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Abstract: The use of carrier phase data is the main driver for high-precision Global Navigation
Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier
phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the
process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution
(IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the
estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a
large number of observations is available. While this is generally positive, positioning in medium
and long baselines is challenging due to the atmospheric residuals. In this context, the process
of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting
and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity
Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead,
finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR
schemes, addresses the analytical performance of a PAR estimator following a generalization of the
Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR).
The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed)
positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations
are used to showcase the performance of conventional FAR and FAR approaches, and the proposed
PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis
for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the
generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior
of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR
solutions as a non-recursive estimator for medium and long baselines.

Keywords: RTK; GNSS; precise positioning; ambiguity resolution; PAR; CRB; integer least squares

1. Introduction

The use of Global Navigation Satellite Systems (GNSS) carrier phase observations
is fundamental for supplying high-precision Positioning, Navigation, and Timing (PNT)
data [1]. In contrast to standard code-based positioning, such carrier phase observations
are ambiguous and require the estimation of integer unknowns, also denoted ambiguities,
along with the dynamical parameters of the target. Regression for a mixture of real- and
integer-valued parameters, also known as mixed model, implies a Maximum Likelihood
Estimation (MLE) problem and a real-to-integer mapping of the ambiguities. The latter
process is referred to as Integer Ambiguity Resolution (IAR) [2], and its performance is key
to achieve precise positioning estimates.
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Real-Time Kinematic (RTK) is a high-precision localization procedure, for which the
position of a rover is determined with respect to a geolocated base station [3,4]. RTK
represents an example of mixed model whose associated MLE can be solved through a
three-step process [5]:

GNSS
observations

Float
estimate

IAR
Validity
Test

Fixed
Solution

with float and IAR corresponding to least squares (LS) adjustment for real- and integer-
valued parameter estimation, respectively. The fixed solution improves the positioning
solution by virtue of the integer constraints on the ambiguities, although the presence of a
single wrongly estimated ambiguity can lead to a worsened positioning solution. Thus,
the validity test allows determining whether the output of the IAR process may or not be
trusted. If the ambiguities cannot be fixed with high confidence, the original float estimate
is preserved instead.

The estimation of the complete vector of ambiguities can be a challenging task, pro-
vided that a single bias or inaccuracy in a carrier phase pseudorange could potentially spoil
the estimation. A representative example of the former relates to medium and long baseline
RTK positioning, due to the atmospheric residuals. Even though the use of multi-GNSS,
multi-frequency observations strengthens the model, the probability of correctly estimating
the integer vector, also known as success rate, tends to decrease with a raise on the number
of observations [6]. The conventional procedure of estimating all the ambiguities, known
as Full Ambiguity Resolution (FAR), is specially sensitive to the aforementioned challenges.
Two alternatives are typically considered to alleviate the former limitation:

1. Increasing the observation time span and/or applying recursive estimation, particu-
larly when the atmospheric residuals become part of the state estimate.

2. Applying Partial Ambiguity Resolution (PAR), which relaxes the integer estimation
over the complete set of ambiguities to a subset instead.

This work focuses on PAR solutions for snapshot estimation, i.e., non-recursive esti-
mation for which only the observations received at a time instant are considered. This case
is particularly relevant for safety-critical vehicular applications, for which high availability
of precise positioning is required in an instantaneous manner [7–10]. Thus, PAR identifies
a subset of ambiguities to fix upon certain criteria, e.g., success rate maximization, failure
rate minimization, etc. The question resides on how can one determine which ambiguities
to fix. Answering this question leads to the different selection heuristics, such as signal-
to-noise ratio [11,12], Ambiguity Dilution of Precision (ADOP) [13], or minimum bias [14].
Alternatively, the framework of Generalized Integer Aperture (GIA), introduced by Brack
in his series of work [15–18], extends the concepts from Integer Aperture to PAR to jointly
perform real-to-integer mapping and subset selection.

This work introduces Precision-Driven PAR (PD-PAR), a PAR subset selection criteria
based on the projection of the integer ambiguities into the positioning domain. As the pre-
cision of the fix positioning solution is conditioned on the quality of the float estimates (for
the position and ambiguity elements) and their associated covariance, PD-PAR identifies
the combination of ambiguities which grants a target positioning precision requirement
(i.e., the minimal precision needed for an use-case application) prior to the actual integer
estimation. To achieve that end, we propose an algorithm workflow and demonstrates that
PD-PAR subset criteria selection leads to a lower degree of ambiguity cross-correlation and
a higher probability of correctly estimating those ambiguities.

Furthermore, we propose a Cramér–Rao Bound (CRB) for the analytical assessment of
PAR estimators’ performance. Among the families of estimation bounds, the CRB stands
out for its straightforward calculation, being the lowest bound in the mean squared error
(MSE) sense and asymptotically attained by MLEs. While an extensive literature on lower
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and upper bounds exists for real [19–22] and integer estimation [23–25], the general CRB for
the mixed estimation problem was only recently introduced [26,27]. This work leverages
the CRB for the mixed problem and generalizes it for the mixed model with PAR estimation.
Thus, we can analytically acknowledge the performance of PAR estimators and its relation
with respect to the conventional FAR approaches. This generalized form of CRB for the
mixed model and PAR allows to address the performance of the proposed PD-PAR, while
serving as benchmark for other PAR estimators.

The performance of conventional FAR and PAR solutions as well as the proposed
PD-PAR is analyzed in a twofold manner: first, a Monte Carlo experiment over a synthetic
scenario illustrates the estimation performance for conventional FAR, PAR and the pro-
posed PD-PAR estimators for a range of baseline distances of up to 60 km; then, real data
collected for a medium baseline scenario are used as further analysis. The results show that
(i) the general CRB for the mixed PAR model is correct and there exist estimators which
asymptotically attain it and (ii) PD-PAR is a promising subset selection criteria for PAR,
particularly attractive for applications requiring high availability of precise positioning in
a snapshot manner (e.g., driverless vehicles or autonomous robots).

