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Abstract

Energy and spectrum are two precious commodities for wireless communications. How to

improve the energy and spectrum efficiency has become two critical issues for the designs of

wireless communication systems. This dissertation is devoted to the development of energy

and spectral efficient wireless communications. The developed techniques can be applied

to a wide range of wireless communication systems, such as wireless sensor network (WSN)

designed for structure health monitoring (SHM), medium access control (MAC) for multi-

user systems, and cooperative spectrum sensing in cognitive radio systems.

First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN

is proposed to monitor the vibration properties of structures such as buildings, bridges, and

the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing,

and wireless communication into a unified process, and it achieves significant energy savings

compared to existing WSNs.

Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy

and spectral efficiency in a multi-user system with shared medium. When two users transmit

simultaneously over a shared medium, a collision happens at the receiver. Conventional

MAC schemes will discard the collided signals, which result in a waste of the precious energy

and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple

weighted replicas of a packet at randomly selected data slots in a frame, and the indices of

the selected slots are transmitted in a special collision-free position slot at the beginning of

each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser

detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC



scheme can support more simultaneous users with a higher throughput.

Third, a new cooperative spectrum sensing scheme is proposed to improve the energy

and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation

scheme is proposed for a cognitive radio network with two secondary users (SUs) performing

cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve

significant performance gains compared to existing schemes.
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Chapter 1

Introduction

1.1 Background and Motivation

The most precious commodities for wireless communications are energy and spectrum. With

the rapid growth of high data rate applications, more and more energy and spectrum re-

sources are required in wireless communications to maintain the quality of service (QoS).

At the mean time, ultra-low power (ULP) consumption is one of the most formidable chal-

lenges faced by the development of wireless sensor networks (WSN). Furthermore, in recent

years, with the increasing demand in wireless services, there is a dramatic increase in the

requirement of radio spectrum. Unfortunately, most of the spectrums have been already

allocated and it is extremely hard to find vacant bands to deploy new services. Hence, the

efficient utilization of the existing precious spectrum is critical for the long term evolution of

communication. Therefore, how to improve the energy and spectral efficiency have become

two critical issues for the design of the next generation wireless communications.

Energy efficient communication in WSN: WSN has a wide range of applications

such as environmental monitoring, structure health monitoring (SHM), biomedical sensing,

and military applications. The sensor nodes in a WSN are usually expected to operate

1



uninterrupted over a long period of time, under the constraints of extremely limited battery

capacity or very small energy scavenging devices. Therefore, one of the most formidable

challenges faced by the design of the WSNs is how to develop ULP wireless communication

technologies that can work over an extended period of time with limited energy sources. In

WSNs, a large number of sensor nodes are densely deployed to sense the physical properties

of the phenomenon and the neighbor nodes are often very close to each other. As a result,

the densely deployed sensors coupled with the physical properties of the sensing phenomenon

introduce correlations in both spatial and temporal domains. Hence, the spatio-temporal

correlation can be utilized in WSNs to improve the energy efficiency.

Energy and spectral efficient communication in multi-user system: Media ac-

cess control (MAC) protocols are critical to the efficient operations of wireless networks

designed to support multiple simultaneous users. In conventional MAC schemes such as

slotted ALOHA (SA) or carrier sensing multiple access (CSMA), signals collided at a re-

ceiver will be discarded and retransmitted. This results in a waste of the precious spectrum

and energy resources. However, the signals collided at the receiver still contain salient infor-

mation that can be utilized to facilitate the detection. The signal collision can be resolved

by resorting to cross layer design techniques. The methodology of cross layer design has

emerged to improve the system performance as well as energy efficiency. The cross layer

design between the physical (PHY) and MAC layer is particular important because there

are rich interactions between these two layers due to the unique properties of wireless com-

munication systems. CT-MAC coupled with PHY-MAC cross layer designs has the potential

to yield significant performance gains over conventional MAC schemes.
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Energy and Spectral efficient communication in cognitive radio network: Cog-

nitive radio (CR), which provides flexible spectrum accesses by dynamically sensing and

adapting to the surrounding radio environment, is quickly emerging as one of the most

promising technologies for improving the utilization of the precious spectrum resources. The

primary user (PU) is the licensed user in the network, which has the first priority to use the

network. Secondary users (SUs) are the unlicensed ones, which need to detect the spectrum

holes in the time-frequency plane and avoid interference to the licensed or primary PUs.

Hence, spectrum sensing, which detects the spectrum holes in the time and frequency do-

mains, is a key function of cognitive radio to avoid the harmful interference to the licensed

users. In reality, the performance of spectrum sensing is negatively affected by factors such as

multi-path fading, shadowing, and noise. To overcome these problems, cooperative spectrum

sensing has emerged to improve the detection performance by exploiting spatial diversity. By

cooperation, CR users make a combined decision based on their shared sensing information,

which is more accurate than each individual local decision.

1.2 Objectives

The primary goal of this dissertation is to develop new wireless communication techniques

and system structures, which can efficiently utilize the precious energy and spectrum re-

sources in wireless communication systems. The specific objectives leading to this goal are

as follows. First, in order to realize the energy efficient communication in WSNs, we pro-

pose a ULP structure health monitoring systems by unifying energy harvesting, sensing, and

communication into a unified process. The spatio-temporal correlations among the deployed

3



sensors are fully utilized to improve the system performance. As a result, considerable im-

provement in energy efficiency is achieved with the proposed scheme. Second, new cross-layer

CT-MAC schemes are developed by exploiting the interactions between the MAC layer and

PHY layer. The CT-MAC scheme can effectively extract the salient information from the

signals collided in the PHY layer by utilizing signal processing technologies in the PHY layer.

The new CT-MAC schemes lead to significant improvement in terms of both energy efficiency

and spectral efficiency. Third, new cooperative spectrum sensing techniques are developed

for a CR network, where multiple SUs cooperate with each other to detect whether the PU

is active or not. The proposed scheme aims to maximize the probability of detecting the

PUs while maintain a certain level of false alarm probability. The cooperation among the

SUs is achieved through distributed coding techniques. As a result, the interferences from

the unlicensed users to the licensed users are minimized and the utilization of the spectrum

efficiency is improved.

1.3 Dissertation Outline

The outline of this dissertation is presented as follows.

Chapter 2: In this chapter, a ULPWSN is proposed to monitor the vibration properties

of critical structures such as buildings, bridges, and the wings and bodies of aircrafts. The

new scheme integrates energy harvesting, data sensing, and wireless communication into a

unified process, and it is fundamentally different from all the existing WSNs.

Chapter 3: A cross-layer CT MAC scheme is proposed in this chapter. In the MAC layer,

each user transmits multiple weighted replicas of a packet at randomly selected data slots in a

frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection

4



(MUD) in the PHY layer. The MUD is performed by employing a modified message passing

(MP) algorithm.

Chapter 4: A frequency-domain cross-layer CT-MAC is proposed for the up-links of a

broadband wireless networks with asynchronous users. The collision tolerance is achieved

with a frequency-domain on-off accumulative transmission (FD-OOAT) scheme, where the

frequency selective spectrum is divided into a large number of orthogonal sub-channels, and

each symbol is transmitted over a small subset of the sub-channels to reduce the probability

of collision.

Chapter 5: In this chapter, a new cooperative spectrum sensing algorithm is proposed for

a cognitive radio network with multiple SUs sharing spectrum with one or more PUs. Unlike

most previous spectrum sensing algorithms that do not consider the time domain traffic

statistics of the PU, the algorithm in this chapter is developed by exploiting the statistical

properties of the PU’s transmission pattern, which is modeled with a Markov chain with two

states: busy (1) and idle (0). Each SU performs energy detection based on an observation of

the Markov chain, and the detection results are forwarded to a fusion center (FC) through a

noisy channel. The FC recovers the decisions of the SUs by using a new progressive maximum

a posteriori (MAP) algorithm, where the a priori probability essential to the MAP detection

is obtained by progressively estimating the transition probabilities of the Markov chain.

Chapter 6: A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive

radio network with two SUs performing cooperative spectrum sensing through a FC. Instead

of making a hard decision based on the local sensing results, the SUs quantize the measured

energy statistics with a Lloyd-Max quantizer, and forward the quantized information to the

FC.

5



Chapter 7: The main contributions of this dissertation are summarized and several new

future research directions are discussed in this chapter.

6



Chapter 2

Unifying Energy Harvesting, Sensing, and Communication for Ultra-low Power

Structure Health Monitoring

2.1 Abstract

A new ultra-low power (ULP) wireless sensor network (WSN) is proposed to monitor the

vibration properties of critical structures such as buildings, bridges, and the wings and

bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless

communication into a unified process, and it is fundamentally different from all the existing

WSNs. In the new WSN, self-powered sensors are employed to harvest vibration energy and

measure vibration intensity simultaneously, by utilizing the fact that the harvested energy

accumulated through time is proportional to the vibration amplitude and frequency. Once the

harvested energy reaches a threshold, it is released as an impulse with a wireless transmitter.

An estimate of the structure vibration intensity can then be obtained by measuring the

number of binary impulses in a unit time. Such an approach does not require complicated

analog-to-digital conversion or signal processing, and it can achieve an ULP performance

unrivaled by existing technologies. Optimum and sub-optimum impulse density estimation

algorithms are proposed to take advantage of the spatial correlation among signals from
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the sensors. Analytical and simulation results demonstrate that the proposed scheme can

efficiently operate at a low signal-to-noise ratio (SNR).

keywords

Wireless sensor network, structure health monitoring, energy harvesting, maximum a poste-

riori (MAP) detection

2.2 Introduction

Wireless sensor network (WSN) designed for structure health monitoring (SHM) is expected

to operate uninterrupted over a long period of time, under the constraints of extremely

limited battery capacity or very small energy scavenging devices. Ultra-low power (ULP)

consumption is one of the most formidable challenges faced by the development of wireless

sensor networks (WSN) for the autonomous monitoring of critical structures, such as bridges,

buildings, [1], and aircrafts and spacecrafts [2]. Hence, an extremely stringent power budget

is required to power the operation of a wireless sensor, which transmits the measured data

to a fusion center (FC) through a wireless link.

Recently there have been considerable efforts devoted to the development of WSN for

SHM systems [1] – [6]. Most of the sensing systems are built with commercial-off-the-shelf

(COTS) wireless sensor nodes, such as Mica-Z Mote [3], [4], Mica-2 Mote [5], and iMote

[6], etc. Even though these modules are designed with low power consumption as one of

the design objectives, their structures still follow a conventional sensing framework, which

includes sensing, analog-to-digital conversion (ADC), digital signal processing (DSP), and

wireless transmission. These modules are designed separately, and they do not directly take
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advantage of the unique features of SHM systems. In order to achieve ULP performance, we

need to break free from the conventional sensing frameworks, and seek fundamentally new

WSN structures. SHM possess many unique features that can be exploited to facilitate the

ULP design. Many of the structures, such as bridges, have very slow changing rate, e.g., new

data might only need to be collected once every few seconds or minutes. As a result, SHM

have long latency tolerance with ultra-low data rate. In addition, Data collected by spatially

distributed sensors often contain redundancy [10], [16], which can be used to achieve better

power efficiency.

In this chapter, we propose a new type of battery-free ULP WSN by integrating energy

harvesting, data sensing, and wireless communication into a unified process. The system

is designed to monitor the structure vibration intensity, such as vibration amplitude and

frequency, which provides useful information about the local stress intensity and the dynamic

behaviors of the structure [7]. Vibration generates energy that can be harvested by a sensor

with piezoelectric devices [8], [9]. The harvested energy is expected to power the operations of

the entire sensor node. However, due to the low efficiency of current piezoelectric materials,

the harvested energy level is usually much lower compared to that required to perform any

regular sensing, ADC, DSP, or communication functions. Therefore, conventional sensing or

communication techniques can no longer be applied in such a system.

We propose to address this problem by utilizing the correlation between energy and vi-

bration, i.e., the harvested energy accumulated through time is proportional to the local

vibration amplitude and frequency. Once the harvested energy reaches a predefined thresh-

old, the energy is released in the form of an impulse. The receiver can then obtain an

estimate of the vibration intensity by observing the impulse density, i.e., the number of

9



impulses in unit time. Such an integrated harvesting, sensing, and communication (IHSC)

process exploits the unique features of SHM systems, and it is fundamentally different from

conventional sensing schemes.

The impulses from the sensors are detected at the FC through an optimum multi-node

maximum a posteriori (MAP) detector, which exploits the spatial correlation among the

signals from the sensors. It should be noted that the proposed multi-node MAP detector

needs to detect the presence of impulses from different sensors, and this is different from

the decentralized detection in the literature [11] - [15], where the FC only needs to detect

the presence of a single event by collecting the noise-free or noisy local detections from a

number of sensors. The multi-node MAP detector requires the a priori probabilities of the

impulses, which are not readily available at the receiver. We propose an iterative method

to estimate the a priori probability of the impulses at the FC. Simulations show that the

iterative method usually converges in less than 5 iterations. The theoretical mean square

error (MSE) of the estimated impulse density is derived for a system operating in a Rayleigh

fading channel. Both analytical and simulation results show that the proposed IHSC scheme

can operate at a very low signal-to-noise ratio (SNR) by effectively utilizing the spatial signal

correlation.

The remainder of this chapter is organized as follows. A new WSN structure with in-

tegrated harvesting, sensing and communication is presented in Section 2.3. The optimum

impulse density estimation algorithms and the corresponding theoretical analysis are pro-

posed in Section 2.4. Simulation results are given in Section 2.5, and Section 2.6 concludes

the chapter.
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2.3 A New WSN Structure with Integrated Harvesting, Sensing, and Commu-

nication

Consider a WSN consisting of a large number of low cost battery-free wireless sensor nodes

uniformly distributed over the monitored structure. As illustrated in Fig. 2.1, each sensor

node is equipped with a self-powered nanowire sensor [8] for energy harvesting and data

sensing, and a simple radio frequency (RF) transmitter, such as a simple resistor-capacitor

(RC) oscillator. The sensor performs the IHSC operation described as follows.

Sensor Node 1 Channel

Sensor Node 2 Channel

Sensor Node n Channel

Fusion

Center

RC
Oscillator     Sensor

Piezoelectric

RC
Oscillator     Sensor

Piezoelectric

RC
Oscillator     Sensor

Piezoelectric

h1k v1k

h2k v2k

hnk vnk

Figure 2.1: The block diagram of the wireless sensor network structure with integrated
harvesting, sensing, and communication.

Definition 2.1 : (IHSC): The energy collected by the nanowire piezoelectric sensor is

used to charge a capacitor. Once the harvested energy reaches a predefined threshold, ETH,

the energy is released as a single impulse through the RF transmitter. Then the receiver can

obtain an estimate of the structure vibration intensity by measuring the impulse density. �

In the above IHSC procedure, it is assumed that the energy harvesting rate, i.e., the
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energy harvested in unit time, is proportional to the structure vibration intensity, i.e., vi-

bration amplitude and frequency. As a result, the amount of time required for the harvested

energy to reach ETH is inversely proportional to the vibration intensity. Therefore, the struc-

ture vibration information is carried in the form of the time delay between two consecutive

impulses, or the number of impulses in unit time. The proposed IHSC scheme utilizes the

correlation among structure vibration, energy, and time to get an estimate of the structure

vibration intensity.

Given the fact that the structure vibration is highly correlated across the spatial domain,

the density information collected by spatially distributed sensors is correlated. Such corre-

lation information can be exploited by the FC to increase the estimation accuracy even at

an extremely low SNR. Optimum and sub-optimum impulse density estimation algorithms

will be developed in the next section to exploit the spatial correlation among sensors.

To facilitate analysis, we have the following assumptions regarding the statistical prop-

erties of the structure vibration.

A.1) The amount of time for the harvested energy to reach ETH is an exponentially

distributed random variable (RV) with mean µ. A higher vibration intensity yields a smaller

µ.

A.2) The time is discretized into small intervals with duration Ts << µ. For each interval,

the receiver performs detection to find whether there is an impulse in the interval. Define

a RV, xnk, where xnk = 1 represents an impulse is transmitted by the node n at the k-th

detection interval and 0 otherwise. Based on Assumption A.1), it can be easily shown that
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xnk is a Bernouli RV with the parameter

p = P (xnk = 1) = 1− e−
Ts
µ . (2.1)

A.3) Data collected from different sensor nodes are correlated. The vibration correla-

tion is translated to the correlation among the Bernouli RVs, {xnk}Nn=1. The normalized

covariance coefficient between xmk and xnk is

φmn ,
E{[xmk − x̄mk][xnk − x̄nk]}

√

σ2
mσ

2
n

= θ|m−n|, (2.2)

where θ ∈ [0, 1] is the spatial correlation coefficient, x̄mk is the mean of xmk, σ
2
m is the

variance of xmk and E(·) is the expectation operator.

A.4) Sensors deliver the impulses to the FC through an orthogonal media access control

(MAC) scheme, such as the frequency division multiplexing access (FDMA), to achieve a

collision-free communication at the FC.

With the above assumptions, the signal received by the FC from the n-th sensor at the

k-th interval can be represented as

ynk =
√

ETH · hnk · xnk + vnk (2.3)

where
√
ETH is the amplitude of the transmitted signal, hnk is the gain of the channel, and

vnk is the additive white Gaussian noise (AWGN) with double-sided power spectral density

N0/2.

Based on the model in (2.3), define the average impulse density of the n-th sensor node

over a duration of KTs as

Vn =

∑K
k=1 xnk

KTs
. (2.4)

13



With the proposed IHSC scheme, the impulse density is proportional to the vibration inten-

sity of the monitored structure, thus it can be used as an important indicator of the health

condition of the structure.

2.4 Optimum Impulse Density Estimation

In this section we present an optimum receiver for the estimation of the impulse density, Vn,

in a multi-node system employing the IHSC scheme.

