. Therefore, we introduce an algebraic approach to characterise the
operator-compatibility of shared updates to the same location.

Corollary 6.4.1. An update multiset ∆̈ℓ is operator-compatible iff the order to execute
any two updates in ∆̈ℓ is insignificant.

The above corollary is a straightforward result from Definition 6.4.2. By this corollary,
we will start with examining the operator-compatibility of two shared updates to the same
location, which may or may not have the same operator, and then generalise the results to
a multiset of shared updates to the same location.

Definition 6.4.3. A binary operator µ1 (over the domain D) is compatible to the binary
operator µ2 (notation: µ1 � µ2) (over D) if
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• µ2 is associative and commutative, and

• for all x ∈ D, there is some ẋ ∈ D such that

for all y ∈ D we have y µ1 x = y µ2 ẋ.

Obviously, each associative and commutative operator µ is compatible to itself (simply
we say self-compatible). The following Lemma gives a sufficient condition for compatibility.

Lemma 6.4.1. Let µ1 and µ2 be two binary operators over domain D such that (D,µ2)
defines a commutative group, and (xµ1 y)µ2 y = x holds for all x, y ∈ D. Then µ1 � µ2

holds.

Proof. Let e ∈ D be the neutral element for µ2, and let ẋ be the inverse of x. Then we
get

y µ1 x = (y µ1 x)µ2 e = (y µ1 x)µ2 (xµ2 ẋ) = ((y µ1 x)µ2 x)µ2 ẋ = y µ2 ẋ.

Example 6.4.3. Let us look back Example 6.4.1. Both (R,+) and (Q∗,×) are abelian
groups, the duality property in Lemma 6.4.1 is satisfied by addition + and substraction −
on R, and multiplication × and division ÷ on Q∗, respectively. Thus, − � + and ÷ � ∗
hold on R and Q∗, respectively.

Similarly, set operations such as union ∪, intersection ∩, symmetric difference ⋄ are
self-compatible. Moreover, as x− y = x ∩ ȳ holds with the complement ȳ of the set y, set
difference − is compatible to intersection ∩.

Compatibility ı1 � ı2 permits replacing each shared update (ℓ, v, ı1) by the shared
update (ℓ, v̇, ı2). Then the associativity and commutativity of ı2 guarantees order-
independence. Thus, we obtain the following theorem.

Theorem 6.4.1. A non-empty multiset ∆̈ℓ of shared updates on the same location ℓ is
operator-compatible if

• either |∆̈ℓ| = 1 holds,

• or there exists a µ ∈ Opt(∆̈ℓ) such that,

for all µ1 ∈ Opt(∆̈ℓ), µ1 � µ holds.

Proof. The first case is trivial. In the second case, if µ1 � µ holds, then we can replace
all shared updates in ∆̈ℓ with µ1 by shared updates with µ. In doing so, we obtain an
update multiset, in which only the self-compatible operator µ is used. The associativity
and commutativity of µ implies

(. . . ((xµ b1)µ b2) . . . µ bk) = (. . . ((xµ bς(1))µ bς(2)) . . . µ bς(k))

for all x, b1, . . . , bk and all permutations ς as desired.
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Example 6.4.4. Suppose that we have ∆̈ℓ1 with Opt(∆̈ℓ1) = {+,−}, ∆̈ℓ2 with Opt(∆̈ℓ2) =
{×,÷}, ∆̈ℓ3 with Opt(∆̈ℓ3) = {∩,−} and ∆̈ℓ4 with Opt(∆̈ℓ4) = {∩,∪}.

From Theorem 6.4.1, we obtain that ∆̈ℓ1 , ∆̈ℓ2 and ∆̈ℓ3 are operator-compatible, and
∆̈ℓ4 is not operator-compatible.

Remark 6.4.1. Theorem 6.4.1 allows checking the operator-compatibility of shared up-
dates to the same location by only utilising the schema information. This approach can
ensure conformance to the genericity principle of database transformations, while consid-
erably improving database performance.

6.4.2 Normalisation Algorithm

By the notation norm(∆̈), we denote the normalisation of the update multiset ∆̈. Fur-
thermore, let ∆λ be a trivial update set, indicating that an update set is inconsistent. This
comes into play when we do not have operator-compatibility.

Normalisation of a given update multiset ∆̈ is conducted for each location ℓ appearing
in ∆̈, i.e. we normalise ∆̈ℓ. In doing so, ∆̈ℓ is transformed into a set containing exactly one
exclusive update, provided ∆̈ℓ is operator-compatible. Otherwise norm(∆̈ℓ) = ∆λ. The
following algorithm describes the normalisation process in detail.

Algorithm 6.4.1.
Input : An update multiset ∆̈ and a state S
Output : An update set norm(∆̈)
Procedure:

1. By scanning through updates in ∆̈, the set of locations Loc(∆̈) appearing in ∆̈ is
obtained, shared updates to each location ℓ are put into ∆̈ℓ and all exclusive updates
are put into an update set ∆excl.

2. For each ∆̈ℓ, the following steps are processed:

(a) If ∆̈ℓ = {{(ℓ, b, µ)}}, then norm(∆̈ℓ) = {(ℓ, µ(valS(ℓ), b)};

(b) otherwise, check Opt(∆̈ℓ):

i. If there exists µ
′

∈ Opt(∆̈ℓ) such that for all µ ∈ Opt(∆̈ℓ), µ � µ
′

holds,
then

• translate each update (ℓ, b, µ) ∈ ∆̈ℓ where µ 6= µ
′

into the form (ℓ, b
′

, µ
′

)
according to the results from Lemma 6.4.1;

• assume that the update multiset after finishing the translation on each
update in ∆̈ℓ is {{(ℓ, b

′

1, µ
′

), ..., (ℓ, b
′

k, µ
′

)}}, ∆̈ℓ can be integrated into the
update set norm(∆̈ℓ) = {(ℓ, b

′

ℓ)}, where b
′

ℓ = valS(ℓ) µ
′

b
′

1 µ
′

... µ
′

b
′

k

ii. otherwise, norm(∆̈) = ∆λ and then exit the algorithm.
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3. norm(∆̈) is obtained by norm(∆̈) =
⋃

ℓ∈Loc(∆̈)

norm(∆̈ℓ) ∪ ∆̈excl.

