10,818 research outputs found

    Cluster-based cooperative subcarrier sensing using antenna diversity-based weighted data fusion

    Get PDF
    Cooperative spectrum sensing (CSS) is used in cognitive radio (CR) networks to improve the spectrum sensing performance in shadow fading environments. Moreover, clustering in CR networks is used to reduce reporting time and bandwidth overhead during CSS. Thus, cluster-based cooperative spectrum sensing (CBCSS) has manifested satisfactory spectrum sensing results in harsh environments under processing constraints. On the other hand, the antenna diversity of multiple input multiple output CR systems can be exploited to further improve the spectrum sensing performance. This paper presents the CBCSS performance in a CR network which is comprised of single- as well as multiple-antenna CR systems. We give theoretical analysis of CBCSS for orthogonal frequency division multiplexing signal sensing and propose a novel fusion scheme at the fusion center which takes into account the receiver antenna diversity of the CRs present in the network. We introduce the concept of weighted data fusion in which the sensing results of different CRs are weighted proportional to the number of receiving antennas they are equipped with. Thus, the receiver diversity is used to the advantage of improving spectrum sensing performance in a CR cluster. Simulation results show that the proposed scheme outperforms the conventional CBCSS scheme

    Energy detection based cooperative spectrum sensing system for emergency networks

    Get PDF
    During emergencies, a number of rescue teams come to the field and setup their own radio communication systems. If the deployed communication setup does not coordinate among themselves properly, they may interfere with each other when using the same RF channels known as co-channel interference. Spectrum sensing is the most important and complex job for cognitive radios. Cooperation among cognitive radio nodes is needed to enhance the sensing performance. In this paper, we present an experimental study of this solution. A Software Defined Radio comprising of GNU Radio and USRP were used to capture the signal samples to build a database profile of the spectrum condition. MATLAB communications toolbox was used to analyze the data and examine the spectrum pertaining to the condition in emergency networks. The benefits of cooperative spectrum sensing in avoiding co-channel interference during emergency situations are illustrated. Cooperation among cognitive spectrum sensing nodes operating at the same frequency improves the probability of detection, and the overall efficiency of the system. Results show that the cooperative sensing scheme outperforms the individual sensing approach. It can increases the probability of detection relative to the collected samples as the key performance indicator

    Energy and Spectral Efficient Wireless Communications

    Get PDF
    Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems. First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs. Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput. Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes

    MULTI USER COOPERATION SPECTRUM SENSING IN WIRELESS COGNITIVE RADIO NETWORKS

    Get PDF
    With the rapid proliferation of new wireless communication devices and services, the demand for the radio spectrum is increasing at a rapid rate, which leads to making the spectrum more and more crowded. The limited available spectrum and the inefficiency in the spectrum usage have led to the emergence of cognitive radio (CR) and dynamic spectrum access (DSA) technologies, which enable future wireless communication systems to exploit the empty spectrum in an opportunistic manner. To do so, future wireless devices should be aware of their surrounding radio environment in order to adapt their operating parameters according to the real-time conditions of the radio environment. From this viewpoint, spectrum sensing is becoming increasingly important to new and future wireless communication systems, which is designed to monitor the usage of the radio spectrum and reliably identify the unused bands to enable wireless devices to switch from one vacant band to another, thereby achieving flexible, reliable, and efficient spectrum utilisation. This thesis focuses on issues related to local and cooperative spectrum sensing for CR networks, which need to be resolved. These include the problems of noise uncertainty and detection in low signal to noise ratio (SNR) environments in individual spectrum sensing. In addition to issues of energy consumption, sensing delay and reporting error in cooperative spectrum sensing. In this thesis, we investigate how to improve spectrum sensing algorithms to increase their detection performance and achieving energy efficiency. To this end, first, we propose a new spectrum sensing algorithm based on energy detection that increases the reliability of individual spectrum sensing. In spite of the fact that the energy detection is still the most common detection mechanism for spectrum sensing due to its simplicity. Energy detection does not require any prior knowledge of primary signals, but has the drawbacks of threshold selection, and poor performance due to noise uncertainty especially at low SNR. Therefore, a new adaptive optimal energy detection algorithm (AOED) is presented in this thesis. In comparison with the existing energy detection schemes the detection performance achieved through AOED algorithm is higher. Secondly, as cooperative spectrum sensing (CSS) can give further improvement in the detection reliability, the AOED algorithm is extended to cooperative sensing; in which multiple cognitive users collaborate to detect the primary transmission. The new combined approach (AOED and CSS) is shown to be more reliable detection than the individual detection scheme, where the hidden terminal problem can be mitigated. Furthermore, an optimal fusion strategy for hard-fusion based cognitive radio networks is presented, which optimises sensing performance. Thirdly, the need for denser deployment of base stations to satisfy the estimated high traffic demand in future wireless networks leads to a significant increase in energy consumption. Moreover, in large-scale cognitive radio networks some of cooperative devices may be located far away from the fusion centre, which causes an increase in the error rate of reporting channel, and thus deteriorating the performance of cooperative spectrum sensing. To overcome these problems, a new multi-hop cluster based cooperative spectrum sensing (MHCCSS) scheme is proposed, where only cluster heads are allowed to send their cluster results to the fusion centre via successive cluster heads, based on higher SNR of communication channel between cluster heads. Furthermore, in decentralised CSS as in cognitive radio Ad Hoc networks (CRAHNs), where there is no fusion centre, each cognitive user performs the local spectrum sensing and shares the sensing information with its neighbours and then makes its decision on the spectrum availability based on its own sensing information and the neighbours’ information. However, cooperation between cognitive users consumes significant energy due to heavy communications. In addition to this, each CR user has asynchronous sensing and transmission schedules which add new challenges in implementing CSS in CRAHNs. In this thesis, a new multi-hop cluster based CSS scheme has been proposed for CRAHNs, which can enhance the cooperative sensing performance and reduce the energy consumption compared with other conventional decentralised cooperative spectrum sensing modes

    Location privacy preservation in secure crowdsourcing-based cooperative spectrum sensing

    Get PDF
    Spectrum sensing is one of the most essential components of cognitive radio since it detects whether the spectrum is available or not. However, spectrum sensing accuracy is often degraded due to path loss, interference, and shadowing. Cooperative spectrum sensing (CSS) is one of the proposed solutions to overcome these challenges. It is a key function for dynamic spectrum access that can increase largely the reliability in cognitive radio networks. In fact, several users cooperate to detect the availability of a wireless channel by exploiting spatial diversity. However, cooperative sensing is also facing some series of security threats. In this paper, we focus on two major problems. The first problem is the localization preservation of the secondary users. In fact, malicious users can exploit spatial diversity to localize a secondary user by linking his location-dependent sensing report to his physical position. The existing solutions present a high level of complexity which decreases the performance of the systems. The second problem is the data injection attack, in which malicious CR users may affect the decisions taken by the cognitive users by providing false information, introducing spectrum sensing data falsification (SSDF). In fact, they can submit false sensing reports containing power measurements much larger (or smaller) than the true value to inflate (or deflate) the final average, in which case the fusion center may falsely determine that the channel is busy (or vacant) which increases the false alarm and miss detection probabilities. In this paper, we propose a novel scheme to overcome these problems: iterative per cluster malicious detection (IPCMD). It utilizes applied cryptographic techniques to allow the fusion center (FC) to securely obtain the aggregated result from various secondary users without learning each individual report. IPCMD combines the aggregated sensing reports with their reputation scores during data fusion. The proposed scheme is based on a new algorithm for key generation which can significantly reduce the key management complexity and consequently increase the system performance. Therefore, it can enable secure cooperative spectrum sensing and improve the secondary user location privacy.Ooreedoo, Doha, QatarScopu

    A Robust Cooperative Spectrum Sensing-Assisted Multiuser Resource Allocation Scheme