2.4.1 Iterative Impulse Density Estimation

To utilize the spatial data correlation, we will jointly estimate the data from all the nodes,

xk = [x1k, · · · , xnk]
T ∈ BN×1, based on the received signal vector, yk = [y1k, · · · , yNk]

T ∈

CN×1, where (·)T represents matrix transpose, and C is the set of complex numbers. At the

detection interval k, the multi-node MAP detection of xk is

x̂k = argmax
b∈BN

p(yk|xk = b)P (xk = b), (2.5)

where p(yk|xk=b) takes the form of a multi-variant Gaussian probability density function

(pdf) with the mean vector b and the covariance matrix N0IN , with IN being a size-N

identity matrix,

p(yk|xk=b)=
1

(πN0)N
exp

{

− 1

N0

N
∑

n=1

∣

∣

∣
ynk−

√

ETHhnkbn

∣

∣

∣

2
}

. (2.6)

It should be noted that xk are mutually correlated with the normalized correlation coefficient

defined in (2.2).

The MAP detection rule described in (2.5) requires the knowledge of pb , P (xk = b),
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which is unknown at the receiver. To solve this problem, we propose to perform joint

estimation of pb and xk with an iterative method.

At the beginning of the iteration, it is assumed that the data from all the nodes are

uncorrelated, and the initial value of the a priori probability is p
(0)
b = 0.5N . During the i-th

iteration, we apply p
(i−1)
b from the (i − 1)-th iteration to (2.5), and get the estimates x̂

(i)
k ,

for k = 1, · · · , K. The estimated values are then used to obtain an estimate of pb as

p
(i)
b =

1

K

K
∑

k=1

δ(x̂
(i)
k − b), ∀b ∈ BN×1 (2.7)

where the indicator function δ(0) = 1, and δ(x) = 0 if x 6= 0. It should be noted that

the estimation of the a priori probability in (2.7) implicitly takes into consideration of the

mutual correlation among the data in xk.

The iteration will be terminated if max
b

{p(i)b − p
(i−1)
b } < ε, or the number of iterations

exceeds a predefined threshold. At the end of the iteration, we can get an estimate of the

impulse density of the n-th node as

V̂n =
1

KTs

K
∑

k=1

x̂nk. (2.8)

Simulation results demonstrate that the proposed iteration method usually converges after

less than 5 iterations.

The optimum MAP detection requires the exhaustive search of the space BN , and the

complexity grows exponentially with the node number, N . In a practical environment,

the correlation between two nodes decreases as their distance increases. Therefore, joint

detection of two nodes that are further apart would render very small performance gains

over the case that they are detected separately.
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In recognition of this fact, when N is large, we propose to divide the N nodes into G

groups. Each group contains up to Ng = dN
G
e adjacent nodes. The iterative MAP algorithm

can then be applied to each group separately. Such a method features a tradeoff between

complexity and performance. The optimum performance is obtained by setting Ng = N

with the highest complexity. The complexity can be reduced by decreasing Ng, at the cost of

slightly decreased performance. Our simulation results show that the performance at Ng = 4

is very similar to its optimum counterpart for a wide range of correlation coefficient.

2.4.2 Performance Analysis

The MSE of the estimated impulse density in a multi-node system with correlated informa-

tion is presented in this section.

To facilitate analysis, define Un =
∑K

k=1 xnk, and Ûn =
∑K

k=1 x̂nk. Then both Un and Ûn

are binomial RVs, i.e., Un ∼ B(K, p), and Ûn ∼ B(K, q(N, θ)), with p = P (xnk = 1) and

q(N, θ) = P (x̂nk = 1|N, θ). Then the MSE can be written as σ2 = 1
(KTs)2

E

(

|Un − Ûn|2
)

,

and it can be calculated from the following proposition.

Proposition 2.1 : For a multi-node system that employs the optimum multi-node MAP

detection, the MSE of the estimated impulse density for each sensor node can be calculated

by

σ2=
1

KT 2
s

{

(K−1)[p−q(N, θ)]2+p+ q(N, θ)−2α(N, θ)
}

. (2.9)

where α(N, θ) = E[xnkx̂nk|N, θ] is the cross-correlation between xnk and x̂nk.

Proof: The proof is in Appendix 2.7.1.
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The calculation of the MSE requires the knowledge of q(N, θ) and α(N, θ). The ana-

lytical evaluations of the two parameters for arbitrary N are quite tedious. Here we only

give the analytical expressions for N = 1, i.e., the information from each node is detected

independently, thus q(1, θ) = q(1) because the correlation θ is not used during the detection.

Lemma 2.1 : The value of q(1) = P (x̂nk = 1|N = 1) in a Rayleigh fading channel is given

as follows

q(1) = p(1− Pm) + (1− p)Pf , (2.10)

where

Pm=P{x̂nk=0|xnk=1}=
∫ ∞

0

Q

(

ETH · x− η10√
2N0 · ETH · x

)

exp(−x)dx, (2.11a)

Pf=P{x̂nk=1|xnk=0}=
∫ ∞

0

Q

(

ETH · x+ η10√
2N0 · ETH · x

)

exp(−x)dx, (2.11b)

are the probabilities of missing detection and false alarm, respectively,

Q(x) = 1√
2π

∫∞
x

exp
(

−u2

2

)

du is the Gaussian-Q function, and η10 = N0 log
1−p
p
.

Proof: The proof is in Appendix 2.7.2

The cross-correlation α(1) = α(1, θ) can be evaluated as α(1) = P (x̂nk = 1, xnk = 1) =

(1− Pm)p.

The probability expressions of missing and false alarm given in Lemma 2.1 involve inte-

grations over infinite limits, which might cause instability during numerical evaluations. We

propose to calculate the results in Lemma 2.1 by using the Laguerre’s method [20]

∫ ∞

0

f(a) exp(−a)da =

M
∑

i=1

wif(ai) +RM , (2.12)

where ai is the i-th zeros of the Lagueree polynomials LI(a), weights wi is defined as wi =

ai
(M+1)2[LI+1(ai)]2

, and RM is the remainder term.
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Based on (2.12), Pm and Pf in a Rayleigh fading channel can be represented as,

Pm ≈
M
∑

i=1

wiQ

(

ETH · xi − η10√
2N0 · ETH · xi

)

,

Pf ≈
M
∑

i=1

wiQ

(

ETH · xi + η10√
2N0 ·ETH · xi

)

. (2.13)

When N > 1, the value of q(N, θ) and α(N, θ) can be evaluated through numerical

simulations, the results of which can then be substituted into (2.9) to obtain the MSE.

2.5 Simulation Results

Simulation results are presented in this section to verify the performance of the proposed ULP

IHSC scheme and the optimum and sub-optimum impulse density estimation algorithms.

In the simulation, it is assumed that the mean, µ, of the exponentially distributed energy

harvesting time is 1 s. The detection duration is Ts = 10 ms. The correlated Bernoulli RVs,

xnk, are generated by using the method described in [21]. The iterative impulse density

detection is performed over 100 s, which corresponds to K = 104 detection intervals. The

average SNR is calculated as ν = ETHTs

N0µ
. Unless otherwise stated, the receiver does not have

any a priori knowledge of the probability, P (xk), or spatial correlation coefficient, θ.

Fig. 2.2 shows the MSE of the estimated impulse density for a one-node and a two-

node system with the optimum MAP detection at the FC. The simulation results obtained

from systems with both known and unknown a priori probability at the receiver are plotted

in the figure for comparison. The spatial correlation coefficient of the two-node system is

θ = 0.9. We have the following observations of the results. First, the system can operate at

extremely low SNR due to the low duty cycle and the innovative IHSC scheme. When SNR

= 0 dB, an MSE of 2×10−4 and 3×10−3 is achieved by the one-node and two-node systems,
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Figure 2.2: MSE for systems with optimum impulse density estimation.

respectively. Second, when SNR > −4 dB, the iterative estimation methods with unknown

a priori probability can achieve a performance that is almost identical to that of a system

with known a priori probability. This demonstrates the effectiveness of the proposed iterative

estimation method. Third, the analytical results match very well with the simulation results

when the SNR > −4 dB. Fourth, at MSE = 10−2, the two-node system outperforms the

one-node system by 5.5 dB. The performance improvement is contributed by the utilization

of the spatial node correlation.

The impact of the spatial correlation coefficient, θ, on the MSE performance is shown in

Fig. 2.3 for a two-node system. As expected, the MSE performance improves consistently

as θ increases. At MSE = 10−3, the system with θ = 1 outperforms that with θ = 0.5 by 6.3

dB. The results demonstrate that the proposed algorithm can effectively utilize the spatial

correlation between the nodes. Meanwhile, it shows that the stronger the spatial correlation,
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Figure 2.3: MSE with different values of spatial correlation coefficient, θ.

the better performance can be obtained.

In Fig. 2.4, the MSE of estimated impulse density is shown for a multi-node system

using MAP detection scheme with different group size at the FC. The SNR is -10 dB. As

expected, the performance improves as the group size increases. Most of the performance

gains are achieved when Ng < 4, and they gradually diminish as Ng ≥ 4, for all the systems

considered in this example. Based on the results, a window size of 4 yields the best tradeoff

between complexity and performance for a wide range of the correlation coefficient, θ.

20



1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

The number of sensor nodes

M
S

E

 

 

θ=0.5
θ=0.7
θ=0.9

Figure 2.4: MSE for systems with the sub-optimum impulse density estimation.

2.6 Conclusions

A new paradigm of integrated harvesting, sensing, and communication scheme was proposed

for ultra-low power structure health monitoring. The IHSC scheme was designed by ex-

ploiting the correlation between the harvested energy and vibration intensity. The structure

vibration information is carried as the densities of the impulses generated by the sensors.

An optimum multi-node MAP detector with iterative a priori probability estimation was

developed to estimate the impulse densities from the spatially distributed sensor nodes. The

theoretical MSE of the estimated impulse density was derived for a one-node system operat-

ing in a Rayleigh fading channel. Both the theoretical and simulation results indicated that

the proposed algorithm can effectively utilize the spatial correlation among the sensors. The

system can operate effectively at a SNR as low as -10 dB without battery or external energy
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sources.

2.7 Appendix

2.7.1 Proof of Proposition 2.1

The MSE can be written as σ2 = 1
(KTs)2

[

E(U2
n)− 2E(UnÛn) + E(Û2

n)
]

. Since Un and Ûn

are binomial RVs, we have E(U2
n) = Kp(Kp − p + 1), and E(Û2

n) = Kq(N, θ)[Kq(N, θ) −

q(N, θ) + 1].

Based on the definition of Un and Ûn, we have

E(UnÛn) =
K
∑

j,k=1

j 6=k

pq(N, θ) +
K
∑

k=1

E[xnkx̂n(k)]. (2.14)

Combining the above equations leads to (2.9).

2.7.2 Proof of Lemma 2.1

When N = 1, the MAP detector in (2.5) decides x̂nk = b̂ given that xnk = b was transmitted

when

∣

∣

∣
ynk −

√

ETH · hnk · b̂
∣

∣

∣

2

−
∣

∣

∣
ynk −

√

ETH · hnk · b
∣

∣

∣

2

< η, (2.15)

where η = N0 · log P (xnk=b̂)
P (xnk=b)

, and b, b̂ ∈ B. The decision rule in (2.15) can be alternatively

written as

Z < η − ETH|hnk|2, (2.16)

where Z = 2<{
√
ETH · hnk · d · vnk}, d = b − b̂. The decision variable Z conditioned on hnk

and d is a Gaussian random variable with 0 mean and variance σ2
Z = 2N0 ·ETH · |hnk|2. Then
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the conditional probability

P
{

x̂nk = b̂|xnk = b, hnk

}

= P
(

Z < η − ETH|hnk|2
)

= Q

(

ETH|hnk|2 − η
√

2N0 · ETH · |hnk|2

)

, (2.17)

In a Rayleigh fading channel, f|hnk|2(x) = exp(−x), for x ≥ 0. Then the unconditional

probability is

P
{

x̂nk = b̂|xnk = b
}

=

∫ ∞

0

Q

(

ETH · x− η√
2N0 ·ETH · x

)

exp(−x)dx. (2.18)

The results in (2.10) and (2.11) can then be obtained by substituting (2.18) into P (x̂nk =

1) = pP (x̂nk = 1|x̂nk = 1) + (1− p)P (x̂nk = 1|x̂nk = 0).
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Chapter 3

Cross-Layer Collision-Tolerant MAC with Message Passing Detection

3.1 Abstract

A cross-layer collision-tolerant (CT) media access control (MAC) scheme is proposed in this

paper. In the MAC layer, each user transmits multiple weighted replicas of a packet at ran-

domly selected data slots in a frame, and the indices of the selected slots are transmitted in a

special collision-free position slot at the beginning of each frame. Collisions of the data slots

in the MAC layer are resolved by using multiuser detection (MUD) in the physical (PHY)

layer. The MUD is performed by employing a modified message passing (MP) algorithm,

which treats the MAC structure as a bipartite graph, with each unique packet denoted as a

message node (MN), and each slot denoted as a slot node (SN). The graph is simplified by

removing the nodes with 0 or 1 connection to reduce the complexity of the MP algorithm.

Simulation results demonstrate that the proposed CT-MAC achieves significant performance

gains over existing cross-layer MAC schemes. It can support as many as N = 2.4M simulta-

neous users for a system with M slots per frame, yet most existing schemes can only operate

with N ≤ M .
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3.2 Introduction

Media access control (MAC) protocols are critical to the efficient operations of wireless

networks. In conventional MAC schemes such as slotted ALOHA (SA) or carrier sensing

multiple access (CSMA), signals collided at a receiver will be discarded and retransmitted.

This results in a waste of the precious spectrum and energy resources.

Various collision-tolerant (CT) MAC protocols have been proposed in the literature by

resorting to cross-layer designs [1]–[7]. The concept of multi-packet reception (MPR) is

proposed in [1] and [2], where it is assumed that a fraction of the collided signals can be

correctly detected with physical (PHY) layer signal processing. In most MPR related works,

the effects of channel and PHY layer operations are abstracted into a group of parameters Pnk,

the probability that k packets can be recovered when there are n ≥ k packets in the collision.

They do not specify how the collisions can be resolved. An iterative interference cancellation

(IC) method is employed in a contention-resolution diversity SA (CRDSA) scheme [3] to

achieve MPR. In CRDSA, each packet is transmitted twice at two random slots in a frame.

If one of the packet is detected, then it can be used to subtract the interference caused

by its twin replica. The IC process is performed iteratively. The performance of CRDSA

is further improved with an irregular repetition SA (IRSA) scheme [4] and [5], where the

number of repetitions for each packet is determined by a probability distribution, and a coded
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SA (CSA) scheme [6], where linear block code across the packets is used to replace simple

repetitions. All these schemes work well under low offered loads. However, the throughput

drops dramatically once the normalized offered load exceeds a saturation point. The sharp

drop is due to the fact that there are so many collisions such that the iterative IC process

cannot be properly initiated. A CT-MAC with an on-off accumulative transmission (OOAT)

is proposed in [7], where a sub-optimum block decision feedback equalizer (BDFE) is used

for multiuser detection (MUD).

In this paper, we propose to develop a new cross-layer CT-MAC scheme by employing

an iterative message passing (MP) algorithm for MUD. In the MAC layer, each user trans-

mits multiple weighted replicas of a packet over randomly chosen slots in a frame. Such

a transmission scheme can be represented as a bipartite graph, where each unique packet

can be represented as a message node (MN), and each slot in a frame can be represented

as a slot node (SN). The n-th MN is connected to the m-th SN if the n-th user transmits a

packet at the m-slot. The indices of the occupied slots of each user is transmitted at a special

collision-free slot at the beginning of each frame, so the receiver can construct the graph. We

propose to perform MUD by exchanging soft log-likelihood information between the MNs

and SNs with a modified MP algorithm. The MP algorithm was originally developed for

the decoding of graph-based codes [8] and [9], or iterative IC in single-user systems [10] and

[11]. It is extended here for the simultaneous detection in a multi-user network. The graph is

simplified by removing some of the nodes that will not benefit from the iterative process, and

the soft information collected from the removed nodes is used as a priori information for the

nodes connected to them. The performance and convergence of the modified MP algorithm

is analyzed with the extrinsic information transfer (EXIT) chart [12]. Simulation results
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demonstrate that the proposed cross-layer MAC with MP detection can achieve significant

performance gains over existing MAC schemes, and it can support as many as N = 2.4M

simultaneous users in a frame with M slots.

3.3 System Model

Consider a wireless network with N users transmitting to the same receiver through a shared

channel. Each MAC frame is divided into M slots, and the duration of each slot contains K

symbols. One packet has K symbols and can thus be transmitted in one slot. Each packet

is transmitted in the form of R weighted replicas on R randomly selected slots in a frame.

Denote A(m) as the set of users that transmit their respective packets on the slot m. The

signal observed by the receiver at the slot m can then be described as

ymk =
∑

n∈A(m)

hmnwmnxnk + zmk, for k = 1, · · · , K (3.1)

where hmn is the fading coefficient experienced by the signal from the n-th user at the m-th

slot, wmn is a weight coefficient used by the n-th user on the m-th slot, xnk ∈ S is the

k-th symbol in the packet from the n-th user, with S being the modulation constellation set

with cardinality S = |S|, and ymk and zmk are the received sample vector and noise sample,

respectively. The weight coefficients are used to improve the numerical stability of the MUD.

In this paper, we choose wmn = 1√
R
exp

[

−j2π nm
max(N,M)

]

.

When R = 1 and wmn = 1, the system degrades to the SA scheme. When R = 2 and

wmn = 1, the system at the transmitter is similar to the CRDSA scheme, where each packet

is transmitted exactly twice in a frame. When R varies from user to user based on a certain

probability distribution, and wmn = 1, the system at the transmitter is similar to the IRSA
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scheme. None of these systems can operate when the normalized offered load, G = N
M
, is

greater than 1.