The following result is a direct consequence of the algorithm.

Corollary 6.4.2. For an update multiset ∆̈, its normalisation norm(∆̈) is different from
∆λ iff ∆̈ is operator-compatible.

If norm(∆̈) = ∆λ for an update multiset ∆̈, we can immediately draw the conclusion
that ∆̈ is not consistent. Otherwise, we obtain an update set containing only exclusive
updates. In the following sections we will therefore assume norm(∆̈) 6= ∆λ, and investigate
further inconsistencies among exclusive updates in an update set after normalisation.

6.5 Integration of Exclusive Updates

In this section, we will deal with the second stage of consistency checking, starting from
a normalised update set that only contains exclusive updates. Since exclusive updates
may have partial locations, the definition for the consistency of an update set can not be
directly taken from the standard definition of ASMs. Even if, for values b and b′ of any
two exclusive updates to the same location ℓ in an update set ∆, we have b = b′, ∆ still
might not be consistent. It is possible that inconsistencies arise from updates of distinct
but non-disjoint locations, as illustrated in Example 6.1.4. Therefore, instead of consistent,
we call an update set value-compatible if such a condition is satisfied.

Definition 6.5.1. A set ∆ of exclusive updates is value-compatible if, for each location ℓ
in ∆, whenever (ℓ, b), (ℓ, b′) ∈ ∆ holds, we have b = b′.

An update set that contains exclusive updates may be value-compatible but not consis-
tent. On the other hand, following the standard definition for the consistency of an update
set, we can have the following fact.

Fact 6.5.1. Let ∆ = {(ℓ1, v1), ..., (ℓk, vk)} be an update set containing exclusive updates.
If the condition

∧
1≤i6=j≤k

ℓi 6⊑ ℓj is satisfied, then ∆ is consistent.

Obviously, the condition
∧

1≤i6=j≤k

ℓi 6⊑ ℓj is sufficient but not necessary. There are cases

in which a set of exclusive updates to non-disjoint locations is consistent. Let us have a
look at the following example.

Example 6.5.1. For the relation I(R
′

) in Example 6.1.3, suppose that we have

• ∆1 = {(fR
′
.A2

(o3)(0, 1), b31), (fR
′
.A2

(o3)(1, 1), b32), (fR
′
.A2

(o3), [b31, b32])},

where (fR
′
.A2

(o3)(0, 1), b31) adds b31 before the first element of the list [b3],
(fR

′
.A2

(o3)(1, 1), b32) replaces the first element of the list [b3] and (fR
′
.A2

(o3), (b31, b32))
changes the list [b3] to [b31, b32].
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• ∆2 = {(fR
′
.A3

(o3)(c32), 2), (fR
′
.A3

(o3)(c33), 0), (fR
′
.A3

(o3), {{c31, c32, c32}})},

where (fR
′
.A3

(o3)(c32), 2) changes the multiplicity of c32 in the multiset
{{c31, c32, c33}} to be 2, (fR

′
.A3

(o3)(c33), 0) removes c33 from the multiset and
(fR

′
.A3

(o3), {{c31, c32, c32}}) changes the multiset {{c31, c32, c33}} to {{c31, c32, c32}}.

In this example, both ∆1 and ∆2 are consistent, although they both contain non-disjoint
locations. In ∆1, applying the updates (fR

′
.A2

(o3)(0, 1), b31) and (fR
′
.A2

(o3)(1, 1), b32) si-

multaneously over the relation I(R
′

) leads to the update (fR
′
.A2

(o3), [b31, b32]), which coin-
cides with the third update in ∆1. Similarly, applying the updates {(fR

′
.A3

(o3)(c32), 2) and

(fR
′
.A3

(o3)(c33), 0) over the relation I(R
′

) leads to an update, which coincides with the third
update (fR

′
.A3

(o3), {{c31, c32, c32}}) in ∆2. Therefore, ∆1 and ∆2 are both consistent.

The above example demonstrates that, in order to check the consistency of exclusive
updates that may have non-disjoint locations, exclusive updates which have locations as
the sublocations of another location at one-level higher abstraction should be integrated
together. To develop a systematic solution for checking the consistency of a set of exclusive
updates, we start by the parallel composition operations for partial updates to locations
constructed by using common type constructors set, multiset, list and tuple.

6.5.1 Parallel Composition

The purpose of defining parallel composition operations is to capture the observed com-
positional relationship among sublocations established by the use of type constructors in
a data model. The significance of type constructors in the parallel composition operation
for an update set can be illustrated by the following example.

Example 6.5.2. The sublocations of the prime locationR
′

({(a31, a32)}, [b3], {{c31, c32, c33}})
presented in Example 6.3.3 are constructed by applying various type constructors, which
are illustrated in Figure 6.6. The notations {·}, {{·}}, [ · ] and (·)n denote the type con-
structors for sets, multisets, lists and n-ary tupes, respectively.

For instance, the locations ℓ111 and ℓ112 refer to the values of attributes A11 and A12 of
the subtuple represented by the location ℓ11, respectively. They are constructed into the
location ℓ11 by applying a 2-ary tuple constructor.

Now we define the parallel composition operations for partial updates on a case-basis
by considering each type constructor for which locations has been defined. The focus is
on the main type constructors used in a data model of complex-value databases which are
set, multiset, list and tuple.

Set

Set constructor has been widely used in various data modeling. Assume that we have a
location ℓ representing a set in a state S, i.e., valS(ℓ) = f , and locations referring to the

163



CHAPTER 6. PARTIAL DATABASE UPDATES

Figure 6.6: Constructors in partial locations

elements a of the set f are expressed as f(a). For the set ∆ of updates in which the
locations refer only to the elements of the set f , if ∆ is value-compatible, then the set of
updates in ∆ can be integrated into an update (ℓ, b) such that

Ω(∆) = (ℓ, b),

where

b = valS(ℓ) ∪ {ai|bi = true ∧ (f(ai), bi) ∈ ∆}
−{ai|bi = false ∧ (f(ai), bi) ∈ ∆}.

