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Abstract

Kramer, E.S., Q.-R. Wu, S$.8. Magliveras and T. van Trung, Some perpendicular arrays for
arbitrarily large ¢, Discrete Mathematics 96 (1991) 101-110.

We show that perpendicular airays exist for arbitrarily large ¢ and with A = 1. in particular, if d
divides (¢ + 1) then there is a PA (¢, 1 + 1, t + ((¢ + 1)/d)). If v =1 or 2 (mod 3) then there is a
PA,(3, 4, v) for any A. If 3 divides A then there is a PA,(3,4, v) forany v. If n =2 there is a
PA,(4,5,2" +1). Using recussive constructions we exhibit several infinite families of perpen-
dicular arrays with =3 and relatively small .. We finally discuss methods of constructing
perpendicular arrays based on automorphism groups. These methods allow the construction of
PA's with(k—1)>1.

1. Introduction

A perpendicular array PA,(t, k, v) is a A(Y) by k array, A, using the symbols
from a v-set X, which has the properties: (i) every row of A contains k distinct
symbols; and (ii) for any ¢ columns of A and for any ¢-set T of X there are exactly
A rows of A that contain the symbols of T in the chosen ¢ columns. Mote that (ii)
implies (i) when ¢ > 1. Alsc observe that (i) implies that k < » in a perpendicuiar
array. It is also immediate thai a PA,(s, &k, v) produces a PA,(t, k', v), for
k' <k, by simply removing columns.

Perpendicular arrays kave recently been examined by several researchers (see
[7,11,13-15, 18]). Some of the results found in [11] will be obtained mere
efficiently in what follows.

Some necessary conditions for perpendicular arrays are provided in [11] by the
following theorem.
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Theorem 1.1. Suppose 0<t'<t and $y=(%). Then a PA;(t, k,v) is also a
PA,(t', k, v), where A’ = A(YZ1)/(}). Hence A(7Z;)=0mod (/).

Thus, a PA(2, 3, v) has v odd; a PA,(3,4,v) has v=1 or 2(mod 3); and a
PA,(3. 5, v) kas v =2 (mod 3).

One of the standard techniques (see {11]) for constructing perpendicular arrays
uses 7-wise balanced designs. Let v and ¢ be positive integers and let K be a subset
of {t,...,v—1}. A t-wise balanced design, with parameters t-(v, K, 1),
sometimes also called a tBD, is a pair (X, 9), where X is a v-set and B is a
collection of subsets (called biocks) of X, with sizes from K, such that any -set
from X is contained in precisely A blocks of 3. If K = {k} then our (BD is called
a t-design with parameters (v, k, A).

Theorem 1.2 (tBD Construction). Suppose (X, B) is a t-(v, K, A) such that for
every n in K there exists a PA, (t, k, n). Then we can construct a PA,;, (¢, k, v) by
taking a PA, (¢, k, |Bl), on symbol set B, for every B in 3.

2. A matrix theorem

The following is a nice application of P. Hall’s Theorem [3] which also provides
a tool in constructing perpendicular arrays.

Theorem 2.1 (Kramer, Wu). Let A be a matrix with n cclumns and integer entries
from $={1,2, ..., k} where integer i appears exactly nr;, r; an integer, times in
A. By perinuting the entries within each row we can transforrm1 A to a matrix in
which each integer i appears r; times in each column.

Proof. We apply subscripts to the occurrences of i in A where subscript j, for
1=<j =<r, will appear exactly n times as a subscript of i. In our new matrix, call it
A’, there will be exactly m = (r, + r, + - - - + ;) distinct >ntries. Note also that A’
has precisely m rows and that each of the / entries appeors n times in A'. Let
S;={a;;: 1<j<n} be the set of distinct elements that appear in row i of A’.
There may, of course, be repetition of elements in any given row of A or A’. Now
we claim that P. Hail’s condition applies to the sets §,, . . ., S,,. For if the union
of any ¢ of these sets contained fewer than ¢ elements it would clearly imply that
some element appeared more than » times in the corresponding ¢ by n submatrix
of A'. This obviously does nct happen so we can select a system of distinct
representatives for the m sets. We arrange these into the first column via
appropriate permutations within each row of A’. Clearly we can apply P. Hall’s
theorem to the remaining n — 1 columns and produce a matrix B’ from A’ where
each entry appears exactly once in each column of B’ and where B’ is obtained

from A’ by permuting each row of A’. By removing subscripts we get our
result. I
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There are strong connections between ¢-designs and perpendicular arrays. Note.,
for example that any Pa,(t, k, v) yiclds a t-(v, k. A(%)) design by taking as :he
ith block the set of elements in the ith row of the array. Conversely, the next
result shows that a perpendicular array can be manufactured from any t-design
where k=t +1.

