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Abstract—A new method is developed for integer ambiguity
resolution in carrier-phase differential GPS (CDGPS) positioning.
The method is novel in that it is (1) data-driven, (2) generalized
to include partial ambiguity resolution, and (3) amenable to a
full characterization of the prior and posterior distributions of
the three-dimensional baseline vector that results from CDGPS.
The technique is termed generalized integer aperture boot-
strapping (GIAB). GIAB improves the availability of integer
ambiguity resolution for high-integrity, safety-critical systems.
Current high-integrity CDGPS algorithms, such as EPIC and
GERAFS, evaluate the prior risk of position domain biases due to
incorrect integer ambiguity resolution without further validation
of the chosen solution. This model-driven approach introduces
conservatism which tends to reduce solution availability. Common
data-driven ambiguity validation methods, such as the ratio test,
control the risk of incorrect ambiguity resolution by shrinking
an integer aperture (IA), or acceptance region. The incorrect
fixing risk of current IA methods is determined by functional
approximations that are inappropriate for use in safety-of-life
applications. Moreover, generalized IA (GIA) methods incorrectly
assume that the baseline resulting from partial ambiguity reso-
lution is zero mean. Each of these limitations is addressed by
GIAB, and the claimed improvements are validated by Monte
Carlo simulation. The performance of GIAB is then optimized by
tuning the integer aperture size to maximize the prior probability
of full ambiguity resolution. GIAB is shown to provide higher
availability than EPIC for the same integrity requirements.

Keywords—Generalized integer aperture, bootstrap, CDGPS,
integrity, availability, partial ambiguity resolution, LAMBDA,
data-driven, EPIC, GERAFS

I. INTRODUCTION

The required navigation performance for CDGPS systems
has become more demanding with each new application. Per-
formance is assessed in terms of integrity, accuracy, continuity,
and availability. Integrity is specified in terms of integrity risk
(IR), the probability that the solution error exceeds an alert
limit (AL) without warning. Accuracy can be specified in
terms of quantiles of interest, such as 95% accuracy, which
refers to the error volume within which 95% of solutions
fall. Continuity risk (CR) is the probability that the solution
will become unavailable during a critical exposure interval
given that it was available at the beginning of that interval.
Availability is the percentage of time that the solution satisfies
its required integrity, accuracy, and continuity requirements.

The ground-based augmentation system (GBAS), originally
specified over a decade ago as a landing aid for large runways
on land, specified ALs of 10 m with IR on the order of

10−7 per approach. This leads to a relatively loose 95%
accuracy requirement of 2 m for a zero-mean-error Gaussian-
distributed solution, which can be met by a float CDGPS
solution. More recent navigation system applications, such as
landing aboard an aircraft carrier and a recent demonstration
of autonomous aerial refueling, have meter-level ALs, IR on
the order of 10−6, and decimeter-level accuracy requirements.
Such a stringent performance specification can only be met by
CDGPS positioning when the integer ambiguities are resolved.

The next generation of CDGPS use cases includes fully
autonomous landing and refueling of large, unmanned aerial
vehicles (UAVs) in operational contexts, which will demand
CR lower than all previous applications, IR on the order of
10−7, and decimeter-level accuracy requirements. For these
demanding new applications to achieve the required high
availability, low IR, and excellent accuracy, it will be essential
to precisely control the risk of incorrect ambiguity resolution
while reducing and bounding any residual biases in the relative
navigation solution.

State-of-the-art methods in high-integrity CDGPS enforce
the IR constraint in the position domain by accounting for
relative position biases induced by incorrect fixing. Two such
methods are the Geometry Extra Redundant Almost Fixed
Solutions (GERAFS) [1] and the Enforced Position-domain
Integrity-risk of Cycle resolution (EPIC) [2], [3] algorithms.
Both of these rely exclusively on a priori error models to deter-
mine, before the measurements are processed, whether a fixed
solution or a float backup solution will be used. This approach
is termed model-driven because the solution selection logic is
entirely dependent on the prior error model. Because the EPIC
and GERAFS algorithms attempt to bound IR using the a
priori distribution, they are inherently conservative. They must
evaluate the position domain biases induced by a large number
of potential incorrect fixes. The biases lead to large potential
errors that must be protected against without knowledge of the
observed carrier phase measurements.

In contrast to the model-driven approach, data-driven meth-
ods decide a posteriori whether to accept the fixed or float
solution. Conditioning the selection on the observed measure-
ments reduces the risk of incorrect ambiguity resolution. A
subset of data-driven methods is called integer aperture (IA)
estimation. In IA methods, the integer ambiguity is estimated
using either bootstrapping [4] or integer least squares (ILS)
[5], after which a test statistic is computed using the ambi-
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guity residual, i.e., the difference between the float and fixed
ambiguities. This test statistic is compared to a threshold to
decide between the fixed and float solution.

Perhaps the simplest IA method is IA bootstrapping (IAB),
which resolves the integer ambiguities via integer bootstrap-
ping and then tests the fixed solution by applying bootstrap-
ping to a scaled-up version of the ambiguity residual [6]. If the
test returns the zero vector, then the fixed solution is selected;
otherwise the float solution is selected. IAB is sub-optimal in
the sense that bootstrapping does not always find the maximum
likelihood integer ambiguity (as opposed to ILS, which is
guaranteed to do so). It is also sub-optimal in the sense that
it does not maximize the probability of successfully fixing
the ambiguities for a given probability of incorrectly fixing
them. But it has the advantage that all of these probabilities
have analytically computable values, which allows the decision
threshold to be set analytically and, more generally, enables the
strict performance requirements that safety-of-life applications
demand to be provably satisfied.

The remaining IA methods discussed in this introduction
use ILS to solve for the integer ambiguity, which is optimal
in the maximum likelihood sense for Gaussian measurement
noise. Ellipsoidal IA uses the covariance weighted norm of
the ILS ambiguity residual as a test statistic [7]. The sim-
plicity of this statistic allows the decision threshold to be set
analytically, as with IA bootstrapping, but the probability of
successfully fixing the ambiguities is also sub-optimal. While
ellipsoidal IA can have a higher probability of success than
IAB for models with a few ambiguities of approximately equal
conditional variance, IAB tends to provide a higher probability
of success for models in which the conditional variances of the
ambiguities differ by more than about 10%, which is smaller
than typical differences in realistic measurement models.

There are several other ILS-based IA methods that employ
test statistics that are a function of the ambiguity residuals
of the ILS fix and of one or more alternate fixes with the
next lowest cost. These methods include the ratio test [8],
the difference test [9], and an optimal test [10]. Unlike IA
bootstrapping and ellipsoidal IA, none of these methods’ test
statistics has an analytical probability distribution or decision
threshold [11]. In practice, decision thresholds are set based
on one of a few ad hoc methods. The crudest method is
to apply a fixed threshold for all measurement models, but
this prevents precise control of the risk of incorrect fix
for time-varying measurement models and satellite geometry.
Methods that set thresholds to control the risk of incorrect fix
based on the (time-varying) measurement model are needed
to control IR. Such methods include threshold determination
via Monte Carlo simulation, lookup tables [8], and functional
approximations [12], [13].

The Monte Carlo simulations, lookup tables, and functional
approximations that are used to set aperture thresholds in the
ILS-based IA methods are inapt for safety-of-life systems. The
thresholds that result from these methods cannot be analyti-
cally proven to bound the risk of incorrect fix for particular
models. At best, they incorporate sufficient conservatism to
protect the solution at the expense of decreased availability.
Also, Monte Carlo simulations particular to the measurement

model in use are not feasible for a real-time solution.
The optimal IA algorithm uses as its test statistic the a

posteriori probability of correct fix. Contrary to intuition, the
threshold for a particular probability of incorrect ambiguity
resolution for this statistic is not analytically computable [14].
Also, the optimal IA estimator involves an infinite sum over all
possible integer ambiguities. The search can be truncated once
a sufficiently large number of integer fixes has been evaluated,
but the number required depends on strength of the model
and on the required IR required. The search often extends
to several hundred candidate fixes in realistic simulations
to satisfy the most demanding integrity requirements, which
becomes impractical for real-time applications.