In order to perform the joint detection of the information from all the users, the receiver

requires the knowledge of the indices of the slots on which a user transmits its packets. To

meet this requirement, we propose to prefix a position slot that contains NM bits at the

beginning each frame. Each user transmits anM-bit vector, pn = [pn1, · · · , pnM ]T ∈ {0, 1}M ,

to notify the receiver the indices of the slots on which it will transmit in this frame, with

pnm = 1 if a packet will be transmitted in the m-th slot and pnm = 0 otherwise. Because of

the importance of the position slot to the final detection, the M-bit position vectors of the

N users are transmitted in a deterministic time division manner in a slot of MN bits such

that there is no collision. In addition, the position slot can be transmitted with a relatively

higher signal-to-noise ratio to improve the reliability of the information.

Given M and R, the position vector is randomly generated by each user and is updated

for each frame. For a given frame, define the collision order of the system as Nc = maxmAm,

where Am is the cardinality of the set Am. Each received sample is thus the superposition of

up to Nc transmitted symbols, and the receiver has up to R observations of each transmit-

ted symbol. Therefore the system can be represented as a multiple-input multiple-output

(MIMO) system with Nc inputs and R outputs. The receiver can recover the Nc-dimension

input by using the R-dimension output. The weight coefficients are used to ensure the MIMO

matrix has a rank of min(Nc, R),
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3.4 Collision Resolution with a Modified Message Passing Algorithm

A modified MP algorithm is proposed in this section to achieve collision tolerance in the

MAC layer by performing the MUD in the PHY layer.

The MAC scheme with weighted packet repetitions can be represented as a bipartite

graph as shown in Fig. 3.1(a) for a system with N = 5 users, M = 10 slots, and R = 2

repetitions. In the graph, the MN represents a unique packet from a user and it is shown

as a circle. The SN represents the observed signal in a given slot at the receiver, and it is

represented as a square. The n-th MN is connected to the m-th SN if user n transmits a

packet at the m-th slot. In the full graph, there are N MNs and M SNs. In a message

passing algorithm, the MN and the SN iteratively exchange soft log-likelihood information

to achieve performance improvement.

Define the set of SNs that are connected to the n-th MN as Bn. The set of MNs that

are connected to the m-th SN is denoted as Am. The number of connections that each node

has is defined as the order of the node. Therefore, the order of the m-th SN is Am, and the

order of the n-th MN is Bn = |Bn|. For the proposed scheme, Bn = R, ∀n, and |Am| ≤ Nc.

3.4.1 Graph Simplification and Initialization

The graph shown in Fig. 3.1(a) can be simplified by removing some of the MNs and SNs

that will not benefit from the iterative message passing process.

The order-0 nodes do not contribute to the detection process, thus can be removed from

the graph.

For those order-1 SNs, there is no collision at the corresponding slot. In this case, these
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Figure 3.1: Graph representations of a CT-MAC system with N = 5 users, M = 10 slots,
and R = 2 repetitions.

nodes will not benefit from the iterations of the message passing algorithm. Therefore,

we can calculate the log-likelihood information at the order-1 nodes at the beginning of the

iteration as a priori initial conditions, and remove the order-1 nodes from the actual iteration

process. Assume SN m is an order-1 node connected to the n-th MN, as Am = {n}. The

log-likelihood function (LLF) for the k-th symbol transmitted at the m-th slot, µ
(m)
nk (xs) =

logP (ymk|xnk = χ), can be calculated by

µ
(m)
nk (χ) = Cnk1 −

1

σ2
z

|ymk − hmnwmnχ|2, for χ ∈ S, if Am = {n},

where χ ∈ S, σ2
z is the noise variance, and Cnk1 is a normalization constant to make

∑

χ∈S exp [µnk(χ)] = 1.

For the SNs with order greater than 1, no a priori information is available and initialize

the log-likelihood information as

µ
(m)
nk (χ) = log

1

S
, ∀n ∈ Am, if Am > 1 (3.2)
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If all the SNs connected to the n-th MN are order-1 nodes, then we can directly get an

estimate of xnk as

x̂nk = argmax
χ∈S

∑

m∈Bn

µ
(m)
nk (χ) (3.3)

Therefore node n can be removed from the graph if Am = 1, ∀m ∈ Bn.

After the removal of the nodes, a simplified graph is obtained. Fig. 3.1(b) shows the

simplified graph with only 4 SNs and 5 MNs.

Before the iteration, assign the symbols on each remaining MN an a priori LLF as

λnk(χ) = Cnk2 +
∑

m∈Bn

µ
(m)
nk (χ), (3.4)

where Cnk2 is a normalization constant.

The a priori LLF for the SNs in the simplified graph can be calculated from the channel

measurements as

µmk(xm) = Cnk3 −
1

σ2
z

|ymk −
∑

n∈Am

hmnwmnxnk|2 (3.5)

where xm = [xnk]
T
n∈Am

is a length-Am vector containing one possible realization of the Am

symbols that collide at the slot m. Since there are SAm such vectors, each MN is associated

with a set of SAm initial LLFs.

3.4.2 Message Passing

The MNs and SNs iteratively exchange soft information to recover the information collided

at the receiver.

Denote the message from the m-th SN to the n-th MN about the k-th symbol xnk as

α
(m)
nk (χ), for χ ∈ S, n ∈ Am, and k = 1, · · · , K. Similarly, denote the message from the n-th

MN to the m-th SN about the k-th symbol xnk as β
(m)
nk (χ).
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1) SN → MN: α
(m)
nk (χ).

Each SN collects the soft information from all of its connected MNs, and combine these

soft information to get an update of the LLF of the received symbols.

The likelihood function of xnk at the m-th slot can be calculated as

P (ymk|xnk = χ) =
∑

χm∈SAm−1

P (xmk\n = χm) × P (ymk|xnk = χ,xmk\n = χm) (3.6)

where χm ∈ SAm−1 contains one possible realization of a length-(Am−1) vector with elements

from S, xmk\n = [xuk]
T
u∈Am,u 6=n is a length-(Am − 1) vector containing all but xnk related to

Am.

The a priori probability P (xmk\n = χm) can be obtained by combining the soft informa-

tion from the MNs as

logP (xmk\n = χm) =
∏

χu∈χm

β
(m)
nk (χu) (3.7)

where χu is an element in χm.

The sequence-based LLF in (3.6) can be obtained from the initial LLF as in (3.5).

Combining (3.5), (3.6), and (3.7), the LLF delivered from the m-th SN to the n-th MN,

α
(m)
nk (χ) = logP (ymk|xnk = χ), can be calculated as

α
(m)
nk (χ) = logsum

χm∈SAm−1

[
∏

χu∈χm

β
(m)
nk (χu) + µmk(xnk = χ,xmk\n = χm)], (3.8)

where

logsum
n∈[1,··· ,N ]

[an] = max(a) + log

{

N
∑

n=1

exp [an −max(a)]

}

, (3.9)

with max(a) returning the maximum value in the vector a = [a1, · · · , aN ]T . The log-domain

operations in (3.8) and (3.9) can avoid the numerical instability caused by overflowing during

the iterations.
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The LLR sent from the SN to the MN as calculated in (3.8) incorporates the initial LLFs

from the channel measurements, and the soft messages from all but the n-th SN connected

to the m-th MN.

2) MN → SN: β
(m)
nk (χ).

The message from the n-th MN to the m-th SN with m ∈ Bn about xnk is

β
(m)
nk (χ) =

∑

m′∈Bn\m
α
(m′)
nk (χ) + λnk(χ), (3.10)

where Bn\m is obtained by removing the element m from B.

The soft message to them-th SN contains the message from all but them-th SN connected

to the n-th MN, and the initial LLF defined in (3.4). Removing the information from the

SN m in the soft message to the SN m can avoid numerical instability caused by positive

feedback.

3) Hard Decision.

The iteration terminates if the parity check or cyclic redundancy check is satisfied in all

the packets, or if the maximum number of iterations is reached. At the end of the iteration,

a hard decision can be made based on the soft information as

x̂nk = argmax
χ∈S

∑

m∈Bn

α
(m)
nk (χ) + λnk(χ) (3.11)

The complexity of the message passing algorithm is proportional to SNc . The number

of packets in a given slot follows a Poisson distribution with parameters N and R
M
. Thus

the average number collisions is NR
M

. On average, the complexity of the message passing

algorithm is on the order of O(NIS
NR
M ), where NI is the maximum number of iterations.

The complexity of the optimum exhaustive search is on the order of O(SN). Since R is
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usually far less than M , the complexity of the message passing algorithm is usually much

lower than the optimum search algorithm.

3.5 EXIT Chart Analysis

The convergence of the modified MP algorithm developed for the CT-MAC is studied in this

section with the EXIT chart [12], which traces the evolution of mutual information between

the data and the soft information through iterations.

The EXIT chart analysis is performed by tracing the evolution of the log-likelihood ratio

(LLR) of the binary data. Assume that the binary vector, bnk = [bnk1, · · · , bnk log2 S]
T ∈

Blog2 S, with B = {−1, 1}, is mapped to the symbol xnk ∈ S through modulation. Define the

LLR of bnkq as

L(bnkq) =

∑

χ∈S+
q
logP (xnk = χ)

∑

χ∈S−

q
logP (xnk = χ)

(3.12)

where S+
q contains all the symbols in S with the q-th bit in the demodulated vector being

1, and S−
q = S\S+

q . For the message passed from the m-th SN to the n-th MN, logP (xnk =

χ) = α
(m)
nk (χ); for the message passed from the n-th MN to the m-th SN, logP (xnk = χ) =

β
(m)
nk (χ).

The EXIT chart analysis is based on the assumption that the LLRs are independent and

identically distributed (i.i.d.) with a conditional pdf, pL(l|b), given by

pL(l|b) =
1√
2πσL

exp

[

−(l − bσ2
L/2)

2

2σL

]

, (3.13)

where b ∈ B, σL is the variance of the random variable L(b). The conditional pdf given in

(3.13) is a Gaussian pdf with a single parameter σL.
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With the pdf of the LLR given in (3.13), define the mutual information between a bit b

and its LLR L(b) as

I =
1

2

∑

b∈B

∫ +∞

−∞
pL(l|b) log2

2pL(l|b)
pL(l|1) + pL(l| − 1)

dl. (3.14)

Note that I = 0 implies no information about the bit, while I = 1 means ideal informa-

tion. Since the conditional pdf pL(l|b) is a function of a single parameter σL, the mutual

information I is completely determined by σL.

The MN or SN can be modeled as a mutual information transfer device, i.e., given mutual

information at the input, the MN or SN generates a new mutual information at the output

by exploring the graph structure. Usually the output mutual information is larger than the

input one due to the improvement of reliability achieved through the MP detection.

The values of the mutual information at the output of the MN or SN can be obtained

through numerical simulations. For a given input mutual information I, the value of σL can

be obtained through the mapping in (3.13) and (3.14). An ensemble of random input LLRs,

{LI(b)}, can then be generated following the conditional pdf in (3.13) and the value of σL.

Feeding these random LLRs to (3.8) or (3.10) leads to an ensemble of LLRs at the output of

the SN or MN, respectively. Denote the output LLRs as {LO(b)}. An empirical histogram,

or probability mass function (PMF), of the output LLRs, PLO
(l|b), can then be numerically

generated provided that the number of random samples is large enough.

Fig. 3.2 depicts the EXIT chart of the modified MP by placing the mutual information

transfer curves of the MN and the SN in the same figure. The horizontal axis is the mutual

information at the input to the SN (the LLR of bits corresponding to β
(m)
nk (χ)), and the

vertical axis is the mutual information at the input to the MN (the LLR of bits corresponding
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Figure 3.2: EXIT chart of a system with M = 12 slots and R = 2 repetitions.

to α
(m)
nk (χ)). The curves are obtained from systems with M = 12 and R = 2, at Eb/N0 = 10

dB. The trajector traces visualizes the evolution of the mutual information by following the

guide of the “tunnel” between the transfer curves. All transfer curves terminate at IO = 1,

which means they can generate ideal outputs. The transfer curve for the MN has a slope

1 when R = 2 because in this case a MN simply forwards the message from one SN to the

other SN, and there is no further mutual information gain. The transfer curve of the SN has

a larger slope when N is small, which means it can converge with less iterations.

3.6 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the pro-

posed cross layer MAC with the modified MP algorithm.
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Figure 3.3: BER performance of the system with M = 12 slots, R = 2 repetitions, and the
message passing algorithm.

Fig. 3.3 shows the bit error rate (BER) of the proposed system with various number

of users N . There are M = 12 slots per frame, and each packet is repeated R = 2 times.

The maximum iteration is set to 6. For comparison, the BER performance with optimum

maximum likelihood sequence detection with exhaustive search for N = 8 is also shown in

the figure. It can be seen that the modified MP can achieve a performance that is almost

identical to its optimum counterpart. In addition, it is interesting to note that the BER

performance improves slightly as N increases at high SNRs. This can be explained by the

fact that more users means a more diverse channel conditions and more node interactions,

which contribute positively to the detection process. Therefore, the collision-tolerant MAC

with MP detection can support a large number of simultaneous users.
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Figure 3.4: FER performance of the system with M = 10 slots, N = 20 users, R = 2
repetitions, and the message passing algorithm.

The effect of the number of iterations on the frame error rate (FER) is shown in Fig.

3.4. There are N = 20 active users, M = 10 slots per frame, and R = 2 repetitions. The

largest performance gain is achieved at the second iteration. The performance converges at

the 4th iteration, which corroborates the EXIT chart in Fig. 3.2.

Fig. 3.5 shows the normalized throughput as a function of the normalized offered load for

various MAC schemes. The SA, CRDSA and IRSA achieve their respective peak throughputs

when G ≤ 1, and the throughputs drop dramatically when G > 1. The throughput of the

proposed scheme achieves the maximum throughput 1.3 at G = 2.4 due to the MUD with

the modified MP algorithm.
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3.7 Conclusions

A cross-layer CT-MAC scheme was proposed in this paper. In the MAC layer, each packet

was transmitted in the form of multiple weighted replicas at randomly selected slots in a

frame, and the positions of the occupied slots were specified in a collision-free position slot

at the beginning of each frame. The collisions in the MAC layer were resolved by using a

modified MP algorithm in the PHY layer, which operated on a simplified bipartite graph

of the MAC structure. Simulation results demonstrated that the modified MP algorithm

can achieve a performance that was almost identical to the optimum maximum likelihood

detection, but with a much lower complexity. In addition, the proposed CT-MAC scheme

could support up to N = 2.4M simultaneous user for a system with M slots per frame,

whereas most existing cross-layer MAC schemes can only support N ≤ M users.
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Chapter 4

Collision-Tolerant Media Access Control with Asynchronous Users

4.1 Abstract

A frequency-domain cross-layer collision-tolerant (CT) media access control (MAC) scheme

is proposed for the up-links of broadband wireless networks with asynchronous users. The

collision tolerance is achieved with a frequency-domain on-off accumulative transmission

(FD-OOAT) scheme, where the frequency-selective spectrum is divided into a large num-

ber of orthogonal sub-channels, and each symbol is transmitted over a small subset of the

sub-channels to reduce the probability of collision. Such a configuration renders a special

signal structure that enables multi-user detection (MUD) in the physical layer to resolve the

collisions at the MAC layer. Most MUDs in the literature require precise symbol level syn-

chronizations among the users. The proposed scheme, on the other hand, can operate with

asynchronous users. By employing oversampling in the time domain and detection in the

frequency domain, the proposed scheme is insensitive to the timing phase offset between the

sampling clocks at the transmitter and receive. In addition, oversampling in the time domain

and spreading the signal in the frequency domain enable multipath diversity that further im-

proves the system performance. Theoretical analysis are performed to quantify the impacts
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of multipath diversity and relative user delays on the system performance. Both analytical

and simulation results demonstrated that significant performance gains are achieved with

the proposed scheme, in terms of both the number of users supported and the normalized

throughput.

keywords

Collision-tolerant media access control, asynchronous users, timing phase offset, cross layer

design, and oversampling

4.2 Introduction

Medium access control (MAC) coordinates the access of the shared wireless medium among

multiple synchronous or asynchronous users. It is critical for the efficient operations of multi-

user wireless communication systems, such as the up-links of cellular networks, satellite

communications, and wireless sensor networks with multiple sensors transmitting to the

same information sink. In many conventional MAC schemes such as slotted ALOHA or

carrier sensing multiple access (CSMA), signals collided at a receiver will be discarded and

retransmitted. This results in a waste of the precious energy and spectrum resources.

Various collision-tolerant (CT) MAC protocols have been proposed to extract the salient

information contained in the collided signals by resorting to cross-layer designs [1]–[10]. The

concept of multi-packet reception (MPR) is proposed in [1]–[4], where it is assumed that a

fraction of the collided signals can be correctly detected with physical (PHY) layer signal

processing. In most MPR related works, the effects of channel and PHY layer operations are

abstracted into a group of parameters Pnk, the probability that k packets can be recovered
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when there are n ≥ k packets in the collision. They do not specify how the collisions can be

resolved. Iterative interference cancellation (IC) methods are employed to resolve multi-user

collisions in a contention-resolution diversity slotted ALOHA (CRDSA) [5] and an irregular

repetition slotted ALOHA (IRSA) scheme [6] and [7]. In the CRDSA and IRSA schemes,

each packet is transmitted multiple times at random slots in a frame. If one of the packet

is detected, then it can be used to subtract the interference caused by its replicas. The IC

process is performed iteratively. These schemes work well under low offered loads. However,

the throughput drops dramatically once the normalized offered load exceeds a saturation

point. The sharp drop is due to the fact that the IC schemes used in CRDSA or IRSA

require at least one collision-free signal at the receiver in order to initiate the iterative IC

process. This is difficult to achieve under a heavy load with high collision probabilities. In

addition, all of the above MAC techniques rely on perfect synchronization among the users,

which is difficult, if not impossible, to achieve in practical systems.