Theorem 2.2. If ihere exists a t-(v, t + 1, A) design then there is a PA, (t, t + 1, v),
where A, = A/(A, t +1).

Proof. Repeat the blocks of the t-(v, r+ 1, 1) d=sign to produce a t-(v. ¢+
1, Ai(¢t + 1)) design (X, B). Let B={B,, B;...., B,} and let M be the matrix
whose ith row contains B,. Let the t-subsets of X be {7;: 1 <k <(¥)} and let N
be the b by (¢ + 1) matrix whose (i, j) entry n; = k if B,\{m,} = T;. Clearly cach
k, 1<k =(7), appears A,(¢ + 1) times in N. By Theorem 2.1 we can transform N,
via permutaticns within each of the rows, into a matrix N', such that eack s mbol
in N' appears exactly A; times in each column of N’'. Performing the exact same
permutations within each of the rows of M as on N produces a matrix M’ where
M'isclearly a PA; (¢, t+1,v). O

Note that the special case of t =2, A =3 of Theorem 2.2 was proved in [7].

As an immediate application of Theorem 2.2 we can use some known r-designs
to easily produce some families of perpendicular arrays (part (i) of thiz neat
theorem was done in [17] but here we do it with ease).

Theorem 2.3. (i) For odd v =3 and any A there exists a PA,(2, 3, v).
(ii) For all v=3 and even A >0 there exists a PA,(2, 3, v).

Proof. There exists a 2-(v, 3, 3) design, see [3]. for ail odd v =23 and so there
exists a PA(2, 3, v) for such v’s. Taking copies yields (i). Now there exists a
2-(v, 3, 6) design for any v =3, see [3]. so we get a PA,(2,3,v) and (ii) is
clear. O

Theorem 2.4. (i) If v=1, 2 (mod 3) there is a PA;(3, 4, v) for any A >0.
(ii) If A=0 (mod 3) there is a PA,(3, 4, v) for any v.

Proof. For any v not divisible by 3 there exists a 3-(v, 4, 4) design, see (4], and
(i) is clear. For any integer v =4 there is a 3-(v, 4, 12) design, see [S], and (ii)
follows from Theorem 2.2. Note that part (ii) was first proved in [11], but here
our proof is quick. O

Theorem 2.5. For all n =2 there exists a PA(S,6,2" + 2).

Proof. By [9] there is a 5-(2" + 2, 6, 15) design and applying Theorem 2 gives our
result. This improves the result in [11]. O
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Theorcm 2.6. For all n =2 there is a PA(4,5,2" +1).
Proof. In [8] Hubaut constructs 4-(2" + 1, 5, 5) designs forn=3. 01
By using the trivial design ¢~(v, t + 1, v — ¢) the following result is immediate.

Theorem 2.7. For any t and v with 1<t<uv there is PA,(t, t + 1, v) where
A=(v-=-0/(v—tt+1).

Corollary 2.8. For any integer t >0 and any divisor d of (t + 1) there exists a
perpendicuiar array PA\(t, t + 1, v) where v =t + ((t + 1)/d).

The following result is uscful.

Theorem 2.9. If there is a PA,{t, v, v) which is also a PA;, (t—1, v, v) then
there is a PA, . iy(t, v+ 1, v +1).

Proof. First note that »,_,=A(v—t+1)/t. Let A be our PA,;(t, v, v) using
symbols from a v-set X and let y not be in X. Let A’ be the new array obtained
from A by replacing each row of A, say a\a,---a,, by the (v+1) by (v+1)
matrix, which we later call a stack:

y a a - - a,
a y a --- a4,
a a ay -~-° Y.

Let T be a set of ¢ elements from X U {y}. Select any ¢ columns of A’, which
without loss of generality, we can take to be the first ¢ columns of A’. If T is a
subset of X and T appears in the first £ columns of a stack it will appear in the first
t columns in exactly (v +1—1¢) rows of that stack. But T will be in the first ¢
columns in exactly A of these stacks and hence in A(v+1—1¢) rows of A'.
Suppose y is in the i-set 7. Easily, 7 will be in tA,_, = A(v — ¢t + 1) rows of A’ and
our result is proved. O

As an application of this result we get the following.
Theorem 2.10. If q is a prime power then there is a PA,_,(2,q +1,q +1).

