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Abstract

This thesis presents contributions to three areas of cryptography under the com-
mon concern for security against quantum adversaries. It discusses authentication in
key-exchange protocols, isogeny-based schemes and protocols, and signature schemes
based on the MPC-in-the-head paradigm.

In the first part, nuances of authentication in key-exchange protocols are explored
and a transformation to add authentication to existing non-authenticated protocols
is proposed. In Chapter 3, the Bellare-Rogaway model of security in a modern for-
mulation, augmented to accommodate new definitions, is presented. In Chapter 4,
new definitions for nuances of authentication which had remained undefined until this
work are introduced, relations between them are studied and a folklore composition
theorem is proven. In Chapter 5, the new definitions are applied to the study of
existing protocols and a new secure transformation is presented.

In the second part, constructions for secure public-key encryption schemes and
oblivious transfer protocols based on isogenies of supersingular elliptic curves are
presented. In Chapter 6, a new one-way function family is defined and an IND-CCA-
secure encryption scheme is constructed. In Chapter 7, a new framework of semi-
commutative structures, which captures both isogeny-based and exponentiation-based
protocols, is defined and different instantiations corresponding to the literature are
discussed. In Chapter 8, two oblivious transfer protocols built from these structures
are then presented together with their proof of security in the framework of universally
composable security.

In the third and final part, improvements to signature schemes built from the
MPC-in-the-head proof paradigm are explored. In Chapter 9, the impact of using the
AES block cipher within Picnic signatures is studied. In Chapter 10, new verification
techniques for this paradigm are used to both study the use of the Legendre PRF and
re-visit the efficiency of using the AES block cipher.
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Chapter 1

Introduction

Variety is the spice of life.

This idiom provides an important, albeit simple, direction for academic research,

especially in the field of cryptology. At a time when new cryptanalytic methods

can emerge at any moment and destabilise established security guarantees, it is both

desirable and necessary to have a wide variety of cryptographic tools available to

address such threats.

After the seminal works of Diffie and Hellman in 1976 introducing public-key

cryptography [60] and Rivest, Shamir and Adleman in 1978 introducing RSA encryp-

tion [113], a majority of schemes and protocols designed in this space relied on the

families of discrete logarithm and factoring problems for their security. The publica-

tion of Shor’s algorithm in 1994 [116], a quantum polynomial-time algorithm to solve

the factoring and discrete logarithm problems, has meant that these two families can

no longer be relied on for security in the long term.

Cryptographic research in the last two to three decades has focused heavily on

finding alternative quantum-resistant methods and computational problems under

the name of post-quantum cryptography. This thesis is part of this research effort

and, staying true to the adage, presents a variety of contributions in this direction.

After this Introduction and some general preliminary notions defined in Chapter 2,

Part I discusses notions of authentication for key-exchange protocols and presents a

transformation designed to add authentication using post-quantum tools. Part II then

presents constructions of schemes and protocols based on the framework of isogenies of

supersingular elliptic curves. Finally, Part III studies improvements in the paradigm

of MPC-in-the-head for the design of efficient signature schemes. The rest of this

Introduction discusses each of these parts in turn and presents the author’s list of

1



CHAPTER 1. INTRODUCTION

publications on which this thesis is based.

A note on narrative voice. I chose to write the content of this thesis in the first person

plural to reflect the collaborative nature of the work. My personal contribution is

highlighted at the beginning of each chapter.

1.1 Authentication and transformation for key-exchange

Key-exchange is one of the fundamental primitives of public-key cryptography, along-

side encryption and signatures. Originating in the seminal work of Diffie and Hell-

man [60], its aim is to provide a secure method of obtaining shared secret keys without

the need of an already-secure communication channel. To add authentication guar-

antees to these secret keys, one then needs to consider authenticated key-exchange

(AKE) protocols.

The original definition of a distributed model of security for AKE protocols was

given by Bellare and Rogaway in 1993 [15]. Such a distributed model is required as

AKE protocols are intended for execution environments where many machines aim to

communicate with each other without previously established secure channels. Shortly

after, this original definition was adapted to the public-key setting [23]. This formula-

tion was modernised later on [93] and, more recently, incorporated into a more general

framework for game-based security notions [32]. These works are representatives of a

long series of extensions to the original model [16, 23, 14, 35, 32, 97] which is tradi-

tionally referred to as the Bellare–Rogaway (BR) model. Other works have studied

models with stronger adversaries against AKE protocols [35, 96, 50] but Part I of this

document will be almost entirely restricted to the original adversarial model.

1.1.1 Security definitions for AKE protocols

Conceptually, security definitions for AKE protocols focus on two notions: authenti-

cation and (key) secrecy. Together, these notions ensure that, after the execution of

the protocol, the final session-key is known only by the “right” parties. This simplis-

tic presentation gives way to a complex landscape of interrelated notions upon closer

examination: both secrecy and authentication each come with their own intricaties.

In the case of authentication, it can be either one-way or mutual, where either

one or both parties authenticate during the protocol; it can either concern the entities

involved or the session-key derived at the end; and it can also be implicit in the

way the session terminates, or fully explicit. To illustrate this last nuance: we often

2



1.1. AUTHENTICATION AND TRANSFORMATION FOR KEY-EXCHANGE

visualize authentication as a challenge-response mechanism, e.g. where one party signs

a random challenge and the other verifies the signature. This is very much an explicit

authentication guarantee. Some protocols, for efficiency’s sake, instead aim to imbed

the authentication directly into the derived session-key, without such a challenge-

response mechanism. In this case, the parties do not obtain an explicit guarantee

that their partner is able to compute the correct response. However, if they observe

that their session-key is used at a later time, then they can conclude that their partner

was able to compute the response and therefore they can authenticate and trust the

key that they hold. This is what we call implicit authentication, i.e. one that is

achieved only implicitly at the time of the protocol. In addition, there is the notion

of key-confirmation for which parties expect a message that demonstrates that their

partner has derived the session-key in question. This notion also brings to light the

fact that one party always terminates before the other, thus inducing an asymmetry

which can be reflected in the guarantees provided by the protocol.

For secrecy, nuances are fewer but nonetheless important. The notion of forward

secrecy was defined as early as 1997 [104] and captures the guarantee that a session-

key will remain secret even if the parties’ long-term secret material is compromised

after the session has taken place. This notion was then also further nuanced and

refined [92, 50].

The definition of Bellare and Rogaway was originally presented in two parts: a

first required that parties mutually authenticate each other during the protocol, and

a second required that they also derived an unpredictably random secret key. This

presented a clear separation between (entity) authentication and key secrecy. Over

time, however, definitions for AKE protocols have shifted away from this separation

and towards guarantees only concerning the unpredictability of session-keys [92, 33].

Authentication was then captured only as part of the definitions of secrecy; this implies

that attacks on authentication always have to be transformed into attacks on secrecy

in order to be considered within a given model. Other security notions were formalized

on their own, such as forward secrecy mentioned above or also key-confirmation [69],

and some attempts were made to systematize the study of security models [41, 124, 49],

but this happened outside of a unified framework and focused more on protocol design

and less on the study of the definitions themselves.

Unfortunately, the lack of a comprehensive study of security notions, and the

amalgamation of authentication together with secrecy has led to some missing formal

definitions as well as unclear relation between different notions. Similarly, large classes

of attacks against AKE protocols, such as unknown key-share or key-compromise

3



CHAPTER 1. INTRODUCTION

impersonation attacks, have not been wholly captured by some security definitions

but have nonetheless influenced the design of many protocols in attempts to avoid

them. In this work we present security definitions intended to capture the nuances

and complexity of authentication notions that are missing in the current literature.

In Chapter 3, we first present a formulation of the BR model based on the frame-

work of [32] but modified and augmented with certain elements. In Chapter 4 we then

define and study several new authentication notions as well as their relationship with

one another. Finally in Section 5.1 we study three important KE and AKE algorithms

in the light of our new authentication notions.

Post-quantum aspects. On their own, security definitions for authentication can

easily be adapted to a post-quantum model simply by requiring that they hold even

against polynomial-time quantum adversaries. This is the approach that we take in

this thesis.

1.1.2 Generic transformations to achieve AKE security

Due to the different security guarantees that they aim to provide, AKE protocols can

be difficult to construct from elementary cryptographic primitives. This approach

also leads to protocols that have to be analyzed and proved in a monolithic way,

with no possibility of modularity. These drawbacks led to the definition of generic

transformations from simpler KE protocols to more complex AKE ones.

The fist such generic compiler was proposed by Bellare, Canetti and Krawczyk in

1998 [13] and later refined by Canetti and Krawczyk in 2001 [35] to protect against

adversaries of different strengths. Both of these works share a common design princi-

ple: they first consider protocols in a model where authenticated links are guaranteed

(Auth model) and then compile these to a model with unauthenticated links (UAuth

model) with the use of authenticator tools. These authenticators function on a per-

message basis to guarantee that a message sent securely in the Auth model is sent

with the same security in the UAuth model. This approach guarantees ease of analysis

and design, but at a great cost to efficiency. For example, an authenticator from [13]

requires three messages in the UAuth model for each message in the Auth model. As

a passive KE protocol requires at least two messages to be exchanged, this results in

an AKE protocol with at least five rounds of communication (or more if the messages

of the authenticators cannot be sent in parallel).

Other design principles are also possible. Katz and Yung consider the setting of
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group key-exchange and boost KE security to AKE security by having parties first

exchange nonces and then augment all further messages with signatures containing

these nonces [88]. When groups of only two parties are considered, this approach re-

quires four messages to be exchanged. In [105], Morrissey, Smart and Warinschi study

the TLS protocol as the successive application of two generic transformations from

passive KE security to active AKE; this is however not efficient, particularly because

of the complex nature and purpose of the TLS protocol itself. Another work by Jager

et al. proposes to first execute the KE protocol and then obtain authentication with

the exchange of nonces and the use of signatures [81]; this however results in eight

rounds of communication (if not optimized). The later work of Li et al. also proposes

to first execute the KE protocol and then exchange either signatures or ciphertexts

and MACs to obtain authentication [98]; this again results in four or more rounds of

communication.

The many transformations mentioned above all rely on a combination of digital

signature schemes, public-key encryption (PKE) schemes and message authentication

codes. Two other works have constructed transformation using key encapsulation

mechanisms (KEMs) [28, 77] but both of these rely on identity-based and pairing-

based primitives and cannot be generalised to all schemes.

These transformations all ensure that the authentication part of the resulting

scheme can be analyzed and proved independently of the key-secrecy part of the initial

passive KE protocol but they fall short of achieving optimal efficiency. In Section 5.2,

we present a transformation that achieves a three-round AKE protocol by combining

the authentication flows with those of the initial KE protocol.

Post-quantum aspects. When attempting to construct post-quantum AKE pro-

tocols, the primitives that are used matter more since they need to be post-quantum

too. For the underlying passive KE protocols, the original ones based on Diffie–

Hellman key exchange [60] can be replaced with post-quantum ones such as ones

based on lattices [26, 4] or supersingular isogenies [66, 36]. At the time of writing

our work of Section 5.2, there was not much confidence in post-quantum signature

schemes. The lattice-based ones that had been proposed [75, 79, 78] were eventually

broken [73, 106], and schemes based on other assumptions were still too inefficient to

be practical. That state of the art at the time motivated our design choice of using

only public-key encryption which demonstrated better promise in the post-quantum

literature [100, 99].
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1.2 Cryptography from supersingular isogenies

Among the several mathematical structures proposed to replace factoring and dis-

crete logartihm hardness assumptions, isogenies of supersingular elliptic curves have

emerged recently as a contender with strong potential. Jao and De Feo presented the

idea to use such isogenies for public-key cryptography for the first time in 2011 [82];

some schemes based on isogenies of ordinary elliptic curves existed already [119], but

they were impractically slow and it was shown that they were vulnerable to subex-

ponential quantum attacks [40, pre-print in 2010]. In constrast, Jao and De Feo’s

proposed setting can be parameterized to offer much faster computations and no ef-

ficient quantum algorithm is yet known to attack the corresponding computational

problems [21].

In addition to hash functions [37] which in fact pre-date Jao and De Feo’s work,

supersingular isogenies and the proposed problems have been used to build a vareity

of primitives since their introduction, such as key-exchange and encryption [66, 6] (in

the form of KEM-DEM constructions), signature and identification [66, 71] and also

authenticated key-exchange [128].

In this new and growing body of works, two main categories of computational

problems have emerged. The first is a more generic one, where the adversary is given

less information about the curves involved in the challenges. Such a problem would,

for example, consist in computing an isogeny between two supersingular curves E

and E′, defined over Fp2 , without being given any further information; this is very

similar conceptually to the discrete logarithm problem which consists in computing a

such that h = ga for g and h given without further information other than the order

of the group. The second category of problems arose from the fact that the first is not

very practical to build protocols with. In their definition of the supersingular isogeny

Diffie–Hellman (SIDH) key-exchange protocol, Jao and De Feo could not use problems

of the first category to prove the security of the scheme because the setting prevents

arbitrary commutativity of isogenies; here the concept of the protocol requires in fact

that the operations of both parties are commuted versions of each other. To recover

some commutativity, they designed the protocol to reveal images of certain points on

the curves under the secret isogenies of the parties. As more information was then

revealed, this lead to SIDH variants of the first category of problems.

6



1.2. CRYPTOGRAPHY FROM SUPERSINGULAR ISOGENIES

1.2.1 Public-key encryption from generic isogeny problems

This additional information revealed as part of the protocols has been exploited for the

first time by Petit in 2017 [110] and this attack has been further improved since [94].

While these attacks do not yet apply to the parameter space of the problems used

by protocol of the SIDH type, they nonetheless undermine somewhat the hardness

assumptions.

In anticipation of further progress in this direction, several schemes have found it

desirable to avoid these SIDH variants of isogeny problems. Until the work presented

in this thesis in Chapter 6 [57], this had only been achieved for signature schemes [120,

71] for generic supersingular isogenies over Fp2 . A special case is the CSIDH work

of Castryck et al. [36], building on the work of Couveignes [48] and Rostovtsev and

Stolbunov [114], which presents a key-exchange protocol which assumes the hardness

of the generic isogeny problems, but restricted to elliptic curves defined over Fp instead

of Fp2 . This restricted setting has the drawback of being vulnerable to subexponential

quantum algorithms.

The work presented in Chapter 6 aims to continue this line of research on security

based on generic problems. Indeed, we present a PKE scheme whose key-recovery

security reduces directly to the most generic computational isogeny problem. The

standard OW-CPA and IND-CCA security of the schemes do rely on the SIDH variants

but these are more generic ones than previously used in the literature. Should further

progress be made in the cryptanalysis of these problems, our PKE scheme furthermore

offers strong flexibility in its parameters to adapt and remain secure.

1.2.2 Oblivious transfer from semi-commutative masking

One reason for the slower adoption of isogeny-based primitives, in terms of the number

of schemes being proposed, is that some of the subtleties of this setting can be counter-

intuitive (and even lead to dangerous security weaknesses when misunderstood [70]).

In Chapter 7, we consider a new approach to the design of isogeny-based protocols

by defining the generic framework of invertible semi-commutative masking structures.

These masking structures aim to generalize the exponentiation-only paradigm of pro-

tocol design used in certain applications such as key-exchange. This is more restrictive

than other paradigms, such as the discrete-logarithm setting, due to the absence of

other operations “in the exponent”. The semi-commutative nature of these struc-

tures then captures the absence of full commutativity for supersingular isogenies as

observed and remedied by Jao and De Feo [82] with the introducion of SIDH variants

7



CHAPTER 1. INTRODUCTION

of the computational problems.

After defining them in generic terms, we then first instantiate these structures from

group actions, which is a generalization not only of the traditional discrete-logarithm

setting but also of Couveignes [48] and Castryck et al.’s CSIDH [36] setting of isogenies

of Fp-restricted supersingular elliptic curves. We then present an instantiation from

isogenies of un-restricted curves over Fp2 which captures the SIDH setting. In addition,

we define generic computational problems for the masking structures and discuss how

their instantiation into the different settings result in problems which correspond to

the ones currently used in the literature.

We then illustrate the use of this framework in Chapter 8 with the design of

two oblivious transfer (OT) protocols. Originally proposed by Rabin in 1981 [112],

oblivious transfer is a primitive that has since been used as a building block for

many efficient secure multiparty protocols [107, 89, 126] (i.e. protocols where multiple

party jointly execute the computation of a function on their respective secret inputs).

Protocols for OT built from post-quantum primitives have already been proposed for

the LWE, LPN and McEliece assumptions [108, 8, 29] but it took longer for isogeny-

based protocols to emerge. Our work is in fact part of a group of concurrent and

independent proposals to construct isogeny-based OT that appeared around the same

time [125, 30, 9].

The OT protocols that we propose both achieve universal composability security

against passive adversaries with static corruptions in the random oracle model. We

show, furthermore, that our first protocol satisfies the security requirements of two-

round OT to make use of a recent transformation which provides security against

active adversaries [63].

1.3 Digital signatures from MPC-in-the-head

A common design approach for signature schemes is the use of the Fiat–Shamir trans-

formation paradigm [68] which turns an interactive proof of knowledge protocol with

public random coins into a non-interactive one with the use of random oracles. Such

proofs can then be bound to a particular message by including it in the call to the

random oracle that generates the random coins used in the protocol. By using a

zero-knowledge protocol and proving knowledge of a witness (secret-key) to a public

relation (public-key) in this way, one obtains a signature scheme secure both against

key-recovery and forgery attacks.

To then achieve post-quantum security, both the zero-knowledge proof system
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and the particular relation that is proved must be resistant against quantum adver-

saries. Not originally presented as an advance in the post-quantum direction, the

work of Ishai, Kushilevitz, Ostrovski and Sahai (IKOS) was the first to propose us-

ing multiparty computation (MPC) protocols and their security properties to create

zero-knowledge proofs [80].

In what later became known as MPC-in-the-head (MPCitH), the prover executes

a simulated MPC protocol between several parties evaluating an NP relation R(x,w).

In this computation, x is the public statement (known to the verifier) and w is the

private statement, secret-shared among the simulated MPC parties. After simulating

the MPC verification of R(x,w), the prover commits to what each simulated party

observed during the computation. The verifier of the proof system then asks for several

of these views to be opened in order to verify that the MPC computation took place

honestly, and that the prover did not make any party cheat to change the output of

the protocol.

By opening only a subset of all the views of the simulated parties, the prover

does not reveal any information about the secret witness shared among the parties.

By asking to observe the honest behaviour of the opened parties, the verifier can

obtain guarantees that the execution was not tampered with. Thus the post-quantum

security properties of the MPC protocol, i.e. simulatability and resistance against

corruptions, directly translate to the post-quantum zero-knowledge and soundness

properties of the proof protocol.

To achieve the post-quantum security of the relation proved by the protocol, a

natural option is to choose a relation based on symmetric-key primitives. This was first

proposed by Giacomelli, Madsen and Orlandi in work which improved on the system of

IKOS and demonstrated proofs of knowledge of pre-image for the SHA-1 and SHA-256

circuits [74]. Improving further on this work, Chase et al. proposed using the LowMC

block cipher, specifically designed for better performance within MPC protocols, in

the first construction of a signature scheme based on the MPCitH paradigm [39]. The

core of the post-quantum security of this proposal is that the LowMC cipher, being a

symmetric-key construction, is not vulnerable to the performant quantum algorithms

which can solve factorization or discrete logarithm problems. In this case, the signer

(or prover) demonstrates knowledge of a secret key k such that LowMCk(x) = y for a

fixed plaintext-ciphertext pair (x, y). Further security comes from the fact that only

one such pair is revealed as part of the public key of the signature scheme, and that

the adversary cannot request more.

The work of Chase et al. became the basis of the Picnic signature scheme sub-
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mitted to the NIST’s Post-Quantum standardization project [38]. It was then further

improved, both in the zero-knowledge proof component [86], and in the efficiency of

the block cipher [62, 83, 84], until the current Picnic3 proposal.

Crucially, all these iterations focus on the LowMC block cipher which was only

recently introduced in 2015 [3]. As the potential weaknesses of this primitive may not

yet all be known, it is important to consider other options. In Part III of this thesis,

we present work which proposes the use of different primitives within the MPCitH

paradigm and the possible improvements that can be achieved.

In Chapter 9, we study the use of the AES block cipher [51] as a replacement for

LowMC in Picnic-like signatures. We find that by using the same structure of proof

system, adapted for arithmetic circuits over F28 for efficiency with the AES algorithm,

the sizes of signatures would increase by a factor of between 2.48 and 3.09 (depending

on the security level) compared to Picnic signatures. We also study the use of the

original Rijndael algorithm, the submission from which AES was standardized, as it

offers more flexibility in its design.

In Chapter 10 we explore a recent advance in MPCitH technique proposed by

Baum and Nof which consists in replacing the MPC protocol that computes the circuit

by one which verifies certain intermediary values that the prover was allowed to inject

into the MPC. This creates efficiency gains since such verification can be checked

probabilistically and in batches, thus not requiring the full execution of the block

cipher circuit within the MPC protocol. We first present in Section 10.1 joint work

with W. Beullens which proposes to use the Legendre PRF as the primitive behind

the NP relation. In Section 10.2 we then return to the AES block cipher and present

unpublished work which achieves signature sizes with an estimated increase factor of

only between 1.07 and 1.23 compared to average Picnic3 signatures.

1.4 Publications of the author

The content of this thesis is selected from my work published over the course of my

degree. The publications below are numbered continuously but listed in chronological

order within each list. Author order was decided alphabetically for each publication

and is not indicative of relative contribution; my personal contributions are detailed

at the beginning of the chapters where a publication is first selected from.

In peer-reviewed venues:

1. [59] C. Delpech de Saint Guilhem, N. P. Smart, and B. Warinschi. Generic

Forward-Secure Key Agreement without Signatures. Published in the proceed-
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ings of Information Security - 20th International Conference, ISC 2017, Ho Chi

Minh City, Vietnam. Contents of this work appear in Section 5.2.

2. [55] C. Delpech de Saint Guilhem, L. De Meyer, E. Orsini, and N. P. Smart.

BBQ: Using AES in Picnic Signatures. Published in the proceedings of Selected

Areas in Cryptography - 26th International Conference, SAC 2019, Waterloo,

ON, Canada. Contents of this work appear in Chapter 9.

3. [19] W. Beullens, and C. Delpech de Saint Guilhem. LegRoast: Efficient Post-

quantum Signatures from the Legendre PRF. Published in the proceedings of

Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020,

Paris, France (held virtually due to 2020 pandemic). Contents of this work

appear in Section 10.1.

4. [56] C. Delpech de Saint Guilhem, M. Fischlin, and B. Warinschi. Authentication

in Key-Exchange: Definitions, Relations and Composition. Published in the

proceedings of the 33rd IEEE Computer Security Foundations Symposium, CSF

2020, Boston, MA, USA (held virtually due to 2020 pandemic). Contents of

this work appear in Chapters 3 and 4 and in Section 5.1.

5. [58] C. Delpech de Saint Guilhem, E. Orsini, C. Petit, and N. P. Smart. Semi-

Commutative Masking: A Framework for Isogeny-based Protocols, with an ap-

plication to Fully Secure Two Round Isogeny-based OT. Accepted for publi-

cation in the proceedings of the 19th International Conference on Cryptology

and Network Security to be presented at the virtual edition of the conference.

Contents of this work appear in Chapters 7 and 8.

In online pre-print archives:

6. [57] C. Delpech de Saint Guilhem, P. Kutas, C. Petit, and J. Silva. SÉTA:

Supersingular encryption from torsion attacks. Cryptology ePrint Archive, Re-

port 2019/1291. Contents of this work appear in Chapter 6. This work is now

being merged with follow-up work from P. Kutas and C. Petit and others in

preparation for submission.
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Chapter 2

Preliminaries

In this short chapter we establish notation and state standard definitions of schemes

and security notions which we will use throughout this thesis. Due to their different

content, we delay literature discussions to the beginning of each part.

2.1 General definitions

We use λ to denote the computational security parameter and let 1λ be its unary

representation. We say that an algorithm executed on an input of length λ runs in

poly(λ)-time if it terminates within a number of steps bounded by a polynomial in λ.

We denote by {0, 1}n the set of all bit-strings of length n and by {0, 1}∗ the set of all

bit-strings of any finite length.

Definition 2.1 (Negligible function). A function f : N→ R is negligible (in λ) if, for

every polynomial p, there exists λ0 ∈ N such that, for all λ ≥ λ0,

f(λ) ≤ 1

p(λ)
.

We let negl(λ) denote an arbitrary negligible function.

We give here the definition of two notions of mathematics: power-smooth numbers

and the minimum entropy of a random variable.

Definition 2.2 (B-power-smooth number). Let N ∈ N be an integer and let N =∏
i `
ei
i be its unique prime factorization. Let B ∈ N be an integer bound. N is a

B-power-smooth number if and only if, for all i,

`eii ≤ B.
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Definition 2.3 (Min-entropy). Let X be a random variable. We say that X has

min-entropy H∞(X) = b if and only if

max
x

Pr[X = x] ≤ 2−b.

2.2 Cryptography definitions

We now recall some standard definitions of primitives and schemes and their security

notions. A comprehensive overview of this material can be found in Katz and Lindell’s

Introduction to Modern Cryptography, with some modifications to suit our notation

in later chapters [87].

2.2.1 Pseudo-random functions and the random oracle model

A pseudo-random function (PRF) is one of the most important tools in cryptography.

It circumvents the difficulty of generating sequences of truly random bits by producing

an output which is computationally indistinguishable from random.

Definition 2.4 (Pseudo-random function). Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be an

efficiently computable, length-preserving keyed function. F is a (quantum) pseudo-

random function if, for all (quantum) probabilistic poly (λ)-time distinguishers D,

there exists a negligible function negl(λ) such that∣∣∣∣ Pr
k←$ {0,1}λ

[DFk(·) = 1]− Pr
f ←$F

[Df(·) = 1]

∣∣∣∣ ≤ negl(λ) ,

where F denotes the set of all functions mapping {0, 1}n → {0, 1}n.

A pseudo-random generator (PRG) is then a strictly length-expanding PRF.

The random oracle model (ROM) is a proof technique used in cryptography to

idealize random functions. When a hash function or a PRF, such as those used as a

key-derivation function (KDF), is required to have a uniform output distribution, it

is replaced by a random oracle constructed as a list populated with random output

values each time a new input value is queried. A security proof can then be given in

the ROM, as opposed to the standard model, which guarantees that the security of

the scheme relies only on the random-looking ability of the function replaced by the

oracle.
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2.2.2 Symmetric cryptography

After the PRF, another important tool in cryptography is the one-way function

(OWF). Rather than looking random, it’s objective is to be hard to invert. In other

words, it should be computationally unfeasible for a (quantum) adversary to recover

the input corresponding to a given output. A OWF can also possess a trapdoor which

enables the efficient recovery of inputs.

Definition 2.5 (Trapdoor one-way functions). Let F : {0, 1}λ×{0, 1}n → {0, 1}n be

an efficiently computable and keyed function. F is a (quantum) one-way function if,

for all (quantum) probabilistic poly(λ)-time adversaries A, there exists a negligible

function negl(λ) such that

Pr
k←$ {0,1}λ

[x← A(Fk(·), y);x←$ {0, 1}n, y ← Fk(x)] ≤ negl(λ) .

F is a trapdoor OWF if, for each k ∈ {0, 1}λ there exists a efficient representation of

F−1
k such that F−1

k (y) is efficiently computable for all y ∈ {0, 1}n.

Unforgeable message authentication codes

A message authentication code (MAC) is a symmetric-key primitive that allows parties

sharing a secret key k to authenticate and verify messages, thereby detecting eventual

tampering with their content. Formally, a MAC is a triple of poly(λ)-time algorithms

MAC = (KGen, Tag, Vfy) such that, given a message and a key, Tag produces a tag, and

such that, given a message, a tag and a key, Vfy verifies that the tag corresponds to

the message.

Definition 2.6 (Message authentication code). A message authentication code is a

triple of probabilistic poly(λ)-time algorithms MAC = (KGen, Tag, Vfy) such that:

1. The key-generation algorithm KGen takes as input the security parameter 1λ and

outputs a key k.

2. The tag-generation algorithm Tag takes as input a key k and a message m ∈
{0, 1}∗ and outputs a tag t. We write this as t← Tagk(m).

3. The deterministic verification algorithm Vfy takes as input a key k, a message m

and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning

invalid. We write this as b← Vfyk(m, t).
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1. A key k is generated by running KGen(1λ).

2. The adversary A is given input 1λ and oracle access to Tagk(·). The adversary
eventually outputs (m, t). Let Q denote the set of pairs of messages queried to
the Tag oracle together with their responses.

3. A succeeds if and only if (1) Vfyk(m, t) = 1 and (2) (m, t) 6∈ Q. In that case the
output of the experiment is defined to be 1.

Figure 2.1: The sEUF-CMA security experiment ExpsEUF-CMA
A,MAC .

It is required that, for every key k output by KGen(1λ) and every m ∈ {0, 1}∗, it holds

that Vfyk(m, Tagk(m)) = 1.

The security experiment for strong unforgeability against chosen-message attacks,

denoted sEUF-CMA and presented in Figure 2.1, generates a random key and gives

the adversary access to a Tag oracle whilst recording pairs of queried messages and

the corresponding tags. The goal of the adversary is to output a message and a

corresponding valid tag such that this tag was never produced by the Tag oracle for

this message.

We denote A’s advantage in the sEUF-CMA security game as

AdvsEUF-CMA
A,MAC = Pr

[
ExpsEUF-CMA

A,MAC = 1
]

Definition 2.7 (Strong unforgeability). A message authentication code MAC = (KGen,

Tag, Vfy) is strongly (quantum) unforgeable under an adaptive chosen-message attack,

or strongly (quantum) secure, if for all (quantum) probabilistic poly(λ)-time adver-

saries A, there exists a negligible function negl(λ) such that

AdvsEUF-CMA
A,MAC ≤ negl(λ) .

2.2.3 Asymmetric cryptography

As only Part I discusses key-exchange, we reserve these definitions for Chapter 3. Here

we state standard definitions for PKE and signature schemes.

Public-key encryption schemes

A PKE scheme is a set of poly(λ)-time algorithms used for the encryption of plaintexts

into cyphertexts and the reverse decryption.
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Definition 2.8 (Public-key encryption scheme). A public-key encryption scheme is a

tuple of probabilistic poly(λ)-time algorithms E = (Setup, KGen, Enc, Dec) such that:

1. The setup algorithm Setup takes as input the security parameter 1λ and outputs

public parameters params required by the encryption scheme. We assume for

convenience that 1λ is implicit in params.

2. The key-generation algorithm KGen takes as input the parameters params and

outputs a key pair (pk, sk). We assume for convenience that params is implicit

in either pk or sk.

3. The encryption algorithm Enc takes as input a public key pk and a message m

from the message spaceM (specified by params). It outputs a ciphertext c, and

we write this as c← Encpk(m).

4. The deterministic decryption algorithm Dec takes as input a private key sk and

a ciphertext c, and outputs a message m or a special symbol ⊥ denoting failure.

We write this as m← Decsk(c).

It is required that, except possibly with negligible probability over (pk, sk) output by

KGen(params), we have Decsk(Encpk(m)) = m for any valid message m.

The standard (single-user) active security notion for PKE schemes is that of indis-

tinguishability under chosen ciphertext attack, denoted IND-CCA. The corresponding

security experiment gives an arbitrary adversary a randomly generated public-key

and, upon query of a left-right oracle, denoted OLR, with two messages of identical

lengths, returns the encryption of one of the two. Given access to a decryption oracle,

the adversary’s goal is to guess which of the two messages the oracle encrypts. The

adversary may query either oracle several times, with the only restriction that it may

not query the decryption oracle on any ciphertext output by the left-right oracle.

In Chapter 5, we make use of the multi-user security notion described in [12]. For

n participants, the n-IND-CCA security experiment is very similar to the single-user

setting. The difference is that the adversary is provided with n different public keys

and may query the left-right oracle on any one of these keys. Whether it is the right

or left message which is encrypted is still selected at random, but this choice remains

consistent between queries to all OLR oracles.

Formally, for an arbitrary public-key encryption scheme E = (Setup, KGen, Enc,

Dec) and (quantum) poly(λ)-time adversary A, we assume that the challenger simu-

lates a set U of n participants to the adversary. For a bit b ∈ {0, 1} we then define the
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1. Setup(1λ) is run to obtain params.

2. For each U ∈ U , KGen(params) is run to obtain keys (pkU , skU ).

3. The adversary is given {pkU}U∈U and access to several oracles: OLRpkU
(·, ·) and

DecskU (·) for each U ∈ U . The OLR oracles take as input two valid messages m0

and m1 and returns EncpkU (mb).

4. A may query the decryption oracles whenever it wishes, but may never submit
a ciphertext output by OLRpkU

to the corresponding decryption oracle DecskU .

5. Finally, A outputs a guess bit b′. We define the output of the experiment to be
that guess b′.

Figure 2.2: The n-IND-CCA-b security experiment Expn-IND-CCA-b
A,E .

n-IND-CCA-b experiment in Figure 2.2. We denote A’s advantage in the n-IND-CCA

game as

Advn-IND-CCA
A,E =

∣∣∣Pr
[
Expn-IND-CCA-0

A,E = 1
]
− Pr

[
Expn-IND-CCA-1

A,E = 1
]∣∣∣ .

Definition 2.9 (n-IND-CCA security). A public-key encryption scheme given by E =

(Setup, KGen, Enc, Dec) is said to have (quantum) polynomially-secure indistinguish-

able encryptions under a chosen-ciphertext attack (or is (quantum) n-CCA-secure) if

for all (quantum) probabilistic poly(λ)-time adversaries A there exists a negligible

function negl(λ) such that

Advn-IND-CCA
A,E ≤ negl(λ) .

The formal definition for the usual IND-CCA security against one key follows from

setting n = 1 in the experiment and definition above. Security in the multi-user

setting and the single user setting are related by the following theorem [12].

Theorem 2.10. Let E = (Setup, KGen, Enc, Dec) be a public-key encryption scheme

and n be an integer of poly(λ) size. Then

Advn-IND-CCA
A,E ≤ n ·Adv1-IND-CCA

A,E .

A weaker notion for PKE schemes is that of one-way security against chosen-

message attacks (OW-CPA). This differs from single-user IND-CCA security in two
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1. Setup(1λ) is run to obtain params.

2. KGen(params) is run to obtain (pk, sk).

3. A random message m←$M is sampled and its ciphertext c ← Encpk(m) is
computed.

4. The adversary is given pk and c but no access to any oracle.

5. A eventually outputs a guess message m′. We define the output of the experi-
ment to be 1 if m′ = m and 0 otherwise.

Figure 2.3: The OW-CPA security experiment ExpOW-CPA
A,E .

aspects; first, the adversary does not have access to a decryption oracle and, second,

the adversary must recover the entire plaintext behind a challenge ciphertext, not

only distinguish one bit of information. We present the corresponding experiment in

Figure 2.3. We denote A’s advantage in the OW-CPA game as

AdvOW-CPA
A,E = Pr

[
ExpOW-CPA

A,E = 1
]
.

Definition 2.11 (OW-CPA security). A public-key encryption scheme given by E =

(Setup, KGen, Enc, Dec) has (quantum) one-way security against chosen-plaintext at-

tacks (or is (quantum) OW-CPA-secure if for all (quantum) probabilistic poly(λ)-time

adversaries A there exists a negligible function negl(λ) such that

AdvOW-CPA
A,E ≤ negl(λ) .

Digital signature schemes

A (digital) signature scheme is a set of poly (λ)-time algorithms used to produce

signatures on a given message and to verify such signatures against a given public

key.

Definition 2.12 (Signature scheme). A (digital) signature scheme is a tuple of prob-

abilistic poly(λ)-time algorithms S = (Setup, KGen, Sig, Vfy) such that:

1. The setup algorithm Setup takes as input the security parameter 1λ and outputs

public parameters params required by the signature scheme. We assume that 1λ

is implicit in params.
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2. The key-generation algorithm KGen takes as input the parameters params and

outputs a key pair (pk, sk). We assume that params is implicit in either pk or sk.

3. The signature algorithm Sig takes as input a secret key sk and a message m

from the message spaceM (specified by params). It outputs a signature σ which

we write as σ ← Sigsk(m).

4. The deterministic verification algorithm Vfy takes as input a public key pk,

a message m and a signature σ and outputs a bit b indicating whether the

signature is valid or not.

It is required that, except possibly with negligible probability over (pk, sk) output by

KGen(params), it holds that Vfypk(Sigsk(m)) = 1 for any valid message m.

Similarly to message authentication codes, the role of digital signature schemes

is to provide authentication and integrity guarantees to messages. Existential un-

forgeability under adaptive chosen-message attacks (EUF-CMA) is therefore also the

standard security notion here. The experiment is similar to that of Figure 2.1 and we

summarize it within the following definition.

Definition 2.13 (EUF-CMA security). A signature scheme S = (Setup, KGen, Sig,

Vfy) is said to be (quantum) existentially unforgeable under an adaptive chosen-

message attack if, for any (quantum) probabilistic poly(λ)-time algorithm A, there

exists a negligible function negl(λ) such that:

AdvEUF-CMA
A,S = Pr

Vfy(pk,m∗, σ∗) = 1

∧m∗ 6∈ Q

∣∣∣∣∣∣∣∣∣
params← Setup(1λ)

(pk, sk)← KGen(1λ)

(m∗, σ∗)← ASigsk(·)(pk)

 ≤ negl(λ) ,

where ASigsk(·) denotes A’s access to a signing oracle with private key sk and Q denotes

the set of messages m that were queried to Sigsk(·) by A.

Existential unforgeability under key-only attacks (EUF-KO) is a weaker notion of

security for signature schemes but is a useful one to use as a stepping stone to proving

EUF-CMA security. Here the adversary is given only the public key of the scheme

and no access to a signing oracle.

Definition 2.14 (EUF-KO security). A signature scheme S = (Setup, KGen, Sig, Vfy)

is said to be (quantum) existentially unforgeable under a key-only attack if, for any
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(quantum) probabilistic poly(λ)-time algorithm A, there exists a negligible function

negl(λ) such that:

AdvEUF-KO
A,S = Pr

Vfy(pk,m∗, σ∗) = 1

∧m∗ 6∈ Q

∣∣∣∣∣∣∣∣∣
params← Setup(1λ)

(pk, sk)← KGen(1λ)

(m∗, σ∗)← A(pk)

 ≤ negl(λ) .
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Part I

Authenticated key-exchange

23





Chapter 3

Refining the BR model

In this chapter, we present Bellare and Rogaway’s orginal model [15] for AKE and its

adaptation to the public-key setting by Blake-Wilson, Johnson and Menezes [23]. We

base our description on Kudla’s BJM and mBJM models [93] together with the frame-

work of game-based security definitions developed by Brzuska et al. [32] and formulate

the BR definition of authentication in a predicate-based notation. In preparation for

Chapters 4 and 5, we also augment the previous formulations of Kudla and Brzuska

et al. with appropriate elements to capture forward secrecy, the definition of key-

confirmation of Fischlin et al. [69] and our new authentication framework.

We first present how parties and protocols are modeled and then describe how

an adversary can interact with instances of parties running sessions of a protocol to

attempt to break a given security guarantee. We then discuss different ways in which

the model can keep track of which parties exchanged with one another under the

direction of the adversary before finally presenting an analogue of the original BR

security definition.

We note that by taking all adversaries mentioned in the definitions of this chap-

ter to be quantum algorithms, the security model presented here is inherently post-

quantum.

Except where specified, the material in this chapter is the work of M. Fischlin1,

B. Warinschi2 and this author; it was published in the proceedings of the 33rd IEEE

Computer Security Foundations Symposium, CSF 2020, and presented by this author

at the virtual edition of the conference [56]. The additions to previous definitions and

reformulations were the results of joint work between all three authors.

1Technische Universität Darmstadt, Germany.
2University of Bristol, U.K., and later Dfinity, Switzerland.
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3.1 Modeling AKE protocols and their participants

We first define formally the notions of participant identities and of AKE protocols.