The limitations of iterative IC can be partly solved by using multi-user detection (MUD),

which performs simultaneous detection of signals from two or more users collided at the re-

ceiver. MUD in the PHY layer can be combined with MAC techniques to improve the

spectrum and energy efficiency in wireless networks [8]–[10]. MUD techniques are often de-

signed with multi-dimensional signals in the PHY layer, such as code-division multiple access

(CDMA) [8] or orthogonal frequency division multiplexing (OFDM) [9]. An on-off accumu-

lative transmission (OOAT) scheme is proposed in [10] for systems operating in frequency

flat fading. The OOAT scheme can support more simultaneous users than the dimension of

the signals by repeating the same signal multiple times and using silence periods between

two consecutive repetitions to reduce collisions.
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The proper operations of all the above cross-layer MAC schemes require perfect symbol

level synchronization. In a multi-user system, two types of synchronizations are needed: the

synchronization among the users (denoted as multi-user synchronization, or MUS), and the

synchronization of the sampling phase between the transmitter and receiver clocks (denoted

as sampling phase synchronization, or SPS). The SPS is usually achieved by performing

correlation between a specially designed training sequence and the signals at the receiver [10],

[14] and [15]. In multi-user systems, the base station (BS) can first estimate the relative delays

of all the users with techniques from SPS. The estimated timing information can either be

used to assist the detection process [10], or fed back to the users through a down-link control

channel to achieve MUS [16]. All these schemes can only achieve synchronization up to a

certain level of precision, and there will always be residual timing offsets or synchronization

errors. MUS errors could cause additional multiple access interference (MAI) and/or destroy

the special signal structure that is critical for MUD [11]. SPS errors introduce timing phase

offset that will increase inter-symbol interference (ISI) and degrade signal-to-noise ratio

(SNR) at the receiver [12] and [13]. If the users in a multi-user system are not perfectly

aligned in the time domain, then SPS for one user might create timing phase offset for other

users.

In this paper, we propose a new cross-layer CT-MAC scheme that operates in frequency-

selective fading, does not require either MUS or SPS, and is insensitive to timing phase

offsets. The collision tolerance is achieved by employing a frequency-domain OOAT (FD-

OOAT). The OOAT technique was originally proposed for time domain operations [10], and

it can only operate in frequency flat fading channels, so as many other CT-MAC schemes

in the literature [5]–[7]. Spectral efficient wide-band communications dictate an operation
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environment of frequency-selective fading, which imposes additional challenges to the design

of CT-MAC techniques. In the FD-OOAT, the frequency-selective channel is divided into

multiple orthogonal sub-channels in the frequency domain with the help of OFDM. Different

from conventional OFDM, each symbol is transmitted over multiple sub-channels by following

a certain on-off pattern in our scheme. Consequently, the proposed scheme can not only

deal with frequency-selectivity of wide-band wireless channels as OFDM, but also exploit

frequency diversity since each symbol is spread to several sub-channels. The FD-OOAT

converts the relative transmission delays among the users in the time domain into phase

shifts in the frequency domain, such that the sub-channels from different users are perfectly

aligned in the frequency domain. Therefore, the frequency-domain operation eliminates the

need for precise MUS, and it allows us to carefully plan the on-off patterns employed by

different users to minimize the number of users colliding on each sub-channel.

Without time-domain MUS, there will always be non-negligible timing phase offsets be-

cause the receiver can only synchronize with the sampling phase of at most one user at a

time. To mitigate the negative impacts of timing phase offsets, we propose to perform time-

domain oversampling of the received signals. It has been shown in [13] through theoretical

analysis that time-domain oversampling can effectively remove the effects of timing phase

offset for a single-user single-carrier system operating in frequency-selective fading. We will

show in this paper through both theoretical analysis and simulation that this is also true

for multi-user multi-carrier systems. The performance of the proposed FD-OOAT with the

time-domain oversampling is insensitive to the absolute sampling phase used at the receiver.

Therefore, the proposed scheme can operate in an asynchronous environment without in-

curring additional interferences or SNR degradation. In addition, it has been shown in [10]
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that time-domain oversampling can benefit the performance of a multi-carrier system by

introducing additional frequency diversity gains. Based on the special signal structure of the

FD-OOAT with time domain oversampling, optimum and sub-optimum MUDs are devel-

oped to effectively collect the frequency diversity gain, and to resolve the collisions among

the users. An analytical matched filter bound is derived to quantify the performance of the

proposed scheme and the impacts of timing delays. Simulation results demonstrate that

the proposed CT-MAC can achieve significant performance gains over existing CT-MAC

schemes.

The remainder of this paper is organized as follows. The FD-OOAT scheme with time-

domain oversampling is presented in Section 4.3. The optimum and sub-optimum detection

methods that can resolve collisions and collect the diversity gains are described in Section

4.4. In Section 4.5, theoretical studies are performed to quantify the impacts of multipath

diversity gain and timing phase offset. Simulation results are given in Section 4.6, and

Section 4.7 concludes the paper.

4.3 Frequency-Domain OOAT with Time-Domain Oversampling

4.3.1 Proposed System Structure

Consider a wireless network with N users transmitting to the same receiver through a shared

channel. Each MAC frame contains K symbols. To achieve collision tolerance in the MAC

layer, users employ the FD-OOAT in the physical layer as shown in Fig. 4.1.

The entire available bandwidth, B, is divided into KM sub-channels, with a bandwidth

B0 =
B

KM
each. Each symbol uses M sub-channels uniformly spread over the entire frequency
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Figure 4.1: A frequency-domain OOAT system with N = 5 users, R = 4 sub-channels
occupied out of M = 12 sub-channels for each symbol.

band. If sub-channels are indexed as 0, 1, · · · , KM−1, then theM sub-channels with indices,

{mK + k}M−1
m=0 , are assigned for the k-th symbol in the frame, for k = 0, · · · , K − 1. During

each transmission, only R randomly-chosen sub-channels from the M ones are occupied.

The indicator vector of the occupied sub-channels for the n-th user can be represented by a

binary vector of length M , pn = [pn(0), · · · , pn(M − 1)]T ∈ BM×1, where B = {0, 1}, with

pn(m) = 1 if the k-th symbol is transmitted at the {mK+k}-th sub-channel, and pn(m) = 0

otherwise. All symbols from the n-th user use the same transmission pattern pn. With such

a scheme, each symbol is repeated over R sub-channels (accumulative transmission), and

the utilization of the sub-channels are determined by an on-off transmission pattern pn. In

the example shown in Fig. 4.1, there are N = 5 users, M = 12 available sub-channels per

symbol, and R = 4 out of the 12 available sub-channels are occupied.

Based on the above description, the signal transmitted on the m-th sub-channel of the

n-th user can be represented as

dn(m) = pn(im)snkm, (4.1)
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where im = bm
K
c with bac being the largest integer smaller than or equal to a, snk is the k-th

symbol from user n, and km = [m]K with [m]K = m − imK being the modulo K operator.

Consequently, the signal vector of the n-th user can be expressed as

dn = [dn(0), dn(1), · · · , dn(KM − 1)]T ∈ SL×1
+ , (4.2)

where L = KM , S+ = {S, 0}, and S is the modulation constellation set with a cardinality

S = |S|.

The signal vector, dn, is converted to the time domain by applying an L-point inverse

discrete Fourier transform (IDFT) as

xn = FH
L
· dn, (4.3)

where xn = [xn(0), xn(1), · · · , xn(L− 1)]T is the time-domain signal vector, and F
L
∈ CL×L

is the L-point discrete Fourier transform (DFT) matrix with the (r + 1, c + 1)-th element

being

[F
L
]r,c =

1√
L
exp

[

−j2π
r · c
L

]

, r, c = 0, 1, · · · , L− 1.

Before transmission, a length-lcp cyclic prefix (CP) is added to the time-domain signal

xn to avoid interference between consecutively transmitted frames. The time domain signals

pass through a transmit filter, p1(t), and then transmitted over a quasi-static frequency-

selective fading channel with impulse response gn(t). In a quasi-static channel, the fading is

constant inside a frame, and varies independently from frame to frame. At the receiver, the

received signals pass through a receive filter, p2(t). Define the composite impulse response

(CIR) of the channel as

hnc(t) = p1(t)� gn(t)� p2(t), (4.4)
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where � is the convolution operator. The CIR, hnc(t), includes the effects of the physical

channel and the transmit and receive filters.

The output of the receive filter is

yc(t) =
N
∑

n=1

+∞
∑

l=−∞

√

Es

R
xn(l)hnc(t− lT1 − τn) + zc(t), (4.5)

where Es is the energy per symbol, xn(l) is the l-th time-domain sample from the n-th

user with a sample period T1, zc(t) = p2(t) � vc(t) is the noise component at the output of

the receive filter, with � denoting convolution and vc(t) the additive white Gaussian noise

(AWGN) with one-sided power spectral density N0.

The output of the receive filter is sampled at the time instant t = iT2, where T2 = T1/u

is the sampling period at the receiver, with the oversampling factor, u, being an integer.

Denote the relative delays among the users as τn = lnT2 + τn0, where ln represents the

mis-alignment among the users in terms of receive samples, and τn0 ∈ [0, T2] is the timing

phase offset between the sampling clocks at the transmitter and receiver. The discrete-time

samples are

y
T
(i) =

N
∑

n=1

ulc−1
∑

l=0

√

Es

R
x

nT
(i− l − ln)hnT

(l) + z
T
(i), (4.6)

where y
T
(i) = yc(iT2) and z

T
(i) = zc(iT2) are the T2-spaced samples of the received signals

and noise components, respectively, h
nT
(l) = hnc(lT2 − τn0) is the sampled version of the

continuous-time CIR hnc(t), and x
nT
(i) is the oversampled version of xn(i) as x

nT
(i) =

xn(i/u), if i/u is an integer, and 0 otherwise. It is assumed that the length of the CIR,

ulc, is an integer multiple of u, with lc being the length of the CIR without oversampling.

This condition can always be met by appending zeros to the CIR. The timing phase offset

τn0 is incorporated in the discrete-time CIR h
nT
(l). We will study in Section 5.4.2 through
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frequency-domain analysis the impacts of τn0 on the statistical properties of the channel

coefficients and the system performance.

With the discrete-time system model given in (4.6), the length of the CP should satisfy

lcp ≥ lc + ld/u − 1, where ld = max{ln} is the maximum relative transmission delay among

the users. It should be noted that the proposed method can work for arbitrary value of ld,

and a larger ld means a longer CP. To achieve better spectral and energy efficiency, it is

assumed in the simulation that ld ∈ [0, uK).

Due to the time span of the transmit and receive filters, the CIR coefficients, h
nT
(l), are

correlated, even though the underlying channel might undergo uncorrelated scattering. The

correlation coefficient, cn(k1, k2) = E
[

h
nT
(k1)h

∗
nT
(k2)

]

, can be calculated as [18, eqn. (17)].

cn(k1, k2)=

∫ +∞

−∞
RP1P2

(k1T2 − τn0 − τ)R∗
P1P2

(k2T2 − τn0 − τ)ζ(τ)dτ, (4.7)

where ζ(τ) is the power delay profile of the physical channel, and RP1P2
(t) is the convolution

of the transmit and receive filters.

After the removal of the CP, the received symbols can be written in a matrix form as

y
T
=

√

Es

R

N
∑

n=1

H
nT

· xn + z
T
, (4.8)

where y
T
= [y

T
(0), · · · , y

T
(uL−1)]T ∈ CuL×1, z

T
= [z

T
(0), · · · , z

T
(uL−1)]T ∈ CuL×1, H

nT
=

[hn,1,hn,u+1, · · · ,hn,(L−1)u+1] ∈ CuL×L, with hn,k ∈ CuL×1 being the k-th column of a circulant

matrixHn ∈ CuL×uL. The first column ofHn ∈ CuL×uL is hn,1 = [0T
ln
, hnT (0), hnT (1), · · · , hnT (ulc−

1), 0T
uL−ln−ulc

, ]T , and 0a is a length-a all-zero vector. Due to the time span of the re-

ceive filter and the oversampling operation, the time domain noise vector is also corre-

lated. The vector, z
T
, is zero mean complex Gaussian distributed with a covariance matrix

Rz
T
= E(z

T
zH

T
) = N0Rp, where Rp is defined in [19, Lemma 2].
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The uL-point DFT is applied to the vector y
T
to convert the signal to the frequency

domain as

y
F
=

√

Es

R

N
∑

n=1

H
nF

· dn + z
F
, (4.9)

where y
F
= F

uL
y

T
and z

F
= F

uL
z

T
are the frequency-domain signal vector and noise vector,

respectively, and H
nF

= F
uL
H

nT
FH

L
∈ CuL×L is the frequency-domain channel matrix. Due

to the correlation among the noise samples in the time domain, they are still correlated in

the frequency domain. The covariance matrix of z
F
is Rz

F
= N0FuL

RpF
H
uL
. It should be

noted that due to the on-off transmission, only RK out of the L = MK elements in dn are

non-zero.

The matrixH
nF

can be partitioned into a stack of u sub-matrices asH
nF

= [GT
n0, · · · ,GT

n(u−1)]
T ,

where Gnv ∈ CL×L. The matrix, Gnv, is a diagonal matrix, with the (m + 1)-th diagonal

element being [19, Corollary 1]

Gnv(m) =
exp

[

−j2π ln·(vL+m)
uL

]

√
u

ulc−1
∑

l=0

h
nT
(l) exp

[

−j2π
(vL+m) · l

uL

]

. (4.10)

Even though the signals transmitted by the different users are mis-aligned in the time

domain, the FD-OOAT symbols from different users are perfectly aligned in the frequency

domain as shown in (4.9), (4.10) and Fig. 4.1. The relative delay, ln, in the time domain is

converted to a phase shift, exp
[

−j2π ln·(vL+m)
uL

]

, in the frequency domain.

With the model given in (4.9) and (4.10), each dn(m) is equivalently transmitted over

u sub-carriers with coefficients {Gnv(m)}u−1
v=0 . Since each symbol is repeated R times, each

modulated symbol, snk, is equivalently transmitted over uR sub-carriers in the frequency

domain. Therefore, frequency diversity is achieved with the proposed FD-OOAT scheme.
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The uR sub-carriers spread over the entire frequency band to maximize the frequency diver-

sity. We will quantify the frequency diversity order by resorting to a matched filter bound

in Section 4.5.

4.3.2 Collision Tolerance

With the frequency-domain system representation in (4.9), the received information at the

m-th sub-channel at the BS is the superposition of the set of signals, {dn(m)}Nn=1. The value

of dn(m) is 0 if pn(im) = 0. Therefore, only a subset of the users will collide at the m-th

sub-channel. Define the collision order at the m-th sub-channel as Nc(m) =
∑N

n=1 pn (im).

The collision order of the network is then defined as Nc = maxmNc(m). We have Nc = 2 for

the system shown in Fig. 4.1.

The FD-OOAT system with time-domain oversampling can be equivalently represented

as an Nc-input uR-output system. In practice, to ensure collision tolerance and system

performance, it is desirable to have a system with Nc ≤ uR. Due to the perfect alignment of

the users in the frequency domain, given N , M , and R, we can choose a subset of position

vectors to minimize Nc. The subset of position vectors can be constructed by exhaustively

searching over the set of all the
(

M
R

)

possible patterns. This task only needs to be done once

during the system design, so the high complexity incurred by the exhaustive search will not

affect the actual operation of the network.

The oversampled FD-OOAT scheme contributes to the performance improvement of the

wireless network from the following perspectives. First, the on-off transmission across the

sub-channels will reduce the collision order. Second, the transmission of R identical sub-

symbols with oversampling results in a uR-dimensional received signal in the frequency
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domain, which can be used for the detection of theNc-dimensional signal in the space domain.

Third, frequency diversity is achieved by transmitting the k-th symbol in uR sub-channels.

Fourth, the OOAT signals from different users are perfectly aligned in the frequency domain

even if they are asynchronous in the time domain, and this enables the precise control of the

collision order by carefully selecting the transmission patterns for all the users.

4.4 Collision Resolution with Optimum Detection and Sub-optimum Detection

In this section, optimum and sub-optimum detectors are developed for the oversampled FD-

OOAT system to resolve the collisions among the users and to collect the inherent frequency

diversity.

4.4.1 Optimum Detection with Maximum Likelihood Detector

Since all the FD-OOAT symbols are perfectly aligned in the frequency domain as shown in

Fig. 4.1, the k-th symbol from one user will only interfere the k-th symbol from the other

users. This is different from the time-domain OOAT [10], where the k-th symbol from one

user might interfere the (k − 1)-th, k-th, and the (k + 1)-th symbols from the other users

due to the signal mis-alignment in the time domain.

The k-th symbols from all the N users, {snk}Nn=1, can be jointly detected by using a

block of uM received signal samples rk = [yT
0 , · · · ,yT

u−1]
T ∈ CuM×1 with yv = [y

F
(vL +

k), y
F
(vL + K + k), · · · , y

F
(vL + (M − 1)K + k)]T ∈ CM×1. The vector rk defined above

is obtained by extracting uM elements from the frequency domain vector y
F
. It can be

alternatively represented as rk = BkyF
, where Bk ∈ BuM×uL is obtained by extracting uM

rows from a size-uL identity matrix IuL. The indices of the extracted rows are vL+mK+k,
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for v = 0, · · · , u− 1 and m = 0, · · · ,M − 1.

From (4.9), we have

rk =

√

Es

R
Hk · sk +wk, (4.11)

where sk = [s
1k
, s

2k
, · · · , s

Nk
]T ∈ SN×1 and wk = BkzF

∈ CuM×1 are the modulation sym-

bol vector and noise vector, respectively, Hk = [GT
0 , · · · ,GT

u−1]
T , and Gv ∈ CM×N is the

frequency-domain channel matrix with the (m+1, n)-th element being pn(m)Gnv(mK + k).