Proof. In [16] PA,(2, g, q) are shown to exist for all prime powers ¢. Our result
then follows by the previous theorem. [J

As we have already seen, Theorem 2.2 is one main method of constructing

PA,(t, k, v). After a discussion with Stinson the following two theorems became
evident.
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Theorem 2.11. If there is a PA,(3, k, q + 1), q a prime power, then there is a
PA;(3,k, q"+ 1), n=i.

Proof. In [19] it is shown that a 3-(¢" + 1, ¢ + 1, 1) design exists for all n = 1. By
Theorem 1.2 we get our resuii. O

Corollary 2.12. There exists a PA(3,33,32" + 1) for all n = 1.

Proof. There exists a PA,(33,32,32) [18]. Using Theorem 2.9 we obtain a
PA;0(3, 33, 33) and so there exists a PA;y(3. 33, 32" + 1) by Theorem 2.11. O

Theorem 2.13. For any integer v =5 there is a PA(3. 5, v).

Proof. Hanani [5] proves the existence of a 3-(v, 5, 30) design for all v =5 and
since a PA,(3, 5, 5) [16] exists we get our result. O

Theorem 2.14 (Hanani (see [5])). If there exists a 3-(v + 1. q + 1, A) design, q a
prime power, then there exists a 3-(vq" + 1, g + 1, A) design for all n =0.

Theorem 2.15. For any m =0, n = 1, there exists a PA5(3,6,5™(4"*' - 1)/3).

Proof. By [1] there is a 3-(4"*' - 1)/3+ 1, 6, 1) design. n =1, so by Theorem
2.14 there is 3-(5"(4"*'-1)/3+1,6,1) design, m=0 n=1. Using the
PA;(3,6,6) [11] and Theorem 1.2 we get our result. Note that 3-designs with the
same parameters as in [1] can be obtained from a 3-(6, 6, 1) using the recursion: If
there is a 3-(v + 1, 6, 1) then there is a 3-(4v + 2, 6, 1) (see Hanani [5]). O

Corollary 2.16. There exists a PA,s(3,32,31"63 + 1) for all n = 0.

Proof. There exists a 3-(63 + 1,31 + 1, 15) design (a Hadamard design). So we
have a 3-(63.31" + 1, 32, 15) design for n =0. By Theorem 1.2 we get the result
from PA,(3,32,32) [18]. O

As in the proof, we can construct families of PA;(t, k, v)’s with t=3 from
smaller perpendicular arrays and smaller 3-designs by Theorem 1.2 and Theorcm
2.14. For example there exists a PA,(3, 5, 5) [16] and PA,(3, 8.8.] [18]. Also, by
Theorem 2.9 there exists a PA;(3, 6, 6) and PA,(3.9.9). Using these perpendicu-
lar arrays and the small 3-designs in [8] we can get many families of PA,(t, k. v)
with ¢ = 3. We list soms of these arrays in Table 1 for t =3; for k =5, 6, 8, or 9;
for n =0; and for A <6.
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Table 1

Parameters of

2
<)

. Family of PA’s Small PA used Small 3-design

PA,3,5, 4" +1) PA(3,55  355.1)

PA,(3,5.4"25+1) PA,(3.5.5)  3-(26,5,1)
PA,(3,5,4"31+1) PA,(3,5.5)  3-32,5,2)
PA,(3,5.4"5+1) PA,(3,5.5)  3-(21,5,3)
PA,(3.5.4"%6+1) PA,(3,5,5)  3-(25,5.3)
PA,(3.5.4"9+1)  PA,(3,5,5)  3-(10,5,3)
PA,(3,5,421+1) PA,(3,5.5  3-(22,5,3)
PA,(3,5,4"29+1) PA,3.5.5)  3-(30,5,3)
PA,(3,5,4"10+1) PA,(3,5.5)  3-(11,5.4)
10 PA,3,5.4"19+1) PA,(3,5.5  3-20,5,4)
11 PA((3,5,4"13+1) PA,(3.5.5)  3-(14,5,5)
12 PAJ(3.5,4™'7+1) PA,(3.5.5)  34(29,5,5)
13 PA(3,5.4"10+1) PA,(3,5.5)  3-(11,5,6)

