Some perpendicular arrays for arbitrarily large t

Earl S. Kramer, Qiu-Rong Wu
Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0323, USA

Spyros S. Magliveras and Tran van Trung

Department of Computer Science, University of Nebraska, Lincoln, NE 68588-0115, USA
Received 6 January 1989
Revised 22 May 1990

Abstract

Kramer, E.S., Q.-R. Wu, S.S. Magliveras and T. van Trung. Some perpendicular arrays for arbitrarily large t, Discrete Mathematics 96 (1991) 101-110.

We show that perpendicular arrays exist for arbitrarily large t and with $\lambda=1$. in particular, if d divides $(t+1)$ then there is a $P_{1}(t, t+1, t+((t+1) / d))$. If $v \equiv 1$ or $2(\bmod 3)$ then there is a $\mathrm{PA}_{\boldsymbol{\lambda}}(3,4, v)$ for any λ. If $\mathbf{3}$ divides λ then there is a $\mathrm{PA}_{\boldsymbol{\lambda}}(3,4, v)$ for any \boldsymbol{v}. If $n \geqslant 2$ there is a $\mathrm{PA}_{1}\left(4,5,2^{n}+1\right)$. Using recursive constructions we exhibit several infinite families of perpendicular arrays with $t \geqslant 3$ and relatively small λ. We finally discuss methods of constructing perpendicular arrays based on automorphism groups. These methods allow the construction of PA's with $(k-t)>1$.

1. Introduction

A perpendicular array $\mathrm{PA}_{\lambda}(t, k, v)$ is a $\lambda\left(\begin{array}{l}\binom{2}{1}\end{array}\right)$ by k array, A, using the symbols from a v-set X, which has the properties: (i) every row of A contains k distinct symbols; and (ii) for any t columns of A and for any t-set T of X there are exactly λ rows of A that contain the symbols of T in the chosen t columns. Note that (ii) implies (i) when $t>1$. Also observe that (i) implies that $k \leqslant v$ in a perpendicular array. It is also immediate that a $\mathrm{PA}_{\lambda}(t, k, v)$ produces a $\mathrm{PA}_{\lambda}\left(t, k^{\prime}, v\right)$, for $k^{\prime} \leqslant k$, by simply removing columns.

Perpendicular arrays have recently been examined by several researchers (see [$7,11,13-15,18]$). Some of the results found in [11] will be obtained more efficiently in what follows.

Some necessary conditions for perpendicular arrays are provided in [11] by the following theorem.

Theorem 1.1. Suppose $0 \leqslant t^{\prime} \leqslant t$ and $\binom{k}{t} \geqslant\binom{ k}{c}$. Then a $\mathrm{PA}_{\lambda}(t, k, v)$ is also a

Thus, a $\mathrm{PA}_{1}(2,3, v)$ has v odd; a $\mathrm{PA}_{1}(3,4, v)$ has $v \equiv 1$ or $2(\bmod 3)$; and a $\mathrm{PA}_{1}(3,5, v)$ has $v \equiv 2(\bmod 3)$.
One of the standard techniques (see [11]) for constructing perpendicular arrays uses t-wise balanced designs. Let v and t be positive integers and let K be a subset of $\{t, \ldots, v-1\}$. A t-wise balanced design, with parameters t - (v, K, λ), sometimes also called a $t \mathrm{BD}$, is a pair (X, \mathscr{B}), where X is a v-set and \mathscr{B} is a collection of subsets (called blocks) of X, with sizes from K, such that any t-set from X is contained in precisely λ blocks of \mathscr{B}. If $K=\{k\}$ then our $t \mathrm{BD}$ is called a t-design with parameters $t-(v, k, \lambda)$.

Theorem 1.2 ($t \mathrm{BD}$ Construction). Suppose (X, \mathscr{B}) is a $t-(v, K, \lambda)$ such that for every n in K there exists a $\mathrm{PA}_{\lambda_{1}}(t, k, n)$. Then we can construct a $\mathrm{PA}_{\lambda_{1}}(t, k, v)$ by taking a $\mathrm{PA}_{\lambda_{1}}(t, k,|B|)$, on symbol set B, for every B in \mathscr{B}^{2}.

2. A matrix theorem

The following is a nice application of P. Hall's Theorem [3] which also provides a tool in constructing perpendicular arrays.

