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meorern 1.1. Suppose 0~ t’ d t and (5) 2 (:). Then a PA&, k, v) is also a 
PA,.@‘, k, v), where A’ = A(:‘$ )/(i). Hence A(:‘:::) =O mod (:*). 

Thus, a PA@, 3, v) has v odd; a PA,(3,4, U) has v = 1 or 2 (mod 3); and a 
PA,(3,5, v) has v = 2 (mod 3). 

One of the standard techniques (see [I 11) for constructing perpendicular arrays 
uses t-wise balanced designs. Let v and t be positive integers and let K be a subset 

of (t, . . . , v - 11. A t-wise balanced design, with parameters t-(v, K, A), 
sometimes also called a rBD, is a pair (X, a), where X is a v-set and 9? is a 
collection of subsets (called blocks) of X, with sizes from K, such that any t-set 
from X is contained in precisely A blocks of 9. If K = {k} then our rBD is called 
a t-design with parameters r-(v, k, A). 

Theorem 1.2 (tBD Construction). Suppose (X, 9) is a r-(v, K, A) such that for 
every n in K there exists a PA&, k, n). Then we can construct a PA&, k, v) by 
taking a PA& k, IBj), on symbol set B, for every B in 54. 

2. A ma&Ix theorem 

The following is a nice application of P. Hall’s Theorem [3] which also provides 
a tool in constructing perpendicular arrays. 

Theorem 2.1 (Kramer, Wu). Let A be a matrix with n columns and integer entries 
from S = (1,2, . . . , k ) where integer i appears exactly no, ri an integer, times in 
A. By permuting the entries within each row we can transform A to a matrix in 
which each integer i appears ri times in each column. 

Proof. We apply subscripts to the occurrences of i in A where subscript j, for 
1 <j s 4, will appear exactly n times as a subscript qf i. In our new matrix, call it 
A’, there will be exactly m = (r, + r2 + - = l + t;~) distinct .-ntries. Note also that A’ 
has precisely m rows and that each of the m entries appears n times in A’. Let 
Si = (ai,j*: 1 c j G n} be the set of distinct elements that appear in row i of A’. 
There may, of course, be repetition of elements in any given row of A or A’. Now 
we claim that P. Hall’s condition applies to the sets S,, . . . , Sm. For if the union 
of any t of these sets contained fewer than t elements it would clearly imply that 
some element appeared more than n times in the corresponding t by n submatrix 
of A’. This obviously does not happen so we can select a system of distinct 
representatives for the m sets. We arrange these into the first column via 
appropriate permutations within each row of A’, Clearly we can apply P. Hall’s 
theorem to the remaining n - 1 columns and produce a matrix B’ from A’ where 
each entry appears exactly once in each column of B’ and where B’ is obtained 
from A’ by permuting each row of A’. By removing subscripts we get our 
result. iJ 
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connections between f-designs and perpendicular arrays. No!e. 
any FE&, k, u) yields a I-@, k. II(f)) design by taking as hhe 
of elements in the ith row of the _- ---- dl i-d)‘. thwmeiy . ihe m!li 4 

a perpendicular array can be manufactured from any t-design 

There are strong 
for example that 
ith block the set 
result shows that 
where k = t + 1. 

, 

eorem 2.2. If there exisfs a f-(u, f + 1, A) design then there is a PA,,& t -I- 1, v), 
where A, = A/(& t + 1). 

Proof. Repeat the blocks of the f-(u, t + 1, A) design to produce a t-(u. f + 
1, &(t + 1)) design (X, 3). Let B = {Br, &, . . . , B,) and let M be the matrix 
whose ith row contains Bi. Let the f-subsets of X be { Tk: I s k s ( y)} and let N 
be the b by (I + 1) matrix whose (i, j) entry lrii = k if Bi\ {m,,) = &.. Clearly each 
k, 1 =S k 6 (y), appears n,(f + 1) times in N. By Theorem 2.1 we can transform N, 
via permutations within each of the rows, into a matrix N’, such that ea& s:,mbol 
in N’ appears exactly d, times in each column of N’. Performing the exact same 
permutations within each of the rows of M as on N produces a matrix M’ where 

M’ is clearly a PA& f + 1, u). Cl 

Note that the special case of t = 2, ib = 3 of Theorem 2.2 was proved in [7]. 
As an immediate application of Theorem 2.2 we can use some known f-designs 

to easily produce some families of perpendicular arrays (part (i) of this neit 
theorem was done in [17] but here we do it with ease). 