For the former, we propose a new addition to existing models: a flexible mechanism to

separate participants who are expected to authenticate themselves during an execution

of the protocol—for example this is the case of servers, in opposition to clients, in

the setting of Internet browsers. This addition allows for a flexible modeling of the

spectrum between no authentication and mutual authentication.

3.1.1 Identities

We let ni be the number of parties present in the model. Each party has a unique

identity i and we denote by I = {i} the set of size ni of all identities.

In certain scenarios, only one of the two participating parties is expected to au-

thenticate itself. To separate the identities of such parties, we specify a subset S ⊆ I;

this is a first addition to previous BR-style models. The parties that are not expected

to provide authentication are modeled by the identities in I \S, these typically would

not hold long-term secret information.

This modeling flexibly captures varying forms of authentication: a secure protocol

for which S = I provides mutual authentication for all sessions, whereas one for which

S = ∅ provides no authentication whatsoever; for S a non-empty proper subset of I,

it provides one-way authentication of identities in S. We leave the specification of S
within I as a design choice for protocols.

In this work, we assume that each party is aware of its own identity during an

execution. We furthermore work in the pre-specified peer model [103] where each

party is also aware of its intended partner’s identity before the beginning of a protocol

execution.

3.1.2 Authenticated key-exchange protocols

During executions, AKE protocols (which we formally define below in Definition 3.1)

run locally at each party in the context of a local session. These local sessions are

identified by a local session identifier ` ∈ I × I × Z where ` = (i, j, k) refers to the

k-th session of identity i with intended peer j. We use `.id and `.pid to refer to i and j

respectively. We let ns be the maximum value of k for any ` in a game.

Each such local session maintains a state in order to respond coherently to messages

forming part of an execution. The state of the local session with identifier ` = (i, j, k)
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is composed of the following:

• (pki, ski), the long-term key pair of identity i, the “owner” of the session. This

is initialized to `.id’s key pair if i ∈ S or set to ⊥ if i ∈ I \ S.

• pkj , the long-term public key of identity j, the intended peer of the session. This

is initialized to `.pid’s public key if j ∈ S or set to ⊥ if j ∈ I \ S.

• ρ ∈ {init, resp} is the role of the owner in this session of the protocol, i.e. whether

it sent the first message or received a first message from another session.

• crypt ∈ {0, 1}∗ is some protocol-specific private session state used to maintain

secret values from one invocation to the next.

• tran ∈ {0, 1}∗ is the concatenation, with delimiters, of messages received and

sent by the session.

• accept ∈ {true, false,⊥} indicates whether the party has accepted or rejected the

session as an successful execution of Π. Initially set to ⊥, to signify running,

accept may change to either true or false only upon termination. We assume the

value of accept is public.

• sid ∈ {0, 1}∗ ∪ {⊥}, the session identifier as specified by the protocol. Initially

set to ⊥, it may be changed once to a non-trivial value. If the sid is different

from ⊥, then accept must be set to true, and vice versa, if accept is set to true,

then sid must become different from ⊥. We assume that the value of sid is made

public when accept is set to true. (We further discuss these identifiers and the

implications of revealing them in Section 3.3.2.)

• k ∈ {0, 1}∗ ∪ {⊥} is the (session-)key locally derived during the execution. Ini-

tially set to ⊥, it may be changed once to a non-trivial value. If k is different

from ⊥, then accept must be set to true, and vice versa, if accept is set to true

then, k must become different from ⊥. We note that this implies that sessions

must terminate with the same call to the protocol as that which sets the k and

sid, they cannot continue once k is set.

• kconf ∈ {full, almost, no,⊥} indicates the form of key confirmation that the owner

expects to receive. This addition to the model captures the fact that one partner

of a run always terminates first and therefore may not expect a full confirmation

of the final session-key. The value of kconf is initialized to ⊥ and set when the

session is first activated.
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• kcid ∈ {0, 1}∗ ∪ {⊥} is a key-confirmation identifier, indicating sessions which

will eventually derive the same key. Initially set to ⊥, it may be changed once

to a non-trivial value and may not be changed again. If k is different from ⊥,

then kcid must be different from ⊥.

We write SST[`] = ((pki, ski), pkj , ρ, crypt, tran, accept, sid, k, kconf, kcid) to denote the

session state of `. We use the notation `.sid or `.k to refer to individual elements and

use similar notation for the game, local session or model states which we define below.

Our session state renames some elements present in [32] and augments the state

from that work with the kconf and kcid elements from [69]. These are used to modu-

larly capture the formal definition of key confirmation of [69], similarly to the addition

of S to capture different authentication directions.

Given this description of session states, we now state the definition of an authen-

ticated key-exchange protocol.

Definition 3.1 (Authenticated key-exchange protocol). We define an authenticated

key-exchange protocol as a triple of probabilistic poly(λ)-time algorithms, together

with the description of two identity sets, Π = (I,S, Setup, KGen, ζ) such that:

1. The setup algorithm Setup takes in the security parameter 1λ and outputs

a tuple of public parameters params required for the protocol. Among other

information, params always contains the parameter 1λ and specifies a message

space M and a key space K.

2. The key-generation algorithm KGen takes as input the public parameters params

and an entity identifier i and outputs an entity-specific public/private key pair

(pki, ski).

3. The protocol function ζ computes the next step in the protocol execution of

session ` given a new incoming message m. In doing so, it computes the next

message that ` should send and also updates internal values within `; i.e. m′ ←
ζ(SST[`],m).

The notion of correctness requires that whenever messages are relayed faithfully

between two participants, then they both accept and compute identical session keys

(except with negligible probability over the randomness used in the algorithms).

In this work we will describe protocols by giving the flows of a single run. A

description of the function ζ can be easily inferred. Also, we may abuse notation and

write Π (or sometimes Σ) both for the protocol function ζ and the entire protocol

which includes key generation, i.e. for (Setup, KGen, ζ).
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3.2 Execution environment and experiment states

The concepts of identities, sessions and their states, and protocol execution are part of

real-world deployment of AKE protocols. However, to model security definitions and

capture categories of adversaries, we require a security experiment, sometimes referred

to as a security game. In such an experiment, a challenger simulates to an adversary

an execution environment which captures the attack surfaces that the adversary has

in the real world. In particular, this environment contains several identities, each

capable of running multiple sessions with different intended peers. For each identity

and session, the adversary is allowed to obtain information regarding long and short-

term secrets, via certain queries.

In order to keep track of this simulated environment, and of which secrets have

already been revealed, the challenger maintains several states. These were first intro-

duced in [32] and are as follows:

• LSID: the list of all valid local session identifiers `.

• SST: the list of protocol-related session state for each identifier ` ∈ LSID.

• LST: the list of game-related local session state for each identifier ` ∈ LSID.

• EST: the game execution state containing global protocol-related information.

• MST: the model state containing global game-related information, relevant to

the notion being defined (e.g. a hidden bit).

Setup. Simulating an execution environment for a given protocol Π and security

definition requires setting up these different states at the beginning. This is cap-

tured by the following procedures, run by the challenger at the beginning of security

experiments.

• (SST,EST)← SetupE(LSID, KGen, 1λ): for protocol-relevant components.

• (LST,MST)← SetupG(LSID, SST,EST, 1λ): for game-relevant components.

The definition of these procedures forms part of the definition of a security notion

since LST and MST contain game-related variables.
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3.2.1 Common states for authentication experiments

As many of the authentication security notions we introduce in Chapter 4 share the

same execution, game and local states, we present these together here. We note that

our notions do not make use of the model state MST. These are in the most part

taken from [32], with some renaming, together with some additions.

Game execution state. As in [32], the execution state EST contains a list Lkeys =

{(i, pki, ski, δi)}i∈S where i is an identity, pki, ski is the public/secret key pair of i

and δi ∈ {honest, corrupt} denotes whether ski has been corrupted, i.e. leaked to the

adversary at some point in the security experiment.

In Brzuska et al.’s work [32], the SetupE algorithm generates (pki, ski)←$ KGen(1λ)

for all identities and uses these to initialize EST and SST[`] for every ` ∈ LSID. Our

SetupEauth does the same but only generates long-term keys for identities i ∈ S.

Local session state. The local session state contains modeling information about

a particular session, to remember whether long or short-term secrets were revealed to

the adversary before or after the session was completed. It consists of:

• δownr ∈ {honest, corrupt}: denotes the honesty of the owner of the session before

the session was completed (i.e. while `.accept = ⊥).

• δpeer ∈ {honest, corrupt}: denotes the honesty of the intended peer of the session

before the session was completed.

• δsess ∈ {fresh, revealed}: denotes whether the session-key for this session has been

revealed to the adversary after the session was completed.

We write LST[`] = (δownr, δpeer, δsess) for the local session state of session ` and use the

notation `.δsess to refer to individual elements. As in [32], keeping track of δownr sepa-

rately from δi allows sessions that were completed before their owner was corrupted to

still be considered as honest executions; this enables the modeling of forward secrecy.

Since our authentication notions do not make use of the model state MST, our

SetupGauth procedure simply initializes each LST[`] as (honest, honest, fresh).

3.2.2 Adversarial interaction and common queries

Based on the security parameter λ and descriptions for I and S, the challenger for a

given security notion will first populate the different states described above according

to the SetupEauth and SetupGauth procedures.
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The adversary A is a probabilistic polynomial-time (PPT) algorithm that then

interacts with the execution environment and the sessions it contains using queries

specified by a set Q. Upon receiving a query q ∈ Q, the experiment has a behaviour

algorithm χ which takes q together with the current state of the execution environment

and returns a response to A. The behaviour χ typically either calls ζ to update

session states, updates execution environment information, or communicates protocol

information directly to A.

As we wish to obtain “active” security this behaviour allows the adversary to

control the running of the protocol between the different sessions. In particular,

communication between sessions of the model is controlled by A which can choose to

forward legitimate messages or to insert is own, as well as modify, redirect, delay or

erase messages. With different sessions belonging to the same identity, the adversary

can engage them in several concurrent executions of the protocol, with the same

intended peer or not; all of this using queries specified by Q.

Not every query is always valid; this is captured by a Valid predicate which the

challenger evaluates each time a query q is received. Based on q and the current exe-

cution state, Valid returns either true or false which determines whether χ is executed

on q.

Common queries for authentication experiments

In addition to the common states, our security games for authentication notions also

share a query set Qauth. We specify here the Send, Reveal and Corrupt queries

following the work of Brzuska et al. but, as we model key-compromise impersonation

(KCI) resistance in addition to usual security, we modify the Valid predicate.

The Send query. Whatever the game, Qauth always includes the Send query. It

takes an identifier ` ∈ LSID and a message m ∈ {0, 1}∗ as inputs and is processed by χ

by running ζ(SST[`],m). This updates SST and returns a response m′ which is given

to A together with the updated value of `.accept if applicable.

If the incoming message m = `, this prompts ` to initiate a new execution of Π.

If the response m′ ends with a, this indicates that ` has completed the session; in this

case the value of `.sid is also returned to A.

This gives complete control of the communication network to A and allows it to

forward, alter, delay, create or delete messages.
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The Reveal query. When A submits Reveal(`), χ sets `.δk ← revealed and returns

`.k to A. This query models leakage of session-keys that can take place in the real-

world.

The Corrupt query. We formalize the Corrupt(i) query as follows. First, χ sets

the value of δi in Lkeys to corrupt. Then, for any session ` = (i, ∗, ∗) ∈ LSID for which

`.accept = ⊥, χ sets `.δownr ← corrupt; similarly for any session ` = (∗, i, ∗) which is

still running, χ sets `.δpeer = corrupt. Finally, ski is returned to A.

The Valid predicate. In Brzuska et al.’s model, the Valid predicate restricts the

adversary to make Send queries only to “un-revealed sessions of honest users where

the key has not been accepted or rejected”. As a significant difference, our Validauth

predicate permits Send queries to sessions which are still running but whose owner

has already been corrupted. This is crucial to model KCI resistance as this notion

guarantees a security property to sessions whose owner was corrupted before they

terminated; this implies that sessions have to continue running after corruption. Fur-

thermore, the Valid predicate returns false if a Reveal query is made to a session ` for

which `.k = ⊥.

3.2.3 Winning condition and security experiment

An experiment considers that the adversary A has “won”, i.e. broken a security prop-

erty of Π, if it succeeds in triggering a “bad” event. This event is defined by a predi-

cate Pred which is a logical statement evaluated over the state of the execution envi-

ronment. We denote this by b ← Pred(LSID,SST, LST,EST,MST), where b ∈ {0, 1},
and b = 1 signifies that A has successfully triggered the “bad” event. We then formally

define a generic security experiment as follows.

Definition 3.2 (Authentication game and experiment). A game G is defined by

the tuple (SetupEauth, SetupGauth,Qauth,Validauth, χ,Pred) and runs a challenger that

maintains a state (LSID, SST, LST,EST,MST). An experiment ExpGA,Π parameterized

by a protocol Π (which includes descriptions of I and S), a (quantum) probabilistic

polynomial-time adversary A and a game G, is executed as follows.

1. The challenger executes (SST,EST) ← SetupEauth(LSID, KGen, 1λ) and (LST,

MST)← SetupGauth(LSID, SST, EST, 1λ).

2. The adversary submits queries from Qauth to the challenger which processes

them according to Validauth and χ.
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3. When A terminates, b ← Pred(LSID, SST, LST,EST,MST) is evaluated by the

challenger which finally returns b as the output of the experiment.

We note that our definition of a game G includes more than [32, Definition 1];

namely we include Qauth and Pred, as these also uniquely characterize it.

3.3 Session partnering

In some security experiments there exist trivially successful attack strategies. For

example, an adversary could make two sessions execute the protocol with each other,

use the Reveal query to obtain the key from one of them, and then trivially break any

notion of key secrecy for the other session. This must be prohibited by the winning

condition defined by Pred; however, this requires a notion of partnering to capture

which sessions can be said to have engaged with each other in a run of the protocol.

3.3.1 Matching conversations

In the first instance, partnering was captured by the notion of matching conversations,

defined in the original work of Bellare and Rogaway [15]. This considers two sessions to

be partners if all messages sent by one have been received by the other, and vice-versa.

Definition 3.3 (Matching conversation). Let `, `′ ∈ LSID be two sessions with tran-

scripts `.tran = {`, r1,m2, r2, . . . ,mj , rj} and `′.tran = {m′1, r′1,m′2, r′2, . . . ,mk, rk}
such that:

• m′i = ri for i ≥ 1,

• mi = r′i−1 for i ≥ 2,

• for j even: rj = a and k = j − 1,

• for j odd: rk = a and k = j,

• `.id = `′.pid and `.pid = `′.id,

then we say that the sessions ` and `′ have engaged in a matching conversation and

that the predicate BRMatching(`, `′) holds true. We also sometimes say that ` and `′

are matching (sessions).

This definition has some shortcomings. First, the comparison of the messages

exactly as they were sent and received does not leave room for a more detailled analysis
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of the content that truly matters for identifying a given exchange. For example, if a

protocol tolerates the re-randomization of messages then the adversary could easily

break the partnership of two sessions that otherwise exchanged the same identifying

information.

Secondly, the last criteria of the definition requires that the two sessions agree on

their expected identities. While this is a condition that must be imposed on protocols

for them to provide authentication guarantees, including it here leads to different

security notions being conflated, making them harder to analyse separately.

3.3.2 Session identifiers

Another notion to partner two sessions as having engaged in the same execution is that

of session identifiers, originally proposed by Bellare, Pointcheval and Rogaway [14].

These are computed by the protocol itself, and are not explicitly linked to the messages

exchanged between parties; thus the protocol is free to include whatever information is

deemed necessary to the identification of the session. (We note that these are different

from the local session identifier ` which is an artifact of the model.)

As they are defined separately from the transcript of each session, we see that these

session identifiers address the shortcomings of the notion of matching conversations

that we outlined above.

Beyond their abstract use in the modeling of the execution environment, the session

identifiers of [14] were intended for parties to identify the session keys for further use.

Brzuska et al. note in [32, Section 3] that a weak form of (public) session matching

(i.e. a mechanism by which an eavesdropper can identify which sessions are partnered

together) is necessary to ensure certain composition results. They point out, however,

that the original practice in [14] of giving the identifier to the adversary upon accep-

tance of the session straightforwardly yields such a matching mechanism. We maintain

this original approach of making these session identifiers public upon acceptance, thus

preventing them from containing any secret information.

Definition 3.4 (Partners). We say that two sessions ` and `′ are partners if the

predicate Partner(`, `′) holds true, where

Partner(`, `′) ⇐⇒
[
(` 6= `′) ∧ (`.sid = `′.sid 6= ⊥)

]
.

Thus, to be partners, two sessions need to be administratively different in the

model and to both have set a non-trivial sid. This does not exclude the possibility

that they belong to the same identity, i.e. that `.id = `′.id.
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For correctness, we require that two sessions executing Π without adversarial in-

teraction derive identical sids upon accepting and are therefore partnered. We also

require that two such sessions derive identical keys, k, and kcids.

While this definition of partnering appears similar to that of other “matching”

sessions in CK-like models [35, 92, 96], it differs in two important aspects. The first

is that it does not involve the sessions’ identities, thus separating out authentication

notions. The second is that our sids are derived by the protocol itself rather than

arbitrarily set by a higher protocol layer. Furthermore, as mentioned above, our notion

of sids supersedes that of matching conversations which is also used for partnering

sessions in [92] and [96].

3.4 The original Bellare–Rogaway definition

In the original work of Bellare and Rogaway [15], security for AKE protocols is defined

in two steps: first the protocol needs to provide mutual authentication, and secondly

it needs to provide key secrecy.

3.4.1 Secure mutual authentication

Entity authentication is captured in the original BR model using the No-Matching

event. This is triggered if an adversary manages to make a session accept without a

matching session, under the notion of matching conversations of Definition 3.3.

To work this event into our framework, we define the BRmAuth predicate to capture

the negation of the No-Matching event. Thus this new predicate holds true if and

only if the event is not triggered. Here the aim of A is to make a session accept without

having perfectly relayed the messages to and from its intended partner, and to do so

without corrupting either party at any time. This restriction on the corruptions that

A is able to perform introduces the notion of freshness.

Session freshness

A session in the execution environment is considered fresh for a particular purpose

if it satisfies certain “health” criteria. Typically these criteria prevent the adversary

from submitting queries that would allow it to win the security game trivially.

In the case of mutual authentication, Blake-Wilson, Johnson and Menezes [23]

chose to exclude sessions whose owner or peer was corrupted at any time during the
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execution in their adaptation of the BR model to the asymmetric setting. This can

be captured in our framework with the BRaFresh predicate.

Definition 3.5 (BR authentication freshness). For any session ` ∈ LSID, the Bellare–

Rogaway authentication freshness predicate BRaFresh(`) evaluates to 1 if and only if

δ`.id = δ`.pid = honest.

Note that this is different from requiring `.δownr = `.δpeer = honest as the latter only

speaks to the corruption status of the session at the time of the execution of `. This

would not be equivalent to the definition of Blake-Wilson et al. which requires that

the parties remain honest during the whole execution of the protocol environment.

Original BR definition

Using the freshness condition above then gives us the following definition for the

original BR authentication experiment.

Definition 3.6 (BR authentication security game). The BR mutual authentication

predicate BRmAuth evaluates to 1 if and only if

∀` ∈ LSID, (`.accept ∧ BRaFresh(`)) =⇒ ∃`′ ∈ LSID : BRMatching(`, `′).

The BR mutual authentication game GBRmAuth is then defined as in Definition 3.2

with Pred = BRmAuth.

We denote A’s advantage in the BRmAuth security game as

AdvBRmAuth
A,Π = Pr

[
ExpBRmAuth

A,Π = 1
]
.

and below we state the original (albeit reworded) definition of secure mutual authen-

tication which includes a requirement for correctness.

Definition 3.7 (Secure mutual authentication). An AKE protocol Π = (I,S, Setup,
KGen,Π) provides (post-quantum) secure mutual authentication if the following hold.

• (Matching conversations =⇒ Acceptance) If two sessions ` and `′ have matching

conversations in the sense of Definition 3.3, then both sessions accept.

• (Acceptance =⇒ Matching conversations) For all probabilistic poly (λ)-time

(quantum) adversaries A there exists a negligible function negl(λ) such that

AdvBRmAuth
A,Π ≤ negl(λ).
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3.4.2 Session-key forward secrecy

After defining secure mutual authentication, Bellare and Rogaway then provide an ex-

periment for key secrecy. This follows the now-standard indistinguishability paradigm

where security is achieved when an adversary cannot distinguish a true key from one

sampled independently at random.

We capture the original notion with the BR-secrecy game GBRSec,D, where D

denotes the distribution of the session-keys output by an honest run of the protocol. As

this secrecy notion differs fundamentally from the authentication notion we presented

above, we now present the additional modeling components required in our security

experiment framework.

Modeling components

This game uses the same execution, session and local session states as the default

ones describes in Sections 3.1.2 and 3.2.1; thus the SetupEauth algorithm is also the

same here. However, the model state used for game-specific components is different.

Here MST contains two bits, btest ∈ {0, 1} and bguess ∈ {0, 1} as well as a session

identifier `test ∈ LSID; these will capture the real-or-random challenge submitted to

the adversary. To interact with this, the adversary also has access to two new queries:

Test and Guess.

• The Test(`) query sets `test ← ` and returns either k = `.k if btest = 1 or

k←$D otherwise. This query enables A to choose the session for which it must

distinguish a real key from a random one.

• The Guess(b) query sets bguess ← b to record A’s guess for the hidden value of

btest.

Given the usage made of the new components btest, bguess and `test, we let the SetupGsec
algorithm initialize them as btest←$ {0, 1}, bguess ← ⊥ and `test ← ⊥.

With the addition of these new queries, we must specify how the Validsec predicate

processes them. It requires that only one Test query is made, and to a session that

has already derived a session-key, and that also only one Guess query is made. At

this moment, we note that nothing yet prevents the adversary from submitting queries

that will allow him to trivially win the game, such as submitting Reveal(`) followed

by Test(`) and comparing the two keys obtained. We therefore must impose freshness

requirements for this experiment too.
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BR secrecy freshness and forward secrecy

Definition 3.8 (BR secrecy freshness). For any session ` ∈ LSID, the Bellare–

Rogaway secrecy freshness predicate BRsFresh(`) evaluates to 1 if and only if

`.δk = fresh

∧ `.δownr = `.δpeer = honest

∧ ∀`′ ∈ LSID,BRMatching(`, `′) =⇒ `′.δk = fresh.

Note that this definition does not require ` to have a matching partner. The

session is still considered to be fresh even if the adversary has managed to make `

accept by generating and sending messages by itself.

In addition, and in contrast to the BRaFresh condition, a session only needs to be

“secrecy fresh” during its execution; after it has accepted, the adversary can corrupt

the parties involved. This change of condition on the corruption of the parties captures

forward secrecy exactly: the secrecy should be preserved even if the long-term keys are

lost after the session has completed. The only restrictions on future queries, ensured

by the Validsec predicate, is that A may not query Reveal(`test) or Reveal(`′) with

BRMatching(`test, `
′) = true.

BR forward secrecy.

To capture the secrecy experiment originally described by Bellare and Rogaway, we

define the BRSec predicate below. Due to the distinguishing nature of the secrecy

challenge, this predicate does not evaluate to 1 if a certain condition holds; instead it

evaluates to the value of MST.bguess.

Definition 3.9 (BR forward secrecy). The BR secrecy predicate BRSec evaluates to

MST.bguess if and only if

MST.`test 6= ⊥ ∧ BRsFresh(MST.`test)

and evaluates to ⊥ otherwise. The security game GBRSec,D is then defined as in

Definition 3.2 with Pred = BRSec, together with SetupEauth, SetupGsec, Qsec = Qauth∪
{Test, Guess} and Validsec. We also denote by GbtestBRSec,D the security game initialised

with a specific value for btest.

We say that an AKE protocol Π = (I,S, Setup, KGen,Π) provides (post-quantum)

forward secrecy (w.r.t. key distribution D) if, for all probabilistic poly(λ)-time (quan-
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tum) adversaries A, there exists a negligible function negl(λ) such that

AdvBRSec
A,Π =

∣∣∣∣Pr

[
Exp

G0
BRSec,D

A,Π = 1

]
−
[
Exp

G1
BRSec,D

A,Π = 1

]∣∣∣∣ ≤ negl(λ) .

3.4.3 Full BR security definition

Finally we combine both the notions of mutual authentication and session key forward

secrecy into a single security definition.

This is captured in our model as the adversary is allowed, before it submits a

Guess query, to submit Corrupt queries to the identities that took part in the test

session, as captured by the BRsFresh predicate. With that possibility in mind, we

still require that its advantage in the BRSec experiment remains negligible. Thus,

proving that an AKE protocol satisfies this definition of security also proves that it

possesses forward secrecy, in which case we say it is a forward-secure AKE protocol.

Additionally, our definition also captures the usual properties of AKE protocols such

as session-key reveal secrecy and third-party compromise security.

Definition 3.10 (BR AKE security). An AKE protocol Π with key distribution D is

(post-quantum) BR-(forward-)secure if, for all probablisitic poly(λ)-time (quantum)

adversaries A, the following conditions hold.

1. If messages are relayed faithfully (by a benign or an active adversary) between

two sessions, then both sessions accept holding identical session keys, and each

session’s key is distributed according to D.

2. Π is a (post-quantum) secure mutual authentication protocol (Definition 3.7).

3. Π provides (post-quantum) forward secrecy w.r.t. key distribution D (Defini-

tion 3.9).
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Chapter 4

New definitions of authentication

While the original BR definition of security for AKE protocols captures the most

important notions, namely entity authentication and key secrecy, it is not very de-

tailled and is not suited to more detailed analysis. It also conflates certain properties

which are then hard to analyze independently from one another. As described in Sec-

tion 1.1.1, this trend was further exacerbated as authentication-specific requirements

were removed from security definitions in later models. In this chapter we present

a comprehensive study of the various forms of authentication in AKE protocols and

present a formal definition for each of them. We also discuss how different combi-

nations of properties relate to each other through implications and/or equivalence

relations.

We first focus on the notion of Match-security which captures correctness against

active adversaries; as this was where authentication notions were often covered in

previous models, we discuss how our definition relates to these. We then study key

authentication where three distinct flavours emerge: implicit, confirmation and ex-

plicit; we discuss each in turn and also demonstrate some relations between them and

with Match- and BR-security. Next we study entity authentication and describe how

it both differs from and is similar to key authentication. Here again the same three

flavours emerge albeit with less meaning than their counterparts related to keys. We

also prove different relations between notions of key and entity authentication. We

next discuss how our notions can adapt to models of AKE security that consider

stronger adversaries, such as the model of Canetti and Krawczyk (CK model) [35].

In the last two sections of this chapter, we prove the folklore result that an im-

plicitly authenticated key which is then validated through secure use in fact provides

explicit authentication to its users. To do so we first define the class of key-confirming
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protocol and then prove that the composition of the two attains the desired notion.

As for the previous chapter, the contents of this chapter have been selected from

the paper published at CSF [56]; the ideas and strategies were the joint result of this

author and his two co-authors. Except where specified, the discussions and proofs are

the work of this author in the most part.

4.1 Match security

In this section we build on the work of [32] to separate a first notion, that of match

security, which can be intuitively described as guarantee of correctness even in the

presence of active adversaries, but without any guarantees of authentication. This re-

moval of the authentication guarantees provided by match security is a new component

of this work; previous definitions of this notion include requirements that matching

sessions agree on each other’s identities in some form.

The first step for a more fine-grained analysis of authentication is to no longer use

the BRMatching predicate for session partnering and instead use the more generic

Partner predicate. We also introduce components of newer models, such as key-

confirmation identifiers, which were not used in the previous chapter. Given this,

a Match-secure AKE protocol should ensure that:

1. Partner sessions derive the same k and kcid (properties 4.1 and 4.2 below);

2. At most two sessions derive the same sid (property 4.3);

3. Sessions with the same kcid accept with the same k (property 4.4).

This guarantees disagreements cannot be created between partnered sessions and that

the AKE protocol in question is robust against such attacks. Formally, we define the

following predicate.

Definition 4.1 (Match predicate). The Match predicate evaluates to 1 iff ∀`, `′, `′′ ∈
LSID,

(
Partner(`, `′) ∧ `.k 6=⊥6= `′.k

)
=⇒ Samekey(`, `′) (4.1)

∧
(
Partner(`, `′) ∧ `.kcid 6=⊥6= `′.kcid

)
=⇒ Samekcid(`, `′) (4.2)

∧
(
Partner(`, `′) ∧ Partner(`, `′′)

)
=⇒ `′ = `′′ (4.3)

∧
(
Samekcid(`, `′) ∧ `.k 6=⊥6= `′.k

)
=⇒ Samekey(`, `′). (4.4)
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where Samekey(`, `′) ⇐⇒ [`′ 6= ` ∧ `′.k = `.k 6= ⊥] and Samekcid(`, `′) is defined anal-

ogously.

We then define the Match security game GMatch in the sense of Definition 3.2 with

Pred = Match. The advantage of an adversary A against Π in the game GMatch is

written as

AdvGMatch
A,Π = Pr

[
ExpGMatch

A,Π = 0
]
.

Definition 4.2 (Match security). An AKE protocol Π is Match-secure if, for all

probabilistic poly (λ)-time adversaries A, there exists a negligible function negl(λ)

such that AdvGMatch
A,Π,I,S = negl(λ) .

4.1.1 Comparison to previous definitions.

Considered in the context of the BR model, our definition of Match security refines

that of [32] in two ways. First we incorporate the conditions of the KCIDbind pred-

icate of [69] as conditions (4.2) and (4.4). As this work builds a unified model of

AKE protocols with both authentication and key confirmation, it is reasonable to add

this predicate to the definition of Match since it concerns notions of correctness and

soundness, as the previous definition already did for keys and partnering.

Secondly, we remove the requirement that partnered sessions should agree on each

other’s identities (which was also present in the original BRMatching predicate). This

condition would imply that Match-secure AKE protocols already provided some form

of authentication, albeit very weak. This mixes an authentication with design and

soundness and we therefore remove it here. We present separate definitions for au-

thentication in the next sections.

In the context of the CK-style models, as summarized in [49], the usual first

requirement of security is for matching sessions of honest identities to derive equal

keys. We note that our notion of Match security would capture and extend this

requirement if a StateReveal query were added to its game. We note that we do not

restrict to honest identities, as we do not consider that the adversary takes control

of sessions ` managed by the game; thus our Match predicate is only evaluated for

honestly-behaving sessions.

4.2 Key authentication and confirmation

Next we present new predicate-based definitions for key authentication notions. We

define three distinct flavours: implicit, confirmation and explicit. For each, we first
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discuss the intuitive understanding that motivates our definition and then give a for-

mal statement. We then show that our definitions are consistent with each other by

proving that a protocol that combines implicit key authentication and key confirma-

tion also provides explicit key authentication.

4.2.1 Implicit authentication

We take implicit to mean: “should there be a session `′ that holds the same key as

session `, then the owner of session `′ must be the identity designated as the peer of

session `.” Equivalently, this means that any session whose owner is not designated by

the peer of ` should not be able to derive the same session-key. (Recall that the term

“session” refers to sessions executed by the model and that this does not forbid the

adversary from deriving the key itself; this therefore does not guarantee the secrecy

of the key. It also doesn’t even guarantee the existence of such a session `′ when `

eventually terminates.)

This informal notion of implicit authentication raises the question whether to

only consider sessions which interact with an honest peer, or to also allow those with

a corrupted peer (unbeknown to the owner). The impact of this distinction was first

observed by Diffie et al. [61]. Their design of the station-to-station (STS) protocol

aimed to prevent an attack in which one can make an honest identity B believe it

is sharing a key with a malicious E, whereas the actual other honest key holder A

intends to communicate with B. This later took on the name of an unknown key-share

(UKS) attack [24] which, ironically, was shown to apply to the STS protocol in the

same work [24].

For our formal definition, the question is then either to restrict the adversary’s

valid targets to the sessions that were executed with an honest peer, or to allow all

sessions as valid targets, even those that accepted with a corrupted peer. The first

choice would comply with the idea stated in [24] that “the provision of implicit key

authentication is only considered in the case where B engages in the protocol with an

honest entity (which E isn’t).” The second choice, would instead lead to a definition

where UKS attack scenarios, even with dishonest peers, are accounted for. Such a

scenario would, for example, include a corrupt server causing a client to exchange a

key with another, unintended, server. It is clear that this second formulation yields a

stronger security guarantee and it is the one we choose to capture in our definitions.

We stress, furthermore, that our model also captures key-compromise imperson-

ation (KCI) resistance [23]. This property guarantees that an adversary that knows
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the long-term key of a party is still unable to impersonate another identity to them.

Such resistance is captured in our formal definition below since it also allows the owner

of target sessions (and not only their intended peers) to be corrupted.

Definition 4.3 (Implicit key authentication). The iKeyAuth predicate evaluates to 1

if and only if

∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒ ∀`′ ∈ LSID,
(
Samekey(`′, `) =⇒ `′.id = `.pid

)
,

where `.accept holds true if and only if `.accept = true. We then say that the AKE

protocol Π provides implicit key authentication if, for all probabilistic poly(λ)-time

adversaries A, there exists a negligible function negl(λ) such that

Adv
GiKeyAuth

A,Π = Pr
[
Exp

GiKeyAuth

A,Π = 0
]

= negl(λ) ,

where GiKeyAuth is the same as G of Definition 3.2 with Pred = iKeyAuth.

Note that the iKeyAuth predicate only applies to sessions that expect authentica-

tion (captured by the condition that `.pid ∈ S). This models the fact that one can

only provide authentication to keys if one possesses authenticating information.

An artefact of this formal definition is that protocols without authenticating in-

formation (i.e. with S = ∅) strictly speaking provide implicit key authentication as

there is no authenticating party which the adversary can attack. Mathematically, this

corresponds to a quantification over the empty set.

On the other end of the spectrum, we see that the case where S = I rejoins

mutual authentication where, upon completion, any session ` has authenticated to

session `′ and vice-versa. Indeed, if `.id ∈ S and also `.pid ∈ S, then both sessions

expect to receive authentication and are also expected to provide it. Upon both

sessions completing, the predicate therefore induces a symmetry in the authentication

guarantees which we term mutual implicit key authentication.

As explained above the definition, this first flavour of key authentication considers

the strongest attack model for the adversary. We remark that we could strengthen

the above requirement and only consider sessions ` with an honest peer at the time

of session execution, i.e. with `.δpeer = honest. Indeed, this notion sometimes appears

in the literature: it still provides guarantees for parties who engage in sessions of the

protocol with an honest peer as intended partner but it also neglects executions in

which the intended peer is dishonest in which case one could be vulnerable to certain

UKS attacks.

45



CHAPTER 4. NEW DEFINITIONS OF AUTHENTICATION

4.2.2 Key confirmation

The second notion of key confirmation is, intuitively, “the guarantee that, when a

session ` terminates, another session `′ holds the same key.” While this does not

provide authentication in the sense of binding an identity to a key, we define it here

because its existential guarantee is a link between implicit and explicit authentication.

In contrast to implicit authentication, we note here that key confirmation only

makes sense for honest peers. This is because an adversary impersonating an honest

party (by knowing its authenticating information) can always compute the key and

provide confirmation to the target session on its own. To prevent this trivial attack,

we must introduce a freshness condition as we did for the original BR notions of

authentication and secrecy in Section 3.4. This will remove any session whose peer

was corrupted at the time of the execution from the set of valid target sessions.

Definition 4.4 (Authentication freshness). For any ` ∈ LSID, aFresh(`) evaluates to

true if and only if

`.δpeer = honest.

We note that this freshness notion does not prohibit Reveal queries (which only

affect `.δsess); this is because key authentication properties are expected to hold upon

derivation of the key, and knowledge of other sessions’ keys should not help the ad-

versary in breaking these.

Furthermore, we show that the Reveal query is not useful for the adversary to

wrongfully provide confirmation. Two cases are possible: either another session de-

rives the same key and the adversary reveals it, but then another session with the

same key does exist, and therefore confirmation holds even though it does with the

adversary’s intervention; or the adversary reveals the target session itself. However,

the second option is somewhat of a tautology, as, in our model, setting the key to a

non-trivial value is synonymous with accepting and terminating. Therefore the ad-

versary cannot submit a Reveal query before the session has already accepted, at

which point the adversary has already won if the session does not share a key with

any other. Hence our freshness predicate does not need to eliminate trivial attacks

using the Reveal query.

In their work defining key-confirmation, Fischlin et al. [69] introduced the distinc-

tion between full and almost-full key confirmation which captures the differences in

guarantees that the last sender and last receiver in an AKE session can expect. We

present here their definitions and refer to [69] for a discussion. The first says that if
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an “authentication fresh” session with full key confirmation accepts, then there must

be at least one other session holding the same key.

Definition 4.5 (Full key confirmation). The fKeyConf predicate evaluates to 1 if and

only if

∀` ∈ LSID,


aFresh(`)

∧ `.kconf = full

∧ `.pid ∈ S

∧ `.accept

 =⇒ ∃`′ ∈ LSID :: Samekey(`′, `).

We then say that the AKE protocol Π provides full key confirmation if, for all prob-

abilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ) such

that

Adv
GfKeyConf

A,Π = Pr
[
Exp

GfKeyConf

A,Π = 0
]

= negl(λ) ,

where GfKeyConf is defined similarly to GiKeyAuth.

We see that the session’s expected level of key confirmation is captured by the

condition that `.kconf = full — for a given protocol Π, a session can decide which key

confirmation to expect if it is activated as an initiator or a responder. Also, the session

` in question is excluded from the existence condition by the Samekey predicate and

a session therefore cannot confirm its own key. We note that fKeyConf is only tested

against sessions that expect authentication, with `.pid ∈ S, as is discussed in [69,

Section III.D]. While this condition is not strictly required in the predicate for our

result in Section 4.2.4, we adopt it here to align ourselves on the stand-alone definition

of key confirmation.

As pointed out by Fischlin et al. [69], almost-full key confirmation is delicate to

define. We adopt their notion saying that if an aFresh session accepts, then there must

be a another session holding the same key-confirmation identifier and, moreover, if

that other session has already derived a key, then it is the same one as the original

session.

Definition 4.6 (Almost-full key confirmation). The afKeyConf predicate is defined
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as

∀` ∈ LSID,

 aFresh(`) ∧ `.kconf = almost

∧ `.pid ∈ S ∧ `.accept

 =⇒

∃`′ ∈ LSID ::

 Samekcid(`′, `)

∧
[
`′.k 6= ⊥ =⇒ Samekey(`′, `)

]
 .

We then say that the AKE protocol Π provides almost-full key confirmation if, for

all probabilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ)

such that

Adv
GafKeyConf

A,Π = Pr
[
Exp

GafKeyConf

A,Π = 0
]

= negl(λ)

where GafKeyConf is defined similarly to GiKeyAuth.

4.2.3 Explicit authentication

This third notion is much stronger than the first and intuitively rejoins the original

BR definition of mutual authentication. Indeed, we take explicit to mean that au-

thentication is obtained at termination, and therefore it does not rely on the potential

use of the key at a later time. In other words, a session `, upon accepting, knows that

there is another session `′ which holds the same key and whose identity is bound to it.

Intuitively, it is a combination of implicit authentication and key confirmation, and

indeed it was informally defined as such in Menezes, van Oorschot and Vanstone’s

Handbook of Applied Cryptography [104]; this intuition is reflected in the predicates

below.

Similarly to key confirmation, the existence of a session which has already derived

the same key cannot always be guaranteed due to the asymmetry of the final message

flow in AKE protocols. We therefore define the two analogous notions of full and

almost-full explicit key authentication.