Theorem 2.1 (Kramer, Wu). Let A be a matrix with \boldsymbol{n} columns and integer entries from $S=\{1,2, \ldots, k\}$ where integer i appears exactly $n r_{i}, r_{i}$ an integer, times in A. By permuting the entries within each row we can transform A to a matrix in which each integer i appears r_{i} times in each column.

Proof. We apply subscripts to the occurrences of i in A where subscript j, for $1 \leqslant j \leqslant r_{i}$, will appear exactly n times as a subscript of i. In our new matrix, call it A^{\prime}, there will be exactly $m=\left(r_{1}+r_{2}+\cdots+r_{k}\right)$ distinct ?ntries. Note also that A^{\prime} has precisely m rows and that each of the m entries appeers n times in A^{\prime}. Let $S_{i}=\left\{a_{i, j^{\prime}}: 1 \leqslant j \leqslant n\right\}$ be the set of distinct elements that appear in row i of A^{\prime}. There may, of course, be repetition of elements in any given row of A or A^{\prime}. Now we claim that P. Hail's condition applies to the sets S_{1}, \ldots, S_{m}. For if the union of any t of these sets contained fewer than t elements it would clearly imply that some element appeared more than n times in the corresponding t by n submatrix of A^{\prime}. This obviously does not happen so we can select a system of distinct representatives for the m sets. We arrange these into the first column via appropriate permutations within each row of A^{\prime}. Clearly we can apply P. Hall's theorem to the remaining $n-1$ columns and produce a matrix B^{\prime} from A^{\prime} where each entry appears exactly once in each column of B^{\prime} and where B^{\prime} is obtained from A^{\prime} by permuting each row of A^{\prime}. By removing subscripts we get our result.

There are strong connections between t-designs and perpendicular arrays. Note, for example that any $\mathrm{P}_{\lambda_{\lambda}}(t, k, v)$ yiclds a $t-\left(v, k, \lambda\binom{k}{t}\right)$ design by taking as the i th block the set of elements in the i th row of the array. Coniverseiy, tine next result shows that a perpendicular array can be manufactured from any t-design where $k=t+1$.

Theorem 2.2. If there exists a $t-(v, t+1, \lambda)$ design then there is a $\mathbf{P A}_{\lambda_{1}}(t, t+1, v)$, where $\lambda_{1}=\lambda /(\lambda, t+1)$.

Proof. Repeat the blocks of the $t-(v, t+1, \lambda)$ design to produce a $t-(v, t+$ $\left.1, \lambda_{1}(t+1)\right)$ design (X, \mathscr{B}). Let $B=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ and let M be the matrix whose i th row contains B_{i}. Let the t-subsets of X be $\left\{T_{k}: 1 \leqslant k \leqslant\binom{\prime \prime}{i}\right\}$ and let N be the b by $(t+1)$ matrix whose (i, j) entry $n_{i j}=k$ if $B_{i} \backslash\left\{m_{i j}\right\}=T_{k}$. Clearly each $k, 1 \leqslant k \leqslant\binom{$ l }{$r}$, appears $\lambda_{1}(t+1)$ times in N. By Theorem 2.1 we can transform N, via permutations within each of the rows, into a matrix N^{\prime}, such that eact: s. mbol in N^{\prime} appears exactly λ_{1} times in each column of N^{\prime}. Performing the exact same permutations within each of the rows of M as on N produces a matrix M^{\prime} where M^{\prime} is clearly a $P_{\lambda_{1}}(t, t+1, v)$.

Note that the special case of $t=2, \lambda=3$ of Theorem 2.2 was proved in [7].
As an immediate application of Theorem 2.2 we can use some known t-designs to easily produce some families of perpendicular arrays (part (i) of the nest theorem was done in [17] but here we do it with ease).

Theorem 2.3. (i) For odd $v \geqslant 3$ and any λ there exists $a \mathrm{PA}_{\lambda}(2,3, v)$.
(ii) For all $v \geqslant 3$ and even $\lambda>0$ there exists $a \mathrm{PA}_{\lambda}(2,3, v)$.