When IA estimators are extended from resolution of the
full set of integer ambiguities to subsets of the full set, they
are called Generalized Integer Aperture (GIA) estimators [15].
If the full set of ambiguities is unable to be fixed, these
algorithms evaluate successively smaller subsets until either a
satisfactory fix is found or the float solution is applied as a last
resort. Partial ambiguity resolution offers gradual degradation
of performance for weak models. To the best of the authors’
knowledge, no previous work has accurately described the
distribution of the data-driven, partially fixed baseline.

In summary, to meet the increasingly stringent performance
requirements of safety-of-life applications there is a need
for a data-driven ambiguity resolution and validation method
whose decision threshold for choosing between a fixed and
float solution can be set analytically. The method must be
generalized to accommodate partial ambiguity resolution, and
must correctly characterize the distribution of the data-driven,
partially-fixed baseline. Extant methods in the high-integrity
CDGPS literature do not satisfy this need.

This paper offers three contributions to address this need.
First, IAB is extended to encompass partial ambiguity res-
olution. The extended technique will be called Generalized
Integer Aperture Bootstrapping (GIAB). Second, an analytical
characterization of the a priori and a posteriori distributions
of the GIAB baseline is developed and validated. In passing,
existing GIA methods are shown to incorrectly neglect solution
biases. Third, a method for setting the integer aperture size and
shape is developed that maximizes solution availability subject
to a constraint on the risk of incorrect ambiguity resolution.
These contributions are validated with a set of Monte Carlo
simulations, and algorithm performance is compared to the
state-of-the-art EPIC algorithm to demonstrate the advantages
of the new method. EPIC is the focus of comparison because it
provides higher availability than GERAFS and is appropriate
for safety-of-life applications. However, since EPIC is model-
driven, GIAB is shown to provide higher availability for the
same IR and AL.

II. GENERALIZED INTEGER APERTURE BOOTSTRAPPING

A. Integer Bootstrapping Overview
The most important results of integer bootstrapping (IB)

are reproduced here from [4] with a few amplifications for
ease of reference and notational consistency. IB operates by
sequentially rounding one integer ambiguity and condition-
ing the remaining float ambiguities on the assumption that

NAVAIR Public Release SPR 2016-54
Distribution Statement A- Approved for public release; distribution is unlimited.



the preceding fixes were all correct. IB should always be
used in conjunction with the decorrelating Z-transform of the
LAMBDA method to maximize the probability of success
[16]. The float baseline, the decorrelated float ambiguities, and
the joint covariance matrix of the two vectors are denoted by

x̂ =

[
b̂
ẑ

]
b̂ ∈ R3: float estimate of the baseline vector
ẑ ∈ Rnz : decorrelated float ambiguity vector

(1)

Qx̂ =

[
Qb̂ Qb̂ ẑ
Qẑ b̂ Qẑ

]
Qb̂: Covariance of the float baseline estimate

Qb̂ ẑ = QT
ẑ b̂

: Covariance of float baseline and ambiguity

Qẑ: Covariance of the float ambiguity estimate
(2)

The covariance of the float ambiguity can be decomposed
as Qẑ = LDLT , where L is a unit lower triangular matrix
and D is a diagonal matrix. Let lij denote the ijth element
of L and di the ith element of the diagonal of D.

The float integer ambiguity is modeled as the true ambiguity
plus zero-mean Gaussian noise: ẑ = z + ε, ε ∼ N (0,Qẑ).
Multiplication by L−1 transforms ε into a vector whose ele-
ments are mutually uncorrelated: εc = L−1ε, εc ∼ N (0, D).
Since L and L−1 are unit lower triangular matrices, the ith

component of ε, denoted εi, and its variance, var (εi), can be
computed from the first i components of εc:

εi = εc,i +

i−1∑
j=1

lijεc,j (3)

and

var (εi) = var (εc,i) +

i−1∑
j=1

l2ijvar (εc,j)

= di +

i−1∑
j=1

l2ijdj

(4)

This construction gives rise to the interpretation of L as the
sequential conditional correlations among the ambiguities, of
D as the sequential conditional variances of the ambiguities,
and of εc as the conditional ambiguity residuals:

di = σ2
i|I (5)

and

lij =

{
σ2
i,j|Jσ

−2
j|J j ≤ i

0 otherwise
(6)

where σ2
i|I is the variance of ẑi conditioned on the previous

i−1 ambiguities, and σ2
i,j|J is the covariance of ẑi|J and ẑj|J

conditioned on the previous j − 1 ambiguities.
The integer bootstrap algorithm proceeds by alternating

rounding and conditioning steps. First, the ambiguity with the
lowest variance is rounded to the nearest integer. Next, the
first ambiguity residual is computed and used to condition

the remaining float ambiguities. These steps are repeated for
the remaining ambiguities one by one: The ambiguity with
the lowest conditional variance is rounded, the conditioned
residual is computed, and the rest of the ambiguities are
further conditioned. The use of the ambiguity decorrelation
Z-transform and the LDLT decomposition ensures that the
transformed integers are ordered such that fixing from first to
last is the correct order.

Let the integer bootstrapping process be represented by the
functional map

z̆ = IB (ẑ) : Rn 7→ Zn (7)

There are two equivalent ways to perform this operation,
depending on the decomposition of Qẑ used. The pseudocode
for both is given below because both provide insights that
are useful later in this paper. The operation b·e is the nearest
integer rounding operation. In the second option, `ij is the ijth

element of L−1. The notation ε̆ = ẑ − z̆ denotes an estimate
of the ambiguity residual, assuming that the fixed integers are
correct. Similarly, ε̆c = ẑc − z̆ denotes an estimate of the
sequentially-conditioned ambiguity residual, assuming that the
fixed integers are correct.

Option 1: Option 2:
for i = 1 : nz for i = 1 : nz

ẑc,i = ẑi −
i−1∑
j=1

lij ε̆c,j ẑc,i = ẑi +
i−1∑
j=1

`ij ε̆j

z̆i = bẑc,ie z̆i = bẑc,ie
ε̆c,i = ẑc,i − z̆i ε̆i = ẑi − z̆i

end end

In the first option, the conditional ambiguity residual, ε̆c, is
computed. In the second option, the unconditional ambiguity
residual, ε̆, is computed. Once the final fixed solution is
computed, the float baseline is conditioned on the chosen
integers as follows:

b̆ = b̂−Qb̂ ẑQ
−1
ẑ ε̆ (8a)

= b̂−Qb̂ ẑL
−TD−1ε̆c (8b)

Qb̆ = Qb̂ −Qb̂ ẑQ
−1
ẑ QT

b̂ ẑ
(8c)

B. Integer Aperture Bootstrapping

Integer Aperture Bootstrapping (IAB) [6] extends the IB
concept to create a validation test that computes its test
statistic using the ambiguity residual ε̆. The test statistic and
decision criteria for IAB can be expressed as a function of the
ambiguity residual and the aperture parameter β ∈ [0, 1]:

T (ε̆, β) =

∥∥∥∥IB
(

1

β
ε̆

)∥∥∥∥
0

(9)

where ‖v‖0 = |{i|vi 6= 0}| is the number of non-zero elements
in the vector v.

The IAB decision rule can be written as

δ (ε̆, β) =

{
1 if T (ε̆, β) = 0
0 if T (ε̆, β) 6= 0

(10)

where the value of δ indicates whether the fix is accepted (1) or
rejected (0). In the event that the fix is rejected, IAB resorts
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to the float solution x̂. Note that a float or a fixed solution
can be forced by choosing β ∈ {0, 1}, since on this domain,
δ (ε̆, β) = β.