The remaining of the article is as follows. Section 2 provides background on RTK and
the mixed model estimation. Section 3 discusses the state-of-the-art PAR methods and
introduces the PD-PAR scheme. The theoretical estimation bound for the PAR mixed model
is provided in Section 4. Section 5 presents the experimentation and associated results.
Finally, Section 6 outlines the work and proposes future research lines.

2. RTK and the Mixed Model

Let us consider n + 1 GNSS satellites being simultaneously tracked over a particular
frequency where the position of the rover is determined with respect to a stationary base
station of accurately known coordinates. RTK positioning applies a double difference (DD)
combination code/carrier measurements to minimize the effect of nuisance parameters,
e.g., atmospheric delays, satellites’ position, and clock errors. Therefore, the vector of
observations y is composed by the n−sized vector of DD carrier phase and code observables.
RTK is associated with the mixed real- and integer-valued model, or simply mixed model,
expressed as

y ∼ N
(
Aa + Bb, Qy

)
, a ∈ Zn, b ∈ Rp, (1)

where A, B are 2n× (n + p) full rank design matrices and Qy is the 2n× 2n covariance
matrix for the observations. Within the context of RTK, the vector b constitutes the baseline
vector between the rover and the base, such that p = 3 and a is the vector of carrier phase
DD ambiguities. In that case, the design matrices A and B are defined as follows:

A =

[
λcIn
0n,n

]
, B =

[
DG
DG

]
, D =

[
−1n,1 In

]
(2)

where λc is the carrier wavelength, In is the n-dimensional identity matrix, 0n,n is the
n-dimensional null matrix, and 1n,1 is the n−dimensional unit column vector. Additionally,
G is the geometry matrix, composed by the unit satellite steering vectors, and D is the
single-difference matrix operator. More detailed description on the mixed model can be
found in [28] (Ch. 21, 23). The definition of the observations’ covariance matrix is as

Qy =

[
σ2

Φ ·DW−1D> 0n,n
0n,n σ2

ρ ·DW−1D>

]
, (3)

where σ2
Φ, σ2

c are the zenith-referenced variances for the undifferenced carrier phase and
code observables, respectively, and W is the weighting diagonal matrix, expressed typically
as function of the satellite elevation [29,30].
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As aforementioned, the DD observation combination allows eliminating atmospheric
delays as long as the distance between base and rover locations is sufficiently small (i.e.,
below 10 km). As this distance grows, different residual biases become prominent: the
difference in line-of-sight vectors towards satellites from rover and base, tropospheric, and
ionospheric delays. While the first two can be generally overseen, ionospheric residuals
strongly jeopardize RTK positioning performance. For medium baselines (i.e., below
50 km), the ionospheric delay for each undifferenced observation can be treated as an
additional zero-mean normal-distributed noise term, known as the ionospheric-weighted
model [31,32], whose variance σ2

I is modeled as a function of the satellite elevation and the
baseline distance [33]. Then, the covariance matrix associated with the ionospheric delays
QI is added to the observations covariance matrix Qy and expressed as

σI =
√

2 · 0.4
mm
km

, QI = 12,2 ⊗ σ2
I ·DW−1D>, (4)

with ⊗ denoting the Kronecker product. Note that a correlation between carrier phase
and code measurements becomes apparent, as the differential ionospheric biases affect
them both. For long baseline distances, the ionospheric model becomes weak in terms of
IAR. Therefore, multi-frequency observations are required and the ionospheric delay for
each link is added to the real parameters vector b and recursively estimated. This work is
focused on instantaneous positioning in short and medium baseline lengths considering the
ionospheric-weighted model in Equation (4) within the observations’ stochastic modeling.

Mixed Model Estimation

Solving the linear system of equations in Equation (1) leads to an optimization problem
with mixed real and integer parameter estimation. From a MLE perspective, its estimation
follows a weighted least-squares (LS) formulation:[

ǎ
b̌

]
= arg min

(a,b)∈Zn×Rp
‖y−Aa− Bb‖2

Qy
, (5)

where ‖ · ‖2
Q∗ = (·)>Q∗−1(·) is a weighted norm. Although an explicit solution to

Equation (5) is unknown, the decomposition of the previous quadratic form into the
sum of three LS adjustments is well known [5] and expressed as follows:

min
(a,b)∈Zn×Rp

‖y−Aa− Bb‖2
Qy

= min
(â×b̂)∈Rn+p

∥∥∥y−Aâ− Bb̂
∥∥∥2

Qy
(6a)

+ min
a∈Zn
‖â− a‖2

Qââ
(6b)

+ min
b∈Rp

∥∥∥b̂(a)− b
∥∥∥2

Qb̂(a)

, (6c)

where â is the real-valued least-square ambiguity vector with a variance-covariance ma-
trix Qââ and b̂(a) is the least-square vector b̂ conditioned on a having Qb̂(a) as variance-
covariance matrix with the adjustments being commonly denoted as float, IAR, and fixed
solution estimations. Next, each of these processes are shortly described:

Float solution: during the first step of Equation (6a), the integer nature of the carrier ambi-
guities is neglected and, instead, a conventional WLS for real-valued parameters is
employed. The result of this estimation is denoted as float solution, whose distribution
is described by [

