166 research outputs found

    Existence of APAV(q,k) with q a prime power ≡5(mod8) and k≡1(mod4)

    Get PDF
    AbstractStinson introduced authentication perpendicular arrays APAλ(t,k,v), as a special kind of perpendicular arrays, to construct authentication and secrecy codes. Ge and Zhu introduced APAV(q,k) to study APA1(2,k,v) for k=5, 7. Chen and Zhu determined the existence of APAV(q,k) with q a prime power ≡3(mod4) and odd k>1. In this article, we show that for any prime power q≡5(mod8) and any k≡1(mod4) there exists an APAV(q,k) whenever q>((E+E2+4F)/2)2, where E=[(7k−23)m+3]25m−3, F=m(2m+1)(k−3)25m and m=(k−1)/4

    Some perpendicular arrays for arbitrarily large t

    Get PDF
    AbstractWe show that perpendicular arrays exist for arbitrarily large t and with λ = 1. In particular, if d devides (t+1) then there is a PA1(t, t+1, t+(f(t+1)d)). If υ ≡ 1 or 2 (mod 3) then there is a PAλ(3, 4, υ) for any λ. If 3 divides λ then there is a PAλ(3, 4, υ) for any v. If n⩾2 there is a PA1(4, 5, 2n+1). Using recursive constructions we exhibit several infinite families of perpendicular arrays with t⩾3 and relatively small λ. We finally discuss methods of constructing perpendicular arrays based on automorphism groups. These methods allow the construction of PA's with (k−t)>1

    On 1-factorizations of Bipartite Kneser Graphs

    Full text link
    It is a challenging open problem to construct an explicit 1-factorization of the bipartite Kneser graph H(v,t)H(v,t), which contains as vertices all tt-element and (v−t)(v-t)-element subsets of [v]:={1,…,v}[v]:=\{1,\ldots,v\} and an edge between any two vertices when one is a subset of the other. In this paper, we propose a new framework for designing such 1-factorizations, by which we solve a nontrivial case where t=2t=2 and vv is an odd prime power. We also revisit two classic constructions for the case v=2t+1v=2t+1 --- the \emph{lexical factorization} and \emph{modular factorization}. We provide their simplified definitions and study their inner structures. As a result, an optimal algorithm is designed for computing the lexical factorizations. (An analogous algorithm for the modular factorization is trivial.)Comment: We design the first explicit 1-factorization of H(2,q), where q is a odd prime powe

    Self-healing in unattended wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) appeal to a wide range of applications that involve the monitoring of various physical phenomena. However, WSNs are subject to many threats. In particular, lack of pervasive tamper-resistant hardware results in sensors being easy targets for compromise. Having compromised a sensor, the adversary learns all the sensor secrets, allowing it to later encrypt/decrypt or authenticate messages on behalf of that sensor. This threat is particularly relevant in the novel unattended wireless sensor networks (UWSNs) scenario. UWSNs operate without constant supervision by a trusted sink. UWSN?s unattended nature and increased exposure to attacks prompts the need for special techniques geared towards regaining security after being compromised. In this article, we investigate cooperative self-healing in UWSNs and propose various techniques to allow unattended sensors to recover security after compromise. Our techniques provide seamless healing rates even against a very agile and powerful adversary. The effectiveness and viability of our proposed techniques are assessed by thorough analysis and supported by simulation results. Finally, we introduce some real-world issues affecting UWSN deployment and provide some solutions for them as well as a few open problems calling for further investigation

    On the performance of helper data template protection schemes

    Get PDF
    The use of biometrics looks promising as it is already being applied in elec- tronic passports, ePassports, on a global scale. Because the biometric data has to be stored as a reference template on either a central or personal storage de- vice, its wide-spread use introduces new security and privacy risks such as (i) identity fraud, (ii) cross-matching, (iii) irrevocability and (iv) leaking sensitive medical information. Mitigating these risks is essential to obtain the accep- tance from the subjects of the biometric systems and therefore facilitating the successful implementation on a large-scale basis. A solution to mitigate these risks is to use template protection techniques. The required protection properties of the stored reference template according to ISO guidelines are (i) irreversibility, (ii) renewability and (iii) unlinkability. A known template protection scheme is the helper data system (HDS). The fun- damental principle of the HDS is to bind a key with the biometric sample with use of helper data and cryptography, as such that the key can be reproduced or released given another biometric sample of the same subject. The identity check is then performed in a secure way by comparing the hash of the key. Hence, the size of the key determines the amount of protection. This thesis extensively investigates the HDS system, namely (i) the the- oretical classication performance, (ii) the maximum key size, (iii) the irre- versibility and unlinkability properties, and (iv) the optimal multi-sample and multi-algorithm fusion method. The theoretical classication performance of the biometric system is deter- mined by assuming that the features extracted from the biometric sample are Gaussian distributed. With this assumption we investigate the in uence of the bit extraction scheme on the classication performance. With use of the the- oretical framework, the maximum size of the key is determined by assuming the error-correcting code to operate on Shannon's bound. We also show three vulnerabilities of HDS that aect the irreversibility and unlinkability property and propose solutions. Finally, we study the optimal level of applying multi- sample and multi-algorithm fusion with the HDS at either feature-, score-, or decision-level

    Block Ciphers: Analysis, Design and Applications

    Get PDF
    In this thesis we study cryptanalysis, applications and design of secret key block ciphers. In particular, the important class of Feistel ciphers is studied, which has a number of rounds, where in each round one applies a cryptographically weak function

    Cryptanalysis of Selected Block Ciphers

    Get PDF
    • …
    corecore