Prosf. There exists a $2-(v, 3,3)$ design, see [3], for ail odd $v \geqslant 3$ and so there exists a $\mathrm{PA}_{1}(2,3, v)$ for such v^{\prime} s. Taking copies yields (i). Now there exists a $2-(v, 3,6)$ design for any $v \geqslant 3$, see $[3]$, so we get a $\mathrm{PA}_{2}(2,3, v)$ and (ii) is clear.

Theorem 2.4. (i) If $v \equiv 1,2(\bmod 3)$ there is $a \mathrm{PA}_{\lambda}(3,4, v)$ for any $\lambda>0$.
(ii) If $\lambda \equiv 0(\bmod 3)$ there is $a \mathrm{PA}_{\lambda}(3,4, v)$ for any v.

Proof. For any v not divisible by 3 there exists a 3- $(v, 4,4)$ design, see $[4]$, and (i) is clear. For any integer $v \geqslant 4$ there is a $3-(v, 4,12)$ design, see [5], and (ii) follows from Theorem 2.2. Note that part (ii) was first proved in [11], but here our proof is quick.

Theorem 2.5. For all $n \geqslant 2$ there exists a $\mathrm{PA}_{5}\left(5,6,2^{n}+2\right)$.
Proof. By [9] there is a $5-\left(2^{n}+2,6,15\right)$ design and applying Theorem 2 gives our result. This improves the result in [11].

Theorem 2.6. For all $n \geqslant 2$ there is a $\mathrm{PA}_{1}\left(4,5,2^{\prime \prime}+1\right)$.
Proof. In [8] Hubaut constructs $4-\left(2^{n}+1,5,5\right)$ designs for $n \geqslant 3$.
By using the trivial design $t-(v, t+1, v-t)$ the following result is immediate.
Theorem 2.7. For any t and v with $1 \leqslant t<v$ there is $\operatorname{PA}_{\lambda}(t, t+1, v)$ where $\lambda=(v-t) /(v-t, t+1)$.

Corollary 2.8. For any integer $t>0$ aisd any divisor d of $(t+1)$ there exists a perpendicuiar array $\mathrm{PA}_{1}(t, t+1, v)$ where $v=t+((t+1) / d)$.

The following result is uscful.
Theorem 2.9. If there is a $\mathrm{PA}_{\lambda}(t, v, v)$ which is also a $\mathrm{PA}_{\lambda_{t}, 1}(t-1, v, v)$ then there is $a \mathrm{PA}_{\lambda(v-t+1)}(t, v+1, v+1)$.

Proof. First note that $n_{t-1}=\lambda(v-t+1) / t$. Let A be our $\mathrm{PA}_{\lambda}(t, v, v)$ using symbols from a v-set X and let y not be in X. Let A^{\prime} be the new array obtained from A by replacing each row of A, say $a_{1} a_{2} \cdots a_{v}$, by the $(v+1)$ by $(v+1)$ matrix, which we later call a stack:

$$
\begin{array}{ccccc}
y & a_{1} & a_{2} & \cdots & a_{v} \\
a_{1} & y & a_{2} & \cdots & a_{v} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
a_{1} & a_{2} & a_{3} & \cdots & y
\end{array}
$$

Let T be a set of t elements from $X \cup\{y\}$. Select any t columns of A^{\prime}, which without loss of generality, we can take to be the first t columns of A^{\prime}. If T is a subset of X and T appears in the first t columns of a stack it will appear in the first t columns in exactly $(v+1-t)$ rows of that stack. But T will be in the first t columns in exactly λ of these stacks and hence in $\lambda(v+1-t)$ rows of A^{\prime}. Suppose y is in the t-set T. Easily, T will be in $t \lambda_{t-1}=\lambda(v-t+1)$ rows of A^{\prime} and our result is proved.

As an application of this result we get the following.
Theorem 2.10. If q is a prime power then there is a $\mathrm{PA}_{q-1}(2, q+1, q+1)$.
Proof. In [16] $\mathrm{PA}_{1}(2, q, q)$ are shown to exist for all prime powers q. Our result then follows by the previous theorem.

As we have already seen, Theorem 2.2 is one main method of constructing $\mathrm{PA}_{\lambda}(t, k, v)$. After a discussion with Stinson the following two theorems became evident.

Theorem 2.11. If there is a $\mathrm{PA}_{\lambda}(3, k, q+1), q$ a prime power, then there is a $\mathrm{PA}_{\lambda}\left(3, k, q^{n}+1\right) ; n \geqslant \mathrm{i}$.