As before, we study the requirements of a freshness predicate. As in the case of

implicit authentication, we do not stipulate that the peer should be honest for the

target session when it comes to the condition that any partner holding the same key

is correctly identified (∀`′ ∈ LSID, Samekey(`′, `) =⇒ `′.id = `.pid). This again

provides safety against all possible UKS attacks. Only for the “liveness” condition

(i.e. that there exists a party with the same key) do we require that the intended peer

is honest (aFresh(`) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `)); otherwise the session may have
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communicated with an impersonating adversary which could trivially compute the

key. Similarly to key confirmation, the Reveal query would not enable the adversary

to conduct trivial attacks; this implies that the aFresh predicate defined in the context

of key confirmation is also the correct one here.

In summary, full explicit key authentication demands that for any fresh accepting

session, any other session deriving the same key has the correct identity and there

exists at least one other session holding the same key, if the peer is honest.

Definition 4.7 (Full explicit key authentication). The fexKeyAuth predicate evaluates

to 1 if and only if

∀` ∈ LSID,

`.pid ∈ S ∧

`.kconf = full ∧

`.accept

⇒
(∀`′ ∈ LSID, Samekey(`′, `)⇒ `′.id = `.pid) ∧

(aFresh(`)⇒ ∃`′ ∈ LSID :: Samekey(`′, `)).

We then say that the AKE protocol Π provides full explicit key authentication if, for

all probabilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ)

such that

Adv
GfexKeyAuth

A,Π = Pr
[
Exp

GfexKeyAuth

A,Π = 0
]

= negl(λ)

where GfexKeyAuth is defined similarly to GiKeyAuth.

We see that a session’s expectation of both authentication and confirmation ap-

pears as `.pid ∈ S and `.kconf = full in the predicate. Similarly to key confirmation,

we define the almost-full variant of explicit key authentication.

Definition 4.8 (Almost-full explicit key authentication). The predicate afexKeyAuth

evaluates to 1 if and only if

∀` ∈ LSID, (`.pid ∈ S ∧ `.kconf = almost ∧ `.accept) =⇒
∀`′ ∈ LSID,Samekey(`′, `) =⇒ `′.id = `.pid

∧ aFresh(`)⇒ ∃`′ ∈ LSID ::

 Samekcid(`′, `)

∧ (`′.k 6= ⊥ =⇒ Samekey(`′, `))


 .

We then say that the AKE protocol Π provides almost-full explicit key authentication

if, for all probabilistic poly(λ)-time adversaries A, there exists a negligible function
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negl(λ) such that

Adv
GafexKeyAuth

A,Π = Pr
[
Exp

GafexKeyAuth

A,Π = 0
]

= negl(λ)

where GafexKeyAuth is defined similarly to GiKeyAuth.

4.2.4 Equivalence results

We now formally prove the coherence of the authentication definitions presented

above. Namely, we show that a protocol which satisfies both implicit key authen-

tication and key confirmation also satisfies explicit key authentication, and we show

that the converse holds.

Theorem 4.9. Let Π be an AKE protocol; it holds for Π that

iKeyAuth ∧ fKeyConf ⇐⇒ fexKeyAuth, (4.5)

iKeyAuth ∧ afKeyConf ⇐⇒ afexKeyAuth. (4.6)

Proof. We first focus on equation (4.5) and show that iKeyAuth ∧ fKeyConf =⇒
fexKeyAuth; we proceed by proving the contrapositive. Let A be a successful adversary

against the fexKeyAuth predicate; i.e. A reaches an execution state where ¬fexKeyAuth

holds true. This is equivalent to

∃`∗ ∈ LSID :: `∗.pid ∈ S ∧ `∗.kconf = full ∧ `∗.accept

∧

 ∃`′ :: Samekey(`′, `∗) ∧ `′.id 6= `∗.pid

∨ aFresh(`∗) ∧ ∀`′′,¬Samekey(`′′, `∗)

 (4.7)

Thus if ¬fexKeyAuth holds true, either the first expression of the or clause holds,

which implies ¬iKeyAuth, or the second one holds and implies ¬fKeyConf. We therefore

obtain that

¬fexKeyAuth =⇒ ¬iKeyAuth ∨ ¬fKeyConf (4.8)

which completes the first part of the proof.

We now show that fexKeyAuth =⇒ iKeyAuth ∧ fKeyConf. We first show that

fexKeyAuth =⇒ iKeyAuth. Let A be a successful adversary against the iKeyAuth

predicate; i.e. A reaches an execution state where ¬iKeyAuth holds true which is
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equivalent to

∃`∗ :: `∗.pid ∈ S ∧ (`∗.kconf = full) ∧ `∗.accept

∧ ∃`′ :: Samekey(`∗, `′) ∧ (`′.id 6= `∗.pid). (4.9)

Note that we include `∗.kconf = full in ¬iKeyAuth as we only aim to prove that

fexKeyAuth implies iKeyAuth for sessions that expect full explicit key authentication.

We now assume, for contradiction, that fexKeyAuth holds; this implies that

∀` ∈ LSID,

 Samekey(`, `∗) =⇒ `.id = `.pid)

∧ aFresh(`∗) =⇒ ∃`′′ :: Samekey(`∗, `′′)

 (4.10)

for `∗ as in (4.9). We see that the existence of `′ that holds from (4.9) contradicts

the first condition of (4.10) which shows that fexKeyAuth =⇒ iKeyAuth as expected

from the formulation of the predicates.

We now show that fexKeyAuth =⇒ fKeyConf. Let A be a successful adversary

against the fKeyConf predicate; i.e. A reaches an execution state where ¬fKeyConf

holds true. This is equivalent to

∃`∗ ::


aFresh(`∗) ∧ `∗.pid ∈ S

∧ (`∗.kconf = full) ∧ `∗.accept

∧ ∀`,¬Samekey(`∗, `)

 .

This `∗ is now exactly one that satisfies ¬fexKeyAuth and hence we immediately have

that fexKeyAuth =⇒ fKeyConf. As we have that fexKeyAuth implies both iKeyAuth

and fKeyConf, combined with (4.8) this concludes the proof that

iKeyAuth ∧ fKeyConf ⇐⇒ fexKeyAuth.

The proof of the same equivalence for almost-full confirmation notions, equation (4.6),

follows from a similar argument.

4.2.5 Key-match soundness

We next define the KMSoundness property which captures the essence of BR secrecy

as a predicate without Test and Guess queries. It says that for any authentication

fresh and accepting session `, there does not exist another session `′ which holds the
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same key but is not partnered with `. This captures exactly the proof strategy often

used in the literature to argue that authentication is captured by secrecy notions;

indeed, the strategy is to create two non-partnered sessions which have the same

key (i.e. a break in authentication) and then revealing one and testing the other to

win the secrecy experiment. The issue with that approach is that the requirements

for secrecy freshness are often stricter than those for authentication freshness, thus

certain authentication attacks may be eliminated from the model despite not being

necessarily trivial.

Definition 4.10 (Key-match soundness). The KMSoundness predicate evaluates to 1

if and only if

∀` ∈ LSID,


aFresh(`)

∧ `.pid ∈ S

∧ `.accept

 =⇒ ∀`′ ∈ LSID :: (Samekey(`′, `) =⇒ Partner(`′, `)).

We then say that the AKE protocol Π provides key-match soundness if, for all prob-

abilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ) such

that

AdvGKMSoundness
A,Π = Pr

[
ExpGKMSoundness

A,Π = 0
]

= negl(λ)

where GKMSoundness is defined similarly to GiKeyAuth.

The next theorem bridges the previous authentication notions with the original

Bellare–Rogaway definition of secrecy by showing that BR-secrecy and Match-security

together imply Key-Match soundness.

The definition above and the theorem below and its proof are in the most part the

work of M. Fischlin and are reproduced here as published in [56].

Theorem 4.11. Let Π be an AKE protocol with Match security and BR-secrecy w.r.t.

D. Then it also provides key-match soundness. More precisely, for any probabilistic

poly(λ)-time algorithm A attacking KMSoundness in at most n sessions, it holds that

for some probabilistic poly(λ)-time algorithms B1, B2 and the output length |k| of keys,

AdvGKMSoundness
A,Π ≤ n2 ·Adv

GBRSec,D

B2,Π
+ AdvGMatch

B1,Π
+ 2−|k|.

Proof. The first observation is that Match security implies that any session partnered

to either ` or to `′ must hold the same key as the corresponding session. If this would

not hold with overwhelming probability, we could build an algorithm B1 to refute
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Match security in a straightforward way. This enables us to assume that there are two

sessions `0 and `′0 with the above property and that both accept without a partnered

session. That is, `0 and `′0

• hold identical keys, i.e. Samekey(`0, `
′
0),

• are not partnered, i.e. ¬Partner(`0, `
′
0), and

• for neither of the two sessions, in the moment when the session accepts, there is

another session which is yet partnered with the session.

Note that `0 must have accepted, by assumption, such that `0.k 6= ⊥, and therefore

Samekey(`0, `
′
0) implies that session `′0 must have a valid key too. In particular it

must have accepted the session (and can both be tested and revealed in an attack on

secrecy).

Assume now that there was a successful adversary A against key-match soundness

(with two sessions `0, `
′
0 as above). We show how to break BRSec through an adversary

B2 with non-negligible probability in this case.

Our adversary B2 will try to predict the sessions `0, `
′
0 by picking two session

numbers i, j at random from {1, 2, . . . , n}, where we count sessions according to their

initialisation in A’s simulated attack. Next, B2 runs A’s attack, relaying all inputs

and oracle queries and answers between B2’s game and A. Note that B2 has the same

oracle interfaces as A, but in addition may call the Test and the Guess oracle.

Adversary B2 diverges from A with respect to two points: if the i-th session in the

attack accepts, then B2 immediately asks to Reveal the session key ki. If the j-the

session accepts, then B2 immediately calls Test to get a key value kj . Adversary B2

makes the Guess(bguess) query and stops, where the bit bguess is set to 1 if ki = kj , and

to 0 otherwise.

Note that up to the point when B2 makes the Test query, the simulation to A is

perfect. Assume that B2 predicts `0, `
′
0 correctly for the Test query resp. the Reveal

query, which happens with probability at least 1/n2. Then the Test session `0 does

not have a partner yet, is authentication fresh and the authenticating partner is still

honest, such that the session is still secrecy fresh. In this case, if btest = 1 the Test

oracle returns the actual session key, such that the keys match, and we have B2

output 1, too. In summary, the probability of this happening is at least 1
n2 times the

probability that A succeeds, minus a negligible term for refuting Match security. This

is non-negligible.
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Next consider the case btest = 0 such that the test session `0 returns a random key.

Then the probability that this independent random key matches the other key is 2−|k|

and thus negligible, such that B2 only returns 1 with this negligible probability.

4.3 Entity authentication

This second form of authentication does not involve the session-key in its security

guarantees; instead it provides authentication guarantees based only on the session

that just took place. Our entity authentication definitions are based on the Partner

predicate, instead of Samekey, and intuitively require that if two sessions terminate

with the same sid, then they should agree on each other’s identities. This corresponds

to the intuitive notion of identification protocols where sessions obtain guarantees

upon accepting and deriving an identifier. We first present our definitions and then

demonstrate that entity and key authentication are in fact equivalent for Match-secure

and BR-secret AKE protocols (since these two properties imply a binding between

session identifiers and session-keys).

4.3.1 Entity authentication: implicit, confirmation and explicit

To adapt our definitions of Section 4.2 to entity authentication, we replace Samekey by

Partner in the security definitions. Below we present the predicates for implicit entity

authentication, entity confirmation and full explicit entity authentication. The full

case requires the definition of the session state variable econf ∈ {full, almost, no,⊥},
indicating, analogously to kconf, which form of entity authentication a session expects

to obtain. The almost-full case is more involved because it also requires entity con-

firmation identifiers, similarly to the kcid; those definitions can be derived from the

almost-full case for key authentication.

Definition 4.12 (Implicit entity authentication). The iEntAuth predicate evaluates

to 1 if and only if

∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒ ∀`′ ∈ LSID,
(
Partner(`′, `) =⇒ `′.id = `.pid

)
.

We then say that the AKE protocol Π provides implicit entity authentication if, for

all probabilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ)

such that

AdvGiEntAuth
A,Π = Pr

[
ExpGiEntAuth

A,Π = 0
]

= negl(λ) ,
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where GiEntAuth is defined similarly to GiKeyAuth.

In short, this notion says that the owner of an implicitly entity-authenticated

session is guaranteed to have been partnered with (i.e. had the same protocol execution

as) sessions that belong to its intended peer. We note that this is a very weak notion

as the session terminates neither with an explicit guarantee nor with a secret element,

such as a key, that it may use later to obtain a stronger guarantee. In fact, this was

the notion that was typically included in previous definitions of Match security (e.g.

in the Psid predicate of [32]).

Definition 4.13 (Full entity confirmation). The fEntConf predicate evaluates to 1 if

and only if

∀` ∈ LSID,


aFresh(`)

∧ `.econf = full

∧ `.pid ∈ S

∧ `.accept

 =⇒ ∃`′ ∈ LSID :: Partner(`′, `).

We then say that the AKE protocol Π provides full entity confirmation if, for all

probabilistic poly (λ)-time adversaries A, there exists a negligible function negl(λ)

such that

AdvGfEntConf
A,Π = Pr

[
ExpGfEntConf

A,Π = 0
]

= negl(λ) ,

where GfEntConf is defined similarly to GiKeyAuth.

As for key authentication, the full explicit variant of entity authentication is cap-

tured by a combination of the previous two predicates.

Definition 4.14 (Full explicit entity authentication). The fexEntAuth predicate eval-

uates to 1 if and only if

∀` ∈ LSID,

`.pid ∈ S ∧

`.econf = full ∧

`.accept

⇒
(∀`′ ∈ LSID, Partner(`′, `)⇒ `′.id = `.pid) ∧

(aFresh(`)⇒ ∃`′ ∈ LSID :: Partner(`′, `)).

We then say that the AKE protocol Π provides full explicit entity authentication if, for

all probabilistic poly(λ)-time adversaries A, there exists a negligible function negl(λ)

such that

AdvGfexEntAuth
A,Π = Pr

[
ExpGfexEntAuth

A,Π = 0
]

= negl(λ)
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where GfexEntAuth is defined similarly to GiKeyAuth.

Separating the two different properties that constitute explicit entity authentica-

tion may be helpful to understand and guide protocol design. For example, with this

separation in mind, a signature over the transcript sent at the end of an execution can

be seen as providing entity confirmation, and therefore boosting implicit entity au-

thentication to explicit authentication. A similar argument could show that password

authentication over a secure channel can serve a similar purpose.

4.3.2 Key and entity authentication relationships

We now present the necessary conditions for key and entity authentication notions

to be equivalent to one another. We use the “secrecy and match-security predicate”

KMSoundness from Definition 4.10 to state the relationships in terms of predicates.

Recall that this predicate holds (with overwhelming probability) for a Match-secure

and BR-secret protocol. Under the assumption that partnered sessions derive equal

keys and equal keys can only be derived in partnered sessions, it holds intuitively that

authentication guarantees obtained via keys are equivalent to those obtained directly

via session identifiers. We formalize this below in Propositions 4.15 and 4.16.

Proposition 4.15. Let Π be an AKE protocol; it holds that

iKeyAuth ∧Match =⇒ iEntAuth, (4.11)

fexKeyAuth ∧Match ∧ KMSoundness =⇒ fexEntAuth, (4.12)

Proof. The first implication (4.11) can be viewed as follows. Both predicates are iden-

tical, except that entity authentication uses the Partner predicate instead of Samekey.

Hence, a mismatch—in the sense that iKeyAuth holds but iEntAuth does not—can

only occur if

∃` ∈ LSID ::


`.pid ∈ S

∧ `.accept

∧ ∃`′ ∈ LSID :: (Partner(`′, `) ∧ ¬Samekey(`′, `))

 .

If the sessions `, `′ would have the same key then they would also satisfy the identity

requirement `′.id = `.pid, because of the iKeyAuth property.

Note that the partnering predicate stipulates that the session identifiers of ` and

`′ are equal (and different from ⊥). According to our specification of key exchange
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protocols this, in turn, implies that both sessions must have accepted and, if so, that

they have set the keys to values different from ⊥. But now we would get an immediate

contradiction to Property (4.1) of Match security with the statement that

∃`, `′ ∈ LSID :: Partner(`, `′) ∧ (`.k 6=⊥6= `′.k) ∧ ¬Samekey(`, `′).

The second implication (4.12) follows similarly; there are two possibilities for a

mismatch (fexKeyAuth holds, but fexEntAuth does not). Either the first property in

the implication in fexEntAuth, which also appears in the implicit definition, is false,

in which case we get the same contradiction as before, or the second property in

the implication (aFresh(`) =⇒ ∃`′ :: Partner(`′, `)) is false, although it holds in

fexKeyAuth for the Samekey case. This means that

∃` ∈ LSID ::


aFresh(`) ∧ `.pid ∈ S ∧ `.accept

∧ ∃`′ ∈ LSID :: Samekey(`′, `)

∧ ∀`′′ ∈ LSID :: ¬Partner(`′′, `)

 .

Note that this means that there will be a session `′ which has the same key as `, and

since ` has accepted it must be a valid key `.k 6= ⊥, but such that no other session is

partnered with `. This, however, contradicts the KMSoundness predicate.

Proposition 4.16. Let Π be an AKE protocol; it holds that

iKeyAuth⇐= iEntAuth ∧Match ∧ KMSoundness, (4.13)

fexKeyAuth⇐= fexEntAuth ∧Match ∧ KMSoundness (4.14)

Proof. We start with the first implication (4.13). Similar to the previous proposition

one can show that any mismatch in the predicates implies

∃` ∈ LSID ::


`.pid ∈ S

∧ `.accept

∧ ∃`′ ∈ LSID :: (Samekey(`′, `) ∧ ¬Partner(`′, `))

 .

This would also contradict the KMSoundness predicate.

The second implication (4.14) leads either to a contradiction as in the implicit
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case, or we can analogously to the other direction conclude that

∃` ∈ LSID ::


aFresh(`) ∧ `.pid ∈ S ∧ `.accept

∧ ∃`′ ∈ LSID :: Partner(`′, `)

∧ ∀`′′ ∈ LSID :: ¬Samekey(`′′, `)

 .

This, of course, would contradict Property (4.1) of the Match predicate, as we would

have partnered sessions `, `′ which do not hold the same (valid) key `.k 6= ⊥. Here we

use the fact that partnering implies non-trivial session identifiers, and if session `′ has

set the identifier, it has accepted and set a key `′.k 6= ⊥, too.

Finally, we show that implicit entity authentication together with (full) explicit

entity confirmation is equivalent to full explicit entity authentication.

Proposition 4.17. Let Π be an AKE protocol; it holds that

iEntAuth ∧ fEntConf ⇐⇒ fexEntAuth

Proof. The proof is the same as that of Theroem 4.9 with the Samekey predicate

replaced by Partner.

4.4 Relation with CK-style security

In all CK-style models (CK, CKHMQV and eCK) the definition of “matching sessions”

includes the requirement that parties agree on each other’s identities. As there is

no other mention of matching expected identities, this seems to be the only capture

of authentication in such models. The argument here being the same as the one

captured by our KMSoundness predicate: if one can break authentication, then they

are breaking matching which can in turn be used to break secrecy.

Capturing authentication in CK-style models

In [49], Cremers states that since “the test session-key must be indistinguishable from

keys computed by non-matching sessions”, then sessions with the same key must be

matching sessions. This is analogous to our Theorem 4.11 concerning KMSoundness

except that the CK-style definition of matching includes expected identities, and there-

fore this implies that CK-style security also guarantees (at least) implicit authentica-

tion.
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Crucially, this argument however only applies to sessions for which CK-style secu-

rity holds, that is sessions that remain sFreshCK, for a suitable definition of this that

captures the restriction of the CK-style models as presented in [49]. In contrast, our

standalone Definition 4.3 of implicit authentication captures security against a wider

range of attacks due to the absence of freshness requirements on the target session.

Extending authentication freshness

To establish our authentication definitions of Section 4.2 in a CK-style model, we

consider whether the freshness conditions change with the addition of a StateReveal

query. This reveals to the adversary either the entire state or only the ephemeral key,

as defined by the protocol, for the CK and eCK models respectively [49].

Following from Section 4.2.1, we allow the adversary to make StateReveal queries

against the iKeyAuthCK predicate to capture the widest possible range of attacks. This

implies that A can both StateReveal a session and Corrupt its owner which is not

allowed by CK-style models. Following similarly from Sections 4.2.2 and 4.2.3, we

restrict the adversary from trivially obtaining the key when attacking key confirmation

and explicit key authentication. Therefore we state that it cannot both corrupt the

intended partner and also StateReveal a partner session against CK variants of these

predicates.

Separating authentication from secrecy

Let E denote the event, in a CK-style secrecy experiment, where A succeeds in causing

two game-controlled sessions to share a key without matching in the CK-style sense,

i.e. without agreeing on each other’s identities. Let GCKSec denote the usual CK-

style secrecy game and G−CKSec denote the game which instead uses our definition of

partnering of Section 3.3 without expected identities (i.e. an extension of the secrecy

game of Section 3.4.2). Using a rather informal terminology, we then have

Pr [A wins GCKSec] = Pr [A wins GCKSec|E ] · Pr [E ]

+ Pr [A wins GCKSec|¬E ] · Pr [¬E ] .

First, E corresponds to a break of iKeyAuthCK and so we have

Pr [A wins GCKSec|E ] · Pr [E ] ≤ Pr [¬iKeyAuthCK] .
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Second, if A wins GCKSec without triggering E , then his attack can be reproduced in

G−CKSec and so we have

Pr [A wins GCKSec|¬E ] · Pr [¬E ] ≤ Pr
[
A wins G−CKSec

]
.

In conclusion,

Pr [A wins GCKSec] ≤ Pr [¬iKeyAuthCK] + Pr
[
A wins G−CKSec

]
,

which shows that we can represent CK-style key secrecy through our separate notions

of authentication and key secrecy when adapted to these models.

4.5 Key-confirming protocols

We now define symmetric key-confirming protocols and give a simple example. These

provide guarantees on the existence of a session with the same key which may be

secondary to the main purpose of these protocols. For example, we expect that pro-

tocols for authenticated message transmission would belong to this class as they are

expected to return error messages if an incorrect key is used.

4.5.1 Definition

Based on [32, Section 4], we describe the syntax and the security game for such pro-

tocols. We denote these as π = (I, KGen, ζ) and write D for the output distribution

of the randomized algorithm KGen. To model such protocols, we use the same mech-

anism of local session identifiers. Here, EST is not defined as there are no long-term

keys.

Session state. For key-confirming protocols, it consists of:

• crypt ∈ {0, 1}∗: protocol-specific private session state.

• k ∈ {0, 1}∗ ∪ {⊥}: the symmetric key used.

• kcind ∈ {true, false,⊥}: indicates if key confirmation is achieved. Initially set to

⊥, it must be changed to true or false before termination. Its value is always

public.

The difference with [32] is the addition of the key confirmation indicator kcind. We

stress that setting kcind is done independently of termination. For example, a secure
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channel protocol could achieve key confirmation only after the first messages but

continue running for much longer as the channel is used for communication. We focus

on guarantees obtained from the setting of kcind and do not make assumptions or

requirements on termination.

Local session state. As in [32], it consists of:

• δk ∈ {fresh, revealed} denoting whether the key is known to the adversary.

• lst ∈ {0, 1}∗ any other local session state required to model the protocol’s other

security requirements.

Setup. The SetupE algorithm only initialises crypt, k and kcind to ⊥ for each ` ∈
LSID. The SetupG algorithm also only initialises δk ← fresh for every session as our

security game for key confirmation does not require any model-wide state.

Queries. As in [32], our model allows A to initialise sessions with three different

queries. The first, InitS(`), initialises a session with an honestly generated key,

`.k ← KGen(1λ), which remains hidden from A. The second, InitP(`1, `2), initialises

a session with the same key as another. The game sets `2.k← `1.k and `2.δk ← `1.δk.

The third, InitK(`, κ), allows A to set his own key. It sets `.k← κ and immediately

sets `.δk ← revealed. As before, Send(`,m) and Reveal(`) allow A to control the

network and view honestly generated keys.

The Valid predicate verifies that Send and Reveal queries are made to initialised

sessions and that initialisation queries are made to sessions without keys. For the

InitP query, it also verifies that `1 is initialised.

Key confirmation guarantee. Here there no longer is a distinction between full

and almost-full key confirmation since keys are set upon initialisation. This notion

says that for any session which has set the key confirmation identifier to true, there

is another session which uses the same key.

Definition 4.18 (Key confirmation guarantee). The symKeyConf predicate evaluates

to 1 if and only if

∀` ∈ LSID, (`.δk = fresh ∧ `.kcind = true) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `),
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where Samekey is defined as before, including the condition that `′ 6= `1. The game

GsymKeyConf is then defined with state, algorithms SetupE and SetupG, and behaviour

as above, with query set Q = {Send, InitS, InitP, InitK, Reveal} and winning pred-

icate P = symKeyConf.

The protocol π provides (secure) key confirmation, or is a key-confirming protocol,

if, for all probabilistic poly(λ)-time adversaries A, there exists a negigible function

negl(λ) such that

Adv
GsymKeyConf

A,π,I = Pr
[
Exp

GsymKeyConf

A,π = 0
]

= negl(λ) .

We note that a symmetric protocol π which always sets kcind = false trivially

achieves secure key confirmation. This is similar to an AKE protocol formally achiev-

ing implicit key authentication by setting S = ∅.

4.5.2 Protocol example

We present an example of key-confirming protocols. Let MAC = (KGen, Tag, Vfy) be an

unforgeable MAC (Definition 2.7). From such a MAC, we construct the protocol πkconf

as follows. If a session is activated with first message m = init, it sends t = Tag(k, 1).

When it receives a second message m∗, it verifies that it is a tag for the message “2”

by checking if Vfy(k, 2,m∗) = 1. If this holds, then it sets kcind ← true, otherwise

it sets kcind ← false. If a session is instead activated as a receiver, then it plays the

counterpart and checks that it correctly receives a tag for the message “1” and, if so,

sets kcind← true and replies with a tag for “2”. We present the formal description of

πkconf in Figure 4.1.

To show that the protocol πkconf is key-confirming, we use the concept of single-

session reducible games presented in [32]. Without specifying the formal details, we see

that the independence of sessions in the game GπkconfsymKeyConf , apart from their potential

partner, implies that this game is session restricted. Theorem 2 of [32, Appendix B]

then gives us that GπkconfsymKeyConf is single session reducible and therefore that the key-

confirmation property of πkconf depends only on the security of a single session.

We then reduce the security of one session to the unforgeability of MAC. The

reduction sets up a session and waits for the adversary to submit a message. If it

submits m∗ = init, then the reduction uses the oracle Tag(k, ·) to respond with a

correct tag. If it submits any other message, then the reduction submits (1,m∗) or

(2,m∗) as its forgery, depending on its role. If the reduction has queried the Tag

1We note that `.δk = fresh is analogous to a freshness condition.
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πkconf (with secret key k)

1 : Initialise kcind← ⊥ and role ρ← ⊥
2 : while kcind = ⊥ do

3 : Receive m∗

4 : if m∗ = init and ρ = ⊥ then

5 : Set ρ← init

6 : Send t = Tag(k, 1)

7 : elseif ρ = init then

8 : if Vfy(k, 2,m∗) = 1 then

9 : Set kcind← true

10 : else set kcind← false

11 : else

12 : if Vfy(k, 1,m∗) = 1 then

13 : Set kcind = true

14 : Send t = Tag(k, 2)

15 : else set kcind← false

Figure 4.1: A simple key confirmation protocol that expects a tag on the message “1”
or “2” depending on the role (initiator or responder) played by the session.

oracle on “1” in response to an init message, then the adversary must create a tag for

the message “2” to make πkconf accept and therefore there is no risk of the reduction

outputting a message which it has already queried. This shows that the reduction

creates a forgery exactly when the adversary is capable of winning is GπkconfsymKeyConf and

thus πkconf provides secure key confirmation if MAC is EUF-CMA-secure.

While this protocol is a simple example that has no objective beyond providing

secure key confirmation, it nonetheless provides justification for expecting useful con-

structions, such as authenticated encryption schemes or secure channel protocols, to

provide the same guarantees.

4.6 Key-confirming protocols and explicit authentication

We now define the composition of AKE protocols with key-confirming protocols. As

a significant difference to [32, Section 5], we consider the composition as an AKE

protocol, not as a symmetric protocol, and we prove that composing an AKE protocol

with implicit key authentication and key secrecy together with a secure key-confirming

protocol yields an AKE protocol with explicit key authentication.
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4.6.1 Syntax of composed protocols

The composition first runs the AKE protocol and then, once this accepts, runs the

symmetric protocol, initialised with the key from the first step, until key confirmation

is obtained. Recall that a key-confirming protocol π = (KGenπ, ζπ) sets kcind before

terminating and that it can then continue its execution; this is not the case when

forming an AKE protocol since it must terminate upon acceptance of the key, as in

Section 3.1.2. We therefore define π̄ to be π with the algorithm ζπ̄ the same as ζπ

but halted after kcind is set. Thus the key derived by ζke is only accepted as the

final key for the composition once ζπ̄ has set kcind to true. Given an AKE protocol

ke = (KGenke, ζke), we write ke; π̄ = (KGenke;π̄, ζke;π̄) for the composition.

As we consider ke; π̄ as an AKE protocol, it uses the same long-term key generation

as ke and therefore KGenke;π̄ = KGenke. The algorithm ζke;π̄ first runs ζke. If this rejects,

then ζke;π̄ rejects the session; otherwise it runs ζπ̄ with the derived key and accepts

or rejects depending on kcind. Formally, given an incoming message m, the algorithm

ζke;π̄ first examines the value of acceptke from the ke protocol. If acceptke = ⊥, it

passes m to ζke; if acceptke = true, it passes m to ζπ̄. We note that this value of

acceptke from ke is different from the value of acceptke;π̄ for ke; π̄ which is only set once

both ke and π̄ have terminated.

4.6.2 Syntax of composed games

The game Gke;π̄
Pred enables A to interact with simultaneous sessions of the composed

protocol. Here, the adversary’s goal is to attack the authentication property Pred of

ke; π̄ seen as an AKE protocol. We build this game from the elements of the games

for the protocols ke and π and use indices to distinguish them.

Game state. The execution state ESTke;π̄ is only ESTke as key-confirming protocols

do not have one. The session state SSTke;π̄ is made up of the same elements as for

key exchange protocols but constructed from the composing session states as follows:

• The long-term keying information is as in SSTke.

• The protocol private session state is the concatenation of both states: cryptke;π̄ =

cryptke‖cryptπ̄.

• The acceptke;π̄ indicator is set to true once kcindπ̄ is set to true. Note that this

only happens if acceptke is also already set to true as π̄ does not begin until ke

has accepted.
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• The session identifier sidke;π̄ is set to sidke only when acceptke;π̄ is set to true.

• The kke;π̄ is set to kke only when acceptke;π̄ is set to true. Before then, kke is kept

internally and passed on to π̄, so that kπ̄ ← kke, when acceptke ← true.

• As π̄ always provides full key confirmation, we have that kconfke;π̄ = full for all

sessions.

The local session state LSTke;π̄ is the same as for AKE protocols and the model state

remains undefined as it is not required for authentication.

Setup, queries and Valid predicate. These are the same as in Section 3.1.2 with

the addition that the Valid predicate uses Validπ̄ for Send and Reveal queries to

sessions executing π̄.

Winning predicates. Any predicate from Sections 3.4 (Bellare–Rogaway security),

4.1 (match security), 4.2 (key authentication) and 4.3 (entity authentication).

4.6.3 Composition result

We show that a implicitly authenticated key exchange protocol composed with a

key-confirming protocol produces an explicitly authenticated key exchange protocol.

Our choice of public session identifiers means we do not require a session matching

algorithm as in [32, Section 3].

Theorem 4.19. Let ke be a Match-secure key exchange protocol which provides im-

plicit key authentication and BR-secrecy w.r.t. key distribution D. Let π be a symmet-

ric-key protocol with key generation distribution D which provides secure key confirma-

tion. Then ke; π̄ is a key exchange protocol which provides explicit key authentication.

Proof. We make use of Theorem 4.9 to separate the work into two steps. First we prove

in Lemma 4.20 that ke; π̄ provides implicit key authentication under the assumption

that ke does. Then we prove in Lemma 4.21 that ke; π̄ provides full key confirmation

under the assumption that ke is BR-secret and that π̄ provides secure key confirmation.

As the two properties hold separately, Theorem 4.9 immediately gives us that ke; π̄

provides explicit key authentication.

Lemma 4.20. Let ke be a key exchange protocol and let π be a symmetric-key protocol.

For any probabilistic poly(λ)-time adversary A, it holds that, for some probabilistic
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poly(λ)-time algorithm B,

Adv
Gke;π̄

iKeyAuth

A,ke;π̄ = Adv
Gke

iKeyAuth

B,ke .

Proof. Let A be an adversary against ke; π̄ in the Gke;π̄
iKeyAuth game, which we denote as

Gke;π̄ when the context is clear. We build an adversary B against ke in the Gke
iKeyAuth

game, which we similarly denote as Gke.

The reduction B sets up Gke;π̄ for A as described above using elements from Gke. It

then responds to A’s queries in the following way. (We use the notation `ke;π̄ to denote

session identifiers used by A in Gke;π̄ and the notation `ke to denote the corresponding

identifiers used by B in Gke.)

• When A submits Send(`ke;π̄,m), B checks the value of `ke;π̄.accept. If it is either

true or false, B responds ⊥ to A as the sessions has either already accepted or

rejected. If it is still ⊥, B examines the value of `ke.accept.

– If `ke.accept = ⊥, B submits Send(`ke,m) to Gke and responds to A with m′

returned by Gke. If `ke.sid is set at that step, B remembers `ke.sid for when

it needs to set `ke;π̄.sid. If `ke.accept← false, B sets `ke;π̄.accept← false and

makes this known to A. If `ke.accept← true, B submits Reveal(`ke) to Gke

to obtain `ke.k.

– If `ke.accept = true and `π̄.kcind = ⊥, B has obtained `ke.k so it can respond

to A according to π̄ by computing the response internally. If `π̄.kcind ←
false, B sets `ke;π̄.accept ← false. If `π̄.kcind ← true, B sets `ke;π̄.accept ←
true and `ke;π̄.k← `k.k.

– The case of `ke.accept = false is never reached as it would already hold that

`ke;π̄.accept = false.

• WhenA submits Reveal(`ke;π̄), B checks the value of `ke;π̄.accept. If it is either ⊥
or false, B responds ⊥ to A as the Reveal query is invalid. If it is true, then

`ke;π̄.k was set when `ke;π̄.accept← true so B responds with `ke;π̄.k to A and sets

`ke;π̄.δsess ← revealed.

• When A submits Corrupt(i), B submits Corrupt(i) to Gke and receives ski

which it returns to A. At that moment, Gke will mark the values of `ke.δownr

and `ke.δpeer as corrupt for relevant sessions as decribed in Section 3.2.1. However,

B will not update the corresponding sessions in Gke;π̄ in the same way as this

would leak information to A about the internal stage of the sessions. Instead, B
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marks the values as corrupt for the sessions `ke;π̄ which have not completed the

entire composed protocol, even if they have already completed the key exchange

protocol and would not be marked as corrupt in Gke.

We now argue that if A is able to reach an execution state in Gke;π̄ which contra-

dicts the iKeyAuth predicate, then B, by behaving as described above, reaches a state

in Gke which also contradicts the iKeyAuth predicate. This means that the composed

protocol preserves the implicit key authentication of the key-exchange protocol ke. If

A reaches such a state, then we have that

∃`ke;π̄ ∈ LSIDke;π̄ :: (`ke;π̄.pid ∈ S ∧ `ke;π̄.accept)

∧
(
∃`′ke;π̄ ∈ LSIDke;π̄ :: Samekey(`′ke;π̄, `ke;π̄)

∧ `′ke;π̄.id 6= `ke;π̄.pid
)
.

We show that this also holds for the corresponding sessions `ke and `′ke in Gke. We

first have that `ke.pid ∈ S as all the sessions and the set S match one-to-one between

the two games. We then have that `ke.accept = true as `ke;π̄.accept is set to true only

if the ke session accepts, and B relays A’s Send queries identically which causes `ke to

accept in Gke.

As per the definition of the composed protocol ke; π̄, the final key is fixed as soon as

the ke part completes, therefore it holds that if two sessions accept with the same key

in Gke;π̄, then they have derived that same key in the first part. As B relays A’s queries

identically, we have that Samekey(`′ke, `ke) holds in Gke for the sessions corresponding

to `′ke;π̄ and `ke;π̄. Furthermore, `′ke.id 6= `ke.pid also holds as these values are the

same as the ones for the sessions in Gke;π̄. This shows that the following holds for the

corresponding sessions:

∃`ke ∈ LSIDke :: (`ke.pid ∈ S ∧ `ke.accept)

∧
(
∃`′ke ∈ LSIDke :: Samekey(`′ke, `ke) ∧ `′ke.id 6= `ke.pid

)
,

which implies that B is successful for the game Gke
iKeyAuth exactly when A is succesful

for the game Gke;π̄
iKeyAuth.

Lemma 4.21. Let ke be a Match-secure key exchange protocol with output key distri-

bution D. Let π be a symmetric-key protocol with key generation distribution D. Let
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n = n2
i · ns. For any probabilistic poly(λ)-time adversary A, it holds that

Adv
Gke;π̄

fKeyConf

A,ke;π̄ ≤ n ·Adv
GBRSec,D

B1,ke
+ Adv

GsymKeyConf

B2,π
,

for some probabilistic poly(λ)-time algorithms B1 and B2.

Proof. We use a strategy similar to the proof of Theorem 1 in [32], namely we first

replace all the keys derived by the ke part of the composed protocol by randomly

sampled keys from the correct distribution, using BR-secrecy to show that the final

game is indistinguishable from the first. Then we show, similarly to Lemma 4.20,

that if an adversary manages to break the key confirmation property of the composed

protocol, then a reduction can break the key confirmation property of the symmetric

protocol π.

To replace all the keys used, we proceed with a hybrid argument. Let the game

Gke;π̄,Σ,D
fKeyConf be the game GfKeyConf played against protocol ke; π̄, where the first Σ sessions

to accept a new key, i.e. where a partner session has not already accepted a key, have

their keys from ke replaced by a random value from D for the π part, where D = DKGen

is the output distribution of the key generation algorithm for π. We remove the

mention of fKeyConf when the context is clear. The original game GfKeyConf for A is

therefore Gke;π̄,0,D where only honestly computed keys are used for π.

The game Gke;π̄,Σ,D runs just as Gke;π̄
fKeyConf does with the following modifications.

It maintains a counter σ to keep track of the number of new keys that are accepted

(not counting those which the adversary might already know by corrupting one of the

parties); this is set to 0 initially. The behaviour of Gke;π̄,Σ,D is then the same as Gke;π̄

with the following differences to the Send(`ke;π̄,m) query:

• If σ ≥ Σ, behave as in Gke;π̄, otherwise:

• If `ke has accepted already, simulate the π part honestly with `π̄.k;

• Compute the response and the state update according to the ke algorithm;

• If `ke.accept← true:

– If there exists an `′ke;π̄ ∈ LSID such that Partner(`ke;π̄, `
′
ke;π̄) = true and

`′ke.accept = true, then set `π.k← `′π.k;

– If there does not exist such an `′ke;π̄ that is partnered and whose ke part

has already accepted, but either `ke;π̄.δownr = corrupt or `ke;π̄.δpeer = corrupt

then set `π.k← `ke.k;
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– If both identities are still honest, and no partner session exists or has

already accepted a key for the ke part, then set `π.k←$D and update

σ ← σ + 1.

With this new behaviour, we have that the first Σ new keys that are unknown to the

adversary at the time of their acceptance are replaced with keys sampled from D for

the π part of the protocol.