The IAB decision rule can be interpreted as follows: If the
IB algorithm is applied to a scaled-up version of the ambiguity
residual and the result is the zero vector, then the ambiguity
fix is accepted; otherwise, the fix is rejected. The IAB decision
rule can be viewed as equivalent to that of IB but with a pull-
in region (PIR) shrunken by a factor of β, as illustrated in Fig.
1. The PIR is the region in Rn around the integer vector z̆ for
which the estimator returns z̆ as its result.

-2 -1 1 2

-2

-1

1

2

Fig. 1. Critical aperture regions for integer aperture bootstrapping for two-
dimensional example covariance model. This is a visual representation of the
results of IAB when applied to ε = ẑ−z. The central, darkly shaded region
is the success region, in which z̆ = z. The lightly shaded regions correspond
to incorrect ambiguity fixes, in which z̆ 6= z. When the ambiguity residual
is in the unshaded region, the fix is rejected.

Figure 1 shows three important regions that correspond to
three possible outcomes for an IA estimator. The central, dark
region corresponds to the event defined as “success” in which
the full ambiguity set is resolved without error. The union of
the many lightly shaded regions correspond to the “failure”
event in which one or more of the integer ambiguities is
fixed incorrectly. Values of ε in the unshaded region results in
the fix being rejected. This event is called “undecided.” The
probabilities of the events are reproduced from [6]:

PF =
∑

z∈Zn\{0}

n∏
i=1

(
Φ

(
β
2 − L

−1
i z

σi|I

)
− Φ

(
−β2 − L

−1
i z

σi|I

))
(11a)

PS =

n∏
i=1

(
2Φ

(
β/2

σi|I

)
− 1

)
(11b)

PU = 1− PF − PS (11c)

with β as define previously and

L−1
i : The ith row of the L−1 matrix from the

decomposition of the float covariance matrix

σi|I =
√
di: The conditional standard deviation

of the float ambiguity
Φ (·) : The CDF of the standard normal random variable

(12)

A few important observations should be made about the
event probabilities. First, the probability of failure, PF , in-
volves an infinite sum over all integer ambiguities other than
the correct ambiguity. This can be approximated by summing
over a large number of alternative ambiguities, but this may
still be computationally expensive if the desired PF is small
or if nz is large. Second, PF is a monotonically increasing
function of β, which implies that the risk of failure decreases
as the integer aperture is made smaller. Thus, the aperture
parameter β controls the exposure to failure risk. Finally, PS
is also monotonically increasing in β. This implies that any
increase in PS will be at the expense of an increase in PF for
this algorithm.

C. Generalization to Partial Ambiguity Resolution

To generalize IAB to partial ambiguity resolution, each
ambiguity is fixed and validated successively by examining
the magnitude of its conditional ambiguity residual. Since each
ambiguity has a different conditional variance, di, each test is
allowed a different βi. The benefits of element specific βi are
shown in section IV-B. The number of ambiguity fixes which
pass the validation test is denoted as nfix. The algorithm, called
GIAB is given in pseudocode as

nfix = 0

for i = 1 : nz

ẑc,i = ẑi −
i−1∑
j=1

lij ε̆c,j

z̆i = bẑc,ie
ε̆c,i = ẑc,i − z̆i

if ε̆c,i <
βi
2

nfix = i

else
break

end
end

(13)

In the event that nfix < nz, the next ambiguity, i = nfix +
1, cannot be fixed without violating the specified value of
PF . The integrity implications of partial fixing are addressed
in section III-A. For now, assume that ẑi, i > nfix are left
floating. This decision will be revisited in a later section.

GIAB reduces to IAB if all z̆i are rejected when nfix 6= nz.
For GIAB, a reduced set of the integer ambiguities can be
used. Instead of having three events of success, failure, and
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indecision, GIAB leads to nz + 2 events that can be defined
as the failure event F = {z̆ 6= z} and success events Sn =
{∧ni=1 (z̆i = zi) ∧ (nfix = n)} for n ∈ {0, 1, ..., nz}. That is,
failure is defined as the acceptance of any incorrect integers,
and one of nz + 1 success cases is defined for each possible
number of integer fixes from 0 to nz, provided no ambiguity
is fixed incorrectly.

D. Partial Ambiguity Resolution Probabilities

To predict algorithm performance, the probability of each
possible event must be computed. For each integer that is
reached by the GIAB algorithm, there are three possibilities:
the fix is accepted correctly, the fix is rejected, or the fix is ac-
cepted erroneously. Conditioned on the event that nfix = i−1
and that for nfix > 1, z̆j = zj ,∀j = 1, ..., nfix, these three
event probabilities follow trivially from (11):

PC,i = P

(
|εc,i| <

βi
2

)
= 2Φ

(
βi/2

σi|I

)
− 1 (14a)

PE,i =
∑

ζ∈Z\{0}

P

(
|εc,i − ζ| <

βi
2

)
(14b)

=
∑

ζ∈Z\{0}

(
Φ

(
βi
2 − ζ
σi|I

)
− Φ

(
−βi2 − ζ
σi|I

))
(14c)

PR,i = 1− PE,i − PC,i (14d)

A simple bound on PE,i can be constructed by recognizing
that the probability of rejection, PR,i need not be tightly
controlled. It can be shown that PR,i can be bounded below by
P
(
βi
2 ≤ |εc,i| ≤ 1− βi

2

)
since this the region βi

2 ≤ |εc,i| ≤
1 − βi

2 is a subset of the rejection region. This leads to an
upper bound on PE,i:

PR,i ≥ 1− 2Φ

(
βi/2− 1

σi|I

)
− PC,i (15a)

PE,i ≤ 2Φ

(
βi/2− 1

σi|I

)
(15b)

Using these bounds, the overall event probabilities can be
obtained and bounded. A failure event can be caused by any
single fixing error. If there are multiple errant fixes, there is
still only a single failure event as defined earlier. As such, the
failure probability upper bound can be computed as

PF = PE,1 +

nz∑
i=2

PE,i

i−1∏
j=1

PC,j

≤ 2Φ

(
βi/2− 1

σ1

)
+

nz∑
i=2

(
2Φ

(
βi/2− 1

σi|I

)) i−1∏
j=1

(
2Φ

(
βj/2

σj|J

)
− 1

) (16)

The probability of successfully fixing any number of in-
tegers can be computed similarly. For the probability of
correctly resolving all ambiguities, the expression is equal
to the probability of success PS , as defined for IAB. For

Out[3667]=
-2 -1 1 2

-2

-1

1

2

F S0 S1 S2

Fig. 2. Pull-in regions and associated events for GIAB. Event F results if
one or more of the ambiguities is fixed incorrectly. Events Si occur when
exactly i ambiguities are fixed and all ambiguities are fixed correctly.

GIAB, this probability is denoted as PSnz
. The remaining

probabilities are

PSi = PR,i+1

i−1∏
j=1

PC,j (17a)

≥ 2

(
Φ

(
−βi/2
σi|I

)
− Φ

(
βi/2− 1

σi|I

))
(17b)

×
i−1∏
j=1

(
2Φ

(
βj/2

σj|J

)
− 1

)
, i = 1, ..., nz (17c)

PS0
= PR,1 (17d)

≥ 2

(
Φ

(
−βi/2
σ1

)
− Φ

(
βi/2− 1

σ1

))
(17e)

As long as the allowable PF is small, these bounds will
be quite tight. The PIRs corresponding to these events are
illustrated in Fig. 2 for nz = 2.

