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Abstract 
 

Nowadays, stand-alone Global Navigation Satellite System (GNSS) positioning accuracy is not 
sufficient for a growing number of land users. Sub-meter or even centimeter accuracy is becoming more 
and more crucial in many applications. Especially for navigating rovers in the urban environment, final 
positioning accuracy can be worse as the dramatically lack and contaminations of GNSS measurements. 
To achieve a more accurate positioning, the GNSS carrier phase measurements appear mandatory. These 
measurements have a tracking error more precise by a factor of a hundred than the usual code 
pseudorange measurements. However, they are also less robust and include a so-called integer ambiguity 
that prevents them to be used directly for positioning.  

While carrier phase measurements are widely used in applications located in open environments, this 
thesis focuses on trying to use them in a much more challenging urban environment. To do so, Real-
Time-Kinematic (RTK) methodology is used, which is taking advantage on the spatially correlated 
property of most code and carrier phase measurements errors. Besides, the thesis also tries to take 
advantage of a dual GNSS constellation, GPS and GLONASS, to strengthen the position solution and 
the reliable use of carrier phase measurements. Finally, to make up the disadvantages of GNSS in urban 
areas, a low-cost MEMS is also integrated to the final solution.  

Regarding the use of carrier phase measurements, a modified version of Partial Integer Ambiguity 
Resolution (Partial-IAR) is proposed to convert as reliably as possible carrier phase measurements into 
absolute pseudoranges. Moreover, carrier phase Cycle Slip (CS) being quite frequent in urban areas, 
thus creating discontinuities of the measured carrier phases, a new detection and repair mechanism of 
CSs is proposed to continuously benefit from the high precision of carrier phases. 

Finally, tests based on real data collected around Toulouse are used to test the performance of the whole 
methodology.  
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Résumé 
 

Récemment, la précision qu’on peut obtenir avec le GNSS-autonome positionnement est insatisfaisant 
pour de plus en plus d’utilisateurs au terrain. Une précision au-dessous de mètre ou encore de niveau 
centimètre est devenue plus cruciale pour pleine d’applications. Surtout pour des véhicules dans le 
milieu urbain, la précision finale est considérablement pire comme les manques et les contaminations 
des GNSS signaux sont présentes. Afin d’avoir un positionnement plus précis, les mesures carrier phases 
sont dispensables. Les erreurs associés à ces mesures sont plus précises de factor centaine que les 
mesures pseudoranges. Cependant, un paramètre de nature entière, appelée ambiguïté, empêche les 
mesures phases de comporter comme les pseudoranges ‘précises’. 

 

Pendant que les mesures carrier phases sont largement utilisées par les applications localisées dans un 
environnement ouvert, cette thèse s’intéresse sur les exploitations dans un environnement urbain. Pour 
cet objectif, la méthodologie RTK est appliquée, qui est principalement basée sur les caractéristiques 
que les erreurs sur les mesures pseudoranges et phases sont corrélées spatialement. De plus, cette thèse 
profite de la double GNSS constellation, GPS et GLONASS, pour renforcer la solution de position et 
l’utilisation fiable des mesures carrier phases. Enfin, un low-cost MEMS est aussi intégré pour 
compenser des désavantages de GNSS dans un milieu urbain. 

A propos des mesures phases, une version modifiée de Partial-IAR (Partial Ambiguity Resolution) est 
proposée afin de faire comporter de la façon la plus fiable possible les mesures phases comme les 
pseudoranges. Par ailleurs, les glissements de cycle sont plus fréquents dans un milieu urbain, qui 
introduisent des discontinuités des mesures phases. Un nouveau mécanisme pour détecter et corriger les 
glissements de cycle est du coup mise en place, pour bénéficier de la haute précision des mesures phases.  

Des tests basés sur les données collectées autour de Toulouse sont faits pour montrer la performance.   
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TDMA Time division multiple access  
TEC Total electron content  
TOA Time of arrival  
TT&C Telemetry, Tracking and Control  
UERE User equivalent range error 
USNO United States Naval Observatory  
UTC Coordinated Universal Time  
VC-matrix Variance-covariance matrix 
WGS World Geodetic System  
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 Introduction 

 Background and Motivation 
Navigation, the process of determining the position, velocity and sometimes the attitude of an object, 
has always been a technology that people have strived to conquer [1], [2]. Since the advent of Global 
Navigation Satellite Systems (GNSS), especially with the most important utility Global Positioning 
System (GPS), precise navigation went from professional skilled navigators to the mass market public 
[3]. Over the past decade, the universal GNSS has been dramatically utilized in various domains, such 
as aviation, marine, precise agriculture, geodesy and surveying, automotive, etc. However, the accuracy 
or integrity that a low-cost GNSS receiver can provide in a constrained urban or indoor environment is 
far from satisfactory for applications where decimeter or centimeter accuracy and error bounds are 
mostly envisioned. 

The higher precision of raw carrier phase measurements compared to pseudorange measurements have 
made them essential for high accuracy techniques [4], [5]. Nevertheless, carrier phase integer 
ambiguities and losses of lock called cycle slips creating sudden changes of these ambiguities increase 
the difficulty to consider these ambiguities. 

Confronting the mass market customers until 2017, a market of single-frequency (single- or multi-
constellation) equipment is persistent although precise positioning technologies have been developed 
for high-end multiple-frequency receivers [6]. Besides, the quality of raw measurements collected with 
low-cost systems, typically a low-cost receiver and a patch antenna, is not sufficient to achieve a reliable 
integer ambiguity resolution, without mentioning the quality degradations in the dynamic conditions [7].  

Many precise positioning techniques have been devised to improve the positioning accuracy, such as 
the Real-Time Kinematic (RTK) and the Precise Point Positioning (PPP) techniques [6], [8], [9]. PPP 
takes advantages of precise corrections of ephemeris and clock errors affecting raw measurements 
provided by IGS or other organizations. Nevertheless, a long convergence period is required as single-
frequency ambiguities are estimated float while residual errors are lumped into integer ambiguities, such 
that these are not integer anymore. RTK eliminates most measurements errors, which are spatially 
correlated, by differencing measurements with a reference station. Typically, a centimeter-level 
accuracy is achievable with RTK with only a few seconds of convergence time, in a short-baseline 
configuration under an open-sky condition [7].  

What’s more, to enhance the performance of ambiguity resolution, i.e. convergence time and reliability, 
a lot of scientific efforts have been put into the study of the integer ambiguity resolution techniques. The 
whole integer ambiguity resolution process is composed of two basic parts: estimation and validation 
[10]–[12]. In terms of maximizing the ambiguity success rate, the estimation technique Integer Least-
Squares (ILS) is considered the most optimal one compared to other popular techniques, e.g. integer 
rounding, integer bootstrapping [13]–[16]. For instance, the Least-squares AMBiguity Decorrelation 
adjustment (LAMBDA), as a specific implementation algorithm of ILS, has been widely approved and 
applied facing IAR (Integer Ambiguity Resolution) problems. Ratio test as a popular validation 
technique is widely implemented for its good performance in practical applications. However, there 
lacks a theoretical knowledge of performance indicator, e.g. the probability of failure 𝑃𝑓. Some fixed 
failure validation tests are proposed whilst practical implementations become more complex and 
computationally burdened.  

The application of interest in this dissertation is achieving precise positioning for road users in practical 
driving environment. Facing the challenges of a benign environment, for example the frequent signal 
blockages, multipath/NLOS signals, poor availability of GPS measurements, the precise positioning for 
low-cost single receiver is always an issue. The full operational capacity of GLONASS (Global’naya 
Navigatsionnaya Sputni kovaya Sistema) reveals the advantages of multi-constellation positioning [17]. 



16 
 

The performance of satellite-based positioning schemes is highly dependent on user-satellite geometry 
even in a difficult environment, like semi-urban or urban areas. Along with the consideration of another 
GLOT receivers, i.e. GLONASS code and carrier phase inter-channel biases (ICB) [18]–[22]. Aside 
from the poor signal availability, another consequence that GNSS carrier phase observations may suffer 
from is frequent cycle slips (CS). A cycle slip is referring to the loss of continuous lock of satellite signal 
carrier phase tracking and an integer number should be added to update the integer carrier phase 
ambiguities.  

Unlike GNSS, vulnerable to various outliers due to signal propagation especially in a constrained 
environment, the Inertial Navigation System (INS) is completely autonomous from signal reception. An 
INS provides the position, velocity and attitude information of the rover with the help of a set of inertial 
sensors (also known as an inertial measurement unit (IMU)), and a navigation processor [1], [23]. 
Despite the immunity to outliers, the stand-alone position quality of IMUs degrades quickly due to the 
sensor inaccuracies. Apparently, high-grade IMUs bear slower degradation but at an extreme high cost 
that mass market can not afford. At a low cost, the miniaturization, low power consumption and mass-
production capacity have made the micro-electro-mechanical system (MEMS) sensors more and more 
attractive for automotive applications [2], [24]. Given the complimentary characteristics of INS and 
GNSS, but the overall performance in an urban environment remains an unknown. 

In this thesis, the performance of applying precise positioning technique RTK in semi urban or urban 
areas, with raw GNSS measurements collected by a low-cost single-frequency multi-constellation 
receiver coupled with MEMS is investigated.  

 

 Objectives and Contributions of this Dissertation 
The fundamental objective of this dissertation is to explore the navigation performance that a low-cost 
system, taking full advantages of low-cost GNSS receiver, low-cost INS, and precise positioning 
technology RTK, can achieve in the areas that are current GPS harsh in terms of signal reception. The 
process of achieving the global objective is divided into following sub-objectives:  

- Code and Doppler measurement outliers are detected and excluded based on an Innovation test, 
which also keeps watch on carrier phase measurements subject to miss-detected cycle slips;  

- Along with GPS DD (Double Differenced) ambiguities, included GLONASS DD ambiguities 
are conserving integer natures by isolating associative GLONASS inter-channel biases;  

- A Cycle-Slip detection and repair (CS-DR) scheme detects and repairs cycle slips, which 
enables the continuous estimation of GNSS ambiguities;  

- With a view to lower the fatal wrong fixing probability 𝑃𝑓 regarding GNSS ambiguities, an 
Integer Ambiguity Resolution (IAR) scheme capable of controlling 𝑃𝑓 and making use of the 
best subgroup of DD ambiguities is proposed;  

- Further more, a low-cost MEMS is tightly-integrated to explore its benefits pertaining to the 
performance of the CS-DR scheme, the operation of IAR and finally the positioning 
performance;  

- Testing of the proposed algorithm is based on real collected data during two campaigns in 
typical semi-urban/urban areas in Toulouse.  

  

 Dissertation Outline  
This dissertation is composed of eight chapters and four appendices. The detailed organization is 
described as following.  
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Chapter 1 describes the background, objectives and contributions of this dissertation. Under the 
constraint of low cost, single-frequency multi-constellation RTK is integrated with MEMS to conquer 
at most the difficulties a road user may experience.  

Chapter 2 provides an overview of GNSS principles including the system structure, the reception of 
GNSS signals and the production of GNSS raw measurements. The single point positioning with GPS 
code measurements is briefly illustrated at last. 

In Chapter 3 the general precise positioning techniques are reviewed. The RTK methodology and Integer 
Ambiguity Resolution (IAR) schemes have been paid full attention to. However, evident challenges still 
exist in urban environments. 

Chapter 4 reveals implemented precise positioning methodologies to improve GNSS positioning 
performance, including the pre-processing of GNSS measurements, the Innovation test for further 
outliers elimination, the CS-DR (Cycle slip detection and repair) scheme and the proposed modified 
partial integer ambiguity resolution (Partial-IAR) technique.  

Chapter 5 presents the 2 data collections and the performance of the proposed RTK methodology. 
Different adjustments of the CS-DR scheme are tested to explore its best performance. 

Chapter 6 starts with the overview of INS, and ends with the INS/GNSS tight coupling theory. To better 
represent the system, the applied MEMS unit is previously modelled and all possible motion constraints 
are implemented.  

Chapter 7 explores the impacts of the integration with INS namely on CS-DR, IAR and the positioning 
performance.  

Chapter 8 concludes the major results and makes a list of recommended directions that the research can 
proceed in the future.  

In appendices are various information helpful for a complete understanding of this dissertation.  
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 Overview of GNSS Principles 

Global Navigation Satellite System (GNSS), is nowadays widely used in various applications such as 
civil aviation, agriculture, leisure activities, etc., thanks to its ability to provide users’ position and time 
information anytime anywhere.  

GPS (Global Positioning System), the US GNSS, is the most popular and widely used of such systems. 
It is also the only GNSS that provided continuous positioning service since its full operational capability 
declared in 1995. The Russian GNSS, GLONASS (Global’naya Navigatsionnaya Sputnikovaya 
Sistema), although originally declared operational in 1995 as GPS, went through a period of time in the 
years 2000s during which it was not fully operational. It became fully operational again in 2011 [6].  

More recently, initiatives have led to the development of other GNSS, most notably in Europe with 
Galileo and in China with BeiDou. These two systems have already reached intermediate milestones in 
their program development and are planned to be fully operational in 2020. 

Finally, other initiatives have led to the development of regional systems only meant at covering a 
specific geographical area with positioning and timing services. This is the case of IRNSS (Indian 
Regional Navigation System) in India, and QZSS (Quasi-Zenith Satellite System) in Japan [2].  

In the frame of this manuscript, only GPS and GLONASS have been used since both BeiDou and Galileo 
were not yet operational and since most of the testing perform could not rely on a significant number of 
satellites from these systems. As a consequence, only GPS and GLONASS systems are described.  

 

 Structure of GNSS  
A space system such as a GNSS is generally divided into three segments: space segment, control 
segment, and user segment. Each plays a key role in ensuring a reliable GNSS service. In this sub-
section, the principles of positioning with GNSS will be firstly introduced, followed by the high-level 
description of the three segments of GNSS.  

 

 Principles of GNSS  
GNSS is a system based on the continuous transmission of signals from a constellation of satellites to 
GNSS users typically located near the Earth surface. The system is thus a one-way system in the sense 
that GNSS users do not send any signal to the satellites. The localization of a GNSS user is basically a 
process of resolving a system based on the knowledge of the location of the visible satellites and the 
distance separating the user receiver antenna from these satellites. A (simplified) depiction of the GNSS 
positioning principle is showed in Figure 2-1.  

The estimate of the range between the satellite location and the user is computed by the user receiver 
via the estimation of the time-of-flight of the GNSS signal in space. This time-of-flight (TOF), also 
referred as time-of-arrival (TOA), is typically obtained by differencing the time of emission and the 
arriving time of the received signal. Assuming that the signal travels at the speed of light, this time-of-
flight can be translated in a distance. A precise measure of the TOA is thus very important as a bias of 
1 millisecond can give rise to a range error of 300 km. More details on the GNSS signal are addressed 
in Section 2.3 and 2.4.  

It is easy to understand that the computed range based on this principle will be biased by the mis-
synchronization of the satellites’ and user clock. This is why the measurements made using the above 
principle are referred to as pseudoranges. To compensate for the satellite mis-synchronization, the 
satellites transmit as part of their useful message their clock bias and drift with respect to a reference 
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time, known as GNSS time. All satellite clocks can thus be referenced to a unique clock. This means 
that all corrected pseudoranges are now only biased by the user clock, common to all measurements.  

 

Figure 2-1. GNSS Positioning with Sphere Intersection [6] 

As part of the satellite transmitted message is the precise satellite orbit, also referred to as ephemeris, 
that allows the user to access the satellite location at the time of transmission. Therefore, to obtain the 
position of the user receiver, the user receiver will have to solve a system composed of the collected 
pseudoranges and their mathematical model (that include 4 unknowns – the receiver 3-D location and 
the receiver clock offset with respect to the GNSS time). To solve for this system, there is thus a need 
to have at least 4 pseudoranges from 4 different satellites. The user position can then be calculated and 
is fully linked to the estimation of the receiver clock bias. The latter is the reason why GNSS is also a 
time-transfer system.  

 

 GPS and GLONASS Space Segments 
The GNSS space segment is composed of the satellite constellation. This constellation is made to 
ensure a very high availability of the computed position and time at the user level. It is thus built so 
that at least 4 satellites are tracked anywhere on the Earth surface. 

The space segment of the GPS consists in a minimum guaranteed constellation of 24 satellites distributed 
in 6 Earth-centered medium altitude earth orbital planes (altitude around 20,180 km above the Earth 
surface), with 55 degrees inclination relative to the equator, and 4 satellites within each plane. However, 
the current (updated to January 9, 2019 [25]) GPS constellation is well above this number with 31 
operational satellites. The orbital period of each satellite is approximately 11 hours 58 minutes, meaning 
that their ground trace repeats every sidereal day. From 1978, the first launch of GPS satellite, until now, 
the payload technology has evolved (i.e. the modernization of GPS) resulting in different GPS satellite 
families referred to as Block: Block I, Block II/IIA, Block IIR/IIR-M, Block IIF, and Block III [6], [26]. 
In particular, satellites are now equipped with more stable atomic clocks, rubidium and/or cesium 
category, and have a longer design life-time. For more information on clock characteristics, refer to 
Section 2.2.2.3.  
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The 24 operational GLONASS satellites are evenly distributed over 3 orbital planes (altitude around 
19,100 km above the Earth surface), 120 degrees apart. The orbital inclination of each plane is about 65 
degrees, higher than that of GPS, which provides a better satellite visibility over the high latitude areas. 
The orbital period is about 11 hours 15 minutes 44 seconds. After the first generation GLONASS 
satellites launched in the 1980’s, the developed generations GLONASS-M, GLONASS-M+, 
GLONASS-K1, GLONASS-K1+ and GLONASS-K2 were subsequently launched in following decades 
[6], [27].  

 

 GPS and GLONASS Control Segments 
The control segment of a GNSS consists of a network of stations around the world which are responsible 
for monitoring, commanding and controlling the GNSS constellation. GNSS signals are collected at 
stations to ensure the quality of the signal transmitted by the satellites, and to generate accurate models 
of the satellite orbits and clock biases. This information is then uploaded to the satellites to be included 
in their useful message sent to the user, known as navigation message. 

The GPS control segment is comprised of a master control station, which is located at Schriever Air 
Force Base (formerly Falcon AFB) in the State of Colorado, USA, and a global network of monitor 
stations and ground antennas, as illustrated in Figure 2-2 [2]. Among those monitor stations, some are 
operated by Air Force, others are operated by the National Geospatial-Intelligence Agency (NGA). 
Although not dedicated to the GPS constellation, Air Force Satellite Control Network (AFSCN) stations 
can be utilized if needed to conduct data links with GPS satellites.  

 

Figure 2-2. GPS Control segment [6] 
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Figure 2-3. GLONASS Control segment [6] 

The GLONASS ground-based control segment includes a system control center, central clocks (CC), 
monitor stations, the Telemetry, Tracking and Control (TT&C) stations, the up-link stations, and satellite 
laser ranging (SLR) stations [2], [6] (Figure 2-3). All components are located at Air and Space Defense 
Forces (ASDF) sites within the Russian territory. Each component has its own specific operations to 
finally ensure the full-operation of GLONASS.  

 

 User Segment 
Different categories of users, i.e. civilian and military, are benefiting from GNSS in various fields, such 
as geological research, marine/avigation navigation, agriculture, automobile navigation, automatic 
driving, etc. Different levels of accuracy are needed in different applications and so will be the user 
receiving technologies. Even so, a user receiving equipment, i.e. GNSS receiver, generally consists of 
the same key elements (Figure 2-4):  

 the antenna,  
 the Radio-Frequency Front End (RF-FE),  
 the signal processor and  
 the data processor. 

More details on the receiver design will be presented in Section 2.4.  
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Figure 2-4. Architecture of a digital receiver [2] 

 

 Reference Systems 
In GNSS navigation, the reference system in which any navigation state, i.e. the position, the velocity 
or the clock delay, has to be defined carefully in order to avoid confusion. In this section, various relevant 
coordinate frames are firstly described, followed by time reference frames. 

 

 Coordinate System 
To represent the position of the user or of the GNSS satellites, it is necessary to primarily define the 
reference coordinate systems in which these positions will be expressed. In the first part, introductions 
of several general coordinate systems are provided. Then, the specific ones adopted by GPS and 
GLONASS are presented and their comparison is then drawn.  

 

2.2.1.1 General Coordinate Systems  
Earth-Centered Inertial frame 

The Earth-Centered Inertial frame (ECI, denoted by i-frame) is defined with: 

 its origin at the mass center of the Earth,  
 the 𝑧𝑖-axis parallel to the Earth’s spin axis,  
 the 𝑥𝑖-axis pointing to the vernal equinox, and  
 the 𝑦𝑖-axis completing the right-handed orthogonal frame defined by (𝑥𝑖, 𝑧𝑖).  

The computation of the satellite’s position and velocity in orbit entails mostly an inertial frame. The 
measurements outputted by inertial sensors are also usually obtained with reference to an inertial frame.  

Earth-Centered Earth-Fixed frame 

The Earth-Centered Earth-Fixed frame (ECEF, denoted by e-frame) is defined with: 

 an origin at the center of mass of the Earth,  
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 the 𝑥𝑒-axis pointing towards the mean meridian of Greenwich, 
 the 𝑧𝑒-axis parallel to the mean spin axis of the Earth, and  
 the 𝑦𝑒-axis completing a right-handed orthogonal frame. 

For ground-navigating users, a position expressed relative to the Earth can be more interesting. This is 
the reason why the ECEF frame, rotating in accordance with the Earth, is of interest. Sometimes instead 
of having the position expressed in Cartesian form  𝑿𝒆(𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒) , another alternative for ground 
navigation is to use the Geodetic coordinates (latitude 𝜑 , longitude 𝜆  and height ℎ) [2], [28]. The 
relation between the ECEF frame and the Geodetic coordinates is displayed in Figure 2-5. By drawing 
a line orthogonal to the surface of the Earth ellipsoid from the point 𝑷, the height ℎ is the distance 
between 𝑷 and the intersection point on the ellipsoid surface. The latitude 𝜑 is defined as the angle of 
intersection of the line to the equatorial plane (𝑥𝑒𝑦𝑒). The longitude 𝜆 is denoted as the angle from the 
𝑥𝑒-axis to the intersection plane. To perform the transformation between the Cartesian coordinates and 
the Geodetics coordinates, the ellipsoidal model of the Earth need be properly defined. Refer to Section 
2.2.1.2 for slightly different Earth ellipsoid models defined by the GPS and GLONASS.  

 

Figure 2-5. ECEF frame, Geodetic coordinates and Local frame [29] 

Local Navigation frame 

The local navigation frame of type East-North-Up (ENU, denoted by n-frame) is defined with 

 An origin at the center of the navigation frame,  
 the 𝑒-axis pointing towards geodetic East,  
 the 𝑢-axis pointing Up orthogonal to the reference ellipsoid, and  
 the 𝑛-axis pointing towards geodetic North, completing the right-handed orthogonal frame.  

A local frame is important when users need to know their attitudes. However, there exists an important 
drawback of the n-frame that is that a singularity at each pole is generated by the impossibility to define 
north and east axes. Refer to Section 6.1.3 for further details.  

 

2.2.1.2 GPS and GLONASS Coordinate Systems  
Both GPS and GLONASS have their own ECEF coordinate systems in which broadcast parameters 
related to the position and velocity of satellites in orbit are expressed. GPS uses the World Geodetic 
System (WGS) 84 as its terrestrial reference system, while GLONASS uses Parametry Zemli (PZ, in 
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English ‘Earth Parameters’)-90 [27], [30], [31]. These two systems are both ECEF coordinate frames, 
while slightly different Earth geodetic datum is applied [32]–[34]. The fundamental parameters of the 
WGS84(G1762) and PZ-90.11 Earth model are listed in Table 2-1. 

Since 1987 when the WGS 84 was developed by the US Department of Defense, successive refinements 
have been made. The current refined frame WGS84(G1762) was introduced in October 2013. As for 
GLONASS, according to its modernization plan, all satellites have been broadcasting in the PZ-90.11, 
a progressively refined version of the initially proposed PZ-90, from 3:00 pm on December 31, 2013.  

Table 2-1. Ellipsoidal Parameters of the Earth ellipsoid in WGS 84 and PZ-90.11 

Parameter WGS84(G1762) PZ-90.11 

Semi-major axis 𝑎⊕ [m] 6378137.0 6378136.0 

Earth’s rotation rate 𝑤⊕[
𝑟𝑎𝑑

𝑠
] 7.2921151467× 10−5  7.292115× 10−5 

Earth’s gravitational constant 
𝜇⊕[m3s−2] 

3.986005× 1014 3.986004418× 1014 

Flattening factor 𝑓⊕ 1/298.257223563 1/298.25784 

2nd zonal harmonic 𝐽2 -484.16685× 10−6 1082625.75× 10−9 

 

For a point expressed in WGS84 and PZ-90.11, the relation between the two Cartesian coordinates is 
now [32]: 

 (𝑥, 𝑦, 𝑧)𝑊𝐺𝑆 = (𝑥, 𝑦, 𝑧)𝑃𝑍−90.11 + (−0.3𝑐𝑚,−0.1𝑐𝑚, 0𝑐𝑚) (2-1) 

 

 Time Reference Frame 
The determination of a user’s position with the GNSS is based on the concept TOA of the signals 
transmitted by all the satellites in view. TOA describes the duration it takes for the signal to go from the 
satellite emitter to the receiver antennas. Therefore, it is critical that the relation between the two time 
reference frames used respectively for the measurement of the transmission and reception times is 
explicit. In this section, before presenting the specific times frames adopted by GPS and GLONASS, 
the notations of several international time scales are first explained. In the end are depicted the 
characteristics of different clock technologies, which are practically used in GNSS.   

 

2.2.2.1 International Time Scales 
In 1967/1968, the adoption of the SI second by the 13th General Conference of Weights and Measures 
opened the way towards the formal definition of International Atomic Time (TAI) [35]. TAI is a uniform 
time scale based on the atomic SI second, and is realized today by the Bureau International des Poids et 
Mesures. 

The Coordinated Universal Time (UTC) provides the compatibility for time synchronization of users 
worldwide. UTC is a stepped atomic time scale adopted in 1972 on the recommendation of the 
Radiocommunication Sector of International Telecommunication Union (ITU). A so-called leap second 
is regularly added to the UTC time to keep it in line with the irregular Earth’s rotation when the 
International Earth Rotation and Reference Systems Service (IERS) recommends it based on 
astronomical observations.  
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The difference between UTC and the continuous TAI has amounted to 37 seconds in January 2017 [6]. 
Similar to TAI, UTC is also a ‘paper’ time scale that is not physically represented by clocks. However, 
it is approximated by local physical representations. For example, the United States Naval Observatory 
(USNO) maintains its own version of UTC, denoted as UTC(USNO). UTC(SU) is the Russian (formerly 
Soviet Union, SU) realization of UTC. It is maintained by the Institute of Metrology for Time and Space 
in Moscow. According to years’ records, the drifts of the two realizations have always been kept within 
30 ns from UTC [6]. 

 

2.2.2.2 GPS and GLONASS Reference Time Frames 
GPS system time (GPST) is a continuous time scale that is broadcast by the GPS satellites. The GPST 
and the UTC(USNO) were coincident at 0 hr January 6, 1980 UTC(USNO). This corresponds to the 
week 0 of the GPST. The steering of the GPST is required to be within 1 𝜇𝑠 of UTC(USNO) modulo 1 
s. The leap second between GPST and UTC is always broadcast in the GPS navigation message [36]. 
For example, the GPST is always 19 s behind TAI, and in July 2015, 17 s ahead of UTC(USNO) . 

Different from GPST, GLONASS time (GLOT) choses to follow UTC(SU), with a drift less than 1 ms 
modulo 1 s, as a stepped time scale. The origin of GLOT is at 0 hr January 1, 1996 UTC(SU). With the 
presence of the constant 3-hour offset of the Moscow time to the Greenwich time according to the 
Terrestrial Control Complex operational principles, the UTC(SU) is always 3 h ahead of the UTC.  

The relations ( in entire second) between TAI, UTC, GPST and GLOT are represented in Figure 2-6. 
The remaining time difference (modulo second) between GPST and GLOT can reach up to several 
hundreds of nanoseconds (or several hundreds meters in range) [6], [17]. 

 

Figure 2-6. Offset in Seconds from TAI for UTC, GPS Time and GLONASS Time (as well as Galileo 
and BeiDou Time) 

 

2.2.2.3 Clock Categories 
Clock is physically a time-keeping device and its core component is the oscillator whose frequency is 
used as the inverse of the time-recording interval. However, oscillators are not perfect and problems like 
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clock drifts and phase noise arise. The main types of oscillators are, from the most stable to the least, 
hydrogen maser atomic clocks, rubidium, cesium and crystal oscillators [6], [37]. To maintain the 
accuracy of clocks, different technical requirements and technologies are required for different areas. 
For example, high-precision rubidium and cesium are massively used on GNSS satellites; with 
constraints of the cost and the size, crystal oscillators are preferred in mobile applications.   

In terms of navigation with the GNSS, clocks drifts need be corrected on both the satellite side and the 
receiver side. Practical clock corrections of satellites are provided in Appendix 0. The receiver clock 
drift is estimated along with the user’s position and a dynamic model will be presented in Section 4.2.3. 

 

 GNSS Signal Model at Antenna Input 
GNSS satellites are continuously transmitting signals in at least one carrier frequency and each system 
has specific signal characteristics. To enable good data reception and synchronization accuracy in most 
operational conditions while preventing interference between GNSS signals, cautious choices should be 
made on the signal design and the signal processing. In this part, a general view of GNSS signal structure 
will first be provided. Then the effect of the propagation channel on GNSS signals is modeled.  

 

 GNSS Signal Structure for GPS and GLONASS 
Most GNSS signals consist of three components [2]:  

 a carrier 
 a navigation data message 𝐷,  
 a spreading code 𝐶.  

The signal transmitted is typically modeled as following using a direct sequence spread spectrum 
modulation (DSSS):  

 𝑠(𝑡) = √2𝐴𝐷(𝑡)𝐶(𝑡)𝑐𝑜𝑠(2𝜋𝑓0𝑡) (2-2) 

where  

 𝐴 is the signal average power,  
 𝑓0 is the radio frequency.  

A depiction of GNSS signal structure is illustrated in Figure 2-7.  

 

Figure 2-7. GNSS signal structure (adapted from [6]) 

2.3.1.1 Carrier Frequency 
The carrier frequency is the central frequency or frequency channels allocated to each GNSS signal. The 
ITU has allocated to the Radio Navigation Satellite Services (RNSS), where GNSS belongs to, two 
frequency bands, the Upper and the Lower L-band. Other frequency bands have been discussed, but the 
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L-band was chosen as the best compromise between frequency availability, propagation effects, and 
system design [8].  

 

Figure 2-8. GNSS signal carrier frequency bands (adapted from [38]) 

Historically, the open GNSS signals have been located in the upper L-band. As a consequence, most of 
the civilian receivers process the signals in this band. Even today, most of the mass market receivers are 
still only processing these signals. As illustrated in Figure 2-8, GPS L1 and GLONASS G1 are located 
in the Upper L-band (1559-1610 MHz). Detailed descriptions of these signals will be in following 
section. In this band: 

 GPS transmits three signals that have a common central frequency at 1575.42 MHz: 
o GPS L1 C/A which is an open signal that can be freely used. It is the only open GPS 

signal that is transmitted by the whole GPS constellation 
o GPS L1 P(Y) and GPS M-code that are encrypted signals for military/restricted use 

 GLONASS transmits two signals that have a central frequency spread over the G1 band: 
o GLONASS G1 OF (also known as GLONASS G1 C/A), which is an open signal that 

can be freely used 
o GLONASS G1 SF, which is a secured signal. 

In the frame of this PhD thesis, the GNSS signals considered are GPS L1 C/A and GLONASS G1 C/A. 

In the Lower L-band (1151-1350 MHz) are located GPS L2 (1227.60 MHz), GPS L5 (central frequency 
at 1176.45 MHz), GLONASS G3 (central frequency at 1207.14 MHz) and GLONASS G2 (14 channels 
ranging from 1242.9375 MHz to 1248.625 MHz). 

 

2.3.1.2 Navigation Data 
The navigation data is a binary sequence carrying all the useful information from the system 
infrastructure to the user. This data, periodically updated by the control segment, includes information 
such as satellite clock bias, satellite ephemeris, satellite health status, constellation almanac, etc.  

However, the structures of the navigation data differs between GPS L1 C/A and GLONASS G1 C/A.  

 For GPS L1 C/A, the navigation message uses a basic format of 25 frames with each frame 
containing 1500 bits and each frame is subdivided into 5 sub-frames with 300 bit [31]. The data 
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is transmitted at a rate of 𝑅𝑑 = 50 bit/s (per second). Therefore, a total time of 12.5 mins is 
needed to transmit the whole navigation message.  

 For GLONASS G1 C/A signal, the navigation message uses the same bit rate of 50 bit/s. A 
duration of 2.5 mins is required to transmit the whole message in 5 frames with each frame 
containing 1500 bits and each frame consisted of 15 strings of 100-bit length [27].   

Besides the structure, the data content also differs between GPS to GLONASS. This is the case, for 
instance, of the satellite orbit information: satellite positions, velocities, and accelerations are directly 
contained in the GLONASS G1 C/A navigation message, while parameters (such as the sine/cosine 
harmonic correction to the orbit radius, eccentricity of the orbit, etc) describing the satellite position in 
orbit are provided by the GPS L1 C/A signal. Refer to Appendix A for more information on the 
navigation data and the RINEX, a specified exchange format used nowadays to restore navigation data. 

 

2.3.1.3 Spreading Code 
The spreading code, also known as pseudo random noise (PRN) sequence, is a binary periodic code that 
is used for both identification of the transmitted signal and for finely synchronizing the receiver with 
the received signal. In order to distinguish the bits of the PRN sequence from the bits of the navigation 
message transmitted by the satellite, the PRN code bits are referred to as chips.  

Two main parameters are used to characterize a spreading code: the chipping rate 𝑅𝑐 and the length 𝑁𝑐. 
Thus, the duration of the spreading code sequence 𝑇𝑝 is  

𝑇𝑝 = 𝑁𝑐𝑇𝑐 = 𝑁𝑐/𝑅𝑐 

The chipping rate 𝑅𝑐  is typically much higher than the useful data rate 𝑅𝑑 . As a consequence, the 
multiplication of the useful signal with the speading code leads to a significant increase of the signal 
spectrum bandwidth. This means of communication is therefore known as spread spectrum technique. 
For example, the GPS L1 C/A signals are using a spreading code, known as Gold code, with a chipping 
rate 𝑅𝑐  of 1.023 Mchips/s (𝑁𝑐 = 1023, 𝑇𝑝 = 1 𝑚𝑠), while the data rate is only 50 bit/s. The GLONASS 
G1 C/A signals are using a spreading code of chipping rate 𝑅𝑐 =0.511 Mchips/s (𝑁𝑐 = 511, 𝑇𝑝 =
1 𝑚𝑠), while the data rate is 50 bit/s.  

Responding to the demands of transmitting multiple signals with minimum interference from each single 
satellite, and even upon a single carrier, three basic multiple access techniques can be used [39]: Time 
division multiple access (TDMA), Frequency division multiple access (FDMA), and Code division 
multiple access (CDMA).  

GPS uses CDMA, which means that each signal is associated to a different PRN ranging sequence, each 
PRN code being as orthogonal as possible to the other PRN codes of the other satellites.  

GLONASS uses FDMA, which means that a slightly different carrier frequency is allocated to each 
satellite in order to discriminate between the different signals coming from different satellites. Take the 
GLONASS G1 band for example, the nominal carrier frequencies allocated to satellites are: 

 𝑓𝑖 = 𝑓0,𝐺1 + 𝑘𝑖∆𝑓𝐺1 (2-3) 

where  

 𝑓0,𝐺1 = 1602 𝑀𝐻𝑧 the central frequency for GLONASS G1 band,  
 ∆𝑓𝐺1 = 562.5 𝑘𝐻𝑧 the frequency separation, and 𝑘𝑖 ∈ [−7, 6] the frequency number [27].  

Note however that for a given signal (e.g. GLONASS G1), the same PRN sequence is used for all 
satellites. 
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 Signal Propagation and Reception 
GNSS signals, once transmitted by the satellites, need to travel to the near Earth users. In this section, 
the effects of the propagation channel on the GNSS signal will be briefly described, followed by the 
reception of signal through the antenna and the RF-FE.  

 

2.3.2.1 Atmospheric Effects 
Rather than a simple propagation delay brought by the vacuum, the effects of the Earth’s atmosphere on 
radio waves are much more complex. Generally, the propagation speed of radio waves is related to the 
index of refraction 𝑛 of the medium, which gives its definition as following: 

 𝑛 = 𝑐/𝑣 (2-4) 

with 𝑐 the speed of light in vacuum, 𝑣 the propagation speed of the radio waves. What’s more, in terms 
of the GNSS signals, the phase velocity 𝑣𝑝ℎ of the signal’s carrier phase need be distinguished from the 
group velocity 𝑣𝑔𝑟 associated with the waves carrying the signal information, as well as the indexes of 
refraction. A formula describing the relation between the phase refractive index 𝑛𝑝ℎ  and the group 
refractive index 𝑛𝑔𝑟 is provided [8] 

 
𝑛𝑔𝑟 = 𝑛𝑝ℎ + 𝑓

𝑑𝑛𝑝ℎ
𝑑𝑓

 (2-5) 

with 𝑓 the carrier frequency, 𝑑𝑛𝑝ℎ
𝑑𝑓

 the derivative of 𝑛𝑝ℎ with respect to 𝑓. 

Ionosphere Effect 

With respect to the atmosphere effect on GNSS signal propagation, the atmosphere is usually divided 
in 2 layers: the ionosphere and the troposphere. The ionospheric layer is roughly located from 50 to 
1000 km above the Earth’s surface. With the presence of free electrons in this layer that impacts the 
refractivity index of the medium, GNSS signals are refracted. The ionosphere is a dispersive medium, 
meaning that its effect depends upon the signal carrier frequency. Two equations are used to approximate 
in first order the phase refractive index 𝑛𝑝ℎ and the group refractive index 𝑛𝑔𝑟: 

 𝑛𝑝ℎ = 1 +
𝑐2
𝑓2

 (2-6) 

 𝑛𝑔𝑟 = 1 −
𝑐2
𝑓2

 (2-7) 

with the coefficient 𝑐2 frequency independent but a function of the electron density [2], [8]. 

This results finally in a group delay and a phase advance of the signal (with respect to propagation in 
vacuum) of the same magnitude. The derivation process is omitted but the simplified formulas of the 
group delay (positive value as convention) and the phase advance in meter are presented in relation to 
the total electron content (TEC) along the propagation path [8]: 

 
𝐼𝑝ℎ = −

40.3

𝑓2
𝑇𝐸𝐶 (2-8) 

 
𝐼𝑔𝑟 =

40.3

𝑓2
𝑇𝐸𝐶 (2-9) 
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Thus, the estimate and the reduction of the ionosphere effect rely on the complicated determination of 
TEC which depends on various quantities, i.e. the sunspot activities, the line of sight, etc. GPS offers a 
simple method, the Klobuchar model, for single-frequency users to estimate the ionospheric effect. The 
Klobuchar model, firstly proposed in 1986, offers an ionospheric reduction at L1 of at least 50% by 
using the ionospheric coefficients broadcast in GPS navigation message. The slant ionospheric time 
delay is modeled by a half-cosine function in following form [6], [8], [31]: 

 
𝜏𝑖𝑜𝑛,𝑔𝑟 = 𝑀(𝐸) ∗ 𝜏𝑖𝑜𝑛,𝑔𝑟,𝑣 = 𝑀(𝐸) ∗ {𝐴1 + 𝐴2 𝑐𝑜𝑠 [

2𝜋(𝑡 − 𝐴3)

𝐴4
]}  (2-10) 

where  

 𝑀(𝐸) = 1 + 16(0.53 − 𝐸)3 is the obliquity factor or the mapping function transforming the 
𝜏𝑖𝑜𝑛,𝑔𝑟,𝑣, the vertical ionospheric time delay, to the slant ionospheric time delay 𝜏𝑖𝑜𝑛,𝑔𝑟;  

 𝐸 is the elevation angle in semicircles;  
 𝐴1 = 5 ns, the constant vertical ionospheric time delay during night time; 
 𝐴3 = 14ℎ local time, the center of the half-cosine function;  
 𝐴2 = 𝛼0 + 𝛼1𝜙𝑚 + 𝛼2𝜙𝑚

2 + 𝛼3𝜙𝑚
3  is the amplitude of the cosine function, 𝐴4 = 𝛽0 + 𝛽1𝜙𝑚 +

𝛽2𝜙𝑚
2 + 𝛽3𝜙𝑚

3  is the period; 
 𝛼𝑖,𝑖∈[0,3], 𝛽𝑖,𝑖∈[0,3] are broadcast ionospheric coefficients; 𝜙𝑚 is the geomagnetic latitude of the 

Earth projection of the ionospheric piercing point whose computation steps are not addressed 
here. 

However, the performance of this model is limited and only first-order atmosphere delays are corrected. 
Albeit, as these effects are depending on the propagation path of GNSS signal, a spatial correlation is 
naturally expected. 

Troposphere Effect 

Extending to about 12 km above the Earth’s surface, the troposphere, a non-dispersive medium for radio 
waves of frequency up to 15 GHz, creates both a group and phase (of same magnitude) delay. The delay 
depends on the local temperature, pressure, relative humidity, etc. To compute the tropospheric delay, 
typically ranging from 2 to 20 m, other than relying on the refractive index 𝑛, the refractivity 𝑁𝑡𝑟𝑜𝑝 is 
instead used: 

 𝑁𝑡𝑟𝑜𝑝 = 10
6(𝑛 − 1)  (2-11) 

This refractivity is possible to be divided into two parts, a dry (hydrostatic) and a wet (nonhydrostatic) 
component. While the dry component, composing about 90% of the whole tropospheric delay, can be 
predicted precisely, the wet component is more difficult to predict as the water vapor holds plenty 
variations. Approximation methods like Hopfield model, Saastamoinen model, Marini mapping function, 
and the most widely applicable UNB3M model, have been proposed to eliminate the troposphere delays 
[6], [8], [40], [41]. Referred to UNB3M, the dry and wet are both functions of the meteorological 
parameters, i.e. pressure, temperature, water vapor pressure, temperature lapse rate and water vapor 
lapse rate. Unable to obtain the current atmosphere condition without meteorological sensors, a look-up 
table is used to predict the meteorological parameters. Detailed implementation steps of the UNB3M 
model are referred to [39], [40, p. 3], [42].  

 

2.3.2.2 Multipath 
The GNSS receiver antenna can receive several signals coming from the same satellite that have gone 
through different paths, typically created by reflections. These signals coming from a single origin are 
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known as multipath. An illustration of the multipath is provided in Figure 2-9. The amplitude, delay and 
phase of the multipath depends on the specific propagating paths followed by each signal. Because the 
receiver needs to get synchronized with the direct, also known as Line-Of-Sight (LOS) signal, to extract 
a precise TOA measurement, multipath are a source of errors. This is particularly true since they share 
the same PRN code as the LOS signal.  

Specific situations, known as the non-line-of-sight (NLOS) event, can occur in which only indirect 
signals arrives at the receiver (the LOS being blocked, for instance by a building). This situation will 
tend to make the receiver track the first arriving signal, thus creating a positive bias on the pseudorange 
measurements.   

 

Figure 2-9. Multipath [2] 

 

2.3.2.3 Interference 
Other than the expected GNSS signals, the presence and reception of interferences may however degrade 
the GNSS performance. The interference is referring to RF signals coming from undesired sources, 
intentional or unintentional. Unintentional interferences are mostly signals from other services, 
intersystem interference, or other system both regulated by ITU, intersystem interference.  

Intentional interferences are often categorized into jamming, spoofing and meaconing [8], [39]. 
Jamming is denoting the intent of drowning the desired GNSS signals in high-power interferences to 
cause loss of lock. Spoofing is similar to meaconing. While spoofing is referring to the operation of 
broadcasting false locally-generated GNSS signals to make the receiver produce a false position, 
meaconing is concerned about a reception of GNSS signals and re-broadcasting a delayed version. 

 

2.3.2.4 Antenna and Receiver RF Front-End 
Antennas receive signals and transform the energy of electromagnetic waves into electric currents. The 
ability of an antenna to focus on certain elevation or azimuth is measured by its gain. An isotropic 
antenna has an uniform gain pattern in all directions. However, with the aim to reject multipath and 
interference, the antenna gain is often a function of the azimuth and the elevation. For example, as the 
GNSS receivers only need to focus on signals from above the user’s horizon, an antenna gain growing 
with the elevation angle would be more appropriate. The location of the user that “captures” the signals 
is referred to as the antenna phase center. Depending upon the antenna technology, this phase center can 
vary with azimuth, elevation and frequency. It can thus create different delays, usually fairly small, 
between the received GNSS signals. 

The RF-FE is typically composed of a Low Noise Amplifier (LNA), filters, a down-conversion and an 
Analog-to-Digital Converter (ADC), the later being coupled with an Automatic Gain Controller (AGC). 
The RF-FE creates delays in the signal propagation (compared to vacuum propagation). This delay is 
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typically dependent upon the spectrum of the incoming signal as well as its carrier frequency. For 
instance, all GPS signals will be delayed and phase-shifted similarly by the RF front-end while this 
might not be the case for GLONASS FDMA signal (that are at different carrier frequencies). The amount 
of hardware delays, depending on the specific processing channel, is overall receiver and frequency 
dependent. Refer lately to Section 2.4.4 for detailed modeling of those delays. The electronic 
components of the antenna and the RF front-end also create a background noise also known as thermal 
noise that will superimpose the received signal.  

2.3.2.5 Received Signal Model 
The continuous received analog signal can be modeled as: 

𝑟(𝑡) = 𝑓(𝑡)⨂[ℎ(𝑡)⨂𝑠(𝑡) + 𝑤(𝑡)] 

where 

 ℎ is the impulse response of the propagation channel,  
 𝑤 is an additive white noise,  
 𝑓 is the filtering effect of the RF-FE on the received signal, and  
 ⨂ denotes the convolution product.  

Let’s consider that ℎ only introduces a delay and that the RF front-end filter is sufficiently wide with 
respect to the signal bandwidth, then the received signal can be modeled as: 

𝑟𝑓(𝑡) = √2𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝑐𝑜𝑠(2𝜋𝑓I𝑡 + 2𝜋𝑓D𝑡 + 𝜃) + 𝑛(t)  

where  

 𝜏 is the signal delay, 
 𝑃 is the signal power, 
 𝑓I is the signal carrier frequency after down-conversion, 
 𝑓𝐷  is the Doppler frequency due to the relative dynamics, assumed constant during the 

processing period (i.e., 𝑇𝑐𝑜 the duration of the integrator in Section 2.4), 
 𝜃 is the signal phase shift, 
 𝑛(t) is the white thermal noise generated in the receiver. 

The typical power for GPS C/A-code signal at the transmission is about 14.3 dBW (27 watts), which is 
collected by a typical receiver on the earth’s surface with 𝑃 ranging from -162.5 dBW to -154.5 dBW 
[5].  

The thermal noise can typically be assumed White. Its typical PSD level can be around approximately -
201 dBW/Hz, leading to typical received C/N0 value around 38.5 dB.Hz to 46.5 dB.Hz in open sky 
conditions. 

 

 GNSS Receiver Signal Processing and GNSS Measurements 
The estimation of the triplet (𝜏, 𝜃, 𝑓𝐷) of 𝑟𝑓(𝑡) by the receiver will respectively give the pseudorange, 
the carrier phase and the Doppler measurements as by-products. The signal processing normally 
proceeds in two stages: the signal acquisition, that provides a rough estimation of the above parameters, 
and the signal tracking that provides a fine estimation of the above parameters and enables also data 
demodulation. The expanded components of the GNSS receiver signal processing is provided in Figure 
2-10. 
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In this section, the signal acquisition will be first introduced followed by the signal tracking loops. 
General models of GNSS measurements are presented in the end.  

  

Figure 2-10. GNSS receiver signal processing 

 

 Signal Acquisition 
The signal acquisition is a global search for the coarse values of (𝜏, 𝑓𝐷), while subsequently the signal 
tracking is a local search for accurate values of (𝜏, 𝑓𝐷) - referred as a non-coherent signal tracking - or 
of (𝜏, 𝜃, 𝑓𝐷) - referred as a coherent signal tracking.  

Depending on the amount of a-priori information, a cold start or a warm start or a reacquisition is adopted 
for the signal acquisition [5] 

 A cold start is a type of acquisition related to the fact that the receiver does not have any a-priori 
information about its position, its clock delay, or which satellite could be seen in the sky. In this 
case, a time-consuming search over all possible satellites and all possible values of (𝜏, 𝑓𝐷) is 
required.  