Theorem 2.3. (i) Fm odd u > 3 and any A there exists a PAA(2, 3, u). 
(ii) For all u 2 3 and even A > 0 there exists a PAJ2, 3, u). 

Proapf. There exists a 2-(u, 3, 3) design, see [3], for aill odd u 2 3 and so there 
exists a PA,(2,3, u) for such u’s. Taking copies yields (i). Now there exists a 
2-(u, 3,6) design for any u 2 3, see [3], so we get a PA2(2, 3, u) and (ii) is 

clear. 0 

Theorem 2.4,) (i) If u = 1, 2 (mod 3) there is a PAA(3, 4, u) for any A > 0. 
(ii) If A = 0 (mod 3) there is a PAJ3,4, u) fur any u. 

Proof. For any u not divisible by 3 there exists a 3-(u, 4, 4) design, see i4], and 
(i) is clear. For any integer 1v 24 there is a 3-(u, 4, 12) design, see [S], and (ii) 
fohows from Theorem 2.2. Note that part (ii) was first proved in ]ll], but here 
our proof is quick. 0 

Theorem 2.5. For all n 2 2 there exists a PA& 6-2” + 2). 

proof. By [9] there is a 5-(2” + 2,6, 15) design and applying Theorem 2 gives our 
result. This improves the result in [ 111. Cl 
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eorem 2.6. For all n 2 2 there is a PA,(4,5,2” + 1). 

Proof. In [S] Hubaut constructs 4-(2” + 1, 5, 5) designs for IZ z 3. 0 

By using the trivial design t-(v, t + 1, u - t) the following result is immediate. 

Theorem 2.7. For any t and v with 1 6 t < v there is PA&, t + 1, v) where 

A = (v - t)/(v - t, t + 1). 

Corollary 2.8. For any integer t > 0 u;?d any divisor d of (t + 1) there exists a 
perpendicuiar array PA,(t, t + 1, V) where u = t + ((t + 1)/d). 

The following result is useful. 

Theorem 2.9. If there is a PA&, v, V) which is also a PAA, ,(t - 1, U, U) then 
there is a PAA(r,_-t+l)(f, u + 1, u + 1). 

Proof. First note that It,_, = A@ - r + 1)/t. Let A be our PA&, u, u) using 
symbols from a u-set X and let y not be in X. Let A’ be the new array obtained 
from A by replacing each row of A, say ala2 - - - a,,, by the (V + 1) by (V + 1) 
matrix, which we later call a stack: 

y a1 a2 l -• a,, 

a, y a2 ... 4, 
. . . . . . . 

a, a2 a3 - - l y. 

Let T be a set of t elements from X U { y ). Select any t columns of A’, which 
without loss of generality, we can take to be the first c columns of A’. If T is a 
subset of X and T appears in the first t columns of a stack it will appear in the first 
t columns in exactly (U + 1 - t) rows of that stack. But T will be in the first t 

columns in exactly A of these stacks and hence in A(v + 1 - t) rows of A’. 
Suppose y is in the t-set T. Easily, T will be in til,_, = A(v - t + 1) rows of A’ and 
our result is proved. 0 

As an application of this result we get the following. 

Theorem 2.10. If q is a prime power then there is a PA,_ ,(2, q + 1, q + 1). 

Proof. In [ 161 P&(2, q, q) are shown to exist for all prime powers q. Our result 
then follows by the previous theorem. Cl 

As we have already seen, Theorem 2.2 is one main method of constructing 
PA&, k, a~). After a discussion with Stinson the following two theorems became 
evident. 
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Theorem 2.11. If there is a P&(3, k, q + l), q a prime powt~, then there is a 
PAA(3, k, q” i- 1): n 2 i. 

roof. In [19] it is shown that a 3-(q” + 1, q + 1, 1) design exists for al! IZ > 1. By 

heorem 1.2 we get our resuit. •l 

orollary 2.12. There exists a PA,,,(3,33,32” + 1) for all n 2 1. 

Proof. There exists a PA,(33,32,32) [18]. Using Theorem 2.9 we obtain a 

PA,,(3,33,33) d an so there exists a PA,,,(3,33,32” + 1) by Tineorem 2.11. 0 

Theorem 2.13. For any integer IJ 2 5 there is a PA,,,(3,5, v). 