Proof. In [19] it is shown that a 3-($\left.q^{n}+1, q+1,1\right)$ design exists for all $n \geqslant 1$. By Theorem 1.2 we get our resuif.

Corollary 2.12. There exists a $\mathrm{PA}_{30}\left(3,33,32^{n}+1\right)$ for all $n \geqslant 1$.

Proof. There exists a $\mathrm{PA}_{1}(33,32,32)$ [18]. Using Theorem 2.9 we obtain a $\operatorname{PA}_{30}(3,33,33)$ and so there exists a $\mathbf{P A}_{30}\left(3,33,32^{n}+1\right)$ by Theorem 2.11.

Theorem 2.13. For any integer $v \geqslant 5$ there is a $\mathrm{PA}_{30}(3,5, v)$.

Proof. Hanani [5] proves the existence of a 3-($v, 5,30)$ design for all $v \geqslant 5$ and since a $\mathrm{PA}_{1}(3,5,5)[16]$ exists we get our result.

Theorem 2.14 (Hanani (see [5])). If there exists a 3-($v+1, q+1, \lambda)$ design, q a prime power, then there exists a 3-(vqn $+1, q+1, \lambda)$ design for all $\boldsymbol{n} \geqslant 0$.

Theorem 2.15. For any $m \geqslant 0, n \geqslant 1$, there exists $a \operatorname{PA}_{3}\left(3,6,5^{m}\left(4^{n+1}-1\right) / 3\right)$.

Proof. By [1] there is a $3-\left(\left(4^{n+1}-1\right) / 3+1,6,1\right)$ design, $n \geqslant 1$, so by Theorem 2.14 there is $3-\left(5^{\prime \prime \prime}\left(4^{n+1}-1\right) / 3+1,6,1\right)$ design, $m \geqslant 0, n \geqslant 1$. Using the $\mathbf{P A}_{3}(3,6,6)[11]$ and Theorem 1.2 we get our result. Note that 3 -designs with the same parameters as in [1] can be obtained from a $3-(6,6,1)$ using the recursion: If there is a $3-(v+1,6,1)$ then there is a $3-(4 v+2,6,1)$ (see Hanani [5]).

Corollary 2.16. There exists a $\mathrm{PA}_{15}\left(3,32,31^{\prime \prime} 63+1\right)$ for all $n \geqslant 0$.

Proof. There exists a $3-(63+1,31+1,15)$ design (a Hadamard design). So we have a $3-\left(63.31^{n}+1,32,15\right)$ design for $n \geqslant 0$. By Theorem 1.2 we get the result from $\mathrm{PA}_{1}(3,32,32)$ [18].

As in the proof, we can construct families of $\mathrm{PA}_{\lambda}(t, k, v)$'s with $t=3$ from smaller perpendicular arrays and smaller 3-designs by Theorem 1.2 and Theorem 2.14. For example there exists a $\mathrm{PA}_{1}(3,5,5)$ [16] and $\mathrm{PA}_{1}(3,8,8$,$] [18]. Also, by$ Theorem 2.9 there exists a $\mathrm{PA}_{3}(3,6,6)$ and $\mathrm{PA}_{6}(3,9,9)$. Using these perpendicular arrays and the small 3-designs in [8] we can get many families of $\mathrm{PA}_{\lambda}(t, k, v)$ with $t=3$. We list some of these arrays in Table 1 for $t=3$; for $k=5,6,8$, or 9 ; for $n \geqslant 0$; and for $\lambda \leqslant 6$.