 A warm start is when a coarse estimation of the receiver’s position and clock delay is known, 
and recent satellite almanac is accessible. In this case, the search space is much reduced and the 
acquisition can be much faster. 

The signal acquisition proceeds with two blocks in order: the carrier/carrier phase removal and the 
correlators, as presented in Figure 2-11. 

 The Doppler removal is based on the use of a local reference signal √2𝑐𝑜𝑠(2𝜋𝑓I𝑡 + 2𝜋𝑓𝐷𝑡 + 𝜃) 
and its 𝜋/2 phase-shifted signal. In this case, 𝜃 represents the receiver-controlled carrier phase. 
These 2 components are multiplied with the received signal to create an in-phase and 
quadrature-phase branch. The in-phase and quadrature signals 𝑟𝐼 and 𝑟𝑄 can then be modeled as 
(anticipating the filtering of the terms with double frequencies): 

 𝑟𝐼(𝑡) = √𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝑐𝑜𝑠(2𝜋∆𝑓𝐷𝑡 + ∆𝜃) (2-12) 

 𝑟𝑄(𝑡) = √𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝑠𝑖𝑛(2𝜋∆𝑓𝐷𝑡 + ∆𝜃)  

with ∆𝑓𝐷 = 𝑓𝐷 − 𝑓𝐷 and ∆𝜃 = 𝜃 − 𝜃.  

 A local replica of the spreading code, with a controlled delay 𝜏̂, is then multiplied with 𝑟𝐼 and 
𝑟𝑄, before passing through an integrator 1

𝑇𝑐𝑜
∫ (∙)𝑑𝑡
𝑇𝑐𝑜
0

. 𝑇𝑐𝑜 is known as the integration duration. 
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This process is known as a correlation process. To take advantage of the correlation properties 
of the PRN code, 𝑇𝑐𝑜 is typically chosen as a multiple of the PRN code duration. 

  

Figure 2-11. Signal acquisition 

𝑆𝑃,𝐼 and 𝑆𝑃,𝑄 can thus be modelled as:  

 
𝑆𝑃,𝐼(∆𝜏, ∆𝑓𝐷, ∆𝜃) =

1

𝑇𝑐𝑜
∫ √𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝐶(𝑡 − 𝜏̂)𝑐𝑜𝑠(2𝜋∆𝑓𝐷𝑡 + ∆𝜃)𝑑𝑡
𝑇𝑐𝑜

0

 (2-13) 

 
𝑆𝑃,𝑄(∆𝜏, ∆𝑓𝐷 , ∆𝜃) =

1

𝑇𝑐𝑜
∫ √𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝐶(𝑡 − 𝜏̂)𝑠𝑖𝑛(2𝜋∆𝑓𝐷𝑡 + ∆𝜃)𝑑𝑡
𝑇𝑐𝑜

0

  

which can be simplified, assuming that the signal parameters are constant during 𝑇𝑐𝑜 and that the value 
of the data message does not change during that interval, into: 

 𝑆𝑃,𝐼(∆𝜏, ∆𝑓𝐷, ∆𝜃) = √𝑃𝐷 ∙ 𝑅(∆𝜏)𝑠𝑖𝑛𝑐(𝜋 ∙ ∆𝑓𝐷 ∙ 𝑇𝑐𝑜)𝑐𝑜𝑠(∆𝜃) + 𝑛𝐼 (2-14) 

 𝑆𝑃,𝑄(∆𝜏, ∆𝑓𝐷 , ∆𝜃) = √𝑃𝐷 ∙ 𝑅(∆𝜏)𝑠𝑖𝑛𝑐(𝜋 ∙ ∆𝑓𝐷 ∙ 𝑇𝑐𝑜)𝑠𝑖𝑛(∆𝜃) + 𝑛𝑄  

Where 

 𝐷 is the value of the data bit during the correlation, 
 𝑅 is the PRN code autocorrelation function, 
 ∆𝜏 = 𝜏 − 𝜏̂, 
 𝑛𝐼 and 𝑛𝑄 are the noise components at the correlator outputs and are assumed Gaussian and 

independent from each other. 

To focus on the estimation of (𝜏, 𝑓𝐷), the magnitude summation of these two signals are computed: 

 𝑆𝑃
2(∆𝜏, ∆𝑓𝐷) = 𝑆𝑃,𝐼

2 (∆𝜏, ∆𝑓𝐷, ∆𝜃) + 𝑆𝑃,𝑄
2 (∆𝜏, ∆𝑓𝐷, ∆𝜃) = 𝑃 ∗ |𝑅̃(∆𝜏, ∆𝑓𝐷)|

2
+𝑁𝑆𝑃  (2-15) 

where 

 𝑅̃(∆𝜏, ∆𝑓𝐷) = 𝑅(∆𝜏)𝑠𝑖𝑛𝑐(𝜋 ∙ ∆𝑓𝐷 ∙ 𝑇𝑐𝑜) 
 𝑁𝑆𝑃  is the noise term. 

𝑆𝑃
2 is a function that will be maximized when ∆𝜏 = 0 and ∆𝑓𝐷 = 0. The objective of the acquisition 

algorithm will thus be to find the receiver-controlled 𝜏̂ and 𝑓𝐷, from a 2-dimensional search grid, that 
maximize 𝑆𝑃2. For more details on practical applications, refer to [5], [6]. 

Signal acquisition provides rough estimates of the code delay 𝜏 and the Doppler frequency 𝑓𝐷. The 
refinement and continuous tracking of those estimates rely on the signal tracking process. To illustrate 
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the functioning of the signal tracking, typical structures of DLL and PLL will be introduced in the 
following sections.  

 

 Delay Lock Loop  
The common structure of a DLL consists of a code discriminator, which is an estimator of ∆𝜏, a low-
pass filter and a Numerically-Controlled Oscillator (NCO) to adjust the code delay estimate 𝜏̂.  

The detailed structures of DLL is given in Figure 2-12. A simple non-coherent Early-power-minus-Late-
power (EML) DLL and a coherent DLL will be expanded in this section as a depiction. For more discuss 
on the DLL, refer to [2], [5], [8].  

 

Figure 2-12. Signal tracking (DLL & PLL)  

A complex representation is adopted without loss of generality. As mentioned in previous sections, the 
complex signal at the output of the low pass filter is  

𝒓̃(𝒕) = 𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡) = √𝑃𝐷(𝑡 − 𝜏)𝐶(𝑡 − 𝜏)𝑒𝑥𝑝(𝑗2𝜋∆𝑓𝐷𝑡 + ∆𝜃) 

Then early and late correlators are implemented by using two code replicas, early and late with respect 
to 𝜏̂ by a known delay 𝑑/2. The complex signals obtained at the outputs of correlators are thus in forms 

 𝒁̃𝑬(∆𝜏, ∆𝑓𝐷, ∆𝜃) = √𝑃𝐷 ∙ 𝑒𝑥𝑝(𝑗∆𝜃)𝑅̃(∆𝜏 − 𝑑/2, ∆𝑓𝐷) (2-16) 

 𝒁̃𝑳(∆𝜏, ∆𝑓𝐷, ∆𝜃) = √𝑃𝐷 ∙ 𝑒𝑥𝑝(𝑗∆𝜃)𝑅̃(∆𝜏 + 𝑑/2, ∆𝑓𝐷)  
To strip out the dependence on ∆𝜃 and 𝐷, the non-coherent EML DLL constitutes the code discriminator 
function 𝑳∆𝜏,𝐸𝑀𝐿 as a square subtraction:  

 𝑳∆𝜏,𝐸𝑀𝐿𝑃(∆𝜏, ∆𝑓𝐷) = |𝒁̃𝑬(∆𝜏, ∆𝑓𝐷, ∆𝜃)|
𝟐
− |𝒁̃𝑳(𝒌∆𝜏, ∆𝑓𝐷, ∆𝜃)|

𝟐

= 𝑃 ∗ (|𝑅̃ (∆𝜏 −
𝑑

2
, ∆𝑓𝐷)|

2

− |𝑅̃ (∆𝜏 +
𝑑

2
, ∆𝑓𝐷)|

2

) + 𝑁𝐸𝑀𝐿𝑃 
(2-17) 

After the signal acquisition, the estimate of the Doppler frequency can be considered as accurate enough 
to consider that ∆𝑓𝐷 = 0. If we restrain our focus on small values of ∆𝜏, 𝑳∆𝜏,𝐸𝑀𝐿𝑃 can be approximated 
as a linear function of ∆𝜏: 

 
𝑳∆𝜏,𝐸𝑀𝐿𝑃(∆𝜏) ≈ 𝑃 ∗ (|𝑅 (

∆𝜏 − 𝑑

2
)|
2

− |𝑅 (∆𝜏 +
𝑑

2
)|
2

+𝑁𝐸𝑀𝐿𝑃 ≈
2𝑃

𝑑
∆𝜏 + 𝑁𝐸𝑀𝐿𝑃 (2-18) 

The discriminator output then passes through a low-pass filter to limit the influence of noises on the 
control loop. The output of the low-pass filter is then the command tension for the VCO that will update 
the code delay in a continuous way. According to the performance analysis with additive noise presence, 
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the tracking accuracy is highly dependent of the signal-to-noise ratio C/N0 and the Early-Late time 
spacing 𝑑 [5], [6]:  

 𝑣𝑎𝑟(∆𝜏𝐸𝑀𝐿𝑃) =
𝐵𝑑𝑇𝑐

2𝐶 𝑁0⁄
(1 + 2𝑇𝑐𝑜 𝐶 𝑁0⁄ ) [sec²] (2-19) 

where 𝐵 is the noise equivalent bandwidth of the DLL filter, and normally the inequality 2𝐵𝑇𝑐𝑜 ≪ 1 
holds true. A narrow correlator space 𝑑 will correspondingly increase the performance.  

The code pseudorange measurements are computed based on the synchronization of the receiver local 
PRN code with the PRN code of the incoming signal of interest, namely the multiplication of the code 
delay 𝜏 by the speed of light in a vacuum. The delays originating from the atmosphere, the hardware, 
the clock delays, etc., are thus all part in the code delay 𝜏. 

 

 Phase Lock Loop  
Similar to the DLL, the PLL consists of a phase discriminator, which gives the possibility to extract the 
phase error ∆𝜃, and a low-pass filter that commands the NCO driving the local carrier generation.  

The Costas carrier discriminator function is constructed from the prompt correlator 𝒁̃𝑷  (referred to 
Figure 2-12),  

𝐋∆θ,Costas(∆τ, ∆θ) = Re{𝐙̃𝐏(∆τ, ∆fD, ∆θ)}Im{𝐙̃𝐏(∆τ, ∆fD, ∆θ)} =
1

2
P ∙ R²(∆τ)sin(2∆θ) (2-20) 

with 𝑅𝑒{∙}, 𝐼𝑚{∙} for extracting respectively the real part and the imaginary part of a complex value. 
The need of a-priori information on date massage is obviated here with the Costas PLL as 𝐷2 = 1.  

By analyzing the discriminator functions, clearly the resolution of ∆𝜃 is insensitive to any 𝜋/2 phase 
shift in 𝑳∆𝜃,𝐶𝑜𝑠𝑡𝑎𝑠 which leaves an ambiguity in the phase estimation that will be part of the carrier phase 
measurements derived from the PLL local phase.  

The carrier phase measurement is accumulated as the number of cycles generated or received since a 
starting point, i.e. the moment when the phase lock is initially achieved with the signal. As the PLL is 
only sensitive to the fractional part of ∆𝜃, only the fractional part of 𝜃 is estimated and refined whereas 
the integer number of cycles 𝑁, noted as integer ambiguity, of the starting point remains unknown.  

In case of signal blockage, high user dynamics or high noise level, the PLL can be easily disturbed 
(compared to the DLL), resulting in phase lock is lost. If such an event happens, a new phase lock needs 
to be established, which will lead in a new value for the carrier phase integer ambiguity. This is referred 
to as a cycle slip (CS). The detection and resolution of CS thus plays a vital role in carrier phase 
positioning.  

The Doppler measurements are representative of the rate of change of the carrier phase measurements 
during a certain interval. 

 

 GNSS Raw Measurement Models  
Three basic GNSS measurements, the pseudorange measurements, the carrier phase measurements and 
the Doppler measurements, are produced at the output of the signal processor. Accounting for primary 
error sources, the basic modeling of GNSS measurements is devised in this section.  

Classic models of the GPS pseudorange measurements, carrier phase measurements and Doppler 
measurements are:  
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𝑃𝑖
𝐺𝑃𝑆 = 𝜌𝑖 + 𝑐(𝑑𝑡𝑟

𝐺𝑃𝑆 − 𝑑𝑇𝑖
𝐺𝑃𝑆) + 𝐼𝑖 + 𝑇𝑖 + 𝑏𝑟,𝑃𝑖

𝐺𝑃𝑆 − 𝑏𝑠,𝑃𝑖
𝐺𝑃𝑆 +𝑚𝑃𝑖

𝐺𝑃𝑆 + 𝜖𝑃𝑖
𝐺𝑃𝑆 (2-21) 

𝛷𝑖
𝐺𝑃𝑆 = 𝜌𝑖 + 𝑐(𝑑𝑡𝑟

𝐺𝑃𝑆 − 𝑑𝑇𝑖
𝐺𝑃𝑆) − 𝐼𝑖 + 𝑇𝑖 + 𝜆𝐺𝑃𝑆𝑁𝑖 + 𝑏𝑟,𝛷𝑖

𝐺𝑃𝑆 − 𝑏𝑠,𝛷𝑖
𝐺𝑃𝑆 +𝑚𝛷𝑖

𝐺𝑃𝑆 + 𝜖𝛷𝑖
𝐺𝑃𝑆  (2-22) 

𝐷𝑖
𝐺𝑃𝑆 = 𝜌𝑖̇ + 𝑐(𝑑𝑡̇𝑟

𝐺𝑃𝑆 − 𝑑𝑇̇𝑖
𝐺𝑃𝑆) − 𝐼𝑖̇ + 𝑇̇𝑖 +𝑚𝐷𝑖

𝐺𝑃𝑆 + 𝜖𝐷𝑖
𝐺𝑃𝑆 (2-23) 

where  

 The index 𝑖 stand for the i-th satellite,  
 The index 𝑃, 𝛷 and 𝐷 stand for pseudorange-, phase-, Doppler-specific, 
 The sub-index 𝑟 and 𝑠 stand for user receiver- and satellite-specific, 
 𝜌𝑖 is the true geometric range between the satellite 𝑖 and the receiver antenna in meters,  
 𝑑𝑡 and 𝑑𝑇 are respectively the rover and the satellite receiver clock delays steered to the GPST,  
 𝐼 is the ionosphere delay,  
 𝑇 is the troposphere delay,  
 𝑚∎ is the multipath effect on ∎,  
 𝑏𝑟,∎ and 𝑏𝑠,∎ are correspondingly the user receiver and the satellite hardware delays,  
 𝑁𝑖  is the integer ambiguity which remains constant when the tracking continues without loss of 

lock,  
 𝜆𝐺𝑃𝑆 is the wavelength of the GPS L1 signal, common for all GPS satellites broadcasting signals 

within the same frequency channel, i.e. 𝜆𝐺𝑃𝑆,𝐿1 =
𝑐

𝑓𝐺𝑃𝑆,𝐿1
, 

 𝜖 represents the measurement noise. 

With the FDMA modulation, the modeling of the GLONASS measurements is slightly different from 
GPS, 

𝑃𝑗
𝐺𝐿𝑂 = 𝜌𝑗 + 𝑐(𝑑𝑡𝑟

𝐺𝐿𝑂 − 𝑑𝑇𝑗
𝐺𝐿𝑂) + 𝐼𝑗 + 𝑇𝑗 + 𝑏𝑟,𝑃𝑗

𝐺𝐿𝑂 − 𝑏𝑠,𝑃𝑗
𝐺𝐿𝑂 +𝑚𝑃𝑗

𝐺𝐿𝑂 + 𝜖𝑃𝑗
𝐺𝐿𝑂 (2-24) 

𝛷𝑗
𝐺𝐿𝑂 = 𝜌𝑗 + 𝑐(𝑑𝑡𝑟

𝐺𝐿𝑂 − 𝑑𝑇𝑗
𝐺𝐿𝑂) − 𝐼𝑗 + 𝑇𝑗 + 𝜆𝑗𝑁𝑗 + 𝑏𝑟,𝛷𝑗

𝐺𝐿𝑂 − 𝑏𝑠,𝛷𝑗
𝐺𝐿𝑂 +𝑚𝛷𝑗

𝐺𝐿𝑂 + 𝜖𝛷𝑗
𝐺𝐿𝑂  (2-25) 

𝐷𝑗
𝐺𝐿𝑂 = 𝜌𝑗̇ + 𝑐(𝑑𝑡̇𝑟

𝐺𝐿𝑂 − 𝑑𝑇̇𝑗
𝐺𝐿𝑂) − 𝐼𝑗̇ + 𝑇̇𝑗 +𝑚𝐷𝑗

𝐺𝐿𝑂 + 𝜖𝐷𝑗
𝐺𝐿𝑂 (2-26) 

where  

 the wavelength 𝜆𝑗 of the satellite indexed 𝑗 is not common among the GLONASS G1 satellites, 
each satellite has its own specific frequency channel (see Eq(2-3) ),  

 the receiver and satellite clock delays (𝑑𝑡𝑟𝐺𝐿𝑂, 𝑑𝑇𝑗𝐺𝐿𝑂 ) are referred to the GLOT, and the 
discrepancies between the two time references GLOT and GPST need be carefully handled in 
the multi-GNSS navigation, 

 the receiver biases are now signal dependent since each signal is transmitted at a slightly 
different frequency. 

 

 GNSS Corrected Measurement Model 
The above models correspond to the so-called raw measurements output by the receiver. Before using 
the raw measurements for computing its position and time, the receiver will first correct them based on 
known models and/or information contained in the navigation message.  

First of all, the satellite clock delay is corrected using a curve-fit and the relevant steering parameters 
are contained in the navigation message. Detailed satellite clock correction methodology is provided in 
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Appendix B. Typically, the residual clock errors result in rang errors from 0.3-4 m, depending on the 
type of satellite and the age of broadcast data [39]. 

The ephemerids of all involving satellites are estimated as in the case of the satellite clock correction. A 
curve-fit is defined to provide the best prediction of the satellite’ position and velocity, referred to 
Appendix B for more details. A normal range error of 1-6 meters is expected due to the residual position 
error. 

Atmosphere delays are corrected using previously mentioned correction models. In terms of the 
ionosphere delay, the simple Klobuchar model is applied. As for the troposphere delays, it’s the UNB3M 
model finally used. However, the performance of those models is limited, especially with the 
ionospheric correction model only first-order delays are corrected. Residual atmosphere errors may 
result range errors from 1-10 meters. 

The theoretical model for the corrected measurements is then: 

𝑃𝑖
𝐺𝑃𝑆 = 𝜌𝑖 + 𝑐𝑑𝑡𝑟

𝐺𝑃𝑆 + 𝑏𝑟,𝑃𝑖
𝐺𝑃𝑆 − 𝑏𝑠,𝑃𝑖

𝐺𝑃𝑆 +𝑚𝑃𝑖
𝐺𝑃𝑆 + 𝜖𝑃𝑖

𝐺𝑃𝑆 (2-27) 

𝛷𝑖
𝐺𝑃𝑆 = 𝜌𝑖 + 𝑐𝑑𝑡𝑟

𝐺𝑃𝑆 + 𝜆𝐺𝑃𝑆𝑁𝑖 + 𝑏𝑟,𝛷𝑖
𝐺𝑃𝑆 − 𝑏𝑠,𝛷𝑖

𝐺𝑃𝑆 +𝑚𝛷𝑖
𝐺𝑃𝑆 + 𝜖𝛷𝑖

𝐺𝑃𝑆   (2-28) 

𝐷𝑖
𝐺𝑃𝑆 = 𝜌𝑖̇ + 𝑐𝑑𝑡̇𝑟

𝐺𝑃𝑆 +𝑚𝐷𝑖
𝐺𝑃𝑆 + 𝜖𝐷𝑖

𝐺𝑃𝑆 (2-29) 

𝑃𝑗
𝐺𝐿𝑂 = 𝜌𝑗 + 𝑐𝑑𝑡𝑟

𝐺𝐿𝑂 + 𝑏𝑟,𝑃𝑗
𝐺𝐿𝑂 − 𝑏𝑠,𝑃𝑗

𝐺𝐿𝑂 +𝑚𝑃𝑗
𝐺𝐿𝑂 + 𝜖𝑃𝑗

𝐺𝐿𝑂 (2-30) 

𝛷𝑗
𝐺𝐿𝑂 = 𝜌𝑗 + 𝑐𝑑𝑡𝑟

𝐺𝐿𝑂 + 𝜆𝑗𝑁𝑗 + 𝑏𝑟,𝛷𝑗
𝐺𝐿𝑂 − 𝑏𝑠,𝛷𝑗

𝐺𝐿𝑂 +𝑚𝛷𝑗
𝐺𝐿𝑂 + 𝜖𝛷𝑗

𝐺𝐿𝑂  (2-31) 

𝐷𝑗
𝐺𝐿𝑂 = 𝜌𝑗̇ + 𝑐𝑑𝑡̇𝑟

𝐺𝐿𝑂 +𝑚𝐷𝑗
𝐺𝐿𝑂 + 𝜖𝐷𝑗

𝐺𝐿𝑂 (2-32) 

where the noise terms 𝜖∎ now includes also the residual correction errors.   

 

 Single Point Positioning with GPS Pseudoranges 
Mass market GNSS receivers tend to only use pseudorange measurements for position and time offset 
computation due to the difficulty to use carrier phase measurements (low robustness of tracking 
mechanism, cycle slipping, ambiguous measurement, etc.). As a consequence, in this section, the 
estimation of a stand-alone user’s position using only GPS pseudorange measurements is illustrated to 
provide an overview of GNSS navigating. The performance of a single-frequency standard positioning 
GPS user can observe better than 10 m, 95% positioning and 20-ns, 95% timing accuracy worldwide 
autonomously using broadcast orbits and clocks [2], [5], [39]. In this section, the basic technique of 
Leas-Squares estimation (LSE) is implemented.  

 

 Least Squares Estimation 
Let us define a generic linear system in the form of  

𝑌𝑘 = 𝐻𝑘𝑋𝑘 + 𝜖𝑘 

where 

 𝑌𝑘 represents the observables vector at instant k, 
 𝑋𝑘 represents the states vector to be estimated at instant k, 
 𝐻𝑘 is the design matrix linking 𝑌𝑘 and 𝑋𝑘, 
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 𝜖𝑘  represents the Gaussian white observation noise, with 𝑅𝑘  the variance-covariance (VC-) 
matrix. 

LSE is an optimal estimation process to find the best solution which fits the above linear system when 
the observation noise is Gaussian [37]. It uses the criterion of minimizing the sum of squared residuals: 

 𝑚𝑖𝑛
𝑋̂𝑘
‖𝑌𝑘 − 𝑌̂𝑘‖² (2-33) 

Inside the equation, 𝑌̂𝑘 = 𝐻𝑘𝑋̂𝑘 is the estimation of observables based on states estimates 𝑋̂𝑘 . 

The weighted version of LSE gives the best solution in the form: 

 𝑋̂𝑘 = (𝐻𝑘
𝑇𝑊𝑘𝐻𝑘)

−1
𝐻𝑘
𝑇𝑊𝑘𝑌𝑘 (2-34) 

where 𝑊𝑘 is the weighting matrix which modulates the importance of each observation.  

A common option is to use the inverse of the VC-matrix 𝑅𝑘 of measurements as weights: 𝑊𝑘 = 𝑅𝑘
−1. 

Measurements with lower noise level should be highly weighted. In such case, the VC-matrix of the 
solution 𝑋̂𝑘  is finally given by  

 𝑃𝑘 = (𝐻𝑘
𝑇𝑊𝑘𝐻𝑘)

−1 (2-35) 

The measurements residuals, 𝑟𝑘, are thus formulated as: 

  𝑟𝑘 = 𝑌𝑘 − 𝑌̂𝑘 = 𝑌𝑘 −𝐻𝑘𝑋̂𝑘 (2-36) 

In the quality assessment of an estimation, the measurement residuals play an important role. 

 

 Estimation of Position and Time 
The previous estimation theory is based on the construction of a linear system. However, the 
measurement models between GNSS observables and the desired states, i.e. the user position and clock, 
is not a linear system. Therefore, an extended form of LSE should be applied in which a linearization is 
needed.  

We denote 𝑃𝑢
𝑗 the measured pseudorange between the 𝑗-th satellite and the receiver 𝑢, with 𝑗 ∈ [1,𝐾]. 

𝐾  is the total number of satellites visible in view of the receiver  𝑢 . Let vectors 𝑿𝒖(𝑥, 𝑦, 𝑧) 
and 𝑿𝒋(𝑥𝑗, 𝑦𝑗, 𝑧𝑗), represent respectively the ECEF coordinates of the receiver’s phase center and the 
ECEF coordinates of the 𝑗-th satellite in orbit. The true user-to-satellite geometric range is thus   

 
𝜌𝑢
𝑗
= √(𝑥 − 𝑥𝑗)² + (𝑦 − 𝑦𝑗)² + (𝑧 − 𝑧𝑗)² = ‖𝑿𝒖 − 𝑿

𝒋‖ (2-37) 

After applying the correction of the atmosphere effects and the satellite clock delays, the simplified form 
of the pseudorange then becomes  

 𝑃𝑢
𝑗
= 𝜌𝑢

𝑗
+ 𝑐𝑙𝑘𝑢 + 𝜖𝑃𝑢

𝑗  (2-38) 

with  

 𝑐𝑙𝑘𝑢 the receiver clock delay in meter with respect to the time reference system and  
 𝜖

P𝑢
𝑗  the combined effect of the residual errors including the residual satellite clock delays, the 

residual atmosphere delays, the potential multipath errors, etc. Note that due to the model now 
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using the estimated satellite position in 𝜌𝑢
𝑗 , 𝜖

P𝑢
𝑗  now also includes the satellite position 

estimation error. 

Clearly, the relation between P𝑢
𝑗 and 𝑿𝒖 is non-linear. The basic idea is to linearize the system around 

an approximate value of the state parameters, solve for the system, and then adjust the system in an 
iterative way. As a consequence, let us define 𝑿𝟎(𝑥0, 𝑦0, 𝑧0) and 𝑐𝑙𝑘0  the first state guesses. The 
difference between the true and the approximated values are denoted as  

 𝜹𝑿𝒖,𝟎 = 𝑿𝒖 − 𝑿𝟎  (2-39) 

 𝛿𝑐𝑙𝑘0 = 𝑐𝑙𝑘 − 𝑐𝑙𝑘0 (2-40) 

The position bias 𝜹𝑿𝒖,𝟎  is generally negligible compared to the distance ‖𝑿𝒖 −𝑿𝒋‖  between the 
satellite and the rover on the ground which is usually of order 1000 km. According to the first-order 
approximation, the residual measurement 𝛿P𝑢,0

𝑗
 is expressed as  

𝛿P𝑢,0
𝑗
= P𝑢

𝑗
− P𝑢,0

𝑗
 

= (‖𝑿𝟎 + 𝜹𝑿𝒖,𝟎  − 𝑿
𝒋‖ + 𝑐𝑙𝑘) − (‖𝑿𝟎 − 𝑿

𝒋‖ + 𝑐𝑙𝑘0) + 𝜀𝑃̃,𝑢
𝑗

 

≈ −
𝑿𝒋−𝑿𝟎
‖𝑿𝒋−𝑿𝟎‖

. 𝜹𝑿𝒖,𝟎 + 𝛿𝑐𝑙𝑘0 + 𝜀𝑃̃,𝑢
𝑗

 

= −𝒆𝒋. 𝜹𝑿𝒖,𝟎 + 𝛿𝑐𝑙𝑘0 + 𝜀𝑃̃,𝑢
𝑗  

where 𝒆𝟎
𝒋  is the estimated line-of-sight (LOS) unit vector along the direction pointing from the initial 

estimate user position to the satellite, 𝒆𝟎
𝒋
=

𝟏

‖𝑿𝒋−𝑿𝟎‖
(𝑥𝑗−𝑥0, 𝑦

𝑗−𝑦0, 𝑧
𝑗−𝑧0). 

A set of 𝐾 linear equations, representing the K measurements, can be presented as: 

 

𝜹𝑷𝟎 =

[
 
 
 
 
 
𝛿𝑃𝑢,0

1

𝛿𝑃𝑢,0
2

.

.
𝛿𝑃𝑢,0

𝐾
]
 
 
 
 
 

=

[
 
 
 
 
−𝒆0

𝟏 𝟏

−𝒆0
𝟐 𝟏
. .. .

−𝒆0
𝑲 𝟏]

 
 
 
 

[
𝜹𝑿𝒖,𝟎
𝛿𝑐𝑙𝑘0

] + 𝜀𝑃̃ = 𝑯[
𝜹𝑿𝒖,𝟎
𝛿𝑐𝑙𝑘0

] + 𝜀𝑃̃ (2-41) 

The matrix 𝑯 is referred to be the geometry matrix describing the user-satellite geometry. The bias state 
vector [𝜹𝑿𝒖,𝟎, 𝛿𝑐𝑙𝑘0]

𝑇  is then resolved according to Eq.(2-34) and added to the first state guess 
[𝑿𝟎, 𝑐𝑙𝑘0]

𝑇 to refine new state estimate [𝑿𝟏, 𝑐𝑙𝑘1]𝑇. The whole estimation process iterates with the new 
state estimate until the solution converges, e.g. norm([𝜹𝑿𝒖,𝟎, 𝛿𝑐𝑙𝑘0]) ≤ 1𝑒-5.  

The stochastic performance of the GNSS positioning highly depends on two factors:  

 The number and distribution of the tracked satellites in the sky with respect to the user position, 
which is referred to as the dilution of precision (DOP);  

 The quality of the generated GNSS measurements, which is referred to as user equivalent range 
error (UERE). UERE is the total error budget representing the measurement model errors with 
respect to this system..  

Consider a simplified case that the measurement VC-matric 𝑅𝑘 has only diagonal components identical 
to the square of the satellite UERE, noted 𝜎²𝑈𝐸𝑅𝐸. The VC-matrix of states 𝑃𝑋 is then expressed as stated 
in Eq.(2-35): 

𝑃𝑋 = 𝜎²𝑈𝐸𝑅𝐸(𝑯
𝑻𝑯)

−1 
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Note that under the consumption that 𝜎²𝑈𝐸𝑅𝐸  related to satellites is invariant, the state quality is 
determined by the matrix 𝑷 = (𝑯𝑻𝑯)

−1
= (𝑃𝑖𝑗)𝑖,𝑗∈{𝑥,𝑦,𝑧,𝑡}

. 𝑷 only depends on the number of satellites 

and the relative geometry between the satellites and the user. To describe the translation of measurement 
noise level 𝜎𝑈𝐸𝑅𝐸 to the state noise level, the construction of the DOP terms, i.e. the geometric DOP 
(GDOP), the position DOP (PDOP) and the time DOP (TDOP), are given by  

𝐺𝐷𝑂𝑃 = √𝑃𝑥,𝑥 + 𝑃𝑦,𝑦 + 𝑃𝑧,𝑧 + 𝑃𝑡,𝑡 

𝑃𝐷𝑂𝑃 = √𝑃𝑥,𝑥 + 𝑃𝑦,𝑦 + 𝑃𝑧,𝑧 

𝑇𝐷𝑂𝑃 = √𝑃𝑡,𝑡 

Intuitively with the same number of visible satellites, a lower PDOP value and consequently a more 
accurate solution are expected with a good satellite distribution. In Figure 2-13, an illustration of a good 
distribution of satellites on the left side and a bad one on the right wide with satellites clustered in one 
side is provided.  

When the position is resolved in a local ENU frame, the horizontal DOP (HDOP) and the vertical DOP 
(VDOP) describing respectively the precision in the horizontal plane and the vertical plane are 
introduced,  

𝐻𝐷𝑂𝑃 = √𝑃𝑒,𝑒 + 𝑃𝑛,𝑛;    𝑉𝐷𝑂𝑃 = √𝑃𝑢,𝑢  

 

 

Figure 2-13. Good (left) and bad (right) GDOP cases (adopted from [43])  
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 Precise Positioning and the Problem Raised by Urban 
Environments  

The navigation with GNSS is ultimately the process of determining the position of the rover. The 
accuracy level of the state solution is a key indicator of the navigation performance. To achieve higher 
accuracy, plenty of efforts have been made for example on both the GNSS constellation side (i.e., the 
modernization of GNSS signals and satellites, etc.) and the receiver side. In this section, the precise 
positioning techniques are firstly introduced to show procedures implemented on the receiver side to 
improve the navigation performance. The influence of the environment where the rover is located is 
never a negligible factor. Problems that can be raised by the urban environment, a common area for 
most daily-life users, are presented at the end.  

 

 Precise Positioning Principles and Techniques 
In general, a single-frequency standard positioning GPS user can observe better than 10 m, 95% 
positioning and 20-ns, 95% timing accuracy worldwide [2], [5], [39]. However, these levels of accuracy 
still cannot satisfy a lot of applications demanding higher performance beyond even the ability of what 
a single-frequency standard positioning GPS user could provide. According to previous sections, the 
accuracy level of the PVT (Position-Velocity-Time) solution can be raised by virtue of either decreasing 
the DOP values or reducing the satellites UERE. On the receiver side, little effort can be made to 
improve the current satellite geometry except for considering a multi-GNSS constellation. Nevertheless, 
striving to reduce the UERE, augmentation procedures, like differential GNSS (DGNSS) and the precise 
point positioning (PPP) are thus brought up. 

 

 Differential GNSS 
The basic innovation of DGNSS is to benefit from the spatial or time correlation characteristics of most 
errors contaminating the positioning accuracy for users separated by tens or even hundreds of kilometers 
away. Thus one or multiple reference station receivers are involved in DGNSS to provide corrections 
for these sources of errors to the user. The distance between the user and the reference station is referred 
as the baseline.  

DGNSS techniques can be categorized in different ways depending on specific consideration aspects. 
According to the involved type of GNSS measurements, code-based DGNSS, when only pseudorange 
measurements are processed, is separated from carrier-phase-based DGNSS when both pseudorange and 
carrier phase measurements are considered.  

Considering the geographic size, the basic categories of DGNSS techniques are [5], [39]:  

 local area DGNSS (LDGNSS),  
 region-area DGNSS (RDGNSS), and  
 wide-area DGNSS (WDGNSS).  

The LDGNSS system is expected to serve a region of less than 10-100 km from a reference station, 
while an area up to 1000 km and a larger functioning area are respectively concerned with the RDGNSS 
system and the WDGNSS system.  

Within each DGNSS category, the number of involved reference stations and the correction data type 
that the reference station provides are also different. In the case of LDGNSS, majorities of space-
correlated errors can be mitigated by using the pseudorange/carrier-phase domain correction from one 
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reference station, while three or more reference stations are necessary along the perimeter of RDGNSS 
coverage to provide good performance. 

The DGNSS positioning performance highly depends on the length of baseline as the residual errors 
after correction grow with the baseline. Meter-level or under a better condition a decimeter-level 
accuracy is achievable with code-based LDGNSS/WDGNSS.  

When more accurate positioning is desired, then it is necessary to use carrier-phase measurements. 
Carrier-phase measurements are very interesting because they contain a very small (compared to 
pseudorange measurements) tracking jitter, typically below 1cm (1-sigma). As a consequence, once the 
ionosphere and troposphere errors are efficiently mitigated, they could be used to target centimeter-level 
positioning. However, to reach this target, there are many hurdles. First, the carrier phase measurements 
are ambiguous and thus cannot be used directly for absolute positioning. There is thus a required step to 
estimate correctly the integer ambiguity of each measurements. This is very challenging since the L1 
frequency creates carrier wavelength of the order of less than 20 cm. Second, the PLL that is used to 
generate carrier phase measurements is known to not be very robust. As a consequence, the carrier phase 
measurements can be unavailable for some time (during high dynamics or low C/N0 conditions), and 
when they become available again, the ambiguity will have change, requiring a new ambiguity 
estimation process. These 2 hurdles explain in part why such methods have mostly been used by 
applications that take place in fairly open environments.  

In the next 2 sections, two types of well-known precise positioning techniques are described: Precise 
Point Positioning (PPP) and Real-Time Kinematic (RTK). The first one does not require surrounding 
reference stations, while the second one does. These methods will be looked at in the context of this 
PhD which only tackles single-frequency GPS/GLONASS receivers. 

 

 Precise Point Positioning  
The concept of PPP was firstly proposed in 1997 to achieve precise point positioning using 
undifferenced, dual-frequency, carrier phase and pseudorange measurements, along with precise 
satellite orbit and clock products [6], [8]. Thanks to the great efforts of the International GNSS Service 
(IGS), precise satellite orbit and clock solution products for real-time or post-time processing have been 
available since 1990’s. Instead of broadcast ephemerides, precise products are used to reduce satellite 
orbits and clock noise level.  

In order to achieve centimeter level accuracy, additional observation errors need be carefully handled: 
phase wind-up effect, solid earth tides, ocean loading, antenna phase center offset [5]–[8]. Elaborate 
modeling is thus required. However, the correction of the atmospheric effects is always a great issue. 
The low accuracy of the empirical ionosphere delay models (i.e., Klobuchar model, NeQuick) and 
tropospheric delays models (i.e., Saastamoinen model, Marini mapping function, UNB3M model ) have 
made them inadequate for achieving centimeter-level PPP. Normally, dual-frequency PPP user employ 
ionosphere-free combinations to achieve the precise estimation of the user’s position, clock. Concerning 
the troposphere delays, in addition to an a-priori troposphere correction model, an extra state (i.e., zenith 
troposphere delay ZTD) is continuously estimated (at least per hour). This parameter can be mapped to 
residual troposphere delays through a fairly representative mapping function, i.e. the Niell’s mapping 
function. A positioning accuracy of centimeter level is achievable with dual-frequency PPP, however a 
long convergence time (more than 15 min) is generally required [44].  

Originally developed for dual-frequency users, the generic PPP concept can also be applied to the single-
frequency case while additional complexity arises. First of all, as the precise clock correction is based 
on dual-frequency ionosphere-free combination, for single-frequency users additional correction related 
to differential code biases (DCB) need be applied [6], [7], [26]. Secondly, the correction of ionosphere 
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effects becomes essential. Regarding the mitigation of ionosphere delays, two techniques have been 
introduced in [6], [7], but each has its own drawbacks. One is based on the group and phase ionosphere 
correction (GRAPHIC) notion to form an ionosphere-free (in first-order) code-phase combination. The 
mathematical form is provided in Eq.(3-1). The final combination is ionosphere-free but still contains 
the ambiguous carrier phase ambiguity. Longer observation period is needed to have enough 
observability of the system. As a consequence, a fairly longer convergence time (15 min longer) is 
entailed to achieve decimeter-level accuracy. The noise level is half of the original code observables, 
while on the same time the equivalent wavelength is also decreased by a factor of 2. With a noise level 
exhibiting the carrier phase wavelength, the detection and handling of small amount cycle clips become 
more difficult. A remark is made herein that the inseparability between integer ambiguities and hardware 
delay combinations in Eq(3-1) gives users no choice but estimating an equivalent ambiguity as float.  

 
𝑷𝒈𝒓𝒂𝒑𝒉𝒊𝒄 =

𝑷𝟏 +𝜱𝟏

𝟐
 

= 𝜌𝑖 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑇𝑖,𝑠) + 𝑇𝑖 +
𝜆𝑖
2
𝑁𝑖 + 𝑏𝑟,𝑃𝐺𝑟𝑎𝑝ℎ −𝑏𝑠,𝑃𝐺𝑟𝑎𝑝ℎ + 𝜖𝑃𝐺𝑟𝑎𝑝ℎ 

(3-1) 

Another methodology is using total electron content (TEC) maps for ionospheric delay correction. 
However, a slowly changing residual bias is unneglectable and absorbed by ambiguities. The integer 
nature of ambiguities that we should make profit from is no longer true.  

The profit brought by the fact that the integer-nature ambiguities are resolved or fixed, i.e. Integer 
Ambiguity Resolution (IAR), is not only the improvement of system accuracy, but also the decrease of 
system convergence times. This is the reason why multiple-frequency PPP users are striving to come up 
with new techniques (PPP-AR techniques) to achieve integer ambiguity resolution [6], [44]–[47]. 
However, for single-frequency PPP users the integer resolution of ambiguities is generally impossible, 
unless some additional external corrections can be applied. Thus, the carrier-phase-dominated DGNSS 
technique, Real Time Kinematic methodology, is brought up in next section.  

 

 Real Time Kinematic Methodology  
Real Time Kinematic (RTK) methodology is devised to achieve fast centimeter-level accuracy 
positioning with the help of surrounding reference stations. In this case, the integer ambiguities 
preventing the carrier phase from acting like absolute range measurements should always be resolved. 
The ability to quickly and correctly resolve the integer ambiguity is one of the key performance 
indicators of the RTK methodology and a strong differentiator from PPP. In this section, the formation 
of GNSS differential measurements will firstly be reviewed, followed by the introduction of the core 
part of the RTK methodology, namely the integer ambiguity resolution (IAR). 

 

3.1.3.1 Differential Measurements 
Raw GNSS measurements are broadcast by the reference station. These measurements are used by the 
user receiver to form so-called difference measurements. Two basic forms of differential observations 
are typically used: 

 SD: “Single–differencing between receivers” refers to the difference of measurements between 
a pair of receivers, i.e. the rover’s receiver and the reference station’s receiver, sharing a 
common satellite.  

 DD: Double-differencing is the difference between two SD measurements collected from two 
different satellites, but with the same pair of receivers.  
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The mathematical construction of GPS differential measurements is separately presented from 
GLONASS differential measurements which hold different characteristics. Consider two receivers 
denoted as 𝑟 and 𝑢 respectively on the reference station side and the rover side, and the common GPS 
satellite indexed 𝑖. In practice, it is fairly common that no Doppler measurements are provided on the 
reference station side. Therefore, only the pseudorange and carrier phase measurements are herein 
studied. The full mathematical formulations of SD GPS measurements are:  

 ∆𝑃𝑖
𝐺𝑃𝑆 = ∆𝜌𝑖 + 𝑐∆𝑑𝑡𝑟𝑢

𝐺𝑃𝑆 + ∆𝐼𝑖 + ∆𝑇𝑖 + ∆𝑏𝑟𝑢,𝑃𝑖,𝐺𝑃𝑆 + 𝜖∆𝑃𝑖,𝐺𝑃𝑆  (3-2) 

 ∆𝛷𝑖
𝐺𝑃𝑆 = ∆𝜌𝑖 + 𝑐∆𝑑𝑡𝑟𝑢

𝐺𝑃𝑆 − ∆𝐼𝑖 + ∆𝑇𝑖 + 𝜆𝐺𝑃𝑆∆𝑁𝑖 + ∆𝑏𝑟𝑢,𝛷𝑖,𝐺𝑃𝑆 + 𝜖∆𝛷𝑖,𝐺𝑃𝑆 (3-3) 

where ∆∎ represents SD terms.  

The common satellite-dependent terms (i.e. clock delays and satellite-side hardware delays) are thus 
eliminated during the single differencing. By virtue of the spatially-correlated property of atmosphere 
delays, ∆𝑇𝑖 and ∆𝐼𝑖 will be very small when a short baseline is considered. The integer nature of the 
carrier-phase ambiguities is conserved with the ambiguity term ∆𝑁𝑖. 

Another satellite indexed 𝑗 is considered as the pivot to form DD measurements,  

 𝛻∆𝑃𝑖𝑗
𝐺𝑃𝑆 = 𝛻∆𝜌𝑖𝑗 + 𝛻∆𝐼𝑖𝑗 + 𝛻∆𝑇𝑖𝑗 + 𝛻∆𝑏𝑟𝑢,𝑃𝑖𝑗,𝐺𝑃𝑆 + 𝜖𝛻∆𝑃𝑖𝑗,𝐺𝑃𝑆 (3-4) 

 𝛻∆𝛷𝑖𝑗
𝐺𝑃𝑆 = 𝛻∆𝜌𝑖𝑗 − 𝛻∆𝐼𝑖𝑗 + 𝛻∆𝑇𝑖𝑗 + 𝜆𝐺𝑃𝑆𝛻∆𝑁𝑖𝑗 + 𝛻∆𝑏𝑟𝑢,𝛷𝑖𝑗,𝐺𝑃𝑆 + 𝜖𝛻∆𝛷𝑖𝑗,𝐺𝑃𝑆 (3-5) 

where ∇∆∎  represents DD terms. The remaining receiver clock term 𝑐∆𝑑𝑡𝑟𝑢𝐺𝑃𝑆  present in the SD 
measurements is further eliminated when the DD is formed. Holding a common signal frequency 
between the satellite 𝑖 and 𝑗, the DD hardware delays 𝛻∆𝑏𝑟𝑢,𝑃𝑖𝑗,𝐺𝑃𝑆 , 𝛻∆𝑏𝑟𝑢,𝛷𝑖𝑗,𝐺𝑃𝑆  are totally negligible. 

As for GLONASS, with FDMA, signals are transmitted at slightly different frequencies for different 
satellites. Consider the common GLONASS satellite indexed 𝑚  for instance, SD GLONASS 
measurements are 

 𝛥𝑃𝑚
𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑟𝑢

𝐺𝐿𝑂 + ∆𝐼𝑚 + ∆𝑇𝑚 + ∆𝑏𝑟𝑢,𝑃𝑚,𝐺𝐿𝑂 + 𝜖∆𝑃𝑚,𝐺𝐿𝑂  (3-6) 

 𝛥𝛷𝑚
𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑟𝑢

𝐺𝐿𝑂 − ∆𝐼𝑚 + ∆𝑇𝑚 + 𝜆𝑚∆𝑁𝑚 + ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 + 𝜖∆𝛷𝑚,𝐺𝐿𝑂 (3-7) 

where the wavelength 𝜆𝑚  differs from satellite to satellite. A remark is made that the remained 
differential hardware delays ∆𝑏𝑟𝑢,𝑃𝑚,𝐺𝐿𝑂 and ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂  are frequency-dependent, other than a 
common value as in GPS case. More characteristics and calibration procedures regarding those hardware 
terms will be addressed in Section 4.3. 

Another satellite indexed 𝑘 is considered as the pivot to form GLONASS DD measurements,  

𝛻∆𝑃𝑘𝑚
𝐺𝐿𝑂 = 𝛻∆𝜌𝑘𝑚 + 𝛻∆𝐼𝑘𝑚 + 𝛻∆𝑇𝑘𝑚 + 𝛻∆𝑏𝑟𝑢,𝑃𝑘𝑚,𝐺𝐿𝑂 + 𝜖𝛻∆𝑃𝑘𝑚,𝐺𝐿𝑂 (3-8) 

𝛻𝛥𝛷𝑘𝑚
𝐺𝐿𝑂 = 𝛻∆𝜌𝑘𝑚 − 𝛻∆𝐼𝑘𝑚 + 𝛻∆𝑇𝑘𝑚 + (𝜆𝑚∆𝑁𝑚 − 𝜆𝑘∆𝑁𝑘) + 𝛻∆𝑏𝑟𝑢,𝛷𝑘𝑚,𝐺𝐿𝑂 + 𝜖𝛻∆𝛷𝑘𝑚,𝐺𝐿𝑂  (3-9) 

However the integer nature of the ambiguity term is no longer conserved within the GLONASS DD. 
Extra procedures should thus be taken, or otherwise GLONASS SD measurements should be used [18]–
[20].  
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3.1.3.2 Integer Ambiguity Resolution 
Along with the consideration of ambiguous carrier phase measurements, the ambiguities need be 
resolved to achieve precise positioning. During the formation of differential measurements, the integer 
nature of the ambiguities are conserved as much as possible. The Integer Ambiguity Resolution (IAR) 
is the process of benefitting the integer nature to obtain a fast and reliable centimeter-level navigation 
solution if it succeeds. But also it can lead to unacceptable errors compromising the position integrity 
when done wrong. As a consequence, there is always a fine line between keeping float ambiguity values 
that are reliable or accepting fixed ambiguity values that may be corrupted. This is why IAR should 
strictly be composed of two processes: (1) integer ambiguity estimation to obtain optimal integer 
ambiguity estimates and (2) validation process to validate the best integer ambiguity candidate [10], 
[12].  

In the first subsection, the notion of Integer Aperture Estimators (IAE) is devised which enables an 
overall theoretical analysis of IAR. A brief introduction of several popular integer ambiguity estimation 
techniques is then provided, including the Least-squares AMBiguity Decorrelation adjustment 
(LAMBDA) method. At the end, integer ambiguity validation procedures are described to provide a 
discuss on the reliability of the obtained integer ambiguity solution.  