Proof. Hanani [5] proves the existence of a 3-( u, 5, 30) design for all 2’ 2 5 and 
since a PA1(3,5,5) [16] exists we get our result. Cl 

Theorem 2.14 (Hanani (see [5))). If there exists a 3-( u + 1, q + 1, A) design, q a 

prime power, then there exists a 3-( uq” + 1, q + 1, A) design for all n 3 0. 

Theorem 2.15. For any m LO, n 2 1, there exists a PA3(3, 6, Y(4”” - 1)/3). 

Proof. By [l] there is a 3-((4”+’ - 1 j/S + 1, 6, 1) design, n 3 1, so by Theorem 
2.14 there is 3-(5”‘(4”+’ - 1)/3 + 1, 6, 1) design, m 2 0 n 3 1. Using the 
PA,(3,6,6) [ 11) and Theorem 1.2 we get our result. Note that 3-designs with the 
same parameters as in [l] can be obtained from a 3-(6.6.1) using the recursion: If 
there is a 3-(u + 1, 6, 1) then there is a 3-(4~ + 2, 6, 1) (see Hanani [S]). Cl 

Ccrrollary 2.16. There exists a PAIs(3, 32,31”63 + 1) for alf n 2 0. 

Proof. There exists a 3-(63 + 1,31+ 1,lSj design (a Hadamard design). So we 
have a 3-(63.31” + 1, 32, 15) design for n b 0. By Theorem 1.2 we get the result 

from PA,(3,32,32) [IS]. Cl 

As in the proof, we can construct families of PA&, k, v)‘s with t = 3 from 
smaller perpendicular arrays and smaller 3-designs by Theorem 1.2 and Theorem 
2.14. For example there exists a PA,(3,5,5) [ 161 and PA1(3, 8.8,] [ 181. Also, by 
Theorem 2.9 there exists a PA3(3, 6,6) and PA,(3,9,9). Using these perpendicu- 
lar arrays and the small 3-designs in [S] we can get many families of PA&, k. 1~) 
with t = 3. We list some of these arrays in Table 1 for t = 3; for k = 5,6,8, or 9; 
for n 20; and for As6. 
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Table 1 

Parameters of 

No. Family of PA’s Small PA used Small 3-design 

1 PA,(3,5,4”+’ + 1) 
2 PA,(3,5,4”25 + 1) 
3 PA2(3, 5,4”31+ 1) 
4 PA,(3,5,4”5 + 1) 
5 PAJ(3, 5,4”+ ‘6 =t 1) 
6 PA,(3,5,4”9 + 1) 
7 PA,(3,5,4”21 =t 1) 
8 PA,(3,5,4”29 + 1) 
9 PA,(3,5,4”10 + 1) 

10 PA,(3,5,4” 19 + 1) 
11 PAs(3, 5,4” 13 + 1) 
12 PA,(3,5,4”+‘7 + 1) 
13 P&(3,5,4” 10 + 1) 
14 PA,(3,5,4”11+ 1) 
15 P&(3,5,4” 14 + 1) 
16 P&(3,5,4”15 + 1) 
17 PAJ3,5,4” 19 + 1) 
18 PA,(3,5,4”26 + 1) 
19 P&(3,5,4”30 + 1) 
20 PA,(3,6.5”*’ + 1) 
21 PAj(3, 6,5”21+ 1) 
22 PA,(3,6,5”11+ 1) 
23 PA,(3,8,7”+’ + 1) 
24 PA,(3,8,7”15 + 1) 
25 PA,(3,9,8”+’ + 1) 

PA,(3,5,5 j 
PA,(3,5,5) 
P&(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,5,5) 
PA,(3,6,6) 
P43(3,6,6) 
PA,(3,6,6) 
PA,(3,6,6) 
PA,(3,8,8> 
PA,(3,9,9) 

3-(5,531) 
3-(26,5,1) 
3-(32,5,2) 
3-(21,5,3) 
3-(25,5,3) 
3-( 10,5,3) 
3-(22,5,3) 
3-(30,5,3) 
3-(11,5,4) 
3-(20,5,4) 
3-( 14,5,5) 
3-(29,5,5) 
3-(11,5,6) 
3-( 12,5,6) 
3-( 15,5,6) 
3-(16,5,6) 
3-(20,5,6) 
3-(27,5,6) 
3-(31,5,6) 
3-(6,671) 
3-(22,6,1) 
3-( 12,6,2) 
3-j& 8-l) 
3-( 16,8,3) 
3-(9,9,1) 

3. Groups and perpendicular arrays 

Groups provide a powerful tool in the construction of perpendicular arrays. We 
need some definitions. 