â
b̂

]
∼ N

([
â
b̂

]
,
[

Qââ Qâb̂
Qb̂â Qb̂b̂

])
, (7)

with Q the covariance matrix gathering the uncertainty on the estimates and their cor-
relation;
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Integer Ambiguity Resolution: the second minimization problem Equation (6b) consti-
tutes the Integer Least Squares (ILS) adjustment, a real-to-integer mapping S : Rn →
Zn such that

ǎ = S(â), ǎ ∈ Zn, (8)

with S(·) a many-to-one mapping operator (i.e., different real values lead to the very
same integer value). In this context, an integer estimator is described by its pull-in
regions, which describe a subset of real numbers Pz ⊂ Rn which “pull” to the same
integer vector z ∈ Zn [25]. Pull-in regions result extremely useful to understand
the success rate Ps, i.e., the probability that an estimated integer vector ǎ match the
true one P(ǎ = a). The ILS success rate is upper bounded by the bootstrapped (BS)
success rate [23], for which an exact close-form expression exists

P(ǎIB = a)︸ ︷︷ ︸
Ps,IB

=
n

∏
i=1

(
2φ

(
1

2σâi|I

)
− 1

)
≤ P(ǎILS = a)︸ ︷︷ ︸

Ps,ILS

(9)

with φ(·) the cumulative normal distribution, and σ2
âi|I

the ith conditional variance
(i.e., the ith diagonal value of the diagonal matrix from an LDL decomposition on Qââ,
Qââ = LQ′aL>, Q′a = diag(σ2

â1|I
, . . . , σ2

ân|I
)). Hereinafter, ILS is considered as integer

estimator (i.e., ǎ = ǎILS, Ps = Ps,ILS), due to its optimality properties [25].

After the float estimation, the ambiguities’ covariance matrix Qââ presents a high
correlation among ambiguities which hinders the IAR process (i.e., integer rounding
(IR) and IB performance is jeopardized, while ILS increases its computational load). To
overcome this limitation, integer reparametrizations, also known as Z-transformations,
are typically applied. The general class Z of Z-transformations is

Z = {Z ∈ Zn,n | Z = ±1}, (10)

such that all the elements of Z and its inverse are integer numbers. Due to the inte-
ger constraints on Z , the complete decorrelation of the ambiguities is not possible,
although it can be considerably reduced through a sequence of integer approxi-
mated Gauss transformations and permutations [35]. Thus, the minimization of
Equation (6a) is instead expressed and resolved in the Z-space, as

ž = arg min
z∈Zn
‖ẑ− z‖2

Qẑẑ
, with ẑ = Zâ, Qẑẑ = ZQââZ>, (11)

and, afterwards, the original ambiguity space can be reconstructed from ǎ = Z−1ž.

IAR also includes a validation step to determine the reliability of the integer estimate.
Thus, an integer solution is accepted only if the success rate is sufficiently high or the
validity test is passed. Thus, the integer mapping Equation (8) can be described in a
more flexible way as

S(â) =
{

ǎ ∈ Zn if T (·) ≤ µ0,
â ∈ Rn otherwise,

(12)

with T (·) and µ0 being a generic testing function and threshold value, respectively.
The criteria for testing function leads to model- and data-driven rules. Model-driven
rules are solely dependent on the strength of the model, i.e., the ambiguities’ covari-
ance matrix T (Qââ), with the operator SMD(·) expressed as

SMD(â) =

{
ǎ ∈ Zn if T (Qââ) ≤ P0,
â ∈ Rn otherwise,

(13)
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with T (Qââ) = Pf the failure rate Pf (i.e., Pf = 1− Ps) and P0 the target probability
of estimating the wrong integer solution. Thus, model-driven implies accepting a
solution whenever the success rate is sufficiently high or, in other words, only if the
BS upper bound success rate is high enough. Alternatively, data-driven rules take
into consideration the real-valued estimate â and express the operator SDD as

SDD(â) =

{
ǎ ∈ Zn if T (â, Qââ) ≤ µ0,
â ∈ Rn otherwise,

(14)

where one can distinguish, for instance, the ratio and difference tests (RT and DT),
whose test functions are given by

TRT =
‖â− ǎ‖2

Qââ

‖â− ā‖2
Qââ

≤ µRT, TDT = ‖â− ā‖2
Qââ
− ‖â− ǎ‖2

Qââ
≤ µDT, (15)

with ā the best counter-hypothesis to ǎ, and µRT, µDT the threshold values for RT
and DT, respectively. The underlying challenge relates to choosing a threshold
value adequate for different geometries or number of frequencies used. The fixed
failure rate test (FF-RT) is a well-known solution to that challenge [36,37], for which
the RT threshold value is chosen upon a target failure rate and the strength of the
model. Hereinafter, this work considers FF-RT as validation test, for which the integer
estimate is accepted if it guarantees a sufficiently low failure rate and, otherwise, the
real-valued ambiguity solution is kept.

Fixed solution: the last minimization (6c) improves the vector of real-valued parameters b̂
upon the knowledge of the integer ambiguities ǎ, driving to high accuracy positioning,
denoted as fixed solution. The mean and covariance for the fixed solution, b̌, Qb̌b̌ are
based on the projection of the integer ambiguities into the position domain, as

b̌ = b̂−Qb̂âQ−1
ââ (â− ǎ), (16)

Qb̌b̌ = Qb̂b̂ −Qb̂âQ−1
ââ Qâb̂, (17)

with the fixed solution inheriting its high precision from the carrier phase observ-
ables. Notice that the precision gain occurs only when estimated integer ambiguities
coincide with the true ones, but this information is unknown in a real system. Al-
ternatively, a fixed solution is considered only when the probability of a correct
ambiguities fixing is sufficiently high (i.e., when the validity test is passed). Other-
wise, the complete set of integer estimates is disregarded, i.e., ǎ = â, and the fixed
solution does not adjust the original float solution. PAR is a distinct alternative for
finding the integer solution for only a subset of ambiguities, explained in the sequel.