    Get PDF
    Cognitive radio (CR), which is proposed as a solution for spectrum scarcity, imposes some threats to the network. One severe attack to cognitive radio network is the primary user emulation attack (PUEA), in which an attacker may transmit its signal with high power or mimic specific features of the primary user's signal to prevent secondary users from accessing the licensed spectrum. In this paper, we study a subcarrier and power allocation problem for orthogonal frequency division multiple access-(OFDMA-) based CR systems in the presence of PUEA. To maximize the system throughput while keeping the interference introduced to the primary user (PU) below given thresholds with a certain probability, a joint design of a robust cooperative spectrum sensing and a resource allocation scheme is proposed. In the proposed scheme, the inaccurate classification of PU signals and PUEA signals provided by robust cooperative spectrum sensing is utilized by resource scheduling module. To further exploit the underutilized spectrum bands, we also evaluate the performance of the proposed scheme in the hybrid overlay/underlay spectrum access mechanism. Numerical results demonstrate the effectiveness of the proposed scheme compared to conventional scheme regardless of the number of SUs or the kind of spectrum access mechanism being used

    Cooperative Spectrum Sensing based on 1-bit Quantization in Cognitive Radio Networks

    Get PDF
    The wireless frequency spectrum is a very valuable resource in the field of communications. Over the years, different bands of the spectrum were licensed to various communications systems and standards. As a result, most of the easily accessible parts of it ended up being theoretically occupied. This made it somewhat difficult to accommodate new wireless technologies, especially with the rise of communications concepts such as the Machine to Machine (M2M) communications and the Internet of Things (IoT). It was necessary to find ways to make better use of wireless spectrum. Cognitive Radio is one concept that came into the light to tackle the problem of spectrum utilization. Various technical reports stated that the spectrum is in fact under-utilized. Many frequency bands are not heavily used over time, and some bands have low activity. Cognitive Radio (CR) Networks aim to exploit and opportunistically share the already licensed spectrum. The objective is to enable various kinds of communications while preserving the licensed parties' right to access the spectrum without interference. Cognitive radio networks have more than one approach to spectrum sharing. In interweave spectrum sharing scheme, cognitive radio devices look for opportunities in the spectrum, in frequency and over time. Therefore, and to find these opportunities, they employ what is known as spectrum sensing. In a spectrum sensing phase, the CR device scans certain parts of the spectrum to find the voids or white spaces in it. After that it exploits these voids to perform its data transmission, thus avoiding any interference with the licensed users. Spectrum sensing has various classifications and approaches. In this thesis, we will present a general review of the main spectrum sensing categories. Furthermore, we will discuss some of the techniques employed in each category including their respective advantages and disadvantages, in addition to some of the research work associated with them. Our focus will be on cooperative spectrum sensing, which is a popular research topic. In cooperative spectrum sensing, multiple CR devices collaborate in the spectrum sensing operation to enhance the performance in terms of detection accuracy. We will investigate the soft-information decision fusion approach in cooperative sensing. In this approach, the CR devices forward their spectrum sensing data to a central node, commonly known as a Fusion Center. At the fusion center, this data is combined to achieve a higher level of accuracy in determining the occupied parts and the empty parts of the spectrum while considering Rayleigh fading channels. Furthermore, we will address the issue of high power consumption due to the sampling process of a wide-band of frequencies at the Nyquist rate. We will apply the 1-bit Quantization technique in our work to tackle this issue. The simulation results show that the detection accuracy of a 1-bit quantized system is equivalent to a non-quantized system with only 2 dB less in Signal-to-Noise Ratio (SNR). Finally, we will shed some light on multiple antenna spectrum sensing, and compare its performance to the cooperative sensing

    Superallocation and Cluster‐Based Cooperative Spectrum Sensing in 5G Cognitive Radio Network