Multiset

Multiset constructor is also known as bag constructor in data modeling. Assume that we
have a location ℓ representing a multiset in a state S, i.e., valS(ℓ) = M. As discussed in
Section 6.1, a multiset M may be represented as a set of elements of the form (a, c) where a
is the element of M and c its multiplicity in the multiset M, and a location referring to an
element a of the multiset M is expressed as fM(a). A value-compatible set ∆ of updates
in which the locations refer only to the elements of the multiset M can be integrated into
an update (ℓ, b) such that

Ω(∆) = (ℓ, b),

where

b = valS(ℓ) − {(a, b
′

)|(a, b
′

) ∈ valS(ℓ) ∧ (fM(a), b) ∈ ∆ ∧ b 6= b
′

}
∪{(a, b)|(fM(a), b) ∈ ∆}.
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List

List constructor provides the capability of modelling the order of elements when such an
order is of interest. Consequently, the sublocations constructed by applying a list con-
structor are ordered, which we can capture by using a strict dependence relation E among
them as discussed in Section 6.3.1. Assume that we have a location ℓ representing a list s
in a state S, and the locations referring to the parts of the list are expressed by fs(k1, k2)
as discussed in Section 6.1. Then, a value-compatible set ∆ = {(ℓ1, b1), ..., (ℓn, bn)} of up-
dates, in which the locations ℓi (i = 1, ..., n) refer only to the elements of the list s can be
integrated into an update (ℓ, b) such that

Ω(∆) = (ℓ, b),

where

b = valS+{(ℓp1
,bp1

)}+...+{(ℓpn ,bpn)}(ℓ) and ℓpi
E ℓpi+1

for a permutation p1, . . . , pn of the updates in ∆ and i = 1, . . . , n− 1. That is, b is the list
obtained by applying ∆ over the list s in the current state S in the order of first taking
the update whose location is being dependent by the locations of other updates.

Tuple

Tuple constructor can be treated in a similar way to list constructor, except that the order
of applying updates in an update set can be arbitrarily chosen. Assume that the location ℓ
representing a tuple in a state S. Then, a value-compatible set ∆ = {(ℓ1, b1), ..., (ℓn, bn)} of
updates, in which the locations refer only to the attribute values of the tuple represented
by ℓ can be integrated into an update (ℓ, b) such that

Ω(∆) = (ℓ, b),

where

b = valS+∆(ℓ).

6.5.2 Location-Based Partitions

In order to efficiently handle dependencies between partial locations, we propose to par-
tition a given update set containing only exclusive updates into a family of update sets.
Each update set in such a family is called a cluster which has an update subsuming all
other updates. The formalisation is provided as follows.

The notation SubL(ℓ) denotes the set of all the sublocations of a location ℓ.

Lemma 6.5.1. Let LS denote the set of locations in a state S. Then there exists a unique
partition LS =

⋃
i∈I

Li such that

165



CHAPTER 6. PARTIAL DATABASE UPDATES

• for all i, j ∈ I with i 6= j we have ℓi 5 ℓj and ℓj 5 ℓi for all ℓi ∈ Li and ℓj ∈ Lj, and

• for each i ∈ I there exists a location ℓi ∈ LS with Li = SubL(ℓi).

Proof. By taking connected components of the graph defined by (LS,E), we can partition
LS into Li (i ∈ I) satisfying the first property. Moreover, none of the Li can be further de-
composed while still satisfying the first property and we cannot combine multiple partition
classes such that the second property holds. Thus, this partition is unique.

According to the definition of the subsumption relation ⊑, each SubL(ℓ) is contained in
one Li, and SubL(ℓ2) ⊆ SubL(ℓ1) holds for ℓ2 ⊑ ℓ1. On the other hand, maximal elements
with respect to ⊑ define disjoint locations. Therefore, for a maximal element ℓ with respect
to ⊑ we must have SubL(ℓ) = Li for some i ∈ I, which shows the second property.

Now let ∆ be an update set containing exclusive updates. Using the partition of LS

from Lemma 6.5.1, we obtain a partition ∆ =
⋃
i∈I′

∆i where ∆i = {(ℓ, b) ∈ ∆ | ℓ ∈ Li} and

I′ = {i ∈ I | ∆i 6= ∅}. The following lemma is a direct consequence of the independence of
locations in different set Li.

Lemma 6.5.2. ∆ is consistent iff each ∆i for i ∈ I′ is consistent.

As not all locations in Li appear in an update set ∆, we may further decompose each
∆i for i ∈ I′. For this, let L(∆i) ⊆ Li be the set of locations appearing in ∆i. By
taking connected components of the graph defined by (L(∆i),⊑) we can get partition
L(∆i) =

⋃
j∈Ji

Lij such that for all j1, j2 ∈ Ji with j1 6= j2 we have ℓj1 6⊑ ℓj2 and ℓj2 6⊑ ℓj1
for all ℓj1 ∈ Lij1 and ℓj2 ∈ Lij2. As none of the Lij can be further decomposed, this
partition is also unique. Taking ∆ij = {(ℓ, b) ∈ ∆i | ℓ ∈ Lij} and omitting those of these
update sets that are empty, we obtain a unique partition of ∆i.

Lemma 6.5.3. ∆i is consistent for i ∈ I′ iff each ∆ij with j ∈ Ji is consistent.

Proof. Consider the maximal elements ℓi1, ..., ℓik in L(∆i) with respect to ⊑ and the unique
values vij (j = 1, ..., k) with (ℓij, vij) ∈ ∆i. Let S be a state with valS(ℓi) = vi. If ∆ij is
consistent, then valS+{(ℓij ,vij)}(ℓ) = valS+∆ij

(ℓ) for all (ℓ, v) ∈ ∆ij . As the locations ℓij are
pairwise disjoint, according to Fact 6.5.1 we may simultaneously apply all updates (ℓij , vij)
to vi to obtain a value v′i, thus valS+{(ℓi,v

′

i)}
(ℓ) = valS+{(ℓi1,vi1),...,(ℓik,vik)}(ℓ) for all (ℓ, v) ∈ ∆i.