Table 1

No.	Family of PA's	Parameters of	
		Small PA used	Small 3-design
1	$\mathrm{PA}_{1}\left(3,5,4^{n+1}+1\right)$	PA $\mathbf{1}^{(3,5,5}$)	3-(5, 5, 1)
2	$\mathrm{PA}_{1}\left(3,5,4{ }^{\text {n }} 25+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-($26,5,1$)
3	$\mathrm{PA}_{2}\left(3,5,4{ }^{\text {n }} 31+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(32,5,2)
4	$\mathrm{PA}_{3}\left(3,5,4{ }^{\text {n }} 5+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-($21,5,3$)
5	$\mathrm{PA}_{3}\left(3,5,4{ }^{\text {n+1}} \mathbf{6}+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(25,5,3)
6	$\mathrm{PA}_{3}\left(3,5,4^{n} 9+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(10,5,3)
7	$\mathrm{PA}_{3}\left(3,5,4{ }^{\text {n }} 21+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(22,5,3)
8	$\mathrm{PA}_{3}\left(3,5,4{ }^{\text {n }} 29+1\right)$	PA $\mathbf{1}_{(3,5,5 \text {) }}$	3-(30,5,3)
9	$\mathrm{PA}_{4}\left(3,5,4{ }^{n} 10+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(11,5,4)
10	$\mathrm{PA}_{4}\left(3,5,4^{n} 19+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-($20,5,4$)
11	$\mathrm{PA}_{5}\left(3,5,4^{\boldsymbol{n}} 13+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(14,5,5)
12	$\mathrm{PA}_{5}\left(3,5,4^{\mathbf{n + 1}} 7+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-($29,5,5$)
13	$\mathrm{PA}_{6}\left(3,5,4^{n} 10+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(11,5,6)
14	$\mathrm{PA}_{6}\left(3,5,4^{n} 11+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(12,5,6)
15	$\mathrm{PA}_{6}\left(3,5,4^{n} 14+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(15,5,6)
16	$\mathrm{PA}_{6}\left(3,5,4^{n} 15+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(16,5,6)
17	$\mathrm{PA}_{6}\left(3,5,4^{n} 19+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(20,5,6)
18	$\mathrm{PA}_{6}\left(3,5,4^{n} 26+1\right)$	$\mathrm{PA}_{1}(3,5,5)$	3-(27,5,6)
19	$\mathrm{PA}_{6}\left(3,5,4{ }^{n} 30+1\right)$	PA $\mathbf{P}_{1}(3,5,5)$	3-(31, 5, 6)
20	$\mathrm{PA}_{3}\left(3,6,5^{n+1}+1\right)$	$\mathrm{PA}_{3}(3,6,6)$	3-(6, 6, 1)
21	$\mathrm{PA}_{3}\left(3,6,5{ }^{\text {n }} 21+1\right)$	$\mathrm{PA}_{3}(3,6,6)$	3-(22, 6, 1)
22	$\mathrm{PA}_{6}\left(3,6,5^{n} 11+1\right)$	$\mathrm{PA}_{3}(3,6,6)$	3-(12, 6, 2)
23	$\mathrm{PA}_{1}\left(3,8,7^{\mathbf{n + 1}}+1\right)$	$\mathrm{PA}_{3}(3,6,6)$	3-(8,8,1)
24	$\mathrm{PA}_{3}\left(3,8,7^{\boldsymbol{n}} 15+1\right)$	$\mathrm{PA}_{1}(3,8,8)$	3-(16, 8, 3)
25	$\mathrm{PA}_{6}\left(3,9,8^{n+1}+1\right)$	$\mathrm{PA}_{6}(3,9,9)$	3-(9, 9, 1)

3. Groups and perpendicular arrays

Groups provide a powerful tool in the construction of perpendicular arrays. We need some definitions.

Assume G is a permutation group acting on a v-set X so G has degree v and we then write $G \mid X$. If S is a subset of X we denote by $S^{G}=\left\{S^{g}: g \in G\right\}$ the orbit of S under G. The group action $G \mid X$ is semiregular if the only element of G fixing an element of X is the identity. This means that all orbits have length equal to $|G|$, since in general we have $|G|=\left|x^{G}\right|\left|G_{x}\right|$ where G_{x} is the stabilizer in G of x. The group G is said to be t-homogeneous if for any t-sets T_{1}, T_{2} of X, there is a $g \in G$ such that $\left(T_{1}\right)^{g}=T_{2}$. Now G is an automorphism group of a t-design (X, \mathscr{B}) if G acts on X and preserves \mathscr{B}. Also G is an automorphism group of a perpendicular array A if G preserves the multiset of rows of A. We will let $X^{(i)}$ be the set of all i-subsets of X.