Assume G is a permutation group acting on a v-set X so G has degree v and we 
then write G 1 X. If S is a subset of X we denote by SC = {F: g E G} the orbit of 
S under G. The group action G 1 X is semiregular if the only element of G fixing 
an element of X is the identity. This means that all orbits have length equal to 
ICI, since in general we have ISI = ]xcl lGxl where Gx is the stabilizer in G of x. 
The group G is said to be t-homogeneous if for any t-sets T1, T2 of X, there is a 
g E G such that (T# = &. Now G is an automorphism group of a t-design (X, 9) 
if G acts on X and preserves 53. Also G is an automorphism group of a 
perpendicular array A if G preserves the multiset of rows of A. We will let Xti) be 
the set of all i-subsets of X. 

As noted in [18] if the permutations of a t-homogeneous group of degree v 
form the rows oT an array A, then A ic; a P&(1’, v, II), -*here 3, = ICI/(y). This 
perpendicular array has L = 1 if the group is sharply l-homogeneous. Unfortu- 
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nately, if t > 5 there are no 
alternating groups. *pTtihen 

MS, &, Kz, Ml1 and the 
representations. There are 

, t-homogeneous groups other than the symmetric and 
t = 4 or 5 there are only the Mathieu groups 

groups P&(32), PTL(8), PGb(8) in their natural 
infinitely many t-homogeneous groups for 2 6 t G 3 

(see [2]). From each of these groups corresponding PA,(t, k, U)‘S arise. 

Without the assumption of t-homogeneity, groups are still useful in the direct 
construction of PA’s and in the construction of tBD’s from which PA’s can be 
constructed by means of Theorem 1.2. A general method for constructing t-wise 
balanced designs admitting a particular group of automorphisms is described in 
[lo]. Very briefly, if G acts on X, then let Al,k be the matrix whose (i, j)th entry is 
the number of members in the jth orbit of k-sets containing a fixed member of the 
ith orbit of t-sets. A t-(v, K, A) design with G as automorphism group then exists 
iff there is a nonnegative integral solution U to the matrix equation A& = J.f, 
where AI,K is the catenation of the matrices At,k, for k E K, and J is the all l’s 
vector. Let Bl,k be the matrix whose (i, j)th entry is the number of members of 
the ith orbit of t-sets contained in a fixed member of the jth orbit of k-sets. If 
p(t)@(k)) is the number of G-orbits on t-subsets (k-subsets) of X, then Al,k and 

B&k are p(t) x P(k) nonnegative integral matrices. Note that Ar,k has constant 
row sums equal t0 (i I:), and Br,k has constant column sums equal to (t ). The 
matrices AI,k and B,,k are related as follows (see [12]): Let T be the ith orbit of 
t-sets and Ki the jth orbit of k-sets. Then ai,j 1 KI;:I = bi,j IKjl. The reader is referred 
to [12] for a more extensive discussion of these matrices and related properties. 

If (X, 93) is a t-(v, k, A) design with automorphism group G, then 59 is the 
union of certain G-orbits of k-sets. Let Aye, (B& be the submatrix of A,,k(B,,k) 
with columns corresponding to the orbits of k-sets occurring in 3. Note that A9 
has row sums equal to i3, and Bya has column sums equal to (3). We define a third 
matrix OR9 which relates directly to Bys. Let the orbit representatives (G- 
starters) for % be B1, . . . , B,. For each Bi let OBi be an ordered k-tuple whose 
elements are the k elements in Bi. The rows of OR9 are indexed by 

OB1,. . . , OB, and its (f) columns are indexed by the t-subsets of { 1,2, . . . , k} 
arranged in a particular fixed order. If ORys = (ri,j) has its ith row indexed by 

( Xl,-*-, xk) and its jth column indexed by {jl, . . . , j,} then ri,j = m if 

( Xj,, m a l 9 xj,} is in the mth orbit of t-sets. Note that there are (k!)” such O&‘S for 
this design (X, 93). Observe that B3 can be computed from OR% by setting the 
(i, j)th entry of BS equal to the number of occurrences of orbit index i in jth row 
of ORa. A direct consequence of this observation is the following theorem. 