The converse, that ∆i (i.e., the union of all ∆ij) is not consistent if any ∆ij is not
consistent, is obvious.

In the proof, we actually showed more, as we only need “upward consistency” for the
set of locations below the maximal elements ℓij.

Corollary 6.5.1. For the maximal elements ℓi1, . . . , ℓik in L(∆i) with respect to ⊑, let
∆ij = {(ℓ, v) ∈ ∆i | ℓ ⊑ ℓij}. Then ∆i is consistent iff all ∆ij (j = 1, . . . , k) are
consistent.
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Note that the update sets ∆ij in Corollary 6.5.1 are uniquely determined by ∆. There
exist locations ℓi and ℓij such that ℓij ⊑ ℓi and for all updates (ℓ, v) ∈ ∆ij we have ℓ ⊑ ℓij .
We call such an update set ∆ij a cluster below ℓij .

With respect to the subsumption relation ⊑, locations in Li may be assigned with
levels. Assume that the length of the longest downward path to a minimal element from
the maximal element in Li is n. Then,

• the maximal element is a location at the level n,

• the elements which are the children of a location at the level k are locations at the
level k − 1.

Thus, the maximal element ℓi ∈ Li (as in Lemma 6.5.1) resides at the highest level, the
minimal element in Li resides at the lowest level and other locations in Li are arranged at
levels in the middle. A location ℓ at the level n is denoted as ℓn. For a cluster ∆ij below
ℓij, the level of ℓij is called the height of ∆ij and is denoted as height(∆ij).

Example 6.5.3. Let us consider again the prime location
R

′

({(a31, a32)}, [b3], {{c31, c32, c33}}) and its sublocations (see Example 6.3.3). The
pictures (a)-(c) of Figure 6.7 illustrate three scenarios as follows:

• In picture (a), suppose that we have ∆ = {(ℓ112, a
′

32), (ℓ22, b31), (ℓ23, b32)}. Because
ℓ112, ℓ22 and ℓ23 do not subsume one another, so ∆ is partitioned into three clusters:
{(ℓ112, a

′

32)} below ℓ112, {(ℓ22, b31)} below ℓ22 and {(ℓ23, b32)} below ℓ23 as circled out
in the picture. Note that, although ℓ22 E ℓ23, they are disjoint and thus consistent
in this case.

• In picture (b), suppose that we have ∆ = {(ℓ112, a
′

32), (ℓ22, b31), (ℓ23, b32),
(ℓ2, [b31, b32])}. Because ℓ22 ⊑ ℓ2 and ℓ23 ⊑ ℓ2, thus (ℓ22, b31), (ℓ23, b32) and
(ℓ2, [b31, b32]) are partitioned into one cluster, while (ℓ112, a

′

32) is in another cluster by
itself. In this way, we can check the consistency of the cluster below ℓ2 by checking
the consistency of the result of integrating (ℓ22, b31) and (ℓ23, b32) with (ℓ2, [b31, b32]).

• In picture (c), we consider the update set ∆ = {(ℓ112, a
′

32), (ℓ22, b31), (ℓ23, b32),
(ℓ2, [b31, b32]), (ℓ0, (∅, [b3], {{c31, c32}}))}. As ℓ112, ℓ22, ℓ23 and ℓ2 are all subsumed
by the location ℓ0, they are all in one cluster.

6.5.3 Cluster-Compatibility

In light of Corollary 6.5.1, the problem of consistency checking is reduced to that of verifying
the consistency of clusters.
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Figure 6.7: Location-based partitions and clusters
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Lemma 6.5.4. Let ∆ℓ be a cluster below the location ℓ. If the set {(ℓn1 , b1), ..., (ℓ
n
i , bi)}

of all updates in ∆ℓ at a level n < height(∆ℓ) is value-compatible, then, as discussed in
Subsection 6.5.1, it is possible to define a set {(ℓn+1

1 , b
′

1), ..., (ℓ
n+1
j , b

′

j)} of updates at the
level n + 1 such that, for all states S and any location ℓ′ ∈ LS, we have

valS+{(ℓn
1 ,b1),...,(ℓn

i ,bi)}(ℓ
′) = valS+{(ℓn+1

1 ,b
′

1),...,(ℓn+1
j ,b

′

j)}
(ℓ′).

Proof. Since the level n is less than height(∆ℓ), the set {(ℓn1 , b1), ..., (ℓ
n
i , bi)} of updates

can be grouped based on the condition whether their locations are subsumed by the same
location at the level n+ 1, e.g., {(ℓnk1

, bk1
), ..., (ℓnkp

, bkp
)} ⊆ {(ℓn1 , b1), ..., (ℓ

n
i , bi)} is the group

in which the locations ℓnk1
,..., ℓnkp

are subsumed by some location ℓn+1
m ∈ {ℓn+1

1 , . . . , ℓn+1
j }.

Then, for each group of updates to the locations at the level n, if they are value-compatible,
then they can be integrated into an exclusive update to a location at the level n + 1 as
follows:

Ω{(ℓnk1
, bk1

), ..., (ℓnkp
, bkp

)} = (ℓn+1
m , b

′

m),

where valS+{(ℓn
k1

,bk1
),...,(ℓn

kp
,bkp)}(ℓ

′) = valS+{(ℓn+1
m ,b

′

m)}(ℓ
′) for each state S and all ℓ′ ∈ LS.

In doing so, the set of updates {(ℓn1 , b1), ..., (ℓ
n
i , bi)} defines a set of exclusive updates

{(ℓn+1
1 , b

′

1), ..., (ℓ
n+1
j , b

′

j)} in which the locations are one level higher than n if it is value-
compatible.

We finally obtain the following main result on the consistency of clusters.