Since the elements of wk are extracted from z
F
, they are mutually correlated with the co-

variance matrix Rwk
= N0BkFuLRpF

H
uLB

H
k . The covariance matrix might be rank deficient.

Define the pseudo-inverse of 1
N0

Rwk
as

Φk = VkΩ
−1
k VH

k ∈ CuM×uM , (4.12)

with

Vk = [vk1,vk2, · · · ,vkuk
] ∈ CuM×uk (4.13a)

Ωk = diag[ωk1, ωk2, · · · , ωkuk
] ∈ Cuk×uk , (4.13b)

where uk is the number of non-zero eigenvalues of 1
N0

Rwk
, Ωk is a diagonal matrix, with

the elements, {ωki}uk

i=1, being the non-zero eigenvalues of 1
N0

Rwk
, and {vki}uk

i=1 are the cor-

responding orthonormal eigenvectors.

Define the noise whitening matrix Dk = Ω
−1/2
k VH

k . Applying Dk on both sides of (4.11)

leads to an equivalent system

r̄k =

√

Es

R
H̄k · sk + w̄k, (4.14)

where r̄k = Dkrk, H̄k = DkHk, and w̄k = Dkwk. The covariance matrix of the noise vector,

w̄k, in the equivalent system can be calculated as Rw̄k
= DkRwk

DH
k = N0Iup. Therefore, the
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original system in (4.11) with uM outputs and a colored noise is converted into an equivalent

system with uk outputs and a white noise.

From (4.14), the optimum maximum likelihood decision rule of the system can be repre-

sented as

ŝk = argmin
sk∈SN

(

r̄k −
√

Es

R
H̄ksk

)H (

r̄k −
√

Es

R
H̄ksk

)

, (4.15)

The optimum detector in (4.15) requires the exhaustive search of a set of |S|N possible signal

vectors. The complexity of the optimum detector grows exponentially with the increase of

the modulation level |S| and the number of users N .

4.4.2 Sub-optimum Detection with an Iterative Block Decision Feedback Equal-

izer

A low complexity sub-optimum detection algorithm is presented in this subsection to balance

the trade-off between the performance and complexity. The sub-optimum algorithm is devel-

oped by employing an iterative soft-input soft-output (SISO) block decision feedback equalizer

(BDFE) [20], which performs soft successive interference cancellation (SSIC) among the N

symbols in sk.

The soft-input to the iterative BDFE equalizer is the a priori probability of the symbols,

P (snk = Si), for n = 1, · · · , N and i = 1, · · · , |S|, where Si ∈ S. The a priori information is

obtained from the previous detection round with an iterative detection method, and details

will be given later in this subsection. The soft-output of the equalizer is the a posteriori

probability of the symbols, P (snk = Si |̄rk), for n = 1, · · · , N and i = 1, · · · , |S|. With the

soft-output at the equalizer, define the a posteriori mean, ŝnk, and the extrinsic information,
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βnk(i), of the symbol sn(k) as

ŝnk =
S
∑

i=1

P (snk = Si|̄rk)Si (4.16a)

βnk(i) = logP (snk = Si|̄rk)− logP (snk = Si). (4.16b)

The a posteriori mean, ŝnk, is used as soft decisions for the SSIC during the SISO-BDFE

process. Details of the SISO-BDFE detection can be found in [20].

In the proposed sub-optimum detection, the SISO-BDFE with SSIC will be performed

iteratively. At the first iteration, the a priori probability is initialized to P (snk = Si) =
1
|S| .

The extrinsic information at the output of the v-th iteration will be used as the soft-input

of the (v + 1)-th iteration as P (snk = Si) = cnk exp[βnk(i)], where cnk is a normalization

constant to make
∑S

i=1 P (snk = Si) = 1. At the final iteration, hard decisions will be made

based on the a posteriori probability generated by the SISO-BDFE as

ŝnk = argmax
Si∈S

P (snk = Si|̄rk). (4.17)

Simulation results show that the performance of the iterative detection algorithm usually

converges after 4 iterations. The sub-optimum iterative detection algorithm can achieve a

performance that is very close to its optimum counterpart, but with a much lower complexity.

4.5 Performance Analysis

The impacts of the frequency diversity and timing phase offset on the performance of the

proposed FD-OOAT scheme with oversampling are studied in this section through theoretical

analysis.
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4.5.1 Matched Filter Bound

The matched filter bound on the bit error rate (BER) of the proposed frequency-domain

CT-MAC scheme with binary phase shift keying (BPSK) is developed in this subsection.

The matched filter bound is obtained by assuming that there is no interference among the

users, and the obtained results serve as a lower bound on the BER of the actual system.

With the interference-free assumption, the received signal corresponding to the k-th

symbol of the n-th user can be written as

rnk =

√

Es

R
gnk · snk +wnk, (4.18)

where rnk = [yT
n0, · · · ,yT

n(u−1)]
T ∈ CuR×1 with ynv = [y

F
(vL+n1K + k), · · · , y

F
(vL+nRK +

k)]T ∈ CR×1, nr is the r-th non-zero position in pn, wnk = [zTn0, · · · , zTn(u−1)]
T ∈ CuR×1 with

znv = [z
F
(vL+n1K +k), · · · , z

F
(vL+nRK+k)]T ∈ CR×1, and gnk = [G̃T

n0, · · · , G̃T
n(u−1)]

T ∈

CuR×1 with G̃nv = [Gnv(n1K + k), · · · , Gnv(nRK + k)]T ∈ CR×1 is the channel coefficient

vector.

From the system model in (4.18), R repetitions of each symbol is equivalently transmitted

over uR sub-carriers, which is equivalent to a single input multiple output (SIMO) system.

The SIMO system has correlated channel taps and is corrupted by a colored noise.

The channel coefficient vector, gnk, can be represented as

gnk =
√
LBnk · FuL

· hn,1, (4.19)

where hn,1 is the first column of the circulant time-domain channel matrix Hn, and Bnk ∈

BuR×uL is a binary matrix, with the (vR + r, vL + nrK + k + 1)-th element being 1, for

r = 1, · · · , R, v = 0, · · · , u− 1, and all other elements of Bnk being zero.
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The auto-correlation matrix, Rnk = E[gnkg
H
nk], can then be calculated as

Rnk = LBnkFuL
RhnF

H
uL
BT

nk, (4.20)

where Rhn = E(hn,1h
H
n,1) is the auto-correlation matrix of the time-domain CIR vector. Rhn

can be written as a block matrix as

Rhn =

















0ln×ln 0ln×ulc 0ln×lr

0ulc×ln Rh 0ulc×lr

0lr×ln 0lr×ulc 0lr×lr

















, (4.21)

where lr = L− ln−ulc, and the (l1, l2)-th element of Rh ∈ Culc×ulc is c(l1, l2) defined in (4.7).

The covariance matrix Rwnk
of the colored noise wnk can be represented as

Rwnk
= N0BnkFuL

RpF
H
uL
BT

nk. (4.22)

The covariance matrix might be rank deficient. Define the pseudo-inverse of 1
N0

Rwnk
as

Φnk = UnkΛ
−1
nkU

H
nk ∈ CuR×uR, (4.23)

with

Unk = [unk,1,unk,2, · · · ,unk,vk ] ∈ CuR×vk (4.24a)

Λnk = diag[λnk,1, λnk,2, · · · , λnk,vk ] ∈ Cvk×vk , (4.24b)

where vk is the number of non-zero eigenvalues of 1
N0

Rwnk
, Λnk is a diagonal matrix with

{λnk,i}vki=1 being the non-zero eigenvalues of Rwnk
, and {unk,i}vki=1 are the corresponding

orthonormal eigenvectors.

Define the noise whitening matrix Dnk = Λ
−1/2
nk VH

nk. Applying Dnk on both sides of

(4.23) leads to an equivalent system

r̄nk =

√

Es

R
ḡnk · snk + w̄nk, (4.25)
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where r̄nk = Dnkrnk, ḡnk = Dnkgnk, and w̄nk = Dnkwnk with the covariance matrix of w̄nk

being Rw̄nk
= DnkRwnk

DH
nk = N0Ivk .

From (4.25), the optimum decision rule of the SIMO system can be represented as

ŝnk = argmin
snk∈S

|ϕnk − qnksnk|2 (4.26)

where qnk = gH
nkΦnkgnk and ϕnk = gH

nkΦnkrnk.

The SNR of (4.25) can be written as

γ = gH
nkΦnkgnk

γ0
R
, (4.27)

where γ0 =
Es

N0
is the SNR without fading. For systems with BPSK and Rayleigh fading, the

error probability for snk is [12]

Pnk(E) =
1

π

∫ π
2

0

L̃nk
∏

r=1

[

1 +
δnkrγ0
R sin2 θ

]−1

dθ, (4.28)

where L̃nk is the rank of the product matrix, RnkΦnk, and δnkr, for r = 1, · · · , L̃nk, are the

corresponding non-zero eigenvalues. The average BER can then be calculated as

P (E) =
1

NK

N
∑

n=1

K
∑

k=1

Pnk(E). (4.29)

In the above analysis, the order of multipath diversity is quantified as L̃nk, which is the

rank of RnkΦnk. The matrix Rnk corresponds to correlation of the frequency domain channel

coefficients, and Φnk is the pseudo-inverse of the noise covariance matrix, Rwnk
.

The off-diagonal elements of the matrix Rwnk
are contributed by the correlation of the

colored noise. The uR elements in the noise vector, wnk, are extracted from the size-uL

frequency-domain noise vector z
F
based on the transmission pattern pn, and there is at

least K sub-channels between any two samples in wnk. As a result, the mutual correlation
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Table 4.1: The metric 1− ρ under various values of K (M = 12, R = 2 and u = 2).
K 1 10 20 50 100

1− ρ 4.9× 10−3 2.3× 10−4 8.9× 10−5 4.0× 10−5 1.8× 10−5

between the samples in wnk is usually very small. To measure the mutual correlation of the

samples in wnk, define a metric

ρ =
1

NK

N
∑

n=1

K
∑

k=1

‖R′
wnk

‖2
‖Rwnk

‖2
, (4.30)

where R′
wnk

is a diagonal matrix obtained by setting all off-diagonal elements of Rwnk
to

0, and ‖A‖2 is the Frobenius norm of the matrix A. The metric 0 ≤ ρ ≤ 1 measures the

percentage of energy on the diagonal of Rwnk
. The metric ρ = 1 means Rwnk

is a diagonal

matrix. Table 1 shows the values of 1 − ρ with u = 2, M = 12, R = 2, and various values

of K. It is clear that ρ is very close to 1, and the difference between ρ and 1 decreases

as K increases. The results in Table 1 demonstrate that the off-diagonal elements of Rwnk

are negligible compared its diagonal elements. Therefore, the mutual correlation among the

noise samples is very small or negligible.

If we ignore the off-diagonal elements of Rwnk
and approximate the noise vector wnk

as white noise with correlation matrix R′
wnk

, then we can simplify the error performance

analysis. With the white noise assumption, the SNR in (4.27) can be approximated by

γ′
nk =

γ0
R

u−1
∑

v=0

R
∑

r=1

|Gnv(nrK + k)|2φnk(vR + r), (4.31)

where φnk(r) = q−1
nk (r) if qnk(r) 6= 0 with qnk(r) being the r-th diagonal element of Rwnk

, and

φnk(r) = 0 otherwise. The error probability in (4.28) and (4.29) can then be approximated

by using the eigenvalues of the product matrix RnkΦ
′
nk, where Φ′

nk is the pseudo-inverse

of the diagonal matrix 1
N0

R′
wnk

. The BER results calculated with the white approximation
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in (4.31) is slightly worse than the exact matched filter bound in (4.28). Our simulation

indicate that the difference between the two is almost negligible due to the fact that ρ is

very close to 1.

4.5.2 Impacts of Relative Delays

In this subsection, we study the impacts of the relative delays among the users on the per-

formance of the proposed FD-OOAT scheme. From the analysis in the previous subsection,

the performance of the system is dominated by the statistical properties of the SNR γ′
nk

defined in (4.31), which in turn depends on the squared amplitude of the channel coeffi-

cients, |Gnv(m)|2. It should be noted that the power and the auto-correlation of the noise

components are independent of the relative delays τn as evident in (4.22).

The relative delay can be expressed as τn = lnT2 + τn0, where ln represents the mis-

alignment among the asynchronous users, and τn0 ∈ [0, T2] is the timing phase offset of the

sampler. It is clear from (4.10) that ln has no impact on the squared amplitude |Gnv(m)|2.

Next we will study the impact of τn0 on |Gnv(m)|2.

Define the discrete-time Fourier transform (DTFT) of the T2-spaced discrete-time CIR,

h
nT
(l), as

H
nT
(f) =

ulc−1
∑

l=0

h
nT
(l)e−j2πlf , 0 ≤ f ≤ 1 (4.32)

Since h
nT
(l) = hnc(lT2 − τn0), based on the sampling theorem, the DTFT can be expressed

as

H
nT
(f) =

1

T2

∞
∑

i=−∞
Hnc

(

f − i

T2

)

exp

(

−j2πτn0
f − i

T2

)

, (4.33)

where Hnc

(

f
T2

)

is the Fourier transform of the CIR hnc(t).
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From (4.10), (4.32), and (4.33), we can write the frequency domain channel coefficient,

Gnv(m), as

Gnv(m) =
exp

(

−j2π ln·(vL+m)
uL

)

T2

√
u

∞
∑

i=−∞
Hnc

(

vL+m

uLT2
− i

T2

)

exp

(

−j2πτn0
vL+m− uLi

uLT2

)

.

(4.34)

The CIR, hnc(t), includes the effects of the physical channel and the transmit and receive

filters. From (4.4), we have

Hnc

(

f

T2

)

= P1

(

f

T2

)

Gn

(

f

T2

)

P2

(

f

T2

)

, (4.35)

where Pi

(

f
T2

)

and Gn

(

f
T2

)

are the Fourier transforms of pi(t) and gn(t), respectively. If

the roll-off factor of the transmit and receive filters is α, then the frequency domain support

of Pi

(

f
T2

)

is
∣

∣

∣

f
T2

∣

∣

∣
≤ 1+α

2T1
, or |f | ≤ 1+α

2u
. All practical systems have at most 100% excessive

bandwidth, i.e., α ≤ 1. Therefore, Hnc

(

f
T2

)

= 0 for |f | > 1
u
.

4.5.2.1 u = 1

For a system without oversampling, we have T1 = T2, and the frequency domain support

of Pi

(

f
T1

)

and Hnc

(

f
T1

)

are | f
T1
| < 1+α

2T1
. In this case, due to the excessive bandwidth of

the transmitted signal when α > 0, the sampling operation at the receiver causes spectrum

aliasing as shown in (4.33) and (4.34). It is apparent from (4.34) that the frequency domain

channel coefficient is a function of τn0. Therefore, the performance of the system with u = 1

will be affected by the timing phase offset τn0.
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4.5.2.2 u ≥ 2

The frequency domain support of Pi

(

f
T2

)

and Hnc

(

f
T2

)

are | f
T2
| < 1+α

2uT2
≤ 1

2T2
for α ≤ 1.

Therefore, the sampling rate 1
T2

is at least twice as much as the signal bandwidth B ≤ 1
2T2

,

and there is no spectrum aliasing after the sampling operation. The frequency domain

channel coefficient in (4.34) can be simplified to

Gnv(m) =
exp

(

−j2π ln·(vL+m)
uL

)

T2

√
u

Hnc

(

vL+m

uLT2

)

exp

(

−j2πτn0
vL+m

uLT2

)

. (4.36)

The squared amplitude of the channel coefficient can then be expressed as

|Gnv(m)|2 = 1

T2

√
u

∣

∣

∣

∣

Hnc

(

vL+m

uLT2

)
∣

∣

∣

∣

2

. (4.37)

It is interesting to note that |Gnv(m)|2 is independent of the user mis-alignments ln or the

timing phase offset τn0. Since the system performance is dominated by the squared amplitude

of the channel coefficient, the user mis-alignments or timing phase offset has a very small, if

any, impact on the performance of the system when u ≥ 2. Specifically, for systems with at

most 100% excessive bandwidth, an oversampling factor of 2 is sufficient to avoid spectrum

aliasing at the receiver, thus removes the impacts of τn0. The above analysis is corroborated

by simulation results with both the optimum and sub-optimum detectors.

4.6 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the over-

sampled FD-OOAT scheme with the optimum and sub-optimum detections. The effects of

time-domain oversampling and the timing phase offset on the system performance are also

studied in this section.
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In the simulation examples, the sample period at the transmitter is set to T1 = 3.69

µs, and a root-raised cosine (RRC) filter with a roll-off factor α = 1.0 is used for both

the transmit and receive filters. The relative delays among the users, τn, is uniformly dis-

tributed between [0, KT1] with K = 50 unless stated otherwise. The frequency-selective

fading channel follows the Typical Urban (TU) power delay profile (PDP) [21].

Fig. 4.2 shows the BER results of the proposed CT-MAC system under various system

configurations. There are M = 12 sub-channels per symbol and each symbol is transmitted

with R = 2 repetitions. The sub-optimum BDFE detection is performed with 4 iterations.

The analytical results are obtained with both (4.28) and the white approximation as in

(4.31), and the two results overlap. Only the one obtained with (4.28) is shown in the figure.