 

Integer Aperture Estimator 
To assess the combination of the fixed ambiguity assessment and validation process and provide an 
overall theoretical basis for IAR, the idea of Integer Aperture Estimator (IAE) is presented in [12]. The 
general idea of the IAE is the distinction of three situations:  

 success where the correct integer estimation is accepted;  
 failure where the false integer estimation is accepted;  
 uncertainty where integer estimation is rejected.  

 
The related probability parameters are depicted in following table [48]: 
 

Table 3-1. Relevant parameters of Integer Aperture Estimator 

  Correct Integers 𝑃𝑠,𝐼𝐿𝑆   Wrong Integers 𝑃𝑓,𝐼𝐿𝑆 

Accept 𝑃𝑓𝑖𝑥 = Success 𝑃𝑠 + Failure 𝑃𝑓 

  +  + 

Reject 𝑃𝑓𝑙𝑜𝑎𝑡 = False Alarm 𝑃𝑓𝑎 + Detection 𝑃𝑑 

 

Intuitively, the failure case is the most undesired condition that instead of shrinking the float solution 
uncertainty level, a severely biased fixed solution might be obtained. Therefore, an acceptable upper 
threshold for the value 𝑃𝑓  is recommended. An optimal IAE is thus the one which maximizes the 
probability of success 𝑃𝑠 and on the same time the 𝑃𝑓 does not go beyond the predefined limit [11], [49].  

 

Integer Ambiguity Estimation 
Any GNSS navigation system can be parametrized in integers 𝑎 ∈ 𝛧𝑛and non-integers 𝑏 ∈ 𝑅m . A 
generic representation of the observation model is proposed as the following linear(ized) equation:  

𝑦 = 𝐴𝑎 + 𝐵𝑏 + 𝜖,   𝑤𝑖𝑡ℎ 𝑎 ∈ 𝛧𝑛, 𝑏 ∈ 𝑅𝑚 (3-10) 
where  
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 𝑎 is the vector of integer parameters (i.e., integer ambiguities),  
 𝐴 is the design matrix for integers, and 
 𝑏 is the vector of non-integer states to be resolved in 𝑅 (i.e., the baseline increments, receiver 

clock delay) with 𝐵 the related design matrix, and 𝜖~𝑁(Θ, 𝑄𝑦) is the Gaussian observation 
noise.  

The integer ambiguity estimation is mostly accomplished following three steps [50], [51].  

 First, the constraint that 𝑎 ∈ 𝛧𝑛 is disregarded to obtain the real-valued estimates (𝑎̂, 𝑏̂)𝑇 from 
the output of an estimation filter for instance a Kalman Filter (KF) or a LS. The resulting VC-
matrix of  𝑎̂ and the so-called float solution 𝑏̂ is thereby 

 
[
𝑎̂
𝑏̂
]~[

𝑄𝑎̂ 𝑄𝑎̂𝑏̂
𝑄𝑏̂𝑎̂ 𝑄𝑏̂

] , 𝑤𝑖𝑡ℎ 𝑎̂ ∈ 𝑅𝑛, 𝑏̂ ∈ 𝑅𝑚 (3-11) 

 Second, search or calculate the integer ambiguity estimates 𝑎̌ from the float estimates  

 𝑎̌ = 𝑆(𝑎̂) (3-12) 
where 𝑆: 𝑅𝑛 → 𝛧𝑛is the integer estimator, a mapping function which directs all float point in 
R𝑛 into a specific point in Ζ𝑛.  

 Third, calculate the fixed solution 𝑏̌ by adjusting the float solution in the following way 

 𝑏̌ = 𝑏̂|𝑎̌=𝑏̂ − 𝑄𝑏̂𝑎̂𝑄𝑎̂
−1(𝑎̂ − 𝑎̌). (3-13) 

Various integer estimators have been proposed since 1980. Among those, the most intuitive and direct 
integer estimator is the integer rounding estimator [11]. Float ambiguities are rounded to their closest 
integers. However, the correlation among those ambiguities is then not considered.  

A sequential version, the bootstrapped estimator was proposed in [13], [52]. Starting from the first 
ambiguity term, all following float ambiguities are decorrelated from previous ambiguities before being 
rounded. Nevertheless, there still lacked a solid theory on the performance evaluation of such integer 
estimators, until the LAMBDA method and a performance indicator, namely the probability of success 
fixing 𝑃𝑠, were brought up [14], [15], [53].  

Comparisons in terms of computational efficiency and performance between different integer ambiguity 
estimation techniques are presented in [15], [50], [53], [54]. As a result, the LAMBDA methodology 
has been acknowledged as the optimal integer estimator in terms of maximizing 𝑃𝑠. A brief introduction 
of LAMBDA is herein given. For more detailed information, refer to [55], [56].  

The LAMBDA is fundamentally an integer least-squares (ILS) estimator as it strives to minimize the 
following quadratic objective function 

 𝑚𝑖𝑛
𝑎∈𝛧𝑛,𝑏̂∈𝑅𝑚

‖𝑦 − 𝐴𝑎 − 𝐵𝑏‖𝑄𝑦
2 = 𝑚𝑖𝑛

𝑎∈𝛧𝑛,𝑏̂∈𝑅𝑚
 (‖𝑒̂‖𝑄𝑦

2 + ‖𝑎 − 𝑎̂‖𝑄𝑎̂
2 + ‖𝑏 − 𝑏̂|𝑎‖

𝑄𝑏̂|𝑎

2
) (3-14) 

In the right side of the previous equation is the orthogonal decomposition of the objective function into 
three parts. 𝑒̂ is the measurement residual adhering to the float estimates (𝑎̂, 𝑏̂)𝑇. 𝑏̂|𝑎 is the conditional 
least-squares baseline vector conditioned on 𝑎 ∈ Ζ𝑛, having 𝑄𝑏̂|𝑎 as the VC-matrix. The first part ‖𝑒̂‖𝑄𝑦

2  
is irrelevant to the integer estimate 𝑎̌, and the third part can be null by taking the fixed baseline solution 
as 𝑏̌ = 𝑏̂|𝑎̌. Consequently, the mapping function under the least-squares idea is fundamentally to derive 
the ILS estimates 𝑎̌ by resolving 

 𝑚𝑖𝑛
𝑎∈𝛧𝑛

‖𝑎 − 𝑎̂‖𝑄𝑎̂
2 =(𝑎 − 𝑎̂)𝑇𝑄𝑎̂

−1(𝑎 − 𝑎̂) (3-15) 
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In case of a diagonal 𝑄𝑎̂, meaning that integer ambiguities are independent from each other, the search 
for ILS estimates 𝑎̌ would be quite simple. However, for GNSS applications, all ambiguities are strongly 
correlated. Hence, a reduction stage by a Z-transformation is primarily settled to simplify the next 
discrete searching stage. A modified version was brought up in [55] accounting for effectively reducing 
computational burdens.  

The probability of having the final ILS estimates 𝑎̌ equal to the real integer values is quantified by 𝑃𝑠,𝐼𝐿𝑆. 
The whole procedure of ILS search makes it impossible to derive a compact theoretical formula of 𝑃𝑠,𝐼𝐿𝑆. 
However, a lower bound is provided by the IB estimator [13], [15]  

 
𝑃𝑠,𝐼𝐿𝑆 ≥ 𝑃𝑠,𝐼𝐵 =∏(2𝛷(

1

2𝝈𝒂̂(𝒊|𝑰,𝒊|𝑰)
) − 1)

𝑛

𝑖=1

 (3-16) 

where  

 𝝈𝒂̂(𝒊|𝑰,𝒊|𝑰) is the standard deviation of the i-th ambiguity obtained through a conditioning on the 
previous  𝑰 = 𝟏,… , (𝒊 − 𝟏) ambiguities, and  

 
𝛷(𝑥) = ∫

1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑣²)𝑑𝑣

𝑥

−∞

 (3-17) 

 

Integer Ambiguity Validation 
Theoretically, a parameter estimation should not be considered complete without an appropriate process 
to validate the solution [11]. Practically, the original intention of fixing the integer parameters in GNSS 
applications is to decrease the positioning uncertainty on the basis of float solution. A wrong fixing of 
integer ambiguities may lead to a much severer consequence (i.e., a remarkable positioning bias leading 
to integrity issues). Therefore, the integer ambiguity validation process is never an omissible part for 
ensuring a reliable GNSS precise positioning.  

The most popular validation methods are the Ratio-test (RT), the F-ratio test (FT) and the Difference 
test (DT). Comparison between them have been the topic of many publications [48], [57]–[59].  

Those three validation methods are all striving to make a reliable discrimination between the best (𝑎̌) 
and the second best (𝑎̌2) integer candidates of ambiguities, but with different considerations. For its 
implementation simplicity and well-functioning in practical tests, the detailed implementations of the 
RT are described herein as an example:  

 Accept 𝑎̌ if (𝑎̌2−𝑎̂)
𝑇𝑄𝑎̂

−1(𝑎̌2−𝑎̂)

(𝑎̌−𝑎̂)𝑇𝑄𝑎̂
−1(𝑎̌−𝑎̂)

≥ 𝑐 (3-18) 

where 𝑐 is a pre-defined threshold or the critical value that the squared norm of ambiguity residuals of 
the best and second best candidates should overpass to validate the integer estimation.  

Regarding the determination of the critical value, a rigorous theoretical analysis of the Eq(3-18) should 
be done to derive the value. However, it is theoretically too complex and the computation burden is 
heavy [59]–[61]. Therefore, an empirical fixed value is generally taken (e.g., 𝑐 = 3 as in [7], [62]), 
namely a Fixed Threshold RT (FT-RT). However, it should be pointed out that it is not the correctness 
of integer candidates but rather the closeness to the float value that is tested with RT [62], [63]. The 
popular indicator of IAR performance, the 𝑃𝑓 can not be controlled with the FT-RT and the confidence 
put on the final solution should therefore be relatively low.  
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 Problems Raised by Urban Environments 
An urban environment is generally referred to an area with high density of interfering objects, such as 
buildings [7], [64]. Signals are more prone to blockages and reflections. As a result, severe local effects 
are expected such as: significant multipath delays on GNSS observations, especially on pseudoranges 
and Doppler measurements and NLOS signal tracking. Besides, attenuated signals are received at a 
lower signal carrier to noise density ratio C/N0. Consequently, cycle slips and loss of lock for carrier 
phase measurements are more frequent. 

As aforementioned, the single-frequency PPP methodology requires longer convergence time to achieve 
accurate ambiguity resolution compared to RTK. What’s more, the handling of frequent cycle slips can 
furthermore deteriorate the PPP performance. It’s finally the RTK methodology chosen in this literature 
to explore the performance of GNSS navigation in urban environments. 
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 Proposed GNSS-only Precise Positioning Algorithm  

With the intention to achieve precise positioning in an urban environment, the RTK methodology has 
been preferred over the PPP methodology. Equipped with single-frequency receiver, the lack of accurate 
atmosphere correction models indeed restricts the application of the PPP methodology in a constrained 
area. In this section, the detailed implementations of the RTK algorithm adapted to an urban 
environment are provided.  

In the first place, the Kalman filter is chosen as the estimation technique to take into account the 
dynamics of the rover and use an epoch-to-epoch geometric link for states refinement .  

The RTK measurement model is subsequently presented to reflect considerations over the systematic 
differences between GPS and GLONASS.  

Then, several pre-processing procedures of the GNSS observables are proposed in response to their 
vulnerabilities to outliers notably in urban area. As an example, an innovation test is implemented to 
further ensure the reliability of the GNSS navigation solution.  

The last part is dedicated to the handling of the precise carrier phase measurements. Procedures to detect 
and repair cycle slips are devised to continuously benefit from the resolved ambiguities as constants. 
Elaborations of the integer ambiguity resolution theory are eventually provided. 

 

 Overview of Kalman Filter 

 Continuous System and Discrete System  
A typical system model consists of equations describing the relationships between unknown parameters 
and system observables. The expected/assumed characteristics of the system observables and the 
unknown parameters can also be taken into account. Considering the temporal continuity, two categories 
are introduced: the continuous system and the discrete system. In order to keep the discussion as brief 
as possible, the following presentation only considers linear systems.  

In a ‘continuous’ system, a continuous process is considered. To have an estimation of a set of 
parameters of interests 𝒙(𝑡) (in case of GNSS positioning, the rover’s position, velocity, clock delays, 
etc.), a functional relationship between the state parameters and the observables must be established. 
The functional model is typically given in the form:  

 𝒚(𝑡) = 𝑯(𝑡) ∙ 𝒙(𝑡) + 𝒆(𝑡) (4-1) 
where: 

 𝒚(𝑡) is the measurement vector at time 𝑡; 
 𝑯(𝑡) is the system geometry matrix at time 𝑡; 
 𝒙(𝑡) is the system state vector at time 𝑡; 
 𝒆(𝑡) is the measurement noise vector at time 𝑡, a zero-mean Gaussian noise with correlation 

matrix 𝑹(𝑡).  

Typical system dynamics, when they are taken into consideration, can be represented in the following 
form: 

 𝒙̇(𝑡) = 𝑭(𝑡) ∙ 𝒙(𝑡) + 𝑮(𝑡) ∙ 𝒘(𝑡) (4-2) 
 where:  
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 𝒙̇(𝑡) the ‘dot’ represents time derivative; 
 𝑭(𝑡) is the dynamic matrix at time 𝑡; 
 𝑮(𝑡) is the process noise shaping matrix at time 𝑡; 
 𝒘(𝑡) is the process driving noise at time 𝑡, a zero-mean Gaussian noise with a correlation matrix 

𝑸(𝑡), assumed to be un-correlated with measurement noise 𝒆(𝑡).  

In a discrete system, the system is observed at discrete time sequences, which is the case of GNSS PVT. 
Assuming the sampling time period as 𝑡𝑠 =

1

𝑓𝑠
, the discrete linear system is given as: 

 𝒀𝒌 = 𝑯𝒌𝑿𝒌 + 𝒆𝒌 (4-3) 
  𝑿𝒌 = 𝜱𝒌𝑿𝒌−𝟏 +𝒘𝒌  

where  

 𝒀𝒌 , 𝑿𝒌  are respectively the vector of measurements and the state vector at epoch 𝑘  with 
corresponding time 𝑡𝑘 = 𝑡𝑘−1 + 𝑡𝑠; 

 𝑯𝒌 is the design/geometry matrix; 
 𝜱𝒌 is the state transition matrix from epoch (𝑘 − 1) to epoch 𝑘;  
 𝒘𝒌 is the process noise at epoch 𝑘, with VC-matrix 𝑸𝒌. 

The detailed expressions of 𝜱𝒌 and 𝑸𝒌 can be obtained from the following relations [37], [65]–[67]: 

𝜱𝒌 = 𝑒
𝑭(𝑡𝑘)𝑡𝑠 ≈ 𝑰 + 𝑭𝒌𝑡𝑠 +

(𝑭𝒌𝑡𝑠)²

2
 (4-4) 

𝑸𝒌 ≈ [𝜱𝒌𝑮(𝑡𝑘−1)𝑸(𝑡𝑘−1)𝑮
𝑇(𝑡𝑘−1)𝜱𝑘

𝑇 +  𝑮(𝑡𝑘−1)𝑸(𝑡𝑘−1)𝑮
𝑻(𝑡𝑘−1)] 𝑡𝑠 2⁄  (4-5) 

Approximations made during the propagation interval 𝑡𝑠 may not be rigorously correct, but reasonably 
acceptable when 𝑡𝑠 is considerably small enough.  

  

 Kalman Filter 
During the estimation with LS, only the system measurements are used, which may not take the full 
advantage of the whole system. Another well-known estimation technique is the Kalman filter (KF), 
which considers also the state dynamics. 

A five-equation operating process of the KF is synthetized here. First step is to develop the properties 
of the predicted states 

 𝑿̂𝒌+𝟏|𝒌 = 𝜱𝒌+𝟏𝑿̂𝒌 (4-6) 

 𝑷𝒌+𝟏|𝒌 = 𝜱𝒌+𝟏𝑷𝒌𝜱𝒌+𝟏
𝑻 +𝑸𝒌+𝟏 (4-7) 

where  

 𝑿̂𝒌+𝟏|𝒌is the states prediction at epoch (𝑘 + 1) given all measurements until epoch 𝑘, and  
 𝑷𝒌+𝟏|𝒌 is VC-matrix of predicted states based on the state dynamics equation. 

The next step is to refine the states prediction based on the information provided by the system 
observables, which is specifically the difference between predicted observables and measured 
observables:  

  𝑲𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 [𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏

𝑻 + 𝑹𝒌+𝟏]
−𝟏

 (4-8) 
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 𝑿̂𝒌+𝟏|𝒌+𝟏 = 𝑿̂𝒌+𝟏|𝒌 +𝑲𝒌+𝟏(𝒀𝒌+𝟏 −𝑯𝒌+𝟏𝑿̂𝒌+𝟏|𝒌) (4-9) 

 𝑷𝒌+𝟏|𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌 −𝑲𝒌+𝟏𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌 (4-10) 
where  

 𝑲𝒌+𝟏 is the Kalman Gain,  
 𝑿̂𝒌+𝟏|𝒌+𝟏 is the updated states estimate given all measurements until epoch (𝑘 + 1)and  
 𝑷𝒌+𝟏|𝒌+𝟏 is the VC-matrix of states.  

The difference between predicted and measured observables is known as ‘Innovation’: 

 𝑰𝒌+𝟏 = 𝒀𝒌+𝟏 −𝑯𝒌+𝟏𝑿̂𝒌+𝟏|𝒌 (4-11) 

and its VC-matrix is 

 𝑪𝒌+𝟏 = 𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 + 𝑹𝒌+𝟏 (4-12) 

The Kalman gain 𝑲𝒌+𝟏 can be seen as a weighing factor striking a compromise between the weights of 
innovation sequences on the modification of predicted states. The innovation is a key indicator of the 
consistency among measurements.  

 

 Description of the Proposed RTK KF 

 Measurement Model 
The accuracy performance of a receiver implementing stand-alone GNSS positioning is far from 
satisfaction for some constrained environment applications, especially when a low-cost receiver is 
considered. The high noise level, the low quality oscillator, the lack of embedded robust processing 
techniques can all prevent low cost receivers from providing a stable performance.  

As mentioned earlier, 2 main axes are looked at to improve the low-cost receiver performance: 

 To take advantage of the temporal and spatial correlation characteristics of most measurements 
errors (atmosphere delay, ephemeris errors, etc.), differential measurements can be used;  

 The high-accuracy carrier phase measurements should be exploitable.  

Measurements in a multi-constellation system need extra care given the differences among satellite 
systems [68]. Various types of differential measurements can be used as inputs in the KF with original 
GPS/GLONASS code and carrier phase measurements. Herein, to preserve the integer nature of 
ambiguities and control the measurement noise level at the input, the following measurement 
combinations are implemented [7], [18], [20]: 

 GPS code measurements are single-differenced; 
 GPS carrier phase measurements are double-differenced; 
 GLONASS code and carrier phase measurements are single-differenced; 
 Original GPS and GLONASS Doppler measurements collected by the rover receiver. 

 
In case of a short baseline, the residual atmosphere delays (GPS/GLONASS ∆𝑇, ∆𝐼 or GPS ∇∆𝑇, ∇∆𝐼) 
are reasonably small to dismiss them in measurement modeling. To avoid the confusion of atmosphere 
corrected and uncorrected measurements, it is recommended to apply the ionospheric correction model 
(i.e. the Klobuchar model) and the tropospheric correction model (i.e., the UNB3M model) before using 
any measurement [7]. Since reference stations do not systematically provide raw Doppler measurements, 
only Doppler measurements collected by the rover are used.  
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GPS measurements are finally modeled as: 
 

{

∆𝑃𝑖
𝐺𝑃𝑆 = ∆𝜌𝑖 + 𝑐∆𝑑𝑡𝑟𝑢 + 𝜀∆𝑃𝑖,𝐺𝑃𝑆

𝛻𝛥𝛷𝑖𝑗
𝐺𝑃𝑆 = 𝛻∆𝜌𝑖𝑗 + 𝜆𝐺𝑃𝑆𝛻∆𝑁𝑖𝑗 + 𝜀𝛻𝛥𝛷𝑖𝑗,𝐺𝑃𝑆 

𝐷𝑖
𝐺𝑃𝑆 = 𝜌𝑖̇ + 𝑐𝑑𝑡𝑟̇ + 𝜖𝐷𝑖,𝐺𝑃𝑆

 (4-13) 

where  
 ∆𝜌𝑖 is the true range difference to a common satellite indexed 𝑖 between the rover receiver and 

the reference receiver,  
 ∆𝑑𝑡𝑟𝑢 is the clock delay difference between receivers, 
 ∇∆𝑁𝑖𝑗, the DD GPS ambiguity with satellite indexed 𝑗 as the pivot one, is conserving its integer 

nature, and 
 𝑑𝑡𝑟̇  is the clock bias rate of the rover receiver.  

 
Because the GLONASS G1 signals use the FDMA, different carrier frequencies associated to the carrier 
phase measurements have to be taken into account. In particular, it is well known that the inter-channel 
biases (ICB) have to be modeled. In the present case, this model assumes that the ICB is a linear function 
of the channel number [19], [21], [69]. As a consequence, the GLONASS measurements are modeled 
as: 
 

{

𝛥𝑃𝑚
𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑟𝑢 + 𝑏𝑟 + 𝑘𝑚𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒 + 𝜀∆𝑃𝑚,𝐺𝐿𝑂
𝛥𝛷𝑚

𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑟𝑢 + 𝜆𝑚𝛥𝑁𝑚,𝑒𝑞 + 𝜀𝛥𝛷𝑚,𝐺𝐿𝑂

𝐷𝑚
𝐺𝐿𝑂 = 𝜌𝑚̇ + 𝑐𝑑𝑡𝑟̇ + 𝜖𝐷𝑚,𝐺𝐿𝑂

 (4-14) 

where  
 m is the GLONASS satellite index, 
 𝑏𝑟 is the between-receivers code hardware bias,  
 𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒 is the code ICB slope,  
 𝑘𝑚 ∈ [−7, 6] is the GLONASS frequency number, 
  Δ𝑁𝑚,𝑒𝑞  is the equivalent ambiguity term consisting of the true integer GLONASS SD 

ambiguity Δ𝑁𝑚 and the phase ICBs ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 . The explicit relation is 𝜆𝑚𝛥𝑁𝑚,𝑒𝑞 =
𝜆𝑚𝛥𝑁𝑚 + ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂.  
 

The presence of the phase ICBs makes the integer nature of Δ𝑁𝑚 no longer true for the combination 
term Δ𝑁𝑚,𝑒𝑞. Due to the float nature of the equivalent GLONASS SD ambiguity Δ𝑁𝑚,𝑒𝑞, different from 
GPS, a formation of GLONASS DD ambiguities with the pre-calibrated phase ICB information is 
necessary before passing to the Integer Ambiguity Resolution (IAR) step. The IAR process is the 
implementation of integer-nature conditions on GNSS DD ambiguities, and thus improve the estimation 
of other states, i.e. the PVT information.  

 

 Linearization Process 
The KF theory exposed earlier assumes a linear system while clearly a non-linear relationship exists 
between the RTK measurement model and the rover’s parameters. Therefore, a linearization needs to be 
done to estimate the rover’s station, using the so-called extended KF. 

According to the formation of differential measurements, the term ∆𝜌𝑖 describes the range difference 
between the user receiver and the station receiver from a common satellite indexed by 𝑖. It can be 
linearized around a predicted position of the rover:  

 ∆𝜌𝑖 = 𝜌𝑢
𝑖 − 𝜌𝑟

𝑖 = 𝜌𝑢0
𝑖 − 𝜌𝑟

𝑖 − 𝒆𝟎
𝒊 . (𝑿𝒖 − 𝑿𝒖,𝟎) (4-15) 

where 
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 𝑿𝒖 is the estimated position of the rover;  
 𝑿𝒖,𝟎 = [𝑥0, 𝑦0, 𝑧0]

𝑻 is the predicted position of the rover;  
 𝒆𝟎

𝒊  is the predicted LOS unit vector along the direction pointing from the approximated user 
position to the satellite 𝑖 , 𝒆𝟎𝒊 =

𝟏

‖𝑿𝒋−𝑿𝟎‖
(𝑥𝑖−𝑥0, 𝑦

𝑖−𝑦0, 𝑧
𝑖−𝑧0) with the satellite position in 

orbit expressed as 𝑿𝒊 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑻. 

Therefore, the measurements containing the term ∆𝜌 are corrected as follows to obtain a linear system 
of the rover’s position deviation with respect to assumed position. Take the GPS SD pseudorange as an 
example:  

 ∆𝑃𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐺𝑃𝑆 = ∆𝑃𝑖

𝐺𝑃𝑆 − (𝜌𝑢0
𝑖 − 𝜌𝑟

𝑖 ) − 𝒆𝟎
𝒊 𝑿𝒖,𝟎 (4-16) 

As for the DD range 𝛻∆𝜌𝑗𝑖, the difference between ∆𝜌𝑖 and ∆𝜌𝑗, it can be linearized as 

 𝛻∆𝜌𝑗𝑖 = ∆𝜌
𝑖 − ∆𝜌𝑗 = 𝜌𝑢0

𝑖 − 𝜌𝑟
𝑖 − 𝜌𝑢0

𝑗
+ 𝜌𝑟

𝑗
− (𝒆𝟎

𝒊 − 𝒆𝟎
𝒋
). (𝑿𝒖 − 𝑿𝒖,𝟎) (4-17) 

 

The Doppler measurement collected on the rover side is reflecting the rate of the range variation and the 
clock drift. The rate of the range variation 𝜌𝑖̇ describes the relative motion between the satellite and the 
rover and can thus be modelled as:  

 𝜌𝑖̇ = 𝒆𝟎
𝒊 𝑽𝒊 − 𝒆𝟎

𝒊 𝑽𝒖 (4-18) 
where  

 𝑽𝒊 = [𝑣𝑥
𝑖 , 𝑣𝑦

𝑖 , 𝑣𝑧
𝑖]
𝑻 is the satellite velocity calculated based on the broadcast ephemeris, and  

 𝑽𝒖 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
𝑻 is the rover’s velocity. 

Therefore, to remove the Doppler shift due to the satellite’s motion, the Doppler measurement is 
corrected by 

 𝐷𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐷𝑖 − 𝒆𝟎
𝒊 𝑽𝒊 (4-19) 

The corrected Doppler measurement is thus directly in a linear relationship with the rover’s velocity and 
receiver clock drift, by neglecting typically smaller atmospheric delay rate.  

 

 Description of the State Vector  
The goal of GNSS positioning is the estimation of the rover’s position and velocity. Nevertheless, the 
previous analysis of the proposed RTK measurement modeling has showed the presence of other 
additional parameters to be estimated. In view to obtain a precise positioning, these additional 
parameters also need be carefully handled.  

𝑿𝑮𝑵𝑺𝑺 = (𝑿𝑷𝑽𝑨; 𝑐 ∗ ∆𝑑𝑡𝑟𝑢;  𝑐 ∗ ∆𝑑𝑡𝑟𝑢̇ ; 𝑐 ∗ 𝑑𝑡𝑟̇ ; 𝜵∆𝑵𝑮𝑷𝑺; ∆𝑵𝑮𝑳𝑶,𝒆𝒒; 𝑏𝑟; 𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒) 

 

The full GNSS state vector is thus containing:  

1. 𝑿𝑷𝑽𝑨: The position 𝑿𝒖, the velocity 𝑽𝒖, and the acceleration 𝑨𝒖 (PVA) of the rover. 

Sometimes, especially in a low-dynamic application, the consideration of the acceleration is omitted for 
simplicity. However, this is not the case in the application of interest of this PhD, which includes ground 
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vehicle. Along with the position and the velocity, it entails appropriate modeling of the rover’s 
acceleration. The Constant-Acceleration Model [37], assuming a random walk to account for the 
acceleration, is applied to describe the relations among PVA states. The corresponding PVA state 
transition matrix 𝜱𝑷𝑽𝑨 and their process noise VC-matrix 𝐐𝑷𝑽𝑨 in one spatial dimension (e.g., e-axis of 
n-frame) are: 

𝚽𝑷𝑽𝑨 = [
1 𝑡𝑠

1

2
𝑡𝑠
2

0 1 𝑡𝑠
0 0 1

] , 𝐐𝑷𝑽𝑨 =

[
 
 
 
 
 
1

20
𝑡𝑠
5

1

8
𝑡𝑠
4

1

6
𝑡𝑠
3

1

8
𝑡𝑠
4

1

3
𝑡𝑠
3

1

2
𝑡𝑠
2

1

6
𝑡𝑠
3

1

2
𝑡𝑠
2 𝑡𝑠 ]

 
 
 
 
 

𝜎𝑒
2 

where  

 𝑡𝑠 is the system update step, i.e. 1 second,  
 𝜎𝑒

2 is the vehicle acceleration variance in e-axis.  

There is no exact way to fit the accelerations into a best optimal random process for the Kalman filter, 
except for taking other external measurements. However, an improved performance is expected 
compared to the simpler PV modeling. 

The case of interest of this thesis is ground car navigation whose vertical motion is constrained. Hence, 
the process noise level associated to the up direction has been chosen lower compared to the east and 
north directions. Recommendations of the acceleration variance values in ENU n-frame are herein 
adopted, but with slight modifications [𝜎𝑒2, 𝜎𝑛2, 𝜎𝑢2] = [0.7, 0.7, 0.2]((m/s²)²) [7]. The original vertical 
acceleration variance of 0.1 ((m/s²)²) turns out to be a little optimistic by studying the reference trajectory. 
The VC-matrix of the acceleration process noise applied in the e-frame is then determined by a 
transformation following noise propagation laws: 

𝐐𝑨−𝑿𝒀𝒁 = (𝑪𝒆
𝒏)′ [

𝜎𝑒
2 0 0

0 𝜎𝑛
2 0

0 0 𝜎𝑢
2

] 𝑪𝒆
𝒏 

where the coordinate frame transformation matrix from e-frame to n-frame is described by the matrix  

𝑪𝒆
𝒏 = [

− sin 𝜆 𝑐𝑜𝑠𝜆 0
−𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆 −𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆 𝑐𝑜𝑠𝜑
𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 𝑠𝑖𝑛𝜑

] 

Which depends on the vehicle geodetic coordinates (latitude 𝜑, longitude 𝜆 and height ℎ). 

 

2. [∆𝑑𝑡𝑟𝑢;  ∆𝑑𝑡𝑟𝑢̇ ]: The SD clock delay between the receivers and its drift over time.  

Since the GPS pseudorange measurements, the GLONASS pseudorange and carrier phase 
measurements are all single differenced, a SD clock delay term emerges and, together with its drift, 
needs to be estimated. Generally, a two-parameter model of clock delay and clock drift is used to 
describe the receiver’s clock and the satellite’s clock [37], [70]. The state transition matrix and the VC-
matrix of the process noise are depicted by 

𝚽𝒄𝒍𝒌 = [
1 𝑡𝑠
0 1

] , 𝑸𝒄𝒍𝒌 =

[
 
 
 
ℎ0
2
𝑡𝑠 + 2ℎ−1𝑡𝑠

2 +
2

3
𝜋2ℎ−2𝑡𝑠

3 ℎ−1𝑡𝑠 + 𝜋
2ℎ−2𝑡𝑠²

ℎ−1𝑡𝑠 + 𝜋
2ℎ−2𝑡𝑠²

ℎ0
2𝑡𝑠

+ 4ℎ−1 +
8

3
𝜋2ℎ−2𝑡𝑠]
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with ℎ0, ℎ−1, ℎ−2 are parameters related to the clock quality performance.  

In the following table are the typical values for various types of receiver clock [37]. For example, a 
temperature compensated crystal oscillator (TCXO)-type oscillator is incorporated in the Ublox receiver 
that will be used for testing later one, while a more stable ovenized crystal oscillator (OCXO)-type 
oscillator is used by the TLSE Trimble NetR9 receiver, an IGS reference station.  

Table 4-1. Parameters for Clock Modeling  

Types TCXO*      OCXO* 

Parameters 

ℎ0(𝑠) 2e-19 2e-25 

ℎ−1(𝑟𝑎𝑑) 7e-21 7e-25 

ℎ−2(𝑠
−1) 2e-20 6e-25 

 

For the SD clock delay, the state transition matrix stays the same while the VC-matrix is calculated by 
the following matrix products: 

𝑸𝑺𝑫𝒄𝒍𝒌 = [
1 0 −1 0
0 1 0 −1

] [
𝑄𝑐𝑙𝑘𝑢 0

0 𝑄𝑐𝑙𝑘𝑟
] [

1
0
−1
0

0
1
0
−1

] = 𝑸𝒄𝒍𝒌𝒖 +𝑸𝒄𝒍𝒌𝒓 

3. 𝑑𝑡𝑟̇ : The Doppler clock drift of the rover’s receiver.  

Different from the SD clock drift, the Doppler clock drift is only dependent on the rover’s clock. 
Therefore, a third clock-related term is required, with proper covariance value determined by the clock 
modeling parameters in Table 4-1. Confronting the potential computational singularity, all clock-related 
states are transformed into range delays by multiplying the speed of light in vacuum 𝑐(m/s). 

 

4. [𝜵∆𝑵𝑮𝑷𝑺; ∆𝑵𝑮𝑳𝑶,𝒆𝒒]:  The integer GPS DD ambiguities and the non-integer GLONASS SD 
ambiguities.  

According to the state property, ambiguities are estimated as constant values on condition that cycle 
slips are absent. Otherwise the monitoring and resolution process is implemented separately beyond the 
main navigation KF.  

 

5. [𝑏𝑟; 𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒]: The two parameters used to model GLONASS code ICB biases: the slope and the 
offset.  

Similarly, the slope and offset of GLONASS ICB biases are estimated as constant values. The VC-
matrix describing their stability are provided in Section 4.3.3. 

To conclude, the design matrix 𝑯𝑮𝑵𝑺𝑺, describing the relation between the GNSS measurements model 
𝒀𝑮𝑵𝑺𝑺 and the whole state vector 𝑿𝑮𝑵𝑺𝑺, is thus summarized as:  
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𝐇𝐆𝐍𝐒𝐒 =

[
 
 
 
 
 
 
 
𝑮 𝛥PGPS
𝑃𝑉𝐴

𝑮 𝛥PGLO
𝑃𝑉𝐴

𝑬𝑛1×3
𝑬𝑛2×3

0𝑛1×𝑛3
0𝑛2×𝑛3

0𝑛1×𝑛4
0𝑛2×𝑛4

0𝑛1×2

𝑮𝛥PGLO
𝐼𝐶𝐵

𝑮∇∆ΦGPS
𝑃𝑉𝐴

𝑮∆ΦGLO
𝑃𝑉𝐴

0𝑛3×3
𝑬𝑛4×3

𝝀𝒏𝟑×𝒏𝟑
0𝑛4×𝑛3

0𝑛3×𝑛4
𝝀𝒏𝟒×𝒏𝟒
′

0𝑛3×2
0𝑛4×2

𝑮𝐷GPS
𝑃𝑉𝐴

𝑮DGLO
𝑃𝑉𝐴

𝑬𝑛5×3
′

𝑬𝑛6×3
′

0𝑛5×𝑛3
0𝑛6×𝑛3

0𝑛5×𝑛4
0𝑛6×𝑛4

0𝑛5×2
0𝑛6×2 ]

 
 
 
 
 
 
 

 

Where 

 𝒀𝑮𝑵𝑺𝑺 = [𝜟𝑷𝑮𝑷𝑺; 𝜟𝑷𝑮𝑳𝑶; 𝜵∆𝜱𝑮𝑷𝑺; ∆𝜱𝑮𝑳𝑶; 𝑫𝑮𝑷𝑺; 𝑫𝑮𝑳𝑶] is the whole GNSS measurements 
vector, with 𝑛1 the length of SD GPS pseudoranges 𝜟𝐏𝐆𝐏𝐒, 𝑛2 the length of SD GLONASS 
pseudoranges 𝚫𝐏𝐆𝐋𝐎, 𝑛3 the length of DD GPS carrier phases 𝜵∆𝜱𝑮𝑷𝑺, 𝑛4 the length of SD 
GLONASS carrier phases ∆𝜱𝑮𝑳𝑶, 𝑛5 the length of GPS Doppler observables 𝑫𝑮𝑷𝑺, and  𝑛6 the 
length of GLONASS Doppler observables 𝑫𝑮𝑳𝑶; 

 𝑮𝛥PGPS
𝑃𝑉𝐴 = [

−𝒆𝟏 01×3 01×3
⋮ ⋮ ⋮

−𝒆𝒏𝟏 01×3 01×3
] is a design matrix between 𝜟𝑷𝑮𝑷𝑺  and 𝑿𝑷𝑽𝑨  with  𝒆𝒊∈[𝟏,𝒏𝟏] 

the LOS unit vector between the rover and the GPS satellite 𝑖, 01×3 = [0 0 0];  

 𝑮𝛥PGLO
𝑃𝑉𝐴 = [

−𝒆𝟏 01×3 01×3
⋮ ⋮ ⋮

−𝒆𝒏𝟐 01×3 01×3
], is a design matrix between 𝜟𝑷𝑮𝑳𝑶 and 𝑿𝑷𝑽𝑨 with  𝒆𝒊∈[𝟏,𝒏𝟐] 

the LOS unit vector between the rover and the GLONASS satellite 𝑖; 

  𝑮𝛥PGLO
𝐼𝐶𝐵 = [

1 𝑘1
⋮ ⋮
1 𝑘𝑛2

] is a design matrix between 𝜟𝑷𝑮𝑳𝑶 and [𝑏𝑟; 𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒];  

 𝑮∇∆ΦGPS
𝑃𝑉𝐴 = [

−𝛥𝒆𝟏 01×3 01×3
⋮ ⋮ ⋮

−𝛥𝒆𝒏𝟑 01×3 01×3
] , is a design matrix between 𝜵∆𝜱𝑮𝑷𝑺  and 𝑿𝑷𝑽𝑨  with 

 𝛥𝒆𝒊∈[𝟏,𝒏𝟑] = 𝐞
𝐢 − 𝐞𝐩 the LOS unit vector difference between GPS satellite 𝑖 and the carrier 

phase pivot satellite 𝑝, 𝝀𝒏𝟑×𝒏𝟑 = 𝜆𝐺𝑃𝑆𝑰𝒏𝟑×𝒏𝟑; (𝑰𝒏𝟑×𝒏𝟑 is an identity matrix)  

 𝑮∆𝚽𝐆𝐋𝐎
𝑷𝑽𝑨 = [

−𝒆𝟏 01×3 01×3
⋮ ⋮ ⋮

−𝒆𝒏𝟒 01×3 01×3
],is a design matrix between 𝜟𝚽𝐆𝐋𝐎 and 𝑿𝑷𝑽𝑨 with  𝒆𝒊∈[𝟏,𝒏𝟒],

𝝀𝒏𝟒×𝒏𝟒
′ = 𝑑𝑖𝑎𝑔([𝜆1 ⋯ 𝜆𝑛4])  is a diagonal matrix with diagonal elements in vector 
[𝜆1 ⋯ 𝜆𝑛4];  

 𝑮𝐷GPS
𝑃𝑉𝐴 = [

01×3 −𝒆𝟏 01×3
⋮ ⋮ ⋮

01×3 −𝒆𝒏𝟓 01×3
] is a design matrix between 𝑫𝑮𝑷𝑺 and 𝑿𝑷𝑽𝑨 with  𝒆𝒊∈[𝟏,𝒏𝟓] the 

LOS unit vector between the rover and the GPS Doppler satellite 𝑖; 

 𝑮DGLO
𝑃𝑉𝐴 = [

01×3 −𝒆𝟏 01×3
⋮ ⋮ ⋮

01×3 −𝒆𝒏𝟔 01×3
] is a design matrix between 𝑫𝑮𝑳𝑶 and 𝑿𝑷𝑽𝑨 with  𝒆𝒊∈[𝟏,𝒏𝟔] the 

LOS unit vector between the rover and the GLONASS Doppler satellite 𝑖; 

 𝑬∎×3 = [
1 0 0
⋮ ⋮ ⋮
1 0 0

], 𝑬∎×3′ = [
0 0 1
⋮ ⋮ ⋮
0 0 1

] 

 



58 
 

 Motion Constraint 
With a view to strengthen the performance, any constraint based on the basic knowledge of the vehicle 
motion can be applied in KF. The Non-Holonomic Constraint (NHC) describes the fact that generally 
the lateral and vertical velocities are negligible compared to the along-track velocity. This hypothesis, 
however, does not hold if the vehicle is sliding laterally or jumping. In the case of a GNSS-only system, 
the NHC provides a virtual velocity observation that the vertical velocity of the vehicle is null. The 
standard deviation of this constraint is set empirically to [7], [23]: 

 𝜎𝑁𝐻𝐶 = 𝑚𝑎𝑥 (1𝑒 − 2, 0.04 ∗ 𝑠𝑝𝑒𝑒𝑑) (4-20) 
 

 Processing of Signals 
As mentioned earlier, the positioning performance of a satellite system highly depends on the DOP and 
the UERE. The vulnerability of the GNSS receiver signal processing with respect to several error sources, 
particularly in an urban environment makes the pre-processing of measurements necessary. For instance, 
outliers need be eliminated via the pre-processing steps. In this section, three schemes to restrain or 
eliminate the measurement outliers are hence introduced. 

 

 Elevation and C/N0 Masks 
It is first essential to ensure sufficient GNSS measurements quality is kept. To remove the measurements 
that are most likely severely degraded by multipath or NLOS effects, an a-priori elevation mask and 
C/N0 mask can be applied for all GNSS measurements. This step is necessary because the models for 
the corresponding measurements might be quite erroneous and might lead to large estimation errors or 
large under- or over-assessment of the position quality.  

It is widely agreed that the higher the satellite elevation and received C/N0, the less noisy the 
measurements. The choice of the masks values is a compromise between a strong geometry and high-
quality measurements. Different value pairs have been tested (i.e., elevation mask varying from 5 
degrees to 20 degrees with an interval of 5 degrees, C/N0 mask taking values between 25 dB.Hz. and 40 
dB.Hz. with an increasing step of 3) and an interesting compromise seems to be an elevation mask of 
10 degrees and a C/N0 mask of 35 dB.Hz.  

 

 Measurement Weighting Scheme  
To reflect the differences in accuracy among the code measurements, the carrier phase measurements 
and the Doppler measurements, different C/N0-related weighting algorithms based on practical data 
study have been proposed in [71].  
 

Code Measurements 
An empirical model for the code measurements is expressed as: 
 

𝜎𝑃
2 = 𝑎 + 𝑏 ∗ 10

(− 
𝐶
𝑁0
)

10  (4-21) 

with  
 𝐶

𝑁0
 the signal to noise density value in unit dB.Hz,  

 𝜎𝑃
2 the variance of code measurements, and  

 𝑎, 𝑏 empirical parameters.  
 
The following values are extracted from [7]: 
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 GPS code measurements: 
o 𝑎 = 1 and 𝑏 = 281² are chosen for rural and sub-urban environments, and 
o 𝑎 = −1.5 and 𝑏 = 731² are selected for urban environments. 

 GLONASS code measurements are down-weighted by a scale of 1.3 (multiplying 1.69 for 
variance) compared to GPS code measurement.  

 

An illustration of the relationship between the GPS SD code residuals and the signal strength in a 
dynamic mode is provided in Figure 4-1. The red curve represents the theoretical standard-deviation 
values. The collection of data is done with the same equipment used later on for the tests in real 
conditions.  

 

Figure 4-1. The Relation between GPS SD Code Residuals Level and C/N0 in a Dynamic Open-sky 
Environment 

 
Doppler Measurements 

As for the Doppler measurements, the standard deviations seem to be influenced by both vehicle speed 
and signal strength 𝐶

𝑁0
. An empirical look-up table was derived in [7] and is used in the frame of this 

PhD: 
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Figure 4-2. Weighting scheme of Doppler measurements  

 

Carrier Phase Measurement 
A weighting scheme based on 𝐶

𝑁0
 is proposed in [72]:  

 
𝜎𝛷
2 = 10

𝐶
𝑁𝑧𝑒𝑛𝑖𝑡ℎ

.− 
𝐶
𝑁0

10  𝜎² (4-22) 

where  
 𝐶

𝑁𝑧𝑒𝑛𝑖𝑡ℎ
 equals 52 dB.Hz,  

 𝜎2 = 1𝑒−4[𝑚2] is the variance of the observation at the zenith. 
 

 GLONASS Inter-channel Biases 
In the case of the GPS signals based on CDMA, the SD carrier phase hardware delays is common for 
GPS satellites and can be mitigated using DD carrier phase measurements. This makes it easier to 
resolve the GPS DD ambiguities as integers and thus to access precise positioning.  

However, the dependence of GLONASS SD carrier phase hardware delays on the signal frequency 
makes the resolution of GLONASS SD ambiguities as integers directly from the float KF estimation 
impossible unless a fine calibration of these biases is done. The notion of Inter-channel biases (ICBs) is 
brought up to describe the SD hardware delays. 

Practical studies have shown certain characteristics of the ICBs such as [73], [74]:  

 no obvious pattern of the pseudorange ICBs magnitude as a function of the frequency number 
is observed, however, there is one on carrier phase ICBs;  

 the biases are quite independent of receivers pair to pair;  
 the pseudo-range and phase ICBs are all quite stable in time (at least on a monthly scale), which 

leaves a possibility of pre-calibration. 

However, all these previous studies are using high-quality receivers [19], [75]. Among them, some are 
directly based on IGN stations [21], [22], [76], [77]. In this section, static data collected with a low-cost 
Ublox M8T receiver (the one used later on for testing) is used for the study of ICBs and show the 
possibility of calibration. Besides, there is no easy way to separate the GPS SD code hardware delays 
∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 from the true clock bias 𝑐∆𝑑𝑡 and an equivalent term 𝑐∆𝑑𝑡𝑒𝑞 is thus preferably used instead. 
To conduct the analysis of ICBs, the GPS and GLONASS measurements can be re-modeled as following: 
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{

∆𝑃𝑖
𝐺𝑃𝑆 = ∆𝜌𝑖 + 𝑐∆𝑑𝑡𝑒𝑞  + 𝜀∆𝑃𝑖

𝛻𝛥𝛷𝑖𝑗
𝐺𝑃𝑆 = 𝛻∆𝜌𝑖𝑗 + 𝜆𝐺𝑃𝑆𝛻∆𝑁𝑖𝑗 + 𝜀𝛻𝛥𝛷𝑖𝑗 

 
(4-23) 

 
{

𝛥𝑃𝑚
𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑒𝑞  + (∆𝑟𝑢,𝑃𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 ) + 𝜀∆𝑃𝑚

𝛥𝛷𝑚
𝐺𝐿𝑂 = ∆𝜌𝑚 + 𝑐∆𝑑𝑡𝑒𝑞 + 𝜆𝑚𝛥𝑁𝑚 + (∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 ) + 𝜀𝛥𝛷𝑚

 
(4-24) 

with  

 ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 , the GPS SD code hardware delays, common between all GPS satellites;  
 ∆bru,Pm,GLO , the GLONASS SD code hardware delays; 
 ΔNm, the true integer GLONASS SD ambiguity,  
 ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 , the GLONASS SD carrier phase hardware delays. 

With the described modeling, all single-differential measurements are sharing the common clock bias 
term ∆𝑑𝑡𝑒𝑞.  

 

Code ICBs 
Two static data collections of 3 days have been performed using the low-cost Ublox M8T receiver for 
the calibration of 𝑏𝑃𝑚 = (∆𝑏𝑟𝑢,𝑃𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 ), using the previous measurement model. 𝑏𝑃𝑚  is 
representing the over-all effect of code hardware delays and ICBs. The station TLSE equipped with 
TRIMBLE NetR9 receiver and TRIMBLE TRM59800 antenna, maintained by the Centre National 
d’Etudes Spatiales (CNES), is chosen as the reference station. The position of the Ublox receiver is 
previously determined by applying GPS-only static-mode RTK.  

Stability over meters of 𝑏𝑃𝑚 = (∆𝑏𝑟𝑢,𝑃𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 ) over days is observed. The calibration result 
is presented in Figure 4-3. As expected, there is no clear relationship between the frequency numbers 
and the bias magnitudes. The peak-to-peak bias can actually reach up to 9 meters. Based on the current 
literature, even though the proposed algorithm uses pre-calibration, a two-state model (𝑏𝑟, 𝑏𝐼𝐶𝐵,𝑐𝑜𝑑𝑒) 
(modeling the residual code ICBs as a linear function of the GLONASS frequency index) has been 
implemented, as previously presented in Eq(4-14). These terms are expected to absorb the residual ICBs 
after the pre-calibration. 