Theorem 6.5.1. Let ∆ℓ be a cluster below the location ℓ. If ∆ℓ is “level-by-level” value-
compatible, then ∆ℓ is consistent.

Proof. If ∆ℓ is “level-by-level” value-compatible, then for any state S and starting from
updates on locations at the lowest level, exclusive updates to locations at the same level in
∆ℓ can be replaced by exclusive updates to one-level-higher locations as stated in Lemma
6.5.4. As the set of exclusive updates at each level is value-compatible, this procedure
continues until we reach the highest level in ∆ℓ, i.e., the height of ∆ℓ. Finally, all the
updates at the level ∆ℓ are combined into a single exclusive update (ℓ, b) if they are value-
compatible, i.e., valS+{(ℓ,b)}(ℓ

′

) = valS+∆(ℓ
′

) for all ℓ
′

∈ LS.

Example 6.5.4. Let us look back again the cluster below the location ℓ0 in picture (c)
of Figure 6.7. First, {(ℓ112, a

′

32) at level 0 can be integrated into update (ℓ11, (a31, a
′

32))
at level 1. Then (ℓ11, (a31, a

′

32)) at level 1 is integrated into update (ℓ1, {(a31, a
′

32)})
at level 2, and similarly, integrating (ℓ22, b31) and (ℓ23, b32) at level 2 results in update
(ℓ2, [b31, b32]) at level 2, which is identical with the original update to the location ℓ2 in
the cluster. As (ℓ1, {(a31, a

′

32)}) and (ℓ2, [b31, b32]) are also value-compatible, they can be
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Figure 6.8: The consistency checking of a cluster

integrated to check for consistency against (ℓ0, (∅, [b3], {{c31, c32}})). Since the resulting up-
date (ℓ0, ({(a31, a

′

32)}, [b31, b32], {{c31, c32, c33}})) at level 3 is not value-compatible with the
update (ℓ0, (∅, [b3], {{c31, c32}})) at level 3, thus this cluster above ℓ0 is not consistent.

In Figure 6.8, several arrows are added to illustrate the above procedure.

6.5.4 Integration Algorithm

In this subsection, we present how to algorithmically integrate exclusive updates. For
clarity, the procedure is given in terms of two algorithms:

• The first algorithm clusters the updates in a given set of exclusive updates. Every
update is initially assumed to define a cluster. We then successively consider each pair
of updates where one update subsumed the other, and amalgamate their respective
clusters into larger ones until no more changes can be made.

Algorithm 6.5.1.

Input : An update set ∆ that only contain exclusive updates

Output : A set clus(∆) of clusters

Procedure:

1. starting with P = ∅ and clus(∆) = {{u}|u ∈ ∆};

2. checking the subsumption relation for any two updates ux, uy ∈ ∆,

– if the locations of ux and uy are related by subsumption, then add {ux, uy}
into P such that P = P ∪ {{ux, uy}};

3. doing the following as long as there are changes to clus(∆):
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– for each element V in P , do the following

∗ V
′

=
⋃
{x|x ∈ clus(∆) and x ∩ V 6= ∅},

∗ clus(∆)=clus(∆) ∪ {V
′

} − {x|x ⊆ V
′

and x ∈ clus(∆)}.

• The second algorithm then take the set of clusters and transforms it into a set of
exclusive updates in which locations are pairwise disjoint. This is done in accordance
with Theorem 6.5.1, that is, through level-by-level integration provided the updates
in each cluster at each level is value-compatible.

Algorithm 6.5.2.

Input : A set clus(∆) of clusters

Output : An update set ∆

Procedure:

1. ∆ = ∅;

2. For each cluster ∆i ∈ clus(∆), apply the following steps:

– Assigning a level to each location in Loc(∆i) in accordance with the schema
information provided by the database environment;

– V = ∆i;

– Doing the following until the height of the cluster ∆i is reached:

∗ P = {(ℓ, b)|(ℓ, b) ∈ V and the level level(ℓ) of ℓ is minimal in V };

∗ partition updates in P such that, for each partition class
{(ℓ1, b1), ..., (ℓn, bn)} ⊆ P , there exists a location ℓ with level(ℓ) = ℓi +1
and ℓi ⊑ ℓ (i = 1, ..., n);

∗ For each partition class {(ℓ1, b1), ..., (ℓn, bn)} ⊆ P , checking the value-
compatibility of the update set {(ℓ1, b1), ..., (ℓn, bn)}.

(a) if it is value-compatible, then do the following:

· apply the parallel composition operation (ℓ, b) =
Ω{(ℓ1, b1), ..., (ℓn, bn)};

· V = V − P ∪ {(ℓ, b)}.

(b) otherwise, ∆ = ∆λ and then exit the algorithm.

– ∆ = ∆ ∪ V .

3. Exit the algorithm with ∆.

The whole algorithm for the integration of exclusive updates, denoted as AlgorithmInte,
can then be considered as the function composition of the above two algorithms such that

AlgorithmInte=Algorithm 6.5.2 ◦ Algorithm 6.5.1
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let θ(t) = ρ
forall x with ϕ(x)
do
t := x

enddo
endlet

forall x with ϕ(x)
do

t
′

⇇⊙ fβ1
(x)

enddo;
t ⇇ fβ2

(t
′

)

Figure 6.9: Aggregate functions, location operators and partial updates

6.6 Applications in Aggregate Computing

Aggregate computing acquires a central role in many distributed database applications.
The result of applying an aggregate function is calculated from a collection of elements
in a state. Quite often, such a result can be partially computed at some point and then
combined together later. This phenomenon poses the question: what role partial updates
might play in aggregate computing. In this section, we will exploit partial updates in
optimising, rewriting and maintaining aggregate computations.