As noted in [18] if the permutations of a t-homogeneous group of degree v form the rows of an array A, then A is a $P_{\lambda}(t, v, v)$, where $\lambda=|G| /\binom{v}{r}$. This perpendicular array has $\lambda=1$ if the group is sharply t-homogeneous. Unfortu-
nately, if $t>5$ there are no t-homogeneous groups other than the symmetric and alternating groups. When $t=4$ or 5 there are only the Mathieu groups $M_{24}, M_{23}, M_{12}, M_{11}$ and the groups $\mathrm{P}_{2}(32), \mathrm{P}_{2}(8), \mathrm{PGL}_{2}(8)$ in their natural representations. There are infinitely many t-homogeneous groups for $2 \leqslant t \leqslant 3$ (see [2]). From each of these groups corresponding $\mathrm{PA}_{\lambda}(t, k, v)$'s arise.

Without the assumption of \boldsymbol{t}-homogeneity, groups are still useful in the direct construction of PA's and in the construction of t BD's from which PA's can be constructed by means of Theorem 1.2. A general method for constructing t-wise balanced designs admitting a particular group of automorphisms is described in [10]. Very briefly, if G acts on X, then let $A_{t, k}$ be the matrix whose (i, j)th entry is the number of members in the j th orbit of k-sets containing a fixed member of the i th orbit of t-sets. A \boldsymbol{t} - $\boldsymbol{v}, K, \lambda)$ design with G as automorphism group then exists iff there is a nonnegative integral solution U to the matrix equation $A_{t, K} U=\lambda J$, where $A_{t, K}$ is the catenation of the matrices $A_{t, k}$, for $k \in K$, and J is the all 1 's vector. Let $B_{t, k}$ be the matrix whose (i, j)th entry is the number of members of the i th orbit of \boldsymbol{t}-sets contained in a fixed member of the j th orbit of k-sets. If $\rho(t)(\rho(k))$ is the number of G-orbits on t-subsets (k-subsets) of X, then $A_{t, k}$ and $B_{t, k}$ are $\rho(t) \times \rho(k)$ nonnegative integral matrices. Note that $A_{t, k}$ has constant row sums equal to $\binom{v-t}{k-t}$, and $B_{t, k}$ has constant column sums equal to $\binom{k}{t}$. The matrices $A_{t, k}$ and $B_{t, k}$ are related as follows (see [12]): Let T_{i} be the i th orbit of t-sets and K_{j} the j th orbit of k-sets. Then $a_{i, j}\left|T_{i}\right|=b_{i, j}\left|K_{j}\right|$. The reader is referred to [12] for a more extensive discussion of these matrices and related properties.

If (X, \mathscr{B}) is a $t-(v, k, \lambda)$ design with automorphism group G, then \mathscr{B} is the union of certain G-orbits of k-sets. Let $A_{\mathscr{B}},\left(B_{\mathscr{B}}\right)$ be the submatrix of $A_{t, k}\left(B_{t, k}\right)$ with columns corresponding to the orbits of k-sets occurring in \mathscr{B}. Note that $\boldsymbol{A}_{\mathscr{B}}$ has row sums equal to λ, and $B_{\mathscr{B}}$ has column sums equal to $\binom{k}{t}$. We define a third matrix $\mathrm{OR}_{\mathscr{B}}$ which relates directly to $B_{\mathscr{B}}$. Let the orbit representatives (G starters) for \mathscr{B} be B_{1}, \ldots, B_{s}. For each B_{i} let OB_{i} be an ordered k-tuple whose elements are the k elements in B_{i}. The rows of $\mathrm{OR}_{\mathscr{B}}$ are indexed by $\mathrm{OB}_{1}, \ldots, \mathrm{OB}_{s}$ and its $\binom{k}{t}$ columns are indexed by the t-subsets of $\{1,2, \ldots, k\}$ arranged in a particular fixed order. If $\mathrm{OR}_{\mathscr{G}}=\left(r_{i, j}\right)$ has its i th row indexed by $\left(x_{1}, \ldots, x_{k}\right)$ and its j th column indexed by $\left\{j_{1}, \ldots, j_{t}\right\}$ then $r_{i, j}=m$ if $\left\{x_{j_{1}}, \ldots, x_{j_{i}}\right\}$ is in the m th orbit of t-sets. Note that there are (k ! $)^{s}$ such OR $_{\mathscr{S H}_{\beta}}$'s for this design (X, \mathscr{B}). Observe that $B_{\mathscr{B}}$ can be computed from $\mathrm{OR}_{\mathscr{y}}$ by setting the (i, j) th entry of $B_{\mathscr{B}}$ equal to the number of occurrences of orbit index i in j th row of $\mathrm{OR}_{\mathscr{B}}$. A direct consequence of this observation is the following theorem.