Lemma 4.22 now allows us to change the game Gke;π̄,0,D into the game Gke;π̄,n,D

for n = n2
i · ns where the indinstinguishability of the two games is guaranteed by the

BR-secrecy of the ke protocol. This yields∣∣∣∣Adv
Gke;π̄,0,D

fKeyConf

A,ke;π̄ −Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄

∣∣∣∣ ≤ n ·Adv
GDBRSec
B1,ke

,

for a first reduction B1. In Lemma 4.23, we then show that key confirmation of the

composed protocol follows from key confirmation of the symmetric-key protocol:

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄ = Adv
GsymKeyConf

B2,π

for a second reduction B2. This allows us to conclude that

Adv
Gke;π̄

fKeyConf

A,ke;π̄ ≤ n ·Adv
GBRSec,D

B1,ke
+ Adv

GsymKeyConf

B2,π
.

Lemma 4.22. Let ke be a Match-secure key exchange protocol with output key distri-

bution D. Let π be a symmetric-key protocol with key generation distribution D. For

Σ = 1, . . . , n2
i · ns and for any probabilistic poly(λ)-time adversary A, we have

Adv
Gke;π̄,Σ−1,D

fKeyConf

A,ke;π̄ ≤ Adv
Gke;π̄,Σ,D

fKeyConf

A,ke;π̄ + Adv
GBRSec,D

B,ke ,

for some probabilistic poly(λ)-time algorithm B = B(Σ).

Proof. Given an adversary A against the game Gke;π̄,Σ−1,D
fKeyConf , we construct an algo-

rithm B against the game GBRSec,D. The reduction B sets up the game for A as

described at the beginning of this section and keeps track of the internal variable of

each of the stages of the protocol. It also initialises σ ← 0.

As A runs, B responds to a Send(`ke;π̄,m) query as follows. (We recall that `ke;π̄

refers here to the variables of Gke;π̄,Σ,D
fKeyConf simulated by B to A, `ke refers here to the
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variables of GBRSec,D played by B and that `π̄ refers to the variables for the execution

of π̄ simulated by B.)

• If `ke;π̄.accept ∈ {true, false}, B returns ⊥ to A; otherwise:

• If `ke.accept = ⊥, B submits Send(`ke,m) to GBRSec,D and receives an updated

state for `ke and a response m′. If `ke.sid is set, B sets `ke;π̄.sid← `ke.sid for A. If

`ke.accept← false, B sets `ke;π̄.accept← false and informsA. If `ke.accept← true,

the following takes place:

– If σ = Σ, @`′ke ∈ LSIDke :: Partner(`ke, `
′
ke) and `ke;π̄.δownr 6= corrupt and

`ke;π̄.δpeer 6= corrupt, then

∗ Submit Test(`) to GBRSec,D and receive kke.

∗ Set `π̄.k← kke.

∗ Update σ ← σ + 1.

– Else, if σ ≤ Σ then

∗ If there does not exist `′ke ∈ LSIDke such that Partner(`ke, `
′
ke) and

`ke;π̄.δownr 6= corrupt 6= `ke;π̄.δpeer, then sample a random key kπ←$D

and set `π̄.k← kπ. Update σ ← σ + 1.

∗ Else, if @`′ke ∈ LSIDke :: Partner(`ke, `
′
ke) and either `ke;π̄.δownr = corrupt

or `ke;π̄.δpeer = corrupt, then submit the query Reveal(`ke) to GBRSec,D

and receive kke. Then set `π̄.k← kke.

∗ Else, there exists an `′ke ∈ LSIDke :: Partner(`ke, `
′
ke) for which `′π̄.k has

already been set. Then set `π̄.k← `′π̄.k.

– Else σ > Σ so perform the following:

∗ If ∃`′ke ∈ LSIDke :: Partner(`ke, `
′
ke) then set `π̄.k← `′π̄.k.

∗ Else submit the query Reveal(`ke) to GBRSec,D, receive kke and set

`π̄.k← kke. Update σ ← σ + 1.

If A submits a Reveal(`ke;π̄) query, `ke;π̄ must have accepted for it to be valid.

Therefore B has already manually set the internal key `π̄.k and it can return it to A
consistently.

If A submits a Corrupt(i) query, B marks all relevant sessions `ke;π̄ ∈ LSIDke;π̄ as

corrupt if they are still running and then submits Corrupt(i) to GBRSec,D to receive ski

and return it to A.

In the processing of a Send query, when σ > Σ and there is an existing partner

session, we initialise the key directly from the partner session’s. As we assume that ke
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is Match-secure, these two partner sessions will derive the same key with overwhelming

probability.

We note that if the Test query returns the real key, then B will perfectly simulate

Gke;π̄,Σ−1,D
fKeyConf to A, but if it returns a random key from D, then B will perfectly simulate

Gke;π̄,Σ,D
fKeyConf . When A terminates and was successful, B submits Guess(1) to GBRSec,D;

it submits Guess(0) otherwise. The advantage of B in GBRSec,D therefore corresponds

to the difference in the success probability of A as we have

Pr

[
Exp

G0
BRSec,D

B,ke = 1

]
= Adv

Gke;π̄,Σ,D
fKeyConf

A,ke;π̄

and

Pr

[
Exp

G1
BRSec,D

B,ke = 1

]
= Adv

Gke;π̄,Σ−1,D
fKeyConf

A,ke;π̄

which gives

Adv
GBRSec,D

B,ke =

∣∣∣∣Adv
Gke;π̄,Σ−1,D

fKeyConf

A,ke;π̄ −Adv
Gke;π̄,Σ,D

fKeyConf

A,ke;π̄

∣∣∣∣
and yields the desired result.

Lemma 4.23. Let ke be a Match-secure key exchange protocol with output key distri-

bution D and π be a symmetric-key protocol with key generation distribution D. Let

n = n2
i · ns. For any probabilistic poly(λ)-time adversary A, it holds that

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄ = Adv
GsymKeyConf

B,π ,

for some probabilistic poly(λ)-time algorithm B.

Proof. Similarly to the proof of Lemma 4.20, we build a reduction B against π in

GsymKeyConf which uses an adversary against ke; π̄ in Gke;π̄,n,D
fKeyConf , which we refer to as

Gke;π̄,n in this proof for simplicity.

The algorithm B sets up Gke;π̄,n for A by simulating all the elements relevant to

the ke stage of the composed protocol. It then responds to A’s queries as follows (we

once again use `ke;π̄ to refer to identifiers used by A, `ke for corresponding identifiers

simulated internally by B and `π for those used by B in GsymKeyConf).

• When A submits Send(`ke;π̄,m): if `ke;π̄.accept ∈ {true, false}, B returns ⊥ to A.

Otherwise:

– If `ke.accept = ⊥, B simulates the execution of ke. If `ke.accept ← false, B
sets `ke;π̄.accept← false. If `ke.accept← true, B leaves `ke.k = ⊥ and then:
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∗ If `ke.δpeer = honest ∧ @`′ke ∈ LSIDke :: (Partner(`ke, `
′
ke) ∧ `′ke.accept =

true), then B submits InitS(`π) to GsymKeyConf .

∗ If `ke.δpeer = corrupt ∧ @`′ke ∈ LSIDke :: (Partner(`ke, `
′
ke) ∧ `′ke.accept =

true), then B submits InitS(`π) and then Reveal(`π) to GsymKeyConf

to generate and obtain kπ which it saves by setting `ke.k← kπ.

∗ If ∃`′ke ∈ LSIDke :: (Partner(`ke, `
′
ke) ∧ `′ke.accept = true), then B submits

InitP(`′π, `π) to GsymKeyConf and sets `ke.k← `′ke.k.

– If `ke.accept = true, B submits Send(`π,m) to GsymKeyConf and returns the

reply to A. If `π.kcind ← false, B sets `ke;π̄.accept ← false. If `π.kcind ←
true, B sets `ke;π̄.accept← true and sets `ke;π̄.k← `ke.k.

• When A submits Reveal(`ke;π̄): if `ke;π̄.accept ∈ {⊥, false}, B returns ⊥ to A.

Otherwise:

– If `ke;π̄.k 6= ⊥, B returns `ke;π̄.k to A.

– If `ke;π̄.k = ⊥, B submits Reveal(`π) to GsymKeyConf to obtain kπ, sets

`ke;π̄.k← kπ and sets `′ke;π̄.k← kπ for any `′ke ∈ LSIDke such that Partner(`ke,

`′ke) ∧ `′ke.accept = true.

• When A submits Corrupt(i): B marks all relevant sessions `ke;π̄ ∈ LSIDke;π̄ as

corrupt (either δownr or δpeer) and returns ski to A.

By processing each query as above, the algorithm B ensures that the first session that

accepts the ke stage within a potential partnership pair is mapped to a new session in

GsymKeyConf by an InitS query. If the peer of that session was already corrupt, then

B submits a Reveal query so that this session is flagged as revealed in the game for π.

If a session is the second to accept within a partnership pair at the ke stage, then B
uses an InitP query to initialise it with the same key as its partner and to give it the

same value for δk within GsymKeyConf . As we assume that ke is Match-secure, these

two partner sessions will derive the same key with overwhelming probability. This,

together with B’s handling of A’s Reveal and Corrupt queries ensures that every

session for which A could trivially obtain the session key is immediately marked as

revealed in GsymKeyConf .

Furthermore, since the key derived by B’s internal simulation of the ke stage is

never used by the π stage, but instead replaced with a randomly generated key using

an InitS query, B provides a perfect simulation of Gke;π̄,n to A. Therefore, as B
relays A’s Send queries exactly, we see that if A wins against the fKeyConf predicate
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in Gke;π̄,n then B will also reach a state that wins against GsymKeyConf . We therefore

have

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄ = Adv
GsymKeyConf

B,π .
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Chapter 5

From definitions to protocols

In this chapter we first take the model for authentication security of AKE protocols

developed in Chapters 3 and 4 and apply it to the study of existing protocols. We

consider three emblematic protocols of the AKE literature (Diffie–Hellman, HMQV

and TLS 1.3) and analyze which security guarantees are achieved. These analyses

allow us to derive general principles to achieve certain notions of authentication. We

then design a generic transformation from passive key-exchange protocols to explicitly

authenticated ones which achieves BR security.

The contents of Section 5.1 have appeared in [56]; the ideas of analysis were the

joint work of this author and his co-authors and the proof of Proposition 5.1 is this

author’s own work. The contents of Section 5.2 are the joint work of N. P. Smart1,

B. Warinschi2 and this author; it was published in the proceedings of Information

Security - 20th International Conference, ISC 2017 and presented by this author at

the conference in Ho Chi Minh City, Vietnam [59]. The ideas and the design of the

transformation were the joint work of this author and his co-authors and, except where

mentioned, the content reproduced here is this author’s own work.

5.1 Studying authentication in practice

In this section we present established protocols and study which of our authentication

notions they achieve.

Our results confirm that a “rule of thumb” for protocol design to achieve implicit

key authentication is to include the parties’ identities in the key derivation step,

1University of Bristol, U.K., later KU Leuven, Belgium.
2University of Bristol, U.K., later Dfinity, Switzerland.
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Client A Server B

idB is known G = 〈g〉 of order q idA is known

x←$Zq, X = gx X y←$Zq, Y = gy

k = KDF(Y x, (X,Y, [idA, idB ])) Y k = KDF(Xy, (X,Y, [idA, idB ]))

sid = kcid = (idA, X, idB , Y ) sid = kcid = (idA, X, idB , Y )

Figure 5.1: The plain Diffie–Hellman protocol; [idA, idB] means the values are optional.

k = KDF(K, (idA, idB, . . . )). If the key derivation function is collision-resistant then

different identities immediately imply different session keys. Indeed this strategy has

already been applied in very early protocols proposals, such as [14], and has even been

sometimes used to fix insecure protocols, e.g., [42]. We note that this method is also

used in the TLS 1.3 protocol.

From the analysis of key confirmation in TLS 1.3 of [69], we see that a good

strategy to obtain full or almost-full key confirmation is to send a MAC computed

over a known value (such as the transcript) with a key derived from the same material

as the final session key. This is supported by our proof that the simple protocol of

Figure 4.1 in Section 4.5 is sufficient to provide key confirmation.

Furthermore, the key-entity authentication equivalence also shows that, similarly

to including the identities in the key to ensure implicit key authentication, includ-

ing the identities in the session identifiers ensures implicit entity authentication. It

also suggests that involving the sids in a MAC is a good method for ensuring entity

confirmation.

5.1.1 Plain Diffie–Hellman

We begin with the plain Diffie–Hellman (DH) protocol, presented in Figure 5.1, in

which the parties exchange gx and gy to derive a key from gxy and the communication

transcript. One may also use the identities in the key derivation as indicated by the

square brackets. The exchanged values are elements of a cyclic group G of crypto-

graphic prime order |G| = q with generator g. We assume that this group is known

to all parties. Since this is an unauthenticated protocol, it sets S = ∅.

Match security. The plain DH protocol provides Match security. Indeed both

the session and key-confirmation identifiers fully determine the key (Properties 4.1
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and 4.2). Furthermore, since the key-confirmation and session identifiers are identi-

cal, equal key-confirmation identifiers imply identical keys (Property 4.4). Finally, an

honest party will contribute a Diffie–Hellman share at random such that the proba-

bility of matching any other share is at most n2
s · 1

q , for a total number of ns sessions,

and thus negligible (Property 4.3).

Implicit key authentication. While it is counterintuitive, the plain DH protocol

formally provides implicit key authentication, since S = ∅. We note that setting S 6= ∅
immediately allows an adversary to break implicit key authentication: it can relay

messages between sessions that are not expecting each other as intended partners.

However, by including the identities in the key derivation function (as shown in

Figure 5.1 with the square bracket notation) this protocol can provide implicit key

authentication even in the setting where S 6= ∅. Indeed, the adversary has no control

over a session’s owner identity `.id which implies that if `.pid 6= `′.id then `.k = `′.k

only if there is a collision in the KDF. In the random oracle model, or assuming a

collision-resistant KDF, this happens only with negligible propability. By selecting an

appropriate post-quantum KDF, the same holds against quantum adversaries.

We note that this argument relies on the pre-specified peer model; in the setting

where parties learn the identity of their intended peer from the transcript of the

session, an adversary can potentially trick an honest session in accepting a different

pid than the one from which the message truly comes from.

Key confirmation and explicit key authentication. This protocol does not

provide key confirmation since no information about the key is exchanged after it is

derived. We can show this formally by taking an adversary which initiates a session

with an honest party (either client or server) without initiating a matching partner

session. It then creates the initial or response message gx or gy to complete the

exchange with the honest party. There is then no other session in the model which

holds the same key nor the same key-confirmation identifier.

As the protocol does not provide key confirmation, Theorem 4.9 implies that it

cannot provide explicit key authentication either. Intuitively this is clear since no

authentication mechanism is part of the protocol and the parties do not hold long-

term authenticating information.
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Client A (a,A = ga, certA) Server B (b, B = gb, certB)

certB is known G = 〈g〉 of order q certA is known

x←$Zq, X = gx y←$Zq, Y = gy

X

Y

d = H(X, certB) d = H(X, certB)

e = H(Y, certA) e = H(Y, certA)

K = (Y Be)x+da K = (XAd)y+eb

k = KDF(K) k = KDF(K)

sid = kcid = (certA, X, certB , Y ) sid = kcid = (certA, X, certB , Y )

Figure 5.2: The HMQV protocol. Note that the certificates contain the corresponding
public key and identity.

5.1.2 HMQV

We next look at one of the most prominent candidates for implicitly authenticated key-

exchange, the HMQV protocol [92]. The idea here is to use the same communication

as in the plain DH key-exchange but to mix Schnorr-type signatures under the parties’

public keys in the key derivation. These signatures are not sent but only used locally,

thus “implicitly” authenticating the key.

The protocol works over a group G = 〈g〉 and uses a hash function H to compute

the Schnorr signature. It is mutually authenticating, i.e. S = I, for which both parties

use a long-term key. We assume that each party holds a certificate certi for its public

key, and also a certificate certj for the public key of its intended peer. We also assume

that the public key and the owner’s identity can be recovered from the certificate.

As in the plain DH case, the session and key-confirmation identifiers fully deter-

mine the key, they are identical and each DH share is sampled at random; therefore,

Match security of the HMQV protocol follows from the same argument.

Implicit key authentication. We prove that the HMQV protocol achieves our

strong notion of implicit key authentication and is secure against all possible UKS
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and KCI attacks. Recall that we need to show that

∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒

∀`′ ∈ LSID,
(
Samekey(`′, `) =⇒ `′.id = `.pid

)
.

Due to the differences in the corruption queries that the adversary is allowed to make,

the proof of secrecy for HMQV in [92] is not immediately sufficient to imply our strong

notion of authentication. Indeed, this proof holds only when the test-session in the

secrecy experiment is fresh in the sense of secrecy freshness (see Definition 3.8). An

attack on implicit key authentication which would require the corruption of the owner

before the session took place would not, therefore, be considered as valid against key

secrecy and would not be ruled out by the proof of [92].

Proposition 5.1. In the random oracle model, HMQV provides unconditional mutual

implicit key authentication, with

Adv
GiKeyAuth

A,HMQV ≤
n2
i · ns · h

2q
+ negl(λ) ,

where h is the number of queries made to H.

Proof. To break the iKeyAuth predicate, it must be that a session `A = (A,B, ∗)
shares a key with a session `C = (C,D, ∗) where C 6= B. This can happen either if

KA = KC , or if KA 6= KC but KDF(KA) = KDF(KC). The later implies a collision in

the KDF and we assume that this happens only with negligible probability. The only

degree of freedom that A then has is to modify the Y value sent to `A as a response to

its first message. Since the value of KC , x, d and a are already fixed, A must choose a

value of Y such that Y Be, where e = H(Y, certA) is exactly the right value such that

KA = KC . Modeling H as a random oracle ensures that each value of Y yields a new

random value of e and therefore that there is a probability of 1/q that a given value

of Y will yield the correct value of Y Be, where q is the size of the group G. Given

that there are at n2
i · ns/2 pairs of sessions, it holds that the adversary has at most a

n2
i · ns · h/2q probability of finding a suitable Y for which the equality holds.

Considering quantum adversaries, these would have access to the oracle H in

superposition. Modeling it as a quantum random oracle is not an issue for the proof

strategy above, as H is not programmed. However, if a good value of Y exists, then

it will be found using Grover’s algorithm [76] with high probability in time O(
√
q).

By selecting an appropriate value of q, and an appropriate post-quantum collision-
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resistant KDF, then the result also holds against quantum adversaries. (Note that

this does not imply that HMQV provides post-quantum key-secrecy.)

Similarly to the plain DH protocol, setting k = KDF(K, (certA, certB)) immediately

provides implicit key authentication if the KDF is (quantum) collision resistant; again

this argument holds because of the pre-specified peer model: the adversary cannot

influence a session’s intended peer. One could also include the values X and Y in the

key derivation. In that setting, continuing with the notation of the proof, any change

in Y to ensure KA = KC would still result in different inputs to the KDF therefore

leaving an attack on the collision-resistance of the KDF as the only avenue.

Key confirmation and explicit key authentication. HMQV does not provide

key confirmation in the same way that the plain DH does not. It immediately follows

that it does not provide explicit key authentication either.

5.1.3 TLS 1.3

We give a simplified version of the DH mode of the TLS 1.3 protocol suite in Fig-

ure 5.3 which omits certain steps unrelated to the authentication of the parties and

the session-keys, such as the derivation of the handshake key and the encryption of the

handshake protocol. We only look at the case of server-only authentication, where

B ∈ S and A ∈ I \ S, without session resumption or pre-shared secrets. We also

assume that the protocol is in a “pre-specified peer mode” where the client knows the

certificate of the server in advance.

Match security and implicit key authentication. TLS 1.3 is Match-secure;

the argument is identical to the plain DH case and appears in [64]. Implicit key

authentication follows as for the HMQV variant with identifiers, if we assume that

the KDF function is collision-resistant; as the server authenticates and certB appears in

the key derivation, equal keys imply a correct authentication. Similarly to the HMQV

protocol, key secrecy of TLS is not enough to imply implicit key authentication.

Key confirmation and explicit key authentication. Key confirmation for TLS

1.3 (draft-10) was shown in [69] and our version corresponds to this variant. The

idea of the proof is that the parties use the key in the handshake protocol within the

MAC. This holds for full and almost-full key confirmation, such that our version also

provides explicit key authentication.
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Client A Server B (skB , pkB , certB)

certB is known G = 〈g〉 of order q

r←$ {0, 1}n s←$ {0, 1}n

x←$Zq, X = gx y←$Zq, Y = gy

r,X

s, Y

σB ← Sig(skB , (r, . . . , Y ))

kB = KDF(Xy,

"server", (r, . . . , Y ))

τB ← MAC(kB , (r, . . . , σB))

verify certB
certB , σB , τB

Vfy(pkB , σB , (r, . . . , Y ))

kB = KDF(Y x,

"server", (r, . . . , Y ))

Vfy(kB , τB , (r, . . . , σB))

kA = KDF(Y x,

"client", (r, . . . , τB))

τA ← MAC(kA, (r, . . . , τB)) τA

kA = KDF(Xy,

"client", (r, . . . , τB))

Vfy(kA, τA, (r, . . . , τB))

k = KDF(Y x, k = KDF(Xy,

"app", (r, . . . , τA)) "app", (r, . . . , τA))

sid = kcid = (r,X, s, Y, certB) sid = kcid = (r,X, s, Y, certB)

Figure 5.3: (Simplified) TLS 1.3 in (EC)DHE key-exchange mode, without handshake
encryption and with server-only authentication. Notation x, . . . , y means all transmit-
ted communication data, ranging from x to y.

81



CHAPTER 5. FROM DEFINITIONS TO PROTOCOLS

5.2 Transformation for post-quantum AKE

In this next section we present a new transformation which turns a two-round un-

authenticated key-exchange (UKE) protocol into a three-round AKE protocol. We

first present the definition of two-round protocols that we will start from together with

some new security notions which we will assume for the security of the transformation.

We then present the AKE protocol itself, discuss the motivation of its construction

and prove its security in the BR model.

5.2.1 Un-authenticated key-exchange protocols

First, we formalise (two-round) UKE protocols and what it means for such protocols to

be passively secure. Informally we consider a protocol passively secure if the transcript

of one session does not leak any information about the resulting session-key (in an

indistinguishability notion similar to BR secrecy). As they do not aim to provide

authentication, such protocols make no usage of long term keys. We note that for these

protocols, for a given session `, its session state is SST[`] = (ρ, crypt, tran, accept, sid, k)

where each element is defined as in Section 3.1.2.

Definition 5.2 (Unauthenticated key exchange protocol). An un-authenticated key

exchange protocol is a pair of probabilisitc poly(λ)-time algorithms Π = (Setup, ζ)

such that:

1. The setup algorithm Setup takes in the security parameter 1λ and outputs a

tuple of public parameters, params, required by the protocol. Among other

information params always contains the parameter 1λ and specifies a message

space M and a key space K.

2. The protocol function ζ computes the next step in the protocol execution of

session ` given a new incoming message m. In doing so, it computes the next

message that ` should send and also updates internal values within `; i.e. m′ ←
ζ(SST[`],m). Sometimes we write m′ ← ζ(SST[`],m; $) to make the randomness

used by ζ explicit.

A UKE protocol is said to be correct if when the messages are relayed faithfully,

i.e. unmodified and in the correct order, between two participants, then they both

accept and compute identical session keys, except with negligible probability over the

randomness used in the algorithms.
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Client A Server B

m1 ← ζ(SST[`A],`; $1) m1

m2 m2‖ a ← ζ(SST[`B ],m1; $2)

a ← ζ(SST[`A],m2; $3)

Output `A.sid, `A.k Output `B .sid, `B .k

Figure 5.4: A two-round un-authenticated key exchange protocol.

As for AKE protocols, in practice we define a specific key-exchange protocol by

defining how each new input message is responded to, given the current session state.

We present a two-round example of such a UKE protocol in Figure 5.4.

For example, the plain DH is an instantiation where A’s ephemeral key is eA and

m1 is geA , and B’s ephemeral key is eB (which can be deleted as soon as it is used to

derive m2 = geB and `B.k = meB
1 ), finally the computation of `A.k is done meA

2 .

We next recall basic notions of security for passive key-exchange protocols and

introduce two new formal definitions.

Passive security against eavesdroppers

For UKE protocols the best security guarantee we can obtain is that of passive security.

Such a protocol is said to be passively secure if a single session of the protocol does not

leak any information regarding the computed session key to an arbitrary poly(λ)-time

adversary A that only eavesdrops on the conversation. For a UKE protocol Π and an

adversary A, this is formalised in the EAV-KE experiment described in Figure 5.5 for

a given bit b ∈ {0, 1}. We denote A’s advantage in the EAV-KE game as

AdvEAV-KE
A,Π =

∣∣∣Pr
[
ExpEAV-KE,1

A,Π = 1
]
− Pr

[
ExpEAV-KE,0

A,Π = 1
]∣∣∣ .

Definition 5.3 (Passive UKE security). A UKE protocol Π is passively (post-quan-

tum) secure (in the presence of an eavesdropper) if for all probabilistic poly(λ)-time

(quantum) adversaries A, the following conditions hold:

1. If messages are relayed faithfully by a benign adversary between two sessions,

then both accept holding identical session keys, and each session’s key is dis-

tributed uniformly at random over K.
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1. The challenger sets 1λ, runs Setup to obtain params and makes two blank ses-
sions execute protocol Π with one another. This results in a transcript tran of
the messages, and a key k output by each of the sessions.

2. If b = 1, set k̂← k, and if b = 0 then sample k̂←$K uniformly at random.

3. A is given tran and k̂, and outputs a guess bit b′.

4. The output of the experiment is 1 if b′ = b, and 0 otherwise.

Figure 5.5: The EAV-KE, b security experiment ExpEAV-KE,b
A,Π .

2. There exists a negligible function negl(λ) such that

AdvEAV-KE
A,Π ≤ negl(λ) .

We note that this syntax captures that of the plain Diffie–Hellman of Figure 5.1,

as well as that of the lattice-based Frodo and NewHope key-exchange protocols [26, 4].

In addition it is straightforward to show that the plain DH protocol meets our passive

UKE security defnition, assuming that the decisional Diffie–Hellman problem is hard,

and to check that the proofs of security of Frodo and NewHope also imply quantum

security under our passive UKE definition.

Minor active security properties

We now introduce two new simple active security notions relevant to UKE protocols.

Most well-designed passive UKE schemes are implicitly understood to satisfy these

two notions, but we choose to make them explicit (with the definition of two new

security experiments) as the security of the transformation we present below will rely

on these.

The first of these formalises the notion of the first protocol message being suffi-

ciently “unpredictable”; i.e. the adversary is not able to guess what the first message

m1 of the transcript tran is going to be. We define the M1-Guess experiment in Fig-

ure 5.6 and denote an arbitrary adversary A’s advantage in that game as

AdvM1-Guess
A,Π = Pr

[
ExpM1-Guess

A,Π = 1
]
.

Definition 5.4 (First-message randomness). A UKE protocol Π provides (quantum)

first-message randomness if for all probabilistic poly(λ)-time (quantum) adversaries A
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1. The challenger sets 1λ, runs Setup to obtain params and computes m1 ←
ζ(SST[`],`; $) for a blank session ` and fresh randomness $.

2. A is given 1λ and params and outputs a guess message m′1.

3. The output of the experiment is 1 if m′1 = m1, and 0 otherwise.

Figure 5.6: The M1-Guess security experiment ExpM1-Guess
A,Π .

there exists a negligible function negl(λ) such that

AdvM1-Guess
A,Π ≤ negl(λ) .

The second security notion models the property that an adversary should not be

able to obtain information about the final key k even if it may choose the first protocol

message. This definition applies only to two-round UKE protocols. To this intent, we

define the experiment Key-Force-b in Figure 5.7 and denote an arbitrary adversary A’s

advantage as

AdvKey-Force
A,Π =

∣∣∣Pr
[
ExpKey-Force-0

A,Π = 1
]
− Pr

[
ExpKey-Force-1

A,Π = 1
]∣∣∣

Definition 5.5 (Key-force security). A UKE protocol Π provides (quantum) key-

force security if for all probabilistic poly(λ)-time quantum adversaries A there exists

a negligible function negl(λ) such that

AdvKey-Force
A,Π ≤ negl(λ) .

5.2.2 A new transformation

We now present a transformation which boostraps a two-round UKE protocol into

an AKE protocol with full mutual authentication. The transformation furthermore

inherits (post-quantum) forward-secrecy from the authentication-independent EAV-KE

security of the two-round protocol. Our construction, presented in Figure 5.8, requires

a two-round UKE protocol Π = (Setup, ζ), a public key encryption scheme secure

under chosen ciphertext attacks, a strongly unforgeable message authentication code,

and two key derivation functions H1 and H2 which we model as random oracles.

The transformation works by encrypting the message flows, m1 and m2, of the

two-round UKE protocol under the long term keys of the two parties. Interestingly,
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1. The challenger sets 1λ and runs Setup to obain params.

2. A is given 1λ and params and ouputs a first message m1.

3. If m1 6∈ M the experiment outputs 0. Otherwise, the challenger initialises a
blank session ` and computes m2 ← ζ(SST[`],m1; $). It sets k0 ← `.k (since the
protocol is two-round, this key is already set) and samples k1←$K, from the
UKE key-space.

4. A is given kb and returns a guess b̃.

5. The experiment outputs 1 if and only if b̃ = b, and 0 otherwise.

Figure 5.7: The Key-Force-b security experiment ExpKey-Force-b
A,Π .

the main role played here by encryption is to authenticate the parties and ensure

integrity of the exchanged messages, rather than its more traditional role of providing

confidentiality. Indeed, one can think of the first two messages of the protocol as

a challenge-response exchange where A attempts to authenticate B by sending an

encryption of m1 and expecting to receive the same m1 in the next flow. Similarly,

the second and third flow can be interpreted as a challenge-response where B sends

m2 to A and expects to receive a message that depends on m2. In addition, the

MAC sent as the last message also ties the identities of the parties involved with this

particular execution of the protocol run. The final application key is derived from the

same session-key derived by Π, but in a way that decouples it from the MAC key and

also incorporates the identities of the participants.

The last message flow and key derivation methodology also thwart an analogue of

the (in)famous attack against the Needham-Schroeder protocol which aims to break

authentication. A malicious B could reencrypt the first message for a third party C

who would reply with its own encrypted m2 for A; B could then simply forward this

message to A. Parties A and C would thus derive the same key for the underlying

passively secure protocol. However, C will no longer accept the MAC sent by A as it

will be on the wrong message (A‖B as opposed to A‖C), thus thwarting the attack. In

addition, since it depends on the participants’ identities, the final derived session-key

will also be different for A and C.

Proving formally that parties authenticate each other successfully in fact requires

additional properties on the underlying protocol Π. As explained above, one should

think of the first two messages as a challenge-response protocol to authenticate B.
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Party A (`A) Party B (`B)

m1 ← ζ(SST[`A],`; $1)

m1 ← EncpkB (A‖m1) m1 A‖m1 ← DecskB (m1)

m2 ← ζ(SST[`B ],m1; $2)

m′1‖m2 = DecskA(m2) m2 m2 ← EncpkA(m1‖m2)

if m′1 6= m1 then

reject

` ← ζ(SST[`A],m2; $3)

kA,1 ← H1(`A.k)

m3 ← MACkA,1(A‖B) m3 kB,1 ← H1(`B .k)

if VfykB,1(A‖B,m3) = 0 then

reject

k← H2(`A.k‖A‖B) k← H2(`B .k‖A‖B)

Figure 5.8: A new AKE protocol transformation.

Notice that for security of authentication, this requires that message m1 of Π has

sufficient entropy; otherwise, an adversary who guesses m1 can reply with an appro-

priately message which encrypts m1 and some m2 and cause A to accept.

Similarly, thinking of the second and third messages as a challenge-response proto-

col that authenticates A: the last message should only be computable by some party

which received m2 and derived the MAC key from it. This intuition is valid only if m2

actually helps determine the MAC key, which is not necessarily the case. Consider a

two message protocol where, if the first message of A for B is some fixed message m∗,

then B sets the local key to, say, 0n. Such a protocol may still be secure against a

passive adversary as an honest execution by A would never send m∗. Yet, the protocol

obtained by applying our transformation is not actively secure since the adversary can

send the encryption of m∗ to B. More generally, a close look shows that the problem

is that the adversary can send an appropriately crafted message m1 which coerces the

key into one which can be easily guessed (even if B behaves honestly). This justifies

the introduction of the M1-Guess and Key-Force security notions in Section 5.2.1.

We now present in more detail our new construction of an AKE protocol. Let E =

(SetupE ,KGenE ,Enc,Dec) be a public-key encryption scheme. Let M = (KGenM , MAC,
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Vfy) be a message authentication code such that its key space is KM = {0, 1}l(λ) for

some polynomial function l, and its KGenM algorithm simply selects a key from KM
uniformly at random. Let Π = (SetupΠ, ζ) be a two-round UKE protocol and finally,

let H1 : {0, 1}∗ → {0, 1}l(λ) and H2 : {0, 1}∗ → {0, 1}h(λ), where h is a polynomial

function, be two key derivation functions. Using these elements, we construct the

mutually-authenticating AKE protocol Σ = (I,S = I, SetupΣ,KGenΣ, η) where:

1. SetupΣ takes as input the security parameter 1λ and outputs public parameters

paramsΣ which contain the parameters of the encryption scheme E output by

SetupE(1λ) and the parameters of the UKE protocol Π output by SetupΠ(1λ).

2. KGenΣ takes as input paramsΣ and an indentifier i. It then outputs a key pair for

i by setting (pki, ski) ← KGenE(paramsE), i.e. a normal public-key encryption

scheme key pair.

3. The function η is as specified by the protocol run described in Figure 5.8.

5.2.3 Proof of security

We now prove the security of the transformation described above in the Bellare–

Rogaway model for public-key schemes with forward secrecy; i.e. by first showing that

it is mutually authenticating and then showing that it provides BR-secrecy.

The intuition behind the proof is that authentication of B to A is obtained by

B prefixing the plaintext m1 to his response m2 in the second message flow m2. In

this way A can verify that the message m′1 that she receives is identical to the one

she sent out, i.e. m1, and therefore B must have decrypted it; since only B has B’s

decryption key. Authentication of A to B is obtained by A sending a valid MAC

tag on the identities under a key derived from the underlying unauthenticated key-

exchange scheme. Since only A can decrypt B’s message m2, only A could compute

the underlying session-key and therefore the associated MAC key. Notice that the

these forms of authentication also imply liveness of the parties.

Bellare–Rogaway security

The above intuition is formalized by the following theorem in the BR model.

Theorem 5.6. If Π is M1-Guess-secure and Key-Force-secure, E is 2-IND-CCA-secure

and M is sEUF-CMA-secure, then Σ is a secure mutual authentication protocol.

We note that the proof below is in the classical random oracle model.
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Proof. We prove correctness first and secure BRmAuth-security second.

Matching Conversation =⇒ Acceptance.

Suppose two sessions ` = (A,B, s) and `′ = (A′, B′, s′) have matching conversations.

This first implies A′ = B and B′ = A. Furthermore, the three protocol messages

m1,m2 and m3 are relayed faithfully.

Since `′ receives the same m1 that ` sent out, by the correctness of the encryption

scheme E, `′ decrypts m1 correctly and prefixes m2 with the correct message. Hence,

since ` receives the same m2 that `′ sent out, the correctness of E implies again that

indeed m′1 = m1 and therefore that ` does not reject this session when it receives

m2. As ` does not receive another response from `′ before it terminates, we see that

` accepts this session.

As ` has received the same m2 that `′ has sent out, it receives the same m2 and

therefore the correctness of Π implies that `.k = `′.k. By equality of the inputs

to the KDF H1, we have that kA,1 = kB,1. Also, since `′ receives the same m3

that ` has sent out, the correctness of M and the equality of the keys imply that

VfykB,1(A‖B, MACkA,1(A‖B)) = 1 and hence `′ does not reject the session when it

receives m3. As `′ does not receive another response from ` before it terminates, we

see that `′ accepts this session as well. This completes the proof of correctness.

Acceptance =⇒ Matching Conversation.

We now prove that an arbitrary poly(λ)-time adversary A has a negligible chance of

winning the BRmAuth security experiment. Assume that A reaches an environment

such that ¬BRmAuth holds; i.e.

∃`∗ ∈ LSID :: `∗.accept ∧ BRaFresh(`∗) ∧ ∀`′ ∈ LSID,¬BRMatching(`∗, `′)

We first observe that the following holds:

AdvBRmAuth
A,Σ ≤ Pr [BRmAuth = 1 ∧ `∗.ρ = init] + Pr [BRmAuth = 1 ∧ `∗.ρ = resp]

and we therefore deal with the initiator and responder cases separately.

Bounding success against initiator. We proceed via a series of hybrid games.

Game 0. The initial BRmAuth security experiment with the difference that the ad-

versary loses by default if it returns a responder session.

Game 1. The challenger first selects a random session ˜̀∈ LSID and then runs Game 0

with the adversary. The adversary loses by default if it outputs a session different

from ˜̀.
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Game 2. The challenger runs Game 1 with the adversary but replaces the message m1,

honestly generated by ˜̀, by a random UKE message m̃1 in the rest of the protocol

(including in the computation of m2). However, ˜̀ still only accepts if it receives the

honest m1 in the second message flow.

We denote by Gi the event that Game i outputs 1, for which we sometimes say

that an arbitrary adversary A “wins” Game i. We see that we have Pr[G0] =

Pr [BRmAuth = 1 ∧ `∗.ρ = init] and we argue the following to obtain an upper bound.

Game 0 to Game 1. First, we see that A wins Game 1 exactly when it wins Game 0

and the challenger has guessed the output session correctly out of n2
P ·nS possibilities,

i.e. guessed ˜̀= `∗. We therefore have

Pr[G1] =
1

n2
P · nS

· Pr[G0]. (5.1)

Game 1 to Game 2. Next, we build a reduction B1 that uses an adversary that is able

to distinguish between Game 1 and Game 2 to attack the 2-IND-CCA security of the

encryption scheme E.

The reduction uses the OLR oracle given by the 2-IND-CCA challenger to encrypt

either m1 or m̃1 in the protocol flows. Whenever the output of the OLR oracle is

submited to a different session, B1 uses both m1 and m̃1 to compute two responses

and encrypts either m1||m2 or m̃1||m̃2 using the OLR oracle. If the secret bit b = 0,

then it is the honest m1 that is used throughout the protocol thus simulating Game 1

perfectly. If the secret bit is 1, m̃1 is used and Game 2 is simulated. If A still

manages to make ˜̀ accept without a matching conversation, by submitting a message

m∗2 containing the honest m1, then the reduction returns b′ = 1 to the 2-IND-CCA

challenger. Therefore we see that we have

Adv2-IND-CCA
B1,E =

∣∣∣Pr
[
Exp2-IND-CCA-0

B1,E = 1
]
− Pr

[
Exp2-IND-CCA-1

B1,E = 1
]∣∣∣

= |Pr[G1]− Pr[G2]| .

Bounding Game 2. Finally we see that an adversary can win Game 2 only by guessing

the honest m1 that ˜̀will accept since no information regarding m1 is contained within

the message flows. Given an adversary A capable of winning Game 2, we can easily

build a reduction B2 that plays the M1-Guess experiment against the UKE protocol Π.

This reduction simulates Game 2 to A and simply returns whichever m1 is contained

within m2. As the reduction is given no information regarding the message it has to
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guess, the adversary is equally likely to guess the correct message. We thus have

AdvM1-Guess
B2,Π = Pr[G2].

Advantage terms. As E is 2-IND-CCA-secure and Π is M1-Guess-secure, there exist

negligible functions such that

|Pr[G1]− Pr[G2]| = Adv2-IND-CCA
B1,E ≤ negl(λ)

and |Pr[G2]| = AdvM1-GUESS
B2,Π ≤ negl(λ) .

This, combined with (5.1), yields

Pr[G0] = Pr [BRmAuth = 1 ∧ `∗.ρ = init] ≤ negl(λ) . (5.2)

Bounding success against responder. We also proceed via a series of games.

Game 0. The initial BRmAuth security experiment with the difference that the ad-

versary loses by default if it returns an initiator session.