We begin with a general formalism for aggregate functions as defined by Cohen [60],
which covers both built-in and user-defined aggregate functions appearing in database
applications. As stated in Chapter 3, a location operator of DB-ASMs is defined to be
such a generalised aggregate function. That is, the assignment of an aggregate function
ρ(m) to a term t, in the form of t := ρ(m) for a multiset m = {{x|ϕ(x)}}, can be equivalently
expressed by the DB-ASM rule as shown at the left hand side of Figure 6.9. The DB-ASM
rule first generates a multiset of updates such as {{(t, x)|ϕ(x)}}, then the update multiset
is collapsed to an update set containing a single update (t, ρ(m)) by applying the location
operator ρ as specified in Definition 3.2.1. Therefore, we can simply treat a location
operator as an aggregate function in our discussion.

An alternative and more natural view of aggregate computing involves partial updates.
Suppose that ρ = (fβ1

,⊙, fβ2
). Then the DB-ASM rule at the left hand side of Figure

6.9 can be expressed by using the partial update rules at the right hand side. Of note is
that, the partial update rules at the right hand side generate partial updates, whereas the
DB-ASM rule at the left hand side generates standard updates. Following Theorem 6.4.1,
all shared updates generated in the partial update rules at the right hand side of Figure 6.9
is operator-compatible because of the associativity and commutativity stipulated on ⊙ in
Definition 3.1.9. This fact manifests that partial updates are the essential part of aggregate
operations and also illustrates that the partial update rules can be encoded as DB-ASMs
rules. Thus, partial updates become less noteworthy in the setting of DB-ASMs1. However,
the existence of the partial update rules is important for providing natural, flexible and
practical database transformations.

The properties of aggregation functions and their correspondence to database applica-

1As noted in Remark 10.4. of the paper [27] characterising parallel algorithms, partial updates can be
eliminated in a way by viewing them as messages sent to proclets and then integrating all relevant partial
updates into appropriate total updates, where locations are disjoint as defined in a standard way.
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par
forall x in ϕ1(x) do

t
′

1 ⇇⊙◦fβ2 fβ1
(x)

enddo
forall x in ϕ2(x) do

t
′

2 ⇇⊙◦fβ2 fβ1
(x)

enddo
par;
t ⇇ t

′

1 ⊙ t
′

2

Figure 6.10: Decomposable aggregate functions and partial updates

tions have been extensively studied in the literature, e.g., [60, 158, 118]. Amongst these
properties, the class of decomposable aggregation functions is of most interest to us due
to its connection with partial updates. Let ρ = (fβ1

,⊙, fβ2
) be an aggregate function and

m = m1 ⊎ · · · ⊎ mn be a multiset m with its submultisets m1, . . . , mn. Then ρ is called
decomposable if the following condition holds:

ρ(m) = ρ(m1) ⊙ · · · ⊙ ρ(mn).

Most aggregate functions used in database applications are decomposable.

Example 6.6.1. Let fid be an identity function, fcard and f≥ be functions such that
fcard(x) = 1 and f≥(x, y) = x if x ≥ y, otherwise f≥(x, y) = y. The aggregation functions
sum, count and max are decomposable, such that, for m = m1 ⊎m2, we have

• for sum = (fid,+, fid), sum(m) = sum(m1) + sum(m2),

• for count = (fcard,+, fid), count(m) = count(m1) + count(m2), and

• for max = (fid, f≥, fid), max(m) = max(m1) f≥ max(m2).

It is straightforward to prove that ρ is decomposable iff fβ2
is distributive over ⊙, i.e.,

fβ2
(x1 ⊙x2) = fβ2

(x1)⊙fβ2
(x2). Hence, an aggregation function in the form of (fβ1

,⊙, fid)
must be decomposable. When fβ2

6= fid but it is distributive over ⊙, an aggregate function
ρ = (fβ1

,⊙, fβ2
) can be transformed into an equivalent form ρ

′

= (fβ1
,⊙◦ fβ2

, fid). Figure
6.10 presents a program with the partial update rules, corresponding to the decomposition
of aggregate functions.

The decomposable aggregation functions are significant for query rewriting and view
maintenance in aggregate computing, as they possess some nice features. First of all,
it enables an aggregate operation over a multiset m to be split into multiple aggregate
operations over submultisets of m, executing in parallel or individually. In doing so, we
can optimise performance with parallelism, implement incremental maintenance for views
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forall x4 with ∃x1, x2, x3. Person(x1, x2, x3, x4)
do

forall x
′

2 with ∃x
′

1, x
′

3. Person(x
′

1, x
′

2, x
′

3, x4)
do

y ⇇|, x
′

2

enddo;
result(x4, y) ⇇ true

enddo

Figure 6.11: Non-deterministic aggregate function concat()

and rewrite queries based on materialised views. Secondly, an aggregate function can be
applied to a large multiset of elements recursively, i.e. a submultiset or a submultiset of a
submultiset of elements at each time. This can provide a flexible mechanism to maximise
the parallelism of a computation, customised for a specific environment. In both cases,
partial computations via a splitable collection of partial updates is a key requirement.

Note that, although non-decomposable aggregation functions cannot help with the
rewrite of queries or incremental maintenance of views, they may still be used to im-
prove performance to some degree by first computing the partial results in parallel with
fβ1

and ⊙, and processing the combined results with fβ2
at some point later.

The requirement that ⊙ of an aggregate function be commutative and associative only
applies for deterministic aggregate functions. When non-determinism is permitted, this
requirement turns out to be too stringent. For instance, similar to the way the aggregate
function sum defined over real numbers, a concatenation of elements from a multiset is often
needed by database users, which is defined in the form of a non-deterministic aggregate
function concat = (fid, |⋆, fid), where |⋆ is a non-commutative but associative function such
that |⋆(x, y) = x ⋆ y. Clearly, different orderings of applying |⋆ over elements give rise to
different results.

Example 6.6.2. Let us consider the following relation I(Person) over Person =
{PersonID,Fname,Sname,Address} in Figure 6.12, and the query

“Show the first names of people who have the same address”.

In the rules of Figure 6.11, the aggregate function concat() is used to concatenate a set
of first names together. Due to non-determinism, there are several possible results. Two
of them are presented in Figure 6.12.

