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Abstract

Stinson introduced authentication perpendicular arrays APA�(t; k; v), as a special kind of per-
pendicular arrays, to construct authentication and secrecy codes. Ge and Zhu introduced
APAV(q; k) to study APA1(2; k; v) for k = 5, 7. Chen and Zhu determined the existence of
APAV(q; k) with q a prime power ≡ 3 (mod 4) and odd k ¿ 1. In this article, we show that for
any prime power q ≡ 5 (mod 8) and any k ≡ 1 (mod 4) there exists an APAV(q; k) whenever
q¿ ((E +

√
E2 + 4F)=2)2, where E = [(7k − 23)m + 3]25m − 3, F = m(2m + 1)(k − 3)25m and

m= (k − 1)=4.
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1. Introduction

A perpendicular array PA�(t; k; v) is a �
( v

t

)× k array, A, based on the symbol set
{1; : : : ; v}, which satisAes the following properties:
(I) Every row of A contains k distinct symbols.
(II) For any t columns of A, and for any t distinct symbols, there are precisely �

rows r such that the t given symbols all occur in row r in the given t columns.
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A PA�(t; k; v), A, is said to be an authentication PA, denoted by APA�(t; k; v) if the
following property also holds:
(III) For any t′; 16 t′6 t−1, and for any t′+1 distinct symbols xi (16 i6 t′+1),

we have that among all rows of A which contain all symbols xi (16 i6 t′ + 1), the
t′ symbols xi (16 i6 t′) occur in all possible subsets of t′ columns equally often.
For information on PAs see [11,13,19]. Stinson introduced the authentication prop-

erty (iii) for PAs and used APAs to construct authentication and secrecy codes (see
[20–23]). Simple counting shows the following necessary condition:

Lemma 1.1. If an APA1(2; k; v) exists, then k ≡ v ≡ 1 (mod 2).

Ge and Zhu (see [9,10]) provided results on the existence and constructions of
APAs. The known results on APA1(2; k; v) can be summarized as follows: Denote
APA(k) = {v: there exists an APA1(2; k; v)}.

Theorem 1.2 (Abel et al. [1], Bierbrauer and Edel [3], Ge and Zhu [9,10], Lindner and
Stinson [16], Stinson [20]). 1. v∈APA(3) if and only if v¿ 3 is odd, v �= 5.
2. v∈APA(5) if and only if v¿ 5 is odd, v �= 7 and possibly excepting v∈{9; 13;

15, 17; 33; 39; 49; 57; 63; 69; 87; 97; 113}.
3. v∈APA(7) if v odd v¿ 9384255 or v ≡ 1; 7 (mod 14).

Let G be an abelian group of order v. An authentication perpendicular di4erence
array, APDA(v; k), of order v and depth k is a (v− 1)=2× k array

D = [dij]

with entries from G such that for any {i; j} ⊂ {1; : : : ; k}, i �= j,{
±(dti − dtj): t = 1; 2; : : : ;

v− 1
2

}
= G \ {0}

and that for any Axed j∈{1; : : : ; k},⋃
16t6(v−1)=2
16i6k; i �=j

(dti − dtj) = (k − 1)=2(G \ {0}):

Lemma 1.3 (Ge and Zhu [9]). The existence of an APDA(v; k) implies the existence
of an APA1(2; k; v).

To construct an APDA(v; k), Ge and Zhu introduced the concept of an APA vector
in [9]. Let G be the additive group of GF(q), where q is an odd prime power. Let
q=2mt+1, where t ¿ 1 is odd. Let T be the subgroup of order t in the multiplicative
group GF(q)? = GF(q) \ {0}. An APA vector, denoted by APAV(q; k), is a vector
(a1; a2; : : : ; ak), ai ∈GF(q), such that for every j∈{1; 2; : : : ; k}, the diLerences ai − aj,
i∈{1; 2; : : : ; k} \ {j}, are evenly distributed on the cosets of T .