    Get PDF
    Consequently, the research and development for the 5G systems have already been started. This chapter presents an overview of potential system network architecture and highlights a superallocation technique that could be employed in the 5G cognitive radio network (CRN). A superallocation scheme is proposed to enhance the sensing detection performance by rescheduling the sensing and reporting time slots in the 5G cognitive radio network with a cluster‐based cooperative spectrum sensing (CCSS). In the 4G CCSS scheme, first, all secondary users (SUs) detect the primary user (PU) signal during a rigid sensing time slot to check the availability of the spectrum band. Second, during the SU reporting time slot, the sensing results from the SUs are reported to the corresponding cluster heads (CHs). Finally, during CH reporting time slots, the CHs forward their hard decision to a fusion center (FC) through the common control channels for the global decision. However, the reporting time slots for the SUs and CHs do not contribute to the detection performance. In this chapter, a superallocation scheme that merges the reporting time slots of SUs and CHs by rescheduling the reporting time slots as a nonfixed sensing time slot for SUs to detect the PU signal promptly and more accurately is proposed. In this regard, SUs in each cluster can obtain a nonfixed sensing time slot depending on their reporting time slot order. The effectiveness of the proposed chapter that can achieve better detection performance under –28 to –10 dB environments and thus reduce reporting overhead is shown through simulations

    Non-convex distributed power allocation games in cognitive radio networks

    Get PDF
    In this thesis, we explore interweave communication systems in cognitive radio networks where the overall objective is to maximize the sum-rate of each cognitive radio user by optimizing jointly both the detection operation based on sensing and the power allocation across channels, taking into account the influence of the sensing accuracy and the interference limitation to the primary users. The optimization problem is addressed in single and multiuser cognitive radio networks for both single-input single-output and multi-input multi-output channels. Firstly, we study the resource allocation optimization problem for single-input single-output single user cognitive radio networks, wherein the cognitive radio aims at maximizing its own sum-rate by jointly optimizing the sensing information and power allocation over all the channels. In this framework, we consider an opportunistic spectrum access model under interweave systems, where a cognitive radio user detects active primary user transmissions over all the channels, and decides to transmit if the sensing results indicate that the primary user is inactive at this channel. However, due to the sensing errors, the cognitive users might access the channel when it is still occupied by active primary users, which causes harmful interference to both cognitive radio users and primary users. This motivates the introduction of a novel interference constraint, denoted as rate-loss gap constraint, which is proposed to design the power allocation, ensuring that the performance degradation of the primary user is bounded. The resulting problem is non-convex, thus, an exhaustive optimization algorithm and an alternating direction optimization algorithm are proposed to solve the problem efficiently. Secondly, the resource allocation problem for a single-input single-output multiuser cognitive radio network under a sensing-based spectrum sharing scheme is analyzed as a strategic non-cooperative game, where each cognitive radio user is selfish and strives to use the available spectrum in order to maximize its own sum-rate by considering the effect of imperfect sensing information. The resulting game-theoretical formulations belong to the class of non-convex games. A distributed cooperative sensing scheme based on a consensus algorithm is considered in the proposed game, where all the cognitive radio users can share their sensing information locally. We start with the alternating direction optimization algorithm, and prove that the local Nash equilibrium is achieved by the alternating direction optimization algorithm. In the next step, we use a new relaxed equilibrium concept, namely, quasi-Nash equilibrium for the non-convex game. The analysis of the sufficient conditions for the existence of the quasi-Nash equilibrium for the proposed game is provided. Furthermore, an iterative primal-dual interior point algorithm that converges to a quasi-Nash equilibrium of the proposed game is also proposed. From the simulation results, the proposed algorithm is shown to yield a considerable performance improvement in terms of the sum-rate of each cognitive radio user, with respect to previous state-of-the-art algorithms. Finally, we investigate a multiple-input multiple-output multiuser cognitive radio network under the opportunistic spectrum access scheme. We focus on the throughput of each cognitive radio user under correct sensing information, and exclude the throughput due to the erroneous decision of the cognitive radio users to transmit over occupied channels. The optimization problem is analyzed as a strategic non-cooperative game, where the transmit covariance matrix, sensing time, and detection threshold are considered as multidimensional variables to be optimized jointly. We also use the new relaxed equilibrium concept quasi-Nash equilibrium and prove that the proposed game can achieve a quasi-Nash equilibrium under certain conditions, by making use of the variational inequality method. In particular, we prove theoretically the sufficient condition of the existence and the uniqueness of the quasi-Nash equilibrium for this game. Furthermore, a possible extension of this work considering equal sensing time is also discussed. Simulation results show that the iterative primal-dual interior point algorithm is an efficient solution that converges to the quasi-Nash equilibrium of the proposed game
    corecore