14 DA (3 § A"|1l+l_) PA (2§ 5) 3{12.5.6)

15 Tiag JyJy T 2 R Ty Yy ) ST 2y Py Oy

15 PA((3,5,4"14+1) PA,(3,5.5)  3-(15,5,6)
16 PA(3,5.4"15+1) PA,(3.5.5)  3-(16,5,6)
17 PA(3,5,4"19+1) PA,(3,5.5)  3-(20,5,6)
18 PA((3.5,426+1) PA,3,5.5)  3-(27,5,6)
19 PA(3,5,4"30+1) PA,3,5.5  3-31,5,6)
20 PA43,6.5"'+1) PAy(3,6,6)  3-(6,6,1)

21 PAJ3,6,521+1) PA,(3,6,6)  3-(22,6,1)
22 PA(3.6,5"11+1) PA,(3,6,6)  3-(12,6,2)
23 PA,(3.8,7"'+1) PA43.6,6)  3-8.8,1)

24 PA,3,8,7"15+1) PA,3,8.8)  3-(16,8,3)
25  PA((3.9,8"'+1) PA(3.9,9)  3-9.9,1)

O 00NN HEWN -

3. Groups and perpendicular arrays

Groups provide a powerful tool in the construction of perpendicular arrays. We
need some definitions.

Assume G is a permutation group acting on a v-set X so G has degree v and we
then write G | X. If S is a subset of X we denote by S¢ = {§%: g € G} the orbit of
S under G. The group action G | X is semiregular if the only element of G fixing
an element of X is the identity. This means that all orbits have length equal to
|G|, since in general we have |G| = |x“| |G,| where G, is the stabilizer in G of x.
The group G is said to be r-homogeneous if for any t-sets T,, T, of X, there is a
g € G such that (T;)* = T,. Now G is an avtomorphism group of a t-design (X, %)
if G acts on X and preserves %B. Also G is an automorphism group of a
perpendicular array A if G preserves the multiset of rows of A. We will let X be
the set of all i-subsets of X.

As noted in [18] if the permutations of a t-homogeneous group of degree v
form the rows of an array A, then A is a PA, (¢, v, v), where A =|G|/(?). This
perpendicular array has A =1 if the group is sharply i-homogeneous. Unfortu-
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nately, if £>5 there are no t-homogeneous groups other than the symmetric and
alternating groups. When t=4 or 5 there are only the Mathieu groups
My, My3, My2, My, and the groups PT'L,(32), PT'L,(8), PGLy(8) in their natural
representations. There are infinitely many r-homogeneous groups for 2<r=<3
(see [2]). From each of these groups correspending PA,(t, k, v)’s arise.

Without the assumption of s-homogeneity, groups are still useful in the direct
construction of PA’s and in the construction of tBD’s from which PA’s can be
constructed by means of Theorem 1.2. A general method for constructing r-wise
balanced designs admitting a particular group of automorphisms is described in
[10]. Very briefly, if G acts on X, then let A, be the matrix whose (i, j)th entry is
the number of members in the jth orbit of k-sets containing a fixed member of the
ith orbit of ¢-sets. A ¢-(v, K, 1) design with G as automorphism group then exists
iff there is a nonnegative integral solution U to the matrix equation A, U = AJ,
where A,k is the catenation of the matrices A, ,, for k € K, and J is the all 1’s
vector. Let B, , be the matrix whose (i, j)th entry is the number of members of
the ith orbit of z-sets contained in a fixed member of the jth orbit of k-sets. If
p(t)(p(k)) is the number of G-orbits on t-subsets (k-subsets) of X, then A, , and
B, « are p(t) X p(k) nonnegative integral matrices. Note that A, , has constant
row sums equal to (;Z}), and B, has constant column sums equal to (¥). The
matrices A,, and B, , are related as follows (see [12]): Let 7; be the ith orbit of
t-sets and K; the jth orbit of k-sets. Then a;; |T;| = b;; |K;|. The reader is referred
to [12] for a more extensive discussion of these matrices and related properties.