III. PRIOR AND POSTERIOR DISTRIBUTION OF
GENERALIZED INTEGER APERTURE BASELINE

To assess the performance of the GIAB algorithm, both the
a priori and a posteriori distributions must be characterized.
These distributions will be developed in a three step process.
First, the a posteriori distribution will be developed when
conditioned on ∧ij=1 (z̆j = zj) ∧ (nfix = i) ∧ (εc,i+1 = ε) ∧(
βi+1

2 < |ε| < 1
2

)
; i.e., conditioned on the event that the first

nfix = i fixes were correct, and on the value of the i + 1st

conditional ambiguity residual failed the threshold test. Next,
the distribution of the partially fixed baseline conditioned only
on the number of ambiguities fixed by GIAB will be derived.
Finally, the a priori distribution of GIAB will be developed
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by removing the conditioning on the number of integers fixed.
The first distribution will be referred to as the posterior distri-
bution. It is the distribution that must be used by a real-time
implementation to bound the IR of the solution. The second
distribution will be called the intermediate distribution. It is
a mathematical construct used to reach the third distribution,
which is called the prior distribution. The prior distribution can
be used to analyze the average performance of the algorithm.
Mathematically, the (1) posterior, (2) intermediate, and (3)
prior distributions can be described as

(1)fb̆|ε,i (ζ) = P
(
b̆ = ζ

∣∣∣ ε̆c,i+1 = ε, nfix = i
)

(18a)

(2)fb̆|i (ζ) =

∫
fb̆|ε,i (ζ)P ( ε̆c,i+1 = ε|nfix = i) dε (18b)

(3)fb̆ (ζ) =

nz∑
i=0

fb̆,i (ζ)P (nfix = i) (18c)

A. The Posterior Distribution

As a first step toward developing the a posteriori baseline
error distribution, consider the event Si in terms of the values
of the conditional ambiguity residuals, ε̆c, and the aperture
threshold value, β. Assuming that β has been set to control
PF to an acceptable level, whenever the conditional ambiguity
residual exceeds the threshold, that integer cannot be fixed
without incurring an unacceptable risk. Further, if the bound
in equation (16) is used, the risk of the incorrect fix being
wrong by more than 1 is negligible. In equation form

Event Si ⇒(
|ε̆c,j | <

βj
2
,∀j ≤ i

)
∧
(
βi+1

2
< |ε̆c,i+1| < 1− βi+1

2

)
(19)

According to the partial fixing procedure, the float baseline
will have been conditioned upon the first nfix = i ambiguities.
For a particular value of ε̆c,i+1 that exceeds the threshold,
the conditional maximum a posteriori ambiguity fix is that
produced by integer bootstrapping, z̆i+1. However, this integer
fix cannot be assumed without violating the probability of
failure. The next most likely fix and its associated conditional
ambiguity residual are

z̆alt,i+1 = z̆i+1 + sign (ε̆c,i+1) (20a)
ε̆c,alt,i+1 = ε̆c,i+1 − sign (ε̆c,i+1) (20b)

To assess the effect of the unfixed residual upon the a
posteriori distribution, consider the following derivation of
the fixed baseline adjustment using the conditional ambiguity
residual instead of the usual method, which uses the uncondi-
tional ambiguity residual. Because there is a triangular linear
transformation between the conditional and unconditional am-
biguity residuals, ε̆ = Lε̆c, conditioning upon the same subset
of elements from 1 to nfix of ε̆ or ε̆c yields an equivalent result.
Let QI

b̂ ẑc
denote the columns of the matrix Qb̂ ẑc indexed by

a set of integers I ⊆ {1, 2, 3, ..., nz}.

b̆ = b̂−Qb̂ ẑQ
−1
ẑ (ẑ − z̆)

= b̂−Qb̂ ẑ
[
LDLT

]−1
ε̆

= b̂−Qb̂ ẑ
[
L−TD−1L−1

]
(L · ε̆c)

= b̂−
(
Qb̂ ẑL

−T )︸ ︷︷ ︸
Qb̂ ẑc

D−1ε̆c

= b̂−Qb̂ ẑc


ε̆c,1
d1
ε̆c,2
d2
...

ε̆c,nz

dnz


= b̂−

nz∑
i=1

Q
{i}
b̂ ẑc

ε̆c,i
di

(21)

By conditioning the fixed baseline solution using the
sequentially-conditioned ambiguity residuals, the successive
corrections can be performed simply, and without inverting
the ambiguity matrix repeatedly for each correction. This
expression implies that if the i+ 1st integer were to be fixed,
the adjustments in the most likely and alternate cases would
be

b̆nfix=i+1 − b̆nfix=i+1 = −Q{i}
b̂ ẑc

ε̆c,i+1

di+1
(22a)

b̆nfix=i+1,alt − b̆nfix=i+1 = −Q{i}
b̂ ẑc

ε̆c,alt,i+1

di+1
(22b)

This expression shows that, in general, there will be a
position domain bias in the baseline computed by leaving
the i + 1st ambiguity unfixed. That is, if only i ambiguities
are fixed with i < nz, it is an invalid—and potentially
hazardous—assumption that the resulting solution is unbiased.
The effect of these biases must be addressed in the position
domain if the integrity of the CDGPS solution is to be
protected.

This fact motivates at least three variations of GIAB that
differ only in how the ambiguity that exceeds the aperture
threshold is handled. The first variation, termed float GIAB,
will leave the unsatisfactory ambiguity as a real-valued es-
timate. This is the typical practice in the existing literature,
but in float GIAB, the integrity risk due to the residual bias
is explicitly taken into account. The second variation, called
maximum a posteriori (MAP) GIAB, will accept the most
likely fix candidate, but integrity risk from the alternate fix
and its position domain bias is monitored. This is similar
to the concept of position domain integrity in the EPIC and
GERAFS algorithms, but there is no need to search a large set
of alternative fixes since there is only a single non-negligible
alternative fix candidate.

The third variation is minimum mean square error (MMSE)
GIAB. In MMSE GIAB, a weighted average of the MAP
GIAB solution and the alternative fixed solution is computed.
When the MAP fix is much more likely than the alternative,
MMSE GIAB will differ only slightly from the MAP GIAB
solution. In the unlikely event that the two candidate fixes are
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equally likely, the MMSE GIAB baseline will equal the float
GIAB baseline.

1) Position Domain Integrity in EPIC: For position domain
integrity monitoring, the probability of large position domain
error must be bounded, even in the event of incorrect fixes. For
each of the components of the baseline vector, e.g., vertical,
there will be an AL that must bound the solution error to a
specified level of integrity risk (IRspec). The risk that the AL
will be exceeded must be monitored to ensure that

R = P
(∣∣∣b̆− b∣∣∣ ≥ AL

)
< IRspec (23)

EPIC protects solution integrity by evaluating the IR from
the case that the ambiguities are fixed correctly and from a
set of alternative fixes of size nalt. Define E0 to be the event
that the chosen ambiguity fix is correct. Define Ej to be the
event that the jth alternative fix is correct (in which case the
fix used in the solution is incorrect). Define E∞ as the event
that the correct fix was neither the chosen fix, nor among the
alternative fixes. Let Rj be the conditional risk of excess error
given the event Ej . The total risk is then

R = R∞P (E∞) +

nalt∑
j=0

RjP (Ej) (24)

A bound on the risk of excess error can be derived by
assuming that any incorrect fix not examined will cause
excessive error, i.e., R∞ = 1. This leads to the bound used
by EPIC to monitor risk of excessive error

R ≤ R∞ +

nalt∑
i=0

RjP (Ej)

≤ 1−
nalt∑
j=0

P (Ej) +

nalt∑
j=0

RjP (Ej)
(25)

In the EPIC algorithm, the event probabilities are the a
priori fixing probabilities for integer bootstrapping

P (Ej) =
n∏
k=1

(
Φ

(
1
2 − L

−1
k · zj [k]

σk|K

)
− Φ

(
− 1

2 − L
−1
k · zj [k]

σk|K

))
(26)

The conditional risk, assuming zero-mean Gaussian measure-
ments, results from the position domain bias induced by incor-
rect ambiguity fixing, µj and the variance of the component
of the fixed baseline being protected, σ2

b̆

Rj = Φ

(
AL− µj

σb̆

)
− Φ

(
−AL− µj

σb̆

)
(27)

2) Position Domain Integrity in GIAB: For GIAB, the
differences from EPIC are that the event probabilities are the
a posteriori fixing probabilities instead of the a priori, that
there is only a single alternative fix that must be considered,
and that there will be a bias in the most likely case if float
GIAB or MMSE GIAB are used. For each of the three versions
of GIAB, there will be two primary models and a third model

to account for the probability of incorrect fix. This means that
the distributions can be modeled as Gaussian mixture models

fb̆|ε,i (ζ) =

2∑
j=0

P (µ = µj |ε, i)N
(
ζ;µj ,Qb̆|I+1

)
(28)

where Qb̆|I+1 is the covariance of the fixed baseline when
conditioned on the first i+ 1 integer ambiguities.