We have the following observations about the results. First, when N = 1, the analytical and

simulation results match perfectly for both u = 1 and 2. Second, with the BDFE receiver,

increasing N has less impacts on the oversampled system with u = 2 than the system with

u = 1. At BER = 2 × 10−3, increasing N from 1 to 10 results in a 1.5 dB and a 0.8 dB

performance loss for systems with u = 1 and u = 2, respectively. This indicates that the

proposed FD-OOAT system can operate properly even when there are a large number of

users and collisions. In addition, when u = 2 and N = 10, the sub-optimum BDFE receiver

achieves almost the same performance as the optimum ML receiver, but with a much lower

complexity. Third, the oversampled system consistently outperforms the system without

oversampling. The performance improvement is contributed by the additional multipath

diversity and the insensitivity to the timing phase offset due to the oversampling operation.

At BER = 2× 10−3 and N = 10, the oversampled system outperforms its non-oversampled

counterpart by 5.6 dB when BDFE is used.
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Figure 4.2: BER performance comparison of systems with M = 12 sub-channels per symbol,
R = 2 repetitions, and different number of users.

The effects of the receiver timing phase offset on the system performance are studied

in Fig. 4.3 for single-user systems and Fig. 4.4 for multi-user systems, respectively. In

Fig. 4.3, there are M = 12 sub-channels per symbol, and each symbol is transmitted with

R = 2 repetitions. To have a better understanding on the effects of timing phase offset, it

is assumed that τn0 is fixed at 0 or 0.5T2 in Fig. 4.3. The performance of the system with

u = 1 varies as τn0 changes, yet the performance of the oversampled system is independent

of τn0.

A similar observation is obtained in Fig. 4.4 for systems with multiple users, where the

BER is shown as a function of τn0. The mis-alignment among the asynchronous users, ln, is

uniformly distributed between [0, uK]. The Eb/N0 is 10 dB. The BER of the oversampled

68



0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

u=1, τ
n0

=0, analytical

u=1, τ
n0

=0, simulation

u=1, τ
n0

=0.5T
2
, analytical

u=1, τ
n0

=0.5T
2
, simulation

u=2, τ
n0

=0, analytical

u=2, τ
n0

=0, simulation

u=2, τ
n0

=0.5T
2
, analytical

u=2, τ
n0

=0.5T
2
, simulation

Figure 4.3: The effects of the receiver timing phase offset on the BER performance of the
system (There are N = 1 user, M = 12 sub-channels per symbol, and R = 2 repetitions).

system stays constant regardless of the values of τn0, for both the optimum and sub-optimum

algorithms with different number of users. On the other hand, the BER of the system with

u = 1 is a function of τn0. The simulation results corroborate the theoretical analysis that

twice oversampling is sufficient to remove the effects of τn0 for a system with at most 100%

excessive bandwidth. Therefore, the proposed oversampled FD-OOAT scheme can operate

effectively at the presence of both multi-user interference, user mis-alignment, and timing

phase offset.

Fig. 4.5 demonstrates the impacts of the number of iterations on the frame error rate
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Figure 4.4: BER v.s. timing phase offset (Eb/N0 = 10 dB. There are M = 12 sub-channels
per symbol, and R = 2 repetitions).

(FER) with the sub-optimum BDFE detector. There are N = 10 active users, M = 12 sub-

channels per symbol, R = 2 repetitions. As seen from the figure, the largest performance

gain is achieved at the second iteration and the performance converges at the fourth iteration

for systems with u = 1 or u = 2. At the fourth iteration and FER= 4 × 10−2, the FER

performance of the oversampled system outperforms the one without oversampling by 5.6

dB, which is consistent with the BER improvement observed in Fig. 4.2.

Fig. 4.6 shows the normalized throughput as a function of the normalized offered load

for various MAC schemes. For the FD-OOAT system, there are M = 10 sub-channels

per symbol, and R = 2 repetitions. All other systems have M = 10 slots per frame.

The normalized offered load of all the systems is calculated as G = N
M
. The normalized

throughput is defined as the amount of data successfully delivered to the receiver per unit
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Figure 4.5: FER performance of systems with the BDFE receiver (There are N = 10 users,
M = 12 sub-channels, and R = 2 repetitions).

time per unit bandwidth. The normalized throughput for the FD-OOAT scheme is calculated

as N
M
(1 − FER). Details of the calculation of the normalized offered load and normalized

throughput can be found in [10]. For the slotted ALOHA, CRDSA, and IRSA systems, the

simulations are performed under the assumption of noise-free communication, i.e., the only

source of errors for this systems is the unresolvable signal collisions among the users. Results

obtained under the noise-free assumption represent the best possible performance under any

channel configurations. On the other hand, the results of the proposed FD-OOAT systems

are obtained in a frequency-selective fading channel with Eb/N0 = 15 dB. As shown in the

figure, the slotted ALOHA, CRDSA and IRSA achieve their respective peak throughputs

when G ≤ 1, and the throughputs drop dramatically when G > 1. The throughput of the
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Figure 4.6: Normalized throughput v.s. normalized offered load.

proposed FD-OOAT scheme achieves the maximum throughput 1.03 bps/Hz at G = 1.6

when u = 1. For the oversampled system with u = 2, the maximum throughput 2.06 bps/Hz

is achieved at G = 2.6. Therefore, the FD-OOAT system can be overloaded by supporting

more users than the number of sub-channels, yet all the other MAC schemes must operate

with G < 1. Employing FD-OOAT increases both the number of users supported and peak

throughput. In addition, time domain oversampling allows the FD-OOAT system to support

60% more users than the system with u = 1, and improves the throughput by 100%.

4.7 Conclusions

A cross-layer CT-MAC scheme with frequency-domain OOAT and time-domain oversam-

pling has been proposed for broadband wireless networks operating in frequency-selective
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fading channels. With the help of time-domain oversampling, the proposed scheme can op-

erate without precise synchronization, and it is insensitive to timing phase offsets between

the sampling clocks at the transmitter and receiver. The collision tolerance in the MAC

layer was achieved by performing MUD over the specially designed FD-OOAT signal in the

PHY layer. Simulation results demonstrated that 1) the performance of the oversampled

FD-OOAT system was insensitive to user mis-alignment or sampler timing phase offset; 2)

significant multipath diversity gain was achieved with the oversampled FD-OOAT scheme;

3) the proposed scheme could support more users than the number of sub-channels. An

oversampled FD-OOAT with M sub-channels per symbol could support up to N = 2.6M

simultaneous users and has a normalized throughput peak at 2.06 bps/Hz with BPSK mod-

ulation.
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Chapter 5

Cooperative Spectrum Sensing with a Progressive MAP Detection Algorithm

5.1 Abstract

In this paper, a new cooperative spectrum sensing algorithm is proposed for a cognitive radio

network with multiple secondary users (SUs) sharing spectrum with one or more primary

users (PUs). Unlike most previous spectrum sensing algorithms that do not consider the time

domain traffic statistics of the PU, the algorithm in this paper is developed by exploiting

the statistical properties of the PU’s transmission pattern, which is modeled with a Markov

chain with two states: busy (1) and idle (0). Each SU performs energy detection based on an

observation of the Markov chain, and the detection results are forwarded to a fusion center

(FC) through a noisy channel. The FC recovers the decisions of the SUs by using a new

progressive maximum a posteriori (MAP) algorithm, where the a priori probability essential

to the MAP detection is obtained by progressively estimating the transition probabilities

of the Markov chain. Analytical expressions are derived for the probabilities of false alarm

and missing detection, with both the majority data fusion rule and the OR data fusion rule.

Both theoretical analysis and simulation results indicate that the proposed algorithm can

provide reliable and efficient spectrum sensing over a large range of system configurations.
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5.2 Introduction

Cognitive radio, which provides flexible spectrum accesses by dynamically sensing and adapt-

ing to the surrounding radio environment, is quickly emerging as one of the most promis-

ing technologies for improving the utilization of the precious spectrum resources [1] - [3].

The proper operation of a cognitive radio network depends on the reliable and efficient

spectrum sensing, with which a secondary user (SU) can detect the spectrum holes in the

time-frequency plane and avoid interference to the licensed or primary users (PUs) [4].

Recently, there have been considerable efforts devoted to the development of spectrum

sensing algorithms in cognitive radio networks [5] - [9]. It is shown in [5] that the energy

detector is optimum in detecting weak unknown signals with zero-mean known constellations.

The performance of spectrum sensing with energy detection can be significantly improved

by allowing multiple SUs to cooperate with each other [6] - [9]. The cooperative spectrum

sensing is usually performed in two steps: each SU performs energy detection individually,

then a fusion center (FC) makes decision on the state of the channel by collecting detection

results from the SUs. In [6], a noise-free channel is assumed between the SUs and the FC,

and the noise-free assumption is not true in reality. Practical channel is considered in [7],

where the FC detects the noisy signal from the SUs with a maximum a posteriori (MAP)

decision rule. The MAP detector requires the knowledge of the a priori probability, which
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is estimated assuming an infinite number of SUs. In [9], the SUs forward soft information,

instead of binary hard decisions, to the FC. Soft information forwarding improves the sensing

performance at the cost of significantly increased bandwidth requirement between the SUs

and the FC. In addition, none of the above works consider the PUs’ traffic patterns, which

might be critical to the spectrum sensing performance.

In this chapter, we propose a new cooperative spectrum sensing algorithm by exploiting

the statistical traffic patterns of the PU. The transmission pattern of the PU is assumed to

follow a Markov chain with two states: busy (1) and idle (0) [10]. Consequently, the binary

energy detection results at the SUs, which can be considered as passing the two-state Markov

chain through a binary symmetric channel, form a new Markov chain. The new algorithm is

motivated by the time domain correlations of the Markov chain. The FC recovers the binary

energy detection results of the SUs with a new progressive MAP algorithm, where the a

priori probabilities that are essential to the MAP detection are obtained by progressively

estimating the transition probabilities of the Markov progress in the time domain. It is

shown through simulations that the FC with the new algorithm can obtain a very accurate

estimation of the SU detections. In most existing works [6, 7], the FC employs the OR

data fusion rule over the estimated SU detections, and it is well known that the OR data

fusion rule reduces missing detections at the cost of more false alarms. In this chapter,

the performance of the OR data fusion rule is compared to a majority data fusion rule.

Exact analytical expressions of the probability of false alarm and the probability of missing

detection are derived for the majority and OR data fusion rules, and their performances are

compared through both analytical and simulation results.
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5.3 System Model

Consider a cooperative spectrum sensing system in a cognitive radio network with one PU

and N SUs. The traffic pattern of the PU is assumed to be a Markov chain with two states:

idle (0) and busy (1), with the one-step transition probabilities being p00 and p10.

Step 2: MAP detection Step 1: Energy detection

Fusion Center

s(t)

SU 1

SU 2

SU N

H0/H1

w1

w2

wN

Figure 5.1: Block diagram of a cooperative spectrum sensing in cognitive radio networks

The cooperative spectrum sensing is performed with a two-step protocol as shown in Fig.

6.1. In the first step, each SU performs energy detection to sense the state of the PU, and

makes a binary decision (busy or idle) based on the local sensing result. In the second step,

the SUs forward their individually obtained sensing results to a FC, which will make a final

decision on the state of the PU by performing data fusion over the noisy observations of the

decisions from all the SUs.

In the first step, the hypothesis test of the energy detection performed by the n-th SU

can be represented as [11, 12],

H0 : rn(t) = vn(t),

H1 : rn(t) = s(t) + vn(t), (5.1)
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where s(t) is a bandlimited signal from the PU with an one-sided bandwidth W , vn(t) is

the additive white Gaussian noise (AWGN) with one-sided power spectral density N0v, and

rn(t) is the signal observed by the n-th SU.

The energy detection is performed by using signals observed during an interval of duration

T . It is assumed that the state of the channel does not change within T . This assumption

can be easily met by choosing a small enough T . The test statistic used by the n-th SU

during the k-th detection interval, Rn(k), is obtained by passing the received signal, rn(t),

through an energy detector as shown in Fig. 5.2. The low pass filter (LPF) in the energy

detector has a cut off frequency of W , and it is used to limit the bandwidth of the white

noise. After a s square law device and a finite time integrator, the output of the energy

detector can be expressed as [11],

Rn(k) =
1

N0v

∫ kT

(k−1)T

|rn(t)|2dt =
2u
∑

i=1

(

si + vni√
N0vW

)2

, (5.2)

where u = TW denotes the time bandwidth product, with W being the one-sided band-

width of the signal, vni = vn(
i

2W
) and si = s( i

2W
) are the noise sample and signal sample,

respectively. The noise sample, vni, is a zero mean Gaussian random variable with variance,

N0vW , i,e, vni ∼ N(0, N0vW ).

The test statistic, Rn(k), has the following distributions [11], [12],

Rn(k) ∼















χ2
2u, H0,

χ2
2u(2γs), H1,

(5.3)

where χ2
2u denotes the central chi-square distribution with 2u-degree of freedom, χ2

2u(2γs)

is the non-central chi-square distribution with 2u-degree of freedom and a non centrality

parameter 2γs, γs =
E0

N0v
is the signal-to-noise ratio (SNR), and E0 =

∫ T

0
s2(t)dt is the signal
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LPF

Local decisionThreshold device

2    

Squaring device

( .  )

Integrator
rn(t) ∫ T

0 H0/H1

Figure 5.2: Block diagram of the energy detector employed at the SU.

energy.

During the k-th detection interval, the SU makes decision on the state of the PU by

comparing Rn(k) to a predefined threshold, λ, as bn(k) = 1 if Rn(k) > λ, and bn(k) = 0

otherwise.

Define the probability of false alarm, Pfn, as the probability that a PU is detected by the

n-th SU while the PU is idle. The probability of missing, Pmn , is defined vice versa. With

the hypotheses test defined in (6.1), we have [12]

Pfn = Pr(Rn > λ|H0) =
Γ(u, λ

2
)

Γ(u)
,

Pmn = Pr(Rn < λ|H1) = 1−Qu(
√

2γs,
√
λ), (5.4)

where Γ(a, b) is the incomplete gamma function, Qu(a, b) is the generalized Marcum Q-

function. The decision threshold, λ, can be chosen to meet the requirements on Pfn and

Pmn .

The local decisions from the SUs are transmitted to the FC through an orthogonal media

access control (MAC) scheme, such as frequency division multiplexing access (FDMA), to

achieve a collision free communication at the FC. The signal received by the FC from the

n-th SU can be represented as

yn(k) =
√

Esxn(k) + wn(k), (5.5)

where xn(k) = 2bn(k) − 1, Es is the transmission energy of one symbol, and wn(k) is the

AWGN with one-sided power spectral density N0w. The models in (5.1) and (5.5) can be
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extended to systems with flat fading channels. The FC will make a decision on the state of

the PU by collecting the information from all the SUs.

5.4 A New Cooperative Spectrum Sensing Algorithm

A new data fusion algorithm at the FC is proposed in this section to improve the performance

of the cooperative spectrum sensing.

5.4.1 MAP detection with Progressively Updated A Priori Information

In this subsection, a new MAP decision rule with progressively updated a priori information

is proposed to improve the detection performance at the FC.

The FC detects the information transmitted by the n-th SU with the MAP detection

rule as

x̂n(k) = argmax
b∈B

p(yn(k)|xn(k) = b)P (xn(k) = b), (5.6)

where B = {−1, 1}, and p(yn(k)|xn(k) = b) = 1√
πN0w

exp
{

− 1
N0w

∣

∣yn(k)−
√
Esb
∣

∣

2
}

. The

above detection rule can be alternatively represented as x̂n(k) = 1, if yn(k) ≥ τn(k), and

x̂n(k) = −1 otherwise, where the threshold, τn(k), is

τn(k) =
N0w ln

(

1−Pn(k)
Pn(k)

)

4
√
Es

, (5.7)

with Pn(k) = P (xn(k) = 1) = P (bn(k) = 1) being the probability that a PU is detected by

the n-th SU.

The MAP decision rule requires the knowledge of the a priori probability, Pn(k), which

is usually not available at the receiver. We propose to progressively estimate the a priori
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probability by using a sliding window that contains the received signal and decisions from

the previous K detection intervals, as well as the statistical properties of the Markov chain.

Since xn(k) is obtained through independent observations of a Markov chain, it is easy to

show that xn(k) is also a Markov chain with two states: 0 (xn(k) = −1) and 1 (xn(k) = 1).

Define the transition probabilities of xn(k) as qn00 = P (xn(k) = −1|xn(k − 1) = −1) and

qn10 = P (xn(k) = 1|xn(k − 1) = −1). When the Markov chain enters the stable state, the a

priori probability can be expressed as [14]

lim
k→∞

Pn(k) =
1− qn00

1 + qn10 − qn00
. (5.8)

We propose to estimate the value of Pn(k) by using the above relationship. Consider a

sliding window with a size K, with {yn(i)}k−1
i=k−K and {x̂n(i)}K−1

i=k−K . The transition proba-

bility, qn00, can be estimated as follows

q̂n00(k) =

∑k−2
i=k−K I(x̂n(i+ 1) = 0&x̂n(i) = 0)

∑k−2
i=k−K I(x̂n(i) = 0)

, (5.9)

where a&b is the AND operation between two logic expressions a and b, and I(a) = 1 if the

logical expression a is true, and 0 otherwise. The probability q̂n10 can be obtained similarly.

The transition probabilities are estimated by using the previous hard decisions. In order

to get a better estimate, we propose to also use the soft information, {yn(i)}k−1
i=k−K . Define

∆k = 1
K

∑k−1
i=k−K yn(i). Then based on the strong law of large numbers, we have

Pn(k) =
1

2

(

1√
Es

lim
K→∞

∆k + 1

)

. (5.10)

Combining (5.8) with (5.10), we have an over-determined system with two independent

equations and one unknown variable, Pn(k). The system can be solved with the least squares
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(LS) method, and the solution is

P̂n(k) =
1

4

[

∆k√
Es

+
2(1− q̂n00)

1 + q̂n10 − q̂n00
+ 1

]

. (5.11)

The estimated a priori probability, P̂n(k), can then be used in (5.6) to obtain a decision

on xn(k). The simulation results show that the a priori probability estimated by using the

progressive estimation method described in (5.11) is very close to its true value.