3. Partial Ambiguity Resolution Strategies

Let us denote with I the index for the subset of ambiguities to be fixed, such that

I ⊆ {1, . . . , n}, I ∈ J, (18)

I ∩ Ī = ∅, I ∪ Ī = {1, . . . , n}

where J denotes the set of possible non-empty index combinations with cardinality
|J| = 2n − 1 and the complementary set Ī indicates the ambiguities to remain real-valued.
The real-to-integer mapping function now becomes S : Rn → Z|I|, and it is different
among estimators.
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In general, the use of PAR leads to a suboptimal solution for the mixed problem in
Equation (5), as one intends at solving the alternativeǎI

ǎĪ
b̌

 = arg min
(aI ,aĪ ,b)∈Z|I|×R|Ī |×Rp

‖y−AIaI −AĪaĪ − Bb‖2
Qy

, (19)

with

AI =
[

λcI|I|
0|I|,|I|

]
, AĪ =

[
λcI|Ī |
0|Ī |,|Ī |

]
, (20)

and only when Ī = ∅, Equation (19) is equivalent to the original mixed estimation (5).
While it appears illogical, aiming at solving a suboptimal problem, the use of PAR may
improve the overall performance of an estimator for the mixed model by increasing the
success rate for some ambiguities in contrast to all of them.

The challenge resides on the choice of the subset of ambiguities to fix. The set I is not
known beforehand and it is to be determined along with the integer estimation process.
Adopting the same nomenclature than the validity tests, strategies for the subset selection
are distinguished in model- and data-driven. An instance of model-driven PAR employs
the IB success rate in Equation (9) to determine the subset I = {n′, . . . , n} that assures a
solution with a failure rate lower than the target P0, such that

nBS = arg max
n′∈{1,...,n}

Pf ,IB,n′ , s.t. Pf ,IB,n′ ≤ P0, (21)

with Pf ,IB,n′ = 1−
n

∏
i=n′

(
2φ

(
1

2σẑi|I

)
− 1

)
, (22)

and σ2
ẑi|I

the conditional variance of the ith transformed ambiguity. The Z-transformed ambiguities
are assumed to be sorted such that ẑn presents the highest precision (σẑn|I ≤ σẑn−1|I ≤ σẑ1|I ).
Then, an ILS solution for the subset I is assured to present a sufficiently low failure rate.

For data-driven PAR techniques, the choice of the set I also depends on the vector of
float estimates â. Doing so is equivalent to extending the validity test in Equation (14) to,
at most, the 2n − 1 possible combinations. Thus, an integer estimator computes a solution
for a particular I and then a RT-DT test as in Equation (15) is applied. The workflow is
summarized in Algorithm 1 and as follows: first, the float solution for Equation (6a) is
obtained; second, the ambiguities are Z-transformed and sorted in increasing order of
precision; then, an integer estimate is determined for the set of ambiguities and a data-
driven test checks its reliability; this process is sequentially performed eliminating the less
precise ambiguity each time until the test is passed. While this practice has been shown to
perform effectively [38,39], it can be computationally very demanding, as the number of
estimation instances is not known beforehand.

Algorithm 1: Data-Driven PAR
Input : Float estimate: â, Qââ; Target Pf0
Output : PAR integer estimate: ǎI

1 Apply Z-transform and sorting (σẑn|I ≤ σẑn−1|I ≤ σẑ1|I ): ẑ = Zâ, Qẑẑ = ZQââZ>.
2 Initialize i = 1, I = {i, . . . , n}.

while i ≥ n do
3 Integer estimation: SDD(ẑI )

if SDD(ẑI ) ∈ Z|I| (validity test passed) then
4 return ǎI = Z−>I žI , žI = SDD(ẑI ), (subset integer solution)

else Shrunk subset
5 i = i + 1, I = {i, . . . , n}
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Alternatively, the framework of Generalized Integer Aperture (GIA) estimation, intro-
duced by Brack in his series of works [15–17,40], extends the concepts on IAR and PAR to
describe selective pull-in regions and their aperture. Thus, GIA estimators procure a joint
subset selection, integer estimation, and test validation upon the aperture of the decision
regions. To do so, the best counter-hypothesis for each of the n ambiguities is tested against
the corresponding ambiguities of the overall best solution. For instance, the GIA difference
test (GIA-DT) describes the subset selection as

IGIA-DT =
{

i = 1, . . . , n | ‖â− āi‖2
Qââ
− ‖â− ǎ‖2

Qââ
≤ µGIA-DT

}
(23)

where āi is the best counter-hypothesis to ǎ for which the i-th element is different and
µGIA-DT is a threshold value. In analogy to the FF-RT, the threshold value µGIA-DT can be
dynamically estimated upon a particular target failure rate [16].

Precision-Driven PAR Scheme

Although data- and model-driven schemes are widely used, they only take into
account the ambiguities derived from the real-valued parameters estimation and the in-
formation brought by the covariance matrix of the ambiguities. While the requirement of
a minimal precision for the fixed solution has been discussed in the context of PAR [18]
(Ch. 4), its consideration as subset selection criteria has not yet been proposed. Precision-
driven PAR fulfills this end using the projection of the ambiguities into the fixed positioning
domain as ambiguity subset selection criteria. Thus, one aims at finding a reduced num-
ber of ambiguities which guarantee certain target positioning precision criteria α for the
fixed position solution, while retaining a sufficiently low failure rate Pf0 . Notice that the
precision requirement α refers to the minimal positioning precision required by a particular
application (e.g., automobile lane detection may require decimeter-level precision [41],
while vessel mooring assistance might entail a precision of a few centimeters [42]).