The modal biases µ0 and µ1 result from the i + 1st

ambiguity, while µ2 is set arbitrarily large to reflect the
uncertain result of an incorrect fix. The three models all have
the same covariance since they all result from conditioning on
the same set of ambiguities. The covariance of the baseline
conditioned upon these ambiguities is computed using the sub-
matrices of the Qb̂,ẑc and D matrices that correspond to those
ambiguities. Let I + 1 be the set of indices from 1 to i + 1.
The matrix DI+1,I+1 is the submatrix of D corresponding to
these indices.

Qb̆|I+1 = Qb̂ −QI+1

b̂,ẑc
(DI+1,I+1)−1(QI+1

b̂,ẑc
)T (29)

The risk bound for GIAB can be simplified from that of
EPIC since nalt = 1 for GIAB.

R ≤ 1− (1−R0)P (E0)− (1−R1)P (E1) (30)

To bound the mode probabilities P (µ = µj |ε, i), which
correspond to the event probabilities in EPIC, P (Ej), apply
Bayes rule to the fixing probabilities of the i+ 1st ambiguity
P (zi+1 = z̆j |ε, i). Since the biases correspond to integer val-
ues that are unknown, assume a diffuse prior on the integers;
i.e., the a priori probabilities for each ambiguity vector are
equally likely. This diffuse prior should not be confused with
the prior probability that integer bootstrapping will find the
correct integer, whatever it may be, which was given in
equation (26).

P (zi+1 = z̆i+1|ε, i) =
P (ε|zi+1 = z̆i+1, nfix = i)∑

k∈Z P (ε|zi+1 = z̆i+1 + k, nfix = i)
(31)

In order to make a bounding argument, let

λ0 = P (ε|zi+1 = z̆i+1, nfix = i) (32a)
λ1 = P (ε|zi+1 = z̆alt,i+1, nfix = i) (32b)
λ∞ = P (ε|zi+1 /∈ {z̆alt,i+1, z̆i+1} , nfix = i) (32c)

Then

p0 = P (zi+1 = z̆i+1|ε, i) =
λ0

λ0 + λ1 + λ∞
(33a)

p1 = P (zi+1 = z̆alt,i+1|ε, i) =
λ1

λ0 + λ1 + λ∞
(33b)

Because {E0, E1, E∞} form a partition, p0 + p1 + pF =
1, where pF corresponds to the actual probability the z /∈
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{z̆0, z̆1}. If this quantity were known precisely, the value of
λ∞ could be computed in terms of λ0 and λ1 as follows

p0 + p1 = 1− pF
λ0

λ0 + λ1 + λ∞
+

λ1

λ0 + λ1 + λ∞
= 1− pF

λ0 + λ1

λ0 + λ1 + λ∞
= 1− pF

λ∞ =
pF

1− pF
(λ0 + λ1)

Some simple algebraic manipulation gives the result

pj =
λj

λ0 + λ1
(1− pF ) (34)

Because zero-mean Gaussian errors are assumed, the fix-
ing probabilities can be further simplified. Note that under
the given conditions, (zi+1 = z̆i+1) ⇒ (ε = ε̆c,i+1) and
(zi+1 = z̆alt,i+1)⇒ (ε = ε̆c,i+1 − sign (ε̆c,i+1)).

p0 =
exp

{
− ε̆

2
c,i+1

2di+1

}
(1− pF )

exp
{
− ε̆

2
c,i+1

2di+1

}
+ exp

{
− (ε̆c,i+1−sign(ε̆c,i+1))2

2di+1

}
=

(1− pF )

1 + exp
{

(ε̆c,i+1)2

2di+1
− (ε̆c,i+1−sign(ε̆c,i+1))2

2di+1

}
=

(1− pF )

1 + exp
{
− 1−2|ε̆c,i+1|

2di+1

}
(35)

where di+1 is the i+ 1st element of the D matrix.
Because p0+p1 = 1−pF , the probability that the alternative

fix is correct is simple to compute

p1 = 1− pF − p0

= 1− pF −
(1− pF )

1 + exp
{
− 1−2|ε̆c,i+1|

2di+1

}
= (1− pF )

1− 1

1 + exp
{
− 1−2|ε̆c,i+1|

2di+1

}


=
(1− pF )

1 + exp
{

1−2|ε̆c,i+1|
2di+1

}
(36)

Because β
2 ≤ |ε̆c,i+1| ≤ 1

2 , the fixing probabilities obey the
inequality

1− pF < p1 ≤
1− pF

2
≤ p0 < 1− pF (37)

By substituting equations (28), (35), and (36) into (23) with
Φ (·) the CDF of the standard normal distribution and b̆ the
component of b̆ of interest, the a posteriori risk of excessive
error
Rb|ε,i ≤pF

+p0

[
1−

(
Φ

(
AL− µ1

σb̆,i+1

)
− Φ

(
−AL− µ1

σb̆,i+1

))]

+p1

[
1−

(
Φ

(
AL− µ2

σb̆,i+1

)
− Φ

(
−AL− µ2

σb̆,i+1

))]
(38)

It is simple to show that (38) is monotonically increasing
in pF . Monotonicity allows the risk Rb|ε,i to be bounded by
replacing pF with any upper bound, including PF from (16).
A slightly tighter bound could be obtained by only including
the failure risk for the first i + 1 ambiguities since the other
ambiguities remain floating.

PF,i+1 ≤ 2Φ

(
β1/2− 1

σ1

)
+

i+1∑
j=2

(
2Φ

(
βj/2− 1

σj|J

)) j−1∏
k=1

(
2Φ

(
βk/2

σk|K

)
− 1

)
(39)

All that remains is to determine the biases of the three
solution varieties. For the float GIAB solution, the chosen
solution is b̆nfix=i, which implies that the biases can be
computed as

µ1,float = E
[
b̆nfix=i − b|Si, zi+1 = z̆i+1

]
(40a)

= QI+1

b̂ ẑc

ε̆c,i+1

di+1
(40b)

µ2,float = E
[
b̆nfix=i − b|Si, zi+1 = z̆alt,i+1

]
(40c)

= QI+1

b̂ ẑc

ε̆c,alt,i+1

di+1
(40d)

Because βi+1

2 ≤ |ε̆c,i+1| ≤ 1
2 , equation (20b) implies that

sign (µ2,float) = −sign (µ1,float)

|µ1,float| ≤ |µ2,float|

For the MAP GIAB solution, the chosen solution is
b̆nfix=i+1, which is unbiased with probability p0. This implies
that

µ1,MAP = 0 (41a)
µ2,MAP = µ2,float − µ1,float (41b)

= −QI+1

b̂ ẑc

sign (ε̆c,i+1)

di+1
(41c)

The MMSE GIAB solution is formed by taking a weighted
average of the MAP GIAB solution and the alternative solu-
tion. As such, its biases will be weighted averages of the MAP
GIAB biases.

b̆MMSE =
p0

1− pF
b̆nfix=i+1 +

p1

1− pF
b̆nfix=i+1,alt (42a)