Theorem 3.1. Let (X, 9) be a t-(u, k, 11) design admitting an automorphi=n group 

~5 which is semiregular on X(l) U 9. Ther; each orbit index i of t-sets appears 

exactly il times in OR*. 
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Proof. G preserves X(? and separately 3 but is semiregular on X(‘) U 9. Hence, 
all orbits on t-sets and on 9 have the same length. Because ai,j 1 ?;-I = bi,j IKjl it 

follows that BB = As. Thus Ba has constant row sums equal to il. We now note 
that the number of times that i appears in OR* is & B*(i, j) = Cj A&i, j) = 
A. El 

The point of Theorem 3.1 is that the uniformity with which each orbit index i 
occurs in ORa makes it conceivable (in lieu of Theorem 2.1) that there exist 
reorderings of the blocks B, , . . . , B, which would yield a corresponding OR* 
with the property that each of its columns has all orbit indices for t-sets appearing 
the same number of times. If such a rearrangement of the blocks exists, then, 
clearly, using the ordered blocks as starters under G we could develop a 
perpendicular array. In any case we clearly have the following. 

Theorem 3.2. Lt?i {X, 93) be a r-(v, k, A(t)) design admitting a group of 
automorphism G which acts semiregularly on X@’ U 58. If there exists an OR* 
where each integer i, 1 s i G r?(t), qpears A times in each column of OR* then 
there is a PA&, k, v) with G’as an automorphism group. 

We illustrate this theorem by the following example. 

Example of our procedure. For a PA,(3,5,11) to exist it necessarily requires 
the existence of a S-(11,5,10). Let G be the Frobenious group of order 55 acting 
on a set X of cardinality 11. We generate G using (0 12 3 4 5 6 7 8 9 10) 
and (0)(13 9 5 4)(2 6 7 10 8). A 3-( 11,5,10) exists using starting blocks 
((0, 1,2,3,4}, (0, 1,2,3,5), (0, 1,2,3,9}}. There are exactly 3 orbits of 3-sets 
with representatives (0, 1,2}, (0, 1,3} and (0, 1,5} each having length 55. An 
ORye that works is: 

123 124 125 134 135 145 234 235 245 345 
(0,1,2,3,4) 1 2 2 3 1 3 1 2 3 1 
(0,2,10,1,4) 2 1 1 1 3 2 3 3 2 2 
(0,3,5,2,4) 3 3 3 2 2 1 2 1 ! 3 

where 123 represents { 1,2,3}, etc. Clearly, we get a PA,(3,5,11) by letting G 
act on the rows of the array: 

01 234 
0 2 10 1 4 
0 3 5 2 4. 

‘Fhi%. PA1(3, 5,ll) is unique given this particular group. 
Many perpendicular arrays used in the tBD-type construction were obtained by 

a procedure similar to the preceeding example (see [l l] for example). Also, it 
should be noted that known automorphisms of a design or array can be used to 



Perpendicular arrays for large I 109 

provide an economical listing of the structure. In passing, we should mention the 
following theorem. 

eorem 3.3. Let (X, Se) be a t-(v, t + 1, A) design where G acts semiregularty on 
X(‘) U 58. With A, = A/(& t + 1) there is a perpendicular array PA,,(t, t + 1, v) with 
G as an automorphism group. 

roof. Let s be the number of orbits in 9. Choose some OR* where column 
j,ldj<t+l,isindexedby(l,... , t + 1) \ {j}. Construct a matrix A of size m 
by (t + l), with m = s(t + l)/(A, t + l), by replicating each row of the OR,(t + 
1)/A, t + 1) times. By Theorem 3.1 each i, 1 s i s p(t), appears exactly A(t + 

l)/(A, t + 1) times in A. By Theorem 2.1 we can transform A, via permutations 
within the rows of A to a matrix A’ where each i, from 1 to p(t), appears exactly 
A/(& t + 1) times in each column of A’. But these permutations are clearly 
bijections between the rows of A and the k-tuples indexing the rows. Clearly 
Theorem 3.2 applies and we have our result. 0 

Observe that if G is the identity group and (X, 9) is a t-(v, k, A) design then 
Theorem 3.3 yields Theorem 2.2. 
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