Game 1. The challenger first selects a random session ˜̀ = (Ã, B̃, s̃) ∈ LSID and then

runs Game 0 with the adversary. The adversary loses by default if it outputs a session

different from ˜̀.

Game 2. In all of the message flows sent by initiator sessions of B̃ intended for Ã and

responder sessions of Ã intended for B̃ (including ˜̀), the challenger replaces the honest

UKE protocol messages m1 and m2 by independently randomly sampled messages m̃1

and m̃2. Internally, the oracles still compute and verify with the honest messages and

keys. The victory conditions for A are the same as for Game 1.

Game 3. The challenger runs Game 2 with the adversary but replaces the UKE key
˜̀.k derived from the honestly computed messages by a uniformly sampled key k̃←$KΠ

(independent from the random message m̃2). The session ˜̀ only accepts a MAC tag

validly computed using k̃ as the UKE key.

Game 4. The challenger runs Game 3 with the adversary but replaces the MAC key

derived from the uniformly sampled k̃ by a uniformly sampled MAC key k̃M ←$KM .

The session ˜̀ only accepts a MAC tag validly computed under k̃M .

Game 0 to Game 1. First, we see that A wins Game 1 exactly when it wins Game 0

and the challenger has guessed the output session correctly out of n2
P ·nS possibilities.
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We therefore have

Pr[G1] =
1

n2
P · nS

· Pr[G0]. (5.3)

Game 1 to Game 2. In order to bound the difference between Game 1 and Game 2,

we build the reduction B3 to attack the 2-IND-CCA security of the encryption scheme

E. As for the previous cases, our aim is to build a reduction that simulates Game 1

or Game 2 perfectly when the OLR oracle’s bit is 0 or 1. To this effect, B3 proceeds

as follows.

Whenever an initiator session of B̃ with Ã is activated, the reduction queries the

OLR oracle to send either an honestly computed m1 or a randomly sampled m̃1. It

also records both messages and the resulting ciphertext in a list L1.

Whenever a responder session of Ã with B̃ receives a ciphertext that appears

on L1, it is able to compute an honest response m2 (thus deriving an honest session-

key), sample a random one and send either an honest message m1‖m2 or the random

m̃1‖m̃2 using the OLR oracle. If the ciphertext does not appear on L1, it can be

decrypted using Dec to obtain the plaintext. If that plaintext does not appear on L1,

then, as before, B3 derives a key and samples a uniform m̃2 before replying with either

the honest or random message (unless the content of the plaintext deviates from the

protocol). Whenever B3 replies, it records both plaintexts, the session-key and the

resulting ciphertext on a list L2. If, however, the decrypted plaintext appears on L1,

then B3 learns the bit of the challenger oracle.

Finally, if an initiator session of B̃ with Ã receives a ciphertext (as a second

protocol message) that appears on L2, then it is able to check if the accompanying

plaintexts match the ones computed or sampled earlier. If they do, B3 uses the

accompanying session key to proceed. If they don’t, then this ciphertext was not

intended for this session and the session rejects. If the ciphertext received does not

appear on L2, it can be decrypted using Dec to obtain the plaintext. If that plaintext

appears on L2, B3 learns the bit of the challenger oracle. If it does not, B3 checks if

the first message matches either of the plaintexts computed or sampled earlier. If it

does, B3 learns the bit of the challenger oracle. If it doesn’t, then the ciphertext is an

invalid protocol message and the session rejects.

If the adversary wins the experiment under the same conditions as for Game 1

and 2, B3 returns 1 to the 2-IND-CCA-b challenger. Let E1 denote the event that a

session receives a ciphertext that leads to B3 learning the challenger bit. We then
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have

Adv2-IND-CCA
B3,E =

∣∣∣0 · Pr[E1] + Pr
[
Exp2-IND-CCA-0

B3,E = 1 | ¬E1

]
· Pr[¬E1]−

1 · Pr[E1]− Pr
[
Exp2-IND-CCA-1

B3,E = 1 | ¬E1

]
· Pr[¬E1]

∣∣∣
which implies

Adv2-IND-CCA
B3,E + Pr[E1] ≥ |Pr[G1]− Pr[G2]| · (1− Pr[E1]) . (5.4)

It is easy to see from B3 how one can build a reduction B′3 which wins the 2-IND-

CCA experiment against E whenever E1 happens. This allows us to write

Adv2-IND-CCA
B′3,E

= Pr[E1]. (5.5)

Game 2 to Game 3. The reduction B4 acts as an attacker in a Key-Force experiment

against the UKE protocol Π. To simulate Game 2, it chooses a session ˜̀= (Ã, B̃, s̃) at

random and runs the execution environment, sampling protocol messages at random

where required, maintaining consistency. When ˜̀ receives a ciphertext, B4 decrypts

it and checks whether the plaintext was sampled by an initiator session `′ = (B̃, Ã, t̃).

If it was, then B4 recovers the honest m1 that was computed and returns it to the

Key-Force challenger. If it was not, then B4 returns the plaintext it decrypted. When

the Key-Force challenger returns a key k̃, B4 sets the UKE key as k = k̃ and proceeds

with its simulation of Game 2. If A wins the simulation of Game 2 according to the

same conditions, B4 returns b̃ = 1 to the challenger.

It is easy to see that if the Key-Force challenger returns the real key, then B4

simulates Game 2 perfectly, and that if it returns a random UKE key, then it is

Game 3 that is simulated perfectly. We therefore have

AdvKey-Force
B4,Π

=
∣∣∣Pr
[
ExpKey-Force-0

B4,Π
= 1
]
− Pr

[
ExpKey-Force-1

B4,Π
= 1
]∣∣∣

= |Pr[G2]− Pr[G3]| .

Game 3 to Game 4. We see that, as the UKE key k̃ is selected uniformly at random,

the derived MAC key kM = H1(k̃) follows the same distribution. Therefore this is a

simple re-wording and we have

Pr[G4] = Pr[G3]. (5.6)
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Bounding Game 4. Finally, we see that Game 4 is very similar to the sEUF-CMA game

against the MAC M . Indeed, the adversary has no information regarding the MAC

key k̃M used by the sessions except perhaps a valid tag m3 if it relayed the two first

messages correctly. We therefore make use of a final reduction B5 to bound Pr[G4].

This reduction works as follows. If the adversary presents the chosen session ˜̀ =

(Ã, B̃, s̃) with a first UKE message m̃1, B5 replies by inserting a random message m̃2

into m̃2 without deriving a session key. If an instance of B̃ receives the correct m̃1‖m̃2

that matches ˜̀, then it queries the MAC oracle for a tag m̃3 on B̃‖Ã. When ˜̀ receives

a tag m3 6= m̃3, it returns m3 to the sEUF-CMA challenger.

We can see from the description above that if A manages to make a responder ac-

cept in Game 4 without a matching conversation, then B5 is able to win the sEUF-CMA

experiment. We therefore have

AdvsEUF-CMA
B5,M = Pr[G4].

Advantage terms. As E is 2-IND-CCA-secure, there exist negligible functions such that

Adv2-IND-CCA
B3,E ≤ negl(λ) and Adv2-IND-CCA

B′3,E
≤ negl(λ) .

Combining this with equations (5.4) and (5.5) yields

|Pr[G1]− Pr[G2]| ≤ negl(λ) .

As Π is Key-Force-secure, there exists a negligible function such that

|Pr[G2]− Pr[G3]| = AdvKey-Force
B4,Π

≤ negl(λ) .

Finally, as M is sEUF-CMA-secure, there exists a negligible function such that

|Pr[G4]| = AdvsEUF-CMA
B5,M ≤ negl(λ) .

Combining the above, together with (5.3) and (5.6), yields

Pr[G0] = Pr [BRmAuth = 1 ∧ `∗.ρ = resp] ≤ negl(λ) . (5.7)

Final advantage statement. Combining (5.2) and (5.7) yields

AdvBRmAuth
A,Σ ≤ negl(λ)
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which completes the proof that Σ is a secure mutual authentication protocol.

Finally, we show that our construction yields a protocol that guarantees key se-

crecy.

Theorem 5.7. If Π is EAV-KE-secure, M1-Guess-secure and Key-Force-secure, E is

2-IND-CCA-secure and M is sEUF-CMA-secure, then Σ is is BR-forward-secure.

Proof. We show that the three conditions required for BR-forward-security hold.

1. Correctness. The proof of Theorem 5.6 gives us that if two sessions have matching

conversations, then both of them accept. We now show that they derive identical

sessions-keys which are uniformaly distributed.

As the two sessions have had matching conversations, the two messages m1, m2,

of the UKE protocol have been correctly received by both entities. The correctness

of Π therefore implies that the keys derived are identical. Furthermore, the matching

conversations also imply that the two sessions agree on each other’s identities. This

all together implies that the inputs to the KDF H2 are identical for each sessions,

therefore they derive the same session-key.

Finally, as Π is passively secure, we see that the session keys kA and kB are

uniformly distributed over KΠ. Therefore, we have that the output of H2, modelled

as a random oracle, is also uniformly distributed over KΣ.

2. Σ is a secure mutual authentication protocol. This condition is proved by Theo-

rem 5.6 which holds as we make the same assumptions on the security of Π, E and

M .

3. Σ provides forward secrecy w.r.t the key distribution of Π. We build a reduction

B6 that uses an arbitrary poly(λ)-time adversary A against the BRSec security of Σ

in order to win the EAV-KE experiment against Π.

B6 receives a transcript from the EAV-KE challenger and guesses which session A
will return. It assumes that this will be a initiator session. In order for it to be BR-

fresh, and therefore a valid Test query target, the adversary cannot have corrupted

either participating party and must have made it accept. As shown by Theorem 5.6,

this implies that this session must have had a matching conversation with another.

Therefore, when its chosen session is first activated, B6 inserts the first message of the

UKE transcript in place of the honestly computed one.

When a session recieves this first ciphertext (and there is one as there must be a

matching conversation), B6 replaces the second message with the one from the UKE

transcript. It also replaces the session-key with that given by the EAV-KE challenger.
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When the second AKE protocol message is relayed to the initiator session, B6 once

again replaces the session key with the challenger’s.

When the adversary requests to be tested on the chosen session, B6 does not flip a

coin, instead, it simply returns the challenger’s session key. When A terminates and

returns a guess bit, B6 returns that same bit to the EAV-KE challenger.

If A submits any query that invalidates the freshness of B6’s chosen session, or

requests to be tested on a different session, the reduction aborts the simulation and

guesses the challenger’s bit at random.

As with previous reductions, we see that the probability of B6 picking the correct

test session is 1/n2
P · nS , in which case, B6 has the same probability of success in

the EAV-KE game as A has in the BRSec game with the same bit. If B6 guesses the

session wrongly, then it must output a random guess which will be equal to 1 with

probability 1/2. Therefore we have, for b ∈ {0, 1}:

Pr
[
ExpEAV-KE,b

B6,Π
= 1
]

=
1

n2
P · nS

· Pr
[
Exp

GbBRSec
A,Σ = 1

]
+

(
1− 1

n2
P · nS

)
· 1

2
.

This then implies that

AdvBRSec
A,Σ = n2

P · nS ·AdvEAV-KE
B6,Π .

We conclude the proof by stating that as Π is EAV-KE-secure, there exists a neg-

ligible function negl(λ) which, combined with the above, gives the desired relation,

AdvBRSec
A,Σ ≤ negl(λ) .
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Chapter 6

Encryption from supersingular

isogenies

In this chapter we present isogenies of supersingular elliptic curves and describe how

they have been used to construct cryptographic primitives and schemes in recent

years. We then describe a new construction for public-key encryption which achieves

IND-CCA security based on a novel trapdoor one-way function.

Except where specified, the contributions in this chapter are selected from the

work of P. Kutas1, C. Petit2, J. Silva3 and this author; it was uploaded as Report

2019/1291 in the Cryptology ePrint Archive of the IACR [57]. Except where specified,

the contributions and proofs are the work of this author in the most part.

6.1 Background material

We first summarize the relevant mathematical notions of supersingular isogenies and

the computational problems associated with them. We then describe the supersingular

isogeny Diffie–Hellman (SIDH) protocol of [66] as an introduction to isogeny-based

protocols.

6.1.1 Isogenies of supersingular elliptic curves

Let q be a power of a prime p such that the finite field Fq has characteristic different

from 2 or 3. An elliptic curve E over Fq (denoted E/Fq) is a non-singular projective

1University of Birmingham, U.K.
2University of Birmingham, U.K.
3Universitat Pompeu Fabra, Barcelona, Spain.
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algebraic curve over Fq with genus 1 and endowed with a distinguished point at

infinity: ∞. Every such curve E/Fq can be described in its short Weierstrass form:

E : y2 = x3 +Ax+B, A,B ∈ Fq. (6.1)

We therefore identify such curves with its two coefficients: E ∼ (A,B).

The set E(Fq) denotes the set of pairs (x, y) ∈ Fq
2

which satisfy (6.1). Under

the usual addition law on elliptic curves, this set forms an Abelian group for which

the distinguished point ∞ is the identity. For any integer N ∈ N, the notation [N ]P

denotes the N -fold addition of the point P ∈ E(Fq) to itself.

Torsion groups and the Weil pairing. For an integer N ∈ N coprime to p, we

denote by E[N ] the set {P ∈ E(Fq) : [N ]P = ∞} of Fq-rational points of E of order

dividing N , called the N -torsion of E.

We let ζN = {u ∈ F∗p2 : uN = 1} denote the set of N -th roots of unity. For any

curve E/Fp2 the Weil pairing is a map eN : E[N ]× E[N ]→ ζN that is both bilinear

and non-degenerate:

eN (P1 + P2, Q) = eN (P1, Q) · eN (P2, Q)

eN (P,Q1 +Q2) = eN (P,Q1) · eN (P,Q2)

∀P ∈ E[N ] \ {∞},∃Q ∈ E[N ] : eN (P,Q) 6= 1.

Elliptic curve isomorphism invariants and quadratic twists. Given a curve

E/Fq ∼ (A,B), its j-invariant is the quantity

j(E) = 1728 · 4A3

4A3 + 27B2
.

This is invariant under any isomorphism of E defined over Fq.
Given d 6= 0 not a square in Fq the quadratic twist of a curve E/Fq is the curve

Ed defined by

Ed : dy2 = x3 +Ax+B.

Two such curves E and Ed will not be isomorphic over Fq but rather over Fq(
√
d);

they will therefore still have the same j-invariant.

Isogenies of elliptic curves. Let E1/Fq and E2/Fq be two elliptic cxurves, an

isogeny ϕ : E1 → E2 over Fq is a surjective morphism which sends the point at infinity
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of E1 to that of E2. In this work we only consider isogenies ϕ that are separable which

implies that # kerϕ = degϕ.

An isogeny can also be defined as a group homomorphism from E1(Fq) to E2(Fq)
with a finite kernel. Furthermore, if E/Fq is an elliptic curve and G ⊆ E(Fq) is a finite

subgroup, then there exists a unique isogeny ϕ : E → E′ (up to automorphisms of

the target curve) whose kernel is exactly G. We therefore identify the target curve E′

with the notation E/G.

Two curves are said to be Fq-isogenous if there exists an Fq-isogeny between them;

by Tate’s theorem this holds if and only if the two curves have the same number of

Fq-rational points, i.e. #E1(Fq) = #E2(Fq). A set of elliptic curves over Fq that

are all isogenous to one another is called an isogeny class. If there exists an isogeny

ϕ : E1 → E2, then there exists a unique isogeny ϕ̂ : E2 → E1, called the dual isogeny

of ϕ, such that ϕ ◦ ϕ̂ = [n] where n = degϕ and [n] denotes the multiplication-by-n

map on E2(Fq). This shows that being isogenous is a symmetric relation.

We note that, for any isogeny ϕ, the Weil pairing defined above satisfies the relation

eN (ϕ(P ), ϕ(Q)) = eN (P,Q)degϕ.

Endomorphisms and supersingular curves. Let E be an elliptic curve over Fq;
an isogeny from E to itself is called an endomorphism of E. Together with the zero

isogeny and addition and composition operations, the set of endomorphisms of E forms

a ring, denoted End(E). A theorem of Deuring states that End(E) is isomorphic to

either an order in an imaginary quadratic field or a maximal order in a quaternion

algebra. In the first case, the curve E is said to be ordinary ; in the second E is said

to be supersingular.

Given p and q, every supersingular curve over Fq is isomorphic to another curve

defined over Fp2 . Furthermore, a curve E/Fp2 is supersingular if and only if #E(Fp2) ≡
1 mod p. Tate’s theorem mentioned above therefore implies that supersingularity is

preserved under isogenies and that curves that belong to the same isogeny class are

either all ordinary or all supersingular.

From now on we restrict the previous discussion to Fq = Fp2 . To set notation, we

let Jp denote the set of j-invariants of all supersingular elliptic curves defined over Fp2 ;

we then identifiy the set of isomorphism classes of such curves with the set Jp. We

then have #Jp = b p12c+ k, with k ∈ {0, 1, 2} depending on p.
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Canonical choices. Following [71, Section 2.4] we fix the following method to select

canonical choices of curves. Given j ∈ Jp, we define the curve Ej as Ej ∼ (0, 1) when

j = 0, Ej ∼ (1, 0) when j = 1728 and Ej ∼ ( 3j
1728−j ,

2j
1728−j ) otherwise.

For a given curve E and torsion order N dividing p−1, there exists a deterministic

and efficient algorithm Basis(E,N) which produces a basis {P,Q} of the N -torsion of

E [7, Section 3.2]. This algorithm first uses a deterministic PRG to sample a point

P ′ ∈ E(Fp2) and multiplies it by p−1
N to obtain a point P whose order divides N . (This

is efficient if N is a powersmooth number.) In fact, with high probability, the order of

P is exactly N ; if not, then the algorithm samples a new point P ′ and checks again.

To generate the other basis point, the same method is applied to find a second point

Q of order N . Then the Weil pairing is used to check if P and Q are independent of

each other. If eN (P,Q) 6= 1 then {P,Q} is returned as the output of Basis(E,N); if

eN (P,Q) = 1, then a new Q is sampled. As long as the seed for the PRG is fixed in

advance, then this procedure will always produce the same points for a given curve

and torsion order.

Isogeny graphs. Let ` be a prime number different from p. We define the graph

G` = G`(Fp2) = (V, E) where the vertex set V = Jp and the edge set E is defined

as follows. Given any isogeny ϕ : Ej1 → Ej2 of degree `, for two vertices j1, j2 ∈ V ,

we identify it with its dual isogeny and any other isogeny that is equivalent with

either, up to post-composition with automorphisms of the target curve; we then let

this isogeny class define an undirected edge (j1, j2) ∈ E .

The edges of G` can also be defined using the modular polynomial Φ`(x, y) ∈
Z[x, y] [117]. This polynomial is symmetric, i.e. Φ`(x, y) = Φ`(y, x), and is of degree

`+ 1 in both x and y. Given two j-invariants j1, j2 ∈ V, it holds that Φ`(j1, j2) = 0 if

and only if there exists an `-isogeny between Ej1 and Ej2 and therefore this exactly

characterises the edge set E . In particular, this implies that for any such prime `,

there exist exactly ` + 1 distinct isogenies originating from any given supersingular

curve, up to isomorphism. Given the degree and symmetry of Φ`, this also implies

that the graph G` is (`+ 1)-regular.

6.1.2 Computational problems

Given an elliptic curve, the foundational problem of isogeny-based cryptography is to

compute its endomorphism ring.
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Problem 6.1 (Supersingular endomorphism ring computation). Let p be a prime

number and let E be a supersingular curve over Fp2 , chosen uniformly at random.

Determine the endomorphism ring End(E).

A second problem of importance is that of computing an isogeny between two given

elliptic curves. The existence of such an isogeny can easily be decided by testing the

equality of the number of points on both given curves. If this isogeny has low degree,

then it can easily be guessed by enumeration. The computationally interesting version

is therefore to compute such an isogeny with the guarantee that it is of relatively high

degree.

Problem 6.2 (Generic supersingular isogeny computation). Let D be a smooth num-

ber and let E1 and E2 be isogenous elliptic curves over Fp2 for an isogeny of degree D.

Compute an isogeny of degree D between E1 and E2.

We note that, heuristically, restricting Problem 6.2 to isognies of smooth degree

does not change its hardness, which is in fact equivalent to that of Problem 6.1 [111,

65]. Furthermore, fixing E1 arbitrarily and letting only E2 vary at random also does

not change the complexity.

As described in more detail in the next section, relying only on isogenies does not

provide sufficient commutative structure to realize some protocols like key-exchange.

To work around this, De Feo, Jao and Plût proposed to also include images of torsion

points under secret isogenies [66]. As more information is now revealed about the

isogeny, this specializes the computational problem.

Problem 6.3 (Computational supersingular isogeny (CSSI) problem [66]). Let p be

a prime, let D and N be coprime integers and let E0/Fp2 be a fixed supersingular

elliptic curve. Let ϕ : E0 → E1 be an isogeny whose kernel is 〈K〉, where K is sampled

at random from points of order D. Let P,Q be a basis of the torsion group E0[N ].

Given E0, P,Q,E1, ϕ(P ) and ϕ(Q), compute ϕ.

As can be seen in its statement, Problem 6.3 assumes that E0 is a fixed curve.

This ensures that the assumption is close to the reality of protocol deployment where

a fixed starting curve can be an advantage for efficiency.

Petit showed in 2017 that including such images wasn’t always secure and that

polynomial-time computations of isognenies were possible if the imbalance between D

and N was sufficient [110]. Recently, further work has improved on this technique and

lowered the imbalance requirements [94]. Since Petit’s algorithm requires knowledge

of some of the endomorphism ring of the starting curve E0, fixing this curve allows
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for better performance. While removing the images of torsion points is not possible

without sacrificing the protocol benefits, we can at least first remove the dependence

of the above problem on a particular fixed curve.

Problem 6.4 (Random-start computational supersingular isogeny (RCSSI) problem).

Let p be a prime and D and N be coprime integers, let E1/Fp2 be a uniformly random

supersingular elliptic curve and let ϕ : E1 → E2 be a random isogeny of degree D

sampled from a distribution X with min-entropy H∞(X) = O(λ). Let P,Q be a basis

of the torsion group E1[N ]. Given E1, P,Q,E2, ϕ(P ) and ϕ(Q), compute ϕ.

We note this RCSSI problem differs from the CSSI problem in two aspects. The

first is that the starting curve E1 is uniformly random instead of being a special fixed

curve. Selecting E1 at random means that computing End(E1) is exactly an instance

of Problem 6.1; as this problem is assumed to be hard on average, this prevents the

attacks in [110, 94] from applying to Problem 6.4, even for unbalanced D and N .

The second difference is the specification of the entropy of the distribution from

which the challenge isogeny is sampled. Note that in the statement of Problem 6.4

we have allowed arbitrary distributions with sufficient min-entropy for convenience,

but in fact we will only require the problem to be hard for specific distributions. In

Section 6.1.4, we discuss how this modification to the original CSSI problem is in fact

not specific to the protocol presented in this chapter, as a similar modification seems

to be needed to formally prove the security of the NIST submission SIKE [6] derived

from SIDH.

Finally we also include here a decisional problem introduced by De Feo et al. [66].

Problem 6.5 (Decisional supersingular isogeny (DSSI) problem). Let p be a prime,

let D be an integer and let E0/Fp2 be a fixed supersingular curve. Given another

curve E/Fp2 , decide whether E is D-isogenous to E0.

Since both E and E0 are both supersingular, they will both have the same number

of points and will therefore be isogenous. The problem here is more specific and asks

whether E and E0 are connected by an isogeny of degree exactly D.

6.1.3 The SIDH key-exchange and semi-commutativity

In the supersingular case, recall that the endomorphism ring End(E) is isomorphic to

a maximal order in a quaternion algebra and is therefore non-commutative. Despite

this, a notion of semi-commutativity is possible and we describe here the SIDH two-

party key-exchange protocol to illustrate this.
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We generalise slightly the presentation of [66] and discuss the case where p is

a prime of the form `e11 `
e2
2 · · · `enn · f ± 1 for n small primes `1, . . . , `n and a small

cofactor f . By construction of p, there is a curve E/Fp2 in each isomorphism class

of Jp such that the torsion group E[`eii ] contains `ei−1
i (`i + 1) cyclic subgroups of

order `eii (which each define a distinct isogeny up to isomorphism).

To generate a secret key, each party generates a random point Ki of order `eii on a

fixed public curve E and computes a public ephemeral key by computing the unique

isogeny with kernel 〈Ki〉 and publishing the domain curve E/〈Ki〉. The computation

of this isogeny is efficient due to its very smooth degree. The issue here is that the

structure of End(E) no longer allows for the composition of arbitrary isogenies to

commute and an analogue of the (ga)b = (gb)a equality is not immediate. However,

with isogenies of co-prime degrees some commutative structure can still be achieved.

To do so, in addition to the curve E, the parties agree on bases {Pi, Qi} for each

of the torsion groups E[`eii ]. The semi-commutative structure then comes from the

fact that applying an isogeny of degree `eii preserves the torsion groups E[`
ej
j ] for

j 6= i since every point in E[`
ej
j ] has order co-prime to `eii . Therefore, alongside

publishing the domain curve E/〈Ki〉 for their secret isogeny φi, parties also publish

{{φi(Pj), φi(Qj)}j 6=i}, the images under φi of the bases for the other torsion groups.

By expressing their secret kernel Kj = [αj ]Pj + [βj ]Qj in the bases of the initial

torsion groups and applying these coefficients to the images {φi(Pj), φi(Qj)}, the

other party can then compute an isogeny ϕj : E/〈Ki〉 → E/〈Ki,Kj〉 which can be

seen as “parallel” to the isogeny φj : E → E/〈Kj〉.
Whilst the two resulting curves E/〈Ki,Kj〉 and E/〈Kj ,Ki〉 may not be identical,

they will be isomorphic, as the kernel 〈Ki,Kj〉 defines a unique isogeny up to isomor-

phism, and the parties can then take the j-invariants of their respective curves as an

identical shared value.

This protocol is provably secure in the Auth model of Canetti and Krawczyk [35]

under the assumption that the SSDDH problem is hard. The SSDDH problem is a

variant of the DSSI problem (Problem 6.5) which takes into account the additional

points revealed by the protocol described above.

6.1.4 Isogeny sampling in SIKE and the CSSI problem

In their paper introducing SIDH [66], De Feo et al. specify that the kernel generator

of the secret isogeny is selected as [m]P +[n]Q, with m,n←$Z`e not both divisible by

` (taking D = `e in this case). This ensures that every one of the (`+1)`e−1 degree-D
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isogenies can be selected as the challenge. The CSSI problem defined in that paper

therefore naturally assumes that the isogenies are sampled uniformly at random.

For increased efficiency, however, it is proposed in [47, Section 4] to sample the

generator points as P + [` · m]Q for m ∈ [`e−1]. This has the consequence of only

sampling from 1/3, resp. 1/4, of the possible isogenies, for ` = 2 and ` = 3 respec-

tively. A similar method is included in the SIKE specification [6, Section 1.3.5] which,

furthermore, samples m only in the set [2blog 3e3c], therefore not reaching the full range

of possible values. It is not expected that such imperfect sampling makes the CSSI

problem easier, especially since such sampling methods still yield distributions of iso-

genies with min-entropy of the order of O(1λ). Nonetheless, we have included this

difference into Problem 6.4 to make this sampling discrepancy more explicit.

6.2 Injective trapdoor one-way function family

We first present a generalisation of the CGL hash function [37] and then introduce a

new family of trapdoor OWFs. We show that, for certain parameters, we can efficiently

sample a statistically uniform function from the family and that any such function is

injective and one-way. Finally, we show that sampling a function at random yields a

trapdoor, i.e. a secret isogeny, which we can use to efficiently invert the function.

6.2.1 Extending the Charles-Goren-Lauter hash function

We first present the CGL hash function family Hp,`,e = {h`,ej : [`]e → Jp}j∈Jp as

introduced in [37]. We omit `, e from notation when the context is clear. To select a

hash function from the family, one selects a j-invariant j ∈ Jp which fixes the canonical

curve E = Ej/Fp2 . The graph G` is (` + 1)-regular so there are ` + 1 isogenies of

degree ` connecting E to other vertices. A canonical one of these is ignored and the

other ` are numbered arbitrarily. Then, given a message m = b1b2 . . . be, with bi ∈ [`],

hashing starts by choosing a degree-` isogeny from E according to symbol b1 to arrive

at a first curve E1. Not allowing backtracking, there are then only ` isogenies out

of E1 and one is chosen according to b2 to arrive at a second curve E2. Continuing in

the same way, m determines a unique walk of length e along the edges of G` which

can be identified with a degree-`e isogeny ϕm.

We modify this hash function family in three ways. First, we consider a general-

isation where we do not ignore one of the ` + 1 isogenies from the starting curve E.

That is, we take inputs m = b1b2 . . . be where b1 ∈ [` + 1] and bi ∈ [`] for i > 1; this
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introduces a one-to-one correspondence between inputs and isogenies ϕm of degree `e

originating from E.

Secondly, we consider a generalisation where the walk takes place over multiple

graphs G`i . Given an integer DM =
∏n
i=1 `

ei
i where the `i are its prime factors, we

introduce the notation µ(DM ) :=
∏n
i=1(`i + 1) · `ei−1

i . We take the message m to

be an element of [µ(DM )] represented as a tuple (m1, . . . ,mn) and each mi is then

hashed along the graph G`i . To ensure continuity, the j-invariants are chained along

the hash functions, that is, we write ji = hji−1(mi), where ji−1 is the hash of mi−1.

Each such hash can be identified with the computation of an isogeny ϕi : Eji−1 → Eji
of degree `eii . Thus, only j0 parametrises the overall hash function, which we denote

by j. As before, this generalization returns the final j-invariant jn = hjn−1(mn) as

the hash of m.

Thirdly, we also modify the CGL hash function to return the images of two given

points of the starting curve E under the DM -isogeny with target curve Ejn . Under

the notation from the previous modification, we have ϕm = ϕn ◦ · · · ◦ ϕ1. For the

rest of this work, as we will only make use of this family of generalised functions, we

therefore refer by Hp,Dm to the hash function family

Hp,DM =
{
hDMj : m,P,Q 7→ jn, ϕm(P ), ϕm(Q)

}
.

6.2.2 Defining a new one-way function family

Given a prime number p and two integers DM and N , we define a family of functions

Fp,DM ,N : Jp × [µ(DM )]→ Jp × (Fp2)2 × (Fp2)2

which makes use of the extended CGL hash function family Hp,DM described in the

previous section. Each function fj in the family, for j ∈ Jp, first computes the

canonical curve Ej together with a canonical basis (Pj , Qj) of the torsion group Ej [N ].

It then maps an input m ∈ [µ(DM )] as:

fj : m 7→ (jc, Pc, Qc) = hDMj (m,Pj , Qj).

Statistically random sampling from the family. We let the canonical curve

E1728 be part of the global parameters of the family Fp,DM ,N as a fixed starting curve

for sampling purposes. Let DS be an integer coprime to DM . To then select a random

fj ∈ F , a random DS-isogeny with kernel KS is sampled which fixes the target curve
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ES = E1728/KS . Taking its j-invariant jS , this selects the function fjS from the

family.

Theorem 6.6 ([71, Theorem 1]). For an integer DS =
∏
i `
ei
i , the distribution of the

j-invariant jS sampled as the last j-invariant of a random walk through the graphs

G`i of length DS is within statistical distance
∏
i

(
2
√
`i

`i+1

)ei
of uniform.

Similarly to [71, Lemma 1], letting ε > 0 be arbirarily small and setting DS =∏
i `
ei
i with all `i being all primes less than 2(1 + ε) log p and taking ei = max{e ∈ N :

`ei < 2(1 + ε) log p} leads to a statistical distance of less than 1/p1+ε.

Injectivity. We show that the functions in the family are injective for the right

choice of parameters.

Lemma 6.7 ([57, Lemma 1]). For N2 > 4DM , any function fj ∈ Fp,DM ,N is injective.

Proof. Suppose that a function fj is not injective, i.e. that there are two distinct

isogenies ϕ and ϕ′ of degreeDM from Ej to Ec, corresponding to two distinct messages,

with the same action on Ej [N ], implied by the colliding images of Pj and Qj . Then,

following from [101, Section 4], their difference ϕ− ϕ′ is also an isogeny between the

same curves whose kernel contains the entire N -torsion. This, together with [118,

Lemma V.1.2], implies that 4DM ≥ deg(ϕ − ϕ′) ≥ N2. Taking N2 > 4DM ensures

that in fact ϕ = ϕ′ and therefore that fj is injective.

One-wayness. We finally prove that a randomly sampled function from the family

F is one-way under the assumption of hardness of the RCSSI problem.

Lemma 6.8 ([57, Lemma 2]). Let DS be such that the distribution of the resulting

jS is statistically close to uniform. A function fj ∈ Fp,DM ,N sampled at random as

described above is quantum one-way under the hardness of Problem 6.4 with isogeny

degree d = DM and torsion degree N .

Proof. Suppose that there is a PPT quantum adversary A that can break the one-

wayness of fj ; that is, given j and (jc, Pc, Qc) = fj(m
∗) for m∗←$ [µ(DM )], A can

recover m∗ with non-negligible probability. We build a reduction B which receives a

challenge (E1, P1, Q1, E2, P2, Q2) for Problem 6.4, with X being the uniform distri-

bution over isogenies of degree DM , and returns an isogeny ϕ : E1 → E2 such that

ϕ(P1) = P2 and ϕ(Q1) = Q2.

We first observe that since E1 is uniformly distributed, then the distribution of its

j-invariant statistically close to that expected byA for j, soA is not able to distinguish
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such distributions. We also observe that the distribution of isogenies resulting from

hashing a uniform m∗←$ [µ(DM )] is exactly the distribution X of DM -isogenies. The

reduction therefore passes j(E1) and (j(E2), P ′2, Q
′
2) to A, where P ′2 and Q′2 are the

images of P2 and Q2 under the isomorphism from E2 to Ej(E2), and A will return a

corresponding input m with high probability. By reproducing the hashing of m, the

reduction B can then recompute an isogeny ϕ̃ : Ej(E1) → Ej(E2). Note here that if m

is a correct pre-image of (jc, Pc, Qc) under the function fj , then we are certain that

it is the only one as, by Lemma 6.7, fj is injective. With its knowledge of E1, E2, P1

and Q1, B can then compute the appropriate isomorphism from E1 to Ej(E1) use that

from Ej(E2) to E2 and compose them with ϕ̃ to obtain ϕ.

6.2.3 Inverting functions with an isogeny trapdoor

We now show how to use the algorithm of [110] to invert a given function fj ∈ Fp,DM ,N .

We are given ct = (jc, Pc, Qc) as the output of fj(m) for some unknown m, and also

the random isogeny ϕS : E1728 → Ej of degree DS used to select Ej at random;

this random isogeny is the trapdoor of this inversion mechanism. This gives us the

composed isogeny ϕ = ϕm ◦ ϕS : E1728 → Em of degree D = DM ·DS , where ϕm is

the walk determined by m, used in the computation of fj(m).

We now assume that we know a particular endomorphism θ ∈ End(E1728) together

with an integer d ∈ Z such that Tr(θ) = 0 and deg(ϕ ◦ θ ◦ ϕ̂ + [d]) = N . The other

authors of [57] describe in Section 3.4 how such a θ can be computed. (This technique

was recently further improved to have lower requirements on the imbalance between

D and N [94].) Furthermore we assume that D is odd, that gcd(D,N) = 1 and that

−4 deg(θ) is not a square modulo every prime divisor of D. It was shown, by the

other authors of [57], how to find such a suitable θ as part of the global parameters

of the function family Fp,DM ,N .

To invert a given output, we first let ψ = ϕ ◦ θ ◦ ϕ̂+ [d] ∈ End(Em). As described

in [110], we can compute ψ by noting that it has degree N and that we know its action

on the torsion group Em[N ] (because of the basis Pc, Qc). This means that we can

compute its kernel, as it is contained within Em[N ].

Since we can compute ψ, we can compute G = ker(ψ − [d]) ∩ Em[D] efficiently.

Lemma 6.9 below, proved by the other authors of [57], in fact shows that G = ker(ϕ̂)

directly and therefore we can recover first ker(ϕ) and then ker(ϕm) by separating

out ϕS . This finally allows us to recover m ∈ [µ(DM )] by retracing ϕm through the

isogeny graph. These steps are summarized in Algorithm 1.
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Algorithm 1 Inverse computation

Require: ct, ϕS , θ ∈ End(E1728), d ∈ Z.
Ensure: m ∈ [µ(DM )] such that fj(m) = ct.

1: Parse ct as (jc, Pc, Qc) ∈ Jp × (Fp2)2 × (Fp2)2.
2: Compute the canonical curve Em = Ejc .
3: Let ϕ = ϕm ◦ ϕS : E1728 → Em.
4: Let ψ = ϕ ◦ θ ◦ ϕ̂+ [d] ∈ End(Em). . Choices of θ and d ensure degψ = N .
5: Compute K1 = kerψ ⊂ Em[N ] using d, θ, φS and Pc, Qc ∈ Em[N ].
6: Compute K2 = ker(ϕ ◦ θ ◦ ϕ̂) ∩ Em[D] = ker(ψ − [d]) ∩ Em[D] = ker(ϕ̂).
7: Compute ker(ϕm) using ker(ϕ̂).
8: return m ∈ [µ(DM )] that corresponds to ker(φm).

Lemma 6.9 ([57, Lemma 3]). Let θ be such that −deg(θ) is a quadratic nonresidue

modulo every prime dividing D = DM ·DS. Then G is cyclic and G = ker(ϕ̂).

Avoiding a timing dependency.

The condition that −deg(θ) is a quadratic nonresidue modulo every prime dividing

D may seem strange at first since in [110] the case when G is not cyclic is also

considered. In the original attack algorithm of in [110], there is a guessing step where

a θ-invariant subgroup of E1728[k] has to be found, where k is the largest divisor of

D such that Em[k] ⊂ G. Since k depends on m, and since this guessing step takes

time exponential in the number of prime factors of k, this leads to a dependency of

the inversion alorithm on the message. Not only does this open the avenue to timing

attacks further on, it also raises the question of whether the inversion runs efficiently

for all possible inputs. However, with the particular condition on −deg(θ) mentioned

above, it holds that k = 1 for all messages m. This extra condition on θ only increases

the parameters slightly and represents a conservative choice for the sake of security.

Detection of invalid inputs.

When provided with a valid ciphertext ct, Algorithm 1 will always return the corre-

sponding plaintext. To detect invalid inputs we proceed as follows. If any of the steps

fails we return ⊥ to indicate that the ciphertext is invalid. If the algorithm returns

an output m̃ then we recompute the image c̃t from it; if that matches the original ct,

then we return m̃ as a valid message; otherwise we return ⊥.
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Algorithm 2 The KGen algorithm for SÉTAOW-CPA.

Require: params = (λ, p, j1728, DS , DM , N, θ).
Ensure: pk = jS , sk = KS .

1: Sample a random cyclic subgroup KS ⊂ E1728(Fp2) of size DS .
2: Compute the isogeny ϕS : E1728 → ES := E1728/〈KS〉.
3: Compute the j-invariant jS = j(ES) and its canonical curve EjS .
4: Set pk := jS and sk := KS .
5: Return (pk, sk).

Algorithm 3 The Enc algorithm for SÉTAOW-CPA.

Require: Parameters params, pk = jS and plaintext m.
Ensure: Ciphertext ct.

1: Cast m as an integer in [µ(DM )]
2: Compute (jc, Pc, Qc)← fjS (m), where fjS ∈ Fp,DM ,N .
3: Embed (jc, Pc, Qc) as a binary string ct ∈ {0, 1}nC .
4: Return ct.

6.3 IND-CCA public-key encryption from isogenies

We now build a PKE scheme using the family of trapdoor OWFs of Section 6.2 and

show that it is OW-CPA secure; then we modify it using a generic transformation to

achieve IND-CCA security.