With this new progressive MAP detection algorithm performed at the FC, define two

error probabilities between the n-th SU and the PU as, en01 = P {x̂n(k) = 1|xn(k) = −1},

en10 = P {x̂n(k) = −1|xn(k) = 1}. The values of en01 and en10 will be analyzed in the next

subsection.

Once the FC obtains the estimates of the decisions from all the SUs, the results will

be combined to estimate the state of the PU. Many existing cooperative spectrum sensing

algorithms employ the OR data fusion rule, where the logic OR operation is performed on

all the binary decisions [5], [6]. The OR data fusion rule will minimize the probability of

missing at the cost of a higher probability of false alarm.

To achieve a better tradeoff between false alarm and missing detection, we will compare

the performance of the OR data fusion rule with that of a majority data fusion rule, where

the FC will decide in favor of the state that has the most votes from the SUs. In case there is

a draw, the FC will decide in favor of the state 1 (busy) to reduce the probability of missing.

Based on the above description, the FC with the majority decision rule will decide that the

PU is busy during the k-th detection interval if and only if the following condition is met

N
∑

n=1

I(x̂n(k) = 1) ≥ bN/2c, (5.12)

where bac returns the largest integer that is smaller than or equal to a.
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5.4.2 Performance Analysis

The performance of the proposed cognitive sensing algorithm is analyzed in this subsection.

Given the noisy channel between the SU and the FC, the FC might make decision errors

on the information transmitted by the SU. The following lemma gives the error probabilities

at the FC during the SU signal detection.

Lemma 5.1 : If the FC has ideal knowledge of the a priori probability, Pn(k), then the

error probabilities, en01 and en10, can be calculated as

en01 = Q

(

4Es − η
√

8N0wE2
s

)

,

en10 = Q

(

4Es + η
√

8N0wE2
s

)

, (5.13)

where Q(x) = 1√
2π

∫∞
x

exp
(

−u2

2

)

du is the Gaussian-Q function, and η = N0w · ln
(

Pn(k)
1−Pn(k)

)

.

Proof: The MAP decision rule in (5.6) will decide on x̂n(k) = b̂ if

∣

∣

∣
yn(k)−

√

Esb̂
∣

∣

∣

2

−
∣

∣

∣
yn(k)−

√

Esb
∣

∣

∣

2

< η, (5.14)

where η = N0w · ln
(

P (xn(k)=b̂)
P (xn(k)=b)

)

, b, b̂ ∈ B, and b 6= b̂.

If xn(k) = b is transmitted, the above decision rule can be alternatively represented as

Z < η − Es|d|2, (5.15)

where Z = 2d
√
Es<{wn(k)}, and d = b − b̂ ∈ {−2, 2}. The decision variable, Z, is a

Gaussian random variable, with mean E(Z) = 0, and variance σ2
Z = 2N0wEs

2|d|2. The error

probabilities can then be calculated by using enbb̂ = P (Z < η −Es|d|2), and this leads to

(5.13).
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After the detection at the FC, the probabilities of false alarm and missing at the FC for

the n-th SU can be expressed as follows

P̂fn = Pfn(1− en10) + (1− Pfn)en01,

P̂mn = Pmn(1− en01) + (1− Pmn)en10, (5.16)

where Pfn and Pmn are defined in (5.4), and en01 and en10 are given in Lemma 5.1.

With the above results, we can derive the global probabilities of false alarm and miss-

ing for a system with the majority decision rule. The results are stated in the following

proposition.

Proposition 5.1 : If the SUs experiences independent and identical channels, then the

probabilities of global false alarm, Pf , and missing, Pm, of the proposed cooperative spectrum

sensing system with the majority decision rule can be calculated as

Pf
(MJ) =

N
∑

M=bN/2c

(

N

M

)

P̂M
fn (1− P̂fn)

N−M , (5.17)

Pm
(MJ) = 1−

N
∑

M=bN/2c

(

N

M

)

P̂N−M
mn

(1− P̂mn)
M , (5.18)

where
(

N
M

)

is the binomial coefficients, P̂fn and P̂mn are given in (5.16).

Proof: With the majority decision rule, a false alarm happens if bN/2c or more SUs

have false alarm after the FC detection. The number of SUs with false alarm at the FC

can be modeled with a binomial distribution with parameters N and P̂fn. Based on the

probability mass function (PMF) of a binomial random variable, we can get the global false

alarm probability as in (5.17). The probability of missing can be calculated in a similar

manner.
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The probabilities for the OR decision rule can be obtained by replacing bN/2c in (5.17)

with 1, since a single x̂n(k) is sufficient for the FC to make a decision in favor of 1. The

results are summarized as follows.

Corollary 5.1 : If the SUs experiences independent and identical channels, then the prob-

abilities of global false alarm, Pf , and missing, Pm, of the proposed cooperative spectrum

sensing system with the OR data fusion rule can be calculated as

Pf
(OR) = 1− (1− P̂fn)

N , (5.19)

Pm
(OR) = P̂N

mn
, (5.20)

where
(

N
M

)

is the binomial coefficients, P̂fn and P̂mn are given in (5.16).

5.5 Numerical Results

Numerical results are presented in this section to evaluate the performance of the proposed

cooperative sensing algorithm. In the simulation, the time-bandwidth product is u = 5.

The traffic pattern of the PU follows a two-state Markov chain with transition probabilities

{p00 = 0.8 and p10 = 0.3}. The SNR between the PU and the SU is assumed to be γs = 10

dB. In the progressive MAP decision rule, the size of the sliding window is K = 100.

Fig. 5.3 shows the global Pf and Pm as a function of the normalized threshold. There

are N = 5 SUs in the network. The SNR between the SU and the FC is γT = 5 dB.

The FC performs detection of the signals from the SUs with the new progressive MAP

algorithm. Both the OR and majority data fusion rules are applied to the detection results.

Excellent agreement is observed between the analytical and simulation results. It should

be noted that the analytical results are obtained under the assumption of perfect a priori
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Figure 5.3: Comparison between the analytical and simulated Pf and Pm.

information. The results indicate the newly proposed progressive algorithm can obtain a

very accurate estimation of the a priori probabilities. In addition, as expected, the majority

rule is better than the OR rule in terms of Pf , and the relationship is reversed for Pm.

Fig. 5.4 compares the performance of the newly proposed progressive MAP algorithm,

with the algorithm presented in [6], where the a priori probability is estimated by averaging

the signals from all the SUs in the spatial domain. The results are presented in Fig. 5.4 in

the form of receiver operating characteristics (ROC). There are two SUs in the network, thus

the OR fusion rule and the majority fusion rule are the same. The SNR at the second step,

γT , varies from -10 dB to 10 dB. When the second step SNR is less than or equal to 0 dB,

the newly proposed progressive MAP algorithm outperforms the spatial MAP in most of the

Pm/Pf regions, except the region with Pm ≈ Pf , where the spatial MAP slightly outperforms

the progressive MAP. As γT increases, the differences between the two algorithms gradually
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Figure 5.4: ROC performance of the systems with the progressive MAP algorithm.

diminishes. In order to reduce the interference to the PU, the SUs usually have very low

transmission power, it is expected that the second step SNR is usually low. Therefore, the

proposed progressive MAP algorithm can achieve a better Pm/Pf tradeoff in most of the

operation regions.

The performances of the majority and OR data fusion rules are compared in Fig. 5.5.

There are three SUs in the network. The FC employs the new progressive MAP algorithm to

detect the signals from the SUs. For a given value of the second step SNR γT , when the Pf

is smaller than a certain threshold (or Pm is larger than a certain threshold), the majority

decision rule is better than the OR decision rule. The relationship is reversed when Pf is

larger than the threshold. Therefore, the choice between the OR and the majority fusion

rules depends on the targeted Pf (or Pm). If the targeted Pf is small, then the majority

fusion rule is preferred. The OR fusion rule is preferred when the targeted Pm is small. In

89



10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

P
f

P
m

 

 

Majority rule γ
T
=−10dB

Majority rule  γ
T
=−5dB

Majority rule  γ
T
=0dB

Majority rule  γ
T
=5dB

Majority rule  γ
T
=10dB

OR rule γ
T
=−10dB

OR rule γ
T
=−5dB

OR rule γ
T
=0dB

OR rule γ
T
=5dB

OR rule γ
T
=10dB

Figure 5.5: ROC performances of the systems with the OR data fusion rule and the majority
data fusion rule.

addition, the Pf threshold decreases as γT increases. At γT = 10 dB, the majority fusion rule

outperforms the OR fusion rule over all the operation ranges shown in the figure. Therefore,

when the second step SNR is high, the majority decision rule can usually lead to a better

performance.

5.6 Conclusions

A new cooperative spectrum sensing algorithm was proposed for a cognitive radio network.

The algorithm was developed by exploiting the PU’s statistical transmission pattern, which

was modeled with a two-state Markov chain. With the new algorithm, the a priori proba-

bilities of the information from the SUs were obtained at the FC by progressively estimating

the transition probabilities of a Markov chain, and this led to a progressive MAP detection

algorithm. Analytical expressions were derived for the error probabilities of the progressive
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MAP detection, and the global probabilities of false alarm and missing detection with the

majority and OR data fusion rules. It was observed through numerical results that the

new progressive MAP detection improved the performance of existing spectrum sensing al-

gorithms. In addition, when the SNR at the FC was high, the majority data fusion rule

outperformed the OR data fusion in terms of both probabilities of false alarm and missing.
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Chapter 6

Cooperative Spectrum Sensing with Slepian-Wolf Coded Cooperations

6.1 Abstract

A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network

with two secondary users (SUs) performing cooperative spectrum sensing through a fusion

center (FC). Instead of making a hard decision based on the local sensing results, the SUs

quantize the measured energy statistics with a Lloyd-Max quantizer, and forward the quan-

tized information to the FC. Due to the wireless nature of the channel, signals transmitted

by one SU to the FC will also be observed by the other SU, which can cooperate with the

transmitting SU by relaying the observed signals to the FC. Motivated by the fact that the

signals observed at the FC and the relay SU are strongly correlated, we propose to perform

an asymmetric Slepian-Wolf code at the SU to reduce the amount of cooperation informa-

tion, thus to improve the cooperation efficiency. To compensate the energy loss due to the

redundancy introduced by the coded cooperation, we propose to unequally allocate energy

among the coded bits, and this yields better performance compared to conventional equal

energy coding schemes. The FC makes a decision of the status of the primary user (PU) by
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performing soft combining over the quantized energy statistics from the two SUs. Simula-

tion results demonstrate that the proposed cooperative spectrum sensing scheme operating

in practical fading channels can achieve a performance that is almost identical to the ideal

case that the SUs can directly perform soft combining of the distortion-free energy statistics.

6.2 Introduction

Cognitive radio (CR) is emerging as one of the most promising techniques for efficient utiliza-

tion of the precious spectrum resources [1]–[3]. In a CR network, secondary users (SUs) can

coexist with primary users (PUs) by sensing the presence of PU signals and only transmit-

ting at time-frequency holes with no PU activities. Therefore, Efficient and reliable spectrum

sensing is critical to the proper operation of a CR network [4].

Energy detection is one of the most commonly used spectrum sensing methods given

that it does not require the a priori knowledge of the PU and has a low complexity. The

performance of the energy detection can be improved with the cooperative spectrum sensing,

where multiple SUs can cooperate with each other by transmitting their local sensing results

to a fusion center (FC) [5]–[9]. In most existing cooperative spectrum sensing schemes [5]–[7],

the FC combines hard decisions from the SUs with an OR or majority data fusion rule. The

hard combining is simple to implement, but the soft information in the energy statistics is lost

due to the 1-bit hard decision at the SUs. A soft combining scheme that directly combines

the analog energy statistics from the multiple SUs is proposed in [8], where it is assumed

that the FC can have ideal distortion-free observations of the the analog energy statistics.

Soft combining with practical channel is considered in [9], where the SUs forward soft analog

information to the FC through an additive white Gaussian noise (AWGN) channel. The soft
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combining scheme outperforms the hard combining ones at the cost of significantly increased

bandwidth requirement between the SUs and the FC.

In this chapter, we propose a new cooperative spectrum sensing scheme with a practical

coded cooperation for a CR network with two SUs and one FC. There are three main contri-

butions of the proposed scheme. First, different from existing hard combining or the analog

information-based soft combining schemes, the SUs will quantize the measured energy statis-

tics with a Lloyd-Max quantizer, and forward the quantized information to the FC, which

then performs soft combining over the quantized information. Second, the SUs forward the

quantized information to the FC with a new Slepian-Wolf coded cooperation, where the two

SUs transmit not only their own information but also relay each other’s information through

a coded cooperation. The Slepian-Wolf theorem states that two sources with correlated in-

formation can perform encoding separately and still achieve the same performance as the

two sources are encoded jointly [10]. The signal transmitted by one SU will be observed by

both the FC and the other SU, and this yields two strongly correlated signals at the FC and

the receiving SU. The signal correlation can be exploited by an asymmetric Slepian-Wolf

code, where the receiving SU can encode the signal from the transmitting SU and relay a

compressed version of the signal to the FC. Such a coding scheme can significantly improve

the cooperation efficiency by reducing the amount of relay information. Third, we propose

to allocate unequal amount of energy among the coded bits to compensate the energy loss

due to the redundancy introduced by the coded cooperation. Fading channels are used to

model all the communication links in the network. Simulation results show that the pro-

posed scheme can achieve almost the same performance as the analog information-based soft

combining scheme with distortion-free SU-FC links.
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6.3 System Model

Consider a CR network with one PU and two SUs as shown in Fig. 6.1. Signals transmitted

by the PU are received by the SUs. There are two hypotheses about the state of the PU: idle

(H0) or busy (H1). Correspondingly, the signals observed by the n-th SU can be represented

as

H0 : rn(t) = vn(t), n = 1, 2,

H1 : rn(t) = hpn(t)s(t) + vn(t), n = 1, 2, (6.1)

where s(t) is the band-limited signal from the PU with an one-sided bandwidth W , vn(t)

is the additive white Gaussian noise (AWGN) with an one-sided power spectral density

Nnv, rn(t) is the signal received by the n-th SU, and hpn(t) represents the fading coefficient

between the PU and the n-th SU.

SU1

SU2 statistic

Energy 

statistic

Energy 

Quantizer

Quantizer

Cooperation

Coded

Slepian−Wolf
Fusion

Center

s(k)

H0/H1

Figure 6.1: System model of a cooperative spectrum sensing in cognitive radio networks

The SU performs energy measurement of the received signals during an interval of du-

ration T . It is assumed that the state of the channel does not change within T . The n-th

SU can obtain an energy statistic during the k-th detection interval by passing the received

signal, rn(t), through a square law device and a finite time integrator, which yields

Sn(k) =
1

N0v

∫ kT

(k−1)T

|rn(t)|2dt =
2u
∑

i=1

(

rni√
N0vW

)2

, (6.2)
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where u = TW denotes the time bandwidth product, with W being the one-sided bandwidth

of the signal, and rni = rn(
i

2W
) is the received signal sample.

The energy statistic has the following distributions [12]

Sn(k) ∼















χ2
2u, H0,

(1 + γsn)χ
2
2u, H1,

(6.3)

where χ2
2u denotes the central chi-square distribution with 2u-degree of freedom, γsn = E0

Nnv

is the signal-to-noise ratio (SNR) at the SU, and E0 =
∫ T

0
|hpn(t)s(t)|2dt is the signal energy.

Most existing cooperative sensing schemes make a hard decision of the PU’s state at the

SU by comparing Sn(k) to a predefined threshold. The hard decision is then modulated and

transmitted to the FC, which makes a final decision on the state of the PU by collecting hard

decisions from all the SUs. Making binary decisions at the SU will lose the soft information

contained in Sn(k). The soft information can be used by the FC to further improve the

sensing performance.

A soft combining scheme has been proposed in [8], which combines Sn(k) from all the

SUs, as

S(k) =
N
∑

n=1

γsn
1 + γsn

Sn(k), (6.4)

where γsn is the SNR of the signal observed by the n-th SU, and N is the number of SUs.

The soft combining scheme assumes a distortion-free channel between the SUs and the FC,

such that the FC can have ideal knowledge of the analog energy statistics, Sn(k).

In practical systems, the SUs usually communicate with the FC through wireless links,

which introduce fading and noise to the signals received by the FC. The fading and noise in

the channel will introduce significant distortions to the signals observed at the FC. Therefore,

it is undesirable to directly transmit the analog information, Sn(k), to the FC.
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In order to take advantage of the soft combining in a system with practical channels

between the SUs and the FC, we propose to quantize the energy statistics, Sn(k), at the

SUs, and then deliver the quantized digital information to the FC. A new Slepian-Wolf

Cooperation scheme is proposed in this chapter for the efficient transmission and detection

of the quantized energy statistics, and details are given in the next section. It will be shown

with simulation that the proposed method with quantized information transmission in a

wireless link can achieve a performance that is almost identical to a system with analog

information transmitted in a distortion-free link.

The quantization of Sn(k) is performed through a Lloyd-Max quantizer [11] at the SU.

The construction of the Lloyd-Max quantizer requires the a priori knowledge of the distri-

bution of Sn(k). If the a priori probability of the state of the PU is known, then the average

probability density function (pdf) of Sn(k) can be expressed by

f
Sn
(x) = P0f(x; 2u) + (1−P0)

1

1 + γsn
f

(

x

1 + γsn
; 2u

)

, (6.5)

where P0 is the probability that the PU is idle, f(x; 2u) is the pdf of a χ2-distributed random

variable (RV) with 2u-degree of freedom. The pdf in (6.5) can then be used to formulate the

Lloyd-Max quantizer.