µ1,MMSE = − p1

1− pF
µ2,MAP (42b)

µ2,MMSE =
p0

1− pF
µ2,MAP (42c)

It is worth observing that the values of the means and risks
of the three types of solutions follow particular inequalities.
The typical accuracy of the algorithm is controlled by the value
of µ1, while the risk Rb|ε,i is driven by the value of µ2. This
observation, combined with the inequalities of (43) imply that
MAP GIAB is typically the most accurate, but has the highest
position domain IR in the event of partial fixing. Also, float
GIAB will typically be the least accurate, but have the lowest
position domain IR in the event of partial fixing. MMSE GIAB
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Fig. 3. Posterior distributions of one component of the partially fixed baseline
error for Float, MAP, and MMSE GIAB for a large ambiguity residual with
nfix < nz. Because the solutions differ by a bias as a function of the residual
εc,i+1, the three distributions are shifted versions of each other, with that of
MMSE GIAB between Float and MAP GIAB.

strikes the balance between the two solutions by favoring the
most likely unbiased solution, but still including a weighted
contribution of the next most likely solution. Depending on the
relative importance and strictness of the accuracy and integrity
requirements for the solution, any of the variations of GIAB
may be preferred.

0 = µ1,MAP < |µ1,MMSE| ≤ |µ1,float|
≤ |µ2,float| ≤ |µ2,MMSE| < |µ2,MAP|

(43)

The posterior distributions of the errors in one dimension
of the fixed baseline are plotted for the three variations of
GIAB in Fig. 3. This example shows results from a very large
ε̆c [i+ 1] so that the MMSE and MAP distributions are visibly
distinct. When the ambiguity residual is small, the MMSE
and MAP distributions cannot be visibly distinguished and the
secondary mode probabilities are too small to be seen on this
scale.

B. The Intermediate Distribution

The intermediate distribution can now be computed by
removing the conditioning upon the particular ambiguity resid-
ual. The region of integration is over β

2 < |ε| < 1
2 since

the magnitude of the ambiguity must be less than 1
2 , but has

failed the threshold test. The probability density function is
the Gaussain density function, normalized for the support of
the event.

P ( ε̆c,i+1 = ε|nfix = i)

=

φ
(

ε
σn+1|N+1

)(
I[− 1

2 ,−
βi+1

2

] + I[ βi+1
2 , 12

])
2
[
Φ
(
− βi+1

2σi+1|I+1

)
− Φ

(
− 1

2σi+1|I+1

)]
where:
I is the indicator function
φ (·) is the PDF of the standard normal distribution
Φ is the CDF of the standard normal distribution

(44)

This expression can be substituted, along with equation (28)
into the following integral to yield the PDF of the baseline
estimate, conditioned on the number of integers that satisfied
the aperture threshold test.

fb̆|i (ζ|i) =

∫ ∞
−∞

fb̆|ε,i (ζ)P ( ε̆c,i+1 = ε|nfix = i) dε (45)

This integral is not able to be evaluated in closed form,
but can be tightly bounded from a position domain integrity
perspective by treating it as a mixture model of mixture mod-
els. The weights to be used when building this mixture model
depend on the number of models that are being combined.

fb̆|i (ζ) ≈
nε−1∑
j=0

wj

(
fb̆|εj ,i (ζ) + fb̆|−εj ,i (ζ)

)
(46)

wj =

[
Φ
(
− 1−2(j+1)δε

2σn+1|N+1

)
− Φ

(
− 1−2(j)δε

2σi+1|I+1

)]
2
[
Φ
(
− βi+1

2σi+1|I+1

)
− Φ

(
− 1

2σi+1|I+1

)]
εj = −1

2
+ (j) δε

δε =
1− βi+1

2nε

This expression is constructed by lumping the probability
that ε̆c,i+1 = ε ∈

[
1
2 − (j + 1) δε, 1

2 − (j + 1) δε
]

with the
largest magnitude residual in that region. This approach is
conservative with respect to integrity because p1 is monoton-
ically increasing with ε̆c,i+1 for MAP GIAB, and Rb|ε,i is
monotonically increasing with p1. This implies that the com-
puted risk will over bound the actual risk if the approximation
in equation (46) is used. If nε is allowed to be greater than
10, the bound will be very tight. Since this distribution is
only used for off-line analysis, its real-time performance is
not critical. The intermediate distributions for float, MAP, and
MMSE GIAB baselines are shown in Fig. 4.
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Fig. 4. Intermediate distributions of float, MAP, and MMSE GIAB for nfix <
nz, plotted in log scale. Float GIAB has a symmetric, bimodal distribution.
MAP GIAB has a symmetric trimodal distribution with a dominant, zero-mean
error central mode. MMSE GIAB has lower probabilities of large errors than
does MAP GIAB at the expense of a slight increase in the probability of
moderately sized errors. In the lightly shaded region, MAP GIAB has higher
density. In the darker region, MMSE GIAB has higher density.
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C. The Prior Distribution

At this point, all the tools needed to construct the a priori
distribution of the GIAB baseline are in place. Using the
fixing probabilities of equations (16) and (17) together with the
partially fixed covariance in equation (29) and the intermediate
distribution in equation (46), the final a priori distribution is
obtained in equation (47) on page 11.

This distribution is a Gaussian mixture model with a total
of 4nznε + 1 models. There are 4 models for each ambiguity
residual used for each number of partial fixes and a single
mode for the correct fix case. This expression ignores the
failure case, and so integrates to 1− PF .

For the MAP case, µ1,j = 0, which implies that the
unbiased models get double the weight and the resulting
distribution has 3nznε + 1 mixed models. Since the strongest
models are all zero-mean error, the MAP baseline has a much
stronger unbiased mode than the Float GIAB baseline. This is
illustrated in Fig. 5.
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Fig. 5. Prior distributions of float, MAP, and MMSE GIAB, plotted in log
scale. Float GIAB has a weak central mode with strong, but narrow secondary
peaks. MAP and MMSE GIAB both have a strong central mode and secondary
peaks that are wider, but weaker than those of float GIAB. MMSE GIAB has
smoother and narrower secondary peaks than MAP GIAB.

IV. SETTING THE INTEGER APERTURE PARAMETERS

A. Allocation from Probability of Failure

In IAB, a single threshold parameter β is used to control the
probability of failure with the probability of success falling out
as an uncontrolled result. The fact that GIAB permits partial
ambiguity resolution enables greater flexibility in setting the
size and shape of the integer aperture than in IAB. If nz

different thresholds are set, this allows some control in the
resulting values of PSnz

for any desired PF . Recall that βi be
the threshold used to validate the ith integer ambiguity fix.