Figure 4-3. Estimated GLONASS Pseudorange ICBs Depending on Frequency Numbers for a 
Baseline between TLSE and the Ublox M8T Receiver 
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Carrier phase ICBs 
According to present studies, the overall differential hardware bias ∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂can be further expressed 
as a summation of a common differential hardware delay ∆𝑏𝑟𝑢,∆𝛷0,𝐺𝐿𝑂  , which is also the bias at 
frequency number zero, and an inter-frequency carrier phase bias 𝑏𝑚,𝛥𝛷 = 𝑘𝑚𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 [21], [78]: 

∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 = ∆𝑏𝑟𝑢,𝛷0,𝐺𝐿𝑂 + 𝑏𝑚,𝛥𝛷 = ∆𝑏𝑟𝑢,𝛷0,𝐺𝐿𝑂 + 𝑘𝑚𝑏𝑠𝑙𝑜𝑝𝑒,𝛷  

with 𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 the GLONASS carrier phase ICB slope, stable in terms of months.  

 

The linear relationship between the GLONASS carrier phase ICB 𝑏𝑚,𝛥𝛷  and the frequency number km 
suggests two calibration algorithms of the carrier phase bias slope 𝑏𝑠𝑙𝑜𝑝𝑒,𝛥𝛷. The first one is to absorb 
hardware delays in float GLONASS SD ambiguity estimates, and the second one is to isolate the slope 
by double-differencing GLONASS ambiguity estimates. Via the Kalman filter, unlike the integer GPS 
DD ambiguities, estimates of GLONASS SD ambiguities include a secondary float term: 

 
𝛥𝑁̂𝑚 = 𝛥𝑁𝑚 +

∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 

𝜆𝑚
+ 𝜖𝛥𝑁̂𝑚 

(4-25) 

A common equivalent clock bias term is herein used among GPS and GLONASS SD observables. 
Therefore, the presence of the second term in the right hand of the Eq(4-25) stops the integer resolution 
of GLONASS SD ambiguities. 

To achieve the integer resolution of GLONASS ambiguities and isolate the slope bslope,Φ , DD 
ambiguities are formed as below with 𝑞 the index of the reference satellite: 

 
𝛥𝑁̂𝑚 − 𝛥𝑁̂𝑞 = 𝛻∆𝑁𝑚𝑞 +

(∆𝑏𝑟𝑢,𝛷𝑚,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 )

𝜆𝑚
−
(∆𝑏𝑟𝑢,𝛷𝑞,𝐺𝐿𝑂 − ∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 )

𝜆𝑞
+ 𝜖𝛻𝛥𝑁̂𝑚 

 
= 𝛻∆𝑁𝑚𝑞 −

(𝜆𝑚 − 𝜆𝑞)

𝜆𝑚𝜆𝑞
(∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 − ∆𝑏𝑟𝑢,𝛷𝐺𝐿𝑂) +

𝑏𝑚,𝛥𝛷 
𝜆𝑚

−
𝑏𝑞,𝛥𝛷 
𝜆𝑞

+ 𝜖𝛻𝛥𝑁̂𝑚 
 

 
=  𝛻∆𝑁𝑚𝑞 + (𝑘𝑚 − 𝑘𝑞)

(∆𝑏𝑟𝑢,𝑃𝐺𝑃𝑆 − ∆𝑏𝑟𝑢,𝛷𝐺𝐿𝑂 + 𝑏𝑚,𝛥𝛷 )

∆𝜆𝐺1
+ (𝑘𝑚 − 𝑘𝑞)

𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 

𝜆𝑞
+ 𝜖𝛻𝛥𝑁̂𝑚 

 
≈  𝛻∆𝑁𝑚𝑞 + (𝑘𝑚 − 𝑘𝑞)

𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 
𝜆𝑞

+ 𝜖𝛻𝛥𝑁̂𝑚 
(4-26)     

with ∆𝜆𝐺1 =
𝑐

∆𝑓𝐺1
= 532.9644 𝑚, the wavelength corresponding to the GLONASS G1 slot frequency. 

The approximation is accurate to a tenth-of-millimeter level.  

Practically, static data between the Ublox receiver and the TLSE station was previously collected for 
the calibration. In order to increase the accuracy, float SD GLONASS ambiguities are estimated with 
the position of the user receiver known. Closest integers are finally removed from GLONASS DD 
ambiguity estimates (𝛥𝑁̂𝑚 − 𝛥𝑁̂𝑞). According to the Eq(4-26) what’s remained is the (𝑘𝑚 − 𝑘𝑞)

𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 

𝜆𝑞
 

modulo one cycle. The relationship between the remaining residual cycles and their associated 
GLONASS DD frequency number would tell the value of 𝑏𝑠𝑙𝑜𝑝𝑒,𝛷 . This methodology has been 
validated considering only IGN stations as in [7]. Nevertheless, it is only recommended for the 
calibration of the carrier phase ICB among high-quality receivers. The reason is that besides hardware 
delays, all residual carrier phase observable noises have been absorbed in float SD ambiguity estimates.  
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Figure 4-4. Calibration of GLONASS Carrier Phase ICBs Slope [in meter] for a Baseline between 
TLSE and the Ublox M8T Receiver 

Regarding the higher observable noise level of the Ublox receiver, the second calibration method is 
preferable that a continuous estimation of the slope 𝑏𝑠𝑙𝑜𝑝𝑒,𝛥𝛷 is performed. DD ambiguities are fixed 
through the fundamental IAR combination (LAMBDA+FT-RT). The final calibration value of 
𝑏𝑠𝑙𝑜𝑝𝑒,𝛥𝛷 = −0.0155 [m] is obtained as illustrated in Figure 4-4. At the beginning, the ICBs slope is 
initialized and estimated as a float along with other ambiguity states. Attempts to achieve IAR is 
continuously done and the value of 𝑏𝑠𝑙𝑜𝑝𝑒,𝛥𝛷 is adjusted and fixed after the IAR succeeds.  

 

 Implementation of Innovation Test 
In a constrained environment, GNSS measurements are more affected by non-Gaussian error sources 
(e.g., NLOS, multipath) [71]. The detection of blunders is thus particularly necessary to ensure a robust 
PVT solution [67]. Besides the a priori GNSS measurement selection algorithms in Section 4.3.1, 
another fault detection and exclusion scheme is herein applied based on the KF innovations to handle 
potential outliers: the innovation test. This detection scheme takes advantage of the system consistency 
and redundancy considering a priori knowledge of the statistical distribution that the KF innovations in 
the fault-free case should follow. The basic implementation steps of the innovation test: Detection and 
Identification, are detailed in this section.  

1. Detection  

For the current epoch (𝑘 + 1), the KF innovation vector with 𝑝 entries 𝒀̃𝒌+𝟏𝜖ℝ𝑝 is defined as 

𝒀̃𝒌+𝟏 = 𝒀𝒌+𝟏 − 𝒀̂𝒌+𝟏 = 𝒀𝒌+𝟏 −𝑯𝒌+𝟏𝑿̂𝒌+𝟏|𝒌   

and its VC-matrix is  

𝑪𝒌+𝟏 = 𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 + 𝑹𝒌+𝟏. 

With state estimates 𝑋̂𝑘+1|𝑘  from the previous epoch, the measurement innovations 𝒀̃𝒌+𝟏 provide an 
indication of whether the current epoch measurements and state estimates are consistent via a global test 
[2], [79]. The null hypothesis 𝐻0 assumes that no measurement blunder exists, while the alternative 
hypothesis 𝐻𝑎  considers that the innovation vector is biased by 𝑴𝒌𝛁𝒌 . 𝑴𝒌  is the mapping matrix 
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describing the way how the bias vector 𝜵𝒌  interferes with the observations. The distribution of the 
innovation vector under those hypotheses are respectively  

𝑌̃𝑘+1|H0~𝑁(0, 𝑪𝒌+𝟏) 

𝑌̃𝑘+1|H𝑎~𝑁(𝑴𝒌𝛁𝒌, 𝑪𝒌+𝟏) 

Under the null hypothesis, these innovation components should follow zero-mean Gaussian distributions 
and the test statistic, the Summation of the Squared Errors (SSE), follows a Chi-square distribution, with 
the degree of freedom equal to the size of the innovation vector, 𝑝, as no restrictions are imposed on the 
mean value of 𝒀̃𝒌+𝟏: 

𝑆𝑆𝐸 = 𝒀̃𝒌+𝟏
𝑻 ∗ (𝑪𝒌+𝟏)

−𝟏 ∗ 𝒀̃𝒌+𝟏 

The overall validity of the null hypothesis is tested herein by comparing the test statistic 𝑆𝑆𝐸 with a 
critical threshold 𝑇𝛼1 . The threshold value depends on a pre-defined significance level (i.e., the 
probability of false alarm) 𝛼1.  

The presence of unspecified outliers is pronounced whenever the test statistic 𝑆𝑆𝐸  oversteps the 
threshold 𝑇𝛼1and the whole procedure passes to the next identification step. 

 

2. Identification  

When the null hypothesis is rejected in the previous global test, local tests are performed to identify the 
outliers. The local test is performed on each innovation term 𝒀̃𝒌+𝟏,𝒊  with 𝑖 ∈ [1, 2, … , 𝑝]. Besides, 
alternative hypotheses need be specified. To restrict our attention to the single-blunder case, the mapping 
matrix 𝑴𝒌 reduces to a column vector, denoted as 𝑴𝒌,𝒊 = [𝟎,… , 𝟏,… , 𝟎]

𝑻. Only the 𝑖𝑡ℎ entry is 1. The 
test statistic to test 𝐻0 against 𝐻𝑎 is constructed as  

|𝒕𝒌+𝟏,𝒊| = ||
𝑴𝒌,𝒊
𝑻 (𝑪𝒌+𝟏)

−𝟏𝒀̃𝒌+𝟏

√𝑴𝒌,𝒊
𝑻 (𝑪𝒌+𝟏)

−𝟏𝑴𝒌,𝒊

|| ≥ 𝑵𝟏−(𝜶𝟐
𝟐
)
 

where  

 𝑵
𝟏−(

𝜶𝟐
𝟐
)
 is the decision threshold as the test statistic hold a standard normal distribution under 

H0, and  
 𝜶𝟐 (e.g., 0.03) is the acceptable probability of false alarm.  

However, the assumption of having the single-blunder case is not always the reality. Besides, the 
presence of one severely deteriorated measurement could mislead other measurements failing the local 
test. Hence, a modified version of the adaptation step is required, other than simply eliminating all the 
detections. Theoretical validation is provided in [67]. What’s more, whenever the global test fails, some 
procedures need be implemented even if no outlier has been identified, as the over-all reliability of the 
system is broken.   

The modified identification test is thus as follows: each time the global test fails, the local test is 
performed on each innovation component: 

 When multiple outliers are identified by the local tests, only the one with the maximum |𝒕𝒌+𝟏,𝒊| 
is rejected to avoid the case where a blunder is large enough to cause multiple local failures. 

 When there is no outlier identified, still the innovation with the maximum |𝒕𝒌+𝟏,𝒊| is rejected.  
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The global test is always re-run until it succeeds in ensuring the integrity among the innovation sequence. 
Beside the code pseudorange and Doppler observables, carrier phase measurements can also be taken 
into account in the measurement selection to detect large CS on the rover side and especially on reference 
station side. Based on Doppler observables, the proposed cycle slip detection and repair scheme in next 
section holds limitations when the reference station does not provide Doppler observables.  

 

 Cycle Slip Detection and Repair 
The occurrence of a cycle slip describes the fact that the value of a carrier phase ambiguity term does 
not hold constant between two consecutive epochs. If the corresponding ambiguity state in the KF is not 
re-initialized, the value of the CS should be estimated and added to the ambiguity state. Otherwise, the 
estimation of the ambiguity will become erroneous.  

Frequent re-initializations of ambiguities will however undermine the profits that high-accuracy carrier 
phase measurements bring to the system. The objective of the proposed CS detection and repair is thus 
to try to maintain as much as possible the same ambiguity states without re-initialization. Indeed, 
assuming that a CS occurs at each epoch is detrimental to the PVT algorithm accuracy performance 
since it implies a constant re-estimation of the float ambiguity states without benefiting from their 
potential continuity. Frequent re-initializations will thus undermine the profits that high-accuracy carrier 
phase measurements bring to the system. It is, on the other hand, the least risky in terms of PVT 
reliability.  

Still, it might be important to closely monitor the occurrence of data outage or CS continuously to follow 
the continuous-phase ambiguity model with confidence. According to [7], the causes of CS are signal 
obstruction, low C/N0, failure in the receiver software and the receiver dynamic which may cause a 
phase error exceeding the PLL discrimination linear domain [80]. Even though the frequency of a high-
quality receiver suffering CS in an open-sky is considerably low, the CS condition that a low-cost 
receiver mounted on the top of a vehicle driven in an urban area may confront is relatively much more 
severe. 

The aim of a CS-DR scheme is thus to detect the occurrence of CS and to enable the continuous use of 
constant carrier phase ambiguity when no CS is detected (either to be able to fix it or to be able to use 
its accurately-estimated value). Besides the proposed CS-DR scheme, loss of lock indicators (LLI) 
provided by receivers can also be taken into account.  

In this section, the important CS detection and repair (CS-DR) scheme is presented. 

 

 Loss of Lock Indicator 
Indicators of CS detection should first be constructed. In this subsection, the receiver-provided CS 
indicators are presented.  

The loss of lock indicators (LLI) for the carrier phase observations provided by the receivers reflect the 
CS condition [36]. There is no reason to neglect this indicator. According to the RINEX format, 2 bits 
are allocated to provide this indicator, thus the LLI may take a value among [0, 1, 2, 3]. The occurrence 
of CS is detected when the bit 0 of LLI is set (i.e., 𝐿𝐿𝐼 ∈ [1, 3]) or when there is a transition of the parity 
unknown flag bit 1 compared to the previous epoch. Besides, the presence of a half-cycle slip is 
suspected when the bit 1 is set and the associated satellite will be disregarded during the following IAR 
process. What’s more, the selection of the reference satellite should also avoid those half-cycle slip valid 
satellites.  
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 Cycle Slip Detection and Doppler Aiding 
The Doppler measurements, with good accuracy in good signal condition, are always worthy 
consideration in GNSS applications. For example, they can be used to smooth the PVT solution [81]–
[83]. In this PhD thesis, a Doppler-aiding CS-DR is implemented to maximize the system’s capability 
of handling CS . 

The proposed CS-DR scheme is based on the following system [7]:  

 
{

𝛿𝑃𝑖𝑐𝑠 = 
𝐷𝑖(𝑘) + 𝐷𝑖(𝑘 − 1)

2
. 𝑡𝑠 =  𝛿𝜌𝑖 + 𝛿𝑑𝑡 + 𝜀𝛿𝑃𝑖𝑐𝑠

𝛿𝛷𝑖𝑐𝑠 = 𝛷
𝑖(𝑘) − 𝛷𝑖(𝑘 − 1) =  𝛿𝜌𝑖 + 𝛿𝑑𝑡 + 𝐶𝑆𝑖. 𝜆𝑖 + 𝜀𝛿𝛷𝑖𝑐𝑠 

 (4-27) 

where  

 𝛿𝑃𝐶𝑆
𝑖  [𝑚]  is the pseudorange variation between two consecutive epochs 𝑘  and (𝑘 − 1) , 

determined by the product of the average Doppler observable and the time interval 𝑡𝑠; 
 𝛿𝛷𝑖𝑐𝑠 [𝑚] is the difference between two consecutive carrier-phase observables;  
 𝛿𝑑𝑡 is the difference between rover clock delays of two successive epochs, the unit is in meter;   
 𝐶𝑆𝑖 [𝑐𝑦𝑐𝑙𝑒] is the integer CS value. 

Considering a high rate system (𝑡𝑠 is lower than 1s), the difference between measurements 𝛿𝑃𝐶𝑆𝑖  and 
𝛿𝛷ics will be the CS if it occurs. 

The geometry matrix comes from the linearization of the system measurements: 

𝛿𝜌 =  𝜌𝑖(𝑘) − 𝜌𝑖(𝑘 − 1)  

= 𝑒𝑖(𝑘)[𝑃𝑂𝑆𝑠𝑎𝑡
𝑖 (𝑘) − 𝑃𝑂𝑆(𝑘)] − 𝑒𝑖(𝑘 − 1). [𝑃𝑂𝑆𝑠𝑎𝑡

𝑖 (𝑘 − 1) − 𝑃𝑂𝑆(𝑘 − 1)] 

𝛿𝜌 + 𝑒𝑖(𝑘 − 1). [𝑃𝑂𝑆𝑠𝑎𝑡
𝑖 (𝑘 − 1) − 𝑃𝑂𝑆(𝑘 − 1)]

= 𝑒𝑖(𝑘). [𝑃𝑂𝑆𝑠𝑎𝑡
𝑖 (𝑘) − 𝑃𝑂𝑆(𝑘 − 1)] − 𝑒𝑖(𝑘). 𝛿𝑋(𝑘) 

where  

 𝑃𝑂𝑆𝑠𝑎𝑡
𝑖 (∎) the position of satellite 𝑖 at transmitting time before nominal epoch ∎,  

 𝑃𝑂𝑆(∎) the rover’s position at epoch ∎, 
  𝛿𝑋(∎) the between-epochs variation of the rover’s position and  
 𝑒𝑖(∎) the unit vector directing from the rover to the satellite at epoch∎ 

Therefore, with measurements corrected by 𝛿𝜌𝑐𝑜𝑟𝑟 = 𝑒𝑖(𝑘)[𝑃𝑂𝑆𝑠𝑎𝑡𝑖 (𝑘) − 𝑃𝑂𝑆(𝑘 − 1)] − 𝑒𝑖(𝑘 −

1). [𝑃𝑂𝑆𝑠𝑎𝑡
𝑖 (𝑘 − 1) − 𝑃𝑂𝑆(𝑘 − 1)] , the relation between the measurements and the states becomes: 

 
𝑌(𝑘) = [

𝛿𝑃𝑖𝑐𝑠,𝑐𝑜𝑟𝑟

𝛿𝛷𝑖𝑐𝑠,𝑐𝑜𝑟𝑟
] = 𝐻. [

𝛿𝑋(𝑘)
𝛿𝑑𝑡
𝐶𝑆

] + 𝜀 (4-28) 

 

With the assumption that CS does not generally occur on all satellites at a given epoch, it is important 
to be able to separate the carrier phase measurements suffering CS from those free from CS. To do so, 
a separation based on a phase prediction test and Chi-square test (referred later to Step 1 and Step 2) 
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between highly probable and unlikely CS-contaminated satellites will strengthen the system [84]. The 
whole CS-DR process follows 4 steps: 

Step 1. Raw CS detection test 
𝛿𝑃𝐶𝑆

𝑖  can also be considered as the prediction of 𝛿𝛷𝑖𝑐𝑠 when no CS occurs. A phase prediction test as 
follows will detect large CS occurrences:  

 𝐻0:  𝑡𝐶𝑆
𝑖 = |𝛿𝛷𝑐𝑠

𝑖 − 𝛿𝑃𝑐𝑠
𝑖 | ≤ T ∗ σ𝑡𝐶𝑆

i  (4-29) 

The capability of the test depends on the measurement accuracy σ𝑡𝐶𝑆 and the threshold T defined by a 
tolerable false alarm rate 𝛼1. As the fact that the high-uncertainty of 𝛿𝑃𝑐𝑠𝑖  may corrupt the test 𝐻0, an 
absolute cycle number constraint Ncs (in cycle) is also required. For those satellites having 𝑡𝐶𝑆𝑖 > 𝜆𝑖Ncs , 
they are concluded CS-corrupted. 

Step 2. CS-free measurements confirmation test  
Following Step 1, a separation of satellites into two sub-groups F and S is done. The letter ‘F’ signifies 
fail-passing the test 𝐻0 and reversely, the letter ‘S’ is for success.  

 
If Group S is populated by less than 5 measurements, it is augmented by the measurements that led to 
up to the 5 smallest value of |𝛿𝛷𝑖𝑐𝑠 − 𝛿𝑃𝑖𝑐𝑠|.  

A Chi-square test is conducted on Group S to confirm that the measurements of group S are CS-free. 
This Chi-square test is based on the assumption that 𝛿𝛷𝑖𝑐𝑠 has no CS. As a consequence, the following 
system using only measurements of Group S is solved based on weighted LS:   

 𝑌𝑆 = [𝛿𝛷𝑐𝑠
𝑖 ] = 𝐻. [

𝛿𝑋(𝑘)
𝛿𝑑𝑡

] + 𝜀, 𝑖 ∈ 𝑺 (4-30) 

The sum of the squared phase measurements residuals should follow a Chi-square distribution. Thus a 
comparison of the test statistics to a threshold defined by the significance level 𝛼2 will conclude whether 
the null-CS is true or not. If the test is passed, all members of Group S are assumed CS-free. 

Step 3. Converging with Group F  

Following the test result in Step 2, two cases can occur:  

a. Satellites in Group S are CS-free. 
In this case, 𝛿𝛷𝑖𝑐𝑠,𝑖∈𝑺 will serve as precise measurements to strengthen the model. Only satellites in 
Group F are assumed to be potentially CS-contaminated. Thus, the measurement model is 

 
𝑌 = [

𝛿𝛷𝑖𝑐𝑠,𝑖∈𝑆

𝛿𝑃𝑖𝑐𝑠,𝑖∈𝐹

𝛿𝛷𝑖𝑐𝑠,𝑖∈𝐹

] = 𝐻. [
𝛿𝑋(𝑘)
𝛿𝑑𝑡
𝐶𝑆𝐹

] + 𝜀 (4-31) 

b. Satellites in Group S and F are all potentially CS-contaminated.  
This time, these two groups are gathered. Instead of the state vector 𝑪𝑺𝑭 only for group F, a state 
vector including all CS needs to be resolved. The new measurement model including the CS state is: 

 
𝑌 = [

𝛿𝑃𝑐𝑠
𝑖

𝛿𝛷𝑐𝑠
𝑖
] = 𝐻. [

𝛿𝑋(𝑘)
𝛿𝑑𝑡
𝐶𝑆𝑖

] + 𝜀, 𝑖 ∈ 𝑭 ∪ 𝑺  (4-32) 

In cases a and b, the estimates of the CS are calculated via a WLS filter, noted as 

𝐶𝑆̂ =

[
 
 
 
𝐶𝑆̂1
𝐶𝑆̂2
⋮
𝐶𝑆̂𝑛]
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Step 4. Information passed to the main GNSS positioning KF  

There are thus 2 possible results of CS-DR: 
 No CS for Group S, and only a float estimation of the CS for Group F; 
 Only a float estimation of the CS for all satellites.  

In all cases, the ambiguity estimates in the KF are corrected accordingly. For the ambiguity states of the 
satellites without CS, a very small process noise level (e.g, 1e-6 [cycle²]) is applied. On the other hand, 
the covariance of ambiguity states associated to only an estimated float CS is largely inflated to represent 
the uncertainty of the CS estimation (a typical value of e.g. 10² [cycle²] is used). Of course, instead of 
big covariance inflation, an alternative is to fuse the corresponding covariance of the estimates 𝐶𝑆̂ into 
ambiguity estimation if a big trust is put on rover states.  

 
In case when Doppler observables are also provided on the station side, a CS-DR scheme will also be 
conducted on the station. Combined information of float CS on both the rover and station sides will 
passed through. 
 

 Modified Partial Integer Ambiguity Resolution  
Taken the intention of controlling the probability of false fixing 𝑃𝑓 and the performance obtained from 
the FT-RT, a modified version of partial integer ambiguity resolution (Partial-IAR) methodology is 
proposed in this section.  

The optimal ILS estimator, the LAMBDA method, is always utilized along with the validation 
methodology FT-RT. As there is no specific formula to calculate the 𝑃𝑓, the envelope of 𝑃𝑓 is practically 
approximated by an upper bound related to the Integer Bootstrapping Estimator. Combining the Eq(3-
16) with the Table 3-1, the following relationship is derived 

 𝑃𝑓 ≤ 𝑃𝑓,𝐼𝐿𝑆 = 1 − 𝑃𝑠,𝐼𝐿𝑆 ≤ 1 − 𝑃𝑠,𝐼𝐵 ≤ 1 − 𝑃𝑠,0 (4-33) 

where 𝑃𝑆,0 is the pre-defined limit value which defines the lowest performance expected. 

It is also important to consider that the resolution of the whole integer ambiguity set is often not possible, 
and the distinction of quality among the ambiguities should be considered by virtue of their model 
strength [84], [85]. Thus, the Partial-IAR is brought up so that instead of the whole set, a subset of the 
ambiguities which may be more easily and correctly fixed should be extracted.  

The de-correlated ambiguities can be listed with their uncertainties 𝜎𝑧̂𝑖  in an ascendant order. Under the 
criterion that the probability of success fixing 𝑃𝑆 is higher than the value 𝑃𝑆,0, the first 𝑚 ambiguities 
can thus be chosen to pass the whole IAR process. The whole operating scheme of the proposed Partial-
IAR is illustrated in Figure 4-5. 



69 
 

  

Figure 4-5. Scheme of the Partial-Integer Ambiguity Resolution 

 

 Conclusion  
In this chapter, major modules of the proposed precise positioning algorithm have all been presented. A 
detailed scheme of the implemented GNSS positioning filter can be found on Figure 4-6. After the 
selection of GNSS measurements by basic C/N0 and elevation masks, a further check on code and 
Doppler observables based on an Innovation test followed. As the proposed CS-DR highly depends on 
Doppler observables, satellites associated to potentially corrupted Doppler measurements will be treated 
as CS-deteriorated ones. Considering the importance of ambiguity states, any potential state change , i.e. 
CS, should be noticed and properly handled. After the CS-DR, a second Innovation test only on carrier 
phase innovations is conducted to provide a double-check on ambiguities. Finally, attempts to fix float 
ambiguities are made. When they succeed, fixed PVA solution after the LAMBDA adjustment will be 
used in next positioning epoch.  
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Figure 4-6. Scheme of the Implemented GNSS Positioning Filter 
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 GNSS Tests and Results 

In the previous chapters, the proposed algorithm for RTK positioning in constrained environment with 
the low-cost single frequency GNSS receiver has been introduced and described. In the current chapter, 
this algorithm will be tested using real data. Two data campaigns have been collected in Toulouse, 
France. First of all, the set-up and the environment conditions where the data was collected will be 
reviewed. The RTKLIB software is then briefly introduced. As a popular precise positioning program, 
it will provide representative reference positioning results. Then, the positioning performance of our 
proposed algorithm will be studied. Different processing methods are progressively added to illustrate 
their influence on the position performance, which are in particular:  

- the use of the environment-dependent code/Doppler measurement weighting scheme;  
- the consideration of the GLONASS constellation and the GLONASS code ICB calibration;  
- the operation of the proposed CS-DR (Cycle Slip Detection and Repair) mechanism;  
- the correction of GLONASS carrier phase ICB, and the inclusion of GLONASS ambiguities 

into IAR (Integer Ambiguity Resolution) scheme.  

 

 Test Description 
In order to evaluate the performance of the proposed RTK and RTK/INS algorithms, two data campaigns 
have been collected. In this section, the equipment embedded in the test vehicle will be firstly presented, 
followed by descriptions of the data collections. Information about the precise positioning software, 
RTKLIB, is provided in the last sub-section. 

 

 Equipment Description 
The GNSS data used for this study was collected in Toulouse area by a Ublox M8T evaluation kit [86] 
connected to its magnetic patch antenna showed in the picture below. The compact receiver was 
providing raw measurements at 1 Hz. The antenna was magnetic mounted and fixed on the roof of the 
vehicle allowing GPS/GLONASS tracking on L1. GNSS data was stored in a computer connected to 
the receiver via a USB link and monitored by the u-center software. A picture of the Ublox M8T EVK 
kit is provided in Figure 5-1. At the same time, the Xsens Mti IMU [87] set at 100 Hz was embedded 
inside the driving vehicle. The temporal synchronization between the GNSS unit and inertial unit has 
been perfectly guaranteed by using PPS triggering of the IMU from the Ublox.  

 

Figure 5-1. Ublox M8T Evaluation Kits 
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In order to provide the reference trajectories, the Novatel SPAN equipment, which is composed of a 
Novatel L1/L2 receiver, a Novatel ANT-532-C antenna and a tactical grade IMU, a FSAS inertial 
module with fiber optical gyrometers, is also placed inside the vehicle. A multi-baseline post-processing 
RTK mode is used to calculate the reference trajectory. A picture of the vehicle roof, the SPAN receiver 
and inertial unit is presented in Figure 5-2. 

 

Figure 5-2. Top of the vehicle roof (left) with the Novatel antenna in white and the Ublox antenna in 
black; Inside the vehicle (right) the Novatel receiver and the inertial unit side-by-side. 

 

 Data Collections  
 

The first data set was collected when the vehicle was driven from ENAC (Ecole Nationale de l’Aviation 
Civile) to the city center along the Canal de Midi. The whole trajectory in Google Earth is represented 
in Figure 5-3. Two representative pictures of the driving environment are provided in Figure 5-4. 

The second data set was stored when the vehicle was driven around the city center. Most part of the 
trajectory was either along narrow roads with high buildings on both sides or on avenues covered by 
trees. The whole trajectory of the data set 2 is depicted in Google Earth in Figure 5-5. Some typical 
street-view pictures are presented in Figure 5-6.  

 

Figure 5-3. Trajectory in red of Data set 1 in Google Earth 

ENAC 

Canal du Midi 
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Figure 5-4. Example of Urban (left)and semi-urban (right)environment along the canal during the 
first data collection. The street view and the yellow driving strip are provided by Google Earth. 

 

Figure 5-5. Trajectory in red of Data set 2 in Google Earth 

  

Figure 5-6. Example of Urban environment during the Second Data collection. The street view is 
provided by Google Earth. 

Reference Trajectory Generation  
 

As aforementioned, the referential trajectory was provided by the Novatel Span module using Inertial 
Explorer version 8.70, in a post-processing mode. The inertial unit was tightly integrated with the 
Novatel L1/L2 receiver on a multi-station forward-backward smoothed RTK mode. Three available 
GNSS reference stations around Toulouse are involved which are TLSE, TLMF, and TLSG, from the 
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Reseau GNSS Permanent (RGP) network. Inertial Explorer is set to use the L1/L2 GPS/GLONASS 
measurements along with the tactical grade IMU measurements to derive the reference trajectory. The 
estimated standard deviations in local frame of the reference trajectory are plotted in Figure 5-7 and 
Figure 5-9. Unfortunately, the states of whether ambiguities are fixed or not are not indicated on the 
plots. But, centimeter-level positioning accuracy is expected when ambiguities are fixed. With Data set 
1, a centimeter-level accuracy is globally guaranteed while a few increases of the standard deviation 
exist due to occasional signal blockages by the bridges. The number of tracked GPS/GLONASS 
satellites seen by the Novatel set during the data collection is provided in Figure 5-8. 

Compared to the Data set 1, a much denser urban environment was experienced during the Data set 2, 
and severer signal masking was expected. The bad GNSS condition is also reflected in the number of 
available satellites tracked by the Novatel set, referring to Figure 5-10. Deduced from the Figure 5-9, 
ambiguities are even rarely fixed during the whole data campaign with the dual-frequency Novatel Span 
module in a post-processing mode.  

 
Figure 5-7. Estimated position standard deviation in ENU frame of the referential trajectory (Data set 

1)  

  

Figure 5-8. Number of tracked satellites during the trajectory (Data set 1) 
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Figure 5-9. Estimated position standard deviation in ENU frame of the referential trajectory (Data set 
2)  

 

Figure 5-10. Number of tracked satellites during the trajectory (Data set 2) 

The estimated reference velocities of the driven vehicle during the data collections are provided in 
Figure 5-11. A general lower velocity and more frequent stops were experienced during Data set 2, a 
denser urban environment.  
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Figure 5-11. Horizontal and vertical reference velocity. Data set 1 on the left and Data set 2 on the 
right.  

 

Availability of GNSS Measurements on Rover Side 
In this part, the availability of the tracked GNSS measurements viewed by the Rover receiver is also 
analyzed in both data campaigns. The number of tracked GPS/GLONASS satellites is plotted in Figure 
5-12 and Figure 5-13. Neither an elevation mask nor a C/N0 mask is applied. Compared to the number 
of tracked satellites in the Novatel receiver’s view, the high-sensitivity of the Ublox rover receiver 
always provides a higher number of available satellite measurements. Definitely, some measurements 
should be disregarded for their low quality.  

In order to provide a clearer impression of different GNSS measurements’ availability, percentages of 
each measurement’s availability during the whole trajectory are provided in Table 5-1.  

 

Figure 5-12. Number of tracked satellites during Data set 1. No elevation or C/N0 value mask is applied. 
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Figure 5-13. Number of tracked satellites during Data set 2. No elevation or C/N0 value mask is applied. 

 

Table 5-1. Availability statistics of GNSS measurements during data collections. No masks applied. 

 Data set 1 Data set 2 
Available observables C1 D1 L1 C1 D1 L1 
GPS-only At least 4 100% 100% 98.6% 100% 100% 90.8% 

At least 5 100% 100% 94.7% 99.8% 99.8% 79.4% 
At least 6 99.9% 99.9% 87.1% 99.2 % 99.2% 66.2% 
At least 7 99.1%  99.1%  74.2% 96.7%  96.7% 49.2% 
At least 8 95.6%  95.6% 57.9% 88.6%  88.6% 31.0% 

GPS 
+GLONASS 

At least 4 100% 100% 100% 100% 100% 99.6% 
At least 5 100% 100% 99.6% 100% 100% 98.2%  
At least 6 100% 100% 99.5% 100% 100% 93.9% 
At least 7 100% 100% 98.5% 100% 100% 87.7% 
At least 8 100% 100% 96.6% 100% 100% 81.6% 

 

As observed from the Table 5-1, as a GNSS receiver, the Ublox rover receiver has a good capability to 
provide code tracking measurements. Also, the observability of code measurements is always higher 
than that of carrier phase measurements. When only GPS is considered, the percentage of having at least 
5, or 6 carrier phase observables is on a severe decrease especially during a more challenging 
environment in Data set 2. This fact sets an upper operating bound of those IAR methodologies or CS-
DR schemes which predefined a minimum number of involved ambiguities. As indicated in Section 
4.5.2, a minimum of 5 CS-free satellites is required to pronounce a CS-free situation. Besides, the 
consideration of the GLONASS constellation improves significantly the measurements availability.  

Among aforementioned RGP network reference stations, the station TLSE equipped with TRIMBLE 
NetR9 receiver and TRIMBLE TRM59800 antenna is chosen as the reference station in our single-
station RTK algorithm. The baseline between our rover vehicle and the station TLSE is comparably 
shorter than with the other two stations. Along the 2 data collections, the lengths of the baselines are 
reflected in next Figure 5-14. The longest distance is less than 5 km. The situation of short-baseline is 
therefore agreeably confirmed. 
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Figure 5-14. Baseline length between rover and station TLSE during Data set 1 (left) and Data set 2 
(right) 

 

 Introduction of RTKLIB 
RTKLIB is an open-source program package for standard and precise GNSS positioning (RTK and PPP) 
developed by Akio Yasuda and Tomoji Takasu of the Laboratory of Satellite Navigation, Tokyo 
University of Marine Science and Technology [88], [89]. Since the first release in 2006, constant 
refinements have been added and it has been widely implemented to provide signal statistics or 
positioning results [88], [90]–[94]. The latest version 2.4.3, released in 2015, supports various real-time 
or post-processing positioning modes, i.e., the single point positioning, the code-based DGNSS 
positioning, the post-processing RTKPOST, etc. Support for system integration between GNSS and INS 
is not provided and always on the to-do-list.  

This RTKLIB program package, considering its good performance in good signal condition (i.e. open 
sky, static mode), will be used in this chapter to provide reference positioning results. An example of 
the RTKPOST module configuration details is depicted in Figure 5-15. Without specific clarification, 
these configuration parameters are selected for performance analysis sections, i.e. Section 5.2.1. A 
default elevation mask of 10 degrees and a signal strength mask of 35 dB.Hz are implemented. With the 
presence of a technical issue that the RTKPOST module can not load two navigation files (i.e., one for 
only GPS, another for GLONASS) at the same time, only GPS satellites are taken into account. As for 
the resolution of GPS ambiguities, a continuous ambiguity resolution mode is chosen so that ambiguities 
are considered constant when no cycle slip is detected. It matches the common knowledge on 
ambiguities. The embedded default algorithms for the integer ambiguity estimation is LAMBDA and 
for the validation test is the classic FT-RT. A default ratio threshold of 3 is set. The default RTKLIB 
measurements weighting scheme stays unmodified. Finally, a reasonable acceleration process noise 
model, consistent with the one mentioned in Section 4.2.3, is applied.  
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Figure 5-15. Configuration tabs of RTKLIB Continuous GPS AR Mode 

Not only the positioning results of GPS continuous AR mode will be studied, but also the results of the 
DGPS mode will also be presented. The comparison between these two modes will depict the differences 
brought by the carrier phase measurements.  

 Analysis of Positioning Performances  
In this section, the analysis of positioning performance with Data set 1 will be conducted, followed by 
the results on Data set 2. First of all, the RTKLIB solutions are presented, showing a basic positioning 
performance that a popular program can provide. Then, different propositions to progressively improve 
our RTK methodology are discussed.  

As our goal is to provide reliable solutions for ground vehicles, the horizontal positioning performance 
is emphatically exploited in solution comparisons. The 68th, 95th and 99th percentiles of the horizontal 
positioning error will be presented and compared.  

Another performance indicator is the wrong fix rate, when attempts are made to have integer ambiguities 
resolved and fixed ambiguities are obtained. Compared to the precision brought by correct fix solution, 
the unexpected severe bias brought by wrong fixing is more fatal. The theoretical definition of the wrong 
fix rate is the percentage of epochs having ambiguities fixed to a wrong integer among the total number 
of epochs when ambiguities are declared fixed. With the difficulty of knowing the true value of 
ambiguities, the optimistic definition of the wrong fixing brought up by [7] is herein adopted. Only 
moments when the horizontal bias between the resolved position solution and the reference trajectory 
solution exceeds 50 centimeters are taken into account during the calculation of the wrong fix rate.  
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 RTKLIB Solution 
The horizontal performance of the RTKLIB DGPS mode and of the continuous AR mode using the Data 
set 1 are provided in Figure 5-16 and Figure 5-17 respectively. Configuration parameters mentioned in 
5.1.3 are used. The position differences in horizontal plane are plotted in blue. The inclusion of high-
precision carrier phase measurements smoothed the position plots. However, contrarily to the DGPS 
mode in Figure 5-16, position errors are rarely wrapped by the 3-sigma curve in Figure 5-17. An over-
optimistic modeling of the whole positioning system can then be suspected for AR mode. Numerical 
performance summary is provided in Table 5-2. Due to the poor geometry, the 95th percentile of the 
DGPS mode can easily reach 5 meters. For both the DGPS mode and the continuous AR mode, we’ve 
tried to loosen the measurements selection criteria by setting the C/N0 mask at 25 dB.Hz to increase the 
number of measurements. Nevertheless, by comparing the final position performance, the inclusion of 
low-quality measurements clearly brings no noteworthy difference.  

A closer view of the continuous AR mode position error is presented in Figure 5-18. Epochs when fix 
solution is obtained are marked with black asterisks. Contrary to anticipation, big position biases are 
observed when ambiguities are fixed. Thus, the ambiguity resolution is very unreliable as 86.8% epochs 
among all the fixes are wrongly fixed.  

Table 5-2. Performance summary of the RTKLIB in DGPS mode and Continuous GPS AR mode 
processing the Data set 1  

 Horizontal Positioning Error (in meter)  
Data Set 1 68th 

Percentile 
95th 
Percentile 

98th 
Percentile 

Fix Rate Wrong Fix 
Rate 

DGPS-Mode 1.46 5.37 10.72 -- -- 
Continuous AR- Mode 2.76  13.08  88.45 8.0% 86.8% 

 

 

Figure 5-16. Horizontal performance of the RTKLIB DGPS mode (Data set 1) 
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Figure 5-17. Horizontal performance of the RTKLIB continuous AR mode (Data set 1)  

 

Figure 5-18. Horizontal performance of the RTKLIB continuous AR mode (Data set 1), and moments 
obtaining fix solution marked in black 

Compared to the Data set 1, a more constrained environment is associated with the Data set 2. In Table 
5-3 is illustrated the performance summary of RTKLIB in DGPS mode and continuous GPS AR mode. 
Detailed positioning errors and their relevant 3-sigma curves are presented in Figure 5-19 and Figure 
5-20. A first remark by observing the DGPS position results is the lack of RTKLIB’s ability to exclude 
multipath/NLOS deteriorated measurements. An over-optimistic bounding model of the measurement 
vector results in a non-coverage of the error by the 3-sigma bounds. The position performance is much 
degraded when attempting to fix GPS ambiguities. The IAR in a constrained condition was always an 
intractability that is worthy exploitations. 
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Table 5-3. Performance summary of the RTKLIB in DGPS mode and Continuous GPS AR mode 
processing the Data set 2 

 Horizontal Positioning Error (in meter)  
Data Set 2 68th 

Percentile 
95th 
Percentile 

98th 
Percentile 

Fix Rate Wrong Fix 
Rate 

DGPS-Mode 6.16  28.02  115.25  -- -- 
Continuous AR- Mode 7.58 81.68 478.05 8.5% 93.8% 

 

 

Figure 5-19. Horizontal performance of the RTKLIB DGPS mode (Data set 1) 

 

Figure 5-20. Horizontal performance of the RTKLIB continuous AR mode, and moments obtaining fix 
solution marked in black (Data set 2) 
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 GNSS-only DGPS and DGNSS Solutions 
Starting from this section, the positioning performance with only GNSS observables processed by our 
proposed methodologies will be presented. In this section, the DGPS results will first be presented to 
show the impact on position performance of the code/Doppler measurement weighting scheme 
mentioned in Section 4.3.2. Then, the benefits that a second constellation such as GLONASS can bring 
are depicted. The positioning filter used are the following:  

- Only the code and Doppler measurements are for this moment considered during the 
construction of the main positioning KF;  

- An elevation mask of 10 degrees is applied;  
- A C/N0 mask of 30 dB.Hz is generally used;  
- The parameter pair (𝛼1, 𝛼2) defining the Innovation test is empirically set as (0.2, 0.03);  
- A down-weighting factor of 1.69 is applied when considering GLONASS code measurements.  

 
In the first place, to show the impact of the measurement scheme, with the Data campaign 1 two position 
results which use only GPS code/Doppler measurements and common Innovation test parameters, but 
one with environment type ‘Rural’ and another choosing ‘Urban’, are depicted in Figure 5-22 and Figure 
5-23. The number of tracked satellites under the elevation and C/N0 masks (10 degrees and 30 dB/Hz) 
are depicted in Figure 5-21. Compared to Figure 5-12 where no masks has been planted, a general 
decrease of 2 satellites for each constellation (GPS and GLONASS) is observed. 

 

Figure 5-21. Number of tracked satellites during Data set 1. Elevation and C/N0 masks (10 degrees and 
30 dB/Hz) are applied. 
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Figure 5-22. Horizontal DGPS position difference between estimated trajectory and the reference 
trajectory (Data set 1) with associated environment type chosen as ‘Rural’.  

 

Figure 5-23. Horizontal DGPS position difference between estimated trajectory and the reference 
trajectory (Data set 1) with associated environment type chosen as ‘Urban’. 

 
Observing the driving trajectory of the Data set 1, it was truly not as a dense urban area as the are that 
the Data set 2 is associated to. As indicated in Figure 5-23, the general down-weighting of code 
measurements while choosing the urban type environment gives a better but pessimistic coverage of 
horizontal position errors by 3 sigma plots and worse positioning statistics. The mean horizontal (east 
and north directions ) positioning biases are [0.065, -0.189] meters with standard deviations [0.477, 
0.928] in Figure 5-22, while in Figure 5-23 the corresponding statistics are [0.231, -0.392] meters with 
standard deviations [0.5, 1.16]. The 95 percentile horizontal error value is 2.57 meters in Figure 5-23 
whereas the value is 1.98 meters in Figure 5-22. Appropriately weighting code/Doppler measurements 
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brings a remarkable improvement. The tuning of observation variance-covariance matrix is proven to 
be important for a KF. 
 
The code ICB calibration values mentioned in Section 4.3.3 have shown their ruleless relevance to 
GLONASS signal frequency and a magnitude level of meters. Therefore, the impossibility of being 
ignored requires the code ICB bias being corrected for the inclusion of GLONASS code/Doppler in 
positioning. The horizontal DGNSS positioning errors of the Data set 1 are plotted in Figure 5-24. The 
summary of positioning performances is presented in Table 5-4. 
 
Comparing the Figure 5-22 and Figure 5-24, the improvement brought by the consideration of 
GLONASS code/Doppler measurements in positioning statistics is modest. However, the decrease of 3-
sigma bounds is remarkable. The confidence in position solution has augmented. The values of HDOP 
are provided in Figure 5-25, with the red curve corresponding to the previous DGPS case and the blue 
line describing the DGNSS case. Compared to the case of DGPS, the value of DGNSS HDOP is always 
much smaller and the mean value is now 0.76 instead of 1.07. Therefore, in the case of Data set 1, when 
the only-GPS situation already shows a good geometry condition, the impact of refining the geometry 
by including GLONASS on the final positioning performance is limited. 

 

Figure 5-24. Horizontal DGNSS (GPS+GLONASS) position difference between estimated trajectory 
and the reference trajectory (Data set 1) with associated environment type chosen as ‘Rural’ 
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Figure 5-25. HDOP values of the DGPS case (in red) and the DGNSS case (in blue) (Data set 1)  

 

Figure 5-26. Horizontal DGPS position difference between estimated trajectory and the reference 
trajectory (Data set 2) with associated environment type chosen as ‘Urban’. Masks are (30 dB/Hz, 10°). 
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Figure 5-27. Horizontal DGNSS (GPS+GLONASS) position difference between estimated trajectory 
and the reference trajectory (Data set 2) with associated environment type chosen as ‘Urban’. Masks 
are (30 dB/Hz, 10°). 

 

Figure 5-28. HDOP values of the DGPS case (in red) and the DGNSS case (in blue) (Data set 2)  

 

As for the Data set 2, the DGPS and DGNSS horizontal position errors are provided in Figure 5-26 and 
Figure 5-27 respectively. The HDOP values of both cases are plotted in Figure 5-30. The positioning 
fluctuant zones, i.e. the interval between 300 and 400 epochs, and the interval after 500 epochs, are also 
reflected in HDOP plot. Unexpectedly, even though the mean value of HDOP has decreased from 1.21 
in the DGPS case to 0.88 in the DGNSS case, a little worse performance is reflected by the horizontal 
performance percentiles listed in Table 5-4.  
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Clearly, a much more constrained environment is associated to the Data set 2 and GNSS measurements 
are more vulnerable to great multipath/NLOS errors. Indeed, the detection and exclusion of deteriorated 
observables are essential for an accurate solution. The original intention of the Innovation test is to allow 
using lower elevation and lower C/N0 masks while providing a double-check on measurement 
consistency, and eventually improve the satellite geometry. Nevertheless, herein with the Data set 2, the 
combination of the aforementioned masks values (30 dB.Hz, 10°) and the current Innovation test seems 
to be insufficient, as very few GNSS measurements have been detected even though their corresponding 
innovation values could reach to a level of 10 meter. Increasing the C/N0 mask to 35 dB.Hz while all 
other parameters are kept the same, new DGNSS positioning performances are summarized in the Table 
5-4. Tracked number of satellites are provided in Figure 5-30. The temporal positioning errors of the 
Data set 2 with the higher signal strength are presented in Figure 5-29. With the original good GNSS 
geometry and good exclusion of outliers, the percentile values related to the Data set 1 have not 
deteriorated at all. However, an obvious performance improvement is present with the Data set 2 during 
the fluctuant zones (i.e., i.e. the interval between 300 and 400 epochs, and the interval after 500 epochs). 
Through those fluctuant sections, the positioning error has decreased and the curve is better bounded by 
3-sigma plots. The intentional compromise towards the satellite geometry by keeping outliers but low-
weighted may not a clever choice. Besides, concerning erroneous measurements elimination, the C/N0 
mask is always an efficient scheme.  

 

Figure 5-29. Horizontal DGNSS (GPS+GLONASS) position difference between estimated trajectory 
and the reference trajectory (Data set 2) with associated environment type chosen as ‘Urban’. Masks 
are (35 dB/Hz, 10°). 
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Figure 5-30. Number of tracked satellites during Data set 2. Elevation and C/N0 masks (10 degrees and 
35 dB/Hz) are applied. 

 

Table 5-4. Performance summary of the DGPS and DGNSS results  

  Horizontal Positioning Error (in meter) 
  68th 

Percentile 
95th 
Percentile 

98th 
Percentile 

 
Data Set 1 

DGPS (30 dB.HZ) 1.01 1.98 2.92 
DGNSS (30 dB.HZ) 1.03 2.01 2.51 
DGNSS (35 dB.HZ) 0.98 2.12 2.40 

 
Data Set 2 

DGPS (30 dB.HZ) 2.55 4.99 5.58 
DGNSS (30 dB.HZ) 2.59 5.74 6.31 
DGNSS (35 dB.HZ) 2.32 3.81 4.57 

 

 GNSS-only Float RTK Solutions 
In this section, the impact of the CS-DR scheme proposed in Section 4.5 is introduced. The word ‘float’ 
indicates that the ambiguities are kept float. Differential ambiguities are regarded as constant floats 
during the construction of the positioning KF whenever there was no CS detected.  
 