6.3.1 OW-CPA encryption scheme

We present the SÉTAOW-CPA PKE scheme as the tuple (Setup, KGen, Enc, Dec) of PPT

algorithms described below, as originally published in [57].

Parameters. Let E1728 be a fixed supersingular elliptic curve defined over Fp2 with

j-invariant 1728. Let DS , DM and N be integers chosen according to the requirements

of Section 6.2. Let θ ∈ End(E0) be a particular endomorphism computed as in [57,

Section 3.4]. We let params = (λ, p, j1728, DS , DM , N, θ) be the output of the Setup

algorithm.

Key generation. The KGen(params) algorithm is decribed in Algorithm 2.

Encryption. Let nM = blog2 µ(DM )c and nC be sufficiently many bits to represent

one j-invariant in Jp and two points in (Fp2)2). For a message m ∈ {0, 1}nM , the

Enc(params, pk,m) algorithm is decribed in Algorithm 3.

Decryption. The Dec(params, pk, sk, ct) algorithm is decribed in Algorithm 4.
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Algorithm 4 The Dec algorithm for SÉTAOW-CPA.

Require: Parameters params, keys pk, sk and ciphertext ct.
Ensure: Plaintext m or error message ⊥.

1: Parse ct as (jc, Pc, Qc) ∈ Fp2 × (Fp2)2 × (Fp2)2; if that fails, return ⊥.
2: Execute Algorithm 1 to recover m̃ ∈ [µ(DM )]; if this fails, set m̃ = ⊥.

3: If m̃ 6= ⊥; verify that fjS (m̃)
?
= ct. If not, set m̃ = ⊥.

4: If ⊥ was recovered, return ⊥.
5: Otherwise, from m̃ ∈ [µ(DM )], recover m ∈ {0, 1}nM and return it.

With the algorithms defined above, we now prove the OW-CPA security of the scheme.

Theorem 6.10. Let DS be such that the distribution of jS is statistically close to

uniform. If Problem 6.4 with p, d = DM , N and X such that H∞(X) = O(λ) is hard

for quantum PPT adversaries, then the PKE scheme above is quantum OW-CPA-

secure.

Proof. In the notation of Definition 2.11, we have M = {0, 1}nm . We see that a

randomly sampled m←$M directly embedded as an integer m ∈ [µ(DM )] yields a

distribution Y with min-entropy H∞(Y ) = λ on isogenies of degree DM starting

from ES . Similarly to the proof of Lemma 6.2, the challenge of inverting a given

ciphertext ct reduces to recovering the secret isogeny of Problem 6.4 with X = Y .

Ciphertext size. A ciphertext is composed of a j-invariant jc ∈ Fp2 , which can be

represented with 2 log p bits, and two torsion points Pc, Qc ∈ Ejc [N ], each of which

can be represented with 2 logN bits by identifying each N -torsion point with a pair

of elements in ZN . Therefore, the bit size of a ciphertext is

2 log p+ 4 logN.

Further compression is possible, representing both torsion points with 3 logN bits,

using the techniques in [46, Section 6.1].

6.3.2 IND-CCA encryption scheme from OAEP transformation

We now show how to construct SÉTAIND-CCA, an IND-CCA secure PKE scheme based

on our OWF of Section 6.2. We do so with the post-quantum OAEP transformation

of [122, Section 5] which we state below. We then prove that our function f is

quantum partial-domain one-way which is the required property to make use of the
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transformation. We then recall the transformation’s security theorem and comment

on the efficiency of the resulting IND-CCA scheme.

Post-quantum OAEP transformation

Let

f : {0, 1}λ+k1 × {0, 1}k0 → {0, 1}nC

be an invertible injective function. The function f is the public key of the scheme, its

inverse f−1 is the secret key. The scheme makes use of three hash functions

G : {0, 1}k0 → {0, 1}k−k0 ,

H : {0, 1}k−k0 → {0, 1}k0 ,

H ′ : {0, 1}k → {0, 1}k,

modelled as random oracles, where k = λ+ k0 + k1. Given those, the Setup and KGen

algorithms remain as before, but the Enc and Dec algorithms are defined as follows:

• Enc: given a message m ∈ {0, 1}λ, sample r←$ {0, 1}k0 and set

s = m||0k1 ⊕G(r), t = r ⊕H(s),

c = f(s, t), d = H ′(s||t),

and output the ciphertext (c, d).

• Dec: given a ciphertext (c, d), use the secret key to compute (s, t) = f−1(c). If

d 6= H ′(s||t) output ⊥. Otherwise, compute r = t⊕H(s) and m̃ = s⊕G(r). If

the last k1 bits of m̃ are 0, output the first n bits of m, otherwise output ⊥.

Quantum partial-domain one-wayness

Lemma 6.11. The function f defined in Section 6.2.2 is a quantum partial-domain

one-way function, under the hardness of Problem 6.4.

Proof. We note that in our case, partial domain inversion is the same as domain in-

version where only the first part of the path is required. More precisely, we factor DM

as D′M ·D′′M such that gcd(D′M , D
′′
M ) = 1, 2λ+k1 ≤ µ(D′M ) and 2k0 ≤ µ(D′′M ) (where

λ + k0 + k1 is the bit-length of input strings) and then embed each of s and t in the

113



CHAPTER 6. ENCRYPTION FROM SUPERSINGULAR ISOGENIES

respective factors when computing f(s, t). If D′M is appropriately set, then recover-

ing s from c = f(s, t) is hard under the same assumption as Theorem 6.10 with DM

replaced by D′M .

Theorem 6.12 ([122, Theorem 2]). If f is a quantum partial-domain one-way func-

tion, then the OAEP-transformed scheme is IND-CCA secure in the quantum random

oracle model (QROM).

Ciphertext size. The IND-CCA version adds an output of a hash function H ′, which

has the same size as the input of the one-way function f . Thus the total bit size of

the ciphertext is

2 log p+ 4 logN + k,

where k = λ+ k0 + k1.
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Chapter 7

Invertible semi-commutative

masking

In this chapter, we construct (invertible) semi-commutative masking structures as a

generalisation of exponentiation-only mechanisms in protocol design and formulate

abstract computational problems that derive from such structures. We then present

two concrete instantiations, one based on group actions and one based on isogenies of

supersingular elliptic curves as defined in Chapter 6.

Except where specified, the material in this chapter is selected from the work of

E. Orsini1, C. Petit2, N. P. Smart3 and this author; it was accepted for publication

in the proceedings of the 19th International Conference on Cryptology and Network

Security, CANS 2020 and will be presented at the virtual edition of the conference [58].

The ideas and analyses presented here were the joint work of this author and his co-

authors and, except where specified, the final content reproduced here is this author’s

own work.

7.1 Semi-commutative masking structures

We define the abstraction of semi-commutative invertible masking structures. It allows

us to define protocols succintly without dealing with implementation details.

To help ideas we illustrate the presentation of these structures with the case of

discrete logarithms in a finite field Fp where p and q = (p−1)/2 are primes and g ∈ Fp
1University of Bristol, U.K., later KU Leuven, Belgium.
2University of Birmingham, U.K.
3University of Bristol, U.K., later KU Leuven, Belgium.
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is an element of order q.

7.1.1 Definition of masking structures

Elements and representatives. A masking structure M is defined over a set X.

Each element x ∈ X may have multiple representations, and we define Rx to be the

set of representations of an element x ∈ X. We require that it be efficient to recover x

from any representation in Rx. We denote the set of all such sets by RX = {Rx}x∈X .

The sets of representatives are assumed to be disjoint, i.e. ∀x, x′ ∈ X s.t. x 6= x′ :

Rx ∩Rx′ = ∅, and we define R = ∪x∈XRx to be the set of all representatives.

For example, if we take X = 〈g〉 ⊂ F∗p, then the usual choice for R is to let

Rx = {x} for every x ∈ X. One could also take a redundant representation with two

elements, letting Rx = {x, x+ p}.

Masking sets and invertible masks. Given a structureM with its set X and its

set of representatives R, a mask is a function µ : R → R, and a masking set M is a

set of such functions.

In the discrete logarithm analogue M can be a set of exponentiation maps on

the representatives of the elements of X = 〈g〉 indexed by elements in Z∗q . That is

M = {µa, a ∈ Z∗q} with µa : h 7→ ha.

A masking function µ ∈M is said to be invertible if

∀x ∈ X, ∀r ∈ Rx, ∃ µ−1 ∈M : µ−1(µ(r)) ∈ Rx.

We only require that the inverse mask outputs a representative in the same set, not

necessarily the same representative. For a given masking set M , if all masks µ ∈ M
are invertible, then we say that the masking set M is invertible.

In the discrete logarithm example if µa corresponds to the map h 7→ ha, then µ−1
a

corresponds to the map µ1/a : h 7→ h1/a.

Semi-commutative structures. An invertible masking structure M for a set X

is then a collection of sets of representative RX , along with a collection of n invertible

masking sets [Mi]
n
i=1, and we writeM = {X,RX , [Mi]

n
i=1}. Such an invertible masking

structure is said to be semi-commutative if

∀i 6= j, ∀µ ∈Mi, ∀µ′ ∈Mj , ∀r ∈ R, µ(µ′(r)) ∈ Rx ⇐⇒ µ′(µ(r)) ∈ Rx.
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1. The challenger sets 1λ and M = {X,RX , [Mi]}.

2. A is given 1λ and M and outputs (r, µ0, µ1, i) such that r ∈ R, i ∈ [n], µ0, µ1 ∈
Mj , j 6= i.

3. The challenger computes r0 ← µ0(r) and r1 ← µ1(r) and also samples a bit
b←$ {0, 1} at random.

4. The challenger samples a random mask µ←$Mi and computes r̃ ← µ(rb).

5. A is given r̃ and outputs a guess b̃.

6. The experiment ouputs 1 if and only if b̃ = b, and 0 otherwise.

Figure 7.1: The IND-Mask security experiment ExpIND-Mask
A,M .

In our discrete logarithm setting, M being the set of exponentiation maps con-

sidered earlier, we see that M = {X,RX , [M,M ]} is a semi-commutative invertible

masking structure since commutativity of elements of Z∗q is immediate.

7.1.2 Problems and properties.

We now present a distinguishing experiment and several computational problems for

such masking structures. We will prove the security of our protocols to hold under the

assumption of the difficulty of these problems, and the precise security level will then

be established when we instantiate our generic structure from concrete primitives.

The first security notion of indistinguishable masking, IND-Mask, whose security

experiment is described in Figure 7.1, guarantees that a random mask hides distin-

guishing information about the representatives that it acts on.

Definition 7.1 (IND-Mask security). We say that a semi-commutative invertible

masking structure M = {X,RX , [Mi]} is (quantum) IND-Mask-secure if for all prob-

abilistic poly (λ)-time (quantum) adversaries A, there exists a negligible function

negl(λ) such that ∣∣∣∣Pr
[
ExpIND-Mask

A,M = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) .

In the discrete logarithm setting, when Rx = {x}, the map h 7→ ha for random

a ∈ Z∗q induces a permutation of the group elements in 〈g〉. Therefore for a secret a and

two group elements h0, h1, the distribution of hab is perfectly uniform, independently

of b. This shows that such anM is perfectly IND-Mask-secure, even against quantum

adversaries.
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Note 7.2. In some settings (but not in the discrete logarithm one), it may be possible

to distinguish the action of two masks that belong to separate masking sets. It is

also possible that this difference is preserved under the action of a mask from a third

masking set. Therefore, if an adversary was able to submit arbitrary r0 and r1 to the

IND-Mask experiment, it could ensure that the difference between them is preserved

by the action of µ and hence win the experiment with certainty. By forcing A to

submit a single r ∈ R and two maps µ0, µ1 belonging to the same masking set Mj ,

the experiment prevents that strategy.

Definition 7.3 (Computational problems). Given a semi-commutative invertible

masking structure M = {X,RX , [Mi]}, we define the following computational prob-

lems:

1. Demask: Given (i, r, rx) such that rx = µx(r) for a uniformly random µx←$Mi,

return µx.

2. Parallel: Given (i, j, r, rx, ry) such that i 6= j and that rx = µx(r) and ry = µy(r)

for uniformly random µx←$Mi, µy←$Mj , return z ∈ X such that µx(ry) ∈ Rz.

3. ParallelInv: Given (i, j, r, rx, ry) such that i 6= j and that rx = µx(r) and

ry = µy(r) for uniformly random µx←$Mi, µy←$Mj , return z ∈ X such that

µ−1
x (ry) ∈ Rz.

4. ParallelEither: Given (i, j, r, rx, ry) such that i 6= j and that rx = µx(r) and

ry = µy(r) for uniformly random µx←$Mi, µy←$Mj , return z ∈ X such that

either µx(ry) ∈ Rz or µ−1
x (ry) ∈ Rz.

5. ParallelBoth: Given (i, j, r, rx0 , rx1 , ry) such that i 6= j and that rxb = µb(r), b ∈
{0, 1} and ry = µy(r) for uniformly random µb←$Mi, µy←$Mj , return z ∈ X
such that either µ−1

1−b(µb(ry)) ∈ Rz or µ−1
b (µ1−b(ry)) ∈ Rz.

To make explicit the given structure M to which the (say) Demask problem refers,

we write DemaskM. The name “Parallel” is inspired by a similar problem defined by

Couveignes [48] which we describe in Section 7.2.1.

We motivate these problems in the discrete logarithm setting, where we take our

masking structure as before to have X = 〈g〉, Rx = {x} and to have each Mi to be

identical to the set of exponentiation maps indexed by Z∗q .

• We see that the Demask problem is, given (g, h) such that h = ga for a random

a, to return a. This is exactly the discrete logarithm problem (DLP).
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g

ga

gb

(gb)a

(a) The Parallel problem.

g

ga

gb

(gb)1/a

(b) The ParallelInv problem.

g

ga0ga1

gb (gb)a0/a1(gb)a1/a0

(c) The ParallelBoth problem.

Figure 7.2: Representations of computational problems.

• Similarly, the Parallel problem is, given (g, ga, gb) for random a, b, to return

ga·b which is exactly the computational Diffie–Hellman (CDH) problem. The

name “Parallel” of [48] is thought to be derived from the representation shown

in Figure 7.2a of the problem where the challenge is to compute the parallel

operation.

• In the discrete logarithm setting, the ParallelInv problem is to compute gb/a given

(g, ga, gb).

We show here that in this setting it is equivalent to the Parallel problem. Given

a challenge (g, ga, gb) for Parallel, we let (ga, g, gb) be a challenge for ParallelInv

We rewrite this as (h, ha
′
, hb

′
) with h = ga, a′ = 1/a and b′ = b/a. As a and b

are uniformly random, so are a′ and b′ and hence our ParallelInv solver returns

hb
′/a′ = ha·b/a = (ga)b = ga·b

which is exactly the solution to the Parallel challenge that was given. A similar
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reduction shows that the ParallelInv problem can be solved using a solver for the

Parallel problem.

We note that this reduction does not immediately hold in the abstract case, due

to the unspecified relation between r and µ−1(µ(r)), but it can nonetheless be

shown to hold for individual instantiations.

• The ParallelEither problem is an instance where both the solutions to the Parallel

and to the ParallelInv problems, for the same challenge, are accepted. While it is

immediate that the ParallelEither problem is at most as hard as any of the other

two, a formal reduction to show the reverse implication does not appear to be as

trivial. We conjecture that in most settings, and in the discrete logarithm setting

in particular, allowing for two possible answers which are both hard to compute

on their own does not significantly decrease the hardness of the ParallelEither

problem.

• The solution of the ParallelBoth problem can be seen as a combination of both

Parallel and ParallelInv solutions together with the choice of the ParallelEither

problem as is shown in Figure 7.2c.

Indeed, one can first use a Parallel oracle to compute µb(ry) for either b ∈
{0, 1} and then use a ParallelInv oracle to compute µ−1

1−b(µb(ry)) which shows

that ParallelBoth is at most as hard as those two problems. Similarly to the

ParallelEither problem, we conjecture that in most settings the ParallelBoth will

not be significantly easier as it requires solutions which are both hard to com-

pute.

7.2 Instantiation from one-way group actions

We now present a generalisation of the discrete logarithm setting instantiation of our

new semi-commutative masking structure. Specifically, we show that hard homoge-

neous spaces, as given in [36], and which are based on Couveignes’s original defini-

tion [48], are an example of such structures. This is also the case for the action, via

isogenies, of the class group of the ring of Fp-rational endomorphisms of supersingular

isogenies over Fp on the isomorphism classes of such curves.
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7.2.1 Hard homogeneous spaces

We first give a summarized definition of hard homogeneous spaces and then formally

instantiate a semi-commutative masking structure from such spaces. Throughout this

section, we let G be a finite commutative group with identity element e and we denote

the group action of G on a set X with the operator ∗ defined as: ∗ : G × X → X,

with g ∗ x 7→ y.

Definition 7.4 (Hard (efficient) homogeneous space). A homogeneous space X for G

is a finite set X on which G acts freely and transitively. This implies that for any g ∈ G
different from e, the permutation of X induced by the action of g has no fixed points;

i.e. for given x, y ∈ X, there exists a unique g ∈ G such that y = g ∗ x. The space X

is efficient if the following tasks are computationally easy (i.e. polynomial-time):

• evaluation of the group operation, inversion and equality testing of elements

of G;

• sampling a random element from G with (close to) uniform distribution;

• deciding membership and equality of a representation of elements of X;

• evaluation of the action of a group element g ∈ G on a set element x ∈ X.

The space X is (quantum) hard if the following tasks are computationally hard (i.e.

not (quantum) polynomial-time):

• Vectorization: given x, y ∈ X, return g ∈ G such that y = g ∗ x; this is the

analogue of the DLP for the group action.

• Parallelization: given x, y, z ∈ X such that y = g ∗ x, return g ∗ z; this is the

analogue of the CDH problem for the group action.

We then instantiate a masking structure and show that it realises our definition

of a semi-commutative invertible masking structure.

Definition 7.5 (Masking structure from homogeneous space). Given a homogeneous

space X for G we define a masking structureMX,G = {X,RX , [G,G]} for X as follows:

• We let Rx = {x} for each x ∈ X and therefore have R = X.

• The masking tuple [G,G] consists of two identical copies of the group G that

acts on X.
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Lemma 7.6. Let X be an efficient homogeneous space for a commutative group G,

then the masking structure MX,G = {X,RX , [G,G]} of Definition 7.5 is a semi-

commutative masking structure.

Proof. First we see that all the elements ofMX,G are well-defined and that the mask-

ing action of µ ∈ G : R → R also is, where µ : r 7→ µ ∗ r. Next, we have that by

definition of a group action, the masking of any r ∈ R by any µ ∈Mi for all i is indeed

invertible. Also, since every Mi is a copy of the group G, the commutativity of G

induces the semi-commutativity ofMX,G. Finally, the properties of an efficient homo-

geneous space imply the efficiency of the operations required for a semi-commutative

masking structure.

We see here that a group action is stronger than our semi-commutative structure

since any mask is in fact able to commute with any other. However the advantage of

our weaker structure will become apparent in Section 7.3 with the instantiation from

supersingular isogenies over Fp2 .

Note 7.7. Before we discuss the instantiation of the computational problems, we briefly

note that the two requirements for the hardness of a homogeneous space correspond

exactly to the Demask and Parallel problems for a semi- commutative masking struc-

ture. Also, we have that the Parallel and ParallelInv problems are equivalent as it

suffices to swap the first two elements of a challenge (x, y, z) for one problem to ob-

tain a challenge (y, x, z) for the other which yields the same solution. Finally we have

that ParallelEither is at most as hard as Parallel or ParallelInv. Hence we have

ParallelEitherMX,G <P ParallelMX,G ∼=P ParallelInvMX,G .

We also note thatMX,G is perfectly IND-Mask-secure since the action by a uniformly

random element in G induces a perfect randomization of any element in X.

7.2.2 Discrete logarithm setting

The traditional Diffie-Hellman setting presented in Section 7.1 is a straightforward

realisation of the hard homogeneous space presented above. Indeed, for any finite

abelian group 〈g〉 of prime order in which the CDH problem is hard, we can let X be

the set 〈g〉 and G be the set of exponentiation maps.
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7.2.3 Class group of Fp-rational endomorphisms

A second realisation of hard homogeneous spaces we present is a summary of work

by Castryck et al. [36]. This work builds upon the Couveignes–Rostovtsev–Stolbunov

scheme of [48, 114] where the public key space is the set of Fp-isomorphism classes

of ordinary elliptic curves over Fp whose endomorphism ring is a given order O in an

imaginary quadratic field and whose trace of the Frobenius map has prescribed sign.

The key ideas of the scheme of Couveignes et al. is that the ideal class group cl(O)

acts freely and transitively on that set, and that this class group is commutative which

allows for a natural key exchange protocol.

However, and despite recent improvements [67, 91], the scheme of Couveignes et al.

is inefficient for the following reason. In order to decompose the action of an element

of cl(O) into several smaller actions that are quicker to compute, De Feo, Kieffer and

Smith [67] had the idea to chose p ≡ −1 mod ` for several small odd primes `. They

then searched for an ordinary elliptic curve E/Fp such that #E(Fp) ≡ 0 modulo as

many `’s as possible. This would ensure that the ideal `O decomposes as the product

of two prime ideals l and l̄ for which the action of the ideal classes [l] and [̄l] can be

computed efficiently. If this works for sufficiently many `’s, then a generic element of

cl(O) can be written as a product of small integral powers of such [l] and the class

group action can be computed efficiently. However, finding a curve E/Fp such that

#E(Fp) ≡ 0 is hard and they only manage to obtain practical solutions for 7 different

values of `.

In order to increase the efficiency of this methodology, Castryck et al. adapt it to

make use of supersingular elliptic curves, instead of ordinary ones, but still defined

only over Fp [36]. Instead of the full ring of endomorphisms of such curves, which is

not commutative, they consider the subring of Fp-rational endomorphisms which is

again an order O in an imaginary quadratic field. As before, the ideal class group

cl(O) acts via isogenies on the set of Fp-isomorphism classes of elliptic curves with

Fp-rational endomorphism ring equal to O, we denote this set by Ep(O). Furthermore,

contrary to the ordinary case, this action only has a single orbit.

The reason why this yields an increase in efficiency is that, in the supersingular

case, #E(Fp) = p + 1 and hence #E(Fp) ≡ 0 modulo all primes ` | p + 1 used in

building p. This allows for many more values of ` to be used which in turn reduces

the integral powers of each [l] that appear in the decomposition of generic elements

in cl(O). Concretely, Castryck et al. use 74 small odd primes in their implementation

for which they heuristically expect that each element in cl(O) can be written as
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[l1]e1 [l2]e2 · · · [l74]e74 with each ei ∈ {−5, . . . , 5}. In contrast, for a class group of

equivalent 256-bit size, using 7 small primes for the same approach would require

exponents in the range of 236 which leads to much slower computations.

We note that, typically, the exact structure of the class group cl(O) is unknown

which requires the use of heuristics for actions such as the uniform sampling of ele-

ments. Furthermore, as a set of generators of cl(O) is not known, it is not possible

to establish a canonical representation of elements which implies that evaluating the

group action may not always be efficient. For the CSIDH-512 parameter set [36], which

uses the 74 small primes mentioned above, Beullens, Kleinjung and Vercauteren per-

formed the expensive computation of the exact structure of the corresponding class

group [20]. This implies that the operations mentioned above can be computed effi-

ciently for these specific parameters.

Lemma 7.8. For a fixed prime field Fp and appropriate order O of an imaginary

quadratic field, let X = Ep(O), and let G = cl(O). If the structure of cl(O) is known,

then X is an efficient homogeneous space for G.

Proof. As stated in the discussion above, we have that G acts freely and transitively on

X, that it inherits the commutative structure of O and that, therefore, this is a well-

defined homogeneous space. Also, due to the decomposition into classes of small prime

ideals with small integral exponents the evaluation of the group operation, inversion,

equality and sampling, as well as the action of a group element on a set element x

are all efficient. Furthermore, as X can be represented as the set of Montgomery

coefficients of the Fp-isomorphism classes, equality of elements of X is efficient as

well.

As in the previous setting, the Demask and Parallel problems for the masking struc-

ture MX,G induced by the homogeneous space of Lemma 7.8 immediately translate

to analogues of the DLP and CDH in the class group action setting; and so does our

prior discussion on the equivalence of ParallelInv and Parallel and on the hardness of

ParallelEither. The classical and post-quantum security of the DLP analogue in this

setting was already succinctly discussed in [36, Section 7] and was addressed in greater

detail in [25] which provides a finer estimation of the required security parameters.

7.3 Instantiation from supersingular isogenies over Fp2

In Section 7.2 above, the commutative property of G gives stronger algebraic prop-

erties to the induced masking structure than the weaker semi-commutativity which
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the definition requires. In addition, the first realisation presented in Section 7.2.2 also

possesses a group structure on the set X which is compatible with the action of G.

This structure on X plays a key role in the design of several protocols as it enables

increased flexibility, such as the OT protocol of Chou and Orlandi [43], but it also

leads to new attack vectors such as Pohlig–Hellman-style attacks. The second real-

isation of Section 7.2.3 does not possess such a structure on X compatible with the

action G which eliminates this attack vector. However the commutative property of

G itself still enables the Demask problem for MX,G to be presented as an instance of

the abelian shift problem for which a sub-exponential quantum algorithm with time

complexity Lp[1/2] is known to exist [40]. When the restriction to Fp-rational endo-

morphism rings is lifted, and the full space of isogenies over Fp2 is considered, this

commutative property disappears and the Demask problem can no longer be attacked

by the algorithm above. This is what gave rise to De Feo, Jao and Plût’s setting of

supersingular elliptic curves over Fp2 that we presented in Chapter 6 and was used to

build the SIDH protocol.

In this section we draw from elements described in Section 6.1 to construct a semi-

commutative masking structure from this SIDH-style setting and discuss the hardness

of the induced problems.

7.3.1 Masking structure

To start defining a semi-commutative masking structure, we fix p = `e11 `
e2
2 · · · `enn ·f±1

as in Section 6.1.3. In this setting, there are (at most) five supersingular isogeny classes

and we let X ⊂ Jp denote the j-invariants of one of the two classes with curves E/Fp2

with trace t = p2 + 1−#E(Fp2) ∈ {−2p, 2p}; these two classes are the largest of the

five [1].

Representatives

For each j-invariant x ∈ X there is a canonical choice of curve Ex, as presented in

Section 6.1.1 following from [71, Section 2.4]. We define the set of representatives to

be the set of tuples

Rx = {(Ex, {{Pi, Qi}i∈[n]})}

where Ex is the canonical curve for x or an appropriate twist and {Pi, Qi} is any

basis of the torsion group Ex[`eii ] as in Section 6.1.3. For each torsion order `eii , we

fix a generator qi ∈ ζ`eii
such that for any curve E, the value of the Weil pairing

evaluated on the basis points output by Basis(E, i) is equal to qi. This will be used
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to derive new torsion points when required but these are still free to be modified

within representative tuples under the action of isogenies. Hence for each x, there will

be a unique choice of Ex but many choices of bases of torsion groups that originate

from transformations of the deterministic one.

In protocols, when a common element x ∈ X is required to be shared between

parties in advance, then the parties should agree on a j-invariant and then derive the

canonical curve and all the basis points in the deterministic way described above.

Masking sets

We first observe that for any Ki = [αi]Pi + [βi]Qi on a curve E, the point [γ]Ki,

for γ ∈ (Z/`eii Z)∗, generates the same subgroup of E[`eii ] as Ki. By defining the

equivalence relation ∼R by

(α, β) ∼R (α′, β′) ⇐⇒ ∃γ ∈ (Z/`eii Z)∗ s.t. (α′, β′) = (γα, γβ),

we can then identify any such kernel Ki with the equivalence class of (αi, βi) which we

denote [αi : βi]. We recall that the projective line P1(Z/`eii Z) is the set of equivalence

classes [αi : βi] such that gcd(αi, βi) = 1.

Since Ki has exact order `eii , at least one of αi and βi must not be divisible by `i

and hence the ideal of the ring Z/`eii Z generated by αi, βi is always the unit ideal, i.e.

the whole of Z/`eii Z. This implies that all the possible choices for Ki can be exactly

identified with the points on the projective line P1(Z/`eii Z). We therefore define n

masking sets [Mi]i∈[n] where each Mi is the projective line Pi := P1(Z/`eii Z).

Masking action

Given a mask µ ∈ Mi, which is a point on Pi, computing the result of µ(r) ∈ Ry on

a representative r = (Ex, {{Pi, Qi}i∈[n]}) ∈ Rx then consists in computing one of its

representatives Ki = [αi]Pi + [βi]Qi in Ex[`eii ] and the isogeny ϕi : Ex → Ex/〈Ki〉.
Note that the curve Ex/〈Ki〉 with j-invariant y ∈ X may not be the same curve as the

canonical choice Ey. However they will be isomorphic over Fp2 , due to the appropriate

choice of twist in the definition of our set Ry, and the isomorphism χ : Ex/〈Ki〉 → Ey

will be easy to compute.

To be able to compose isogenies in a semi-commutative way, computing µ(r) also

requires computing the images of {{Pj , Qj}} for j 6= i first under ϕi and then under the

isomorphism χ to obtain bases of the torsion groups of Ey. It also requires generating
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a new basis for Ey[`
ei
i ] using the Basis(Ey, i) algorithm.

The output of the computation of the mask µ(r) is therefore the curve Ey
χ
'

Ex/〈Ki〉 together with the basis points {{χ ◦ ϕi(Pj), χ ◦ ϕi(Qj)}} for j 6= i and the

output of Basis(Ey, i).

Inverting the mask

Since our masking sets Mi do not derive from a group structure, we do not have an

immediate instantiation of an inverse operation. However, recall that for every isogeny

ϕ : E → E′ of degree `, there is a unique dual isogeny ϕ̂ : E′ → E also of degree

` such that the composition is the multiplication-by-` map: ϕ̂ ◦ ϕ = [`] : E → E.

Whilst not a perfect inverse operation, in this setting the multiplication-by-`eii map

not only preserves the j-invariant of the curve, but also preserves the structure of the

`
ej
j -torsion groups for all j 6= i which we require for semi-commutativity to hold.

Hence, given a kernel generator Ki ∈ E[`eii ] for some curve E, one can compute a

generator of the image ϕi(E[`eii ]) ⊂ E′[`eii ] of the `eii -torsion group under the isogeny

ϕ̃i defined by Ki and an appropriate isomorphism, to obtain K̂i ∈ E/〈Ki〉 which is a

generator of the kernel of the unique dual isogeny ϕ̂i.

Given a mask µ ∈ Mi = Pi and r, r′ = µ(r) with r′ = (E′, {{Pj , Qj}j∈[n]}),
computing the inverse µ−1 amounts to computing a point K̂i as above and expressing

it as K̂i = (α̂i, β̂i) in the deterministically generated basis for E′[`eii ] using the Basis

algorithm. This then allows us to define µ−1 uniquely as [α̂i : β̂i] ∈ Pi, given µ and r.

We note that the dependency of µ−1 on µ and also r is consistent with the definition

of the inverse of a mask as stated in Section 7.1.1.

This necessary dependency of the inverse for this setting is the principal factor

for our definition of masks as points on Pi as opposed to only isogenies. This also

allows us to capture isogenies that are different but have the same kernel and therefore

induce identical masking actions.

Masking structure

We are then able to formally define a masking structure in this setting of isogenies of

supersingular elliptic curves over Fp2 .

Definition 7.9 (Masking structure from supersingular isogenies). Let p be a prime

defining the finite field Fp2 as above, we define the masking structure Mp = {X,RX ,
[Mi]i∈[n]} where the individual components are defined as above.
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Lemma 7.10. The masking structure Mp of Definition 7.9 is semi-commutative.

Proof. First we see that the elements ofMp together with the action of any µ ∈Mi on

any r are well-defined. Then, since the composition of any isogeny with its dual results

in an endomorphism of the starting curve, our method of inverting a given mask yields

the same j-invariant regardless of the starting r or masking index i. Also, the semi-

commutative property of our structure follows from the semi-commutative property

of isogenies of co-prime degrees. Finally, the required efficiency of the computations

for Mp follows from the comments above regarding the computation of isogenies of

smooth degrees and expression of points in arbitrary torsion bases. Equality in X and

Mi and membership in X are immediate to check.

7.3.2 Computational problems

We first present a further specialization of the original CSSI problem (Problem 6.3)

to the case where the prime p has the particular form p = `e11 `
e2
2 · f ± 1 which was

chosen in [66] to ensure that isogenies of degree dividing p ∓ 1 could be decomposed

into many small isogenies (typically `1 = 2 and `2 = 3). We state here a definition

merged from that of Galbraith and Vercauteren [72] and Urbanik and Jao [123].

Problem 7.11 (2-i-CSSI problem [72, Definition 2][123, Problem 4.1]). Let (E,P1,

Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and Pj , Qj is a basis for E[`
ej
j ]

for j ∈ {1, 2}. Let E′ be such that there is an isogeny ϕ : E → E′ of degree `eii . Let

P ′j , Q
′
j be the images under ϕ of Pj , Qj for j 6= i. The 2-i-CSSI problem, for i ∈ {1, 2},

is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j), to determine an isogeny ϕ̃ : E → E′ of degree

`eii such that P ′j = ϕ̃(Pj) and Q′j = ϕ̃(Qj).

This definition leads to the following natural generalisation which we show corre-

sponds exactly to the computational problem that we need.

Definition 7.12 (n-i-CSSI problem). Let (E, {Pj , Qj}nj=1) be a tuple such that E/Fp2

is a supersingular curve and Pj , Qj is a basis for E[`
ej
j ] for j ∈ [n]. Let E′ be

such that there is an isogeny ϕ : E → E′ of degree `eii . Let {P ′j , Q′j} be the im-

ages under ϕ of {Pj , Qj} for j 6= i. The n-i-CSSI problem, for i ∈ [n], is, given

(E, {Pj , Qj}nj=1, E
′, {P ′j , Q′j}j 6=i), to determine an isogeny ϕ̃ : E → E′ of degree `eii

such that P ′j = ϕ̃(Pj) and Q′j = ϕ̃(Qj) for all j 6= i.

Lemma 7.13. Let p = `e11 `
e2
2 · · · `enn ·f±1 be a prime and letMp be a masking structure

as defined in Definition 7.9. Then the Demask problem for Mp is an instance of the

n-i-isogeny problem.
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Proof. The specification of i in (i, r, rx) together with the random mask µx satisfies

the promise of existence of an isogeny ϕ of degree `eii . Also, by definition of Rx for

each x ∈ X for Mp, the representative rx contains exactly the information of the

curve E′ together with the images of the appropriate torsion points. We note that

rx does not contain additional information as the basis points of E′[`eii ] are derived

deterministically from E′.

Computational SIDH problems

Together with the original CSSI problem (Problem 6.3), the isogeny problems defined

above can be viewed as the analogues of the discrete logarithm problem of computing

an unknown exponent in the case of generic primes p or these of a particular form.

This naturally leads to an analogue of the CDH problem which is defined as follows

in the case of n = 2.

Problem 7.14 (2-computational SIDH problem [123, Problem 4.3]). Let E,EA, EB

be supersingular curves such that there exist isogenies ϕA : E → EA and ϕB : E → EB

with kernels KA and KB and degrees `e11 and `e22 respectively. Let P1, Q1 and P2, Q2 be

bases of E[`e11 ] and E[`e22 ] respectively, and let P ′1 = ϕB(P1), Q′1 = ϕB(Q1) and P ′2 =

ϕA(P2), Q′2 = ϕA(Q2) be the images of the bases under the isogeny of coprime degree.

The 2-computational SIDH problem is, given (E,P1, Q1, P2, Q2, EA, P
′
2, Q

′
2, EB, P

′
1,

Q′1), to identify the isomorphism class of the curve E/〈KA,KB〉.

Note 7.15. We abbreviate the previous problem as 2-CSIDH and we stress that it has

no relation to the CSIDH scheme of [36].

This problem can also be generalised in a natural way to the following which then

yields the appropriate instantiation for our structure.

Problem 7.16 (n-i, j-computational SIDH problem). Let E,EA, EB be supersingu-

lar curves such that there exist isogenies ϕA : E → EA and ϕB : E → EB with

kernels KA and KB and degrees `eii and `
ej
j respectively with i 6= j. Let {Pk, Qk}

be bases of E[`ekk ], for k ∈ [n], and let PAk = ϕA(Pk), Q
A
k = ϕA(Qk), for k 6= i,

and PBk = ϕB(Pk), Q
B
k = ϕB(Qk), for k 6= j be the images of the bases under the

isogeny of coprime degree. The n-i, j-computational SIDH problem, for i, j ∈ [n], is,

given (E, {Pk, Qk}k∈[n], EA, {PAk , QAk }k 6=i, EB, {PBk , QBk }k 6=j), to identify the isomor-

phism class of the curve E/〈KA,KB〉.

Lemma 7.17. Let p = `e11 `
e2
2 · · · `enn ·f±1 be a prime and letMp be a masking structure
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as defined in Definition 7.9. Then the Parallel problem for Mp is an instance of the

n-i, j-CSIDH problem.

Proof. As for Lemma 7.13, the specification (i, j, r, rx, ry) of the Parallel problem for

Mp satisfies the promise of existence of the two isogenies of coprime degrees and

contains all the required information on the images of the torsion bases. Also, the

goals of the problems agree since the solution to the Parallel problem forMp requires

z ∈ X which is exactly the j-invariant which identifies the isomorphism class uniquely.

Again, rx and ry do not contain additional information since the bases for the ith and

jth torsion groups are computed deterministically.

Regarding the ParallelInv problem for Mp, we do not have an immediate reduc-

tion to the Parallel problem as we had for the previous instantiation. To follow the

same proof strategy as for masking structures from homogeneous spaces (sketched in

Note 7.7), one would have to swap r and rx to submit a challenge to the oracle for the

ParallelInv problem. The map from rx to r would then be the inverse of the one from r

to rx but the map from rx to ry would no longer satisfy the promise of the ParallelInv

problem. We discuss this interesting subtlety in the definitions of the CDH problem in

Section 7.3.3. We nonetheless conjecture that, as they are very similar, the hardness

of the ParallelInv problem is close to that of the Parallel problem. We similarly conjec-

ture that the hardness of the ParallelEither and ParallelBoth problems is comparable to

that of the Parallel and ParallelInv problems as no additional information is revealed

and only similarly hard-to-compute solutions are required.

Decisional SIDH problem

Galbraith and Vercauteren also formalise a decisional variant of the SIDH problem in

the case of n = 2 [72].

Problem 7.18 (2-i-decisional SIDH problem [72, Definition 3]). Let (E,P1, Q1, P2,

Q2) be such that E/Fp2 is a supersingular curve and Pj , Qj is a basis for E[`
ej
j ] for

j ∈ {1, 2}. Let E′ be an elliptic curve and let P ′j , Q
′
j ∈ E′[`

ej
j ] for j 6= i. Let 0 < d < ei.

The 2-i-decisional SIDH problem is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j , d) for j 6= i,

to determine if there exists an isogeny ϕ : E → E′ of degree `di such that ϕ(Pj) = P ′j
and ϕ(Qj) = Q′j .

As for the computational problems, we can generalise the above problem to our

setting.
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CDH1(G = 〈g〉)

1 : a←$Z∗q
2 : b←$Z∗q
3 : output (g, ga, gb)

(a) Traditional CDH.

CDH2(G = 〈g〉)

1 : h←$G

2 : a←$Z∗q
3 : b←$Z∗q
4 : output (h, ha, hb)

(b) Random base CDH.

CDH3(G = 〈g〉)

1 : h←$G

2 : a←$Z∗q
3 : i←$G

4 : output (h, ha, i)

(c) Single promise CDH.

Figure 7.3: Three versions of the CDH challenge creation.