If wiPF risk is allocated to incorrectly fixing the ith

ambiguity, and if the preceding threshold values have been
set, then βi can be set to maximize the probability of success
by solving

PE,i (βi) =
wiPF∏i−1
j=1 PC,j

(48)

by inverting equation (15). The optimizing value of βi is

βi = βmax (PF,i, di, PC,j)

= min

1,max

0, 2

1 +
√
diΦ
−1

 PF,i

2
i−1∏
j=1

PC,j






(49)

If βi = 0 for any i, then the ambiguities cannot be fixed
to the desired level of confidence. If βi = 1 for all i,
then the fixed solution can be trusted to the desired level
of confidence with full availability. The task of setting the
aperture parameters has now been simplified to allocating
the overall risk of incorrect fix to the individual ambiguities.
The simplest way to set the aperture parameters is to use a
bracketing iterative root finder with a single value for β. The
initial values used in the search can be

βLB = βmax

(
PF
nz
,max (D) , 1

)
(50a)

βUB = βmax

(
PF
nz
,min (D) , 1

)
(50b)

This approach effectively sets the aperture size by the
ambiguity with the greatest uncertainty. It is conceivable that
this will reduce the availability of the fixed solution since
the rejection of an earlier ambiguity will terminate the GIAB
fixing early. Further, since partial ambiguity resolution is being
used, it may be advantageous to fix most of the ambiguities
with higher availability than would be possible with a single
fixed threshold. These reasons motivate the use of alternative
allocations of the fixing risk. If an equal allocation of the
overall specified failure risk is given to each ambiguity, the
values are set as

βi = βmax

(
PF
nz
, di, PC,j

)
(51)

If some of the ambiguities are known with sufficient accu-
racy that βi = 1 for those values, then a further allocation
can be made that adjusts the overall risk to be allocated to
the remaining ambiguities. More generally, any allocation of
risk to the individual parameters can be used that satisfies the
following constraints:

βi = βmax (wiPF , di, PC,j)

s.t.
nz∑
i=1

wi = 1

0 < wi < 1,∀i

(52)

B. Optimization for Availability of Full Ambiguity Resolution

Given the constraints of (52) and a specified failure rate
PF,spec, maximize the percentage of time that the full ambi-
guity set can be resolved while satisfying the given constraints.
Defining An as the probability that n or more integers were
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fb̆ (ζ) =

nz∑
i=0

PSifb̆|i (ζ)

≈ PSnz
fb̆|nz

(ζ) +

nz−1∑
i=0

PSi


nε∑
j=1

wj

[
fb̆|i,εj (ζ) + fb̆|i,−εj (ζ)

]
≈ PSnz

N
(
ζ;0,Qb̆

)
+

nz−1∑
i=0

PSi

nε∑
j=1

wj ×

 p1,jN
(
ζ;µ1,j ,Qb̆|I+1

)
+ p2,jN

(
ζ;µ2,j ,Qb̆|I+1

)
+ p1,jN

(
ζ;−µ1,j ,Qb̆|I+1

)
+ p2,jN

(
ζ;−µ2,j ,Qb̆|I+1

)


(47)

correctly fixed and none were incorrectly fixed, and using the
events of (15)

An =

n∏
i=1

PC,i

nz∏
j=n+1

(1− PE,j) (53)

The optimization problem can be posed as

β∗ = arg max
β

[Anz (β)]

s.t. PF (β) ≤ PF,spec

(54)

This problem was approached using a gradient descent
method, but since neither PF nor Ana is a convex function
of the vector of aperture parameters, β∗ ∈ [0, 1]

nz , there are
many local maxima in the region of the global maximum.
Because there is no guarantee of finding the global optimum
and the gradient is very computationally expensive, it is
desirable to find a simple heuristic to compute the weights
that results in high availability.

Since both PF and An are functions of the conditional
variances di, it is reasonable to compute the weights as
functions of di as well. That is

wi =
f (di)∑nz

j=1 f (dj)
(55)

Four different weightings were compared to the single
threshold method. The four weightings are termed, equal, σ,
variance, and PE-weighting. PE-weighting uses the condi-
tional risk of incorrect fix for β = 1.

TABLE I
WEIGHTING FUNCTION ALTERNATIVES CONSIDERED

Weighting Equal σ σ2 PE

f (di) 1
√
di di 2Φ

(
−1/2√

di

)

When tested for a variety of models with PCF ranging from
.85 to .9999 and a wide range of PF,spec, it was found that
PE-weighting produces the highest availability of the fixed so-
lution for all models studied. These models included instances
with flat spectra; i.e., max {di}/min {di} < 1.1, and for spec-
tra with significant discontinuities; i.e., max {di}/min {di} >
7. Even when performing local optimization starting from
the PE-weighted aperture, there has not been observed more
than a 0.03% improvement in availability. It is therefore
recommended that the aperture be sized using PE-weighting.

This approach can yield several percent improvement in the
availability of full ambiguity resolution over using a single
threshold value.

V. VALIDATION OF MAP GIAB VIA MONTE CARLO
SIMULATION

To validate the various facets of GIAB, Monte Carlo simu-
lations were performed on multiple float solution models. For
each model, the simulation was initialized by performing the
decorrelating Z-transform and using PE-weighting to set the
integer aperture. Then a large sample was drawn from the
distribution to generate the float solution errors, including the
float baseline and float ambiguities. Next, the GIAB algorithm
is applied to each float solution. Finally, the test statistics were
logged, including the number of correct fixes for each value of
nfix, the number of incorrect fixes tabulated by the first errant
ambiguity, and the fixed baseline error.

The sample size has been chosen to ensure that a statistically
significant number of failures occurs or a significant number
of solutions is available for each value of nfix. The theoretical
predictions of this paper are then compared to the simulated
results.To examine the goodness of fit between theory and
simulation, the differences between predicted and simulated
probabilities are normalized by the expected standard deviation
in the measured rate. Once the probabilities PS,i and PF,i are
verified, a histogram of the baseline error is compared to the
a priori distributions predicted by this paper.

Several models were simulated to illustrate a range of
failure rates and fixing probabilities. Small models with only
7 ambiguities are presented in full detail to save space, but
similar results were obtained for nz ∈ {14, 21, 28}. In the
following tables, E is one of the success or failure events,
PE are the predicted event probabilities, P̂E are the event
probabilities as estimated from the Monte Carlo simulation,
and kσPE is the number of standard deviations difference
between the predicted and estimated event probabilities. The
standard deviation is based on the Beta distribution, which is
the conjugate prior for the probability parameter of a binomial
distribution.

Table II shows the simulation results for nMC = 106

Monte Carlo samples from a float distribution with a bootstrap
probability of correct fix PCF,B = 0.988 for PF,spec = 10−5.
This weak model was chosen to validate the event probabilities
when partial fixing must be employed frequently. The final
column indicates the number of standard deviations difference
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Fig. 6. The theoretical prior distributions of MAP GIAB (dashed line)
and simulation histogram of the same (solid line), plotted in log scale for
nz = 7, PF = 10−5, and a sample size of 2 × 106.The underlying model
has a bootstrap probability of correct fix PCF,B = .988. The distributions
are symmetric about zero, so only the positive portion is shown. There is
strong agreement between the predicted and simulated distributions. There
was similar agreement for each of the intermediate distributions.

between the theoretical and simulated probabilities. The prior
distribution for the model is shown with its empirical approx-
imation in Fig. 6.

TABLE II
PREDICTED VS SIMULATED EVENT PROBABILITIES FOR A WEAK MODEL

E PE P̂E kσPE

F 0.00001 0.000012 -0.57735
S0 0.13872 0.138154 1.62546
S1 0.09308 0.092961 0.41219
S2 0.08423 0.084818 -2.09811
S3 0.09987 0.100039 -0.57589
S4 0.07162 0.071419 0.76184
S5 0.08010 0.080193 -0.35461
S6 0.03362 0.033531 0.47671
S7 0.39878 0.398873 -0.19793

Table III shows the simulation results for nMC = 2.2×108

Monte Carlo samples from a float distribution with a boot-
strap probability of correct fix PCF,B = 1 − 2 × 10−5 for
PF,spec = 10−8. This strong model was chosen to validate the
event probabilities when partial fixing is rarely relied upon.
The prior distribution for the model is shown with its empirical
approximation in Fig. 7. The predictions of both the weak and
strong models match the simulation results well.