Lemma 1.4 (Ge and Zhu [9]). The existence of an APAV(q; k) implies the existence
of an APDA(q; k) and an APA1(2; k; q).
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The known results on the existence of APAV(q; k) are mostly for q ≡ 3 (mod 4)
which can be summarized as follows:

Lemma 1.5 (Chen and Zhu [7], Ge [8]). Let q ≡ 3 (mod 4) be a prime power, then

1. there exists an APAV(q; 7) if and only if q¿ 7, q �= 11, 19;
2. there exists an APAV(q; 9) if and only if q¿ 19;
3. there exists an APAV(q; 11) if and only if q¿ 11, q �= 19, 27;
4. there exists an APAV(q; 13) if and only if q¿ 13, q �= 19, 23, 31;
5. there exists an APAV(q; 15) if and only if q¿ 31.

Very little is known about the existence of an APAV(q; k) with q a prime power
≡ 1 (mod 4). In this article, we shall investigate the existence of an APAV(q; k) with q
a prime power ≡ 5 (mod 8). Simple counting shows that if there exists an APAV(q; k)
with q a prime power ≡ 5 (mod 8) then k ≡ 1 (mod 4). SpeciAcally, we shall prove the
following, which is believed to be useful in solving the existence of the corresponding
APAs.

Theorem 1.6. For any prime power q ≡ 5 (mod 8) and any k ≡ 1 (mod 4), there exists
an APAV(q; k) if q¿B(k)=((E+

√
E2 + 4F)=2)2, where E=[(7k−23)m+3]25m−3,

F = m(2m+ 1)(k − 3)25m and m= (k − 1)=4.

To obtain this result Weil’s theorem on character sums will be useful, which can be
found in [15, Theorem 5.41].

Theorem 1.7 (Lidl and Niederreiter [15]). Let  be a multiplicative character of GF
(q) of order m¿ 1 and let f∈GF(q)[x] be a monic polynomial of positive degree
that is not an mth power of a polynomial. Let d be the number of distinct roots of
f in its splitting 7eld over GF(q), then for every a∈GF(q), we have∣∣∣∣∣∣

∑
c∈GF(q)

 (af(c))

∣∣∣∣∣∣6 (d− 1)
√
q: (1)

This theorem has been useful in dealing with existence of various combinatorial
designs such as Steiner triple systems (see [12]), triplewhist tournaments (see [2,18]),
V (m; t) vectors (see [4,17]), diLerence families (see [5,6]), cyclically resolvable cyclic
Steiner 2-designs (see [14]), etc. It has also some other applications in combinatorics
(see [24]).

2. Proof of Theorem 1.6

Let q ≡ 5 (mod 8) be a prime power and k ≡ 1 (mod 4). We can write k = 4m+ 1
and q= 22t + 1, where t ¿ 1 is odd. Denote by H 4 the unique subgroup of order t of
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the cyclic multiplicative group GF(q)∗. The cosets H 4
0 , H

4
1 , H

4
2 , H

4
3 are deAned by

H 4
i = �iH 4; 06 i6 3;

where � is a primitive element of GF(q).
We shall take

V = (1; x; x2; : : : ; xk−1):

Denote

D0 = {x − 1; x2 − 1; : : : ; xk−1 − 1};

Di = {−(xi − 1);−x(xi−1 − 1); : : : ;−xi−1(x − 1);

xi(x − 1); xi(x2 − 1); : : : ; xi(xk−1−i − 1)}; 16 i6 k − 2;

Dk−1 = {−(xk−1 − 1);−x(xk−2 − 1); : : : ;−xk−2(x − 1)}:
By deAnition we know that V is an APAV(q; k) if for any i, 06 i6 k − 1, the
diLerences in Di are evenly distributed in the cosets of H 4. These hold if x satisfying
the following conditions:

(a) x − 1; x2 − 1; : : : ; xk−1 − 1 are evenly distributed in the cosets of H 4,
(b) −(xi −1) and xi(xk−i −1) are in the same coset of H 4, i.e. −(xi −1)=xi(xk−i −1)

∈H 4
0 , 16 i6 k − 1.