A possible solution for capturing this kind of non-deterministic aggregate function in
database transformations would be to generalise the formalism (fβ1

,⊙, fβ2
) of aggregate

functions by removing the commutative property defined on ⊙. Consequently, the process
of normalising shared updates needs to be revised, which we leave for future work.
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• I(Person):

PersonID Fname Sname Address

1 Tom Adler 70 King Street
2 Jack Baird 16 Blacks Road
3 Jia Adler 70 King Street
4 Mike Cone 16 Blacks Road
5 Peter Cone 16 Blacks Road

• Two of possible results:

Address Fname

70 King Street Tom,Jia
16 Blacks Road Jack,Mike,Peter

Address Fname

70 King Street Jia,Tom
16 Blacks Road Mike,Peter,Jack

Figure 6.12: A relation I(Person) and two possible query results
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Chapter 7

Conclusion

This chapter summarises the main results contained in the dissertation and reflects on the
current work to suggest several interesting directions for future research.

7.1 Summary of Main Results

This dissertation presents a foundational study of database transformations over complex-
value databases.

Instead of defining database transformation as computable functions in the recursion-
theoretic sense, we aim to characterise them as algorithms. Through the investigation, a
unifying theoretical framework for database transformations that encompass both queries
and updates has been established by using the theory of Abstract State Machines. The
development of this unifying framework is significant, as it bridges the gap between the
well-established theoretical foundations for database transformations and various practical
toolkits for database applications.

We presented a variant of Gurevich’s sequential ASM thesis [82] dealing with database
transformations in complex-value databases. Analogous to Gurevich’s seminal work, we
formulated several intuitive postulates for database transformations and discussed why
database transformations should satisfy these postulates. Ultimately, five postulates were
defined: the sequential time postulate, the abstract state postulate, the background pos-
tulate, the bounded exploration postulate and the genericity postulate. We then defined a
variant of Abstract State Machines, which is called database Abstract State Machines (DB-
ASMs). It has been showed that DB-ASMs capture exactly all database transformations
characterised by the five postulates.

Despite many little technical differences of minor importance – such as final states,
finite runs, and undefined successor state in case of an inconsistent update set – we stayed
rather close to Gurevich’s seminal work. Any extension reflects what we felt is necessary
to capture the essential features of database transformations as opposed to sequential
algorithms. Some important differences to Gurevich’s sequential ASM thesis are:

• the permission of non-determinism in a limited form in which the limitations are
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enforced by the genericity postulate,

• the exploitation of meta-finite states to capture the finiteness of databases along with
a possibly infinite algorithmic structure for facilitating computations by the abstract
state postulate,

• the use of background classes to capture specific data model requirements by the
background postulate,

• the presence of non-ground terms in a bounded exploration witness by an extended
bounded exploration postulate, and

• the incorporation of location operators with let rules to support aggregate computing.

Through refinements, DB-ASMs can be used as the basis for studying database trans-
formations in different data models. An important step in being able to do so is to make
the necessary background for a data model explicit. We have made the backgrounds ex-
plicit for the cases of relational and XML database transformations in Chapter 4. For rela-
tional database transformations, it turns out that finite set, tuple and multiset constructors
must be included in backgrounds to support database transformations in relational models.
Furthermore, operators of relational algebra must exist in the backgrounds of relational
database transformations which utilise relational algebra to optimise the implementation
of relational database transformations based on a set of algebraic identities. For XML
database transformations, we adopted hereditarily finite trees, operators of a hedge alge-
bra, weak monadic second-order logic and extended document type definitions in tree-based
backgrounds. Consequently, DB-ASMs with backgrounds defined in these particular ways
capture relational and XML database transformations, respectively. In doing so, we ac-
tually proved that capturing specific characteristics of data models by background classes
is the appropriate way to develop the theory, this is in contrast to our earlier work [154]
where we tried to approach the problem by direct manipulation of the notion of state to
deal with higher-order structures, instead of first-order ones.

We did, however, go one step further [153, 156]. An alternative and more elegant com-
putational model for XML database transformations is defined, which directly incorporates
weak MSO formulae in forall and choice rules. This leads to so-called XML machines. Due
to the intuition behind the postulates, it should come as no surprise that XML machines
and DB-ASMs with tree-based backgrounds have in fact equivalent expressive power. Their
equivalence was proven by showing that XML machines satisfy the postulates of database
transformations with tree-based backgrounds.

In order to investigate the characterisation of database transformations in a precise and
mathematical way, we proposed a logic for DB-ASMs. First steps in this direction have
been made in [155]. Built upon a logic of meta-finite states, the logic for DB-ASMs was
formalised with atomic predicates for the definedness of a DB-ASM rule, for updates in
an update set and multiset, and for an update set and multiset yielded by DB-ASM rules,
modal operators for an update set and second-order quantifiers. Although the logic for DB-
ASMs is developed in a similar way to the logic for ASMs [134], the logic for DB-ASMs
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solved the problem in the formalisation of consistency for non-deterministic transitions,
which was encountered in the logic for ASMs. This is due to the finiteness condition
stipulated in the abstract state postulate and the use of modal operators for update sets,
instead of modal operators for rules as used in ASMs. Furthermore, by parameterising the
logic of meta-finite states with the first-order logic, we obtained a sound and complete proof
system for the logic for DB-ASMs. It allows us to reason about database transformations
specified by DB-ASMs.

Finally, we addressed the problem of partial updates in the context of complex-value
databases. The work was motivated by the need for an efficient approach of checking
the consistency of updates to partial locations that may be auxiliary functions referring
to parts of a complex object at flexible abstraction levels. Two kinds of partial updates
were differentiated: shared updates and exclusive updates. This enabled us to develop a
systematic approach for handling the compatibility issues of partial updates in general. In
this approach, partial updates are processed in two stages: normalisation of shared updates
and integration of exclusive updates. Our approach is related to applicative algebras [89].
However, we adopt - making it effective while discarding accidental cases - this to the
context of complex-value databases which associate nested data structures with various
type constructors.