The pdf in (6.5) requires the knowledge of the a priori probability P0, which might not

be readily available at the SU. Simulations indicate that quantizing with f(x; 2u) lead to a

performance that is very close to the optimum result obtained by using the true pdf f
Sn
(x).

Therefore, the pdf f(x; 2u) under the null hypothesis is used in this chapter to quantize the

signal.

Assume the quantization level is 2m. The quantized information at the n-th SU can
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be represented by Q[Sn(k)] = bn(k) = [bn1(k), · · · , bnm(k)]T ∈ Bm×1, where Q[x] is the

Lloyd-Max quantization operator, aT is the transpose of the vector a, and B = {0, 1}. The

FC obtains an estimate of the quantized information, b̂n(k). The quantized information

recovered at the FC is converted back to the analog domain as Ŝn(k) = Q−1[b̂n(k)], which

can then be used in (6.4) to obtain the soft combined energy statistic Ŝ(k).

The hard decision on the PU’s state is obtained at the FC by comparing Ŝ(k) to a

predefined threshold, µ(k). The PU is detected as busy if Ŝ(k) > µ(k) and idle otherwise.

Similar to [8], the threshold, µ(k), is calculated for a given probability of false alarm. The

soft combining described in (6.4) maximizes the probability of detection under a fixed false

alarm probability.

6.4 A New Slepian-Wolf Coded Cooperation for Spectrum Sensing

In this section, we present a new Slepian-Wolf coded cooperation scheme for the efficient and

reliable delivery of the quantized information to the FC. The coded cooperation is developed

by taking advantage of the wireless links between the SUs.

Due to the wireless nature of the channel and the relative proximity between the two

SUs, signals transmitted by one SU to the FC will also be observed by the other SU. Without

loss of generality, consider the case that SU n transmits a modulated codeword, xn, to the

FC. The signal is also observed by SU m 6= n, which gets an estimate of the signal as x̂n.

The signals, xn and x̂n are usually not identical due to the distortions of the wireless channel

between the two SUs. However, they are strongly correlated. Motivated by this fact, we

propose to perform coded cooperation between the two SUs by applying an asymmetric

Slepian-Wolf code at the SU m. Therefore, SU m can cooperate with SU n by including a
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slot 1
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SU 2

b1(k) a1(k) â2(k−1)

b2(k) â1(k)a2(k)

b1(k+1) a1(k+1) â2(k)

Figure 6.2: The codewords of a practical Slepian-Wolf coded cooperation.

compressed version of x̂n in its own signal to the FC. Such a scheme will reduce the amount

of information that needs to be delivered to the FC and still achieve a diversity gain due to

the cooperation. It should be noted that the Slepian-Wolf theorem is non-constructive, i.e.,

it only states the existence of the coding scheme, but does not specify how the coding should

be performed. In this chapter, we propose a practical Slepian-Wolf cooperation scheme by

employing linear block codes on the SUs. The details of the encoding, transmission, and

decoding processes are given as follows.

6.4.1 Encoding

The encoding scheme is illustrated in Fig. 6.2 for a system with two SUs. The two SUs

transmit to the FC through time division multiple access (TDMA), where each frame of a

duration T is divided into two slots with a duration of T
2
each. The SU n transmits at the

n-th slot of the frame, with n = 1, 2. The codewords formed by SUs 1 and 2 at the k-th

frame can be represented, respectively, as

c1(k) = [bT
1 (k), a

T
1 (k), â

T
2 (k − 1)]T , (6.6a)

c2(k) = [bT
2 (k), a

T
2 (k), â

T
1 (k)]

T . (6.6b)
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In the equations above, bn(k) ∈ Bm×1 is the quantized energy statistic at the n-th SU,

an(k) = P · bn(k) ∈ Bp×1 is the parity vector of bn(k), with P ∈ Bp×m being a parity

generation matrix of a linear block code with a coding rate m/(p + m), and ân(k) is the

cooperation information.

In the proposed Slepian-Wolf cooperation scheme, the cooperation information trans-

mitted by node n is a distorted observation of the parity vector from node m 6= n from

the previous slot, i.e., the cooperation information from SU 1 is the estimated parity vector,

â2(k−1), transmitted by SU 2 at the second slot of the (k−1)-th frame, and the cooperation

information from SU 2 is â1(k), an estimate of the parity vector transmitted by SU 1 at the

first slot of the k-th frame. Even though node n has a distorted observation of the entire

codeword from node m, it does not need to forward the entire codeword due to the strong

correlation between the distorted codeword and the original information. In the proposed

scheme, only the estimated parity bits are forwarded to the FC, and such a scheme reduces

the number of bits required for cooperation.

The FC can perform decoding by combining the information from the two SUs. The

information vector bn(k) can be decoded by using the received signals bn(k), an(k), and

ân(k).

6.4.2 Transmission with Unequal Energy Allocation

The cooperation codeword, cn(k), will be modulated and amplified before transmitting to

the FC. Denote the modulated version of the information vector and parity vector as sn(k) =

M [bn(k)], pn(k) = M [an(k)], and p̂n(k) = M [ân(k)], with M [b] representing the the binary

phase shift keying (BPSK) modulation of the binary vector b.
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We propose to allocate different energy per bit to the information vector, sn(k), and the

parity vectors, pn(k) and p̂n(k). The unequal energy allocation between the information

and parity vectors is motivated by the fact that the FC has two distorted observations of the

same parity vector due to the Slepian-Wolf cooperation, yet it receives only one copy of the

information vector. Therefore, we can allocate less energy to the parity bits to account for

the cooperative transmission. The codewords after modulation and energy allocation are

x1(k)=
[

√

Ess
T
1 (k),

√

Epp
T
1 (k),

√

Epp̂
T
2 (k−1)

]T

, (6.7a)

x2(k)=
[

√

Ess
T
2 (k),

√

Epp
T
2 (k),

√

Epp̂
T
1 (k)

]T

, (6.7b)

where Es is the energy per information bit, Ep = δEs is the energy per parity bit, with

0 ≤ δ ≤ 1 being the energy allocation factor.

With the energy allocation scheme in (6.7), the effective uncoded energy per information

bit can be calculated as

Eb =
mEs + 2pEp

m
= Es

(

1 + δ
2p

m

)

. (6.8)

The energy allocation factor, δ, can be changed between 0 and 1 to adjust the energy

allocation between the information and parity bits. When δ = 0, the scheme degrades to a

regular uncoded non-cooperative system.

The codeword, xn(k), is transmitted to the FC through a wireless link, and the signal

received from the n-th SU is

yn(k) = hnF (k)xn(k) + zn(k), (6.9)

where hnF (k) is the fading coefficient between the n-th SU and the FC, zn(k) is the AWGN

with a single-sided power spectral density N0z. The received signal vector at the FC can
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be expressed as yn(k) = [yT
bn(k),y

T
an(k),y

T
ân(kn)]

T , where ybn(k), yan(k), yân(kn) are the

received signal vectors corresponding to the coded sequence bn(k), an(k), and ân(kn), re-

spectively, with k1 = k − 1 and k2 = k.

6.4.3 Decoding

The FC recovers the quantized information vector, bn(k), by decoding over two consecutive

slots. The vector b1(k) is decoded by using the received information corresponding to b1(k),

a1(k), and â1(k) from the two slots in the k-th frame. The vector b2(k) is decoded by using

the received information corresponding to b2(k), a2(k), and â2(k), which are from the second

slot of frame k and the first slot of frame k + 1.

The decoding is performed at the FC with a modified message passing algorithm for

graph-based codes.

For the received signals corresponding to the information vector, bn(k), and the parity

vector, an(k), the log-likelihood ratio (LLR) calculated from the channel observations is

λbn(k) = −2

√
Es<[ybn(k)h

∗
nF ]

N0z

, (6.10)

λan(k) = −2

√

Ep<[yan(k)h
∗
nF ]

N0z

, (6.11)

where <[x] is the real part operator, and a∗ denotes complex conjugate.

The LLR of the parity vector, an(k), can also be calculated from the cooperation infor-

mation received from SU m 6= n, ym(km), where k1 = k−1 and k2 = k. The LLR calculation

of the cooperation information needs to take into consideration of the distortion introduced

by the channel between the two SUs. If the bit error rate of the channel between the two
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SUs is ε, then the LLR of an(k) based on yâm(km) can be calculated as

λ̂an(k) = ln

ε+ (1− ε) exp

[

−2

√
Ep<[yâm(km)h∗

mF ]
N0z

]

(1− ε) + ε exp

[

−2

√
Ep<[yâm(km)h∗

mF ]
N0z

] , (6.12)

The LLRs of an(k) from both the direct transmission and the cooperative transmission

can be combined to obtain an enhanced parity LLR vector, as

λ̃an(k) = λan(k) + λ̂an(k). (6.13)

The initial LLR vector of the linear block code can then be written as λn(k) = [λT
bn(k), λ̃

T
an(k)]

T ∈

R(m+p)×1. The iterative message passing algorithm [13] can be applied by combining the ini-

tial LLR vector, λn(k), and the Tanner graph formulated from the parity check matrix,

H = [P, Ip] ∈ Bp×(m+p). Details of the iterative message passing algorithm are referred to

[13].

The iterative message passing decoding algorithm will be terminated when the syndrome

of the codeword becomes 0. The decoded information vector is denoted as b̂n(k), which

is then converted back to the analog domain as Ŝn(k) = Q−1[b̂n(k)] and used in the soft

combining operation described in (6.4).

6.5 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the pro-

posed cooperative sensing schemes. In the simulation, the time-bandwidth product is µ = 3.

The probability of detection is maximized at a fixed false alarm probability of 0.05.

We first study the impact of energy statistic quantization on the detection probability in
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Figure 6.3: Impacts of quantization on the performance of soft combining (ideal SU-FC
links).

Fig. 6.3. The probability Pd is shown as a function of γs, the SNR of PU-SU links. Error-

free communications between the SUs and the FC are assumed in this example to highlight

the impacts of quantization, and the effects of channel distortions between the SU-FC links

will be considered later. The traditional one-bit hard decision at the SU is also shown

for comparison. The simulation results indicate that the soft combining with quantized

energy statistics outperforms the traditional hard decision except the 1-bit quantization

case. A 4-bit quantization of the energy statistic can achieve exactly the same performance as

combining the analog information without quantization. This demonstrates the effectiveness

of the Lloyd-max quantizer for the soft combining. Therefore, the 4-bits quantizer is used

for the remaining examples.

The next example is used to verify the proposed Slepian-Wolf cooperation with unequal
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Figure 6.4: Comparison of the Slepian-Wolf coded cooperation with other transmission
schemes.

energy allocation. Fig. 6.4 shows the bit error rate (BER) of various system configurations

as a function of Eb/N0 of the SU-FC links. The BER curves of the uncoded systems and

the linear block code without cooperation are also shown in the figure for comparison. The

(7, 4) Hamming code is used as the linear block code for both the cooperative and coded

non-cooperative systems. Rayleigh fading channel is assumed for both the SU-SU link and

the SU-FC links. The SNR between the two SUs is 0 dB, which corresponds to an error

probability of ε = 0.08 for the cooperative link. The energy allocation factor is δ = 2/9. The

performance of the coded non-cooperative system is slightly worse than the uncoded system

when Eb/N0 < 25 dB because the coding gain is not enough to compensate the energy

loss due to the parity bits, and the coding gain is only obvious after Eb/N0 ≥ 25 dB. The

Slepian-Wolf cooperation with unequal energy allocation has a superior performance than
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both the uncoded system and the coded non-cooperative system for all the Eb/N0 considered.

It outperforms the coded non-cooperative system by 2.5 dB at BER = 10−4.
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Figure 6.5: Probability of detection with various cooperative spectrum sensing schemes
(Eb/N0 of the SU-FC link is 10 dB).

Fig. 6.5 shows the detection probability at the FC as a function of γs, the SNR of the

PU-SU link. The Eb/N0 between the SU-FC link is fixed at 10 dB. The rest of the simulation

parameters are the same as in Fig. 6.4. The upper bound shown in the figure is obtained by

performing soft combining over unquantized, distortion-free energy statistics. As expected,

the proposed Slepian-Wolf cooperation with unequal energy allocation outperforms both the

uncoded system and the coded non-cooperative system. The performance of the proposed

scheme achieves the upper bound for γs>4 dB.
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6.6 Conclusion

A new Slepian-Wolf coded cooperation scheme with unequal energy allocation among the

coded bits was proposed for a cooperative cognitive radio network. The energy statistics

measured at the SUs were quantized with a Lloyd-Max quantizer, and then forwarded to

the FC by utilizing the SU-SU link as a cooperation channel. The newly proposed unequal

energy allocation among the coded bits can compensate the energy loss due to parity bits

introduced by the coded cooperation. A soft combining scheme was employed at the FC to

improve the detection probability by combining an estimate of the quantized energy statistics.

Simulation results demonstrated that the proposed scheme in practical system configurations

with fading and noise in the SU-FC links can achieve a performance that is almost identical

to the ideal soft combining with distortion-free SU-FC links and no quantization. The scheme

is proposed for a CR network with two SUs, but can be easily extended to networks with

more than two SUs by grouping two SUs together for cooperation.
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Chapter 7

Conclusions

In this chapter, the main contributions of this dissertation are summarized and the future

work directions are proposed and discussed.

7.1 Contributions

In this dissertation, I mainly focused on the energy and spectral efficient wireless communi-

cation design and the main contributions can be summarized as follows.

First, in order to improve the energy efficiency in the wireless sensor network designed for

SHM system, a unified energy harvesting, sensing, and communication scheme was proposed

for the ULP SHM. The IHSC scheme was designed by exploiting the correlation between

the harvested energy and vibration intensity. Both the theoretical and simulation results

indicated that the proposed system can operate effectively at a SNR as low as -10 dB

without battery or external energy sources. As a result, an energy efficient SHM system was

realized through the unified process.

Second, a cross layer CT-MAC with message passing detection scheme was proposed

in chapter 3. The proposed scheme can effectively resolve the collisions in the MAC layer
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by utilizing message passing detection in the PHY layer. Therefore, cross layer design can

improve the energy efficiency with multiuser detection in the wireless communication system.

Third, a new cross-layer CT-MAC scheme that operates in frequency-selective fading

was proposed. It does not require either MUS or SPS, and is insensitive to timing phase

offsets. The collision tolerance is achieved by employing a FD-OOAT. Such a configuration

renders a special signal structure that enables multiuser detection (MUD) in the physical

layer to resolve the collisions at the MAC layer. Most MUDs in the literature require precise

symbol level synchronizations among the users. The proposed scheme, on the other hand,

can operate with asynchronous users, and it is insensitive to the timing phase offset between

the sampling clocks at the transmitter and receiver with a new time-domain oversampling

detector. In addition, oversampling in the time domain and spreading the signal in the

frequency domain enable multipath diversity that further improves the system performance.

Theoretical analysis is performed to quantify the impacts of multipath diversity and rela-

tive user delays on the performance of the system. Both analytical and simulation results

demonstrated that significant performance gains are achieved with the proposed scheme, in

terms of both the number of users supported and the normalized throughput.

Fourth, to address the spectral efficiency problem, two cooperative spectrum sensing

methods were proposed in this dissertation. One was the cooperative spectrum sensing with

a progressive MAP detection algorithm. Unlike most previous spectrum sensing algorithms

that do not consider the time domain traffic statistics of the PU, the algorithm in this method

was developed by exploiting the statistical properties of the PU’s transmission pattern.

Analytical expressions were derived for the probabilities of false alarm and missing detection,

with both the majority data fusion rule and the OR data fusion rule. Both theoretical
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analysis and simulation results indicated that the proposed algorithm can provide reliable and

efficient spectrum sensing over a large range of system configurations. The other method was

cooperative spectrum sensing with Slepian-Wolf coded cooperations. The energy statistics

measured at the SUs were quantized with a Lloyd-Max quantizer, and then forwarded to the

FC by utilizing the SU-SU link as a cooperation channel. The newly proposed unequal energy

allocation among the coded bits can compensate the energy loss due to parity bits introduced

by the coded cooperation. A soft combining scheme was employed at the FC to improve the

detection probability by combining an estimate of the quantized energy statistics. Simulation

results demonstrated that the proposed cooperative spectrum sensing scheme operating in

practical fading channels can achieve a performance that is almost identical to the ideal case

that the SUs can directly perform soft combining of the distortion-free energy statistics.

7.2 Future Works

Based on the research I have been done so far, some of the future research works are discussed

in this section.

First, to further improve the energy efficiency in WSNs, multi-hop transmission should

be considered instead of single hop transmission. In [1], they proposed that the most fun-

damental question for the energy constraint network communication is how to utilize the

limited energy to efficiently transmit all the information to the FC such that the energy

required to transmit one unit information is minimized. Nodes in the multi-hop WSN need

not only to transmit their own information, but also need to relay other nodes’ information

to the FC. Therefore, the first problem is how to divide the limited power between one’s

own information and the relay information. Second, how to choose the optimum path for

112



multi-hop to minimize the routing energy cost. Hence, the efficiency of the entire WSN can

be optimized based on solving these two problems.

Second, in cooperative spectrum sensing, a common control channel is used by CR users

to transmit their local sensing data to the FC. In most of the literatures, the common control

channel is usually assumed to be always available. However, as the number of the CR users

in the cognitive networks increases, the bandwidth required by the control channel increases

dramatically because CR users need to use an orthogonal media access control (MAC) scheme

to transmit their data [2]. Therefore, how to efficiently utilize the limited bandwidth of the

control channel to report the local sensing data to the FC is a new challenge in cooperative

spectrum sensing.

Finally, another important direction of study is the development of a test bed for cognitive

radio systems. The results we have in this dissertation so far are either theoretical analysis

or computer simulation. However, the results from test bed will be more practical than

what we have so far. Moreover, the problems we will meet in the design of the test bed or

algorithm testing period can in turn help modify the developed algorithm. This iteration

process will make the design more practical in the applications.
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