In fact, condition (a) means that the diLerences in D0 are evenly distributed in
the cosets of H 4. Now we check the diLerences in D1. By condition (b) we know
that −(x − 1) and x(xk−1 − 1) are in the same coset of H 4. Since the diLerences in
{x(xk−1 − 1); x(x − 1); x(x2 − 1); : : : ; x(xk−2 − 1)} are evenly distributed in the cosets
of H 4 according to condition (a). It follows that the diLerences in D1 has the same
property. Similarly, we can prove that for each i, 26 i6 k − 1, the diLerences in Di

are also evenly distributed in the cosets of H 4.
Let h0(x) = 1 and h‘(x) = x‘ + · · ·+ x+ 1, 16 ‘6 k − 2. Then conditions (a) and

(b) are equivalent to the following conditions:

(c) h0(x); h1(x); : : : ; hk−2(x) are evenly distributed in the cosets of H 4;
(d) −hi−1(x)(xihk−i−1(x))3 ∈H 4

0 , 16 i6 k − 1.

Note that −1 = �(q−1)=2 ∈H 4
2 since q ≡ 5 (mod 8). We have the following:

Lemma 2.1. Let q ≡ 5 (mod 8) be a prime power and k=4m+1. V=(1; x; x2; : : : ; xk−1)
is an APAV(q; k) if there exists an element x in GF(q) satisfying the following
conditions:

(i) f0(x) = x∈H 4
0 ,

(ii) fi(x) =−hi−1(x)(hk−i−1(x))3 ∈H 4
0 , 16 i6 2m,

(iii) gj(x) = hj−1(x)h(k−1)=2−j(x)∈H 4
1 ∪ H 4

3 , 16 j6m.
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Proof. By conditions (i) and (ii) we know that condition (d) holds. Suppose
hj−1(x)∈H 4

ij , 16 j6m, then we have h(k−1)=2−j(x)∈H 4
ij+1 (or H 4

ij+3) by condition
(iii), hk−j−1(x)∈H 4

ij+2 and h(k−1)=2+j−1(x)∈H 4
ij+3 (or H 4

ij+1) followed from condition
(ii). Clearly, hj−1(x), h(k−1)=2−j(x), h(k−1)=2+j−1(x) and hk−j−1(x) (16 j6m) are
evenly distributed in the cosets of H 4 and

⋃m
j=1 {hj−1(x); h(k−1)=2−j(x);

h(k−1)=2+j−1(x); hk−j−1(x)}= {hi(x): i = 0; 1; : : : ; k − 2}. So, condition (c) holds.

To And an APAV(q; k) in GF(q), by Lemma 2.1 we need only to And an element
x in GF(q) satisfying conditions (i)–(iii). We shall show that such an element always
exists in GF(q) whenever q¿B(k), where B(k) is the same as in Theorem 1.6.
Let ! be a non-principal multiplicative character of order 4. That is, !(x) = " t if

x∈H 4
t , where " is a primitive 4th root of unity in the Aeld of complex numbers. Let

Ai = !(fi(x)); 06 i6 2m

and

Bj = !(gj(x)); 16 j6m;

where fi(x) (06 i6 2m) and gj(x) (16 j6m) are the same as in Lemma 2.1. These
functions have the following value:
For any i; 06 i6 2m,

1 + Ai + A2
i + A3

i =




4 if fi(x)∈H 4
0 ;

0 if fi(x) �∈ H 4
0 ∪ {0};

1 if fi(x) = 0:

For any j; 16 j6m,

1− B2
j =




2 if gj(x)∈H 4
1 ∪ H 4

3 ;

0 if gj(x)∈H 4
0 ∪ H 4

2 ;

1 if gj(x) = 0:

We deAne a sum

S =
∑

x∈GF(q)

2m∏
i=0

(1 + Ai + A2
i + A3

i )
m∏

j=1

(1− B2
j ): (2)

This sum is equal to 25m+2n + d, where n is the number of elements x in GF(q)
satisfying conditions (i)–(iii) in Lemma 2.1, and d is the contribution when either
f0(x); f1(x); : : : ; f2m(x), g1(x); : : : ; gm−1(x) or gm(x) is 0. If we can show that |S|¿ |d|,
then n¿ 0 and there must exist an APAV(q; k) as we wanted.
Now if f0(x)=0 then x=0, f1(x)=−1∈H 4