Definition 7.19 (n-i-decisional SIDH problem). Let (E, {Pj , Qj}j∈[n]) be such that

E/Fp2 is a supersingular curve and Pj , Qj is a basis for E[`
ej
j ] for j ∈ [n]. Let E′

be an elliptic curve and let P ′j , Q
′
j ∈ E′[`

ej
j ] for j 6= i. Let 0 < d < ei. The n-i-

decisional SIDH problem is, given (E, {Pj , Qj}j∈[n], E
′, {P ′j , Q′j}j 6=i, d), to determine

if there exists an isogeny ϕ : E → E′ of degree `di such that ϕ(Pj) = P ′j and ϕ(Qj) = Q′j
for j 6= i.

Whilst we do not have an equivalence between the IND-Mask experiment and the

n-i-DSIDH as presented above, we see that an oracle for the latter with d = ei is

sufficient to obtain a noticeable advantage against the former. Also, it would seem

that our IND-Mask experiment corresponds to a worst case of the n-i-DSIDH as it

uses a maximal degree of d = ei. We conjecture that the IND-Mask problem for Mp

is not significantly easier than the n-i-DISDH for the same parameters.

As hinted at in Note 7.2, the Weil pairing is in fact a useful tool against the

IND-Mask experiment. Indeed, if the adversary had free control over the values r0

and r1 of the experiment, it could give two representatives whose basis points of

the same torsion group evaluated to different values under the Weil pairing. This

difference would be preserved under the secret masking action of the experiment and

this would enable it to win trivially. Restricting the adversary’s input to be a single

representative r and two masks of the same set that determine r0 and r1 and preserve

the values of Weil pairing on the points of r thus prevents this strategy.

7.3.3 Different formulations of the CDH problem

In Figure 7.3, we present three subtly different versions of the CDH problem, simplified

to their challenge creation and written using group exponentiation notation.

The first formulation, in Figure 7.3a, reflects the original definition of the CDH
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problem where the first element of the tuple (g, ga, gb) is always the pre-defined gen-

erator g. This formulation differs from our definition of the Parallel problem as the r

element of our challenge tuple (i, r, rx, ry) does not have to be any pre-defined value.

Instead our formulation is aligned on the second version, presented in Figure 7.3b.

This then allows for the equivalence between the Parallel and ParallelInv problems to

be proven formally in the setting of homogeneous spaces. Indeed we can construct a

tuple (i, j, r′, r′x, r
′
y), with r′ = rx, r

′
x = r and r′y = ry, where the promise of a map

in Mi between r′ and r′x is satisfied because of the inverse, and the promise of a map

in Mj taking r′ to r′y holds because, in this setting, there necessarily exists a map

between any two elements.

However, the second implication does not hold in the setting of supersingular

isogenies. Indeed, swapping r and rx results in a isogeny of degree `eii · `
ej
j between

the curves in r′x and r′y as opposed to an isogeny of degree `
ej
j as promised by the

problem.

Formulating the CDH challenge differently and removing the promise between

r and ry, as presented in Figure 7.3c, would enable a formal reduction to be built

between the Parallel and ParallelInv problems in this less structured setting. We note

that the CDH2 and CDH3 formulations are in fact equivalent in our first setting of

homogeneous spaces.

Changing our definitions to allow for this reduction to be proven would however

cause the computational problems to be further removed from their usage in practice.

Indeed, the messages exchanged in protocols constructed in this setting typically sat-

isfy the promises of our problems as they currently stand and we therefore chose not

to modify our definitions.
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Chapter 8

OT protocols from

semi-commutative masking

In this chapter we construct two OT protocols from a semi-commutative structureM
as constructed in Chapter 7. We first recall preliminary material on oblivious transfer

and the universal composability (UC) framework of security before presenting each

protocol and its proof of UC-security against passive adversaries with static corrup-

tions in the ROM.

The material in this chapter is also selected from the work of Orsini, Petit, Smart,

and this author [58]. The design of the protocols was joint work of all four authors;

E. Orsini contributed the majority of Section 8.1; this author contributed the majority

of the proofs in Sections 8.2 and 8.3. The contents of Section 8.2.3 were the joint work

of this author and E. Orsini.

8.1 Preliminaries on oblivious transfer

Oblivous transfer, originally proposed by Rabin in 1981 [112], is a two-party primitive

which enables a sender to transfer one of two messages to a receiver. Without knowing

them in advance, the receiver selects one of the two messages and remains oblivious

to the other one; similarly, the sender remain oblivious to which of the two messages

was transfered. We formally describe the ideal OT functionality in Figure 8.1.

Universal composability security model

We present an overview of the universally composability (UC) framework of security

established by Canetti [34]. Protocols that aim to achieve security in this model are
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FOT functionality

Parameter: length n of the messages (formalized as bit-strings).

• Upon receiving (PS , sid,m0,m1) from the sender, check if a (sid, c) was previously
stored. If yes, send mc to PR; if not, store (sid,m0,m1) and continue to run.

• Upon receiving (PR, sid, c) from the receiver, check if a (sid,m0,m1) was previ-
ously stored. If yes, send mc to PR; if not, store (sid, c) and continue to run.

Figure 8.1: Oblivious transfer functionality.

defined in three steps. First, the protocol and its execution in the presence of an

adversary are formalized; this represents the real-life model which we also call the real

world. Next, an ideal process for executing the task is defined; its role is to act as

a trusted party by separately receiving the input of each party, honestly computing

the result of the protocol internally and returning the output assigned to each party.

In this ideal world, the parties do not communicate with one another but instead

solely rely on the ideal functionality to provide them with their output. Finally,

we say that the protocol in question UC-realizes the ideal functionality if running

the protocol is equivalent to emulating the ideal functionality. We provide a brief

discussion with additional formal details for the case of semi-honest adversaries with

static corruptions.

In the real world, the parties involved in the execution of a protocol Π perform their

own computation and communicate with one another when required to do so. Also

present in the execution model is an adversary A which not only observes the messages

exchanged but is also responsible for their delivery. This implies that it can choose

to deliver them in the wrong order or to not deliver them at all. However, we assume

that communication is authenticated and that A can therefore only deliver messages

that were previously sent, without modifying them, and that it cannot deliver the

same message more than once.

The final entity present in this execution model is the environment E which repre-

sents all of the events happening on the network at the time of the protocol execution.

This environment is responsible for deciding the inputs and receiving the outputs of

all the parties executing the protocol; this communication takes place outside of the

view of A but we note that A still learns the inputs and outputs of corrupt parties as

it is able to read their internal state. Furthermore, E interacts with A throughout the

execution of the protocol Π.
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FRO functionality

The functionality is parametrized by a domain D and range R. It keeps a list L of
pairs of values, which is initially empty and proceeds as follows:

• Upon receiving a value (sid,m),m ∈ D, if there is a pair (m, ĥ), ĥ ∈ R, in the
list L, set h = ĥ. Otherwise choose h←$R and store the pair (m,h) in L.

• Reply to the activating machine with (sid, h).

Figure 8.2: Random oracle functionality.

In the ideal world, the parties instead interact with an ideal functionality F in a

simple way: they pass their private inputs to F and wait for it to return their assigned

output. There is also an adversary S which is responsible for the delivery of messages.

As we assume that the functionality is a trusted third party, this adversary cannot

observe the content of the messages. Finally, the same environment E is present in

the ideal world. E also prescribes the inputs and observes the outputs of all parties

and may interact with S throughout the execution of the ideal process.

In the static corruptions strategy, the adversary (A or S) may choose, at the

beginning of the execution only, to corrupt one or more parties in the protocol. After

the execution begins, it is forbidden from corrupting new parties.

We also formalize semi-honest adversarial behaviour, also called honest-but-cur-

ious, by saying that the adversary may not send messages on behalf of corrupt parties.

Instead, it is given read access to all of their internal state which includes their private

input and output as well as their internal computations. In the real world, this forces

A to follow the protocol honestly and in the ideal world, it restricts S to simply

forwarding messages between parties and the functionality.

In addition to these two model of computation, the UC-framework also considers

the G-hybrid model where the parties in both real and ideal world have access to a

copy of the ideal functionality G. In the real world, this is an independent trusted

party that executes the functionality honestly. In the ideal world, S executes an

internal copy of the functionality G and only interacts with F . Particularly, the ROM

is formalized here using an instance of the FRO functionality as shown in Figure 8.2

and by proving the security of protocols in the FRO-hybrid model.

To then prove that a protocol Π securely UC-realizes an ideal functionality F ,

one must show that, for every adversary A interacting with Π in the real world, there

exists an adversary S (often called the simulator) interacting with F in the ideal world
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such that no environment E should be able to distinguish whether it is interacting

with A or with S.

In other words, for every A, one needs to design an S which is capable of simulating

the view of A (which includes the transcript of the protocol and the internal state

of the corrupt parties) such that no E can distinguish the simulation from a real

execution. In this work, we restrict all of the entities A,S, E to probabilistic poly(λ)-

time algorithms.

We then say that the protocol Π securely realises the functionality F in the G-

hybrid model, if for every adversary A, there exists a simulator S such that for every

environment E ,

HYBRIDGΠ,A,E
c
≈ IDEALF ,S,E ,

where
c
≈ denotes computational indistinguishability, HYBRIDGΠ,A,E denotes the output

of E in an execution of the real protocol with the adversary A controlling the corrupted

parties, and IDEALF ,S,E denotes the output of E in the ideal execution, where the

simulator S plays the role of the honest parties in Π against an internalA and interacts

as the corrupt parties with the functionality F .

Active security in the UC model

While the extensive proofs of Sections 8.2.2 and 8.3.2 are for semi-honest adversaries,

we mention here another kind of adversarial behaviour considered in the UC model:

malicious behaviour, also called active behaviour. In this case, the adversary is no

longer restricted to the instructions of the protocol and can instead deviate arbitrarily

and compute its own messages on behalf of the corrupt parties. Security against this

kind of adversary, called malicious, or active, security, is much harder to achieve.

Indeed in this case, to prove the indistinguishability of the real (or hybrid) world

from the ideal world, the simulator must be able to extract inputs from A’s arbitrary

messages in order to cause the functionality to output coherent messages to the honest

parties.

8.2 OT from three-pass message transfer

This first OT protocol is inspired by the two-party Shamir three-pass protocol for

secure message transmission shown in Figure 8.3 (ignoring the elements in square

brackets), also known as the Massey-Omura encryption scheme [102]. Here, Alice’s

input is a message g together with a secret mask a and Bob’s input is another secret
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Alice (g0, [g1], a) Bob ([c], b)

(g0)a, [(g1)a]
ga0 , [g

a
1 ]

(ga[c])
b

gab[c]

(gab[c])
1/a

gb[c]
(gb[c])

1/b = g[c]

Figure 8.3: The Shamir three-pass protocol and its OT variant.

mask b. To transmit g, Alice first sends ga to Bob who replies by masking it as gab.

Now Alice removes her mask and replies with gab/a = gb to Bob who then inverts b

and recovers g.

This protocol can be modified to yield an OT protocol as shown in Figure 8.3

(including the elements in square brackets); this was proposed by Wu, Zhang and

Wang [127]. This protocol can be seen as being based on a key transport protocol

which is expanded to achieve the requirements of oblivious transfer. In contrast, our

second construction will later take a key exchange protocol and turn it into an OT

protocol.

Alice, acting as sender, now has two inputs g0 and g1 and masks both with a to

send ga0 , ga1 to Bob, the receiver. In addition to his mask b, Bob now also has a choice

bit c ∈ {0, 1} and he replies to Alice with (gac )b. They then continue as before until

Bob recovers gc.

While the security of the Shamir three-pass protocol holds against external ad-

versaries due to the masking of the message, the OT protocol also needs to provide

security guarantees against internal adversaries, namely Alice or Bob. The intuition

for security in this case is that the mask a cannot be deduced from either ga0 or ga1
and therefore the first message hides both of Alice’s inputs from Bob. Also when Bob

applies his own mask to one of the two messages, this hides his input bit c from Alice

who doesn’t know b.

To instantiate this protocol for general semi-commutative masking schemes, Alice

needs to be able to invert the mask 1/a on gabc without knowing gc. While this is easy

in the discrete logarithm case, it is not possible in general. This is due to the subtle

fact that in the definition of the inverse of a mask µ ∈M : ∀x ∈ X, ∀r ∈ Rx, ∃µ−1 ∈
M :: µ−1(µ(r)) ∈ Rx, the µ−1 is specified after µ and r and may therefore depend on

µ(r). While such an µ−1 is required to exist for all r ∈ Rx for a given µ and x, if

may be different for each value of r or x. Therefore in a general semi-commutative

masking scheme, the 1/a mask may be different depending on whether it needs to be
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Alice (g0, g1; a) Bob (g0, g1; c; b)

(gc)
b

gbc

(g0)a, (g1)a, (gbc)
a

gabc
(gabc )1/b = gac

Figure 8.4: Sketch of the final Shamir three-pass OT protocol.

applied to ga0 or ga1 . As the aim of the protocol is to hide which of these two values was

chosen by Bob, Alice lacks some information to compute her un-masking properly.

We therefore modify the OT protocol to remove this operation. In our new (dis-

crete logarithm based) variant, the elements g0 and g1 are common to both parties.

Rather using a to send ga0 , g
a
1 to Bob (the receiver), Alice (the sender) does not go

first. Instead, Bob first communicates his masked choice gbc, and then Alice applies

her mask a and replies with gabc . At that moment, she also computes ga0 , g
a
1 internally.

She then uses these internal values to derive two symmetric keys k0 and k1. Those

are used to encrypt Alice’s actual OT inputs m0 and m1 as two ciphertexts ct0 and

ct1 which she sends alongside gabc . This allows Bob to recover gac and hence decrypt

ctc to recover mc.

As she no longer communicates one of g0 or g1 to Bob this is no longer exactly

a message transport protocol. Instead, it can be seen as a randomness transport

protocol where Alice communicates her random mask a applied to Bob’s choice gc.

As g0 and g1 are now established once and re-used for every instance of the protocol,

this allows the flows to have only two passes rather than three. Figure 8.4 abstracts

the symmetric encryption and only shows the flows that lead to Bob receiving the

value gac .

8.2.1 Construction

We now formally define the first OT protocol from semi-commutative invertible mask-

ing schemes. Let M = {X,RX , [MA,MB,MC ]} be a semi-commutative masking

structure with three masking sets; let E = (KGen, Enc, Dec) be a symmetric encryp-

tion scheme with key space K and let FRO be an instance of the RO ideal functionality

with domain D = X and range R = K. We assume that random sampling from mask-

ing sets Mi, i ∈ {A,B,C}, evaluation of masks, evaluation of Enc, Dec, and inversion

in Mi are all efficient operations for the masking structure M and for the symmetric

encryption scheme E. The protocol Π1
OT is formally defined in Figure 8.5.

As described above, the idea of the protocol is that both the sender, PS , and
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Protocol Π1
OT

Parameters: length n of the sender’s input strings; masking structureM; symmetric
encryption scheme E.
Common inputs: Arbitrary x0 6= x1 ∈ X together with r0 ∈ Rx0 , r1 ∈ Rx1 are shared
and re-used for every instance of the protocol; an instance of the random oracle ideal
functionality FRO : {0, 1}1λ → K.
Sender’s Input: m0,m1.
Receiver’s Input: c ∈ {0, 1}.

Receiver 1

1. Sample β←$MB uniformly at random.

2. Compute rβc := β(rc) and β−1 ∈MB.

3. Send rβc to PS .

Sender 1

1. Sample α←$MA and compute rαb := α(rb) ∈ Rxαb , b ∈ {0, 1}
2. For b ∈ {0, 1}, call FRO twice on input xαb obtaining kb, and compute

ctb ← Enc(kb,mb)

3. Compute rαβc := α(rβc )

4. Send (rαβc , ct0, ct1) to PR.

Receiver 2

1. Compute rαc := β−1(rαβc ) and kR := FRO(xαc ) where rαc ∈ Rxαc .

2. Return mc := Dec(kR, ctc).

Figure 8.5: The protocol Π1
OT for realizing FOT from semi-commutative masking.

receiver, PR, have as common input arbitrary elements x0 6= x1 ∈ X along with

representations r0 ∈ Rx0 , r1 ∈ Rx1 . In the first pass, PR takes a random mask β ∈MB

and sends rβc = β(rc) to PS , where c is its choice bit. In the second pass, PS samples

a random mask α ∈ MA and computes rα0 = α(r0) and rα1 = α(r1). These elements

uniquely determine xαb ∈ X, b ∈ {0, 1}. Thus the sender can compute two private

keys kb, b ∈ {0, 1}, by invoking twice the random oracle functionality FRO on input

xαb , and encrypt its input messages m0,m1 accordingly. PS then sends the ciphertexts

ctb ← Enc(kb,mb), b ∈ {0, 1}, and rαβc = α(rβc ) to PR. The receiver has now all the

information needed to recover the message mc corresponding to its choice bit: it can
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apply the inverse β−1 to rαβc using the semi-commutativity of M, so that

β−1(rαβc ) = β−1(α(rβc )) = β−1(α(β(rc))) ∈ Rxαc ,

and recover kc = FRO(xαc ). This easily implies correctness of the scheme.

8.2.2 UC-security against semi-honest adversaries

The security of protocol Π1
OT of figure 8.5 is given by the following theorem.

Theorem 8.1. The protocol Π1
OT securely UC-realizes the functionality FOT of Fig-

ure 8.1 in the FRO-hybrid model for semi-honest adversaries and static corruptions,

under the assumption that E is IND-CPA-secure, that M is IND-Mask-secure and that

the ParallelEitherM problem is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal func-

tionality FOT, which simulates the adversary’s view. We divide the proof according to

the selection of the corrupt parties.

Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may

read their inputs from their internal state and use those to create a perfect simulation

of the transcript and of the parties’ internal states. It presents this simulation to its

internal copy of A, together with a perfect simulation of FRO, with which it is then able

to perfectly answer E ’s queries by forwarding them to A and returning the responses.

Since it knows all of the inputs, it forwards them to FOT at the right moment to ensure

that the dummy corrupt parties return the correct output to E .

Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Fig-

ure 8.6. We show that for every semi-honest adversary A who corrupts PR and any

environment E , we have that HYBRIDF
RO

Π1
OT,A,E

c
≈ IDEALFOT,SR∗ ,E , by proceeding via a

sequence of hybrid simulators.

We begin with a hybrid H0 which knows the inputs of the honest sender. As it

learns the input c of the corrupt receiver as soon as it is activated by E , it is able to

present a perfect simulation of the protocol. The second hybrid H1 samples k1−c←$K
at random. Instead, FRO(xα1−c) will be set to a random value if it is queried during

the execution.

Claim 8.2. Any environment E that can distinguish the simulations of H1 and H0 can

be used to solve the ParallelEither problem for M.
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Simulator SR∗

1. Throughout the execution, SR∗ simulates the FRO by answering every new query
with a random value from K and maintaining a list of past queries to answer
repeated queries consistently. As in the previous case, it presents the simulated
transcript and corrupt receiver state as computed below to A and uses it to
answer queries from E .

2. When E activates the corrupt Receiver, its private input c is visible by SR∗ which
can then compute rβc to perfectly simulate Receiver 1.

3. To simulate Sender 1, SR∗ samples α←$MA and computes rαβc honestly.
Since mc appears on the corrupt Receiver’s output tape, the simulator computes
kc and ctc as prescribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c←$K
at random and sets ct1−c ← Enc(k1−c,m) for an arbitrary plaintext m.

4. If E queries either FRO(xαc ) before activating Sender 1, then SR∗ aborts the
simulation by returning ⊥ to E .

5. Finally, SR∗ finishes the protocol as prescribed.

Figure 8.6: The simulator SR∗ of Theorem 8.1.

Proof. Such an environment is capable of distinguishing if and only if it queries

FRO(xα1−σ). Let A be an adversary for which E distinguishes between H0 and H1

with some advantage ε; we use this to build a reduction B against the ParallelEither

problem forM which proceeds as follows. Upon receiving a challenge (C,A, r, rx, ry),

C 6= A, rx = (r) and ry = α(r), B simulates an execution with E as follows:

1. First set r0 := r and r1 := rx, and set rαc := ry.

2. Set the keys and ciphertexts as H1 does and simulate Receiver 1 honestly.

3. Since B does not know the α ∈ MA such that ry = α(r), it cannot compute

rαβc = α(rβc ) honestly. Instead, it sets rαβc = β(ry). This can be done since it

is simulating the internal value β. This remains consistent with the protocol as

we still have that β−1(rαβc ) ∈ Ry and ry = (rαc ) ∈ Ry, as set at the beginning of

B.

4. If c = 0, then r1−c = γ(rc) and therefore γ(rαc ) = γ(ry) ∈ Rxα1−c
. If instead

c = 1, then rα1−c = γ−1(rαc ) = γ−1(ry).

Therefore we see that, independently of c, if E queries FRO(xα1−c), then one of

the solutions to the ParallelEither problem is present on the list of past queries.
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Simulator SS∗

1. SS∗ simulates FRO consistently and presents the state and transcript computed
as follows to an internal copy of A to reply to the queries from E .

2. As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0
internally which remains out of the view of A. It then samples β←$MB and
sets rβc = β(r0) consistently.

3. As it knows the inputs m0, m1 of the corrupt sender, SS∗ computes Sender 1
consistently with rβc using the correct plaintexts.

4. Finally, SS∗ finishes the protocol as prescribed.

Figure 8.7: The simulator SS∗ of Theorem 8.1.

When E terminates, B therefore returns a random entry on the list of random

oracle queries. If E has advantage ε in distinguishing between H1 and H0, B then has

an advantage ε/qH in solving the ParallelEither problem, where qH denotes the number

of queries to FRO made during the execution.

The final hybrid H2 replaces m1−c by an arbitrary plaintext m in the computation

of ct1−c. This removes the last occurrence of m1−c in the simulator and we have that

H2 is identical to the original SR∗ .

Claim 8.3. Any environment E that can distinguish between a simulation of H2 and of

H1 with advantage ε can be used to break the IND-CPA property of E with advantage

at least ε.

Proof. We can build an adversary against the IND-CPA property of E by querying the

challenger for a ciphertext of either m or m1−c. This reduction emulates either H2 or

H1 perfectly as k1−c is not accessible to E and therefore not required by H2 or H1 at

any point.

Under the assumption that E is IND-CPA-secure and that the ParallelEither prob-

lem is hard forM, we have that the simulation generated by SR∗ is indistinguishable

from a real world execution, for any environment E . This concludes the proof that

HYBRIDF
RO

Π1
OT,A,E

c
≈ IDEALFOT,SR∗ ,E .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Fig-

ure 8.7 We show that for every semi-honest adversary A who corrupts PS and any

environment E , it holds that HYBRIDF
RO

Π1
OT,A,E

c
≈ IDEALFOT,SS∗ ,E .
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The simulation of SS∗ is not a perfect simulation of a real world execution only if

the honest receiver had actually received input c = 1 from E .

Claim 8.4. In that case, any environment that can distinguish between a simulation of

SS∗ and the real world with advantage ε can be used to break the IND-Mask security

of M with advantage at least ε.

Proof. We build a reduction B against the IND-Mask experiment as follows. The

reduction first selects an arbitrary r as well as two masks γ0, γ1 ∈ MC and sends

(r, γ0, γ1, B) to the IND-Mask experiment. Upon receiving r̃, B then begins the dis-

tinguishing experiment with E by setting r0 = γ0(r), r1 = γ1(r) and returning rβc = r̃

to the adversary when E activates Receiver 1. Not knowing β is not a problem for

the simulation as the receiver is honest and therefore B does not need to simulate its

state to A. This is a perfect simulation of either the real world or of SS∗ as either

r1 or r0 is used by the IND-Mask experiment in the computation of rβc . Thus if E
distinguishes between the two, then B can distinguish the hidden bit of the IND-Mask

experiment.

Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary

inputs m0 = m1 = m and c = 1 and simulates a transcript to A. If an environment

E is capable of distinguishing this simulation from a real execution of the protocol

then this implies that it is able to extract information regarding the arbitrary inputs

used by S. However the previous two cases show that, even with the additional

information of the corrupted party’s internal state, any environment is not able to

identify a simulation that does not have any information on the honest party’s inputs.

By combining techniques from both cases above, we can therefore show that the

simulation of S is indistinguishable from a real world execution under the assumption

that S is IND-CPA-secure, that M is IND-Mask-secure and that the ParallelEitherM

problem is hard.

Note 8.5. Protocol Π1
OT only requires the third masking set MC as a proof artefact

and that only two sets would be sufficient to execute the protocol.

8.2.3 Actively secure two-round OT

In this section we make use of a recent transformation by Döttling et al. which compiles

two-round OT protocols with minimal security into a fully actively secure two-round
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OT protocol [63]. We first present the definitions of security required of the starting

protocol and then prove that our protocol satisfies them.

Additional OT security notions

A two-round OT protocol with public setup consists of four algorithms ΠOT = (Setup,

OT1, OT2, OT3) such that:

• Setup(1λ) generates a public input pin.

• OT1(pin, c), where c ∈ {0, 1} is the PR choice bit, outputs (state, ot PR)

• OT2(pin, ot PR,m0,m1), where m0,m1 are the sender’s input messages, outputs

ot PS

• OT3(state, ot PS) outputs mc

First we need to recall some security notions for the receiver PR and the sender PS .

The first definition states that PS should not learn anything about PR’s choice bit c.

Definition 8.6 (Receiver’s indistinguishability security [63]). For any probabilistic

poly-nomial-time adversary A an OT protocol ΠOT = (Setup, OT1, OT2, OT3) has re-

ceiver indistinguishability if there exists a negligible function negl(λ) such that:

|Pr[A(pin, OT1(pin, 0)) = 1]− Pr[A(pin, OT1(pin, 1)) = 1]| = negl(λ) ,

where pin is the public output of the setup phase.

The next definition concerns the security of the sender; it states that PR cannot

compute both secret values y0 and y1 used by OT2 to protect m0 and m1, but not

necessarily in the same experiment.

Definition 8.7 (Sender’s search security [63]). Let A = (A1,A2) be an adversary

where A2 outputs a string y∗. Consider the following experiment Exppin,ρ,w
sOT (A), in-

dexed by a pin, random coins ρ ∈ {0, 1}λ and a bit w ∈ {0, 1}.

1. Run (ot PR, state)← A1(1λ, pin; ρ).

2. Compute (ot PS , y0, y1)←$ OT2(pin, ot PR).

3. Run y∗ ← A2(state, ot PS , w) and output 1 iff y∗ = yw.
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We say that A breaks a scheme’s Sender’s search (sOT) security if there exists a

non-negligible function ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0
sOT (A) = 1] > ε and Pr[Exppin,ρ,1

sOT (A) = 1] > ε] > ε,

where pin←$ Setup and ρ←$ {0, 1}λ.

Two-round OT with active UC-security

We provide an intermediary result which enables the use of the general compiler

from [63] to transform Π1
OT into an actively secure two-round OT protocol. First we

introduce and discuss a new security assumption derived from the Parallel problem but

more suited to active adversaries. Then we show that our protocol satisfies the security

notions of Definitions 8.6 and 8.7. Finally, by applying the general transformations

from sOT to UC OT described in [63], we obtain a fully UC-secure two-round OT

protocol. We note that we are able to remove the random oracle from our protocol to

achieve sOT security; therefore the resulting OT protocol requires only the CRS. We

define our new computational problem as follows.

Definition 8.8 (ParallelDouble). Given (i, j, r, rx0 , rx1 , ry) with the promise that i 6= j

and that rxb = µxb(r), b ∈ {0, 1} and ry = µy(r) for random µxb ←$Mi and µy←$Mj ,

and given a one-time access to an oracle Oy which, when given r ∈ R returns µy(r),

compute z0, z1 ∈ X such that both µxb(ry) ∈ Rzb .

The instantiation of this problem in the discrete logarithm case is, when given

(g, ga, gb, gc) and a one-time access to an exponentiation-by-c oracle, to return both

gac and gbc. For practical efficiency, it is also desirable that ga and gb remain constant

across multiple instances of the ParallelDouble problem, with only gc being randomly

sampled in each instance. This version of the problem is similar to the one-more

static CDH problem where an adversary has to successfully compute one more CDH

challenge than it was able to ask from a helper oracle [31].

Security of the Π1
OT protocol. We then prove that protocol Π1

OT achieves Receiver’s

indistinguishability and Sender’s search security.

Proposition 8.9. The protocol Π1
OT in Figure 8.5 satisfies computational receiver’s

indistinguishability security and sender’s sOT security under the assumption that M
is IND-Mask-secure and that the ParallelDoubleM problem is hard.

145



CHAPTER 8. OT PROTOCOLS FROM SEMI-COMMUTATIVE MASKING

Proof. Receiver’s indistinguishability follows from the IND-Mask-security assumption.

By setting the public inputs r0 and r1 in Π1
OT as they are computed in the IND-Mask

experiment, the random mask µ is distributed in the same way as the mask β in OT1.

Therefore if an adversary breaks the receiver’s indistinguishability for Π1
OT, this can

be reduced to a solution to the IND-Mask problem.

Sender’s search security. To prove sOT security for Π1
OT we assume the existence of

an adversary A = (A1,A2) and a non-negligible ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0
sOT (A) = 1] > ε and Pr[Exppin,ρ,1

sOT (A) = 1] > ε] > ε,

and we build a reduction B that is given a ParallelDouble challenge (i, j, r, rx0 , rx1 , ry)

with access to an oracle Oy (Definition 8.8). Instead of running Setup to generate r0

and r1, B sets r0 ← rx0 and r1 ← rx1 ; also B samples ρ←$ {0, 1}λ. As this ensures

that pin is distributed identically to the output of Setup, pin and ρ are good for A
with probability at least ε.

After B runs A1, which outputs (ot PR, state), it queries the oracle to obtain

ot PS,0 ← Oy(ot PR). It also computes ot PS,1 ← µ(ot PS,0) for a random µ ∈
Mk with i 6= k 6= j; it also computes µ−1. Then, for w ∈ {0, 1}, B runs y∗w ←
A2(state, ot PS,w, w) and updates y∗1 ← µ−1(y∗1). Finally B returns y∗0 and the updated

y∗1 as the ParallelDouble answer.

Since Pr[Exppin,ρ,0
sOT (A) = 1] > ε and Pr[Exppin,ρ,1

sOT (A) = 1] > ε, with probability

ε2, A2 is successful for both inputs (state, ot PS,0, 0) and (state, ot PS,1, 1) as the two

messages are made independent by B’s addition of µ. If this happens, then y∗0 is

exactly one of the answers, and the update of y∗1 by B removes the extra mask µ and

means that y∗1 is then the other answer to the ParallelDouble problem. Hence B is

successful with probability at least ε3.

Theorem 8.10. Under the assumption that M is IND-Mask-secure and that the

ParallelDoubleM problem is hard, there exists a 2-round UC-secure OT protocol con-

structed from Π1
OT.

Proof. This follows from the transformations and results of [63, Theorems 8, 9, 11,

12, 14, 19 and 21].

Corollary 8.11. By instantiating the semi-commutative masking scheme, there exists

an actively secure 2-round OT protocol based on supersingular isogenies.
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Alice (g; a, d0, d1) Bob (c; b)

ga, gd0 , gd1

ga, gd0 , gd1 kR = (ga)b
(gdc)b

kb = (gdcb)a/db
{mb}kb

Figure 8.8: Sketch of the OT protocol derived from the key exchange protocol.

We remark here that the isogeny-based OT protocols proposed by Vitse [125],

while being semantically secure against malicious adversaries, require three rounds of

communication; this implies that they cannot be transformed to achieve two-round

OT with fully UC-security using the work of Döttling et al.

8.3 OT from key-exchange

The second OT protocol is inspired by the OT protocol of Chou and Orlandi [43]

in that it uses an underlying key exchange mechanism and then transforms it to

achieve oblivious transfer. The problems that have emerged in their construction [44,

Section 1.1] do not arise when considering passive adversaries so we do not address

them here.

Again we motivate our proposed OT protocol by looking at the discrete logarithm

variant. Here, Alice’s inputs are two messages m0,m1 and an ephemeral mask a

and Bob’s is another mask b together with his choice c. To agree on the key under

which the selected message will be encrypted, Alice sends ga to Bob who derives the

decryption key gab. But Bob cannot simply reply with gb, since Alice would then not

know which of m0 or m1 to encrypt. Instead, Alice communicates two random masks

gd0 and gd1 to allow Bob to make a selection. By masking (gdc)b with the same b as he

uses to derive the key, Bob obliviously communicates his choice and his mask to Alice

which is then able to derive two keys (by unmasking db and then adding her mask a)

of which only one will be share with Bob. We sketch the protocol flows in Figure 8.8.

The protocol is intuitively secure as Alice cannot deduce b from Bob’s message and

Bob cannot deduce the key k1−c as he is not able to recover d−1
1−c from Alice’s first

message.
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8.3.1 Construction

We now formally define the second OT protocol from semi-commutative invertible

masking schemes. LetM = {X,RX , [MA,MB,MC ]} be a semi-commutative masking

structure; let E = (KGen, Enc, Dec) be a symmetric encryption scheme with key space

K and let FRO be an instance of the RO ideal functionality with domain D = X

and range R = K. We formally describe the protocol Π2
OT in Figure 8.9. Protocol

Π2
OT makes use of random sampling from Mi, evaluation of masks, evaluation of H,

evaluation of Enc, Dec, as well as membership and equality testing in X and in the

ciphertext space and inversion in Mi. All these operations are assumed to be efficient

for the masking structure M and for the symmetric scheme E.

Because M is semi-commutative, we see that α(γ−1
b (rβc )) = α(γ−1

b (β(γc(r)))) ∈
Rxαβ if and only if b = c. This shows that, if both parties execute the protocol

honestly, kR = kc and hence PR recovers the correct message mc.

8.3.2 UC-security against semi-honest adversaries

The security of protocol Π2
OT of figure 8.9 is given by the following theorem.

Theorem 8.12. The protocol Π2
OT securely UC-realizes the functionality FOT of Fig-

ure 8.1 in the FRO-hybrid model for semi-honest adversaries and static corruptions,

under the assumption that E is IND-CPA-secure, that M is IND-Mask-secure and that

the ParallelBothM problem is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal func-

tionality FOT, which simulates the adversary’s view. We divide the proof according to

the selection of the corrupt parties.

Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may

read their inputs from their internal state and use those to create a perfect simulation

of the transcript and of the parties’ internal states. It presents this simulation to

its internal copy of A, together with an perfect simulation of FRO, with which it is

then able to perfectly answer E ’s queries by forwarding them to A and returning the

responses. Since it knows all of the inputs, it forwards them to FOT at the right

moment to ensure that the dummy corrupt parties return the correct output to E .

Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Fig-

ure 8.10. We show that for every semi-honest adversary A who corrupts PR and any
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Protocol Π2
OT

Parameters: length n of the sender’s input strings; masking structureM; symmetric
encryption scheme E.
Common inputs: An arbitrary x ∈ X together with r ∈ Rx is shared and re-used
for every instance of the protocol; an instance of the random oracle ideal functionality
FRO : {0, 1}λ → K.
Sender’s Input: m0,m1.
Receiver’s Input: c ∈ {0, 1}.

Sender 1

1. Sample α←$MA, γb←$MC , b ∈ {0, 1}, at random, and compute rα :=
α(r), rb := γb(r) and γ−1

b ∈MC .

2. Send (rα, r0, r1) to PR

Receiver 1

1. Sample β←$MB uniformly at random.

2. Compute rβc := β(rc).

3. Compute kc := FRO(xαβ) where β(rα) ∈ Rxαβ .

4. Send rβc to PS .

Sender 2

1. For b ∈ {0, 1}, compute kb := FRO(xb) where α(γ−1
b (rβc )) ∈ Rxb .

2. For b ∈ {0, 1}, compute ctb ← Enc(kb,mb).

3. Send (ct0, ct1) to PR.

Receiver 2 Return mc := Dec(kc, ctc).

Figure 8.9: The protocol Π2
OT for realizing FOT from semi-commutative masking.

environment E , it holds that

HYBRIDF
RO

Π2
OT,A,E

c
≈ IDEALFOT,SR∗ ,E ,

by proceeding via a sequence of hybrid simulators, going from the real execution to

the ideal execution, defined as follows.

The first hybrid H0 knows the inputs of the honest sender and is therefore able

to compute ct1−c honestly using the correct random oracle query to obtain the key.

This is then a perfect simulation of a real-world execution.
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Simulator SR∗

1. SR∗ simulates FRO consistently and presents the state and transcript computed
as follows to an internal copy of A to reply to the queries from E .

2. When E activates the honest sender, SR∗ computes Sender 1 honestly to send
(rα, r0, r1) to A.

3. When E activates the corrupt receiver, its private input c is visible by SR∗ which
can then compute rβc to perfectly simulate Receiver 1.

4. To simulate Sender 2, since mc appears on the corrupt receiver’s output tape,
the simulator computes kc and ctc as prescribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c←$K
at random and sets ct1−c ← Enc(k1−c,m) for an arbitrary plaintext m.

5. If E queries either FRO(xb) before activating Receiver 1, then SR∗ aborts the
simulation by returning ⊥ to E .

6. Finally, SR∗ finishes the protocol as prescribed.

Figure 8.10: The simulator SR∗ of Theorem 8.12.

The second hybrid H1 samples k1−c←$K at random and does not query the ran-

dom oracle on x1−c where α(γ−1
1−c(r

β
c )) ∈ Rx1−c .

Claim 8.13. Any environment E that distinguishes an interaction with H1 from one

with H0 with advantage ε can be used to solve the ParallelBoth problem for M with

advantage at least ε/qH where qH denotes the number of queries made by E to the

random oracle.

Proof. Such an environment is capable of distinguishing if and only if it submits the

query for k1−c to the random oracle. We use this to build a reduction D against the

ParallelBoth problem for M which proceeds as follows.

Upon receiving a challenge (C,A, r, rx0 , rx1 , ry), D first sets zα := ry and zi := rxi
to simulate Sender 1 and then samples β←$MB to compute Receiver 1 perfectly upon

activation of P ∗R which reveals c.

Since it now does not know the α ∈ MA such that rα = α(r), B computes kc

from β(rα) which it can do as it knows β and which yields the correct xαβ as the

masks commute. For the other key, it sets k1−c←$K as S1 would. It then returns the

ciphertexts encrypting m0,m1 under these keys.

When E terminates, B selects a random entry on the list of random oracle queries

and applies β−1. The un-selected key k1−c is the hash of the element of X represented

150



8.3. OT FROM KEY-EXCHANGE

by α(γ−1
1−c(β(γc(r)))) where γi ∈ MC is such that rxi = γi(r). So by applying β−1,

B obtains exactly a representative one of the solutions to the ParallelBoth problem

as long as it selected the correct entry on the hash list. If E has advantage ε in

distinguishing between H1 and H0, B then has an advantage ε/qH in solving the

ParallelBoth problem.

The final hybrid H2 replaces m1−c by an arbitrary plaintext m in the computation

of ct1−c. This removes the last occurrence of m1−c in the simulator and we have that

H2 is identical to SR∗ .

Claim 8.14. Any environment E that can distinguish between a simulation of H2

and of H1 with advantage ε can be used to break the IND-CPA property of E with

advantage at least ε.

Proof. We can build an adversary against the IND-CPA property of E by querying the

challenger for a ciphertext of either m or m1−c. This reduction emulates either H2 or

H1 perfectly as k1−c is not accessible to E and therefore not required by S2 or S1 at

any point.

Under the assumption that E is IND-CPA-secure and that the ParallelBoth problem

is hard for M, we have that the simulation generated by SR∗ is indistinguishable

from a real world execution, for any environment E . This concludes the proof that

HYBRIDF
RO

Π2
OT,A,E

c
≈ IDEALFOT,SR∗ ,E .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Fig-

ure 8.11. We show that for every semi-honest adversary A who corrupts PS and any

environment E , it holds that

HYBRIDF
RO

Π2
OT,A,E

c
≈ IDEALFOT,SS∗ ,E .

The simulation of SS∗ is not a perfect simulation of a real world execution only if

the honest receiver had actually received input c = 1 from E .

Claim 8.15. In that case, any environment that can distinguish between a simulation

of SS∗ and the real world with advantage ε can be used to break the IND-Mask security

of M with advantage at least ε.