Thus, the PAR problem in Equation (24) can be reformulated to be subject to a minimal
positioning accuracy, asǎI

ǎĪ
b̌

 = arg min
(aI ,aĪ ,b)∈Z|I|×R|Ī |×Rp

‖y−AIaI −AĪaĪ − Bb‖2
Qy

,

s.t. tr
(
Qb̌b̌

)
≤ α2,

(24)

where tr(·) denotes the trace operator. Unlike Equations (16) and (17), the fixed solution
for a PAR estimator is expressed in terms of the subset of ambiguities fixed, as

b̌ = b̂−Qb̂âI
Q−1

âI
(âI − ǎI ), (25)

Qb̌b̌ = Qb̂b̂ −Qb̂âI
Q−1

ââI
QâI b̂, (26)

and, as Qb̂b̂ remains invariant with the subset choice, the selection can be realized so that

tr
(

Qb̂âI
Q−1

ââI
QâI b̂

)
≥ tr

(
Qb̂b̂

)
− α2, (27)

so that one may omit performing integer estimation if the associated positioning precision
does not match the target α. The procedure to operate PD-PAR consists on recursively
finding the subset with best associated precision and whether a reliable integer solution
exists (i.e., passing the validity test assures that the success rate is sufficiently high). If the
position precision criteria α is not fulfilled, a fixed solution cannot be estimated for the
subset I . The subset I searching is based on Equation (27) that follows from Equation (17).
Instead, if the precision is sufficient but a reliable solution is unavailable, the size of the
subset reduces and the recursion is repeated.
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Algorithm 2 proposes a top-bottom (the number of ambiguities to integer-map de-
creases with the iterations) workflow for PD-PAR, with (n

s) = n!/(s!(n− s)!) the binomial
coefficient where n is the length vector of DD carrier phase and code observables and s is
the number of discarded observations. Notice that PD-PAR is indeed a model-driven PAR
estimator, as the decision to whether accept or not a solution follows from any data-driven
rules given in Equation (14), with the peculiarity that the subset selection is realized based
on how good the ambiguities are projected into the positioning domain. Moreover, the
Z-transform is estimated for each subset size which greatly reduces the degree of decorrela-
tion among ambiguities at the cost of a slightly superior computational complexity. As for
other data-driven approaches, the number of iterations until a subset can be reliably integer
estimated is unknown. However, whenever the satellite geometry is poor or the model
is weak, one can rapidly disregard any integer estimation, provided that a potential fixed
solution would not comply with a target positioning precision. This latter is solved with
a satellite selection via convex geometry as discussed in [43], which relates a bottom-top
search would aim at finding the subset with the minimum number of ambiguities to satisfy
the precision.

Algorithm 2: Precision-Driven PAR

Input : Float estimate:
[

â
b̂

]
,
[

Qââ Qâb̂
Qb̂â Qb̂b̂

]
, Pf0 , α

Output : PD-PAR fixed solution: b̌, ǎI
1 Initialize s = 0.

while s ≥ n do (iterate over subset size)
2 List subsets: I ′ ⊆ {1, . . . , n}, I ′ ∈ J′, |J′| = ( n

n−s)

3 Find best subset: I = arg maxI ′ tr
(

Qb̂âI′
Q−1

ââI′
QâI′ b̂

)
if tr

(
Qb̂âI′

Q−1
ââI′

QâI′ b̂

)
< tr

(
Qb̂b̂

)
− α2 (precision test not passed) then

return ǎI = âI (fixed solution unavailable)
else

4 Apply Z-transform and sorting (σẑn−s|I ≤ · · · ≤ σẑ1|I ):

ẑI = ZâI , QẑẑI = ZQââIZ>.
5 Integer estimation: SDD(ẑI )

if SDD(ẑI ) ∈ Z|I| (validity test passed) then
6 return ǎI = Z−>I ǔI , ǔI = SDD(ẑI ), (subset integer solution)

else Shrunk subset
7 s = s + 1

8 Fixed solution estimation via Equations (25) and (26)

We notice that the complexity of the proposed PD-PAR is higher than its DD-PAR
counterpart. More precisely, the computational complexity is dominated by the “subset
listing” and “find best subset” operations in Algorithm 2, with O(2n + n4) being the
asymptotic time complexity of the algorithm. This can be substantially higher than current
methods; however, we would like to highlight that the additional computational complexity
can be dealt with by the ever growing computational power of today’s GNSS devices [44,45],
as we observed when running our experiments.

4. CRB for the PAR Mixed Model

This section summarizes the main result in [27], which recently derived the CRB for
the estimation of the mixed model in Equation (5), and extends its use to the PAR mixed
model. Let us reformulate the problem as

y ∼ N
(
Hx, Qy

)
, H =

[
A B

]
, x =

[
a> b>

]>, a ∈ Zn, b ∈ Rp (28)
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The CRB provides a lower bound on the variance of any locally unbiased estimator,
and it is used to assess the estimation performance of x̂, the estimator of vector x, such that

Cov(x̂) , E
{
(x̂− x)(x̂− x)>

}
� F−1(x̂), (29)

with F the Fisher Information Matrix (FIM) and A � B indicates that A− B is a positive
semidefinite matrix. In the case of a mixed model (5), the CRB is given by [27]

CRB(x̂) = Λ(x0)F(x0)−1Λ(x0)>, (30)

with x0 a vector of selected values for the parameter vector x. The terms of the CRB are
as follows:

Λ(x0) =
[
i1 . . . ip ip+1 −ip+1 . . . ip+n ip+n+1

]
, (31a)

F(x0) =

[
Faa F>ba
Fba Fbb

]
, (31b)

Fbb =

[
B
B

]>
Qy
−1
[

B
B

]
, (31c)

Fba =
[
B> B>

]
Qy
−1H

[
ip+1 −ip+1 ip+n −ip+n

]
, (31d)

Faa = exp
((

x0 − xi − xj
)>

H>Qy
−1Hx0 + (xi)>H>Qy

−1H(xj)

)
− 1, (31e)

where ik is the kth column of the identity matrix In+p and the test points xl = x0 +

(−1)l−1ip+b l+1
2 c, l = {i, j}.