2 and the contribution to S is 0. Suppose
fi(x) = 0 for some i (16 i6 2m). If x =−1 then f0(x) =−1∈H 4

2 , the contribution
to S is 0; If x �= −1 then the contribution to S is at most (k − 3)42m2m = (k − 3)25m

noting that fi(x)=(x + 1) has at most k − 3 diLerent roots in GF(q). If fi(x) �= 0 for
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any i (16 i6 2m) then gj(x) �= 0 for any j (16 j6m). Hence the total contribution
to S from these cases is at most

F =
2m∑
i=1

(k − 3)25m = m(2m+ 1)(k − 3)25m:

Thus if we are able to show that |S|¿F , then there exists an x∈GF(q) satisfying
conditions (i)–(iii) in Lemma 2.1 and there exists an APAV(q; k). Expanding the inner
product in (2) we obtain

S =
∑

x∈GF(q)

1 +M1 +M2; (3)

where

M1 =
2m∑
r=1

∑
16i1¡···¡ir62m

∑
16u1 ;:::;ur63

∑
x∈GF(q)

Au1
i1 · · ·Aur

ir

+
m∑

s=1

∑
16j1¡···¡js6m

∑
x∈GF(q)

(−1)sB2
j1 · · ·B2

js

+
2m∑
r=1

∑
16i1¡···¡ir62m

∑
16u1 ;:::;ur63

m∑
s=1

∑
16j1¡···¡js6m

∑
x∈GF(q)

(−1)s

×Au1
i1 · · ·Aur

ir B
2
j1 · · ·B2

js (4)

and

M2 =
3∑

u0=1

2m∑
r=1

∑
16i1¡···¡ir62m

∑
16u1 ;:::;ur63

∑
x∈GF(q)

Au0
0 Au1

i1 · · ·Aur
ir

+
3∑

u0=1

m∑
s=1

∑
16j1¡···¡js6m

∑
x∈GF(q)

(−1)sAu0
0 B2

j1 · · ·B2
js

+
3∑

u0=1

2m∑
r=1

∑
16i1¡···¡ir62m

∑
16u1 ;:::;ur63

m∑
s=1

∑
16j1¡···¡js6m

∑
x∈GF(q)

(−1)s

×Au0
0 Au1

i1 · · ·Aur
ir B

2
j1 · · ·B2

js (5)

since
∑

x∈GF(q) Au0
0 = 0 for any u0 (16 u06 3).

To estimate the inner sums, we use Weil’s theorem on character sums. Note that
2m∏
i=0

Aui
i

m∏
j=1

Bvj
j = !


 2m∏

i=0

(fi(x))ui
m∏

j=1

(gj(x))vj




and the order of ! is 4. If
∏2m

i=0 (fi(x))ui
∏m

j=1 (gj(x))vj = [p(x)]4 for some p(x)∈GF
(q)[x], then we can show that u0 ≡ u1 ≡ · · · ≡ u2m ≡ 0 (mod 4) and v1 ≡ v2 ≡ · · · ≡
vm ≡ 0 (mod 4). In fact, by deAnition we have f0(x)=x, fi(x)=−hi−1(x)(hk−i−1(x))3
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for i (16 i6 2m) and gj(x)=hj−1(x)h(k−1)=2−j(x) for j (16 j6m), where h0(x)=1
and h‘(x) = x‘ + · · · + x + 1, 16 ‘6 k − 2. Clearly, u0 ≡ 0 (mod 4) since f0(x)
is coprime to any fi(x) (16 i6 2m), and to any gj(x) (16 i6m). Let + be a
primitive (k − 1)th root of unity in some extension Aeld of GF(q). Then f1(x) must
have an irreducible polynomial d(x) in GF(q)[x] as its factor such that d(x) has + as
its root. Since any fi(x) (26 i6 2m) and any gj(x) (16 i6m) cannot have + as its
root, fi(x) (26 i6 2m) and gj(x) (16 i6m) must be coprime to d(x). This forces
u1 ≡ 0 (mod 4). In a similar way, we can prove that u2 ≡ · · · ≡ u2m ≡ 0 (mod 4) and
v1 ≡ v2 ≡ · · · ≡ vm ≡ 0 (mod 4). Thus Theorem 1.7 can be applied here.
Let di1···ir be the number of distinct roots of fi1 (x) · · ·fir (x) in GF(q). Note that