The first attempt herein is to rely only on carrier phase LLI information, the status indicators of the 
tracking channel, to predict the presence of CS. The same configuration, related to the combination of 
elevation/signal-strength masks and the Innovation test applied on code/Doppler measurements in 
previous section is kept, i.e. (30 dB.Hz, 10°) for the Data 1 and (35 dB.Hz, 10°) for the Data 2. Results 
for the Data set 1 and the Data set 2 are illustrated respectively in Figure 5-31 and Figure 5-32.  
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Figure 5-31. Horizontal Float GNSS (GPS+GLONASS) position difference between estimated 
trajectory and the reference trajectory (Data set 1) with associated environment type chosen as ‘Rural’. 
CS Detection relies only on LLI. 

 

Figure 5-32. Horizontal Float GNSS (GPS+GLONASS) position difference between estimated 
trajectory and the reference trajectory (Data set 2) with associated environment type chosen as ‘Urban’. 
CS Detection relies only on LLI. 

Clearly a mass miss-detection of CS is observed. Position errors can easily exceed 10 meters and 
immensely break the 3-sigma envelopes. In order to determine the operation of the proposed CS-DR, 3 
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parameters (𝛼1, 𝛼2, Ncs) need first to be specified: 𝛼1 the tolerable false alarm rate controlling the raw 
CS detection test; the absolute cycle number constraint Ncs; 𝛼2 the significance level defining the CS-
free confirmation test. Different combinations of the triplet (𝛼1, 𝛼2, Ncs) are applied and solutions are 
compared based on the 95th percentile horizontal position error. As an extra check on carrier phase 
observables, another Innovation test working only on carrier phase innovations is implemented. All 
results regarding the Data set 1 are displayed in Table 5-5. 
 

Table 5-5. 95th Percentile value of the horizontal position error for different CS-DR values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) (Data set 1) 

  𝜶𝟏 
  0.03 0.003 
 𝐍𝐜𝐬 1 3 10 1 3 10 
 
𝜶𝟐 

0 1.51 1.51 1.41 1.51 1.42 1.39 
0.5 1.54 1.48 1.77 1.54 1.48 1.78 
0.2 1.51 1.50 1.71 1.51 1.52 1.71 

 
The CS-DR scheme was designed not only to be able to detect all underlying CS but also to leave alone 
those CS-free satellites, as the key to successful IAR is the continuous converging of differential 
ambiguities. Gladly, a first remark from the Table 5-5 is that there is no clue of miss-detecting vital CS 
for all triplet combinations. Nevertheless, there are still two values underlined respectively in red, the 
maximum 95th percentile error corresponding to the triplet (𝛼1, 𝛼2, Ncs) = (0.003, 0.5, 10), and in green 
the minimum 95th percentile error corresponding to the triplet (𝛼1, 𝛼2, Ncs) = (0.003, 0, 10), which 
deserve more attention. It seems that on the basis of all potential vital cycle slips being detected, the less 
sensitive CS-DR scheme presents better positioning results. Take the instance of the triplet 
(𝛼1, 𝛼2, Ncs) = (0.003, 0, 10), the detection of potential CS on each tracked satellite on each temporal 
epoch is depicted in red cross in Figure 5-33. For each epoch, the number of satellites declared CS-free 
and the number of satellites detected with CS are depicted in Figure 5-34. The total number of epochs 
holding (more than 5) CS-free satellites is 862 and there are 734 epochs in which CS-deteriorated 
satellites are detected.  

 

Figure 5-33. Detected presence of potential CS marked in red cross, with CS-DR scheme taking the 
values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10)(𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 1). 
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An indicator, CS-free rate, which is the ratio in percentage between the number of epochs having CS 
detected and the number of epochs having the corresponding satellite tracked, is used here to provide a 
general vision of CS on carrier phase observables. To provide a comparison of CS detection rates 
between the triplets (0.003, 0, 10) and (0.003, 0.5, 10) , the detailed CS-free rates for each satellite are 
listed in Table 5-6. A general decline of the CS-free rate between 4.6% and 13% on each satellite when 
a more sensitive CS-DR triplet (0.003, 0.5, 10) is observed.  

Table 5-6. CS-free rates for each tracked satellite for two CS-DR triplet values (𝛼1, 𝛼2, 𝑁𝑐𝑠) (Data set 
1) 

 CS-free rate (CS presence/Satellite visibility) 
PRN 6 10 12 14 15 17 19 24 25 
(0.003, 0, 10) 62.9% 62.5% 91.4% 82.7% 81.1% 63.4% 78.6% 90.4% 83.0% 
(0.003, 0.5, 10) 58.1% 55.4% 78.4% 72.8% 71.7% 59.5% 70.6% 77.9% 72.8% 
PRN 29 32 33 40 41 42 43 51 52 
(0.003, 0, 10) 30.6% 85.4% 78.4% 68.1% 78.4% 89.8% 70.5% 77.8% 88.0% 
(0.003, 0.5, 10) 25.0% 74.5% 69.8% 60.3% 69.5% 77.7% 62.6% 69.8% 76.7% 

 
What’s more, in order to hold the continuity of ambiguity estimation, the number of epochs having more 
than 5 satellites identified as CS-free is checked. In the case corresponding to the triplet (𝛼1, 𝛼2, Ncs) =
(0.003, 0, 10), where we obtain the minimum 95th percentile error, 862 epochs are declared holding 
more than 5 CS-free satellites. However, the number of 5 CS-free satellites epochs decreases to 737 in 
the case (𝛼1, 𝛼2, Ncs) = (0.003, 0.5, 10) where we obtain the largest 95th percentile error, which means 
in other words that in total 125 epochs there are CS-free satellites contaminated. The number of epochs 
having satellites detected with CS arises from 734 to 740. The temporal conditions are reflected in Figure 
5-34 and Figure 5-35. The triplet value (𝛼1, 𝛼2, Ncs) = (0.003, 0, 10) will be kept in following test on 
Data set 1 if there is no specific statement made. The horizontal position results are presented in Figure 
5-36. A general good coverage of the 3-sigma bounds over the positioning errors is observed. Besides, 
the good handling of carrier phase measurements provides a smoother and a more accurate position 
solution compared to Figure 5-24. 

 

Figure 5-34. Data set 1. Number of epochs holding satellites declared CS-free(on the left), and Number 
of epochs holding satellites declared CS- deteriorated (on the right). CS-DR scheme takes the values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 
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Figure 5-35. Data set 1. Number of epochs holding satellites declared CS-free(on the left), and Number 
of epochs holding satellites declared CS- deteriorated (on the right). CS-DR scheme takes the values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0.5, 10). 

 

 Figure 5-36. Horizontal Float GNSS (GPS+GLONASS) position difference between estimated 
trajectory and the reference trajectory (Data set 1) with associated environment type chosen as ‘Rural’. 
CS-DR scheme takes the values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 

 
In Table 5-7 are displayed performance summary values related to the Data set 2. The triplet value 
(𝛼1, 𝛼2, Ncs) = (0.003, 0, 10), which works the best in the case of Data set 1, provides a relative large 
95th percentile error. According to the Table 5-7, the consideration of an extra CS-free confirmation test 
with 𝛼2 = 0.5 would be more appropriate. As indicated in Figure 5-37 and Figure 5-38, the number of 
epochs having more than 5 CS-free satellites drops from 611 of the case (𝛼1, 𝛼2, Ncs) = (0.003, 0, 10) 
to 586 (𝛼1, 𝛼2, Ncs) = (0.003, 0.5, 10). The temporal horizontal positioning errors of the two triplet 
values: (𝛼1, 𝛼2, Ncs) = (0.003, 0, 10)  and (𝛼1, 𝛼2, Ncs) = (0.003, 0.5, 10),  are plotted separately in 
Figure 5-39 and Figure 5-40. A general good coverage of the 3-sigma bounds over the positioning errors 
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is observed on both figures. Compared to the Figure 5-39, an obvious improvement is remarked around 
the epoch 300 as a more stable solution encompassed by the 3-sigma bounds is observed in Figure 5-40.  
Similarly, the triplet value (𝛼1, 𝛼2, Ncs) = (0.003, 0.5, 10) will be kept in following test on Data set 2 
if there is no specific statement made.  

 

Table 5-7. 95th Percentile value of the horizontal position error for different CS-DR values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) (Data set 2) 

  𝜶𝟏 
  0.03 0.003 
 𝐍𝐜𝐬 1 3 10 1 3 10 
 
𝜶𝟐 

0 3.29 3.628 4.634 3.296 3.628 4.611 
0.5 3.30 3.343 3.174 3.30 3.344 3.175 
0.2 3.294 3.37 3.474 3.295 3.373 3.455 

 

 

Figure 5-37. Data set 2. Number of epochs holding satellites declared CS-free(on the left), and Number 
of epochs holding satellites declared CS- deteriorated (on the right). CS-DR scheme takes the values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 

 

Figure 5-38. Data set 2. Number of epochs holding satellites declared CS-free(on the left), and Number 
of epochs holding satellites declared CS- deteriorated (on the right). CS-DR scheme takes the values 
(𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0.5, 10). 
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Figure 5-39. Horizontal Float GNSS (GPS+GLONASS) position difference between estimated 
trajectory and the reference trajectory (Data set 2) with associated environment type chosen as ‘Rural’. 
CS-DR scheme takes the values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 

 

 

Figure 5-40. Horizontal Float GNSS (GPS+GLONASS) position difference between estimated 
trajectory and the reference trajectory (Data set 2) with associated environment type chosen as ‘Rural’. 
CS-DR scheme takes the values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0.5, 10). 

 

 GNSS-only AR Solution 
In this section, the principle of the proposed Partial-IAR (Partial-Integer Ambiguity Resolution) scheme 
proposed will be discussed. Estimated float DD GPS ambiguities are directly processed, while calibrated 
carrier phase ICBs first need to be isolated from GLONASS ambiguities before entering the IAR 
(Integer Ambiguity Resolution) scheme.  
 



96 
 

First of all, in order to provide a baseline IAR solution of the Data set 1, the classic FT-RT (Fixed 
Threshold-Ratio Test)is applied. A minimum number of 5 DD ambiguities to enter IAR is generally 
required [7] and an empirical ratio threshold of 2 is taken. Horizontal position errors are presented in 
Figure 5-41. Obvious positioning errors have been remarked due to false ambiguity resolutions.  
 
In order to provide a comparable solution, the same ratio threshold of 2 and a minimum number of 5 
ambiguities are both adopted in the utilization of the modified Partial-IAR scheme. In addition, a 
minimum threshold for the probability of success fixing 𝑃𝑆,0 = 99.5% (default value) is set.  
 
For Data set 1, in Figure 5-42 are displayed the horizontal position errors as a function of time. The 
performance summary is listed in Table 5-8. Better horizontal percentile values are obtained with the 
modified Partial-IAR scheme. Then, even though with similar fix rate 5.6%, a much lower wrong fixing 
rate of 16.7% is achieved in the Partial-IAR case. Nevertheless, facing a biased fixed solution, it is 
always better to keep solutions float. However, the overall performance is not at all satisfying. Indeed, 
the fact that float solution is not accurate enough (providing a low 𝑃𝑆 value) leads to a rather frequent 
fail of the ambiguity validation test. Despite the ratio test between the two best integer candidates, the 
number of epochs having more than 5 ambiguities passing through the Partial-IAR scheme, while 
holding a 𝑃𝑆 greater than 𝑃𝑆,0 is only 12.8%. The fixing rate is highly limited in the beginning. The 
value of 𝑃𝑆 calculated based on the best 5 satellites having the lowest uncertainty is plotted in Figure 
5-43.  
 
The additional information provided by other equipment, for example, the inertial units can be very 
interesting. First of all, the better confidence on rover’s attitude gives the choice of trusting the 
covariance associated to estimated CSs, other than applying a general big covariance inflation of all 
detected CS-contaminated ambiguities. Besides, float estimates of ambiguities are expected to be more 
accurate due to the incorporation of IMU measurements.   
 

 

Figure 5-41. Horizontal performance of the IAR solution using FT-RT as the ambiguity validation 
method. (Data set 1) 
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Figure 5-42. Horizontal performance of the IAR solution using the proposed Partial-IAR as the 
ambiguity validation method. (Data set 1) 

 

Figure 5-43. The probability of success Ps calculated based on the 5 ambiguities having the lowest 
uncertainty (Data set 1) 

Table 5-8. Performance summary of the IAR results processing the Data set 1 using FT-RT and a 
modified Partial-IAR validation schemes.  

 Horizontal Positioning Error (in meter)  
Data Set 1 68th 

Percentile 
95th 
Percentile 

98th 
Percentile 

Fix Rate Wrong Fix 
Rate 

FT-RT 0.84 2.12 3.25 5.4% 63% 
Partial-IAR 0.74 1.80 2.52 5.6% 16.7% 
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Figure 5-44. Horizontal performance of the IAR solution using FT-RT as the ambiguity validation 
method. (Data set 2) 

Data set 2 measurements were collected in a much denser environment than data set 1 measurements. 
The classical IAR (FT-RT) scheme with the ratio threshold of 2 and minimum 5 satellites being fixed 
provides a positioning error plotted in Figure 5-44. The fixing rate is still low at 4%, while the wrong 
fixing rate is relatively high at 97.1%.  
As for the case with modified Partial-IAR scheme, there is no fixing success declared. Same results as 
for the previous float RTK are obtained. Too frequent appearances of cycle slips clearly interrupt the 
resolution of float ambiguities. The minimum threshold selected for the success rate is never exceeded 
when a minimum number of 5 satellites is required. The temporal success rate is provided in Figure 
5-45.  
 

 

Figure 5-45. The probability of success Ps calculated based on the 5 ambiguities having the lowest 
uncertainty (Data set 2) 
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 Improving the Navigation with GNSS/INS Integration 

An Inertial Navigation System (INS) is an autonomous system that provides the position, velocity and 
attitude information of the rover with the help of a set of inertial sensors (also known as inertial 
measurement unit (IMU)), and a navigation processor [1], [2]. The INS is less vulnerable to outliers than 
the GNSS especially in a constrained environment. However, the navigation quality of a low-cost INS 
degrades quickly in a stand-alone mode mainly because of measurement biases. Therefore, to improve 
the over-all navigation performance, a low-cost INS will be integrated with GNSS. 

In this chapter, there will be firstly some introductory sections on the INS. Then the GNSS/INS 
integration techniques are interpreted in the end.  

 

 Overview of INS 
An IMU nominally consists of three accelerometers to measure the vehicle accelerations in three 
mutually orthogonal directions, and three gyroscopes to scale the rotation in three mutually orthogonal 
directions. Usually, these two triads are parallel, sharing the same origin. A strapdown architecture is 
typically applied, meaning that the sensor axes are fixed in the body of the IMU.  

IMUs are classified into different grades according to their performance: the marine-grade, the aviation 
grade, the tactical grade and the automotive grade [2], [67]. Generally the higher the grade is, the more 
it costs. A marine-grade INS, used in ships, submarines or some spacecraft, can cost over 1 million 
dollars while a navigation drift of less than 1.8 km over a whole daytime is guaranteed. Aviation-grade 
INSs, designed especially for military and commercial airlines, can cost around 100, 000 dollars while 
a horizontal navigation drift in the first hour of operation should be less than 1.5 km. A tactical-grade 
INS, at a price between 5000 dollars to 20000 dollars, is expected to provide reliable navigation 
performance for a few minutes.  

The miniaturization, low cost, low power consumption and mass-production capacity have made the 
micro-electro-mechanical system (MEMS) sensors more and more attractive for automotive 
applications [2], [24]. However, compared to higher grade sensors, MEMS sensors still exhibit larger 
errors which demand careful handling.  

A dead reckoning principle is usually applied in INS to determine the vehicle’s current position and 
attitudes information, with previous knowledge of the vehicle and the measured accelerations and 
angular rates at the output of inertial sensors, together with a gravity field model or baro-altimeter 
information [2], [28]. Integrations over time of accelerations and angular rates are used to update the 
information.   

In this section, the modeling of IMU measurements will be first given, followed by the relationships 
between several involved frames.  

To avoid confusion, the notation 𝒙𝜷𝜶
𝜸
 is used to describe the kinematic quantities 𝒙, such as the position, 

the velocity, the accelerations, or the angular rate, of the object frame 𝜶 with respect to the reference 
frame 𝜷 resolved in the frame 𝜸 axes.  

 

 Attitudes of Vehicle  
Euler angles are terms used to describe the attitudes of the vehicle with respect to the local n-frame. 
Before introducing the attitudes, the body frame, normally aligned with the vehicle frame, should be 
specified.  
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Body frame (right, forward, up, b-frame): the body frame, is defined as 

- the origin coinciding with the center of IMU 
- 𝑥𝑏-axis pointing towards the right of the vehicle, the rotating-axis of the pitch angle, 
- 𝑦𝑏-axis pointing towards the front of the vehicle, the rotating-axis of the roll angle, and  
- 𝑧𝑏-axis pointing towards the vertical up direction of the vehicle, along which is rotating the 

yaw angle. 

Euler angles (Roll, Pitch, Heading(Yaw)): attitudes of b-frame with reference to local n-frame, see 
following Figure 6-1.  

 

Figure 6-1. The b-frame and attitudes of a vehicle, extracted from [28] 

 

 Modeling of IMU Measurements  
An accelerometer can be typically modelled as consisting of a known proof mass, which is restrained 
by a pair of springs and free to move along the sensitive axis. The displacement from the equilibrium 
position is measured to output finally the specific force on the mass. With the presence of the 
gravitational field, the relation between the specific force and the acceleration is given by:  

 𝒇𝒊𝒃
𝒃 = 𝒂𝒊𝒃

𝒃 − 𝜸𝒊𝒃
𝒃  (6-1) 

where  

 𝒇𝒊𝒃
𝒃  is the three-dimensional specific force,  

 𝜸𝒊𝒃
𝒃  is the gravitational acceleration, and  

 𝒂𝒊𝒃
𝒃  is the vehicle acceleration with respect to (w.r.t) the i-frame.   

A gyroscope is a sensor used to provide angular rates of the vehicle with respect to the inertial frame. 
The three main types of gyros are spinning mass, optical, and vibratory. Each has its own physical 
principle. For more details, refer to [24], [95].  

The IMU measurements are typically corrupted by errors like biases, scale factors and misalignment 
errors, etc. At the outputs of IMU sensors, collected raw measurements are modelled as following [2], 
[23]: 

 𝒇̃𝒊𝒃
𝒃 = 𝒃𝒂 + (𝑰𝟑 + 𝑺𝒂)𝒇𝒊𝒃

𝒃 + 𝜼𝒂 

𝝎̃𝒊𝒃
𝒃 = 𝒃𝒈 + (𝑰𝟑 + 𝑺𝒈)𝝎𝒊𝒃

𝒃 + 𝜼𝒈 

(6-2) 

 

Biases in gyroscope and accelerometer are typically composed of two parts [2], [67], [87]:  

 static (known as turn on bias, constant throughout an IMU operating period, but varies from 
run to run) and  



102 
 

 dynamic (in run bias/bias instability, varies over periods of order a minute) 

 𝒃𝒂 = 𝒃𝒂𝒔 + 𝒃𝒂𝒅 

𝒃𝒈 = 𝒃𝒈𝒔 + 𝒃𝒈𝒅 (6-3) 

 

Generally, the static parts are modelled as random constant processes (or calibrated) and the dynamic 
parts are represented with a first-order Gauss-Markov process.  

The scale factor error is the departure of the input-output gradient of the instrument from unity. The 
scale factor errors of the gyro and accelerometer are denoted as 𝒔𝒂 = [𝑠𝑎,𝑥 , 𝑠𝑎,𝑦, 𝑠𝑎,𝑧]  and 𝒔𝒈 =
[𝑠𝑔,𝑥, 𝑠𝑔,𝑦, 𝑠𝑔,𝑧]. Cross-coupling errors arise from the misalignment of the sensitive axes of the inertial 
sensors with respect to the orthogonal axes of the body frame, due to manufacturing limitations. In 
vibratory sensors, cross-coupling errors can also arise due to the cross-talk between individual sensors. 
The notation 𝑚∗,𝛼𝛽 denotes the cross-coupling coefficient sensed by the 𝛼-axis of the sensor * due to 
the 𝛽 -axis. Finally, the scale factor and the cross-coupling errors for a nominally orthogonal 
accelerometer and gyro triad: 

𝑺𝒂 = [

𝑠𝑎,𝑥 𝑚𝑎,𝑥𝑦 𝑚𝑎,𝑥𝑧

𝑚𝑎,𝑦𝑥 𝑠𝑎,𝑦 𝑚𝑎,𝑥𝑧

𝑚𝑎,𝑧𝑥 𝑚𝑎,𝑧𝑦 𝑠𝑎,𝑧
], 𝑺𝒈 = [

𝑠𝑔,𝑥 𝑚𝑔,𝑥𝑦 𝑚𝑔,𝑥𝑧
𝑚𝑔,𝑦𝑥 𝑠𝑔,𝑦 𝑚𝑔,𝑥𝑧
𝑚𝑔,𝑧𝑥 𝑚𝑔,𝑧𝑦 𝑠𝑔,𝑧

] 

The scale factor and the cross-coupling errors are unit-less and typically expressed in parts per million 
(ppm).  

Strictly, all above states need be modeled to fully represent an INS navigation, which is however only 
theoretically possible. In practical applications, limited to vehicle dynamics, data collection campaigns, 
and the fact that adding more states will weaken the system, the relatively small cross-coupling 
coefficients are omitted [67]. In this PhD, considering the computation efficiency, only the diagonal 
parameters of the matrix 𝑺∎ are thus considered. In fact, along with the technology development in 
MEMS, the scale factor error even for very low-cost MEMS sensors is over-bounded by a very low 
percentage (e.g., 3%)[24]. According to the data sheet of the XSENS MTi, the one used in this study, a 
scale factor error less than 0.5% is guaranteed [96]. Therefore, a simplified modeling of INS 
measurements only with biases parameters is also acceptable.  

 

 Coordinate Transformation Matrix between Reference Frames   
For different conveniences or objectives, a specific reference frame is sometimes preferred than others 
to better describe a quantity. Thus, the notion of a coordinate transformation matrix 𝑪𝜶

𝜷, also known as 
the direction cosine matrix (DCM), need be brought up, which transforms a quantity vector expressed 
in 𝜶 frame axes to 𝜷 frame axes [2]. In this section, the coordinate transformation matrices between 
frame pairs (b-frame, n-frame), (e-frame, i-frame), and (e-frame, n-frame) are interpreted.  

 

6.1.3.1 b-frame and n-frame 
Euler angles 𝝍𝒏𝒃 = [𝜙𝑛𝑏, 𝜃𝑛𝑏 , 𝜓𝑛𝑏], respectively (roll, pitch, heading), are used to describe attitudes of 
the b-frame w.r.t the local n-frame. The transformation matrix from b-frame to n-frame is broken into 3 
successive rotations around axes in order 𝑧𝑏, 𝑥𝑏 and 𝑦𝑏, represented by 𝑪𝑏𝑛 [23]:  

  𝑪𝒃
𝒏 = (𝑪𝒏

𝒃)
𝑻
= 𝑹𝒛(𝜓𝑛𝑏)𝑹𝒙(−𝜃𝑛𝑏)𝑹𝒚(−𝜙𝑛𝑏)  (6-4) 
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where 

 𝑹𝒛(𝜓𝑛𝑏) = [
𝑐𝑜𝑠(𝜓𝑛𝑏) 𝑠𝑖𝑛(𝜓𝑛𝑏) 0

−𝑠𝑖𝑛(𝜓𝑛𝑏) 𝑐𝑜𝑠(𝜓𝑛𝑏) 0
0 0 1

] , 𝑹𝒙(−𝜃𝑛𝑏) = [
1 0 0
0 𝑐𝑜𝑠𝜃𝑛𝑏 −𝑠𝑖𝑛𝜃𝑛𝑏
0 𝑠𝑖𝑛𝜃𝑛𝑏 𝑐𝑜𝑠𝜃𝑛𝑏

] , 

𝑹𝒚(−𝜙𝑛𝑏) = [
𝑐𝑜𝑠𝜙𝑛𝑏 0 𝑠𝑖𝑛𝜙𝑛𝑏
0 1 0

−𝑠𝑖𝑛𝜙𝑛𝑏 0 𝑐𝑜𝑠𝜙𝑛𝑏

]. 

 

 𝑪𝒃𝒏 and Euler angles 

The detailed representation of 𝑪𝒃
𝒏 depending on Euler angles is thus by expanding Eq(6-4):  

𝑪𝑏
𝑛 (1, 1) = 𝑐𝑜𝑠𝜙𝑛𝑏𝑐𝑜𝑠𝜓𝑛𝑏 + 𝑠𝑖𝑛𝜙𝑛𝑏𝑠𝑖𝑛𝜃𝑛𝑏𝑠𝑖𝑛𝜓𝑛𝑏 𝑪𝑏

𝑛 (1, 2) = 𝑐𝑜𝑠𝜃𝑛𝑏𝑠𝑖𝑛𝜓𝑛𝑏  

𝑪𝑏
𝑛 (2,1) = −𝑐𝑜𝑠𝜙𝑛𝑏𝑠𝑖𝑛𝜓𝑛𝑏 + 𝑠𝑖𝑛𝜙𝑛𝑏𝑠𝑖𝑛𝜃𝑛𝑏𝑐𝑜𝑠𝜓𝑛𝑏 𝑪𝑏

𝑛 (2,2) = 𝑐𝑜𝑠𝜃𝑛𝑏𝑐𝑜𝑠𝜓𝑛𝑏  

𝑪𝑏
𝑛 (1, 3) = 𝑠𝑖𝑛𝜙𝑛𝑏𝑐𝑜𝑠𝜓𝑛𝑏 − 𝑐𝑜𝑠𝜙𝑛𝑏𝑠𝑖𝑛𝜃𝑛𝑏𝑠𝑖𝑛𝜓𝑛𝑏 𝑪𝑏

𝑛 (3,1) = −𝑠𝑖𝑛𝜙𝑛𝑏𝑐𝑜𝑠𝜃𝑛𝑏  

𝑪𝑏
𝑛 (2,3) = −𝑠𝑖𝑛𝜙𝑛𝑏𝑠𝑖𝑛𝜓𝑛𝑏 − 𝑐𝑜𝑠𝜙𝑛𝑏𝑠𝑖𝑛𝜃𝑛𝑏𝑐𝑜𝑠𝜓𝑛𝑏 𝑪𝑏

𝑛 (3,2) = 𝑠𝑖𝑛𝜃𝑛𝑏 

𝑪𝑏
𝑛 (3,3) = 𝑐𝑜𝑠𝜙𝑛𝑏𝑐𝑜𝑠𝜃𝑛𝑏    

 

Conversely, attitude angles can also be determined from the transformation matrix 𝑪𝑏𝑛 as following: 

 

{
 
 

 
 ϕnb = −𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐂b
n (3,1)

𝐂b
n (3,3)  

)

θnb = 𝑎𝑟𝑐𝑠𝑖𝑛(𝐂b
n (3,2))

ψnb = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐂b
n (1, 2)

𝐂b
n (2,2)

)

 (6-5) 

When Euler angles represent small angles, the DCM can be approximated as a function of the skew-
symmetric matrix, noted [𝝍̅𝒏𝒃 ×] , of the re-ordered version of attitudes 𝝍̅𝒏𝒃 = [ −𝜃𝑛𝑏 , −𝜙𝑛𝑏 , 𝜓𝑛𝑏]: 

 
𝑪𝑏
𝑛 = 𝐶(𝝍𝒏𝒃) = [

1 𝜓𝑛𝑏 𝜙𝑛𝑏
−𝜓𝑛𝑏 1 −𝜃𝑛𝑏
−𝜙𝑛𝑏 𝜃𝑛𝑏 1

] = 𝐼3 − [𝝍̅𝒏𝒃 ×] (6-6) 

 Quaternion  

Other than a DCM, the series of rotations between b-frame and the local n-frame can be summarized 
into a rotation of angle 𝜃  around the rotation axis (𝑞1, 𝑞2, 𝑞3) , and the transformation matrix is 
represented by a quaternion 𝒒, a four-dimensional vector:  

 

𝒒 = [

𝑞1
𝑞2
𝑞3
𝑞4

] =

[
 
 
 
 
 
 
𝜃𝑥
𝜃
𝑠𝑖𝑛0.5𝜃

𝜃𝑦

𝜃
𝑠𝑖𝑛0.5𝜃

𝜃𝑧
𝜃
𝑠𝑖𝑛0.5𝜃

𝑐𝑜𝑠0.5𝜃 ]
 
 
 
 
 
 

 (6-7) 

where  
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 𝜃 = ‖𝜽‖ = √𝜃𝑥
2 + 𝜃𝑦

2 + 𝜃𝑧
2 is the magnitude of the rotation,  

 (𝑞1, 𝑞2, 𝑞3) represent the axis around which the rotation is implemented.  

The components of a quaternion always respect the constraint that  

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1. 

Compared to a rotation matrix, a quaternion representation is more stable, and mathematically more 
efficient as only four components are involved [1], [67].  

Not being an intuitive way to represent rotations, the utilization of the quaternion requires more attention 
to avoid mistakes. For a rotating frame, the expression of the time-dependent quaternion is not direct 
and differential quality of the quaternion need firstly be established. 

While the quaternion parameters are functions of time, the associated differential equation is  

 
𝒒̇ =

1

2
𝜴̅(𝒘)𝒒 (6-8) 

where 𝛀̅(𝒘) is of the following particular form 

 

𝜴̅(𝒘)  = [

0 𝑤𝑧
−𝑤𝑧 0

−𝑤𝑦 𝑤𝑥
𝑤𝑥 𝑤𝑦

 𝑤𝑦 −𝑤𝑥
−𝑤𝑥 −𝑤𝑦

0 𝑤𝑧
−𝑤𝑧 0

] = [
−[𝒘 ×] 𝒘

−𝒘𝑻 0
] (6-9) 

and [𝒘 ×] is the skew-symmetric matrix of the angular velocity vector 𝒘 of the body rotation, 𝒘 =

[𝑤𝑥 , 𝑤𝑦, 𝑤𝑧]
𝑇.  

To obtain the discrete closed form solution of the previous equation, a short time interval is assumed 
between epoch 𝑘 and epoch (𝑘 + 1) [28]： 

 
𝒒𝒌+𝟏 = (∑

1

2𝑛

∞

𝑛=0

𝑆̅𝑛)𝒒𝒌 ≅ 𝒒𝒌 +
1

2
[2 (𝑐𝑜𝑠 (

𝜃

2
) − 1) ∙ 𝐼4 +

𝑠𝑖𝑛 (
𝜃
2)

𝜃 2⁄
𝑆̅(𝒘)]𝒒𝒌 (6-10) 

where 𝑆̅(𝒘) = 𝜴̅(𝒘)𝛥𝑡 = [−[𝜽 ×] 𝜽

−𝜽𝑻 0
]. 

 

 𝑪𝒃𝒏 and Quaternion 

In the case of the frame pair (b-frame, n-frame), the conversion of a quaternion into a coordinate 
transformation matrix DCM is reflected by: 

 𝑪𝒃
𝒏 = 𝑪(𝒒𝒃

𝒏) 

= [

𝑞4
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞3𝑞4) 2(𝑞1𝑞3 + 𝑞2𝑞4)

2(𝑞1𝑞2 + 𝑞3𝑞4) 𝑞4
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1𝑞3 − 𝑞2𝑞4) 2(𝑞2𝑞3 + 𝑞1𝑞4) 𝑞4
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (6-11) 
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𝒒𝒃
𝒏 = [

𝑞1
𝑞2
𝑞3
𝑞4

] =

[
 
 
 
 
 
 
 
 

𝑪𝒃
𝒏(3, 2) − 𝑪𝒃

𝒏(2, 3)

4𝑞4
𝑪𝒃
𝒏(1, 3) − 𝑪𝒃

𝒏(3, 1)

4𝑞4
𝑪𝒃
𝒏(2, 1) − 𝑪𝒃

𝒏(1, 2)

4𝑞4

0.5√1 + 𝑪𝒃
𝒏(1, 1) + 𝑪𝒃

𝒏(2, 2) + 𝑪𝒃
𝒏(3, 3)

]
 
 
 
 
 
 
 
 

 (6-12) 

 

In terms of attitudes angles, 𝝍𝒏𝒃 = [𝜙𝑛, 𝜃𝑛𝑏 , 𝜓𝑛𝑏] the quaternion is expressed as:  

 

𝒒𝒃
𝒏 =

[
 
 
 
 
 
 
 𝑐𝑜𝑠

𝜙𝑛𝑏
2
𝑠𝑖𝑛

𝜃𝑛𝑏
2
𝑐𝑜𝑠

𝜓𝑛𝑏
2
+ 𝑠𝑖𝑛

𝜙𝑛𝑏
2
𝑐𝑜𝑠

𝜃𝑛𝑏
2
𝑠𝑖𝑛

𝜓𝑛𝑏
2

−𝑐𝑜𝑠
𝜙𝑛𝑏
2
𝑠𝑖𝑛

𝜃𝑛𝑏
2
𝑠𝑖𝑛

𝜓𝑛𝑏
2
+ 𝑠𝑖𝑛

𝜙𝑛𝑏
2
𝑐𝑜𝑠

𝜃𝑛𝑏
2
𝑐𝑜𝑠

𝜓𝑛𝑏
2

−𝑐𝑜𝑠
𝜙𝑛𝑏
2
𝑐𝑜𝑠

𝜃𝑛𝑏
2
𝑠𝑖𝑛

𝜓𝑛𝑏
2
+ 𝑠𝑖𝑛

𝜙𝑛𝑏
2
𝑠𝑖𝑛

𝜃𝑛𝑏
2
𝑐𝑜𝑠

𝜓𝑛𝑏
2

𝑐𝑜𝑠
𝜙𝑛𝑏
2
𝑐𝑜𝑠

𝜃𝑛𝑏
2
𝑐𝑜𝑠

𝜓𝑛𝑏
2
+ 𝑠𝑖𝑛

𝜙𝑛𝑏
2
𝑠𝑖𝑛

𝜃𝑛𝑏
2
𝑠𝑖𝑛

𝜓𝑛𝑏
2 ]

 
 
 
 
 
 
 

 (6-13) 

 

 

6.1.3.2 e-frame and i-frame 
With 𝑤𝑖𝑒 the value of the rotation rate, the angular rotation vectors of the e-frame w.r.t i-frame expressed 
in i-frame and n-frame are respectively: 

 
𝒘𝒊𝒆
𝒊 = 𝒘𝒊𝒆

𝒆 = [
0
0
𝑤𝑖𝑒

] , 𝒘𝒊𝒆
𝒏 = [

0
𝑤𝑖𝑒𝑐𝑜𝑠𝜑
𝑤𝑖𝑒𝑠𝑖𝑛𝜑

] (6-14) 

where 𝜑 is the latitude of the n-frame origin.  

With the hypothesis that the e-frame and the i-frame coincide at initial time, the rotation matrix between 
those two frames at time 𝑡 is thus defined as: 

 
𝑪𝒊
𝒆 = (𝑪𝒆

𝒊 )−1 = (𝑪𝒆
𝒊 )𝑇 = [

𝑐𝑜𝑠 𝑤𝑖𝑒𝑡 𝑠𝑖𝑛 𝑤𝑖𝑒𝑡 0
−𝑠𝑖𝑛 𝑤𝑖𝑒𝑡 𝑐𝑜𝑠 𝑤𝑖𝑒𝑡 0

0 0 1
] (6-15) 

 

6.1.3.3 e-frame and n-frame 
The DCM between the e-frame and the n-frame is expressed as:  

 𝑪𝒆
𝒏 = (𝑪𝒏

𝒆)−1 = (𝑪𝒏
𝒆)𝑇 = 𝑹𝒙(−𝜑 + 𝜋/2)𝑹𝒛(𝜆 + 𝜋/2) (6-16) 

The expanded expression of the 𝑪𝒆𝒏 is thus  

𝑪𝒆
𝒏 = [

− sin 𝜆 𝑐𝑜𝑠𝜆 0
−𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆 −𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆 𝑐𝑜𝑠𝜑
𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 𝑠𝑖𝑛𝜑

] 

where 𝜑 is the latitude and 𝜆 is the longitude of the n-frame origin.  
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 INS Navigation with Quaternion 
The INS navigation can be summarized as a process to update the system states by getting through a set 
of equations, named the mechanization equations. The corrected specific force measurements and 
rotation rate measurements at the output of IMU are used for the update. Detailed process of derivations 
of equations presented in this section will not be addressed, while only final compact forms are 
underlined. For more information, refer to [2], [28], [97].  

 

 Equations of Motion  
The equations of motion describe the motion of the vehicle, e.g. the behavior in time of the position, the 
velocity and the vehicle attitudes. In this work, the equations are expressed under ENU n-frame [1], [23]:  

 
[

𝒓̇𝒏𝒃
𝒏

𝒗̇𝒏𝒃
𝒏

𝑪̇𝒃
𝒏

] = [

𝑭𝒓𝒗𝒗𝒏𝒃
𝒏

𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 − (2𝜴𝒊𝒆
𝒏 +𝜴𝒆𝒏

𝒏 )𝒗𝒏𝒃
𝒏 + 𝒈𝒏

𝑪𝒃
𝒏(𝜴𝒊𝒃

𝒃 −𝜴𝒊𝒏
𝒃 )

] (6-17) 

with  

 𝒓𝒏𝒃
𝒏 = (𝜑, 𝜆, ℎ)𝑇 the geodetic coordinates of the moving object (herein, the center of IMU);  

 𝒗𝒏𝒃
𝒏 = (𝑣𝑒 , 𝑣𝑛, 𝑣𝑢)

𝑇 is the velocity vector in n-frame, consisting of three components along 
east, north, and up directions; 

 𝑭𝒓𝒗 is the transformation matrix describing the relationship between the derivative of the 
geodetic coordinates and the velocity: 

 

𝑭𝒓𝒗 =

[
 
 
 
 0

1

𝑅𝑀 + ℎ
0

1

(𝑅𝑁 + ℎ)𝑐𝑜𝑠𝜑
0 0

0 0 1]
 
 
 
 

 (6-18) 

 
with  

 𝑅𝑁 =
𝑎

√1−𝑒²𝑠𝑖𝑛²𝜑
 is the normal radius,  

 𝑅𝑀 =
𝑎(1−𝑒2)

√(1−𝑒2𝑠𝑖𝑛2𝜑)3
 the meridian radius,  

 𝑎 the semi-major axis of the earth, and  
 𝑒 the eccentricity of the Earth. 

 𝒇𝒊𝒃
𝒃  is the specific force measurements under b-frame;  

 𝛀𝒊𝒆
𝒏 = [𝒘𝒊𝒆

𝒏 ×], with 𝒘𝒊𝒆𝒏  the notation of the Earth rotation rate vector under n-frame defined in 
Eq(6-14); 

 𝛀𝒆𝒏
𝒏 = [𝒘𝒆𝒏

𝒏 ×], with the angular velocity of the n-frame w.r.t the e-frame expressed in n-
frame;  

 

𝒘𝒆𝒏
𝒏 = [

−𝜑̇

𝜆̇𝑐𝑜𝑠𝜑

𝜆̇𝑠𝑖𝑛𝜑

] =

[
 
 
 
 
 
−𝑣𝑛
𝑅𝑀 + ℎ
𝑣𝑒

𝑅𝑁 + ℎ
𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ]
 
 
 
 
 

  (6-19) 
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 𝒈𝒏 = [
0
0
−𝑔

] is the Earth’s gravity field. Refer to Appendix A for more information of the 

Earth’s gravitational terms.  
 

 INS Mechanization Equations 
Starting from the present states of the vehicle, the states updates are obtained through a set of 
mechanization equations with IMU measurements. The main idea is based on the approximation that 
over a small enough temporal step, e.g. the INS mechanization time pace ∆𝑡 = 0.01𝑠, derivatives of 
certain quantities can be treated as constants. Figure 6-2 provides a block view of the INS mechanization 
process.  

 

Figure 6-2. A block diagram depicting the mechanization of an INS in the local-level frame  

 

6.2.2.1 Correction of raw IMU measurements 
The extraction of the correct specific forces and the rotation rates is based on following equations:   

 
𝒇𝒊𝒃
𝒃 =

𝒇̃𝒊𝒃
𝒃 − 𝒃𝒂
𝟏 + 𝑺𝒂

  

𝒘𝒊𝒃
𝒃 =

𝒘̃𝒊𝒃
𝒃 − 𝒃𝒈

𝟏 + 𝑺𝒈
 

(6-20) 

where ∎̃ are collected raw measurements at outputs of IMU sensors.  

 

6.2.2.2 Update of quaternion and attitudes 
In order to obtain the update of the quaternion between the n-frame and b-frame, the angular increment 
𝜽𝒏𝒃
𝒃  of the body w.r.t the n-frame needs to be determined firstly.  

The angular rate vector of the body w.r.t the n-frame 𝒘𝒏𝒃
𝒃  is expressed as  

 𝒘𝒏𝒃
𝒃 = 𝒘𝒊𝒃

𝒃 −𝒘𝒊𝒏
𝒃 = 𝒘𝒊𝒃

𝒃 − 𝑪𝒏
𝒃𝒘𝒊𝒏

𝒏  (6-21) 
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where  

 𝒘𝒊𝒏
𝒃  is the angular rate vector of the n-frame w.r.t the i-frame resolved in b-frame,  

 𝒘𝒊𝒏
𝒏  is the angular rate vector of the n-frame w.r.t the i-frame resolved in n-frame.  

The vector 𝒘𝒊𝒏𝒏  can be expressed as a summation of two parts respectively mentioned in Eq(6-14) and 
Eq(6-19) 

 𝒘𝒊𝒏
𝒏 = 𝒘𝒊𝒆

𝒏 +𝒘𝒆𝒏
𝒏  (6-22) 

 

By subtracting the proper detailed expressions into Eq(6-21), the angular increment 𝜽𝒏𝒃
𝒃  is obtained by 

integrating 𝒘𝒏𝒃
𝒃  over the INS mechanisation interval ∆𝑡: 

 𝜽𝒏𝒃
𝒃 = 𝜽𝒊𝒃

𝒃 − 𝜽𝒊𝒏
𝒃  (6-23) 

 

Referring to the closed form solution of quaternion in Eq(6-10), the updated quaternion is  

  
[

𝑞1
𝑞2
𝑞3
𝑞4

]

𝑘+1

= [

𝑞1
𝑞2
𝑞3
𝑞4

]

𝑘

+
1

2
[
𝑐 − 𝑠[𝜽𝒏𝒃

𝒏 ×] 𝑠𝜽𝒏𝒃
𝒏

−𝑠(𝜽𝒏𝒃
𝒏 )𝑻 𝑐

] [

𝑞1
𝑞2
𝑞3
𝑞4

]

𝑘

 (6-24) 

where  

 𝑐 = 2(cos
𝜃

2
− 1),  

 𝑠 =
sin (𝜃 2⁄ )

𝜃 2⁄
 

  𝜃 = ‖𝜽𝒏𝒃
𝒏 ‖ 

Once the quaternion has been updated, the transformation matrix can be updated using Eq(6-11) and 
new attitudes are obtained using Eq(6-5).  

 

6.2.2.3 Update of velocity and position 
The derivative of the vehicle velocity Eq(6-17) is approximately constant over the update duration ∆𝑡 
and the velocity increment is calculated as  

 ∆𝒗𝒏𝒃
𝒏 = 𝑪𝑏

𝑛𝒇𝑖𝑏
𝑏 ∆𝑡 − (2𝜴𝒊𝒆

𝒏 +𝜴𝒆𝒏
𝒏 )𝒗𝒏𝒃

𝒏 ∆𝑡 + 𝒈𝒏∆𝑡 (6-25) 
where 𝒈𝒏 = [0, 0, −𝑔]𝑇is the gravity vector expressed in n-frame.  

The updated velocity of epoch (𝑘 + 1) is thus obtained by 

 
𝒗𝒏𝒃,𝒌+𝟏
𝒏 = 𝒗𝒏𝒃,𝒌

𝒏 +
1

2
(∆𝒗𝒏𝒃,𝒌

𝒏 + ∆𝒗𝒏𝒃,𝒌+𝟏
𝒏 ) (6-26) 

Similarly, the final updated geodetic coordinates are  

 
𝒓𝒏𝒃,𝒌+𝟏
𝒏 = 𝒓𝒏𝒃,𝒌

𝒏 +
1

2
𝑭𝒓𝒗(𝒗𝒏𝒃,𝒌+𝟏

𝒏 + 𝒗𝒏𝒃,𝒌
𝒏 ) (6-27) 
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 INS Error States Model  
The performance of an INS depends on various elements, for instance the knowledge of IMU 
measurements errors’ characteristics, the choice of the estimation method, etc. A KF is usually preferred 
to a LS, which takes not only the current condition into account, but also the system dynamics. To 
conduct a linear system, the error states model is herein applied. In this section, we will give for the 
INS-only system an example of typical parameters related to error states.  

 

6.2.3.1 Notations of Error States 
Among the states of interest, and apart from the desired parameters describing the position, velocity and 
attitudes of the vehicle, the errors affecting the MEMS measurements also need to be considered for a 
better mitigation, namely the measurement biases and the scale factors. Besides, in terms of the position 
error, it is preferred to express them in meters than in radians in order to avoid numeric instability [65].  

Hence, let 𝒑𝒏𝒃
𝒏  be the vehicle position expressed in the local frame. Error states are thus defined as 

differences between states estimates (terms with ‘hat’) and their true values with the following notations: 

 

{
 
 
 
 

 
 
 
 
𝛿𝒑𝒏𝒃

𝒏 = 𝒑̂𝒏𝒃
𝒏 − 𝒑𝒏𝒃

𝒏

𝛿𝒗𝒏𝒃
𝒏 = 𝒗̂𝒏𝒃

𝒏 − 𝒗𝒏𝒃
𝒏

𝛿𝝍̅𝒏𝒃 = 𝝍̅𝒏𝒃
̂ − 𝝍̅𝒏𝒃

𝛿𝒃𝒂 = 𝒃𝒂 − 𝒃̂𝒂
𝛿𝒔𝒂 = 𝒔𝒂 − 𝒔̂𝒂
𝛿𝒃𝒈 = 𝒃𝒈 − 𝒃̂𝒈
𝛿𝒔𝒈 = 𝒔𝒈 − 𝒔̂𝒈

 (6-28) 

Remind that the normal order of attitudes is 𝝍𝒏𝒃 = [𝜙𝑛𝑏 , 𝜃𝑛𝑏 , 𝜓𝑛𝑏]. When we try to figure out the 
relation between 𝛿𝑪𝒃

𝒏 = 𝑪̂𝒃
𝒏 − 𝑪𝒃

𝒏 and small attitudes error, the following form is obtained 

 𝛿𝑪𝒃
𝒏 = 𝐶(𝝍̂𝒏𝒃) − 𝐶(𝝍𝒏𝒃) = −𝑬. 𝑪𝒃

𝒏 (6-29) 

with 𝑬 = [𝛿𝝍̅𝒏𝒃 ∧]  the skew-symmetric matrix of a modified version of 𝛿𝝍𝒏𝒃 , noted as  𝛿𝝍̅𝒏𝒃 =
[−𝛿𝜃𝑛𝑏 , −𝛿𝜙𝑛𝑏, 𝛿𝜓𝑛𝑏]

𝑇similar to Eq(6-6). 

 

6.2.3.2 Error States Dynamics 
The INS error states’ dynamics is obtained by doing the perturbation analysis of Eq(6-19). For MEMS 

IMUs, the turn-on biases are not negligible but they remain constant for a particular run [65]. Thus, the 

calibration and the correction of the biases are feasible. Generally, the dynamic part of the inertial biases 

is modeled as a first-order Gauss-Markov process [98]:  

 𝛿𝒃𝒂̇ = −𝜷𝒃𝒂𝛿𝒃𝒂 + 𝜼𝒃𝒂 

𝛿𝒃𝒈̇ = −𝜷𝒃𝒈𝛿𝒃𝒈 + 𝜼𝒃𝒈 (6-30) 

Where  

 𝜷𝒃𝒂 = [

1/𝜏𝑏𝑎𝑥 0 0
0 1/𝜏𝑏𝑎𝑦 0

0 0 1/𝜏𝑏𝑎𝑧

]  and 𝜷𝒃𝒈 = [
1/𝜏𝑏𝑔𝑥 0 0

0 1/𝜏𝑏𝑔𝑦 0

0 0 1/𝜏𝑏𝑔𝑧

]  are the GM 

process key parameters,  
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 𝝉𝒃𝒂 = [𝜏𝑏𝑎𝑥, 𝜏𝑏𝑎𝑦 , 𝜏𝑏𝑎𝑧]
𝑇,  

 𝝉𝒃𝒈 = [𝜏𝑏𝑔𝑥, 𝜏𝑏𝑔𝑦 , 𝜏𝑏𝑔𝑧]
𝑇are the corresponding correlation times,  

 𝜼𝒃𝒂 and 𝜼𝒃𝒈 are GM process driving noises, zero mean white Gaussian noise, whose spectral 
densities are denoted respectively as 𝒒𝒃𝒂 and 𝒒𝒃𝒈.  