When considering a PAR estimation problem, its associated mixed model is expressed as

y ∼ N
(
H̄x̄, Qy

)
, H̄ =

[
AI AĪ B

]
,

x̄ =
[
a>I a>Ī b>

]>
, aI ∈ Z|I|, aĪ ∈ Z|Ī |, b ∈ Rp,

(32)

and for notation purpose, let us denote L = p + Ī the dimension of the unknown real-
valued vector and M = p + Ī + I the total number of unknowns. Furthermore, the design
matrix for the real parameters B̄ is given by

B̄ =

[
AĪ
B

]
.

Thus, the CRB for the mixed model can be generalized to the PAR mixed model as

CRB( ˆ̄x) = Λ(x̄0)F̄(x̄0)−1Λ(x̄0)>, (33)

with x̄0 also a selected value of x̄, and the CRB matrix terms given by

Λ(x̄0) =
[
i1 . . . iL iL+1 −iL+1 . . . iM iM+1

]
, (34a)

F̄(x̄0) =

[
F̄aa F̄>ba
F̄ba F̄bb

]
, (34b)

F̄bb =

[
B̄
B̄

]>
Qy
−1
[

B̄
B̄

]
, (34c)

F̄ba =
[
B̄> B̄>

]
Qy
−1H̄

[
iL+1 −iL+1 iM −iM

]
, (34d)

F̄aa = exp
((

x̄0 − x̄i − x̄j
)>

H̄>Qy
−1H̄x̄0 + (x̄i)>H̄>Qy

−1H̄(x̄j)

)
− 1, (34e)
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and, again, test points are x̄l = x̄0 + (−1)l−1iL+b l+1
2 c, l = {i, j}.

New Insights from the CRB for the PAR Mixed Model

For the validation of the CRBReal/Integer for a PD-PAR scheme, a realistic GNSS RTK
experiment was simulated. Figure 1 shows the satellite geometry with N + 1 = 12 satellites
considered for this experiment at an IGS MGEX station POTS0 in Potsdam, Germany, on
26 March 2019 (DOY 085 12:00 UTC) and where the noise of the code σc is maintained
two orders of magnitude larger than the carrier-phase σΦ measurement. To illustrate the
performance of the PD-PAR with respect to a FAR scheme, the Root MSE (RMSE) obtained
from 104 Monte Carlo runs is used as a performance metric.
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Figure 1. Right side, IGS MGEX station POTS0 in Potsdam, Germany, as reference station (red mark).
Right side, skyplot of the synthetic GNSS scenario.

Figure 2 shows the 3D position RMSE performance for both PD-PAR and FAR schemes.
In the plot, the following results are shown:

• Bounds: (i) CRBReal corresponds to the standard CRB associated to the float solution;
(ii) CRBReal/Integer (30) refers to the FAR solution, that is, fixing the complete set of
ambiguities; and (iii) CRBReal/IntegerPD−PAR (33) is the bound corresponding to the
PD-PAR scheme where only a subset of ambiguities is resolved.

• Methods: (i) LS refers to the float solution estimate, (ii) ILSFAR is the estimator that
tries to fix all ambiguities, and (iii) ILSPD−PAR is the new PAR scheme proposed in
this article. Notice that the horizontal line α = 5 cm is the specific precision constraint
considered in this experiment.
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Figure 2. RMSE and CRB as a function of the code noise standard deviation, σc, for FAR and PD-PAR
schemes illustrating the difference between both asymptotic regions.

First, notice that the float LS is efficient, that is, it coincides with the CRBReal . It is
also worth pointing out the potential gain of correctly fixing the ambiguities (i.e., correctly
using an ILS), that is, the difference between CRBReal and CRBReal/Integer. As in standard
maximum likelihood estimators, we can identify three regions of operation:

(1) For low code-noise levels (σc < 0.2[m] for the FAR and < 0.5[m] for the PD-PAR), the
so-called asymptotic regime, the ILS performance for both FAR and PD-PAR schemes
coincides with CRBReal/Integer. This confirms that a correct ILS which considers only
a successful IAR is asymptotically efficient. Obviously, there is a slight performance
degradation when not fixing all the ambiguities, that is, the asymptotic performance
of PD-PAR is slightly larger than with a correct FAR.

(2) At high code-noise levels (σc > 1[m]), the RMSE performance of both ILS coincides
with the float solution LS. In other words, after a certain level of noise, trying to fix
the ambiguities is useless, and a correct IAR is never achieved.

(3) The region between the asymptotic convergence to the mixed real/integer bound
and the unconstrained float region is the so-called threshold region. Such a threshold
provides information on the optimal receiver operation conditions. It is remarkable to
see that the PD-PAR threshold appears for larger noise levels when compared to the
FAR scheme, which implies that the PD-PAR provides a more reliable single-epoch
IAR solution.

Overall, the PD-PAR (which forsakes a given position precision) does not improve
the position estimation with respect to a correct FAR, but guarantees the precision crite-
rion α and achieves a correct IAR for larger noise values. Taking into account that the
main problem in FAR schemes is that under harsh conditions, or with a large number of
measurements, they do not achieve a correct IAR, it turns out that the new PD-PAR is a
powerful alternative. To further support this statement, we show the success rate for both
schemes in Figure 3, where the advantage brought by the PD-PAR is clear. Even for high
code-noise levels ≤ 1 meter, a PD-PAR scheme maximizes the ILS success rate providing a
high reliability when FAR fails.
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Figure 3. Comparison of the single-epoch IAR experimental success rate for FAR and PD-PAR
schemes. At high code-noise levels σc > 1[m], an IAR is still achieved with a precision-aided PAR
scheme approach.