If (X, B) is a t-(v, k, A) design with automorphism group G, then & is the
union of certain G-orbits of k-sets. Let Ag, (Bz) be the submatrix of A, (B, ;)
with columns corresponding to the orbits of k-sets occurring in %. Note that Ag
has row sums equal to A, and By has column sums equal to (¥). We define a third
matrix ORg which relates directly to By. Let the orbit representatives (G-
starters) for % be By, . .., B,. For each B; let OB; be an ordered k-tuple whose
elements are the k elements in B;, The rows of ORgy are indexed by
OB,, ..., OB; and its (¥) columns are indexed by the t-subsets of {1,2,...,k}
arranged in a particular fixed order. If ORg = (r;;) has its ith row indexed by
(xy,...,x) and its jth column indexed by {j;,...,j,} then r,;=m if
{x,, . . ., x;} is in the mth orbit of ¢-sets. Note that there are (k!)" such OR’s for
this design (X, ). Observe that By can be computed from OR,; by setting the
(Z, j)th entry of By equal to the number of occurrences of orbit index i in jth row
of ORy. A direct consequence of this observation is the following theorem.

Theorem 3.1. Let (X, B) be a t-(v, k, A) design admitting an automorphism group
G which is semiregular on XU B. Ther each orbit index i of t-sets appears
exactly A times in ORy.
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Proof. G preserves X, and separately 9 but is semiregular on XU 3. Hence,
all orbits on t-sets and on % have the same length. Because a;, |T;| =b;; |K]| it
follows that Bz = Ag. Thus By has constant row sums equal to A. We now note
that the number of times that i appears in ORgy is ¥, By(i, j) = X; Ax(i, j) =
A O

The point of Theorem 3.1 is that the uniformity with which each orbit index i
occurs in ORg makes it conceivable (in licu of Theorem 2.1) that there exist
reorderings of the blocks B, ..., B; which would yield a corresponding OR
with the property that each of its columns has all orbit indices for ¢-sets appearing
the same number of times. If such & rearrangement of the blocks exists, then,
clearly, using the ordered blocks as starters under G we could develop a
perpendicular array. In any case we cleariy have the following.

automorphisms G which acts semiregularly on XU B. If there exists an ORy
where each integer i, 1 <i< p(t), appears A times in each column of ORy then
there is a PA,(t, k, v) with G as an automorphism group.

We illustrate this theorem by the following example.

Example of our procedure. For a PA(3,5, 11) to exist it necessarily requires
the existence of a 3~(11, 5, 10). Let G be the Frobenious group of order 55 acting
on a set X of cardinality 11. We generate G using (012345678910)
and (0X(13954)(267108). A 3-(11,5,10) exists using starting blocks
{{0,1,2,3,4},{0,1,2,3,5},{0,1,2,3,9}}. There are exactly 3 orbits of 3-sets
with representatives {0, 1,2}, {0,1,3} and {0, 1,5} each having length 55. An
OR that works is:

123 124 125 134 135 145 234 235 245 345
0,1,2,3,4) 1 2 2 3 1 3 1 2 3 1
0,2,10,1,49 2 1 1 1 3 2 3 3 2 2
0,3,5,2,4) 3 3 3 2 2 1 2 1 1 3

where 123 represents {1, 2,3}, etc. Clearly, we get a PA (3,5, 11) by letting G
act on the rows of the array:

01 2 3 4
02 101 4
03 5 2 4.

Thi. PA(3, 5, 11) is unique given this particular group.

Many perpendicular arrays used in the tBD-type construction were obtained by
a procedure similar to the preceeding example (see [11] for example). Also, it
should be noted that known automorphisms of a design or array can be used to
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provide an economical listing of the structure. In passing, we should mention the
following theorem.

Theorem 3.3. Let (X, RB) be a t-(v, t + 1, A) design where G acts semiregularly on
XOU B. With A, = A/(A, t + 1) there is a perpendicular array PA, (¢, t + 1, v) with
G as an automorphism group.

Proof. Let s be the number of orbits in 8. Choose some OR,; where column
Jy1<j=<t+1, is indexed by {1,...,r+1}\{j}. Construct a matrix A of size m
by (¢t +1), with m =s(t + 1)/(4, t + 1), by replicating each row of the OR(t +
1)/A, t +1) times. By Theorem 3.1 each i, 1=<i=p(t), appears exactly A(t +
1)/(4, t +1) times in A. By Theorem 2.1 we can transform A, via permutations
within the rows of A to a matrix A’ where each i, from 1 to p(r), appears exactly
A/(A,t+1) times in each column of A’. But these permutations are clearly
bijections between the rows of A and the k-tuples indexing the rows. Clearly
Theorem 3.2 applies and we have our result. O

Observe that if G is the identity group and (X, B) is a t-(v, k, A) design then
Theorem 3.3 yields Theorem 2.2.
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