7.2 Discussion

Let us first revisit the important differences between the postulates of database transfor-
mations, and Gurevich’s sequential and parallel theses [27, 82].

Regarding states, we stayed with Gurevich’s fundamental idea that states are first-order
structures by generalising them with the notion of meta-finite states [74]. Meta-finite states
are composed of a finite database part and a usually infinite algorithmic part with bridge
functions linking them. Same as for the sequential ASM-thesis, closure under isomorphisms
is requested for meta-finite states of a database transformation. By the incorporation of
meta-finite states, we laid a solid foundation for further studying database transformations.

In order to capture different data models, we originally thought of manipulating the
notion of state. In [154], the first attempt was the employment of higher-order structures
to capture tree-structured databases such as object-oriented and XML-based databases.
In this dissertation, we proposed that different data models should be captured by means
of different background structures, which led us to formulate the background postulate.
The results achieved so far on the backgrounds tailored for the relational, nested-relational,
object-oriented and tree-based models show that shifting specific data model requirements
to background structures is indeed effective.

The permission of non-determinism is significant for enhancing the expressive power
of database transformations. On the other hand, every database transformation should
also obey the genericity principle to respect the abstract nature of computations. This
means that the degree of non-determinism allowed in database transformations needs to
be restricted in some way. By the genericity postulate, we defined all the permissible
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successor states to a current state in terms of equivalence class of substructures. In doing
so, the notion of semi-determinism defined for queries is generalised to generic updates,
and thus to database transformations in general.

Though for database transformations the projection of a run onto the database part
of states is most decisive, we did not build such a restriction into our model. This in
turn implies that all sequential algorithms are also captured by DB-ASMs. Due to the
permission of non-determinism that is restricted to choice among query results, we capture
more than sequential algorithms. Even without the non-determinism this is still the case
because of the more general bounded exploration witnesses and the exploitation of location
operators, which permit a limited form of parallelism by aggregating multisets of values.
Parallel algorithms, however, are not captured, as we only permit bounded parallelism as
in the sequential ASM thesis.

The notion of database transformation developed in this paper is limited to sequen-
tial database transformations over centralised databases. That is, aspects of parallel and
distributed databases have been neglected. We only considered parallelism for updates
aggregated by means of location operators (i.e. we accumulate a multiset of updates on a
location and then let them collapse to a single update). This form of parallelism is limited
to the same computation on different data. Capturing parallelism and distribution as used
in the architecture in [102] would require investigation of a more elaborate DB ASM thesis
picking up ideas from the parallel ASM thesis [27].

The second-order syntax has been used in the logic for DB-ASMs, which permits the
quantifications over a family of update sets and multisets yielded by a DB-ASM rule. Nev-
ertheless, we showed that second-order expressions are reducible to first-order expressions
because of the finiteness of updates in an update set or multiset, which is ensured by
the finiteness of the database part in a state and the restrictions of all variables ranging
only over in the database part. In doing so, the logic for DB-ASMs can indeed handle
the bounded non-determinism. Moreover, we proved that the logic for DB-ASMs is still
complete when the parameterised logic in the logic of meta-finite states is chosen to be the
first-order logic.

Our approach for solving the problem of partial updates is generally applicable in
complex-value databases. The normalisation of shared updates is purely based on algebraic
properties of operators provided via the schema information, which can greatly improve
the scalability of database applications. On the other hand, the integration of exclusive
updates was studied in the presence of common type constructors occurring in complex-
value databases. By regarding a data model in terms of arbitrary nesting of selected type
constructors over base domains, the integration procedure may be tailored for many specific
data models. Furthermore, the extension of locations to the use of auxiliary functions as
partial locations not only allows to specify database transformations at more natural and
flexible abstraction levels, but also facilitates more parallel data manipulations. It has been
demonstrated that aggregate computing essentially leads to the presence of partial updates
that may occur on the fly. This is one of promising applications for partial updates.
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7.3 Future Work

In this dissertation, instead of requesting the existence of a finite set of ground terms that
determines update sets (or families of update sets due to the assumed non-determinism),
we widened this to a set of access terms, which in a sense captures associative access that
is considered to be essential for databases. Nevertheless, there is still a big gap between
access terms and similarly the access conditions in choice and forall rules in DB-ASMs
on one side, and highly declarative query languages on the other side. The logical links
would be of particular interest for queries, for which declarative approaches are preferred.
Bringing these different aspects into alignment is a challenge for future research.

Moreover, we believe it is an interesting idea to consider “playing” with the notion of
states, possibly even outside the context of databases. In particular, we are interested in
states that can be recognised by certain types of automata. This may lead to establishing
links between ASMs, database theory and particular structures, such as, automatic struc-
tures. For tree-based databases, we may think of structures that can be recognised by
certain tree-automata or we could investigate automatic structures that are recognised by
finite automata, etc. While these define further restrictions to the general computational
model, they may provide interesting links to various logics, and also identify the challenge
to integrate these automata into the formalism of DB-ASMs in order to capture exactly a
particular class of database transformations.

Just like how ASMs were exploited to develop and verify Java and the JVM, another
interesting line of research is to establish the links between DB-ASMs with tree-based
backgrounds and other computation models for XML. Let us take XQuery for example.
We may develop a low-level machine model for this industry standard language and then
investigate the tool support for the verification of this class of computations (i.e., using
a subclass of DB-ASMs to specify and verify XQuery). Furthermore, we may develop
skeletons for initial specifications, standard refinement rules, etc. for XML machines so as
to use XML machines as a specification tool allowing for XML database transformations
specified at different abstraction levels.

With the incorporation of DB-ASMs in a theory of data-intensive web services, we may
extend our results about database transformations into the area of service engineering,
cloud computing, and in general service science. Using the methodology of ASMs, we
may continue to characterise service mediators by using specific ASMs. Based on the
characterisation of service mediators, further investigations can be conducted on the issues
of analyzing the compatibility of services in service composition, developing dynamic and
adaptive capabilities in service mediation, automating service composition and verifying
the correctness, etc. There are a lot of challenging research problems in this area.
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