5. Evaluation Results

The analysis and evaluation of the RTK performance with three different ambiguity
resolutions schemes, i.e., FAR, data-driven PAR [46], and the new precision-aided PAR, are
presented in the sequel. An instantaneous dual-frequency GPS+Galileo navigation system
was used for the both synthetic and real data evaluation setups.

5.1. Simulation Results

Two hours of GNSS data was used for the simulation setup at an IGS MGEX station
POTS0 in Potsdam, Germany, on 26 March 2019 (DOY 085 12:00–14:00 UTC) with a data
interval of 30 s. A combined GPS (L1 + L2) and Galileo (E1 + E5a) dual-frequency system
was evaluated with a cut-off elevation angle of 10◦. Figure 4 illustrates the number of GPS
and Galileo satellites along the experiment duration. The failure rate was set to Pf = 0.1%.
The analysis of the proposed precision-aided PAR scheme was made for different baseline
lengths, and implemented in a non-recursive (snapshot) LS-type float solution manner.

Figure 4. Number of GPS (L1 + L2) and Galileo (E1 + E5a) satellites for the simulated scenario.
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The zenith-referenced (undifferenced) code and carrier phase standard deviations are
listed in Table 1. The ionospheric delays and the zenith-references code and carrier phase
noises listed in Table 1 are scaled with the elevation dependent function 1/ sin(el).

Table 1. Wavelengths and zenith-referenced code and carrier standard deviations for GPS and
Galileo observations.

GPS Galileo

L1 L2 E1 E5a

λ (cm) 19.03 24.42 19.03 25.48
σc (cm) 37 28 35 28
σφ (mm) 2 2 2 2

When FAR fails, an ambiguity subset searching algorithm is enforced where the
precision-aided condition (27) is fulfilled and following Algorithm 2 described in Section 3
to determine the best subset which allows to reach the minimum precision-aided criterion α.

A precision metric α = 5 cm was defined, and µ was adjusted with a functional
model followed in [16]. Figure 5 shows the results obtained from 104 Monte Carlo runs,
considering the model-driven (MD), data-driven (DD), and developed precision-driven
(PD) FAR/PAR schemes. It is worth noting from Figure 5 that, when the baseline length
increases, the ionospheric delay plays an important role in having a success IAR showing
an advantage with a PAR scheme. Figure 5a shows the experimental success rate for the
different ambiguity resolution schemes, where it is clear that the MD-PAR scheme has
the worst performance when the baseline length grows, in comparison with DD or PD
PAR schemes, as only the covariance information Qâ is taken into account. Furthermore,
notice that an improved availability of successful IAR is provided with the new PD-PAR
scheme, which can be seen in Figure 5b. This is because the selection of the best subset to
be fixed depends only on the precision domain defined as a function of α. The latter is also
shown in Figure 6 for only one GNSS constellation, where the PD-PAR scheme achieves
the highest success rate.

(a) (b)

Figure 5. Model-driven (MD), data-driven (DD), and precision-driven (PD) performance analysis. (a) Experimental success
rate. (b) Number of fixed ambiguities.
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(a) (b)

Figure 6. Comparison with different ambiguity resolution schemes for one GNSS constellation only. (a) GPS (L1 + L2)
experimental success rate. (b) Galileo (E1 + E5a) experimental success rate.

In terms of positioning error, Figure 7 plots the 3D position RMSE performance,
together with the corresponding CRBs for a MD-PAR, a DD-FAR/PAR, and a PD-PAR
scheme. Even when a data-driven scheme offers a prominent approach in terms of MSE, a
PD-PAR scheme offers a major availability in having a correct IAR satisfying the position
precision criteria α and maximizes the ILS success rate.

Figure 7. RMSE for each ambiguity resolution scheme vs baseline length.

5.2. Validation with Real Data

An analysis with real data was performed, providing a comparative for FAR, DD-PAR,
and PD-PAR. For that end, twelve hours of data collected at the IGS MGEX stations of PERT
and CUT0 in Perth, Australia, on 7 May 2020 (DOY 128 01:00–07:00 UTC) is employed. The
CUT0-PERT baseline length is 22.41 km, which may be considered a medium baseline distance.
The cut-off elevation angle is set at 10◦, and dual-frequency data are used for the GPS and
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Galileo constellations (L1, L2 for GPS and E1, E5a for Galileo). To provide a fair comparison,
this validation focuses only on model-driven validity tests, and MD-PAR is therefore excluded
for the comparison. In particular, the FF-RT uses a target failure rate of Pf0 = 0.1% (as in the
simulated experiment) and the minimum target positioning precision α is again five cm. The
results of real data evaluation are graphically depicted in Figures 8–10.

Figure 8 showcases the performance obtained with FAR for a period of 3.5 h. On the
top, the IB success rate 1− Pf (upper bound for the ILS one) is shown. On the middle, the
number of ambiguities to estimate (dotted solid line) and the number of those which are
fixed (marked with green crosses) by FAR. Notice that whenever a green cross is missing, a
fixed solution could be reliably estimated by FAR. On the bottom, it is shown the minimum
required precision α in dashed red color over time, along with the precision for the float
and fixed positioning (in blue and black, respectively), and the positioning errors (in pink).
Whenever a pink dot appears over the blue line (float precision), a float positioning solution
was estimated by FAR, as the integer estimation did not pass the associated FF-RT test. In
total, FAR was only able to provide a fixed positioning solution for 88.33% of time, which
constitutes the poorest performance in comparison with DD- and PD-PAR.