Similarly, a first-order GM process is utilized to model the MEMS IMUs scale factors as follows: 

 𝛿𝒔𝒂̇ = −𝜷𝒔𝒂𝛿𝒔𝒂 + 𝜼𝒔𝒂 

𝛿𝒔𝒈̇ = 𝜷𝒔𝒈𝛿𝒔𝒈 + 𝜼𝒔𝒈 (6-31) 

where  

 𝜷𝒔𝒂 = [

1/𝜏𝑠𝑎𝑥 0 0
0 1/𝜏𝑠𝑎𝑦 0

0 0 1/𝜏𝑠𝑎𝑧

]  and 𝜷𝒔𝒈 = [
1/𝜏𝑠𝑔𝑥 0 0

0 1/𝜏𝑠𝑔𝑦 0

0 0 1/𝜏𝑠𝑔𝑧

]  are the GM 

process key parameters,  
 𝝉𝒔𝒂 = [𝜏𝑠𝑎𝑥, 𝜏𝑠𝑎𝑦 , 𝜏𝑠𝑎𝑧]

𝑇, 𝝉𝒔𝒈 = [𝜏𝑠𝑔𝑥 , 𝜏𝑠𝑔𝑦 , 𝜏𝑠𝑔𝑧]
𝑇are the corresponding correlation times,  

 𝜼𝒔𝒂 and 𝜼𝒔𝒈 are GM process driving noises, zero mean white Gaussian noise, whose spectral 
densities are denoted respectively as 𝒒𝒔𝒂 and 𝒒𝒔𝒈.  

Herein, the final compact continuous representation of the states dynamics is provided and the detailed 
derivation process is provided in Appendix D: 

 𝛿𝒙̇𝑰𝑵𝑺 = 𝑭𝑰𝑵𝑺𝛿𝒙𝑰𝑵𝑺 + 𝑮𝑰𝑵𝑺𝒖𝑰𝑵𝑺 (6-32) 

with  

 𝛿𝒙𝑰𝑵𝑺 = [𝛿𝒑𝒏𝒃
𝒏 𝛿𝒗𝒏𝒃

𝒏 𝛿𝝍̅𝒏𝒃 𝛿𝒃𝒂 𝛿𝒃𝒈 𝛿𝒔𝒂 𝛿𝒔𝒈]
𝑻

 the whole 21 INS error state 
vector; 

 𝑭𝑰𝑵𝑺 =

[
 
 
 
 
 
 
 
𝑭𝒑𝒑 𝑰𝟑 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3

𝑭𝒗𝒑 𝑭𝒗𝒗 𝑭𝒗𝒆 𝑪𝒃
𝒏 03𝑥3 𝑪𝒃

𝒏𝑭𝒃 03𝑥3

𝑭𝒆𝒑 𝑭𝒆𝒗 𝑭𝒆𝒆 03𝑥3 −𝑪𝒃
𝒏 03𝑥3 −𝑪𝒃

𝒏𝑾𝒃

03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒂 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒈 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒂 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒈 ]

 
 
 
 
 
 
 

 the continuous state 

transition matrix;  

 𝑭𝒑𝒑 = [

𝑣𝑢

𝑅𝑁+ℎ
−
𝑣𝑛𝑡𝑎𝑛𝜑

𝑅𝑀+ℎ

𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑀+ℎ

−𝑣𝑒

𝑅𝑁+ℎ

0
𝑣𝑢

𝑅𝑀+ℎ

−𝑣𝑛

𝑅𝑀+ℎ

0 0 0

]  the matrix describing the relationship between the 

derivative of the position error and itself;  

 𝑭𝒗𝒑 =

[
 
 
 
 
 0

2𝜔𝑖𝑒(𝑣𝑛𝑐𝑜𝑠𝜑+𝑣𝑢 𝑠𝑖𝑛 𝜑)

𝑅𝑀+ℎ
+

𝑣𝑒𝑣𝑛
(𝑅𝑀+ℎ)(𝑅𝑁+ℎ)𝑐𝑜𝑠²𝜑

𝑣𝑒𝑣𝑢
(𝑅𝑁+ℎ)

2 −
𝑣𝑒𝑣𝑛 𝑡𝑎𝑛𝜑

(𝑅𝑁+ℎ)
2

0
−2𝜔𝑖𝑒𝑣𝑒 𝑐𝑜𝑠𝜑

𝑅𝑀+ℎ
−

𝑣𝑒
2

(𝑅𝑁+ℎ)(𝑅𝑀+ℎ)𝑐𝑜𝑠²𝜑

𝑣𝑛𝑣𝑢
(𝑅𝑀+ℎ)

2 +
𝑣𝑒
2 𝑡𝑎𝑛𝜑

(𝑅𝑁+ℎ)
2

0 −
2𝜔𝑖𝑒 𝑣𝑒𝑠𝑖𝑛𝜑

𝑅𝑀+ℎ

−𝑣𝑒
2

(𝑅𝑁+ℎ)
2 +

−𝑣𝑛
2

(𝑅𝑀+ℎ)
2 +

2𝑔

𝑅+ℎ]
 
 
 
 
 

 the 

transformation matrix describing the relationship between the derivative of the velocity error 
and the position error;  
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 𝑭𝒗𝒗 =

[
 
 
 
 

𝑣𝑛 𝑡𝑎𝑛𝜑−𝑣𝑢

𝑅𝑁+ℎ

𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁+ℎ
+ 2𝜔𝑖𝑒𝑠𝑖𝑛𝜑 −2𝜔𝑖𝑒 𝑐𝑜𝑠𝜑−

𝑣𝑒

𝑅𝑁+ℎ

−2𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁+ℎ
− 2𝜔𝑖𝑒𝑠𝑖𝑛𝜑

−𝑣𝑢

𝑅𝑀+ℎ

−𝑣𝑛

𝑅𝑀+ℎ

2𝑣𝑒

𝑅𝑁+ℎ
+ 2𝜔𝑒𝑐𝑜𝑠𝜑

2𝑣𝑛

𝑅𝑀+ℎ
0 ]

 
 
 
 

 the transformation 

matrix describing the relation between the derivative of velocity and itself; 

 𝑭𝒗𝒆 = [𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ×] is a skew symmetric matrix describing the relation between the derivative of 
velocity and the attitudes, 𝒇𝒊𝒃

𝒃  is the specific force measurements under b-frame;  

 𝑭𝒆𝒑 =

[
 
 
 
 0 0

𝑣𝑛
(𝑅𝑀+ℎ)²

0
−𝜔𝑖𝑒 sin𝜑

𝑅𝑀+ℎ

−𝑣𝑒
(𝑅𝑁+ℎ)²

0
𝜔𝑖𝑒 cos𝜑

𝑅𝑀+ℎ
+

𝑣𝑒
(𝑅𝑁+ℎ)(𝑅𝑀+ℎ)𝑐𝑜𝑠²𝜑

−𝑣𝑒𝑡𝑎𝑛𝜑

(𝑅𝑁+ℎ)²]
 
 
 
 

 describing the relation between the 

derivative of 𝛿𝝍̅𝒏𝒃 and 𝛿𝒑𝒏𝒃
𝒏 ;  

 𝑭𝒆𝒗 =

[
 
 
 
 0

−1

𝑅𝑀+ℎ
0

1

𝑅𝑁+ℎ
0 0

𝑡𝑎𝑛𝜑

𝑅𝑁+ℎ
0 0]

 
 
 
 

 the transformation matrix describing the relation between the 

derivative of 𝛿𝝍̅𝒏𝒃 and 𝛿𝒗𝒏𝒃
𝒏 ;  

 𝑭𝒆𝒆 = −[(𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) ∧]  the transformation matrix describing the relation between the 
derivative of 𝛿𝝍̅𝒏𝒃 and itself.  

  𝝎𝒊𝒆 the Earth rotation speed; 𝑔 the nominal component of Earth gravity; 𝑅 is the mean radius 

of the Earth, 𝑭𝒃 = 𝑑𝑖𝑎𝑔(𝒇̃𝒊𝒃
𝒃 ) and 𝑾𝒃 = 𝑑𝑖𝑎𝑔(𝒘̃𝒊𝒃

𝒃 );  

 𝒖𝑰𝑵𝑺 = [𝜼𝒂 𝜼𝒈 𝜼𝒃𝒂 𝜼𝒃𝒈 𝜼𝒔𝒂 𝜼𝒔𝒈]𝑻 the 18-state process noise vector, with 𝜼𝒂 the 
accelerometer measurement noise, 𝜼𝒈 the gyroscope measurement noise, 𝜼𝒃𝒂/𝜼𝒃𝒈 the 
accelerometer/gyroscope Gauss-Markov bias driving noises, 𝜼𝒔𝒂/𝜼𝒔𝒈 the 
accelerometer/gyroscope Gauss-Markov scale factor driving noises;  

 𝑮𝑰𝑵𝑺 =

[
 
 
 
 
 
 
 
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
𝑪𝒃
𝒏 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3

03𝑥3 −𝑪𝒃
𝒏 03𝑥3 03𝑥3 03𝑥3 03𝑥3

03𝑥3 03𝑥3 𝑰𝟑𝒙𝟑 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑰𝟑𝒙𝟑 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝑰𝟑𝒙𝟑 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝑰𝟑𝒙𝟑]

 
 
 
 
 
 
 

 the process noise design matrix. 

 

However, it’s the discrete form of the state propagation utilized in practical INS navigation. According 
to Eq(4-4) and Eq(4-5), the discrete INS state dynamic model is in form 

 𝛿𝒙𝑰𝑵𝑺,𝒌+𝟏 = 𝜱𝑰𝑵𝑺,𝒌𝛿𝒙𝑰𝑵𝑺,𝒌 +𝑮𝑰𝑵𝑺𝒖𝑰𝑵𝑺,𝒌 (6-33) 

with  

 ∆𝑡 the INS update period, i.e., 0.01s;  
 𝜱𝑰𝑵𝑺,𝒌 = 𝑰 + 𝑭𝑰𝑵𝑺∆𝑡.  

The noise covariance matrix of 𝒖𝑰𝑵𝑺,𝒌 is denoted as 
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𝑸𝑰𝑵𝑺 =

[
 
 
 
 
 
 
𝑸𝒂 03𝑥3 03𝑥3
03𝑥3 𝑸𝒈 03𝑥3
03𝑥3 03𝑥3 𝑸𝒃𝒂

03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3

03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3

𝑸𝒃𝒈 03𝑥3 03𝑥3
03𝑥3 𝑸𝒔𝒂 03𝑥3
03𝑥3 03𝑥3 𝑸𝒔𝒈 ]

 
 
 
 
 
 

 

where  

 𝑸𝒂 and 𝑸𝒈 are covariance matrices related to the white noise  𝜼𝒂 and 𝜼𝒈, 𝑸𝒃𝒂, 𝑸𝒃𝒈, 𝑸𝒔𝒂 and  
 𝑸𝒔𝒈  are covariance matrices used to model the bias-drift and the scale factors of the 

accelerometers and the gyroscopes (i.e., a first-order GM process).  

The numerical application of these terms will be detailed in Section 6.3.2.  

 

 INS Error Dynamics  
The performance of an INS navigation is strongly affected by the system model strength and the 
processing algorithm. The KF estimation generally provides the optimal navigation solution, but under 
the pre-assumption that only zero-mean Gaussian process noises are involved. Thereby, the proper 
stochastic modeling of those non-zero-mean IMU measurements errors is necessary for a robust 
estimation process.  

Many approaches have been devised to achieve the noise identification and extraction of IMU sensors. 
The current popular ones are for example the Power spectral density (PSD) approach, the 
Autocorrelation, the Allan Variance (AV) technique, the Autoregressive model or the Wavelet de-
noising [99]–[103].  

The PSD approach provides the frequency-domain information of the random process. As a dual of the 
PSD method, the Autocorrelation technique establishes an autocorrelation function based on the 
experimental data. However, an accurate autocorrelation function is not always feasible and a much 
longer recording time is required to improve its accuracy [103], [104]. The Autoregressive model and 
the Wavelet de-noising are good alternatives for high quality IMU necessitating higher order stochastic 
processes modeling, which at the same time increases the computation burden.  

In this PhD, the AV method is used (refer to Appendix C for more information) due to its simplicity, 
efficiency and the grade of our MEMS unit. 

 

 Characteristics of MEMS Sensors 
The MEMS sensor used in our real tests is a Mti-28A33G35 model of XSENS motion technology [87]. 
The MTi is a miniature, gyro-enhanced Attitude and Heading Reference System (AHRS). 3-D calibrated 
linear acceleration (units m/s²), rate of turn (rad/s) and magnetic fields data (arbitrary units) are collected 
at its output. The orthogonal Cartesian frame fixed to the device is defined as following:  
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Figure 6-3. Mti sensor-fixed coordinate frame S (Forward, left, up) and Earth-fixed Coordinate frame 
G(Magnetic North, West, Up) 

The measurements of the MEMS sensor provided by the Mti are referred to the sensor-fixed coordinate 
system S. Thus, to have the sensor outputs expressed in b-frame (right-front-up), while having the Mti 
sensor fixed in the carrying vehicle and the 𝑥𝑆-axis heading the forward direction, a transformation 
matrix 𝑪𝒔𝒃 need to be used: 

 
𝑪𝒔
𝒃 = [

0 −1 0
1 0 0
0 0 1

] (6-34) 

 

 Modelling of XSENS Errors 
Hours-length stationary data have been collected with the XSENS MTi sensor. In this section, theoretical 
analysis of the data and the practical application in INS navigation are presented. 

The stochastic discrete-time model of the gyroscope and the accelerometer of the XSENS Mti is derived 
on the basis of the measurements made at rest. Inertial sensors outputs are measured with the sampling 
frequency 𝑓𝑠 = 100𝐻𝑧 during a period of 11 000 seconds. The collection of XSENS data expressed in 
b-frame is showed in Figure 6-4 and Figure 6-5, after removing a constant bias. The basic characteristics 
of the collected data are illustrated in Table 6-1. 
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Figure 6-4. Measured Accelerometer data (translated by the mean bias) at outputs of a stationary 
XSENS MTi expressed in b-frame(𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) 

 

Figure 6-5. Measured Gyroscope data at outputs (translated by the mean bias) of a stationary XSENS 
MTi expressed in in b-frame(𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) 
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Table 6-1. Constant Bias and Standard Deviation of MTi measurements in rest 

 

Subsequently, the centered inertial output are analyzed with the AV method to identify the inertial noises. 
The log-log plot of the Allan variance standard deviation versus cluster times for the accelerometer and 
the gyroscope are depicted separately in Figure 6-6 and Figure 6-7.  

 

Figure 6-6. Allan Variance for the Accelerometer 

 Accelerometer (m/s²) Gyroscope (rad/s) 

X Y Z X Y Z 

Constant Bias -0.2577 0.5907 -9.7644 0.01452 0.02608 0.01012 

STD 6.698e-3 6.299e-3 8.336e-3 7.94e-3 7.4384e-3 8.309e-3 

Over all STD 0.0124 0.0137 
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Figure 6-7. Allan Variance for the Gyroscope 

Two types of random noises are present according to the plots,  

 Random walk from the white noise: the white noise appears on the Allan Deviation plot as a 
slope with gradient -0.5. The random walk measurement for this noise (ARW for gyroscope and 
VRW for accelerometer) is obtained by fitting a straight line through the slope and reading its 
value at t=1s, 𝑵; 

 Bias instability appears on the plot as a flat region around the minimum. The numerical value 
 𝟎. 𝟔𝟔𝟒𝑩 is the minimum value on the Allan Deviation curve. As a key parameter of a first-
order GM process, the correlation times, 𝑇𝑐, is indicated by the lowest flat zone. 

In Table 6-2 the corresponding noise parameters are summarized. 

Table 6-2. Summary of AV Parameters 
 

Accelerometer Gyroscope 

x y z x y z 

Bias instability Tc (s) 300 300 300 300 300 300 

 (m/s²) (rad/s) 0.664B 3e-4   2e-4   2e-4   1.5e-4   1.5e-4   2e-4  

 B 4.5181e-4 3.012e-4 3.012e-4 2.259e-4 2.259e-4 3.012e-4 

VRW (m/s/√𝑠) 
/ARW (rad/√𝑠) 

N 8e-4   7.8e-4   1e-3   9.5e-4   9e-4  1e-3   

 

The determination of the terms 𝑸𝒂 and 𝑸𝒈, covariance matrices related to the white noise 𝜼𝒂 and 𝜼𝒈 in 
discrete form are [100] 

 
Q∎ = Q𝑊𝑁 =

𝑁∎²

∆𝑡
= (

𝑁∎
∆𝑡
)
2

∗ ∆𝑡 (6-35) 
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with  

 𝑁∎ obtained from previous AV study,  
 ∎ is either 𝒂 for accelerometers or 𝒈 for gyroscopes.  

Similarly, the covariance value in discrete time of the bias-drift driving noise, 𝑸𝒃𝒂 or  𝑸𝒃𝒈, is then  

 
𝑄∎ = 𝑄𝐺𝑀 = (2

𝐵∎²

𝑇𝑐
) ∗ ∆𝑡 (6-36) 

With  

 𝑇𝑐,∎ and 𝐵∎ obtained from previous AV study,  
 ∎ is either 𝒃𝒂 for accelerometers biases or 𝒃𝒈 for gyroscopes biases.  

From the experimental conditions, the parameters related to the scale factors are not readable on the AV 
plots. However, they are also normally modeled as GM processes with intuitively a much lower process-
driving noise level, i.e. 1e-14 and a longer correlation times, i.e. 3 hours [65].  

 

 Implementation of Kalman Filter 

 Coupling Theory 
Varying with the types of information shared between the INS and the GNSS, different coupling 
approaches are devised: loose coupling and tight coupling [23], [67]. The uncoupled integration and the 
ultra-tight integration are not interesting for this PhD and is thus not explained.  

The loose coupling (LC) takes the INS-only system and GNSS-only system separately. Each system has 
its own processing block which finally provides updated navigation solutions. The raw GNSS 
measurements are collected by the receiver and after a GNSS KF, the position and velocity of the rover 
are calculated. This position and velocity information from GNSS-only filter or other sensors are passed 
to aid the INS-only filter, and through INS mechanization equations, an updated navigation solution is 
obtained. Even though being quite simple to implement, LC strategy is not recommended in the context 
of this PhD for 2 reasons [65], [67]: 

 The GNSS-only block is always subject to environmental outliers, especially in an urban area.  
 Any failure in either GNSS-only block or in INS-only block will corrupt the whole system 

performance. 

The tight coupling (TC) makes the GNSS and INS fusion at the observables level. A TC KF is 
implemented to provide an integrated solution. As an integrated system, the TC provides a statistically 
rigorous sharing of information among states, especially those dedicated to INS-only block and GNSS-
only block. Moreover, the process noise is only considered during the INS mechanization process other 
than in a LC the process noise is applied during both the INS mechanization and the GNSS-only 
propagation process [67]. The higher confidence on states increases the system ability to eliminate 
outliers. Finally, the most concerned case, a partial or full outage of GNSS in urban areas, herein does 
not need a reboot. A re-initialization may take the system tens of minutes to reach the steady-state 
performance. The implementation details of TC will be presented in the next section.  

 

 Tight Coupling Implementation 
As an integrated system, the TC state vector needs to combine the INS-only state vector mentioned in 
Section 6.2.3 and the GNSS-only state vector mentioned in Section 4.2.3. Therefore, besides the part 
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𝛿𝒙𝑰𝑵𝑺,𝒌 inherited from the INS mechanization, extra terms related to the receiver clock, the ambiguities 
and the GLONASS ICB have to be added 

𝑿𝒏 = (𝛿𝒑𝒏𝒃
𝒏 ; 𝛿𝒗𝒏𝒃

𝒏 ;  𝛿𝝍̅𝒏𝒃;  𝛿𝒃𝒂; 𝛿𝒃𝒈; 𝛿𝒔𝒂; 𝛿𝒔𝒈; 𝛿𝒄𝒍𝒌;  𝛿𝑨𝒎𝒃; 𝛿𝑰𝑪𝑩)
𝑇 

The difference between GNSS measurements and INS-predicted measurements is used as inputs to the 
main TC KF. The linearization process is similar to Section 4.2.2 while only the linearization point 
comes from the INS mechanization prediction and the GNSS LOS vectors are expressed in local frame. 
Through the INS mechanization process, along with each state (position, velocity) estimate of the INS 
center 𝑶𝒃, corresponding state of the GNSS antenna phase center 𝑶𝑩 can be calculated considering the 
lever-arm effect between the 2 systems.  

Assuming 𝒍𝒃 the lever-arm vector resolved in b-frame, representing the vector from the INS center 𝑶𝒃 to 
the GNSS antenna phase center 𝑶𝑩, the position and velocity relations between those two origins are: 

 𝒑𝑶𝑩
𝒏 = 𝒑𝑶𝒃

𝒏 + 𝑪𝒃
𝒏𝒍𝒃 

𝒗𝑶𝑩
𝒏 = 𝒗𝑶𝒃

𝒏 + 𝑪𝒃
𝒏[𝒘𝒏𝒃

𝒃 ×]𝒍𝒃 
(6-37) 

where 𝛀𝒏𝒃
𝒃 = [𝒘𝒏𝒃

𝒃 ×] the skew symmetric matrix of the angular rate vector 𝒘𝒏𝒃
𝒃 .  

 

According to the perturbation analysis, the relation among the error position-velocity states is 

𝜹𝒑𝑶𝑩
𝒏 = 𝜹𝒑𝑶𝒃

𝒏 + [𝑪𝒃
𝒏𝒍𝒃 ×]𝛿𝝍̅𝒏𝒃 

𝜹𝒗𝑶𝑩
𝒏 = 𝜹𝒗𝑶𝒃

𝒏 + {[𝑪𝒃
𝒏𝛀𝒊𝒃

𝒃 𝒍𝒃 ×] − (𝛀𝒆𝒏
𝒏 +𝛀𝒊𝒆

𝒏 )[𝑪𝒃
𝒏𝒍𝒃 ×]}𝛿𝝍̅𝒏𝒃

− 𝑪𝒃
𝒏[𝒍𝒃 ×](𝜹𝒃𝒈 + 𝑑𝑖𝑎𝑔(𝒘𝒊𝒃

𝒃 )𝛿𝒔𝒈) 
(6-38) 

 

Similar to the GNSS case, the design matrix 𝑯𝑮𝑵𝑺𝑺/𝑰𝑵𝑺, the mapping matrix connecting the difference 
between GNSS measurements and their corresponding INS-predictions, and the whole state vector 𝑿𝒏, 
is thus summarized as:  

𝑯𝐺𝑁𝑆𝑆|𝐼𝑁𝑆 = [𝑯𝐼𝑁𝑆 | 𝑯𝐺𝑁𝑆𝑆(: , 10: 𝑒𝑛𝑑)] 

𝑯𝐼𝑁𝑆 =

[
 
 
 
 
 
 
 
𝑮′ 𝛥𝑃𝐺𝑃𝑆
𝑃𝑉𝐸

𝑮′ 𝛥𝑃𝐺𝐿𝑂
𝑃𝑉𝐸

𝑮′𝛻∆𝛷𝐺𝑃𝑆
𝑃𝑉𝐸

0𝑛1×3
0𝑛2×3
0𝑛3×3

0𝑛1×3
0𝑛2×3
0𝑛3×3

0𝑛1×3
0𝑛2×3
0𝑛3×3

0𝑛1×3
0𝑛2×3
0𝑛3×3

𝑮′∆𝛷𝐺𝐿𝑂
𝑃𝑉𝐸

𝑮′𝐷𝐺𝑃𝑆
𝑃𝑉𝐸

𝑮′𝐷𝐺𝐿𝑂
𝑃𝑉𝐸

0𝑛4×3
0𝑛5×3
0𝑛6×3

0𝑛4×3
𝑳𝐷𝐺𝑃𝑆,𝑏𝑔
𝑳𝐷𝐺𝐿𝑂,𝑏𝑔

0𝑛4×3
0𝑛5×3
0𝑛6×3

0𝑛4×3
𝑳𝐷𝐺𝑃𝑆,𝑠𝑔
𝑳𝐷𝐺𝐿𝑂,𝑠𝑔]

 
 
 
 
 
 
 

 

where 

 𝑯𝐺𝑁𝑆𝑆 is the GNSS design matrix proposed in Section 4.2.3, 𝑯𝐺𝑁𝑆𝑆(: , 10: 𝑒𝑛𝑑) is the portion 
describing the relation between GNSS measurements (herein in the GNSS/INS case, the 
measurements differences) and the rover states except for the first 9 PVA (position-velocity-
acceleration) states;  

 𝑯𝐼𝑁𝑆  describes the relation between GNSS/INS measurements and the INS states 𝒙𝑰𝑵𝑺 =
[𝛿𝒑𝒏𝒃

𝒏 𝛿𝒗𝒏𝒃
𝒏 𝛿𝝍̅𝒏𝒃 𝛿𝒃𝒂 𝛿𝒃𝒈 𝛿𝒔𝒂 𝛿𝒔𝒈]

𝑻
;  
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 Same as in Section 4.2.3, 𝑛1 is the length of SD GPS pseudoranges 𝜟𝑷𝑮𝑷𝑺, 𝑛2 is the length of 
SD GLONASS pseudoranges 𝜟𝑷𝑮𝑳𝑶, 𝑛3 is the length of DD GPS carrier phases 𝜵∆𝜱𝑮𝑷𝑺, 𝑛4 
is the length of SD GLONASS carrier phases ∆𝜱𝑮𝑳𝑶 ,  𝑛5  is the length of GPS Doppler 
observables 𝐃𝐆𝐏𝐒, and  𝑛6 is the length of GLONASS Doppler observables 𝑫𝑮𝑳𝑶; 

 𝑮′ 𝛥PGPS
𝑃𝑉𝐸 = [

𝒆𝒍,𝟏 01×3 𝒆𝒍,𝟏𝑳𝑷
𝑬

⋮ ⋮ ⋮
𝒆𝒍,𝒏𝟏 01×3 𝒆𝒍,𝒏𝟏𝑳𝑷

𝑬
]  is a design matrix between 𝜟𝑷𝑮𝑷𝑺  and 𝑿𝑷𝑽𝑬 =

[𝛿𝒑𝒏𝒃
𝒏 𝛿𝒗𝒏𝒃

𝒏 𝛿𝝍̅𝒏𝒃]
𝑇with  𝒆𝒍,𝒊∈[𝟏,𝒏𝟏] the LOS unit vector between the rover and the GPS 

satellite 𝑖 expressed in local frame, 𝑳𝑷𝑬 = [𝑪𝒃
𝒏𝒍𝒃 ×]; 

 𝑮′𝛥PGLO
𝑃𝑉𝐸 = [

𝒆𝒍,𝟏 01×3 𝒆𝒍,𝟏𝑳𝑷
𝑬

⋮ ⋮ ⋮
𝒆𝒍,𝒏𝟐 01×3 𝒆𝒍,𝒏𝟐𝑳𝑷

𝑬
] , is a design matrix between 𝜟𝑷𝑮𝑳𝑶  and 𝑿𝑷𝑽𝑬  with 

 𝒆𝒍,𝒊∈[𝟏,𝒏𝟐] the LOS unit vector between the rover and the GLONASS satellite 𝑖 expressed in 
local frame;  

 𝑮′∇∆ΦGPS
𝑃𝑉𝐸 = [

𝛥𝒆𝒍,𝟏 01×3 𝛥𝒆𝒍,𝟏𝑳𝑷
𝑬

⋮ ⋮ ⋮
𝛥𝒆𝒍,𝒏𝟑 01×3 𝛥𝒆𝒍,𝒏𝟑𝑳𝑷

𝑬
], is a design matrix between 𝜵∆𝜱𝑮𝑷𝑺  and 𝑿𝑷𝑽𝑬  with 

 𝛥𝒆𝒍,𝒊∈[𝟏,𝒏𝟑] = 𝒆𝒍,𝒊 − 𝒆𝒍,𝒑 the LOS unit vector difference expressed in local frame between GPS 
satellite 𝑖 and the carrier phase pivot satellite 𝑝, 𝝀𝒏𝟑×𝒏𝟑 = 𝜆𝐺𝑃𝑆 ∗ 𝐈𝐧𝟑×𝐧𝟑; (𝐈𝐧𝟑×𝐧𝟑 is an identity 
matrix); 

 𝑮′∆ΦGLO
𝑃𝑉𝐸 = [

𝒆𝒍,𝟏 01×3 𝒆𝒍,𝟏𝑳𝑷
𝑬

⋮ ⋮ ⋮
𝒆𝒍,𝒏𝟒 01×3 𝒆𝒍,𝒏𝟒𝑳𝑷

𝑬
]  is a design matrix between 𝜟𝜱𝑮𝑳𝑶  and 𝑿𝑷𝑽𝑬  with 

 𝒆𝒍,𝒊∈[𝟏,𝒏𝟒];  

 𝑮′𝐷GPS
𝑃𝑉𝐸 = [

01×3 𝒆𝒍,𝟏 𝒆𝒍,𝟏𝑳𝑽
𝑬

⋮ ⋮ ⋮
01×3 𝒆𝒍,𝒏𝟓 𝒆𝒍,𝒏𝟓𝑳𝑽

𝑬
] is a design matrix between 𝑫𝑮𝑷𝑺 and 𝑿𝑷𝑽𝑬 with  𝒆𝒍,𝒊∈[𝟏,𝒏𝟓] 

the LOS unit vector between the rover and the GPS Doppler satellite 𝑖 expressed in local frame, 
𝑳𝑽
𝑬 = [𝑪𝒃

𝒏𝛀𝒊𝒃
𝒃 𝒍𝒃 ×] − (𝛀𝒆𝒏

𝒏 +𝛀𝒊𝒆
𝒏 )[𝑪𝒃

𝒏𝒍𝒃 ×]; 

 𝑳𝐷𝐺𝑃𝑆 ,𝑏𝑔 = [

−𝒆𝒍,𝟏𝑪𝒃
𝒏[𝒍𝒃 ×]

⋮
−𝒆𝒍,𝒏𝟓𝑪𝒃

𝒏[𝒍𝒃 ×]
] is a design matrix between 𝑫𝐆𝐏𝐒 and 𝛿𝒃𝒈;  

 𝑳𝐷𝐺𝑃𝑆 ,𝑠𝑔 = [

−𝒆𝒍,𝟏𝑪𝒃
𝒏[𝒍𝒃 ×]𝑑𝑖𝑎𝑔(𝒘𝒊𝒃

𝒃 )

⋮
−𝒆𝒍,𝒏𝟓𝑪𝒃

𝒏[𝒍𝒃 ×]𝑑𝑖𝑎𝑔(𝒘𝒊𝒃
𝒃 )
] is a design matrix between 𝑫𝐆𝐏𝐒 and 𝛿𝒔𝒈;  

 𝑮′DGLO
𝑃𝑉𝐸 = [

01×3 𝒆𝒍,𝟏 𝒆𝒍,𝟏𝑳𝑽
𝑬

⋮ ⋮ ⋮
01×3 𝒆𝒍,𝒏𝟔 𝒆𝒍,𝒏𝟔𝑳𝑽

𝑬
] is a design matrix between 𝑫𝑮𝑳𝑶 and 𝑿𝑷𝑽𝑬 with  𝒆𝒍,𝒊∈[𝟏,𝒏𝟔] 

the LOS unit vector between the rover and the GLONASS Doppler satellite 𝑖 expressed in local 
frame；  

 𝑳𝐷𝐺𝐿𝑂 ,𝑏𝑔 = [

−𝒆𝒍,𝟏𝑪𝒃
𝒏[𝒍𝒃 ×]

⋮
−𝒆𝒍,𝒏𝟔𝑪𝒃

𝒏[𝒍𝒃 ×]
] is a design matrix between 𝑫𝐆𝐋𝐎 and 𝛿𝒃𝒈;  

 𝑳𝐷𝐺𝐿𝑂 ,𝑠𝑔 = [

−𝒆𝒍,𝟏𝑪𝒃
𝒏[𝒍𝒃 ×]𝑑𝑖𝑎𝑔(𝒘𝒊𝒃

𝒃 )

⋮
−𝒆𝒍,𝒏𝟔𝑪𝒃

𝒏[𝒍𝒃 ×]𝑑𝑖𝑎𝑔(𝒘𝒊𝒃
𝒃 )
] is a design matrix between 𝑫𝑮𝑳𝑶 and 𝛿𝒔𝒈. 
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  Motion Constraints 
Various constraints can be applied in TC KF to strengthen the performance. Among those, ZUPT, NHC, 
and ZARU are used herein. 

 

 Zero Velocity Update 
Zero velocity update (ZUPT or ZVU) is interesting to limit the drift of the solution when the immobility 
of the vehicle is detected. An immobility test thus needs to be conducted.  

 

6.5.1.1 Detection of immobility  
In [105], the vehicle is assumed to be stationary when the velocity is under a certain threshold. The 
threshold value needs to be determined by the velocity information during a calibration campaign, where 
the vehicle is known to be stationary. According to [2], [23], [24], when all velocities are under 0.5 m/s 
(a threshold tested in various environments), the standard deviation of IMU accelerometer 
measurements can be used to confirm the motionless of the vehicle. The perturbation level of the 
accelerometer measurements in stationary mode differs from the kinematic mode. Therefore, the 
performance (standard deviation) 𝜎𝑎𝑐𝑐,0 of accelerometer measurements in stationary mode need be 
analyzed in a prior phase. In this PhD, the immobility detection scheme with a confirmation scheme 
based on inertial raw measurements is applied. The immobility is assumed present during 𝑇𝑖𝑚𝑚 only in 
case that all velocities during the interval 𝑇𝑖𝑚𝑚 are less than 0.5 m/s, and the StdDev of measured forces 
is less than 3𝜎𝑎𝑐𝑐,0.  

 

6.5.1.2 Measurement model  
When an immobility is confirmed, the ZUPT constraint is modeled as,  

𝐲𝐙𝐔𝐏𝐓 = [

𝑣𝑥
𝑏 − 0

𝑣𝑦
𝑏 − 0

𝑣𝑧
𝑏 − 0

] = 𝛿𝒗𝒏𝒃
𝒃 = (𝐶̂𝑏

𝑛)
𝑇
𝛿𝒗𝒏𝒃

𝒏 − (𝐶̂𝑏
𝑛)
𝑇
[𝒗̂𝒏𝒃
𝒏 ×] ∙ 𝛿𝝍 (6-39) 

with 𝒗̂𝒏𝒃
𝒏  and 𝒗̂𝒏𝒃

𝒏 = [𝑣𝑥
𝑏 , 𝑣𝑦

𝑏, 𝑣𝑧
𝑏]
𝑻the estimated velocity vector respectively expressed in n-frame and in 

b-frame. 

The corresponding design matrix is  

𝑯𝒁𝑼𝑷𝑻 = [03 , (𝐶̂𝑏
𝑛)
𝑇
, −(𝐶̂𝑏

𝑛)
𝑇
[𝒗̂𝒏𝒃
𝒏 ×], 03×(𝑁−9) ] (6-40) 

The measurement uncertainty put on forward-direction speed is simply 0.5 m/s .   

 

 Non-Holonomic Constraint 
The Non-Holonomic constraint (NHC) describes the fact that generally, the lateral and vertical velocities 
are negligible compared to the straightforward velocity. This hypothesis does not hold if the vehicle is 
sliding laterally or jumping.  

This constraint is always used in this PhD. The NHC is modeled as 
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𝐲𝐍𝐇𝐂 = [
𝑣𝑥
𝑏 − 0

𝑣𝑧
𝑏 − 0

] (6-41) 

Compared to the ZUPT, the design matrix 𝑯𝑵𝑯𝑪 omits the second line of the matrix 𝐻𝑍𝑈𝑃𝑇: 

𝑯𝑵𝑯𝑪 = 𝑯𝒁𝑼𝑷𝑻([1, 3], ∶) (6-42) 

The measurement noise covariance is adjusted empirically to account for the velocity uncertainty into 
the vehicle motion.  

The standard deviation of the measurements noise is set empirically to be [0.04, 0.08]∗ 𝑆𝑝𝑒𝑒𝑑 . 

 

 Zero Angular Rate Update  
The Zero Angular Rate Update (ZARU) constraint assumes that the angular rate should also be null 
when the vehicle is confirmed in stationary mode, the same detection condition as ZUPT.  

The constraint measurements are given by  

 

𝐲𝐙𝐀𝐑𝐔 = [

𝑤𝑖𝑏,𝑥
𝑏 − 0

𝑤𝑖𝑏,𝑦
𝑏 − 0

𝑤𝑖𝑏,𝑧
𝑏 − 0

] = 𝜹𝒘𝒊𝒃
𝒃  (6-43) 

where 𝒘𝒊𝒃
𝒃 = [𝑤𝑖𝑏,𝑥

𝑏 , 𝑤𝑖𝑏,𝑦
𝑏 , 𝑤𝑖𝑏,𝑧

𝑏 ]
𝑻
 is the corrected angular rate vector of the b-frame w.r.t the i-frame 

resolved in b-frame,  

 

The geometry matrix is: 

𝑯𝒁𝑨𝑹𝑼 = [03, 03, 03, 03, 𝐼3, 03×(𝑁−15) ] (6-44) 

The measurement noise covariance level depends on the sensor vibration and other disturbances. Besides, 
higher weight is put on the measurement around the yaw axis as the yaw axis (𝑤̂𝑖𝑏,𝑧𝑏 ) is less affected by 
disturbances than the other two directions [2].   

 Conclusion 
 In this chapter, major modules of the proposed INS/GNSS integration algorithm have been all 
presented. The functioning scheme of the INS/GNSS TC is depicted in Figure 6-8. On the basis of the 
GNSS RTK positioning scheme, an INS mechanization process is added on the plot. Adopting the error 
states modeling, predictions of error states from the INS mechanization process are passed to the main 
INS/GNSS Kalman filter. The differences between GNSS observables and their corresponding 
predictions based on error states serve as inputs of the main KF. Besides, additional motion constraints 
are added to the KF when demanding conditions are satisfied.  
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Figure 6-8. Scheme of the Implemented GNSS/INS Positioning Filter 
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 Tests and Results 

In previous chapters, the proposed algorithm for RTK positioning in constrained environment with the 
low-cost single frequency GNSS receiver coupled with MEMS INS navigation has been introduced and 
described. In this chapter, performance of this integration algorithm will be illustrated using previously 
described GNSS data in Section 5.1.2, i.e. rural Data set 1 and urban Data set 2, and corresponding 
inertial data collected with the inertial equipment XSENS.  

 

 DGNSS/INS Results 
In this section, illustrations of the tight coupling (TC) performance between GNSS code and Doppler 
measurements, and the low-cost MEMS will firstly be analyzed. This integration without considering 
GNSS carrier phase measurements, in other words, ignoring the problematics related to ambiguity 
resolutions, will show in the first place the performance of a low-cost MEMS integrated with meter-
level GNSS measurements.  

In the first place, the TC tests are conducted with both the Data set 1 and Data set 2. Same relevant 
parameters are used as in Section 5.2.3. The positioning results are plotted respectively in Figure 7-1 
and Figure 7-2.  

By comparing Figure 7-1 and Figure 5-24 of the Data set 1, no improvement in positioning statistics is 
observed. With the integration with INS, the 95 percentile of the horizontal positioning error is now 2.12 
meters, compared to the DGNSS only case 2.01 meters. Globally, a very similar temporal positioning 
error curve to the GNSS only case is provided by the TC of DGNSS and INS. 

 

Figure 7-1. Horizontal DGNSS/INS position difference between estimated trajectory and the reference 
trajectory (Data set 1) with associated environment type chosen as ‘Rural’.  
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Figure 7-2. At left: Horizontal DGNSS/INS position difference between estimated trajectory and the 
reference trajectory (Data set 2) with associated environment type chosen as ‘Urban’. At right, copy of 
the Figure 5-29 for DGNSS only, portion between Epochs 200 and 600. . 

In the Data set 2 case, as a comparison, the positioning results of the DGNSS scheme is copied herein 
on the right in Figure 7-2. The 95 percentile of the horizontal positioning error has a small reduction, 
from 3.8 meters to 3.4 meters. By observing the temporal positioning results, a slightly better and 
smoother error curve, as well as a slightly lower 3-sigma bounds are present on the interval between 200 
and 400 epochs. As indicated in Figure 5-28 and Figure 5-30, this interval corresponds to a comparably 
lower availability of GNSS satellites. During this interval, the HODP value has increased with several 
peaks and the total number of available GNSS satellites is around 5.  

Looking at the illustrative results obtained from Data set 1 and Data set 2, the visibility of satellites is 
in good condition, the improvement brought by the consideration of such a low-quality MEMS is very 
limited as DGNSS outperforms the MEMS. In the case of Data set 1, the horizontal positioning 
performance, holding a 3-sigma less than 2 meters in GNSS-only condition, has stayed the same while 
tightly coupling with the MEMS. As for the Data 2, the uncertainty level on positioning errors does not 
have a remarkable decrease after TC and a very similar positioning curve is observed during most 
temporal portions. Nevertheless, a small benefit of integrating a MEMS is observed when a lack of 
available GNSS measurements exists.  

 

 Performance of INS-aided CS-DR 
In this section, we first give initial illustrations of performance of float RTK integrated with INS, 
followed by IAR results.  

With the presence of precise INS information, inertial predictions of position states and Doppler-derived 
clock delay rate are utilized as additional observables inside the CS-DR scheme. Therefore, only the 
rural Data set 1 will be used herein for tests. With the urban Data set 2, a positioning performance with 
3 sigma values at a level of 5 meters is definitely not precise enough to provide extra references to CS 
repair. 

Instead of a big inflation on CS-deteriorated ambiguities’ covariance, it will be more of interest if a 
proper value, for example the corresponding covariance calculated inside the CS LS filter, can be used.  

Conserving the same CS-DR parameters as in Section 5.2.3, i.e. the triplet (𝛼1, 𝛼2, 𝑁𝑐𝑠) =
(𝟎. 𝟎𝟎𝟑, 𝟎, 𝟏𝟎) and a minimum of 5 satellites required for CS-free declaration, the positioning results 
with ambiguities inflated by calculated covariance values are plotted in Figure 7-3. The 95 percentile of 
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horizontal positioning errors is 1.89 meters, larger than 1.39 meters of the case when only float RTK-
GNSS is involved. The number of epochs having more than 5 CS-free satellites is herein 824 in Figure 
7-4, and the number of epochs having CS detected is 648 in Figure 7-5. Remind that in the float RTK-
GNSS case (Figure 5-34), the numbers were 862 the number of epochs holding CS-free satellites and 
734, the number of epochs having CS detected. Herein, a cleaner CS condition is reflected and there is 
no sign of fatal miss-detections of big CSs.  

By comparing the positioning errors, quite similar curves are observed in both Figure 7-3 and Figure 
5-36, except for the interval from epoch 450 to epoch 480. Only during this temporal section a 
remarkable deterioration is found. According to the Figure 7-4, the algorithm constantly declares all 
satellites CS-deteriorated during epochs 450 to 480. Instead of occasionally modifying the positioning 
results in the case only-GNSS, herein the integration system choses to stick with the biased but tolerable-
to-INS solution, until the continuous convergence of GNSS ambiguities reclaims.  

 

 

Figure 7-3. On the left: Horizontal Float RTK/INS position difference between estimated trajectory and 
the reference trajectory (Data set 1) with ambiguity covariance inflation by corresponding CS 
covariance. On the right: Portion of Figure 5-36, case only –GNSS.  
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Figure 7-4. Number of satellites declared CS-free in each epoch (Data set 1, minimum number of 5 is 
required). CS-DR scheme takes the values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 

   

Figure 7-5. Number of satellites declared CS-deteriorated in each epoch (Data set 1). CS-DR scheme 
takes the values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). On the left: minimum number of 5 satellites is required 
for CS-free declaration. On the right: no requirement on minimum number of satellites for CS-free 
declaration.  
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Figure 7-6. Number of satellites declared CS-free in each epoch (Data set 1). CS-DR scheme takes the 
values (𝛼1, 𝛼2, 𝑁𝑐𝑠) = (0.003, 0, 10). 

 

Figure 7-7. Horizontal Float RTK/INS position difference between estimated trajectory and the 
reference trajectory (Data set 1) with ambiguity covariance inflation by corresponding CS covariance. 
Minimum number of 5 is not required for CS-free declaration.  

With the consideration of the additional 4 (i.e., 3 position states and the clock-delay rate) measurements, 
the minimum number of 5 satellites for declaring CS-free is no longer required. In this way, the number 
of epochs holding CS-free satellites arises from 824 to 918, as indicated in Figure 7-6. By comparing 
the 2 plots in in Figure 7-5, another 20 CS-affecting epochs (648-628) are released. The 95 percentile 
of horizontal positioning errors is 1.32 meters, a performance comparable to 1.39 meters of the only-
GNSS case. The relation between temporal positioning errors and their corresponding 3-sigma plots is 
showed in Figure 7-7. Compared with the Figure 7-3, along with the increased presence of CS-free 
satellites, much smoother positioning performance and 3-sigma envelopes are reflected in Figure 7-7. 
Besides, the positioning bias during epochs 450 and 480 is perfectly controlled. 
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Same as in previous Section 5.2.4, the performance of the Partial-IAR (Partial-Integer Ambiguity 
Resolution) methodology with associated parameters such as the threshold for the probability of success 
fixing 𝑃𝑆,0 = 99.5%, an empirical ratio threshold of 2 and a minimum number of 5 DD ambiguities to 
enter IAR, will be presented. First of all, the value of 𝑃𝑆 calculated based on the best 5 satellites having 
the lowest uncertainty is studied in Figure 7-8. The percentage of holding a 𝑃𝑆 greater than 𝑃𝑆,0 is herein 
19.05%. The value was 12.8% in Section 5.2.4. As expected, continuous estimation of ambiguities 
provides a better anticipation of success fixing.  

 

Figure 7-8. The probability of success Ps calculated based on the 5 ambiguities having the lowest 
uncertainty (Data set 1) 

 

Figure 7-9. Horizontal performance of the IAR solution using the proposed Partial-IAR as the ambiguity 
validation method (Data set 1) 

Table 7-1. Performance summary of the IAR results processing the Data set 1 using a modified 
Partial-IAR validation scheme.  

 Horizontal Positioning Error (in meter)  
Data Set 1 68th 

Percentile 
95th 
Percentile 

98th 
Percentile 

Fix Rate Wrong Fix 
Rate 

GNSS IAR 0.74 1.80 2.52 5.6% 16.7% 
GNSS/INS IAR 0.74 1.26 1.75 4.8% 9.3% 
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The horizontal positioning results are provided in Figure 7-9. With the positioning statistics of the GNSS 
case, new GNSS/INS performance indicators are summarized in Table 7-1. Smaller horizontal 
positioning error percentiles are obtained in the case GNSS/INS. A 95th percentile of 1.26 meter is 
comparable with the previous float GNSS/INS case. Still a comparably low fix rate of 4.8% is obtained. 
The fixing zone is mainly located between epoch 500 and 600, where a constantly big value of 𝑃𝑆 is 
guaranteed. Nevertheless, the wrong fix rate is much lower 9.3%, in comparison with 16.7% of the 
GNSS case.  
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 Conclusions and Proposals on Future Work 

 Conclusions 
This thesis carried out the analysis of integrated INS/GNSS (GPS+GLONASS) for land vehicle 
applications, using carrier phase measurement for high accuracy. Illustrations of performance are taken 
from data collection performed in a light urban environment in Toulouse. 

The Float-RTK has been proven to work well with consistent bounds especially during CS-free periods. 
As results, a performance of holding the 95 percentile horizontal error at a 1-meter level in lightly 
constrained environment, and at a 3-meter level in an urban area are obtained. The importance of CS-
DR (Cycle Slip Detection and Repair) appears obvious. The miss-detection and false-detection of CS 
both deteriorate the solution in urban situations, by biasing the carrier phase position at a certain period 
of the data collection. The carrier phase measurements are also not fully used due to the difficulty to 
detect and repair reliably CSs in difficult conditions.  