Theorem 3.1. Let (X, \mathscr{B}) be a $t-(v, k, \lambda)$ design admitting an automorphism group G which is semiregular on $X^{(t)} \cup \mathscr{B}$. Then each orbit index i of t-sets appears exactly λ times in $\mathrm{OR}_{\mathscr{B}}$.

Proof. G preserves $X^{(t)}$, and separately \mathscr{B} but is semiregular on $X^{(t)} \cup \mathscr{B}$. Hence, all orbits on t-sets and on \mathscr{B} have the same length. Because $a_{i, j}\left|T_{i}\right|=b_{i, j}\left|K_{j}\right|$ it follows that $B_{\mathscr{B}}=A_{\mathscr{g}}$. Thus $B_{\mathscr{B}}$ has constant row sums equal to λ. We now note that the number of times that i appears in OR_{90} is $\sum_{j} B_{y s}(i, j)=\sum_{j} A_{98}(i, j)=$ λ.

The point of Theorem 3.1 is that the uniformity with which each orbit index i occurs in $\mathrm{OR}_{\mathscr{G}}$ makes it conceivable (in lieu of Theorem 2.1) that there exist reorderings of the blocks B_{1}, \ldots, B_{s} which would yield a corresponding $\mathbf{O R}_{9}$ with the property that each of its columns has all orbit indices for t-sets appearing the same number of times. If such a rearrangement of the blocks exists, then, clearly, using the ordered blocks as starters under G we could develop a perpendicular array. In any case we cleariy have the following.

Theorem 3.2. Lei (X, \mathscr{B}) be a $t-\left(v, k, \lambda\binom{k}{k}\right)$ design admitting a group of automorphisms G which acts semiregularly on $X^{(t)} \cup \mathscr{B}$. If there exists an $\mathbf{O R}_{S_{B}}$ where each integer $i, 1 \leqslant i \leqslant g(t)$, appears λ times in each column of $\mathrm{OR}_{\mathscr{B}}$ then there is a $\mathrm{PA}_{\lambda}(t, k, v)$ with G as an automorphism group.

We illustrate this theorem by the following example.
Example of our procedure. For a $\mathrm{PA}_{1}(3,5,11)$ to exist it necessarily requires the existence of a $3-(11,5,10)$. Let G be the Frobenious group of order 55 acting on a set X of cardinality 11. We generate G using (012345678910) and (0$)(13954)(267108)$. A $3-(11,5,10)$ exists using starting blocks $\{\{0,1,2,3,4\},\{0,1,2,3,5\},\{0,1,2,3,9\}\}$. There are exactly 3 orbits of 3 -sets with representatives $\{0,1,2\},\{0,1,3\}$ and $\{0,1,5\}$ each having length 55 . An $\mathrm{OR}_{\mathscr{B}}$ that works is:

	123	124	125	134	135	145	234	235	245	345
$(0,1,2,3,4)$	1	2	2	3	1	3	1	2	3	1
$(0,2,10,1,4)$	2	1	1	1	3	2	3	3	2	2
$(0,3,5,2,4)$	3	3	3	2	2	1	2	1	1	3

where 123 represents $\{1,2,3\}$, etc. Clearly, we get a $\mathrm{PA}_{1}(3,5,11)$ by letting G act on the rows of the array:

0	1	2	3	4
0	2	10	1	4
0	3	5	2	4.

Thi $\mathrm{PA}_{1}(3,5,11)$ is unique given this particular group.
Many perpendicular arrays used in the t BD-type construction were obtained by a procedure similar to the preceeding example (see [11] for example). Also, it should be noted that known automorphisms of a design or array can be used to
provide an economical listing of the structure. In passing, we should mention the following theorem.

> Theorem 3.3. Let (X, \mathscr{B}) be a $t-(v, t+1, \lambda)$ design where G acts semiregularly on $X^{(t)} \cup \mathscr{B}$. With $\lambda_{1}=\lambda /(\lambda, t+1)$ there is a perpendicular array $\mathrm{PA}_{\lambda_{1}}(t, t+1, v)$ with G as an automorphism group.