Figure 8. GPS (L1 + L2) + GAL (E1 + E5a) performance comparative for a FAR scheme.
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(a)

(b)

Figure 9. Comparative of success rate Ps = 1− PF. Number of fixed ambiguities and precision for FAR, Data-Driven
PAR, and Data-Driven+precision-aided PAR schemes. (a) GPS (L1 + L2) + GAL (E1 + E5a) performance comparative for a
DD-PAR scheme when FAR fails (no fixed solution). (b) GPS (L1 + L2) + GAL (E1 + E5a) performance comparative for the
proposed DD+PD PAR scheme when FAR or DD-PAR fails (no fixed solution). Furthermore, PD-PAR guarantees a fixed
solution whose fixed positioning errors (and precision) respect the criteria for minimum required positioning precision α.
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Figure 10. FAR vs Precision-aided PAR scheme RMSE error positioning performance.

A direct comparison between DD-PAR is given in Figure 9a for the same 3.5 h period.
On the top, it is depicted the fixed number of ambiguities by FAR (in red dashed line) and
DD-PAR (in green solid line). It is clear that, while FAR fails at providing a solution for
all the ambiguities, DD-PAR manages to reliably estimate a subset of them. In the bottom
part of Figure 9a, it is showcased the precision of float and fixed positioning for DD-PAR
(in blue dashed and black dotted lines, respectively), as well as the positioning errors (in
pink dots). For this period of time, DD-PAR provides a fixed solution for 100% of the time.
However, in certain time instances the DD-PAR subset of fixed ambiguities leads to a fixed
positioning solution which, while being better than the float one, does not qualify for our
minimum positioning precision required. Notice that the errors for the fixed positioning
are, at all times, right on top of the associated precision, meaning that there are no wrongly
estimated integer ambiguities for this period.

Similarly, the top part of Figure 9b provides a comparison between DD-PAR and PD-
PAR, in terms of number of fixed ambiguities. Interestingly, there are epochs in which the
number of fixed ambiguities do not agree, mostly due to differences in the subset selection
criteria and the repeated Z-transformation applied to each subset search in PD-PAR. On
the bottom part of Figure 9b, it is shown the float and fixed positioning precision (dashed
blue and black dotted lines, respectively) and the actual positioning errors (in pink dots).
A noticeable fact appears close before the 1.5 h point, a moment in which PD-PAR fixes
a much lower number of ambiguities than DD-PAR and still the positioning precision
and errors are well below the required minimum precision. As for the DD-PAR case, the
fact that the positioning errors perfectly align with the estimated precision is due to the
ambiguities being correctly estimated for the complete period of time (i.e., the experimental
failure rate is null).

Figure 10 shows the precision error for a FAR and the precision-aided PAR scheme
with its corresponding CRBreal/Integer. As the precision error with PAR is slightly higher
than the precision error with a FAR scheme, this does not has a big impact since the position
precision criteria α is never violated.

Finally, we take into consideration the complete 12 h of real data to provide a numerical
comparison of the availability of high precision positioning solutions, as summarized in
Table 2. Thus, the availability of cm-level estimates is higher for PD-PAR in a instantaneous-
time ambiguity modus, reaching a 100% of IAR success rate, with a total 10.21% of discarded
ambiguities. The experimental success rate for the integer estimated subset of ambiguities
I amounts to 100%. In terms of experimental success rate, also FAR and DD-PAR presents
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no wrongly estimated ambiguities, although the availability of the solution is 88.33% and
98.60%, respectively. Figure 11 shows the correctly fixed solution along with the empirical
success rates for 12 h of real data for a DD-PAR and PD-PAR approach, respectively. All
epochs were correctly fixed where PD-PAR guarantees a high empirical success rate in
comparison with DD-PAR. These results demonstrate that the PD-PAR method makes a
best subset ambiguities searching and assures a fixed solution when FAR or a DD-PAR
approach fails.

98% confidence

interval

(a)
98% confidence

 interval

(b)

Figure 11. Horizontal (NE) position scatter plots along with the success rate 1− Pf for 12 h of real
data (PERT-CUT0) only for fixed solutions. (a) DD-PAR performance analysis for 12 h of real data.
(b) PD-PAR performance analysis for 12 h of real data.

Table 2. Percentage of fixed solutions for every IAR method for 12 h of real data.

Ambiguity Resolution Method Fix Ratio (%)

FAR 88.33
DDPAR 98.60
PDPAR 100

6. Conclusions

This work introduces a novel precision-aided PAR technique that makes a subset
ambiguities selection based on the projection of the ambiguities into the position domain,
increasing the mapping of real values to integer ones. The CRB for real/integer values
presented in this work was used as a tool to verify the consistency and convergence of
precision-aided PAR scheme. The bound was compared with the evaluated RMSE together
with its corresponding CRB, showing that precision-aided PAR scheme maps real-to-integer
values in a consistent manner. Despite the fact that the data-driven PAR method gives a
prominent performance in comparison with the model-driven PAR, the precision-aided
PAR method presented in this study offers a fix ratio of 100% with a non-violation of
the position precision criteria. Furthermore, the precision-aided PAR method provides an
availability in having a correct IAR and maximizing the ILS success rate while also having a
better efficiency of the mixed real and integer parameter estimation using a precision-aided
PAR scheme. The validation of a precision-aided PAR scheme was evaluated and presented
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using real data showing optimal results. A precision-aided PAR scheme reaches a 100%
of IAR success rate in comparison with the data-driven PAR that achieves a 98.60% of fix
ratio when FAR is not always optimal in terms of success rate of ambiguity resolution.
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