The reliability of the fixed carrier phase ambiguity solution is not yet satisfactory in urban environments 
due to the frequent occurrences of CS and the low ambiguity fixing rate. The demanding criteria for a 
declared ambiguity fixing are rarely satisfied. This could be expected as only L1 measurements are used. 
This is clearly a field to improve.  

The coupling of a low-cost single frequency receiver with low-cost IMU does not boost the positional 
accuracy when the GNSS signals are received in good conditions, and does not seem to improve the AR. 
However, the improvement brought by low-cost IMU when operating in a constrained environment is 
more obvious.   

 

 Proposals for Future Work 
The proposed work can be improved in the following aspects:  

 Multi-constellation/Multi-frequency: For this study, only the GPS and GLONASS 
constellations are taken into account because the low-cost receiver used did not process Galileo signals 
and the visibility of Galileo and BeiDou satellites in Toulouse was rare at the time of the thesis. Taken 
the distinguished developments in constellation construction of Galileo and BeiDou, we believe that the 
inclusion of Galileo and BeiDou would bring more reliability on PVT solutions, in particular though 
their pilot signals. With the technology development of GNSS receivers, the possibility of using multi-
frequency receivers may arise. Under the concept of RTK, other than improving the positioning 
performance, a further verification of hypothesis imposed on our algorithms can be done.  
 Measurement correction models: When centimeter-level precise positioning is envisioned, 
some measurement correction models which have been previously ignored need be carefully 
reconsidered, such as the wind-up effect, the phase center calibration, etc [6], [106].  
 Coupling with high-quality sensors: With the technology development in inertial industry, the 
price of high-quality inertial units tends to decrease. Under the concept of low-cost, comparable higher-
quality units are of more interests.  
 Integrity information: In addition to the accuracy of the estimated position, a measure of the 
trust that tells the correctness of the solution should also be provided. The integrity information of 
navigation solution is for sure a critical and indispensable message for many applications which 
unfortunately has not been possible to be covered in this dissertation.  
 Refined Cycle slip detection and repair scheme: For this moment, our proposed CS-DR relies 
too much on the satellite geometry quality. The CS-free satellite cannot continue to be used when the 
number of CS-free satellites is less than 5. CS-free satellite should be better identified in the future. The 
choice of holding the GNSS measurements rate at 1Hz is not to loose the possibility of integrating a 
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real-time algorithms. With the intention to improve the detection and repair of CS, a higher measurement 
rate is always an alternative. 
 Integer ambiguity resolution: In order to limit the influence of low-quality satellites (CS or 
multipath contaminated ones) that could corrupt the ambiguity resolution of the whole set, Partial-AR 
has been chosen. The key factor for Partial-IAR relies on the subset selection. More complete criteria 
should be tested. 
 External aiding: The contribution of a low-cost MEMS has turned out to show limited effects 
on RTK performance under semi-urban/urban areas. However, the integration with a higher-grade IMU 
is still worthy exploring.  

 

  



132 
 

References 

[1] A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based 
Positioning and their Integration. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 

[2] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. 
Artech House, 2013. 

[3] Scott Gleason and Demoz Gebre-Eqziabher, GNSS Applications and Methods. Artech House, 
2009. 

[4] H. Kuusniemi, “User-Level Reliability and Quality Monitoring in Satellite-Based Personal 
Navigation,” Thesis for the degree of Doctor of Tchnology, University of Technology, Tampere, 
2005. 

[5] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance 
Second Edition. 2006. 

[6] Peter J.G. Teunissen, Handbook of Global Navigation Satellite Systems. Springer, 2017. 
[7] S. Carcanague, “Low cost GPS GLONASS Precise Positioning Algorithm in Constrained 

Environment,” Institut National Polytechnique de Toulouse, 2013. 
[8] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS-Global Navigation Satellite 

Systems. Springer, 2008. 
[9] D. Odijk, P. J. G. Teunissen, and A. Khodabandeh, “Single-Frequency PPP-RTK: Theory and 

Experimental Results,” in Earth on the Edge: Science for a Sustainable Planet, vol. 139, C. Rizos 
and P. Willis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 571–578. 

[10] P. J. G. Teunissen, “Towards a unified theory of GNSS ambiguity resolution,” JournPositioning, 
vol. Journal of Global Positioning Systems, no. 04, p. 0, 2003. 

[11] S. Verhagen, “The GNSS integer ambiguities estimation and validation,” Publications on Geodesy, 
Netherlands Geodetic Commission, Delft, 2005. 

[12] P. J. G. Teunissen, “Integer aperture GNSS ambiguity resolution,” in Artificial Satellites, 2002, 
vol. 38, No. 3, pp. 79–88. 

[13] P. J. Teunissen, “GNSS ambiguity bootstrapping: theory and application,” in Proceedings of 
international symposium on kinematic systems in Geodesy, geomatics and navigation, 2001, pp. 
246–254. 

[14] P. De Jonge, C. Tibernius, and P. Teunissen, “Computational aspects of the LAMBDA method for 
GPS ambiguity resolution,” in PROCEEDINGS OF ION GPS, 1996, vol. 9, pp. 935–944. 

[15] P. J. G. Teunissen, “An optimality property of the integer least-squares estimator,” Journal of 
Geodesy, vol. 73, no. 11, pp. 587–593, Dec. 1999. 

[16] P. J. G. Teunissen, P. J. Jonge, and C. Tiberius, “Performance of the LAMBDA method for fast 
GPS ambiguity resolution,” Navigation, vol. 44, no. 3, pp. 373–383, 1997. 

[17] A. E. Zinoviev, “Using GLONASS in combined GNSS receivers: current status,” in Proceedings 
of ION GNSS, 2005, pp. 1046–1057. 

[18] Richard Ong, “Reliability of Combined GPS/GLONASS Ambiguity Resolution,” Master of 
Science, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, 2010. 

[19] H. Yamada, T. Takasu, N. Kubo, and A. Yasuda, “Evaluation and Calibration of Receiver Inter-
channel Biases for RTK-GPS/GLONASS,” presented at the Proceedings of the 23rd International 
Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010) 
September 21 - 24, 2010 Oregon Convention Center, Portland, Oregon Portland, OR, 2010. 

[20] J. Wang, C. Rizos, M. P. Stewart, and A. Leick, “GPS and GLONASS integration: modeling and 
ambiguity resolution issues,” GPS solutions, vol. 5, no. 1, pp. 55–64, 2001. 

[21] L. Wanninger, “Carrier-phase inter-frequency biases of GLONASS receivers,” Journal of 
Geodesy, vol. 86, no. 2, pp. 139–148, Feb. 2012. 

[22] S. Chuang, Y. Wenting, S. Weiwei, L. Yidong, Y. yibin, and Z. Rui, “GLONASS pseudorange 
inter-channel biases and their effects on combined GPS/GLONASS precise point positioning,” 
GPS Solutions, vol. 17, no. 4, pp. 439–451, Oct. 2013. 

[23] A. Angrisano, “GNSS/INS integration methods,” 2010. 
[24] P. Aggarwal, MEMS-based integrated navigation. Artech House, 2010. 
[25] “GPS.gov: Space Segment.” [Online]. Available: https://www.gps.gov/systems/gps/space/. 



133 
 

[26] IS-GPS-200H, “Navstar GPS Space Segment/Navigation User Interfaces IS-GPS-200H,” Sep. 
2013. 

[27] GLONASS ICD, “GLONASS Interface Control Document (Edt 5.1).” 2008. 
[28] A. Noureldin, T. B. Karamat, and J. Georgy, “Basic Navigational Mathematics, Reference Frames 

and the Earth’s Geometry,” in Fundamentals of Inertial Navigation, Satellite-based Positioning 
and their Integration, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–63. 

[29] Alain L. Kornhauser, “Global Navigation Satellite System,” Princeton University, 2007. 
[30] C. Boucher and Z. Altamimi, “ITRS, PZ-90 and WGS 84: current realizations and the related 

transformation parameters,” Journal of Geodesy, vol. 75, no. 11, pp. 613–619, 2001. 
[31] ICD-GPS-200C, “Interface Control Document ICD-GPS-200C.” 2000. 
[32] A.N. Zueva, E.V.Novikov, D.I.Pleshakov, and I.V.Gusev, “System of geodetic parameters Zemli 

1990 PZ-90.11,” presented at the Proc. 9th Meet . Int . Comm. GNSS (ICG), Work. Group D, 
Prague (UNOOSA, Vienna 2014), 2014. 

[33] Igor Gusev and Olga Sanakina, “Current Status of Global Terrestrial Reference Systems 
Implemented in GNSS,” Russian Federal Space Agency, 2015. 

[34] Stephen Malys, Robert Wong, and Scott A. True, “The WGS84 Terrestrial Reference Frame in 
2016,” ICD-11, Sochi Russia, Nov. 2016. 

[35] W Lewandowski and E F Arias, “GNSS times and UTC,” Metrologia, 2011. 
[36] “RINEX The Receiver Independent Exchange Format Version 3.03.” IGS, RINEX Working 

Group and Radio Technical Commission for Maritime Services Special Committee 104 (RTCM-
SC104), 14-Jul-2015. 

[37] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering: 
with MATLAB exercises, 4. ed. Hoboken, NJ: Wiley, 2012. 

[38] “GNSS signal - Navipedia.” [Online]. Available: 
http://www.navipedia.net/index.php/GNSS_signal. [Accessed: 24-Apr-2018]. 

[39] E. D. Kaplan and C. Hegarty, Eds., Understanding GPS: principles and applications, 2nd ed. 
Boston: Artech House, 2006. 

[40] Rodrigo Leandro, M. Santos, and R. B. Langley, “UNB Neutral Atmosphere Models Development 
and Performance,” presented at the Proceedings of ION NTM 2006, Monterey, California, 2006. 

[41] L. Wanninger, “Ionospheric Monitoring Using IGS Data,” presented at the IGS Workshop, 1993. 
[42] S. Katsougiannopoulos, C. Pikridas, D. Rossikopoulos, I. Ifadis, and A. Fotiou, “Tropospheric 

refraction estimation using various models, radiosonde measurements and permanent GPS data,” 
PS5. 4–GNSS Processing and Applications, vol. 15, 2006. 

[43] “Geometric dilution of precision,” Wikipédia. 12-Jan-2018. 
[44] D. Laurichesse and F. Mercier, “Real-time PPP with undifferenced integer ambiguity resolution, 

experimental results,” p. 13, 2010. 
[45] D. Laurichesse, F. Mercier, J.-P. Berthias, P. Broca, and L. Cerri, “Integer Ambiguity Resolution 

on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit 
Determination,” Navigation, vol. 56, no. 2, pp. 135–149, juin 2009. 

[46] M. Ge, G. Gendt, M. Rothacher, C. Shi, and J. Liu, “Resolution of GPS carrier-phase ambiguities 
in Precise Point Positioning (PPP) with daily observations,” Journal of Geodesy, vol. 82, no. 7, 
pp. 389–399, Jul. 2008. 

[47] A. Rovira-Garcia, J. M. Juan, J. Sanz, G. González-Casado, and E. Bertran, “Fast Precise Point 
Positioning: A System to Provide Corrections for Single and Multi-frequency Navigation,” 
Navigation, vol. 63, no. 3, pp. 231–247, 2016. 

[48] S. Verhagen and P. J. G. Teunissen, “The ratio test for future GNSS ambiguity resolution,” GPS 
Solut, vol. 17, no. 4, pp. 535–548, Nov. 2012. 

[49] T. Li and J. Wang, “Analysis of the upper bounds for the integer ambiguity validation statistics,” 
GPS Solut, vol. 18, no. 1, pp. 85–94, Feb. 2013. 

[50] P. J. Teunissen, “The least-squares ambiguity decorrelation adjustment: a method for fast GPS 
integer ambiguity estimation,” Journal of Geodesy, vol. 70, no. 1–2, pp. 65–82, 1995. 

[51] P. J. G. Teunissen, “Least-squares estimation of the integer GPS ambiguities,” in Invited lecture, 
section IV theory and methodology, IAG general meeting, Beijing, China, 1993. 

[52] P. J. G. Teunissen, “Integer aperture bootstrapping: a new GNSS ambiguity estimator with 
controllable fail-rate,” Journal of Geodesy, vol. 79, no. 6–7, pp. 389–397, Aug. 2005. 



134 
 

[53] P. De Jong and C. Tiberius, “The LAMBDA method for integer ambiguity estimation: 
implementation aspects.” Aug-1996. 

[54] D. Kim and R. B. Langley, “GPS ambiguity resolution and validation: methodologies, trends and 
issues,” in Proceedings of the 7th GNSS Workshop–International Symposium on GPS/GNSS, 
Seoul, Korea, 2000, vol. 30. 

[55] X.-W. Chang, X. Yang, and T. Zhou, “MLAMBDA: a modified LAMBDA method for integer 
least-squares estimation,” Journal of Geodesy, vol. 79, no. 9, pp. 552–565, 2005. 

[56] S. Verhagen and Bofeng Li, “LAMBDA - Matlab implementation, version 3.0.” 2012. 
[57] J. Wang, M. P. Stewart, and M. Tsakiri, “A comparative study of the integer ambiguity validation 

procedures,” Earth, planets and space, vol. 52, no. 10, pp. 813–817, 2000. 
[58] S. Verhagen and P. J. Teunissen, “New global navigation satellite system ambiguity resolution 

method compared to existing approaches,” Journal of Guidance, Control, and Dynamics, vol. 29, 
no. 4, pp. 981–991, 2006. 

[59] T. Li and J. Wang, “Some remarks on GNSS integer ambiguity validation methods,” Survey 
Review, vol. 44, no. 326, pp. 230–238, Jul. 2012. 

[60] L. Wang and Y. Feng, “Fixed Failure Rate Ambiguity Validation Methods for GPS and Compass,” 
in China Satellite Navigation Conference (CSNC) 2013 Proceedings, vol. 244, J. Sun, W. Jiao, H. 
Wu, and C. Shi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 379–397. 

[61] S. Verhagen and P. J. G. Teunissen, “On the probability density function of the GNSS ambiguity 
residuals,” GPS Solutions, vol. 10, no. 1, pp. 21–28, Feb. 2006. 

[62] P. J. Teunissen and S. Verhagen, “On the foundation of the popular ratio test for GNSS ambiguity 
resolution,” in Proc. ION GNSS, 2004, pp. 2529–2540. 

[63] P. J. G. Teunissen and S. Verhagen, “On GNSS ambiguity acceptance tests,” in Proc. IGNSS 
Symposium, 2007. 

[64] B. J. Clark and D. M. Bevly, “GPS/INS integration with fault detection and exclusion in shadowed 
environments,” in 2008 IEEE/ION Position, Location and Navigation Symposium, 2008, pp. 1–8. 

[65] S. Godha, “Performance evaluation of low cost MEMS-based IMU integrated with GPS for land 
vehicle navigation application,” Library and Archives Canada, 2006. 

[66] E.-H. Shin, “Estimation Techniques for Low-Cost Inertial Navigation,” The University of Calgory, 
2005. 

[67] M. G. Petovello, “Real-time integration of a tactical-grade IMU and GPS for high-accuracy 
positioning and navigation,” 2004. 

[68] P. F. F. N. Ferrao, “Positioning with Combined GPS and GLONASS Observations,” Master of 
Science Degree in Aerospace Engineering, Instituto Superior Técnico, 2013. 

[69] J. Aggrey and S. Bisnath, “Analysis and modelling of pseudorange and carrier-phase biases in 
GNSS Precise Point Positioning,” in 27th International Technical Meeting of The Satellite 
Division of the Institute of Navigation, Tampa, Florida, 2014. 

[70] A.-C. Escher, “Study of the Contribution of GNSSINS Hybridization to GNSS Integrity 
Monitoring for Civil Aviation Applications,” 2003. 

[71] Heidi Kuusniemi and G. Lachapelle, “GNSS signal reliability testing in urban and indoor 
environments,” in Proceedings of the NTM Conference, 2004. 

[72] S. Carcanague, “Real-time geometry-based cycle slip resolution technique for single-frequency 
PPP and RTK,” in ION GNSS 2012, Proceedings of the 25th International Technical Meeting of 
The Satellite Division of the Institute of Navigation, 2012, p. pp–1136. 

[73] D. Kozlov, M. Tkachenko, and A. Tochilin, “Statistical characterization of hardware biases in 
GPS+GLONASS receivers,” presented at the Proceedings of the 13th international technical 
meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), 2000. 

[74] J. Geng, Q. Zhao, C. Shi, and J. Liu, “A review on the inter-frequency biases of GLONASS carrier-
phase data,” Journal of Geodesy, vol. 91, no. 3, pp. 329–340, Mar. 2017. 

[75] L. Wanninger and S. Wallstab-Freitag, “Combined Processing of GPS, GLONASS, and SBAS  
Code Phase and Carrier Phase Measurements,” presented at the ION GNSS 20th International 
Technical Meeting of the Satellite Division, Fort Worth, TX, 2007. 

[76] J. E. Aggrey, “Multi-GNSS Precise Point Positioning Software Architecture and Analysis of 
GLONASS Pseudorange Biases,” Master of Science, York University Toronto, 2014. 



135 
 

[77] J. Chen, P. Xiao, Y. Zhang, and B. Wu, “GPS/GLONASS System Bias Estimation and Application 
in GPS/GLONASS Combined Positioning,” in China Satellite Navigation Conference (CSNC) 
2013 Proceedings, vol. 244, J. Sun, W. Jiao, H. Wu, and C. Shi, Eds. Berlin, Heidelberg: Springer 
Berlin Heidelberg, 2013, pp. 323–333. 

[78] Sleewaegen J., Simsky A., de Wilde W., Boon F., and Willems T., “Demystifying GLONASS 
Inter-Frequency Carrier Phase Biase,” Inside GNSS, pp. 57–61, Jun. 2012. 

[79] P. J. G. Teunissen, “Quality Control and GPS,” in GPS for Geodesy, P. J. G. Teunissen and A. 
Kleusberg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 271–318. 

[80] O. Julien, “Carrier-Phase Tracking of Future Data/Pilot Signals,” in 18th International Technical 
Meeting of The Satellite Division of the Institute of Navigation, Long Beach, California, 2005. 

[81] G. Falco, M. Pini, and G. Marucco, “Loose and Tight GNSS/INS Integrations: Comparison of 
Performance Assessed in Real Urban Scenarios,” Sensors, vol. 17, no. 2, p. 255, Jan. 2017. 

[82] M. Bahrami and M. Ziebart, “Instantaneous Doppler-aided RTK positioning with single frequency 
receivers,” in Position Location and Navigation Symposium (PLANS), 2010 IEEE/ION, 2010, pp. 
70–78. 

[83] Malek Karaim, Tashfeen B. Karamat, Aboelmagd Noureldin, and Ahmed El-Shafie, “GPS Cycle 
Slip Detection and Correction at Measurement Level,” British Journal of Applied Science & 
Technology, vol. 29, no. 4, pp. 4239–4251, 2014. 

[84] S. Verhagen, C. Tiberius, B. Li, and P. J. Teunissen, “Challenges in ambiguity resolution: biases, 
weak models, and dimensional curse,” in Satellite Navigation Technologies and European 
Workshop on GNSS Signals and Signal Processing,(NAVITEC), 2012 6th ESA Workshop on, 2012, 
pp. 1–8. 

[85] P. J. G. Teunissen, P. Joosten, and C. Tiberius, “Geometry-free ambiguity success rates in case of 
partial fixing,” in Proceedings of ION-NTM, 1999, pp. 25–27. 

[86] Ublox Technology, “EVK-7-8-M8 Ublox GNSS Evaluation Kits.” 
[87] XSENSTechnologies, “MTi and MTx User Manual and Technical Documentation,” Document 

MT0100P, Version O, Oct. 2010. 
[88] T. Takasu and A. Yasuda, “Development of the low-cost RTK-GPS receiver with an open source 

program package RTKLIB,” in international symposium on GPS/GNSS, 2009, pp. 4–6. 
[89] T. Takasu, “RTKLIB Manuel,” 2013. 
[90] T. Takasu and A. Yasuda, “Cycle slip detection and fixing by MEMS-IMU/GPS integration for 

mobile environment RTK-GPS,” in Proceedings of the 21st International Technical Meeting of 
the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, USA, 2008, 
vol. 1619, p. 6471. 

[91] H. Sulen, “Civil maritime GNSS combinations in arctic areas,” Master of Science in Positioning 
and Navigational Technology, 2015. 

[92] Y. Quan, L. Lau, G. W. Roberts, and X. Meng, “Measurement Signal Quality Assessment on All 
Available and New Signals of Multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with 
Real Data,” Journal of Navigation, vol. 69, no. 02, pp. 313–334, Mar. 2016. 

[93] E. Lie and H. Leithe, “Integrating GNSS/INS/PVT for robust positioning,” Master of Science, 
NTNU, 2016. 

[94] V. Elisson and G. Gässler, “Low cost relative gnss positioning with imu integration,” Master of 
Science, Chalmers University of Technology, Göteborg, 2014. 

[95] D. H. Titterton and J. L. Weston, Strapdown inertial navigation technology, 2. ed., repr. Stevenage: 
Institution of Electrical Engineers, 2009. 

[96] XSENS Technology, “Mti User Manuel,” Document MT0605P, Revision B, Dec. 2012. 
[97] Mohinder S. Grewal, L. R. Weill, and A. P. Andrews, Global positioning systems, inertial 

navigation, and integration. New York, NY: Wiley, 2001. 
[98] I. C. S. L. M. S. Committee, I. O. for Standardization, and I. E. Commission, IEEE standard 

specification format guide and test procedure for single-axis interferometric fiber optic gyros, vol. 
802. Institute of Electrical & Electronics Engineers (IEEE), 1998. 

[99] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and Modeling of Inertial Sensors Using Allan 
Variance,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 140–149, 
Jan. 2008. 



136 
 

[100] A. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A Comparison between Different Error 
Modeling of MEMS Applied to GPS/INS Integrated Systems,” Sensors, vol. 13, no. 8, pp. 9549–
9588, Jul. 2013. 

[101] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge, Computer 
Laboratory, 2007. 

[102] X. Zhang, Y. Li, P. Mumford, and C. Rizos, “Allan variance analysis on error characters of MEMS 
inertial sensors for an FPGA-based GPS/INS system,” in Proceedings of the International 
Symposium on GPS/GNNS, 2008, pp. 127–133. 

[103] S. Nassar, “Improving the inertial navigation system (INS) error model for INS and INS/DGPS 
applications,” National Library of Canada= Bibliothèque nationale du Canada, 2005. 

[104]Y. Zhao, M. Horemuz, and L. E. Sjöberg, “Stochastic modelling and analysis of IMU sensor errors,” 
Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 22, 2011. 

[105] P. Brocard, “Integrity monitoring for mobile users in urban environment,” 2016. 
[106] M. Hernandez-Pajares et al., “The ESA/UPC GNSS-Lab tool (gLAB): An advanced multipurpose 

package for GNSS data processing,” in 2010 5th ESA Workshop on Satellite Navigation 
Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 
Netherlands, 2010, pp. 1–8. 

[107] “RINEX The Receiver Independent Exchange Format Version 3.02.” IGS, RINEX Working 
Group and Radio Technical Commission for Maritime Services Special Committee 104 (RTCM-
SC104), 03-2013. 

[108] B. W. Remondi, “Computing satellite velocity using the broadcast ephemeris,” GPS Solutions, vol. 
8, no. 3, pp. 181–183, Sep. 2004. 

[109] IS-GPS-200D, “Navstar GPS Space Segment/Navigation User Interfaces IS-GPS-200D.” 
[110] P.-Y. Chen, “Experimental Assessment of MEMS INS Stochastic Error Model,” PhD Thesis, The 

Ohio State University, 2015. 
[111] H. Hou, “Modeling inertial sensors errors using Allan variance,” Library and Archives Canada= 

Bibliothèque et Archives Canada, 2005. 
 
  



137 
 

Appendix 
A. Matrix Representations 

A.1 Rotation Matrices 

For a 3-dimensional coordinate frame, a rotation of an angle 𝜃 along its axes 𝒙, 𝒚, and 𝒛 are respectively 
represented by following matrices:  

𝑹𝒙(𝜃) = [
1 0 0
0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] , 𝑹𝒚(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] , 𝑹𝒛(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

].  

 

A.2 Skew Symmetric Matrix 

A skew symmetric matrix 𝑨 of a vector 𝒂 = [𝑎1, 𝑎2, 𝑎3]𝑻 is defined in form  

𝑨 = [𝒂 ×] = [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] 

The product of a skew matrix 𝑨 and a vector 𝒃 = [𝑏1, 𝑏2, 𝑏3]𝑻, whose skew matrix is noted as 𝑩, can be 
reformulated as:  

𝑨 ∙ 𝒃 = −𝑩 ∙ 𝒂  

A.3 Gravitation and Gravity 

The Earth gravity, different from the gravitation field, incorporates also the centripetal component due 
to the Earth rotation [1], [2] 

𝒈𝒃
∎ = 𝜸𝒊𝒃

∎ −𝛀𝒊𝒆
∎𝛀𝒊𝒆

∎𝐫𝒆𝒃
∎  

where 𝜸𝒊𝒃∎  is the gravitational acceleration vector expressed in ∎ frame, 𝛀𝒊𝒆∎  is the skew-symmetric 
representation of the Earth rotation vector 𝒘𝒊𝒆∎  and 𝐫𝒆𝒃∎  is the geocentric position. 

The detailed formula of the gravitation field in e-frame is expressed as  

𝜸𝒊𝒃
𝒆 =

−𝜇⊕

|𝐫𝒆𝒃
𝒆 |

𝟑
(𝐫𝒆𝒃
𝒆 +

3

2
𝐽2
𝑎⊕ ²

|𝐫𝒆𝒃
𝒆 |

𝟐
[r𝑒𝑏,𝑥
𝑒 − 5r𝑒𝑏,𝑥

𝑒 (
r𝑒𝑏,𝑧
𝑒

|𝐫𝒆𝒃
𝒆 |
)

2

, r𝑒𝑏,𝑦
𝑒 − 5r𝑒𝑏,𝑦

𝑒 (
r𝑒𝑏,𝑧
𝑒

|𝐫𝒆𝒃
𝒆 |
)

2

, 3r𝑒𝑏,𝑥
𝑒 − 5r𝑒𝑏,𝑧

𝑒 (
r𝑒𝑏,𝑧
𝑒

|𝐫𝒆𝒃
𝒆 |
)

2

 ]

𝑇

) 

where 𝜇⊕  is the Earth gravitational constant, 𝐽2  is the 2nd zonal harmonic value, 𝐫𝒆𝒃
𝒆 =

[r𝑒𝑏,𝑥
𝑒  , r𝑒𝑏,𝑦

𝑒  , r𝑒𝑏,𝑧
𝑒 ]

𝑻is the geocentric position vector with its norm denoted by |𝐫𝒆𝒃𝒆 |. 

 

Two examples of having the gravity field expressed in e-frame and n-frame are thus provided:  

𝒈𝒃
𝒆 = 𝜸𝒊𝒃

𝒆 +𝑤𝑖𝑒² [
1 0 0
0 1 0
0 0 0

] 𝐫𝒆𝒃
𝒆  

𝒈𝒃
𝒏 = 𝜸𝒊𝒃

𝒏 +𝑤𝑖𝑒² [
𝑠𝑖𝑛²𝜑 0 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑
0 1 0

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 0 𝑐𝑜𝑠²𝜑
] 𝒓𝒆𝒃

𝒏  
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The gravity is often expressed in n-frame with its north and east components being zero and only the up 
component being non-zero: 

𝒈𝒃
𝒏 = [0, 0, −𝑔]𝑇 

The WGS-84 datum provides a simple way for the calculation of the normal gravity, known as the 
Somigliana model [2]: 

𝑔0 = 𝑔𝑒
(1 + 0.001931853𝑠𝑖𝑛²𝜑)

√1 − 𝑒2𝑠𝑖𝑛²𝜑
 

with 𝑔𝑒 = 9.7803253359
𝑚

𝑠2
, 𝑎 = 6378137𝑚  the equatorial radius of the Earth, 𝑔0  the nominal 

gravity et the ellipsoid. 

 

A4. RINEX File Format 

RINEX, the Receiver Independent Exchange Format, was first developed by the Astronomical Institute 
of the University of Bern for the easy exchange of GNSS data. The original RINEX Version 1 was 
presented in 1989. The latest version RINEX 3.03 comes out in 2015 with various up-to-date 
modifications. For further details on RINEX history, refer to [10] and [12].  

The RINEX 3.03 format consists of three ASCII file types: 1. Observation data file; 2. Navigation data 
file; 3. Meteorological data file. Each file has a header section and a data section.  

Each observation data file contains the GNSS measurements generated by a given GNSS receiver with 
the corresponding information on observation types, signal tracking channel, signal strength and the 
time of reception expressed in the time frame of the receiver.  

In order to compute the absolute position of the rover, the position of the observed satellite need to be 
derived from the navigation data file. Besides all the necessary descriptions of the satellite orbit, 
corrections of the satellite time to UTC or to other systems and indicators of the satellite status are also 
contained in the navigation file. For the GPS and GLONASS constellations, different information is 
contained. While parameters of a Keplerian orbit representation are broadcast for GPS, the Cartesian 
state vectors of GLONASS are directly provided. 

Table A-1. GPS and GLONASS Satellite Parameters in Navigation Data File 

GPS Satellite Parameters   

𝑡𝑜𝑐 Time of clock 𝑎𝑓0 Satellite vehicle clock bias 

𝑎𝑓1 Satellite vehicle clock drift 𝑎𝑓2 Satellite vehicle clock 
drift rate 

𝐶𝑟𝑠 Amplitude of the sine 
harmonic correction term to 
the orbit radius (Orbit 1*) 

𝛥𝑛 Mean motion difference 
from computed value 
(Orbit 1) 

𝑀0 Mean anomaly at the reference 
time (Orbit 1) 

𝐶𝑢𝑐 Amplitude of the cosine 
harmonic correction term 
to the argument of latitude 
(Orbit 2) 
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𝑒 Eccentricity of the orbit (Orbit 
2) 

𝐶𝑢𝑠 Amplitude of the sine 
harmonic correction term 
to the argument of latitude 
(Orbit 2) 

𝑎1/2 Square root of the semi-major 
axis of the orbit (Orbit 2) 

𝑡𝑜𝑒 IODE, issue of data, 
ephemeris (Orbit 3) 

𝐶𝑖𝑐 Amplitude of the cosine 
harmonic correction term to 
the angle of inclination (Orbit 
3) 

𝛺0 Right ascension of 
ascending node of orbital 
plane at the weekly epoch 
(Orbit 3) 

𝐶𝑠 Amplitude of the sine 
harmonic correction term to 
the angle of inclination (Orbit 
3) 

𝑖0 Inclination angle at the 
reference time (Orbit 4) 

𝐶𝑟𝑐 Amplitude of the cosine 
harmonic correction term to 
the orbit radius (Orbit 4) 

𝑤 Argument of perigee 
(Orbit 4) 

𝛺̇𝑑 Rate of change of longitude of 
the ascending node at the 
reference time (Orbit 4) 

𝑖𝑑𝑜𝑡 IDOT, Rate of inclination 
(Orbit 5) 

GLONASS Satellite Parameters   

𝑡𝑜𝑐 Time of clock 𝑡𝑁 Satellite vehicle clock bias 

𝛾𝑁 Satellite vehicle relative 
frequency bias  

(𝑥0, 𝑦0, 𝑧0) Satellite broadcast 
position coordinates 

(𝑣𝑥0, 𝑣𝑦0, 𝑣𝑧0) Satellite broadcast velocities (𝑥′′0, 𝑦′′0, 𝑧′′0) Accelerations (lunar and 
solar perturbation terms) 

*The index of ‘Orbit’ here refers to the broadcast data line number of navigation message recorded in 
form RINEX 3.03.  

B. Satellite Ephemeris 
The computation of the satellite orbit is a curve-fit process for a certain time within the ‘fit interval’ of 
the ephemeris. As different types of navigation messages are broadcast by GPS and GLONASS satellites, 
the way their clock correction and position in orbit is also different and will be unfolded in this Appendix. 

B.1 GPS Satellite Clock Correction 

When a GPS signal is received, the rough transmit time is obtained by  

 𝑡𝑡 = 𝑃/𝑐  
where 𝑃[unit m] is the pseudorange observation at the receiver, 𝑐 = 299792458 𝑚/𝑠 is the speed of 
light in vacuum [26], [39].  

Taken the time 𝑡𝑟𝑒𝑣 when the signal is received by the receiver, the raw transmission time 𝑡𝑠𝑣  of the 
signal is given by  
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 𝑡𝑠𝑣 = 𝑡𝑟𝑐 − 𝑡𝑡  
Then the GPS satellite clock delay Δ𝑡𝑠𝑣  should be subtracted to correct the satellite time,  

 𝛥𝑡𝑠𝑣 = 𝑎𝑓0 + 𝑎𝑓1𝑡𝑘,𝑜𝑐 + 𝑎𝑓2𝑡𝑘,𝑜𝑐² + 𝛥𝑡𝑟  

where 𝑎𝑓0, 𝑎𝑓1, 𝑎𝑓2  are navigation message in Table A-1, 𝑡𝑘,𝑜𝑐  is the difference between the true 
transmission time 𝑡 and the clock reference 𝑡𝑜𝑐, and Δ𝑡𝑟 is the clock correction due to the relativistic 
effects. Herein, a function denoted as 𝐶ℎ𝑘(𝑡−𝑡𝑜𝑐) is defined to consider a check on the beginning or end 
of week crossovers,  

 
𝑡𝑘,𝑜𝑐 = 𝐶ℎ𝑘(𝑡−𝑡𝑜𝑐) = {

𝑡 − 𝑡𝑜𝑐 − 604800,
𝑡 − 𝑡𝑜𝑐 + 604800,

𝑡 − 𝑡𝑜𝑐 ,
  
𝑖𝑓 𝑡 − 𝑡𝑜𝑐 > 302400
𝑖𝑓 𝑡 − 𝑡𝑜𝑐 < −302400

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

As the true satellite time 𝑡, to be estimated from (𝑡𝑠𝑣 − Δ𝑡𝑠𝑣), is unknown, it can be substituted by 𝑡𝑠𝑣. 

The calculation of the relativistic correction relies on the following equation 

 𝛥𝑡𝑟 = 𝐹𝑒𝑎
1/2𝑠𝑖𝑛𝐸𝑘  

where 𝐹 = −
2√𝜇⊕

𝑐2
= −4.442807633 × 10−10, 𝐸𝑘 is the eccentric anomaly of the satellite orbit. 

Usually, the value of 𝐸𝑘 ∈ [0, 2𝜋)  is obtained iteratively given the following relations with mean 
anomaly 𝑀𝑘 

 
𝑀𝑘 = 𝑀0 + (√

𝜇⊕
𝑎3

+ 𝛥𝑛) 𝑡𝑘,𝑜𝑐  

 𝑀𝑘 = 𝐸𝑘 + 𝑒 𝑠𝑖𝑛 𝐸𝑘  
However, the previously resolved clock correction corresponds to the ionosphere-free combination of 
dual-frequency (i.e., L1 P(Y) and L2 P(Y)) code combination [6], [7], [109]. The formation of the 
ionosphere-free code combination 𝑃𝐼𝐹 is depicted as following: 

𝑃1 = 𝜌 + 𝑐(𝑑𝑡𝑟
𝐺𝑃𝑆 − 𝑑𝑇) + 𝐼1 + 𝑇 + 𝑏𝑟,𝑃1 − 𝑏𝑠,𝑃1 + 𝜖𝑃1 

𝑃2 = 𝜌 + 𝑐(𝑑𝑡𝑟
𝐺𝑃𝑆 − 𝑑𝑇) + 𝐼2 + 𝑇 + 𝑏𝑟,𝑃2 − 𝑏𝑠,𝑃2 + 𝜖𝑃2 

𝑃𝐼𝐹 =
𝑓1
2

𝑓1
2 − 𝑓2

2 𝑃1 −
𝑓2
2

𝑓1
2 − 𝑓2

2 𝑃2 = 𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑇 + 𝑏𝑟,𝑃𝐼𝐹 − 𝑏𝑠,𝑃𝐼𝐹 

The clock correction includes the true satellite clock and the ionosphere-free combination of satellite 
hardware: 

𝛥𝑡𝑠𝑣 = 𝑑𝑇 +
𝑏𝑠,𝑃𝐼𝐹
𝑐

 

𝑏𝑠,𝑃𝐼𝐹 =
𝑓1
2

𝑓1
2 − 𝑓2

2 𝑏𝑠,𝑃1 −
𝑓2
2

𝑓1
2 − 𝑓2

2 𝑏𝑠,𝑃2 = 𝑏𝑠,𝑃1 +
𝑓2
2

𝑓1
2 − 𝑓2

2 (𝑏𝑠,𝑃1 − 𝑏𝑠,𝑃2)

= 𝑏𝑠,𝑃2 +
𝑓1
2

𝑓1
2 − 𝑓2

2 (𝑏𝑠,𝑃1 − 𝑏𝑠,𝑃2) 

The frequency-difference between the satellite hardware biases, (𝑏𝑠,𝑃1 − 𝑏𝑠,𝑃2), is known as differential 
code bias (DCB). The so-called timing group delay (TGD) broadcast in navigation message is defined 
as:  
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𝑇𝐺𝐷 =
𝑓2
2

𝑓1
2 − 𝑓2

2 (𝑏𝑠,𝑃1 − 𝑏𝑠,𝑃2) 

Therefore the clock correction to apply on the P(Y) pseudoranges are expressed as following: 

𝑃1 + 𝑐(𝛥𝑡𝑠𝑣 − 𝑇𝐺𝐷) = 𝜌 + 𝑐𝑑𝑡𝑟
𝐺𝑃 + 𝐼1 + 𝑇 + 𝑏𝑟,𝑃1 + 𝜖𝑃1 

𝑃2 + 𝑐(𝛥𝑡𝑠𝑣 −
𝑓1
2

𝑓2
2 𝑇𝐺𝐷) = 𝜌 + 𝑐𝑑𝑡𝑟

𝐺𝑃𝑆 + 𝐼2 + 𝑇 + 𝑏𝑟,𝑃2 + 𝜖𝑃2 

For GPS L1 C/A users, another correction which accounts for the hardware biases difference between 
the P1(Y) code and the C/A code should also be considered. However, this correction is not contained 
in GPS legacy navigation message.  

 

B.2 GPS Satellite Position and Velocity 

In order to get the absolute position of the rover, the position and velocity of the satellite need to be 
computed.  

Corrected from Δ𝑡𝑠𝑣, the transmission time 𝑡 of GPS signal is now in hand. To get the satellite position 
at time 𝑡, the first step to get the mean anomaly 𝑀𝑘and eccentric anomaly 𝐸𝑘  by replacing 𝑡𝑘,𝑜𝑐  by 
𝑡𝑘,𝑜𝑒 = 𝐶ℎ𝑘(𝑡−𝑡𝑜𝑒), the time from transmission to ephemeris reference time [28], [108].  

Then the true anomaly and argument of latitude come from:  

 
𝜈𝑘 = 𝑡𝑎𝑛

−1 {
√1 − 𝑒2 𝑠𝑖𝑛 𝐸𝑘 /(1 − 𝑒 𝑐𝑜𝑠 𝐸𝑘)

(𝑐𝑜𝑠 𝐸𝑘 − 𝑒)/(1 − 𝑒 𝑐𝑜𝑠 𝐸𝑘)
}  

 𝛷𝑘 = 𝜈𝑘 +𝑤  
The derivatives are  

 
𝑀̇𝑘 = √

𝜇⊕
𝑎3

+ 𝛥𝑛  

 
𝐸̇𝑘 =

𝑀̇𝑘
1 − 𝑒 𝑐𝑜𝑠 𝐸𝑘

  

 
𝛷𝑘̇ = 𝜈𝑘̇ = 𝐸̇𝑘 𝑠𝑖𝑛 𝐸𝑘

1 + 𝑒 𝑐𝑜𝑠 𝜈𝑘  

𝑠𝑖𝑛 𝜈𝑘 (1 − 𝑒 𝑐𝑜𝑠 𝐸𝑘)
  

Second harmonic orbital perturbations (argument of latitude, radius and inclination): 

 𝛿𝑢𝑘 = 𝐶𝑢𝑠 𝑠𝑖𝑛 2𝛷𝑘 + 𝐶𝑢𝑐 𝑐𝑜𝑠 2𝛷𝑘  
 𝛿𝑟𝑘 = 𝐶𝑟𝑠 𝑠𝑖𝑛 2𝛷𝑘 + 𝐶𝑟𝑐 𝑐𝑜𝑠 2𝛷𝑘  
 𝛿𝑖𝑘 = 𝐶𝑖𝑠 𝑠𝑖𝑛 2𝛷𝑘 + 𝐶𝑖𝑐 𝑐𝑜𝑠 2𝛷𝑘  

 

Corrected argument of latitude, corrected radius, corrected inclination and corrected longitude of 
ascending node:  

 𝑢𝑘 = 𝛷𝑘 + 𝛿𝑢𝑘  
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 𝑟𝑘 = 𝑎(1 − 𝑒 𝑐𝑜𝑠 𝐸𝑘) + 𝛿𝑟𝑘  
 𝑖𝑘 = 𝑖0 + 𝛿𝑖𝑘 + 𝑖𝑑𝑜𝑡𝑡𝑘,𝑜𝑒  
 𝛺𝑘 = 𝛺0 + (𝛺̇𝑑 −𝑤⊕)𝑡𝑘,𝑜𝑒 −𝑤⊕𝑡𝑜𝑒  

Their derivatives are 

 𝑢̇𝑘 = 𝛷𝑘̇ + 2𝛷𝑘̇(𝐶𝑢𝑠 𝑐𝑜𝑠 2𝛷𝑘 − 𝐶𝑢𝑐 𝑠𝑖𝑛 2𝛷𝑘)  
 𝑟̇𝑘 = 𝑎𝑒𝐸̇𝑘 𝑖𝑛 𝐸𝑘 + 2𝛷𝑘̇(𝐶𝑟𝑠 𝑐𝑜𝑠 2𝛷𝑘 − 𝐶𝑟𝑐 𝑠𝑖𝑛 2𝛷𝑘)  
 𝑖𝑘,𝑑𝑜𝑡 = 𝑖𝑑𝑜𝑡 + 2𝛷𝑘̇(𝐶𝑖𝑠 𝑐𝑜𝑠 2𝛷𝑘 − 𝐶𝑖𝑐 𝑠𝑖𝑛 2𝛷𝑘)  
 𝛺̇𝑘 = 𝛺̇𝑑 −𝑤⊕  

 

Satellite position and velocity in orbit plane are thus:  

 𝑥𝑘
′ = 𝑟𝑘 𝑐𝑜𝑠 𝑢𝑘 ;  𝑦𝑘

′ = 𝑟𝑘 𝑠𝑖𝑛 𝑢𝑘  
 𝑥̇𝑘

′ = 𝑟̇𝑘 𝑐𝑜𝑠 𝑢𝑘 − 𝑦𝑘
′ 𝑢̇𝑘;  𝑦̇𝑘

′ = 𝑟̇𝑘 𝑠𝑖𝑛 𝑢𝑘 + 𝑥𝑘
′ 𝑢̇𝑘  

 

Satellite position 𝑿𝑠𝑎𝑡(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘) and velocity 𝑽𝑠𝑎𝑡(𝑥̇𝑘, 𝑦̇𝑘 , 𝑧̇𝑘) expressed in the WGS84 coordinate 
system are:  

 𝑥𝑘 = 𝑥𝑘
′ 𝑐𝑜𝑠 𝛺𝑘 − 𝑦𝑘

′ 𝑐𝑜𝑠 𝑖𝑘 𝑠𝑖𝑛𝛺𝑘  
 𝑦𝑘 = 𝑦𝑘

′ 𝑠𝑖𝑛𝛺𝑘 + 𝑦𝑘
′ 𝑐𝑜𝑠 𝑖𝑘 𝑠𝑖𝑛 𝛺𝑘  

 𝑧𝑘 = 𝑦𝑘
′ 𝑠𝑖𝑛 𝛺𝑘  

 

 𝑥̇𝑘 = 𝑥̇𝑘
′ 𝑐𝑜𝑠 𝛺𝑘 − 𝑦̇𝑘

′ 𝑐𝑜𝑠 𝑖𝑘 𝑠𝑖𝑛 𝛺𝑘 + 𝑦𝑘
′ 𝑖𝑘,𝑑𝑜𝑡 𝑠𝑖𝑛 𝑖𝑘 𝑠𝑖𝑛 𝛺𝑘 − 𝑦𝑘𝛺̇𝑘  

 𝑦̇𝑘 = 𝑥̇𝑘
′ 𝑠𝑖𝑛 𝛺𝑘 + 𝑦̇𝑘

′ 𝑐𝑜𝑠 𝑖𝑘 𝑐𝑜𝑠 𝛺𝑘 − 𝑦𝑘
′ 𝑖𝑘,𝑑𝑜𝑡 𝑠𝑖𝑛 𝑖𝑘 𝑐𝑜𝑠 𝛺𝑘 + 𝑥𝑘𝛺̇𝑘  

 𝑧̇𝑘 = 𝑦̇𝑘
′ 𝑠𝑖𝑛 𝑖𝑘 + 𝑦𝑘

′ 𝑖𝑘,𝑑𝑜𝑡 𝑐𝑜𝑠 𝑖𝑘  
 

B.3 GLONASS Satellite Clock Correction  

With the GLONASS navigation message listed in Table A-1, the satellite clock delay Δ𝑡𝑠𝑣 to be 
subtracted is derived with following equation [27],  

 𝛥𝑡𝑠𝑣 = −𝑡𝑁 + 𝛾𝑁𝑡𝑘,𝑜𝑐  
The computation of term 𝑡𝑘,𝑜𝑐  proceeds as the previous GPS case, while the consistency of time 
references should always be confirmed before doing mathematical operations.  

 

B.4 GLONASS Satellite Position and Velocity 
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The Fourth-order Runge-Kutta (RK4) is the integration method recommended by GLONASS ICD [27] 
to determine satellite orbits. The general idea of RK4 is that given the differential function 𝑓(𝑦, 𝑡) of a 
continuous variable 𝑦(𝑡), the relation between its discrete values of two successive epochs is:  

 
𝑦𝑛+1(𝑡𝑛+1) ≈ 𝑦𝑛(𝑡𝑛) +

1

6
ℎ ∙ (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

where the difference between epochs is the integration step ℎ = 𝑡𝑛+1 − 𝑡𝑛, and terms 𝑘1, 𝑘2, 𝑘3, 𝑘4 are 
obtained from following equations: 

 𝑘1 = 𝑓(𝑦𝑛, 𝑡𝑛)  
 

𝑘2 = 𝑓(𝑦𝑛 +
1

2
ℎ ∙ 𝑘1, 𝑡𝑛 +

1

2
ℎ)  

 
𝑘3 = 𝑓(𝑦𝑛 +

1

2
ℎ ∙ 𝑘2, 𝑡𝑛 +

1

2
ℎ)  

 𝑘4 = 𝑓(𝑦𝑛 + ℎ ∙ 𝑘3, 𝑡𝑛 + ℎ)  
In case of the GLONASS satellite orbit calculation, the differentials of the Cartesian states (𝑿𝑠𝑎𝑡 , 𝑽𝑠𝑎𝑡) 
are derived from the Newton’s Laws of motion where the centrifugal and Coriolis terms are considered 

 𝑑

𝑑𝑡
(
𝑿𝑠𝑎𝑡
𝑽𝑠𝑎𝑡

) = (
𝑽𝑠𝑎𝑡
𝒂𝑠𝑎𝑡

)  

 

𝒂𝑠𝑎𝑡 = −𝜇⊕
𝑿𝑠𝑎𝑡
𝑟3

−
3

2
𝐽2𝜇⊕

𝑎⊕
2

𝑟5

(

 
 
 
 
𝑥 −

5𝑥𝑧2

𝑟5

𝑦 −
5𝑦𝑧2

𝑟5

3𝑧 −
5𝑧3

𝑟5 )

 
 
 
 

+𝑤⊕
2 (

𝑥
𝑦
0
) + 2𝑤⊕ (

𝑣𝑦
−𝑣𝑥
0
) + 𝒂0  

where 𝑟 = |𝑿𝑠𝑎𝑡| = √𝑥2 + 𝑦2 + 𝑧² is the orbital radius, the lunar and solar perturbation term 𝒂0 is 
considered constant during the valid integration interval (typically ±15 min for GLONASS ephemeris 
propagation). 

Regarding the numerical integration step, a constant step of 60 s is applied taking a comprise between 
the computation burden and the expected precision, certainly when 𝑡𝑘,𝑜𝑐 > 60𝑠.  