Proof. Let s be the number of orbits in \mathscr{B}. Choose some OR $_{\mathscr{B}}$ where column $j, 1 \leqslant j \leqslant t+1$, is indexed by $\{1, \ldots, t+1\} \backslash\{j\}$. Construct a matrix A of size m by $(t+1)$, with $m=s(t+1) /(\lambda, t+1)$, by replicating each row of the $\mathrm{OR}_{88}(t+$ 1) $/ \lambda, t+1$) times. By Theorem 3.1 each $i, 1 \leqslant i \leqslant \rho(t)$, appears exactly $\lambda(t+$ 1) $/(\lambda, t+1)$ times in A. By Theorem 2.1 we can transform A, via permutations within the rows of A to a matrix A^{\prime} where each i, from 1 to $\rho(t)$, appears exactly $\lambda /(\lambda, t+1)$ times in each column of A^{\prime}. But these permutations are clearly bijections between the rows of A and the k-tuples indexing the rows. Clearly Theorem 3.2 applies and we have our result.

Observe that if G is the identity group and (X, \mathscr{B}) is a $t-(v, k, \lambda)$ design then Theorem 3.3 yields Theorem 2.2.

References

[1] E.F. Assmus and J.D. Key, On an infinite class of Steiner systems with $t=3$ and $k=6 \mathrm{~J}$. Combin. Theory Ser. A 42 (1986) 55-60.
[2] Th. Beth, D. Jungnickel and H. Lenz, Design Theory (Cambridge Univ. Press, Cambridge, 1986).
[3] M. Hall, Combinatorial Theory (Wiley, New York, 1986).
[4] H. Hanani, On some tactical configurations, Canad. J. Math. 15 (1963) 702-722.
[5] H. Hanani, A class of three-designs, J. Combin. Theory Ser. A 26 (1979) 1-19.
[6] H. Hanani, A. Hartman and E.S. Kramer, On three-designs of small order, Discrete Math. 45 (1983) 74-97.
[7] D.G. Hoffman and C.A. Rodger, Embedding partial perpendicular arrays, Congr. Numer. 44 (1984) 155-159.
[8] X. Hubaut, Two new families of 4-designs, Discrete Math. 9 (1974) 247-249.
[9] D. Jungnickel and S.A. Vanstone, Hyperfactorization of graphs and 5-designs, J. Univ. Kuwait Sci. 14 (1987) 213-223.
[10] E.S. Kramer, Some results on t-wise balanced designs, Ars Combin. 15 (1983) 179-192.
[11] E.S. Kramer, D.L. Kreher, R. Rees and D.R. Stinson, On perpendicular arrays with $t \geqslant 3$. Ars Combin 28 (1989) 215-223.
[12] E.S. Kramer, D.W. Leavitt and S.S. Magliveras, Construction procedures for \boldsymbol{t}-designs and the existence of new simple 6-designs, Ann. Discrete Math. 26 (North-Holland. Amsterdam. 1985) 247-274.
[13] C.C. Lindner and D.R. Stinson, The spectrum for the conjugate invariant subgroups of perpendicular arrays, Ars Combin. 18 (1984) 51-60.
[14] C.C. Lindner, R.C. Mullin and G.H.J. van Rees, Separable orthogonal arrays, Utuitas Math. 31 (1987) 25-32.
[15] R.C. Mullin, P.J. Schellenberg, G.H.J. van Rees and S.A. V/anstone, On the construction of perpendicular arrays, Utilitas Math. 18 (1980) 141-160.
[16] C.R. Rao, Combinatorial arrangements analogous to orthogonal arrays, Sankhyā Ser. A 23 (1961) 283-286.
[17] A. Sade, Produit direct-singulier de quasigroupes orthogonaux et antiabelians, Ann. Soc. Sci. Bruxelles Sér. I 74 (1960) 91-99.
[18] D.R. Stinson and L. Teirlinck, A construction for authentication/secrecy codes from 3homogeneous permutation groups, European J. Combin. 11 (1990) 73-79.
[19] E. Witt, Uber Steinersche systeme, Abh. Math. Sem. Univ. Hamburg 12 (1938) 265-275.