x + 1 is a factor of fit (x) for any t (16 t6 r) since it − 1 or k − it − 1 is odd. So,
we have

di1···ir 6 r(k − 3) + 1:

Similarly, the number of distinct roots of gj1 (x) · · · gjs(x) is at most s(k − 5)=2+ 1 for
any s (16 s6m). Therefore, by Weil’s theorem for any r (16 r6 2m), for any s
(16 s6m) we have∣∣∣∣∣∣

∑
x∈GF(q)

Au1
i1 · · ·Aur

ir

∣∣∣∣∣∣6 r(k − 3)
√
q (6)

for any i1; : : : ; ir (16 i1 ¡ · · ·¡ir6 2m), for any u1; : : : ; ur (16 u1; : : : ; ur6 3).∣∣∣∣∣∣
∑

x∈GF(q)

B2
j1 · · ·B2

js

∣∣∣∣∣∣6 s
k − 5
2

√
q (7)

and ∣∣∣∣∣∣
∑

x∈GF(q)

Au1
i1 · · ·Aur

ir B
2
j1 · · ·B2

js

∣∣∣∣∣∣6
(
r(k − 3) + s

k − 5
2

)√
q (8)

for any j1; : : : ; js (16 j1 ¡ · · ·¡js6m).
Thus we have

|M1|6
2m∑
r=1

(
2m

r

)
3rr(k − 3)

√
q+

m∑
s=1

(
m

s

)
s
k − 5
2

√
q

+
2m∑
r=1

(
2m

r

)
3r

m∑
s=1

(
m

s

)(
r(k − 3) + s

k − 5
2

)√
q: (9)
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Note that

m∑
s=1

(
m

s

)
= 2m − 1;

m∑
s=1

(
m

s

)
s= m2m−1;

2m∑
r=1

(
2m

r

)
3r = 42m − 1;

2m∑
r=1

(
2m

r

)
r3r = 6m42m−1:

Eq. (9) becomes

|M1|6 [6(k − 3)m42m−1 + (k − 5)m2m−2

+ 6(k − 3)m42m−1(2m − 1) + (k − 5)m2m−2(42m − 1)]
√
q

= (7k − 23)m25m−2√q:

Similarly, we have

|M2|6 3
2m∑
r=1

(
2m

r

)
3r(r(k − 3) + 1)

√
q+ 3

m∑
s=1

(
m

s

)(
s
k − 5
2

+ 1
)√

q

+3
2m∑
r=1

(
2m

r

)
3r

m∑
s=1

(
m

s

)(
r(k − 3) + s

k − 5
2

+ 1
)√

q

= 3((7k − 23)m25m−2 + 25m − 1)
√
q:

Clearly,∑
x∈GF(q)

1 = q:

From the above, we have

|S|¿ q− |M1| − |M2|¿ q− E
√
q;

where

E = 4(7k − 23)m25m−2 + 3× 25m − 3 = [(7k − 23)m+ 3]25m − 3:

Obviously, |S|¿F when q¿B(k) = ((E +
√
E2 + 4F)=2)2, which indicates that

there exists an element x in GF(q) satisfying conditions (i)–(iii) in Lemma 2.1 when-
ever q¿B(k), consequently, there exists an APAV(q; k). So, we obtain the proof of
Theorem 1.6.

Remark. For any given k ≡ 1 (mod 4), to determine the existence of APAV(q; k) with
q ≡ 5 (mod 8) a prime power, by Theorem 1.6, one need only to consider the case
q¡B(k). To do this more computer work will be needed.
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