TABLE III
PREDICTED VS SIMULATED EVENT PROBABILITIES FOR A STRONG

MODEL

E PS,n
#{Sn}
nMC

kσPE

F 10−8 9.09e-9 0.13484
S0 0.0007217 0.000720 0.72972
S1 0.0004399 0.000443 -1.9805
S2 0.0005133 0.000515 -0.9962
S3 0.0011997 0.001100 -0.1132
S4 0.0009000 0.000901 -0.5220
S5 0.0018919 0.001898 -2.0746
S6 0.0003955 0.000394 1.13087
S7 0.9939380 0.993929 -1.7059

Baseline Error (m)P
ro
ba
bi
lit
y
D
en
si
ty

(l
og

)

1 2 3 4

10-6

10-5

10-4

0.001

0.010

0.100

1

Fig. 7. The theoretical prior distributions of MAP GIAB (dashed line) and
simulation histogram of the same (solid line), plotted in log scale for nz = 7,
a bootstrap probability of correct fix PF = 10−8, and a sample size of
2.2 × 108.The underlying model has a bootstrap probability of correct fix
PCF,B = 1−2×10−5. The distributions are symmetric about zero, so only
the positive portion is shown. There is strong agreement between the predicted
and simulated distributions. Note that since this plot is in log scale, very few
samples difference appear to have a much larger impact at low probabilities.

VI. PERFORMANCE ANALYSIS

A. Protection Levels

Integrity requirements are specified in terms of an integrity
risk, IRspec, that the baseline estimation error will exceed
the AL threshold without warning. IRspec is derived from an
overall risk requirement, such as probability of loss of aircraft,
and is typically a fixed value for a given system use case.
TheAL is related to physical obstacle clearance requirements,
which are constant for a particular land based runway and
a given aircraft. However, obstacle clearance margins are
not constant when landing on a moving platform, such as
an aircraft carrier at sea. Since the risk of excessive error
might be evaluated against a time-varying threshold for a fixed
allowable risk, it is useful to determine a protection level (PL)
that bounds the estimation error to the required level of risk.

A PL can be thought of as the minimum AL that could be
met by a navigation system or algorithm for a given value of
IRspec. In terms of statisical hypothesis testing, IRspec corre-
sponds to the desired confidence level, the AL corresponds to
the decision threshold, and the PL to a prediction interval. If
the risk of excess error is given as a function of AL, then the
PL can be defined as

PL , min{AL|R(AL) ≤ IRspec} (56)

A PL for EPIC or for any version of GIAB can be computed
by using a root solving method to solve (56) with R(AL)
defined by (25) or (30), respectively.

B. Comparison to EPIC

To demonstrate the performance of GIAB compared to the
state-of-the-art high-integrity algorithm, the performance of
EPIC and MAP GIAB will be compared for the measurement
models previously examined. MAP GIAB is chosen because
it provides better accuracy than float GIAB and is simpler
to implement than MMSE GIAB. If MMSE GIAB were

NAVAIR Public Release SPR 2016-54
Distribution Statement A- Approved for public release; distribution is unlimited.



used, it would compare even more favorably with EPIC since
MMSE GIAB always produces smaller PLs than MAP GIAB.
Because the EPIC algorithm uses an a priori, model driven
approach to validation, EPIC will always produce the same
PL for the same number of integers fixed with a given
measurement model and IR requirement. Conversely, GIAB is
a data-driven algorithm for which the PL is a random variable.
The PL has a finite support since it is driven by |ε̆c,i| < 1

2 .
For this reason, the PL produced by EPIC will be compared to
the minimum, maximum, and average PL produced by GIAB
for each number of integers fixed, along with the probability
that GIAB will fix that number of integers for each model
considered. An example of the a priori probability density
functions of the EPIC and GIAB baseline errors is given in
figure 8.

As can be seen in table IV and table V, GIAB is able to
provide smaller PLs than EPIC most of the time. All distance
units in these tables are in meters. Note that the PL computed
for S0 by EPIC is simply the PL of the float solution with no
incorrect fixing bias. The event S0 for GIAB corresponds to
the case where the measurements are so poor that no integers
can be fixed successfully. The worst case PL computed for
any nfix > 0 by MAP GIAB, which has the largest PLs of
any of the GIAB implementations, is better than the best PL
computed by EPIC.

GIAB provides lower PLs because it is able to reject and
exclude most of the incorrect fixes that EPIC must protect
against. This implies that GIAB will also provide superior
availability of integrity for models similar to those examined
in this paper. It is expected that this will be the case in general
since the a posteriori alternate candidate fix used in GIAB will
virtually always be among the candidates considered a priori
by EPIC. This implies that any decrease in the PL computed
by EPIC as compared to GIAB will result only when the
incorrect fixing bias of the GIAB alternative fix is the same as
the largest incorrect fixing bias considered by EPIC, which will
be a rare event. This is why GIAB is expected to provide better
availability of integrity than EPIC under most circumstances.

TABLE IV
COMPARISON OF EPIC AND GIAB FOR A WEAK MODEL

E PE σ (m) PLmin E [PL] PLmax PLEPIC

S0 0.138 0.465 2.60 2.93 3.57 2.03
S1 0.093 0.332 1.54 1.56 1.59 2.86
S2 0.084 0.294 1.51 1.78 2.33 2.86
S3 0.099 0.207 1.68 1.87 2.24 2.91
S4 0.071 0.173 1.05 1.20 1.50 3.26
S5 0.080 0.126 0.97 1.08 1.29 3.14
S6 0.033 0.121 0.57 0.60 0.77 3.31
S7 0.398 0.121 0.54 0.54 0.54 3.33

Note that the PLs computed by GIAB and EPIC do not
increase or decrease uniformly. For example, the maximum
PL increases from 1.37 m to 2.13 m for the strong model
when transitioning from the first successful fix to the second
successful fix. Recall that the PL is driven primarily by the
bias between the most likely fix and the incorrect fixes of
non-negligible probability. Because these biases depend on
the relationships among the various integers and the baseline

TABLE V
COMPARISON OF EPIC AND GIAB FOR A STRONG MODEL

E PE σ (m) PLmin E [PL] PLmax PLEPIC

S0 0.00072 0.310 2.79 2.92 3.35 1.77
S1 0.00043 0.221 1.31 1.32 1.37 2.62
S2 0.00051 0.196 1.63 1.74 2.13 2.61
S3 0.00119 0.138 1.75 1.83 2.09 2.49
S4 0.00090 0.115 1.09 1.16 1.38 3.03
S5 0.00189 0.084 0.99 1.04 1.20 2.91
S6 0.00039 0.081 0.48 0.53 0.69 2.99
S7 0.99393 0.081 0.46 0.46 0.46 2.95
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Fig. 8. The a priori distributions of EPIC and GIAB for the same model
as in Fig. 7. The a priori probabilities of large errors while using GIAB are
somewhat smaller than when using EPIC for this model, but GIAB provides
much smaller protection levels since it uses a posteriori integrity protection.

directions of interest (e.g. vertical error), the biases can change
dramatically from one integer fix to the next.

It is tempting to think that in the case of successfully fixing
only two integers in the example above that it would be better
to only fix one integer since that would yield a lower protection
level. It may in fact be preferable to do so, but only if the
bias induced in the solution by leaving the second integer
floating produces acceptable accuracy performance. That is,
the reduction in PL is obtained only at the expense of a biased
solution which hurts average accuracy. The impact to average
accuracy can be seen in the strength of the central modes
of float and MAP GIAB in Fig. 8 and in the intermediate
distributions of figure 4.

VII. CONCLUSIONS

A new data-driven CDGPS partial ambiguity resolution
and validation algorithm has been developed analytically and
validated with Monte Carlo simulation. The new algorithm
has advantages over the state-of-the-art in that (1) data-
driven methods offer improved availability of integrity over
model-driven methods such as EPIC, (2) the integrity risk
due to incorrect fixing is precisely controlled analytically as
compared to functional approximation methods used with the
ratio test and similar integer aperture methods, (3) it correctly
accounts for the integrity risk of partial ambiguity resolution in
the position domain that existing GIA methods neglect, and
(4) it requires less computational burden than GERAFS or

NAVAIR Public Release SPR 2016-54
Distribution Statement A- Approved for public release; distribution is unlimited.



EPIC since it eliminates the search for many alternate fix
candidates. The new algorithm has been shown to provide
superior performance to the current state-of-the-art methods
for a range of measurement models.
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