 

C. Stochastic Process Modeling 

C1. Autocorrelation Function and Power Spectral Density Function 

A random signal or a stochastic process should be distinguished from a deterministic signal as it holds 
certain unpredictability over time [37]. Besides, a random process is considered time stationary or 
simply stationary if the associated pdf is invariant under a translation of time. The autocorrelation 
function, an important way to characterize a random process 𝑥(𝑡), is defined as [24], [37] 

𝑅𝑥(𝑡1, 𝑡2) = 𝐸[𝑥(𝑡1)𝑥(𝑡2)] = (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑎𝑠𝑒)  𝑅𝑥(𝑡2 − 𝑡1) 

where 𝑡1 and 𝑡2 are two arbitrary sampling times. 

For a stationary random process, the power spectral density function is defined via the Wiener-
Khinchine relation:  
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𝑆𝑥(𝑗𝑤) = 𝔉[𝑅𝑥(𝜏)] = ∫ 𝑅𝑥(𝜏)𝑒
−𝑗𝑤𝜏𝑑𝑥

∞

−∞

 

where 𝔉[∎] is the Fourier transform operator and 𝑤 = 2𝜋𝑓, 𝑓 is the frequency in Hz. Compared to 
𝑅𝑥(𝜏), the 𝑆𝑥(𝑗𝑤) of a process provides information of the frequency content.  

C2. Gaussian Random Process 

To better modeling the random errors of INS sensors, some common stochastic process need be 
described in the first place. A Gaussian/normal random variable 𝑋  always holds the following 
probability density function (PDF) [24], [37] 

𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒
−
1
2𝜎2

(𝑥−𝑚𝑥)² 

with 𝑚𝑥 = 𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
 the mean value and 𝜎2 = 𝐸[(𝑋 − 𝐸(𝑋))²] the variance.  

Thus, an easy way to denote a Gaussian random process is 𝑋~𝑁(𝑚𝑥 , 𝜎
2). 

C3. White Noise 

White noise is a stationary random process that has a constant power spectral density function:  

𝑆𝑊𝑁(𝑗𝑤) = 𝐴 

The corresponding autocorrelation function is thus 

𝑅𝑊𝑁(𝜏) = 𝐴𝛿(𝜏) 

where 𝛿(𝜏) is a Dirac function.  

 

C4. Gauss-Markov Process 

A Gauss-Markov (GM) process is a stationary Gaussian process that has an exponential autocorrelation: 

𝑅𝐺𝑀(𝜏) = 𝜎
2𝑒−𝛽|𝑡| 

𝑆𝐺𝑀(𝑗𝑤) =  
2𝜎2𝛽

𝑤2 + 𝛽²
 

where 𝛽 = 1 𝜏𝑐⁄  is the inverse of the correlation time 𝜏𝑐.  

This GM process 𝑦(𝑡) can also be modeled by passing a unit white noise 𝑥(𝑡) through a shaping filter 
as in following figure. 

 

Figure C-1. Shaping Filter  

The system model for the shaping filter is in form: 
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G(𝑗𝑤)G(−𝑗𝑤) =
√2𝛽

𝛽 + 𝑗𝑤

√2𝛽

𝛽 − 𝑗𝑤
 

And the temporal relation of the continuous system is in form: 

𝑦̇ = −𝛽𝑦 + √2𝛽 𝑥 

The discrete form of this system is given as, with 𝑇𝑠 the sampling period, 

𝑌(𝑘 + 1) = 𝑒−𝛽𝑇𝑠𝑌(𝑘) + (𝑘) 

where the variance of the GM process 𝑌(𝑘) is 𝑄𝐺𝑀 = 𝜎2and the variance of the discrete noise 𝑄𝑊 =

𝜎2(1 − 𝑒−2𝛽𝑇𝑠). 

 

C5. Radom Walk Process 

A random walk process can be modeled as the integration of a white noise of power spectral density 𝜎2, 
as in Figure C-2 

 

Figure C-2. Random Walk  

The continuous and discrete representations of the system are separately 

𝑦̇ = 𝑥 

𝑌(𝑘 + 1) = 𝑌(𝑘) + 𝑋(𝑘) 

where the noise variance of 𝑋(𝑘) is 𝑄𝑋 = 𝜎2𝑇𝑠 = 𝑄𝑌,𝑘+1 − 𝑄𝑌,𝑘. The random walk process is thus a 
non-stationary process and its uncertainty increases with time. 

 

C6. Allan Variance Technique 

Allan Variance (AV) is a time domain analysis technique originally designed for characterizing noise 
and stability in clock systems [37], [98]. The technique can be applied to any signal to determine the 
characters of the underlying noise processes.  

The basic idea of the AV technique is that one or more white noise sources of strength 𝜎𝑖² drive the 
canonical transfer function, resulting in the same statistical and spectral properties as the actual device 
[99].  

The AV of a signal 𝑥(𝑡) is a function of averaging time. For an averaging time 𝑇, the AV is computed 
as follows [101]:  

1. Take a long sequence of data and divide it into bins of length 𝑇 = 𝑚 ∗ 𝑇𝑠. There must be enough 
data for at least 9 bins, otherwise the results obtained begin to lose their significance.  

2. Average the data in each bin, [𝑎(𝑇)1, 𝑎(𝑇)2, … , 𝑎(𝑇)𝑛≥9], where 𝑛 the indices of bins.  
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3. The Allan Variance is then given by  

𝜎²(𝑇) =
1

2(𝑛 − 1)
∗ ∑ [𝑎(𝑇)𝑖+1 − 𝑎(𝑇)𝑖]

2

𝑖=[1,…𝑛−1]

. 

To determine the characteristics of the underlying noise processes, the Allan Deviation 𝜎(𝑇) is plotted 
as a function of 𝑇 on a log-log scale. Different types of random process cause slopes with different 
gradients to appear on the plot. Furthermore, different processes usually appear in different regions of 
𝑇, allowing their presence to be easily identified. For more information of the theoretical derivations of 
AV, refer to [98], [99].  

A log-log plot of several popular random processes, i.e. the random walk, the bias instability, the 
quantization noise, the rate random walk, the rate ramp, etc., is provided in Figure C-3.  

 

Figure C-3. A possible log-log plot of Allan Deviation, extracted from [98] 

The white noise caused by thermos-mechanical events that appears in the output of gyro/accelerometers 
is known as Angle/Velocity Random Walk (A/VRW) [110]. This high-frequency noise is reflected on 
the plot with a slop -0.5 whose Allan deviation is in form [111] 

𝜎𝑊𝑁(𝑇) = 𝑁/√𝑇 

with 𝑁 ths noise key parameter. The value of N reads at the cluster time T=1s in the Figure C-4.  

 

 

Figure C-4. Plot for Angle/Velocity Random Walk [110] 
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The flicker noise, also known as bias instability in the INS community, is nominally caused by the 
random flickering of the electronics or other components. This noise is related to the Allan deviation by  

𝜎𝐵²(𝑇) =

{
 

 0,   𝑓𝑜𝑟 𝑇 ≪
1

𝑓0

𝐵2
2𝑙𝑛2
𝜋 , 𝑓𝑜𝑟 𝑇 ≫

1

𝑓0

 

𝑓0 is the cutoff frequency. As indicated in Figure C-5, Allan deviation starts with a slope of +1 for 𝑇 ≪
1

𝑓0
 and reaches a segment that has slope of 0 with constant value at 0.664𝐵 for 𝑇 ≫ 1

𝑓0
. 

 

 

Figure C-5. Plot for Bias Instability [110]  

 

D. INS Process Model  
In this Appendix, the derivation process of the INS-only process model is detailed by conducting the 
perturbation analysis of the equations of motion. Each component of the final compact form will be 
detailed.  

[

𝛿𝒑̇𝒏𝒃
𝒏

𝛿𝒗̇𝒏𝒃
𝒏

𝛿𝝍̇̅𝒏𝒃

] = [

𝑭𝒑𝒑 𝑭𝒑𝒗 𝟎𝟑
𝑭𝒗𝒑 𝑭𝒗𝒗 𝑭𝒗𝒆
𝑭𝒆𝒑 𝑭𝒆𝒗 𝑭𝒆𝒆

] [

𝛿𝒑𝒏𝒃
𝒏

𝛿𝒗𝒏𝒃
𝒏

𝛿𝝍̅𝒏𝒃

] + [

𝟎𝟑 𝟎𝟑  𝟎𝟑      𝟎𝟑
𝑪𝒃
𝒏 𝟎𝟑 𝑪𝒃

𝒏𝑭𝒃 𝟎𝟑
    𝟎𝟑 −𝑪𝒃

𝒏       𝟎𝟑   −𝑪𝒃
𝒏𝑾𝒃

]

[
 
 
 
𝛿𝒃𝒂
𝛿𝒃𝒈
𝛿𝑺𝒂
𝛿𝑺𝒈]

 
 
 

+ [

03
𝑪𝑏
𝑛𝜼𝒂

−𝑪𝑏
𝑛𝜼𝒈

] 

{
 
 

 
 𝛿𝒃𝒂̇ =

−1

𝝉𝑏𝑎
𝛿𝒃𝒂 + 𝜼𝒃𝒂

𝛿𝒃𝒈̇ =
−1

𝝉𝑏𝑔
𝛿𝒃𝒈 + 𝜼𝒃𝒈

                     

{
 
 

 
 𝛿𝒔𝒂̇ =

−1

𝝉𝑠𝑎
𝛿𝒔𝒂 + 𝜼𝒔𝒂

𝛿𝒔𝒈̇ =
−1

𝝉𝑠𝑔
𝛿𝒔𝒈 + 𝜼𝒔𝒈

 

First of all, other than 𝛿𝒑𝒏𝒃
𝒏  the position error in local frame, the 𝛿𝒓𝒏𝒃

𝒏  geodetic position error in radian 
is considered, and the compact form in matrices is expressed as:  

[

𝛿𝒓̇𝒏𝒃
𝒏

𝛿𝒗̇𝒏𝒃
𝒏

𝛿𝝍̇̅𝒏𝒃

] = [
𝑭𝒓𝒓 𝑭𝒓𝒗 03
𝑭𝒗𝒓 𝑭𝒗𝒗 𝑭𝒗𝒆
𝑭𝒆𝒓 𝑭𝒆𝒗 𝑭𝒆𝒆

] [

𝛿𝒓𝒏𝒃
𝒏

𝛿𝒗𝒏𝒃
𝒏

𝛿𝝍̅𝒏𝒃

] + [

0
𝑪𝒃
𝒏𝛿𝒇𝒊𝒃

𝒃

−𝑪𝒃
𝒏𝛿𝒘𝒊𝒃

𝒃
] 
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The second step is to construct the models of measurements error 𝛿𝒇𝒊𝒃
𝒃  and 𝛿𝒘𝒊𝒃

𝒃 . Finally, with the need 
to avoid the computational singularity that may be caused by too small quantities in radian, a 
transformation from 𝛿𝒓𝒏𝒃

𝒏  to 𝛿𝒑𝒏𝒃
𝒏  will be made.  

 

D1. Position Error Dynamics 

In this section, the derivation process of the position error rate in following form will be detailed: 

𝛿𝒓̇𝒏𝒃
𝒏 = 𝑭𝒓𝒓 ∙ 𝛿𝒓𝒏𝒃

𝒏 + 𝑭𝒓𝒗 ∙ 𝛿𝒗𝒏𝒃
𝒏  

 𝑭𝒓𝒓 = [

0 0
−𝑣𝑛

(𝑅𝑀+ℎ)²

𝑣𝑒𝑠𝑖𝑛𝜑

(𝑅𝑁+ℎ)𝑐𝑜𝑠²𝜑
0

−𝑣𝑒
(𝑅𝑁+ℎ)²𝑐𝑜𝑠𝜑

0 0 0

] is the transformation matrix describing the relationship 

between the derivative of geodetic coordinates and themselves, with 𝑅𝑁 =
𝑎

√1−𝑒²𝑠𝑖𝑛²𝜑
 is the 

normal radius, 𝑅𝑀 =
𝑎(1−𝑒2)

√(1−𝑒2𝑠𝑖𝑛2𝜑)3
 the meridian radius;    

 𝑭𝒓𝒗 =

[
 
 
 0

1

𝑅𝑀+ℎ
0

1

(𝑅𝑁+ℎ)𝑐𝑜𝑠𝜑
0 0

0 0 1]
 
 
 
 is a transformation matrix describing the relationship between 

the derivative of geodetic coordinates and the velocity.  

 

First of all, remind that the position error is defined as:  

𝛿𝒓𝒏𝒃
𝒏 = 𝒓̂𝒏𝒃

𝒏 − 𝒓𝒏𝒃
𝒏  

and the motion of the position is related to the velocity vector by  

𝒓̇𝒏𝒃
𝒏 = 𝑭𝒓𝒗 ∙ 𝒗𝒏𝒃

𝒏  

with  

 𝒓𝒏𝒃
𝒏 = (𝜑, 𝜆, ℎ)𝑇 the geodetic coordinates of the moving object (herein, center of IMU);  

 𝒗𝒏𝒃
𝒏 = (𝑣𝑒 , 𝑣𝑛, 𝑣𝑢)

𝑇 is the velocity vector in n-frame, consisting of east, north, up, three 
components; 

 
Thus the time rate of the position error is  

𝛿𝒓̇𝒏𝒃
𝒏 = 𝒓̂̇𝒏𝒃

𝒏 − 𝒓̇𝒏𝒃
𝒏  

By employing the first order approximation of Taylor series expansion,  

𝛿𝒓̇𝒏𝒃
𝒏 =

𝜕𝒓̇𝒏𝒃
𝒏

𝜕𝒓𝒏𝒃
𝒏 𝛿𝒓𝒏𝒃

𝒏 +
𝜕𝒓̇𝒏𝒃

𝒏

𝜕𝒗𝒏𝒃
𝒏 𝛿𝒗𝒏𝒃

𝒏 = 𝑭𝒓𝒓 ∙ 𝛿𝒓𝒏𝒃
𝒏 + 𝑭𝒓𝒗 ∙ 𝛿𝒗𝒏𝒃

𝒏  

𝛿𝒓̇𝒏𝒃
𝒏 =

𝜕(𝑭𝒓𝒗 ∙ 𝒗𝒏𝒃
𝒏 )

𝜕𝒓𝒏𝒃
𝒏 𝛿𝒓𝒏𝒃

𝒏 +
𝜕(𝑭𝒓𝒗 ∙ 𝒗𝒏𝒃

𝒏 )

𝜕𝒗𝒏𝒃
𝒏 𝛿𝒗𝒏𝒃

𝒏  
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𝛿𝒓̇𝒏𝒃
𝒏 =

[
 
 
 
 0

−𝛿ℎ

(𝑅𝑀 + ℎ)²
0

𝑠𝑖𝑛𝜑 ∙ 𝛿𝜑

(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑
−

𝛿ℎ

(𝑅𝑁 + ℎ)²𝑐𝑜𝑠𝜑
0 0

0 0 1]
 
 
 
 

𝒗𝒏𝒃
𝒏 + 𝑭𝒓𝒗𝛿𝒗𝒏𝒃

𝒏  

To display a product by the vector 𝛿𝒓𝒏𝒃
𝒏 , the first term on the right of the equation can be rewritten as 

𝛿𝒓̇𝒏𝒃
𝒏 =

[
 
 
 
 0 0

−𝑣𝑛
(𝑅𝑀 + ℎ)²

𝑣𝑒𝑠𝑖𝑛𝜑

(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑
0

−𝑣𝑒
(𝑅𝑁 + ℎ)²𝑐𝑜𝑠𝜑

0 0 0 ]
 
 
 
 

∙ 𝛿𝒓𝒏𝒃
𝒏 + 𝑭𝒓𝒗 ∙ 𝛿𝒗𝒏𝒃

𝒏  

 

D2. Velocity Error dynamics 

The final expression of the velocity error dynamics is in form: 

𝛿𝒗̇𝒏𝒃
𝒏 = 𝑭𝒗𝒓 ∙ 𝛿𝒓𝒏𝒃

𝒏 + 𝑭𝒗𝒗 ∙ 𝛿𝒗𝒏𝒃
𝒏 + 𝑭𝒗𝒆 ∙ 𝛿𝝍̅𝒏𝒃 + 𝑪𝒃

𝒏𝛿𝒇𝒊𝒃
𝒃  

with  

 𝐅𝐯𝐫 =

[
 
 
 
 2ωie(vncosφ + vu sinφ) +

vevn
(RN+h)cosφ

0
vevu

(RN+h)
2 −

vevn tanφ

(RN+h)
2

−2ωieve cosφ −
ve
2

(RN+h)cos²φ
0

vnvu
(RM+h)

2 +
ve
2 tanφ

(RN+h)
2

−2ωie vesinφ 0
−ve

2

(RN+h)
2 +

−vn
2

(RM+h)
2 +

2g

R+h]
 
 
 
 

 the transformation 

matrix describing the relation between the derivative of velocity and the position;  

 

 𝐅𝐯𝐯 =

[
 
 
 
 

vn tanφ−vu

RN+h

vetanφ

RN+h
+ 2ωiesinφ −2ωie cosφ−

ve

RN+h

−2vetanφ

RN+h
− 2ωiesinφ

−vu

RM+h

−vn

RM+h

2ve

RN+h
+ 2ωecosφ

2vn

RM+h
0 ]

 
 
 
 

 the transformation 

matrix describing the relation between the derivative of velocity and itself; 

 𝑭𝒗𝒆 = [𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ×] a skew symmetric matrix describing the relation between the derivative of 
velocity and the attitudes, 𝒇𝒊𝒃

𝒃  is the specific force measurements under b-frame;  
 Attention on the modified version of attitudes errors in order 𝛿𝝍̅𝒏𝒃 =

[−𝛿𝜃𝑛𝑏 , −𝛿𝜙𝑛𝑏, 𝛿𝜓𝑛𝑏]
𝑇;  

  𝝎𝒊𝒆 is the Earth rotation speed; 𝑔 is the nominal component of Earth gravity; 𝑅 is the mean 

radius of the Earth.  

 

Begin with the derivative of the velocity, the compact form’s derivation of the velocity error dynamic 

is divided into three parts   
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𝛿𝒗̇𝒏𝒃
𝒏 = 𝛿(𝑪𝒃

𝒏𝒇𝒊𝒃
𝒃 ) −𝛿{(𝟐𝛀𝒊𝒆

𝒏 +𝛀𝒆𝒏
𝒏 )𝒗𝒏𝒃

𝒏 } +𝛿(𝒈𝒏) 

with 

 𝛀𝒊𝒆
𝒏 = [𝒘𝒊𝒆

𝒏 ×], with 𝒘𝒊𝒆𝒏 = [
0

𝑤𝑖𝑒𝑐𝑜𝑠𝜑
𝑤𝑖𝑒𝑠𝑖𝑛𝜑

] the notation of the Earth rotation rate vector under n-

frame; 
 𝛀𝒆𝒏

𝒏 = [𝒘𝒆𝒏
𝒏 ×], with the angular velocity of the n-frame w.r.t the e-frame expressed in n-

frame.   
 

𝒘𝒆𝒏
𝒏 = [

−𝜑̇

𝜆̇𝑐𝑜𝑠𝜑

𝜆̇𝑠𝑖𝑛𝜑

] =

[
 
 
 
 
 
−𝑣𝑛
𝑅𝑀 + ℎ
𝑣𝑒

𝑅𝑁 + ℎ
𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ]
 
 
 
 
 

   

With the definition of 𝛿(𝑪𝒃
𝒏) = 𝑬. 𝑪𝒃

𝒏, the  section expands as  

 𝛿(𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ) = 𝛿(𝑪𝒃
𝒏)𝒇𝒊𝒃

𝒃 + 𝑪𝒃
𝒏𝛿(𝒇𝒊𝒃

𝒃 ) = −𝑬.𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 + 𝑪𝒃
𝒏. 𝛿(𝒇𝒊𝒃

𝒃 ) 

Remind that 𝑬 is the skew matrix of the attitudes errors in order 𝛿𝝍̅𝒏𝒃 = [−𝛿𝜃𝑛𝑏 , −𝛿𝜙𝑛𝑏 , 𝛿𝜓𝑛𝑏]𝑇. To 
display the vector 𝛿𝝍̅𝒏𝒃, a re-ordering is made:  

−𝑬.𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 = [𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ∧]. 𝛿𝝍̅𝒏𝒃 

The final representation of the  section in terms of error states is 

  𝛿(𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ) = [𝑪𝒃
𝒏𝒇𝒊𝒃

𝒃 ∧]. 𝛿𝝍̅𝒏𝒃 + 𝑪𝒃
𝒏. 𝛿(𝒇𝒊𝒃

𝒃 ) 

The  section is disassembled into 2 parts: 

 − 𝛿{(𝟐𝛀𝒊𝒆
𝒏 +𝛀𝒆𝒏

𝒏 )𝒗𝒏𝒃
𝒏 } = −𝛿{𝟐𝛀𝒊𝒆

𝒏 +𝛀𝒆𝒏
𝒏 }. 𝒗𝒏𝒃

𝒏 − (𝟐𝛀𝒊𝒆
𝒏 + 𝛀𝒆𝒏

𝒏 )𝛿𝒗𝒏𝒃
𝒏  

The second term in the right side is directly a product with the error state 𝒗𝒏𝒃
𝒏 , while the first term 

needs further analysis. After a re-ordering, we have  

−𝛿{𝟐𝛀𝒊𝒆
𝒏 +𝛀𝒆𝒏

𝒏 }. 𝒗𝒏𝒃
𝒏 = [𝒗𝒏𝒃

𝒏 ∧]. 𝛿(𝟐𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) 

𝛿(𝟐𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) = 𝛿 [

−𝜑̇

2𝜔𝑖𝑒𝑐𝑜𝑠𝜑 + 𝜆̇𝑐𝑜𝑠𝜑

2𝜔𝑖𝑒𝑠𝑖𝑛𝜑 + 𝜆̇𝑠𝑖𝑛𝜑

] = [

−𝛿𝜑̇

−2𝜔𝑖𝑒𝑠𝑖𝑛𝜑. 𝛿𝜑 + 𝑐𝑜𝑠𝜑𝛿𝜆̇ − 𝜆̇𝑠𝑖𝑛𝜑. 𝛿𝜑

2𝜔𝑖𝑒𝑐𝑜𝑠𝜑. 𝛿𝜑 + 𝛿𝜆̇𝑠𝑖𝑛𝜑 + 𝜆̇𝑐𝑜𝑠𝜑. 𝛿𝜑

] 

𝛿(𝟐𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) = [

0 0 0
−(2𝜔𝑖𝑒 + 𝜆̇)𝑠𝑖𝑛𝜑 0 0

(2𝜔𝑖𝑒 + 𝜆̇)𝑐𝑜𝑠𝜑 0 0

] 𝛿𝒓𝒏𝒃
𝒏 + [

−1 0 0
0 𝑐𝑜𝑠𝜑 0
0 𝑠𝑖𝑛𝜑 0

] 𝛿𝒓̇𝒏𝒃
𝒏  

Substitute herein the formulation of 𝛿𝒓̇𝒏𝒃
𝒏 ,  
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𝛿(𝟐𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) =

[
 
 
 
 
 0 0

𝑣𝑛

(𝑅𝑀 + ℎ)²

−2𝜔𝑖𝑒𝑠𝑖𝑛𝜑 0
−𝑣𝑒

(𝑅𝑁 + ℎ)²

2𝜔𝑖𝑒𝑐𝑜𝑠𝜑 +
𝑣𝑒

(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑
0

−𝑣𝑒𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)²]
 
 
 
 
 

. 𝛿𝒓𝒏𝒃
𝒏

+

[
 
 
 
 
 
 0

−1

𝑅𝑀 + ℎ
0

1

𝑅𝑁 + ℎ
0 0

𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ
0 0

]
 
 
 
 
 
 

𝛿𝒗𝒏𝒃
𝒏  

Thus the final formula of the  section is obtained by expanding the matrix products  

 − 𝛿{(𝟐𝛀𝒊𝒆
𝒏 +𝛀𝒆𝒏

𝒏 )𝒗𝒏𝒃
𝒏 }

=

[
 
 
 
 
 
 2𝜔𝑖𝑒𝑣𝑢𝑠𝑖𝑛𝜑 + 2𝜔𝑖𝑒𝑣𝑛𝑐𝑜𝑠𝜑 +

𝑣𝑒𝑣𝑛
(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑

0
𝑣𝑒𝑣𝑢 − 𝑣𝑒𝑣𝑛𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)²

−2𝜔𝑖𝑒𝑣𝑒𝑐𝑜𝑠𝜑 −
𝑣𝑒²

(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑
0

𝑣𝑛𝑣𝑢
(𝑅𝑀 + ℎ)²

+
𝑣𝑒²𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)²

−2𝜔𝑖𝑒𝑣𝑒𝑠𝑖𝑛𝜑 0
−𝑣𝑛²

(𝑅𝑀 + ℎ)²
+

−𝑣𝑒²

(𝑅𝑁 + ℎ)²]
 
 
 
 
 
 

. 𝛿𝒓𝒏𝒃
𝒏

+

[
 
 
 
 
 
 

−𝑣𝑢 + 𝑣𝑛𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ

𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ
+ 2𝜔𝑖𝑒𝑠𝑖𝑛𝜑

−𝑣𝑒
𝑅𝑁 + ℎ

− 2𝜔𝑖𝑒𝑐𝑜𝑠𝜑

−2𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ
− 2𝜔𝑖𝑒𝑠𝑖𝑛𝜑

𝑣𝑢
𝑅𝑀 + ℎ

𝑣𝑛
𝑅𝑁 + ℎ

2𝑣𝑒
𝑅𝑁 + ℎ

+ 2𝜔𝑖𝑒𝑐𝑜𝑠𝜑
2𝑣𝑛

𝑅𝑀 + ℎ
0

]
 
 
 
 
 
 

𝛿𝒗𝒏𝒃
𝒏  

The final  section is the perturbation of the gravity in local frame which is only related to the 

altitude: 

    𝛿(𝒈𝒏) = [ 0,0, 2𝑔
𝑅+ℎ

𝛿ℎ]
𝑇

 

D3. Attitudes Error Dynamics 

The final expression of the attitude error dynamics is in form: 

𝛿𝝍̇̅𝒏𝒃 = 𝑭𝒆𝒓 ∙ 𝛿𝒓𝒏𝒃
𝒏 + 𝑭𝒆𝒗 ∙ 𝛿𝒗𝒏𝒃

𝒏 + 𝑭𝒆𝒆 ∙ 𝛿𝝍̅𝒏𝒃 − 𝑪𝒃
𝒏𝛿𝒘𝒊𝒃

𝒃  

With  

 𝑭𝒆𝒓 =

[
 
 
 
 0 0

𝑣𝑛
(𝑅𝑀+ℎ)

2

−𝜔𝑖𝑒𝑠𝑖𝑛𝜑 0
−𝑣𝑒

(𝑅𝑁+ℎ)
2

𝜔𝑖𝑒𝑐𝑜𝑠𝜑 +
𝑣𝑒

(𝑅𝑁+ℎ)𝑐𝑜𝑠²𝜑
0

−𝑣𝑒𝑡𝑎𝑛𝜑

(𝑅𝑁+ℎ)
2]
 
 
 
 

 the transformation matrix describing the 

relation between the derivative of attitudes and the position;  
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 𝑭𝒆𝒗 =

[
 
 
 
 0

−1

𝑅𝑀+ℎ
0

1

𝑅𝑁+ℎ
0 0

𝑡𝑎𝑛𝜑

𝑅𝑁+ℎ
0 0]

 
 
 
 

 the transformation matrix describing the relation between the 

derivative of attitudes and the velocity;  

 𝑭𝒆𝒆 = −[(𝝎𝒊𝒆
𝒏 +𝝎𝒆𝒏

𝒏 ) ∧],𝝎𝒊𝒆
𝒏 +𝝎𝒆𝒏

𝒏 =

[
 
 
 
 

−𝑣𝑛

𝑅𝑀+ℎ
𝑣𝑒

𝑅𝑁+ℎ
+𝑤𝑖𝑒𝑐𝑜𝑠𝜑

𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑁+ℎ
+𝑤𝑖𝑒𝑠𝑖𝑛𝜑]

 
 
 
 

 the transformation matrix 

describing the relation between the derivative of attitudes and themselves.  

 

First of all, the relation between the matrix 𝛿𝑪𝒃
𝒏  and the attitudes error 𝛿𝝍̅𝒏𝒃 =

[−𝛿𝜃𝑛𝑏 , −𝛿𝜙𝑛𝑏, 𝛿𝜓𝑛𝑏]
𝑇 need to be established. Their definitions are respectively:   

𝛿𝝍𝒏𝒃 = 𝝍̂𝒏𝒃 −𝝍𝒏𝒃 

𝛿𝑪𝒃
𝒏 = 𝑪̂𝒃

𝒏 − 𝑪𝒃
𝒏 

Under the conception that the transformation matrix from b-frame to n-frame is actually 3 successive 
rotations around axes 𝑧𝑏, 𝑥𝑏 and 𝑦𝑏, represented by 𝑪𝑏𝑛, the expansion of 𝑪̂𝒃

𝒏 can be written as:  

  𝑪̂𝒃
𝒏 = 𝑹𝒛(𝜓𝑛𝑏 + 𝛿𝜓𝑛𝑏)𝑹𝒙(−𝜃𝑛𝑏 − 𝛿𝜃𝑛𝑏)𝑹𝒚(−𝜙𝑛𝑏 − 𝛿𝜙𝑛𝑏)   

with each rotation expressed as  

𝑹𝒛(𝜓𝑛𝑏 + 𝛿𝜓𝑛𝑏) = (𝐼3 + [( 0, 0, −𝛿𝜓𝑛𝑏)
𝑇 ×]). 𝑹𝒛(𝜓𝑛𝑏) 

𝑹𝒙(−𝜃𝑛𝑏 − 𝛿𝜃𝑛𝑏) = (𝐼3 + [(𝛿𝜃𝑛𝑏, 0,0)
𝑇 ×]). 𝑹𝒙(−𝜃𝑛𝑏) 

𝑹𝒚(−𝜙𝑛𝑏 − 𝛿𝜙𝑛𝑏) = (𝐼3 + [( 0, 𝛿𝜙𝑛𝑏 , 0)
𝑇 ×]). 𝑹𝒚(−𝜙𝑛𝑏) 

The approximation that the attitudes error 𝛿𝝍𝒏𝒃 is a very small amount is always considered. When 
only first order terms of 𝛿𝝍𝒏𝒃 are kept, the expansion of 𝑪̂𝒃

𝒏 can be approximated by  

𝑪̂𝒃
𝒏 = 𝑪𝒃

𝒏 − [𝛿𝝍̅𝒏𝒃 ×]. 𝑪𝒃
𝒏 

𝛿𝑪𝒃
𝒏 = −𝑬.𝑪𝒃

𝒏 

The perturbation analysis of attitudes error tries to establish its relations with other error states. First of 
all, we start from the two equal forms of the derivative of 𝑪̂𝒃

𝒏, one comes from the equation of motion 
and another comes from previous equations:   

𝑪̂̇𝒃
𝒏 = 𝑪̂𝒃

𝒏𝛀̂𝒏𝒃
𝒃 = (𝑪𝒃

𝒏 − 𝑬. 𝑪𝒃
𝒏)(𝛀𝒏𝒃

𝒃 + 𝛿𝛀𝒏𝒃
𝒃 ) 

𝑪̂̇𝒃
𝒏 = 𝑪̇𝒃

𝒏 − 𝑬̇. 𝑪𝒃
𝒏 −𝑬. 𝑪̇𝒃

𝒏 

By having the equality of the two forms, we have 

(𝑪𝒃
𝒏 −𝑬. 𝑪𝒃

𝒏)(𝛀𝒏𝒃
𝒃 + 𝛿𝛀𝒏𝒃

𝒃 ) = 𝑪̇𝒃
𝒏 − 𝑬̇. 𝑪𝒃

𝒏 − 𝑬. 𝑪̇𝒃
𝒏 

𝑪𝒃
𝒏𝛀𝒏𝒃

𝒃 + 𝑪𝒃
𝒏𝛿𝛀𝒏𝒃

𝒃 − 𝑬. 𝑪𝒃
𝒏𝛀𝒏𝒃

𝒃 − 𝑬. 𝑪𝒃
𝒏𝛿𝛀𝒏𝒃

𝒃 = 𝑪̇𝒃
𝒏 − 𝑬̇. 𝑪𝒃

𝒏 − 𝑬. 𝑪̇𝒃
𝒏 
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After removing identical terms on the both sides of the equation, and neglecting the second order effect 
of errors, we obtain 

𝑬̇ = −𝑪𝒃
𝒏𝛿𝛀𝒏𝒃

𝒃 𝑪𝒏
𝒃 

and thus the vector from is 

𝛿𝝍̇̅𝒏𝒃 = −𝑪𝒃
𝒏𝛿𝐰𝒏𝒃

𝒃  

The next step is to expand 𝛿𝐰𝒏𝒃
𝒃  in a form of error states,   

𝛿𝐰𝒏𝒃
𝒃 = 𝛿𝐰𝒊𝒃

𝒃 − 𝛿(𝑪𝒏
𝒃𝐰𝒊𝒏

𝒏 ) = 𝛿𝐰𝒊𝒃
𝒃 − 𝑪𝒏

𝒃𝛿(𝐰𝒊𝒏
𝒏 ) + (𝑬𝑪𝒏

𝒃)𝑇𝐰𝒊𝒏
𝒏  

𝛿𝐰𝒏𝒃
𝒃 = 𝛿𝐰𝒊𝒃

𝒃 − 𝑪𝒏
𝒃𝛿(𝐰𝒊𝒏

𝒏 ) − 𝑪𝒏
𝒃𝑬.𝐰𝒊𝒏

𝒏  

𝛿𝐰𝒏𝒃
𝒃 = 𝛿𝐰𝒊𝒃

𝒃 − 𝑪𝒏
𝒃𝛿(𝐰𝒊𝒏

𝒏 ) + 𝑪𝒏
𝒃𝛀𝒊𝒏

𝒏 𝛿𝝍̅𝒏𝒃 

By substituting the expression of 𝛿𝐰𝒏𝒃
𝒃  into the equation of 𝛿𝝍̇̅𝒏𝒃, we obtain 

𝛿𝝍̇̅𝒏𝒃 = −𝑪𝒃
𝒏(𝛿𝐰𝒊𝒃

𝒃 − 𝑪𝒏
𝒃𝛿(𝐰𝒊𝒏

𝒏 ) + 𝑪𝒏
𝒃𝛀𝒊𝒏

𝒏 𝛿𝝍̅𝒏𝒃) 

𝛿𝝍̇̅𝒏𝒃 = 𝛿(𝐰𝒊𝒏
𝒏 ) − 𝛀𝒊𝒏

𝒏 𝛿𝝍̅𝒏𝒃 − 𝑪𝒃
𝒏𝛿𝐰𝒊𝒃

𝒃  

where the representation of 𝛿(𝐰𝒊𝒏𝒏 ) as an equation of 𝛿𝒓𝒏𝒃
𝒏 , 𝛿𝒗𝒏𝒃

𝒏  is noted as, similar deterioration 
process as 𝛿(𝟐𝛚𝒊𝒆

𝒏 +𝛚𝒆𝒏
𝒏 ) in previous section,  

𝛿(𝛚𝒊𝒆
𝒏 +𝛚𝒆𝒏

𝒏 ) =

[
 
 
 
 
 0 0

𝑣𝑛
(𝑅𝑀 + ℎ)²

−𝜔𝑖𝑒𝑠𝑖𝑛𝜑 0
−𝑣𝑒

(𝑅𝑁 + ℎ)²

𝜔𝑖𝑒𝑐𝑜𝑠𝜑 +
𝑣𝑒

(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑
0

−𝑣𝑒𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)²]
 
 
 
 
 

. 𝛿𝒓𝒏𝒃
𝒏

+

[
 
 
 
 
 
 0

−1

𝑅𝑀 + ℎ
0

1

𝑅𝑁 + ℎ
0 0

𝑡𝑎𝑛𝜑

𝑅𝑁 + ℎ
0 0

]
 
 
 
 
 
 

𝛿𝒗𝒏𝒃
𝒏  

By so far,  

[

δ𝒓̇𝒏𝒃
𝒏

𝛿𝒗̇𝒏𝒃
𝒏

𝛿𝝍̇̅𝒏𝒃

] = [
𝑭𝑟𝑟 𝑭𝒓𝒗 03
𝑭𝒗𝒓 𝑭𝒗𝒗 𝑭𝒗𝒆
𝑭𝒆𝒓 𝑭𝒆𝒗 𝑭𝒆𝒆

] [

𝛿𝒓𝒏𝒃
𝒏

δ𝒗𝒏𝒃
𝒏

𝛿𝝍̅𝒏𝒃

] + [

0
𝑪𝒃
𝒏𝛿𝒇𝒊𝒃

𝒃

−𝑪𝒃
𝒏𝛿𝒘𝒊𝒃

𝒃
] 

 

D4. Sensor Error Dynamics  

Additional states need to be added to model INS measurements errors 𝛿𝒇𝒊𝒃
𝒃  and 𝛿𝒘𝒊𝒃

𝒃 , namely the bias 
drifts and the scale factors. For MEMS INS, they are normally modelled as a first-order Gauss-Markov 
process. 

A general modelling of the accelerometer measurement and the gyroscope measurement is in form: 
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𝒇̃𝒊𝒃
𝒃 = 𝒃𝒂 + (𝑰𝟑 + 𝑺𝒂)𝒇𝒊𝒃

𝒃 + 𝜼𝒂 

𝝎̃𝒊𝒃
𝒃 = 𝒃𝒈 + (𝑰𝟑 + 𝑺𝒈)𝒘𝒊𝒃

𝒃 + 𝜼𝒈 

When only diagonal parameters are reserved, the matrix 𝑺∎ is actually 

𝑺𝒂 = 𝑑𝑖𝑎𝑔(𝒔𝒂) 

𝑺𝒈 = 𝑑𝑖𝑎𝑔(𝒔𝒈) 

The specific force error can be expressed as a function of the bias drifts and the scale factor drifts:  

𝛿𝒇𝒊𝒃
𝒃 = 𝒇̂𝒊𝒃

𝒃 − 𝒇𝒊𝒃
𝒃 =

𝒇̃𝒊𝒃
𝒃 − 𝒃̂𝒂

𝑰𝟑 + 𝑺̂𝒂
−
𝒇̃𝒊𝒃
𝒃 − 𝒃𝒂
𝑰𝟑 + 𝑺𝒂

+𝒘𝒂 = 𝛿𝒃𝒂 + 𝑭𝒃𝛿𝒔𝒂 + 𝜼𝒂 

𝛿𝒘𝒊𝒃
𝒃 = 𝒘̂𝒊𝒃

𝒃 −𝒘𝒊𝒃
𝒃 =

𝒘̃𝒊𝒃
𝒃 − 𝒃̂𝒈

𝑰𝟑 + 𝑺̂𝒈
−
𝒘̃𝒊𝒃
𝒃 − 𝒃𝒈

𝑰𝟑 + 𝑺𝒈
+𝒘𝒈 = 𝛿𝒃𝒈 +𝑾𝒃𝛿𝒔𝒈 + 𝜼𝒈 

with 𝑭𝒃 = 𝑑𝑖𝑎𝑔(𝒇̃𝒊𝒃
𝒃 ) and 𝑾𝒃 = 𝑑𝑖𝑎𝑔(𝒘̃𝒊𝒃

𝒃 ) . 

A first order GM process is usually used to model 𝛿𝒃𝒂, 𝛿𝒔𝒂, 𝛿𝒃𝒈 and 𝛿𝒔𝒈 that 

𝛿𝒃𝒂̇ =
−1

𝝉𝑏𝑎
𝛿𝒃𝒂 + 𝜼𝒃𝒂 

𝛿𝒔𝒂̇ =
−1

𝝉𝑠𝑎
𝛿𝒔𝒂 + 𝜼𝒔𝒂 

𝛿𝒃𝒈̇ =
−1

𝝉𝑏𝑔
𝛿𝒃𝒈 + 𝜼𝒃𝒈 

𝛿𝒔𝒈̇ =
−1

𝝉𝑠𝑔
𝛿𝒔𝒈 + 𝜼𝒔𝒈 

with 𝝉𝑏𝑎 = [𝜏𝑏𝑎𝑥, 𝜏𝑏𝑎𝑦 , 𝜏𝑏𝑎𝑧]
𝑇 , 𝝉𝑠𝑎 = [𝜏𝑠𝑎𝑥 , 𝜏𝑠𝑎𝑦 , 𝜏𝑠𝑎𝑧]

𝑇 , 𝝉𝑏𝑔 = [𝜏𝑏𝑔𝑥 , 𝜏𝑏𝑔𝑦, 𝜏𝑏𝑔𝑧]
𝑇 , 𝝉𝑠𝑔 =

[𝜏𝑠𝑔𝑥 , 𝜏𝑠𝑔𝑦, 𝜏𝑠𝑔𝑧]
𝑇 the corresponding 3-dimensional correlation times, 𝜼𝒃𝒂 , 𝜼𝒔𝒂 , 𝜼𝒃𝒈  and 𝜼𝒔𝒈are GM 

process driving noises.  

 

D5. Computational Transformation 

Hence, the complete INS state propagation model is written as:  

𝛿𝒙̇𝑰𝑵𝑺 = 𝑭𝑰𝑵𝑺𝛿𝒙𝑰𝑵𝑺 + 𝑮𝑰𝑵𝑺𝒖𝑰𝑵𝑺 

with  

 𝛿𝒙𝑰𝑵𝑺 = [𝛿𝒓𝒏𝒃
𝒏 𝛿𝒗𝒏𝒃

𝒏 𝛿𝝍̅𝒏𝒃 𝛿𝒃𝒂 𝛿𝒃𝒈 𝛿𝒔𝒂 𝛿𝒔𝒈]
𝑻
the full INS error state model; 

  the state transition matrix 𝑭𝑰𝑵𝑺 is in form 
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𝑭𝑰𝑵𝑺 =

[
 
 
 
 
 
 
 
𝑭𝒓𝒓 𝑭𝒓𝒗 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
𝑭𝒗𝒓 𝑭𝒗𝒗 𝑭𝒗𝒆 𝑪𝒃

𝒏 03𝑥3 𝑪𝒃
𝒏𝑭𝒃 03𝑥3

𝑭𝒆𝒓 𝑭𝒆𝒗 𝑭𝒆𝒆 03𝑥3 −𝑪𝒃
𝒏 03𝑥3 −𝑪𝒃

𝒏𝑾𝒃

03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒂 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒈 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒂 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒈 ]

 
 
 
 
 
 
 

 

 the process driving noise and its control matrix are respectively 
𝒖𝑰𝑵𝑺 = [𝜼𝒂 𝜼𝒈 𝜼𝒃𝒂 𝜼𝒃𝒈 𝜼𝒔𝒂 𝜼𝒔𝒈]𝑻 

𝑮𝑰𝑵𝑺 =

[
 
 
 
 
 
 
 
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
𝑪𝒃
𝒏 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3

03𝑥3 −𝑪𝒃
𝒏 03𝑥3 03𝑥3 03𝑥3 03𝑥3

03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 ]

 
 
 
 
 
 
 

 

 

Denote 𝑻 as the matrix to transform from 𝛿𝒙𝑰𝑵𝑺 to the new error states vector with position error in 
meter  

𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 = 𝑻𝛿𝒙𝑰𝑵𝑺 = [𝛿𝒑𝒏𝒃
𝒏 𝛿𝐯𝒏𝒃

𝒏 𝛿𝝍̅𝒏𝒃 𝛿𝒃𝒂 𝛿𝒃𝒈 𝛿𝒔𝒂 𝛿𝒔𝒈]
𝑻
 

with 𝑻 = [ 𝑭𝒓𝒗
−𝟏 03𝑥15

015𝑥3 𝐼15𝑥15
] = [

𝑨 03𝑥15
015𝑥3 𝐼15𝑥15

]. 

 

The derivative of 𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 is in form 

𝛿𝒙̇𝑰𝑵𝑺,𝒏𝒆𝒘 = 𝑻̇𝛿𝒙𝑰𝑵𝑺 + 𝑻𝛿𝒙̇𝑰𝑵𝑺 = 𝑻̇𝑻
−𝟏𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 + 𝑻(𝑭𝑰𝑵𝑺𝑻

−𝟏𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 + 𝑮𝑰𝑵𝑺𝒖𝑰𝑵𝑺) 

𝛿𝒙̇𝑰𝑵𝑺,𝒏𝒆𝒘 = (𝑻̇𝑻
−𝟏 + 𝑻𝑭𝑰𝑵𝑺𝑻

−𝟏)𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 + 𝑻𝑮𝑰𝑵𝑺𝒖𝑰𝑵𝑺  

Therefore,  

𝛿𝒙̇𝑰𝑵𝑺,𝒏𝒆𝒘 = 𝑭𝑰𝑵𝑺,𝒏𝒆𝒘𝛿𝒙𝑰𝑵𝑺,𝒏𝒆𝒘 + 𝑮𝑰𝑵𝑺,𝒏𝒆𝒘𝒖𝑰𝑵𝑺 

with 

𝑭𝑰𝑵𝑺,𝒏𝒆𝒘 =

[
 
 
 
 
 
 
 
𝑭𝒑𝒑 𝑭𝒑𝒗 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3

𝑭𝒗𝒑 𝑭𝒗𝒗 𝑭𝒗𝒆 𝑪𝒃
𝒏 03𝑥3 𝑪𝒃

𝒏𝑭𝒃 03𝑥3

𝑭𝒆𝒑 𝑭𝒆𝒗 𝑭𝒆𝒆 03𝑥3 −𝑪𝒃
𝒏 03𝑥3 −𝑪𝒃

𝒏𝑾𝒃

03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒂 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒃𝒈 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒂 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3 −𝜷𝒔𝒈 ]
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𝑭𝒑𝒑 = 𝑨𝑭𝒓𝒓𝑨
−𝟏 + 𝑨̇𝑨−𝟏 =

[
 
 
 
 
𝑣𝑢

𝑅𝑁 + ℎ
−
𝑣𝑛𝑡𝑎𝑛𝜑

𝑅𝑀 + ℎ

𝑣𝑒𝑡𝑎𝑛𝜑

𝑅𝑀 + ℎ

−𝑣𝑒
𝑅𝑁 + ℎ

0
𝑣𝑢

𝑅𝑀 + ℎ

−𝑣𝑛
𝑅𝑀 + ℎ

0 0 0 ]
 
 
 
 

 

𝑭𝒑𝒗 = 𝑨𝑭𝒓𝒗 = 𝑰𝟑 

𝑭𝒗𝒑 = 𝑭𝒗𝒓𝑨

=

[
 
 
 
 
 
 0

2𝜔𝑖𝑒(𝑣𝑛𝑐𝑜𝑠𝜑 + 𝑣𝑢 𝑠𝑖𝑛𝜑)

𝑅𝑀 + ℎ
+

𝑣𝑒𝑣𝑛
(𝑅𝑀 + ℎ)(𝑅𝑁 + ℎ)𝑐𝑜𝑠²𝜑

𝑣𝑒𝑣𝑢
(𝑅𝑁 + ℎ)

2
−
𝑣𝑒𝑣𝑛 𝑡𝑎𝑛 𝜑

(𝑅𝑁 + ℎ)
2

0
−2𝜔𝑖𝑒𝑣𝑒 𝑐𝑜𝑠 𝜑

𝑅𝑀 + ℎ
−

𝑣𝑒
2

(𝑅𝑁 + ℎ)(𝑅𝑀 + ℎ)𝑐𝑜𝑠²𝜑

𝑣𝑛𝑣𝑢
(𝑅𝑀 + ℎ)

2
+
𝑣𝑒
2 𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)
2

0 −
2𝜔𝑖𝑒 𝑣𝑒𝑠𝑖𝑛𝜑

𝑅𝑀 + ℎ

−𝑣𝑒
2

(𝑅𝑁 + ℎ)
2
+

−𝑣𝑛
2

(𝑅𝑀 + ℎ)
2
+

2𝑔

𝑅 + ℎ]
 
 
 
 
 
 

 

𝑭𝒆𝒑 = 𝑭𝒆𝒓𝑨
−𝟏 =

[
 
 
 
 
 
 0 0

𝑣𝑛
(𝑅𝑀 + ℎ)²

0
−𝜔𝑖𝑒 sin𝜑

𝑅𝑀 + ℎ

−𝑣𝑒
(𝑅𝑁 + ℎ)²

0
𝜔𝑖𝑒 cos𝜑

𝑅𝑀 + ℎ
+

𝑣𝑒
(𝑅𝑁 + ℎ)(𝑅𝑀 + ℎ)𝑐𝑜𝑠²𝜑

−𝑣𝑒𝑡𝑎𝑛𝜑

(𝑅𝑁 + ℎ)²]
 
 
 
 
 
 

 

𝑮𝑰𝑵𝑺,𝒏𝒆𝒘 = 𝑮𝑰𝑵𝑺 
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