89 research outputs found

    Multi-Antenna Vision-and-Inertial-Aided CDGNSS for Micro Aerial Vehicle Pose Estimation

    Get PDF
    A system is presented for multi-antenna carrier phase differential GNSS (CDGNSS)-based pose (position and orientation) estimation aided by monocular visual measurements and a smartphone-grade inertial sensor. The system is designed for micro aerial vehicles, but can be applied generally for low-cost, lightweight, high-accuracy, geo-referenced pose estimation. Visual and inertial measurements enable robust operation despite GNSS degradation by constraining uncertainty in the dynamics propagation, which improves fixed-integer CDGNSS availability and reliability in areas with limited sky visibility. No prior work has demonstrated an increased CDGNSS integer fixing rate when incorporating visual measurements with smartphone-grade inertial sensing. A central pose estimation filter receives measurements from separate CDGNSS position and attitude estimators, visual feature measurements based on the ROVIO measurement model, and inertial measurements. The filter's pose estimates are fed back as a prior for CDGNSS integer fixing. A performance analysis under both simulated and real-world GNSS degradation shows that visual measurements greatly increase the availability and accuracy of low-cost inertial-aided CDGNSS pose estimation.Aerospace Engineering and Engineering Mechanic

    Precision-Aided Partial Ambiguity Resolution Scheme for Instantaneous RTK Positioning

    Get PDF
    The use of carrier phase data is the main driver for high-precision Global Navigation Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution (IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a large number of observations is available. While this is generally positive, positioning in medium and long baselines is challenging due to the atmospheric residuals. In this context, the process of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead, finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR schemes, addresses the analytical performance of a PAR estimator following a generalization of the Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR). The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed) positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations are used to showcase the performance of conventional FAR and FAR approaches, and the proposed PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR solutions as a non-recursive estimator for medium and long baselines

    Ambiguity resolution of single frequency GPS measurements

    Get PDF
    This thesis considers the design of an autonomous ride-on lawnmower, with particular attention paid to the problem of single frequency Global Navigation Satellite System (GNSS) ambiguity resolution. An overall design is proposed for the modification of an existing ride-on lawnmower for autonomous operation. Ways of sensing obstacles and the vehicle's position are compared. The system's computer-to-vehicle interface, software architecture, path planning and control algorithms are all described. An overview of satellite navigation systems is presented, and it is shown that existing high precision single frequency GNSS receivers often require time-consuming initialisation periods to perform ambiguity resolution. The impact of prior knowledge of the topography is analysed. A new algorithm is proposed, to deal with the situation where different areas of the map have been mapped at different levels of precision. Stationary and kinematic tests with real-world data demonstrate that when the map is sufficiently precise, substantial improvements in initialisation time are possible. Another algorithm is proposed, using a noise-detecting acceptance test taking data from multiple receivers on the same vehicle (a GNSS com- pass configuration). This allows a more demanding threshold to be used when noise levels are high, and a less demanding threshold to be used at other times. Tests of this algorithm reveal only slight performance improvements. A final algorithm is proposed, using Monte Carlo simulation to account for time-correlated noise during ambiguity resolution. The method allows a fixed failure rate configuration with variable time, meaning no ambiguities are left floating. Substantial improvements in initialisation time are demonstrated. The overall performance of the integrated system is summarised, conclusions are drawn, further work is proposed, and limitations of the techniques and tests performed are identified

    Localization Precise in Urban Area

    Get PDF
    Nowadays, stand-alone Global Navigation Satellite System (GNSS) positioning accuracy is not sufficient for a growing number of land users. Sub-meter or even centimeter accuracy is becoming more and more crucial in many applications. Especially for navigating rovers in the urban environment, final positioning accuracy can be worse as the dramatically lack and contaminations of GNSS measurements. To achieve a more accurate positioning, the GNSS carrier phase measurements appear mandatory. These measurements have a tracking error more precise by a factor of a hundred than the usual code pseudorange measurements. However, they are also less robust and include a so-called integer ambiguity that prevents them to be used directly for positioning. While carrier phase measurements are widely used in applications located in open environments, this thesis focuses on trying to use them in a much more challenging urban environment. To do so, Real Time-Kinematic (RTK) methodology is used, which is taking advantage on the spatially correlated property of most code and carrier phase measurements errors. Besides, the thesis also tries to take advantage of a dual GNSS constellation, GPS and GLONASS, to strengthen the position solution and the reliable use of carrier phase measurements. Finally, to make up the disadvantages of GNSS in urban areas, a low-cost MEMS is also integrated to the final solution. Regarding the use of carrier phase measurements, a modified version of Partial Integer Ambiguity Resolution (Partial-IAR) is proposed to convert as reliably as possible carrier phase measurements into absolute pseudoranges. Moreover, carrier phase Cycle Slip (CS) being quite frequent in urban areas, thus creating discontinuities of the measured carrier phases, a new detection and repair mechanism of CSs is proposed to continuously benefit from the high precision of carrier phases. Finally, tests based on real data collected around Toulouse are used to test the performance of the whole methodology

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    Robust GNSS Carrier Phase-based Position and Attitude Estimation Theory and Applications

    Get PDF
    Mención Internacional en el título de doctorNavigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises.La información de navegación es un elemental fundamental para el funcionamiento de sistemas de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra angular para la navegación en exteriores, dando acceso a localización y sincronización temporal a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término genérico que define una constelación de satélites que transmiten señales de radio, usadas primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar GNSS y estimar soluciones de navegación robustas y precisas. Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo cual implica unos problemas de estimación de elevada complejidad. Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello, primero se aborda la máxima efectividad del problema de localización, proponiendo cotas inferiores para el procesamiento de la señal en el receptor y para el problema de estimación mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de navegación precisa, capaces de hacer frente a los ruidos atípicos.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Giorgi Gabriele.- Vocal: Fabio Dovi

    Robust GNSS Carrier Phase-based Position and Attitude Estimation

    Get PDF
    Navigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: --code pseudorange, which is a measure of the time difference between the signal's emission and reception at the satellite and receiver, respectively, scaled by the speed of light; --carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle's orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises
    corecore