Proof. We build a reduction B against the IND-Mask experiment as follows. It first

simulates Sender 1 as in the protocol and sends (r, γ0, γ1, B) to the IND-Mask exper-

iment. Upon receiving r̃, B then returns rβc = r̃ to the adversary when E activates
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Simulator SS∗

1. SS∗ simulates FRO consistently and presents the state and transcript computed
as follows to an internal copy of A to reply to the queries from E .

2. When E activates the corrupt sender, SS∗ computes Sender 1 honestly to send
(rα, r0, r1) to A.

3. As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0
internally which remains out of the view of A. It then samples β←$MB and
sets rβ0 = β(r0) consistently. It also computes k0 accordingly.

4. As it knows the inputs m0, m1 of the corrupt Sender, SS∗ computes Sender 2
consistently with rβc using the correct plaintexts.

5. Finally, SS∗ finishes the protocol as prescribed.

Figure 8.11: The simulator SS∗ of Theorem 8.12.

Receiver 1. Not knowing β is not a problem for the simulation as the receiver is

honest and therefore B does not need to simulate its state to A. This is a perfect

simulation of either the real world or of SS∗ as either r1 or r0 is used by the IND-Mask

experiment in the computation of rβc . Thus if E distinguishes between the two, then

B can distinguish the hidden bit of the IND-Mask experiment.

Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary

inputs m0 = m1 = m and c = 1 and simulates a transcript to A using those. If an

environment E is capable of distinguishing this simulation from a real execution of

the protocol then this implies that is is able to extract information regarding the

arbitrary inputs used by S. However the previous two cases show that, even with

the additional information of the corrupted party’s internal state, any environment

is not able to identify a simulation that does not have any information the honest

party’s inputs. By combining techniques from both cases above, we can therefore

show that the simulation of S is indistinguishable from a real world execution under

the assumption that S is IND-CPA-secure, that M is IND-Mask-secure and that the

ParallelBothM problem is hard.

This completes the proof that for any A there exists a S such that, for any E ,

HYBRIDF
RO

Π2
OT,A,E

c
≈ IDEALFOT,S,E .
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Chapter 9

Using AES in Picnic signatures

In this chapter we present the use of the advanced encryption standard (AES) block

cipher for signature schemes built in the MPCitH paradigm. We first describe this

paradigm and illustrate it with the example of the Picnic signature scheme [38]

adapted for arithmetic circuits over fields. We then recall the inner workings of the

AES cipher, present mechanisms to optimize its use with the MPCitH paradigm and

estimate signature sizes resulting from these mechanisms.

Except where specified, the contributions in this chapter are selected from the

work of L. De Meyer1, E. Orsini2, N. P. Smart3 and this author; it was published in

the proceedings of Selected Areas in Cryptography, SAC 2019 and presented at the

conference by this author in Waterloo, ON, Canada [55]. The ideas were the joint

work of all four authors; L. De Meyer contributed the majority of Section 9.2.1; this

author contributed the majority of the rest of Section 9.2 with inputs from E. Orsini

and N. P. Smart.

9.1 MPC-in-the-head and the Picnic signature scheme

We present here the paradigm of MPCitH for non-interactive zero-knowledge proofs

of knowledge (NIZKPoKs) and the Picnic signature scheme adapted for arithmetic

circuits.

1KU Leuven, Belgium
2University of Bristol, U.K., later KU Leuven, Belgium.
3University of Bristol, U.K., later KU Leuven, Belgium.
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9.1.1 Efficient NIZKPoK in the MPC-in-the-head paradigm

In 2007, Ishai et al. [80] showed how to use any MPC protocol to construct a zero-

knowledge (ZK) proof for an arbitrary NP relation R. The high level idea is the

following: zero knowledge can be seen as a special function evaluation, and hence as

a two-party computation between a prover P and a verifier V, with common input

the statement x, and P’s private input w, which is a witness to the assertion that

x belongs to a given NP language L. The function to be evaluated by P and V is

fx(w) ⇐⇒ (x,w) ∈ R, which checks whether w is a valid witness. The verifier V will

accept the proof provided by P if fx(w) = 1.

In the MPCitH paradigm, the prover P simulates an n-party MPC protocol Π in

“its head”. They first sample n random values w(1), . . . , w(n), subject to the condition

that
∑

i∈[n]w
(i) = w. These are a sharing of the witness w and serve as private inputs

to the simulated parties. The prover then emulates the evaluation of the protocol Π

for the function fx(w(1) + · · · + w(n)) by choosing uniformly random coins r(i) for

each simulated party Pi, i ∈ [n] and executing the protocol between them. Note

that, once the inputs and random coins are fixed, for each round j of communication

of the protocol Π and for each party Pi, the messages sent by Pi at round j are

deterministically specified as a function of the internal state of Pi, i.e. Pi’s private

inputs w(i), randomness r(i), and the messages {msg(i)} that Pi received in previous

rounds. The set of the state and all messages received by party Pi during the execution

of the protocol constitutes the view of Pi, denoted as viewPi .

After this simulated evaluation of Π, the prover P sends commitments to the view

of each party to V. At this point, the verifier “corrupts” a random subset of parties,

challenging the prover to open their committed views. They then finally verify that

views were computed correctly from the perspective of the corrupt parties; this is

achieved by checking that they are all consistent with the protocol Π and with each

other (i.e. that messages sent by one party appear identical in the intended recipient’s

view). To obtain desired soundness guarantees it is often necessary to repeat the

above procedure several times in parallel with freshly simulated executions.

Using the MPCitH paradigm, some recent works [5, 39, 74] have constructed effi-

cient NIZKPoKs for Boolean circuits which form the basis of iterations of the Picnic

signature scheme [39, 86]. In particular, the work of Katz et al. [86] constructs an

honest-verifier zero-knowledge proof by instantiating the MPCitH paradigm using an

MPC protocol designed in the preprocessing model. We now describe their protocol

adapted for arithmetic circuits.
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9.1.2 Arithmetic MPCitH in the preprocessing model

Let F denote a finite field. The honest-verifier zero-knowledge (HVZK) protocol in-

troduced here provides a proof of knowledge of a witness w ∈ Fι such that C(w) =

y ∈ Fo, for a given circuit C : Fι → Fo and output y.

As the underlying protocol ΠC is designed in the preprocessing model (and there-

fore has a preprocessing phase followed by an online phase), the HVZK proof also

happens in two stages. In the first stage, the prover P commits to a number of pre-

processing executions (which consist only of input-independent randomness). Then

the verifier V requests that some, but not all, of these are opened, and checks that

they are correct and consistent computations.

In the second stage, the prover uses the unopened preprocessing material to execute

parallel and independent executions of the online phase of the MPC protocol ΠC . It

then commits to these executions and, for each of them, is challenged by the verifier

to open a random selection of n−1 parties’ views. By receiving these views, V is able

to perform checks to ensure that the prover did not falsify the executions of ΠC .

Since we make use of an arithmetic circuit C over a field F, it is composed of

addition and multiplication gates operating on values in F. This is a generalization

of [86] as the work of Katz et al. only considers circuits operating on bits with xor

and and gates. The online evaluation of C is done by a SPDZ-like [54] protocol,

simplified as we only require security against semi-honest adversaries (notably, we use

broadcast as the only communication channel).

This protocol is executed by n parties. For every value x ∈ F in the arithmetic

circuit C, the protocol uses an additive secret sharing 〈x〉 which denotes the sharing

(x(1), . . . , x(n)), such that
∑n

i=1 x
(i) = x and every party Pi holds x(i).

To reconstruct, or “open”, a shared value 〈x〉, each party Pi broadcasts its share

x(i) and each party Pj can then reconstruct x =
∑n

i=1 x
(i). With such a secret sharing,

the following operations can be performed locally, i.e. without communication between

parties:

• Addition with public constant: To compute 〈z〉 ← a+ 〈x〉 given 〈x〉 and a public

value a, party P1 sets his share to be z(1) ← x(1) + a and every other party Pi

(i 6= 1) sets z(i) := x(i).

• Multiplication by public constant: To compute 〈z〉 ← a · 〈x〉 given 〈x〉 and a,

every party Pi sets his share to be z(i) ← a · x(i).

• Addition of two shared values: To compute 〈z〉 ← 〈x+ y〉 given 〈x〉 and 〈y〉,
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every party Pi sets his share to be z(i) ← x(i) + y(i).

However, computing the multiplication of two shared values, i.e. 〈z〉 ← 〈x · y〉 given

〈x〉 and 〈y〉, cannot be done locally; it requires both preprocessing material and com-

munication during the online phase. Namely, given a precomputed triple (〈a〉, 〈b〉, 〈c〉),
such that c = a · b, the parties can compute 〈z〉 as follows:

1. Locally compute 〈α〉 := 〈x− a〉 and 〈β〉 := 〈y − b〉.

2. Open α and β.

3. Locally compute 〈z〉 = 〈c〉 − α · 〈b〉 − β · 〈a〉+ α · β.

This technique is due to Beaver [11] and is easily checked to be correct:

z = c− α · b− β · a+ α · β

= a · b− (x− a) · b− (y − b) · a+ (x− a) · (y − b)

= x · y.

Before we describe the HVZK protocol of [86], we present the execution of both

phases of ΠC that the prover will have to simulate; namely the preprocessing and

online phases.

1) Preprocessing phase. The only preprocessing required is the generation of

random multiplication triples {(〈am〉, 〈bm〉, 〈cm〉)}m∈[mult], where mult is the number

of multiplication gates in C. As noted in [86] for its preprocessing computation, for

each triple, the i-th share of 〈a〉 and 〈b〉 is uniform and therefore can be generated by

party Pi applying a PRG to a short random seed sd(i). Each share of 〈c〉 can also be

generated in that way, but then the actual generated value c̃ =
∑n

i=1 c
(i) would not

equal a · b with very high probability. Instead, for each triple (〈am〉, 〈bm〉, 〈cm〉), party

Pn is given a “correction value” ∆m = a · b−
∑n−1

i=1 c
(i) and directly sets c(n) ← ∆m.

In summary, the outcome of the preprocessing is that every party Pi is given a

λ-bit seed sd(i) ∈ {0, 1}λ and Pn is also given mult values {∆m} denoted by aux(n).

This information is called the state of party Pi and is denoted by state(i).

2) Online phase. The online computation can itself be divided into three compo-

nents: input distribution, computation and output reconstruction.

Unlike for real MPC, the input w = (w1, . . . , wι) is global and must be distributed

by the prover, outside of the view of any n − 1 parties. To do so, each party Pi
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Parameters: Let H : {0, 1}∗ → {0, 1}2λ and G be collision-resistant hash functions and
Com be a commitment scheme. Note G is only used in the non-interactive variant of the
protocol.
Other parameters are T and τ , that indicate the total number of preprocessing executions
emulated by P and the number of online executions, respectively.

Inputs: Both parties hold a description of C over F, the value y ∈ Fo. The prover P
also holds w ∈ Fι such that C(w) = y.

Round 1: Protocol execution emulation.

1. For each t ∈ [T ], P emulates the preprocessing phase as follows:

(a) Sample a uniform master seed sdt ∈ {0, 1}λ and use it to generate

sd
(1)
t , . . . , sd

(n)
t ∈ {0, 1}λ and r

(1)
t , . . . , r

(n)
t ∈ {0, 1}λ used in the commit-

ments.

(b) For each multiplication gate m ∈ [mult]:

i. Use sd
(i)
j to sample a

(i)
t,m, b

(i)
t,m and also c

(i)
t,m for i = 1, . . . , n− 1.

ii. Compute at,m =
∑n
i=1 a

(i)
t,m and bt,m similarly.

iii. Compute the offset ∆t,m = at,m · bt,m −
∑n−1
i=1 c

(i)
t,m.

(c) Set aux
(n)
t = (∆t,m)m∈[mult].

(d) Set state
(i)
t = sd

(i)
t for i ∈ [n− 1] and set state

(n)
t = (sd

(n)
t , aux

(n)
t ).

(e) For each i ∈ [n], compute γ
(i)
s,t = Com(state

(i)
t , r

(i)
t ).

(f) Compute hs,t = H(γ
(1)
s,t , . . . , γ

(n)
s,t ).

2. For each t ∈ [T ], given w = (w1, . . . , wι), P emulates the online phase as follows:

(a) Generate the input offsets for each j ∈ [ι]:

i. Use sd
(i)
t to sample w

(i)
t,j for i ∈ [n].

ii. Compute w̃t,j =
∑n
i=1 w

(i)
t,j .

iii. Compute Λt,j = wj − w̃t,j .
(b) Compute C by proceeding through the gates in topological order. For each

party Pi, record each broadcast message in msg
(i)
t .

(c) Compute hm,t = H({Λt,j}j∈[ι],msg
(1)
t , . . . ,msg

(n)
t ).

3. Compute hs = H(hs,1, . . . , hs,T ), hm = H(hm,1, . . . , hm,T ) and send h∗ = H(hs, hm)
to V.

Figure 9.1: 3-round HVZK proof—part 1.

uses sd(i) to generate a random share w
(i)
j , for j ∈ [ι]. Identically to the generation

of multiplication triple, a correction value Λj must then be computed so that wj =

Λj +
∑n

i=1w
(i)
j . The values (w

(1)
j , . . . , w

(n)
j ,Λj) now constitute an n-out-of-(n + 1)

sharing of wj and therefore it is safe for P to communicate the Λj values to V in
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Round 2: Challenge.
V challenges P on the executions indexed by a set T ⊂ [T ], with |T | = τ . For each of
these, it chooses a party that remains honest, i.e. it chooses a vector (it)t∈T ∈ [n]τ . It
then sends (T , (it)t∈T ) to P.
In the NIZKPoK variant, P locally computes (T , (it)t∈T ) = G(h∗).

Round 3: Opening.

P sends (sdt, hm,t)t∈T and ((state
(i)
t , r

(i)
t )i∈[n]\{it}, γ

(it)
s,t , {Λt,j}j∈[ι],msg

(it)
t )t∈T , to V.

Verification:

1. For each t ∈ T , use (state
(i)
t , r

(i)
t )i∈[n]\{it} to reconstruct γ

(i)
s,t for i ∈ [n]\{it}. Then

compute h′s,t = H(γ
(1)
s,t , . . . , γ

(n)
s,t ) using γ

(it)
s,t sent by P.

2. For t ∈ T , use sdt to compute h′s,t as an honest P would.

3. Then compute h′s = H(h′s,1, . . . , h
′
s,T ).

4. For each t ∈ T , use {state
(i)
t }i∈[n]\{it}, (Λt,j)j∈[ι] and msg

(it)
t to recompute the

online phase. Check that the output reconstruction yields the correct value of y,

and compute h′m,t = H({Λt,j}j∈[ι],msg
(1)
t , . . . ,msg

(n)
t ).

5. Then compute h′m = H(h′m,1, . . . , h
′
m,T ) using (h′m,t)t∈T sent by P.

6. Check that h∗
?
= H(h′s, h

′
m).

Figure 9.2: 3-round HVZK proof—part 2.

addition to n− 1 of the seeds sd(i). Before the computation begins, we let Pn be the

one to set w
(n)
j ← w

(n)
j + Λj , for j ∈ [ι].

Next, the parties compute the intermediary values in the computation of C(w).

Whenever multiplication gate m is encountered, each party Pi recalls their share of

the next unused triple a
(i)
m , b

(i)
m , c

(i)
m from the preprocessing phase. This yields the

triple (〈am〉, 〈bm〉, 〈cm〉) which can then be used to compute multiplication gate m.

Whenever Pi needs to sample a random value, it does so using sd(i).

Once the parties have computed the shared output values 〈y1〉, . . . , 〈yo〉, they

jointly reconstruct y = C(w). To do so, they open each value yj , for j ∈ [o], by

having each party broadcast its share y
(i)
j

As noted above during the description of the MPCitH paradigm, this online phase

is entirely deterministic. In particular, the next broadcast message of party Pi at

a given time in ΠC depends only on state(i) and the messages received by Pi so far.

Denoting by A the set of “corrupt” parties, this implies that when the verifier V checks

the views of these n−1 parties in the execution of ΠC , they only need to be given the

n − 1 states of parties in A together with the messages broadcast by the unopened

party during each multiplication gate; they can then recompute the internal values
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of C(w) since they can infer the broadcast messages sent by the opened parties.

This means that instead of sending viewPi , for each i ∈ A, P only needs to send

viewA = {state(i)}i∈A ∪ {msg(j)}j 6∈A, where {msg(j)}j 6∈A are the messages sent by the

“honest” party.

The HVZKPoK protocol

In Figures 9.1 and 9.2, we give a slightly modified version of the 3-round protocol

presented by Katz et al. [86] to compute their proof of knowledge, so that it can

use our ΠC protocol for an arithmetic circuit C over F. We refer the reader to the

original paper [86] for a more in-depth explanation of the protocol. We adopt their

optimization of performing a more general cut-and-choose by having the prover run T

independent preprocessing phases and the verifier choosing τ of them to be used for

independent online phases. For each of these online phases, V challenges P on n− 1

parties which it then checks, together with the T − τ preprocessing phases that were

not used.

From the 3-round protocol, it is possible to obtain a non-interactive ZKPoK by

applying the Fiat-Shamir [68] transform, as indicated in the description of Round 2

in Figure 9.2. The system we obtain in this way consists of two stages, Prove and

VerifyProof.

• Prove(y,w) takes as input (y,w) and consists of Round 1, 2 and 3 of Fig. 9.1

and 9.2; i.e. P computes the first round message and then locally computes the

challenge by hashing this message using a collision-resistant hash function G.

The resulting proof, σ, consists of the concatenation of the first-round message

and the response to the challenge.

• VerifyProof(y, σ) does the Verification step (Fig. 9.2) and returns b ∈ {0, 1}.

To obtain a formula for our proof size estimates we analyze each of the elements

communicated by the prover in Rounds 1 and 3. We present and incorporate the

optimizations discussed in [86] and thus obtain a formula very close to theirs. At the

end of Round 1, P sends h∗ = H(hs, hm) to V, which contributes 2λ bits to the proof

size. In Round 3, P sends two sets of elements; the first corresponds to the T − τ
opened preprocessing executions and the second corresponds to the τ executions of

the online phase of the protocol. By generating the master seeds as the leaves of a

binary tree expanding from a single root, all-but-τ of the seeds can be sent by only

sending τ · log(T/τ) elements, each of λ bits. By computing the hash hm in a similar
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way, i.e. as the root of a tree where the hm,t values are the leaves, then it also suffices

to send at most τ · log(T/τ) values, each of 2λ bits. This implies that the opening

of the T − τ preprocessing executions adds τ · log(T/τ) · 3λ to the proof size. To

open the τ online executions, P sends, for each execution, the commitment γ
(it)
s,t of

2λ bits, the input correction values {Λt,j}j∈[ι] of size |w| bits, the messages of the

unopened party of size |msg(i)| and the states of the openened parties. To reduce the

communication here, it is observed in [86] that there is sufficient entropy contained

in state
(i)
t to not require a separate randomness r

(i)
t . Combining this with a tree-like

structure thus reduces the communication to only λ · log n for the states. In the worst

case when party Pn is opened, the prover also has to send the auxiliary information

of size |aux(n)|. This results in the following estimate for the proof sizes.

2 · λ+ τ · log (T/τ) · 3 · λ+ τ · (λ · log n+ 2 · λ+ |aux(n)|+ |w|+ |msg(i)|). (9.1)

We have aux(n) = {∆m}m∈[mult] and typically, the majority of messages in msg(i) are

the openings of α and β during the multiplications. We see that when λ, n, T and τ

are fixed, the final proof size is strongly correlated with the number of multiplications

in the circuit.

9.1.3 The Picnic signature scheme

It is straightforward to use the NIZKPoK described in the previous section to obtain

the Picnic signature scheme [39]. Given a block cipher Fk(x) : K×X → Y, presented

as a binary circuit, the scheme is described by three algorithms:

• KGen(1λ): Sample x in X = {0, 1}λ, and k ∈ K = {0, 1}λ and then compute

y = Fk(x). The public key pk is given by (y,x) and the secret key is sk = k.

• Sig(sk,m): Given a message m to be signed, compute σ ← Prove(pk, k). Com-

pute the challenge internally as H(σ̃,m), where σ̃ denotes the message sent in

Round 1 of the proof.

• Vfy(pk,m, σ) : Compute VerifyProof(pk, σ) and the challenge as H(σ̃,m). Re-

turn 1 if the result of VerifyProof is 1 and 0 otherwise.

The Picnic signature scheme is thus a NIZKPoK of k realized with the HVZKPoK

protocol of [86] for binary circuits. The size of the proof σ then depends on the

number of and gates required for the evaluation of the symmetric primitive F . In the

submission to the NIST’s Post-Quantum Cryptography project [38], F is instantiated
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Scheme λ s r #ands T τ est. size

picnic2-L1-FS 128 10 20 600 343 27 12.7 kB

picnic2-L3-FS 192 10 30 900 570 39 28.1 kB

picnic2-L5-FS 256 10 38 1140 803 50 47.9 kB

Table 9.1: Picnic2 parameters and estimated proof sizes.

with LowMC [3], an “MPC friendly” block-cipher explicitly designed to have low AND

depth and lower multiplication complexity. LowMC is a very parametrizable scheme,

the number s of 3-bits S-boxes per round and the number of rounds r can both be

modified to favor either low round complexity or low multiplication complexity. The

block-size and key-size λ does not affect the number of S-boxes, it only imposes the

condition that 3s ≤ λ; bits of the state that are not affected by the S-box layer are left

unchanged. In [38], the Picnic submission team provides parameters (λ, s, r) for the

LowMC block-cipher and parameters (n = 64, λ, T, τ) for the NIZKPoK. We reproduce

these parameters in Table 9.1 together with the number of AND gates in each circuit

and the estimated signature size using the formula given in (9.1). As per the MPC

protocol for binary circuits given in [86], we use |aux(n)| = |msg(i)| = (#ands) and

|w| = λ in our estimates. We note that these estimated proof sizes consistently fall in

between the maximum and averages sizes reported in the Picnic submission [38] and

we will therefore compare our estimations to these.

Key generation security. As discussed in [39, Appendix D], the security of the key

generation relies on the assumption that the block cipher Fk(x) is a one-way function

with respect to k. That is, for a fixed plaintext block x ∈ X , the function fx : K → Y
defined by fx : k 7→ Fk(x) is a OWF. This is indeed the correct assumption since x

and y as part of the public-key, thus fixing the function fx and posing the challenge

of recovering a suitable pre-image k̃ ∈ K such that fx(k̃) = Fk̃(x) = y. This also

shows that first picking x and then picking k during key generation is the natural way

of first fixing the function fx and then computing the challenge image y.

In the full version of the original Picnic work [39], the authors go on to prove that

if the block cipher Fk(x) is a PRF family with respect to x (that is for a fixed k, the

function Fk : X → Y is a PRF) then it is also a OWF with respect to k.
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9.2 Revisiting AES for MPC-in-the-head

We now first recall the structure of the AES block-cipher. We next present our chosen

method for computing the S-box, the non-linear operation of AES, in MPC and then

discuss instantiations of the Picnic signature scheme using this protocol, together

with estimates of resulting signature sizes. We finally discuss alternative methods for

computing the AES S-box which were not selected.

9.2.1 The AES block cipher and its Rijndael origins

The AES is a 128-bit block-cipher constructed from a substitution-permutation net-

work (SPN). It allows key lengths of 128, 192 or 256 bits and the corresponding

number of rounds for the SPN is respectively 10, 12 or 14. The state always consists

of 128 bits and can be considered as a 4 × 4 matrix of elements in F28 . The cipher

can thus be considered either as a Boolean circuit over F2 or as an arithmetic circuit

over F28 . We consider the latter. The round function is composed of four operations

on the state, of which only one is non-linear: SubBytes.

AddRoundKey takes the 128-bit round key produced by the key schedule and performs

an exclusive-or (XOR) operation with the current state to obtain the new state. As

F28 has characteristic 2, the xor operation can be computed by simply adding two

elements together.

SubBytes is the only non-linear block of the round function, which transforms each

of the 16 bytes of the state by means of a substitution function, known as the S-box.

The AES S-box is a multiplicative inverse computation in the field F28 , followed by

an invertible affine transformation. In some sense, the S-box can be seen as

S : s 7→ φ−1
(
A · φ

(
s−1
)

+~b
)

(9.2)

where φ : F28 → (F2)8 is an isomorphism of vector spaces (mapping bytes in F28 to

vectors of eight bits in F2) and A ∈ (F2)8×8 and ~b ∈ (F2)8 are the public parameters

of the affine transformation.

ShiftRows is a permutation of the 16 state bytes, obtained by rotating row i of the

state by i bytes to the left. Hence, the first row (row zero) remains the same, the

second row is rotated to the left by one byte, etc.

MixColumns is the final phase and linear component. It consists of a mixing operation

that is applied to each column of the state separately. Column i is transformed by a
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AES- 128 192 256

# Rounds 10 12 14

# Round S-boxes 160 192 224

# Key schedule S-boxes 40 32 52

Total # S-boxes 200 224 276

Table 9.2: Number of S-boxes in the AES circuits.

Rijndael- 128 192 256

# Rounds 10 12 14

# Round S-boxes 160 288 448

# Key schedule S-boxes 40 48 112

Total # S-boxes 200 336 560

Table 9.3: Number of S-boxes in the Rijndael circuits.

matrix multiplication with a 4× 4 matrix defined over F28 .

Key schedule. The key schedule is mostly linear except for the application of the

same AES S-box to up to four bytes of the round key. As the S-box is the only

non-linear block, and only non-linear operations contribute to signature sizes in the

MPCitH paradigm, Table 9.2 presents how many times it needs to be computed for

each AES circuit.

Rijndael. The AES is the standardized version of the Rijndael cipher [51]. The

most prominant difference between the two is that Rijndael allows both a variable key

size κ and a variable block-length β. The round transformations are the same, with

SubBytes performing S-box on each of the β
8 state bytes and MixColumns transforming

each of the β
32 state columns. The key schedule is identical to that of AES-κ, but keep

in mind that the expanded key is larger in the former case and hence the number of

S-box calculations also differs. We summarize the number of S-boxes in Rijndael-κ

circuits with κ = β in Table 9.3.
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9.2.2 Computing the S-box in MPC

To design an MPC protocol for the circuit fx(k) := AESk(x) over F28 , we design

a communication-efficient computation of the non-linear S-box in a distributed way

using the advantages of MPCitH. This computation happens in two stages: first an

inversion stage described by the map

s 7→

s−1 if s 6= 0,

0 if s = 0,
over F28 ; (9.3)

and second, an affine stage where s−1 7→ φ−1(A · φ(s−1) + ~b) in (F2)8 as described

in Equation (9.2). As the second stage is in fact local, we present it first and then

address the inversion stage below.

The affine transformation (being linear) can be applied by each party indepen-

dently. Since it operates on individual bits, the parties must first derive a sharing of

the bit-decomposition of s. As we only require semi-honest security for our protocol,

this can be also be achieved locally. Given the isomorphism φ : F28 → (F2)8, each

party can locally obtain ~s(i) = φ(s(i)) which then corresponds to a sharing 〈~s〉 = φ(〈s〉).
Each party can then locally compute the affine transformation ~t(i) := A · ~s(i) +~b; in-

deed, as A and ~b are both public values, the transformation can be computed as

a series of multiplications by and additions with public constants during the online

phase. Finally, they can recompose 〈t〉 = φ−1(〈~t〉). Thus the affine phase of the S-box

can be computed entirely locally.

Computing the inversion

To perform the Galois field inversion within the MPCitH paradigm, we use a masked

inversion method. Namely, given 〈s〉 ∈ F28 and a randomly sampled 〈r〉 ∈ F28 (where

each party samples r(i) at random from sd(i)), we run the following:

1. Compute 〈s · r〉 (by using a preprocessed triple (〈a〉, 〈b〉, 〈c〉) and opening s− a
and r − b).

2. Open(s · r).

3. Compute (s−1 · r−1) (done locally by each Pi).

4. Compute 〈s−1〉 = (s−1 · r−1) · 〈r〉.
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Performing the multiplication and the opening of 〈s · r〉 results in every party

broadcasting three elements of F28 for each inversion. This implies that we have a

base communication cost of 3 bytes per party per inversion in the online phase; i.e.

for each Pi,

|msg(i)| = 8 · (3 ·#(S-boxes) + o),

where the additional o bytes come from the opening of the output values as fx outputs

tuples in (F28)o.

Also considering the inclusion of the offset value ∆ ∈ F28 in the auxiliary infor-

mation aux(n), for the triple that is used for the inversion, we also have that

|aux(n)| = 8 ·#(S-boxes).

There are however two complications with this method: when either r = 0 or

s = 0. We first present how to deal with the first one, assuming that the second does

not happen. We then discuss how to mitigate the second one.

Need for non-zero randomness

Indeed, assuming that s 6= 0, we see that if r = 0, then s · r = 0 as well and the

inversion computation cannot proceed. However, this does not leak any information

regarding s, so when the parties observe that Open(s · r) yields 0, they can restart the

computation of the inversion with a fresh 〈r′〉 and a new multiplication triple.

While this would not be a problem for real MPC executions of this protocol, here

we are restricted because of the commitment to aux(n), and therefore to the number of

preprocessed triples, that the prover P of the HVZKPoK must make before it emulates

the online phase of the protocol. The prover does emulate the online phase for every

preprocessing phase, and it would therefore be possible for them to observe exactly

how many triples are required for an execution. However, this would ultimately be

dependent on the input.

In order to commit to the preprocessing, the prover would have to indicate how

many triples were generated and using which bits of randomness, given that those

bits produced from sd(i) would be mixed with bits used to produce other randomness,

such as the input sharings. We do not discuss here the design of a protocol which

accounts for this flexible verification and the evaluation of whether this would leak

information regarding the input to the verifier.

Instead, we design our protocol to generate a fixed number m of additional triples
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m 1 2 3 4 5

AES-128 2−2.4 2−4.5 2−6.9 2−9.7 2−12.7

AES-192 2−2.2 2−4.1 2−6.4 2−9.0 2−11.8

AES-256 2−1.8 2−3.4 2−5.4 2−7.7 2−10.2

m 6 7 8 9 10

AES-128 2−15.9 2−19.3 2−22.9 2−26.6 2−30.5

AES-192 2−14.8 2−18.1 2−21.5 2−25.1 2−28.8

AES-256 2−13.0 2−15.9 2−19.0 2−22.3 2−25.7

Table 9.4: Probability of abort of each AES circuit (assuming Pr [r = 0] = 1
256).

for every execution. In the rare cases that this additional number is not enough, we

say that the prover aborts the proof and restarts. Table 9.4 shows the probability that

a proof aborts for each of the AES circuits depending on the number of additional

triples provided by P. If we want the probability of needing to abort a proof to be

less than 10−8 ≈ 2−20, then adding m = 9 additional triples is sufficient.

The addition of these m additional triples then implies that, for each execution,

the auxiliary information contains (#(S-boxes) +m) elements in F28 and we therefore

have

|aux(n)| = 8 · (#(S-boxes) +m).

Similarly, since parties are susceptible to repeat the computation of up to m inversions

during the protocol and therefore broadcast more than 3 bytes per inversion, we have

that for each Pi

|msg(i)| ≤ 8 · (3 · (#(S-boxes) +m) + o).

One advantage of restricting the number of triples produced in this way is that it

guarantees a maximum proof size, independently of the randomness used.

Need for non-zero input

In the previous section we assumed that s 6= 0 to say that if s · r = 0, then it must

be that r = 0. However, in general, it is possible for the input s to the AES S-box

to be 0. If the inversion was computed as above, with this possibility, then opening

s · r = 0 would in fact reveal information about s since r is not allowed to be zero in

a correct inversion.

To avoid this leakage, we restrict our protocol to only prove knowledge of values
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Circuit AES-128 AES-192 AES-256

Number of S-boxes 200 224 276

No-zeroes probability 45.7% 41.6% 34.0%

Table 9.5: Probabilities of no zero-inputs to S-boxes.

of k for which there is no zero as input to any S-box in the computation of fx(k).

We write Kx ⊂ K to denote the subset of such keys. While this reduces the number

of applications of this protocol as a general HVZKPoK for AES keys, this is not so

significant in the context of Picnic signatures. Indeed, the values x and k for which

the proof must be given are fixed during key generation and used for all signatures.

It is therefore feasible to restrict the KGen algorithm to first select a random x and

then sample values of k until one from Kx is found.

We note that a malicious prover could intentionally generate a key for which some

zeroes do appear in the computation of the circuit. However, in the context of public-

key infrastructures, users typically present a signature of their certificate under their

public-key as a proof of possession. A check on such a signature would immediately

reveal whether a key was malformed and thus prevent verifiers from accepting further

signatures.

Loss of security. This particular design of the KGen procedure naturally affects

the assumption that fx(k) := AESk(x) is still a OWF family as required for Picnic

signatures. While the random selection of x still ensures that a random function fx

is selected from the family, the restricted selection of k ∈ Kx reduces the image space

of fx and also the pre-image space for a given y.

We can estimate this security loss by assuming that, for a given block x and a

randomly sampled key k ∈ K, the S-boxes are independent from one another and

each has a probability of 1
256 of receiving 0 as input. Table 9.5 presents the propor-

tion of keys that would also belong to Kx for the three different AES circuits, i.e.

(255/256)# S-boxes. For AES-256, we see that approximately 1
3 of keys possess this

property, which, from an attacker’s perspective, reduces by only log2(3) ≈ 1.4 the

bit-security of the problem of inverting the OWF fx and recovering k ∈ Kx. The

assumption that the S-boxes are independent is justified by the PRF-behaviour or

AES. Moreover, our experiments confirmed that, for a fixed x, the same proportions

of keys as shown in Table 9.5 yielded no zero-inputs.
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This also shows that it is not very computationally expensive for KGen to re-sample

k as it will only have to do so three times on average. To emphasize the low cost of

this, we also recall that during KGen, the signer samples and verifies that k ∈ Kx for

a given x. While they do this, they do not have to execute the AES circuit using the

MPC protocol, the S-box inputs can be verified using an un-shared execution.

A more formal analysis. In [39, Appendix D], the authors show that if an adver-

sary A, on input y has a high probability of inverting the OWF fx(k) = y, then one

can build a distinguisher D which has a high probability of distinguishing Fk from a

random function. Recall that in our case, Fk is the usual AESk PRF family and that

fx is the AES function family considered on k indexed by x.

Let us now assume that the adversary A has a high probability p of inverting

fx(k) only if k ∈ Kx. In the reduction proof, D queries the PRF oracle O on input x

to receive y as its image either under the PRF Fk for a random k ∈ K or under a

random function. It then queries A on input y in the hope of receiving the correct

key k. The only difference between our situation and theirs is that the key space Kx

for which A is capable of returning the correct key is smaller than the whole of K. In

the case where O is indeed computing the PRF, there is then a probability of |Kx|/|K|
that the sampled hidden key will belong to the reduced key space and therefore A will

return the correct key with smaller probability p · |Kx|/|K|. All other aspects of the

proof are the same as in [39] and therefore, under the assumption that AES, over any

key k ∈ K, is a PRF with respect to x, it holds that it also is a OWF with respect to

k ∈ Kx with a tightness gap proportional to |Kx|/|K| for a given x.

We can therefore say that if our AES circuit with restricted keys would yield a

weak OWF, then there would be a similar proportion of keys for which it would be easy

to distinguish the AES function from a random one, thus contradicting the assumed

and observed PRF behaviour of the AES. Furthermore our experiments confirm that

this proportion of keys is non-negligible, further increasing confidence in our OWF

construction.

9.2.3 Application to Picnic signatures

We now estimate the signature size if our arithmetic circuit Cx(k) = AESk(x) were to

be used instead of the LowMC binary circuit in Picnic signatures and also present the

interesting conclusion that a naive application of AES-192 or AES-256 is not sufficient

to achieve stronger levels of security.
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Level Circuit λ T τ |aux(n)| |msg(i)| Est. size

L1
picnic2-AES-128-bin

128 343 27
6400 6400 51.9 kB

picnic2-AES-128-inv 1664 5120 31.6 kB

Table 9.6: Estimates for Picnic signatures with AES-128 circuit.

AES-128

Table 9.6 presents our estimates using the AES-128 circuit instead of the LowMC cir-

cuit with parameters (k = 128, s = 10, r = 20), specified by the Picnic submission [38]

as achieving AES-128-like security. For the picnic2-AES-128-bin circuit, we used the

state-of-the-art figure of 32 and gates per AES S-box reported in the inversion cir-

cuit of [27], thus yielding |aux(n)| = |msg(i)| = 200 · 32 = 6400. We note that this

differs from the figure of 5440 and gates stated in [39, Section 6.1]. While we cite the

same work [27], a figure of 5440 would make sense if the AES-128 circuit contained

only 170 S-boxes, or 160 S-boxes with 34 and gates per S-box Our Table 9.2 shows

that if the full circuit is considered, including the key schedule, then 200 S-boxes

are necessary. Moreover, removing the key schedule is not possible as a fraudulent

prover would then be able to create a forgery by selecting a final round key which

would make the second-to-last state agree with the public key value y. Finally, for

our picnic2-AES-128-inv circuit, we used our costs of |aux(n)| = 8 · (200 + 8) = 1664

and |msg(i)| = 8 · (3 · (200 + 8) + 16) = 5120 accounting for m = 8 additional inversion

operations and o = 16 bytes of communication per party for output reconstruction.

We see that implementing AES-128 using the best current binary circuit would

increase the signature size by a factor of 4.07 compared to the estimated signature

size for picnic2-L1-FS given in Table 9.1. However, our inversion technique yields an

increase only by a factor of 2.48, thus a reduction of 39% over the binary circuit. We

note that this improvement comes with the caveat that our technique of restricting

to non-zero inputs to S-boxes reduces the key-space for k by | log2(0.457)| = 1.13 bits

from the 128 bit-security level.

AES-192 and AES-256

Such a direct comparison as the one presented above is not possible for the AES-192

and AES-256 circuits. While these two algorithms are believed to provide respectively

192 and 256 classical bit-security when used as block-ciphers, this does not hold in

this paradigm due to the requirement for a one-way function for the key generation
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of Picnic-like signatures.

Indeed, as remarked in [39, Appendix D], the security of the key generation requires

the block-size and the key-size of the underlying block-cipher to be equal—in part to

prevent quantum attacks which benefit from a square-root speedup over the block-size.

This is not the case for AES-192 and AES-256 and therefore, interestingly, the shift

to longer keys, without an accompanying shift to longer blocks, does not translate

into increased security against forgery attacks for the signature scheme. Here, the

standardized 128 bit block-length of the AES cipher becomes an obstacle to easily

achieving both stronger security and optimal efficiency. For AES-192, for example, a

single block of encryption would result in (an expected) 264 spurious keys per single

block x, y pair. Thus the probability of guessing a valid key, with a single block pair

x, y will be 2−128 and not 2−192 as desired, and in addition applying Grover’s search

for a valid key would only be slightly more complex than in the AES-128 case.

This fixed block-length was actually not a part of the original Rijndael design [51].

Hence, to obtain L3 (resp. L5) constructions, one could alternatively use the Rijndael

cipher with 192-bit (resp. 256-bit) blocks and key. Since these are not standardized,

we first discuss some constructions using AES.

To design a circuit suitable for 192 (resp. 256) bit-security level Picnic signatures,

we propose to combine two copies of an AES-192 (resp. AES-256) circuit, keyed with

the same key. To realize such a cipher with longer block- and key-length, we use

AES in ECB mode. For our L3 construction using AES-192, we only require x and

y to be 192 bits long. We therefore pad x with 64 0s to reach two full blocks, and

then truncate the resulting ECB-mode encryption to its first 192 bits (one and a half

blocks) to produce the output y. For our L5 construction using AES-256, we use an

x value of 256 bits, encrypted as two blocks in ECB mode, to produce a two-block

value y of 256 bits.

One side-effect of using ECB is that we have the problem of malleable public keys,

for example the public key (x0‖x1,y0‖y1) would be equivalent to (x1‖x0,y1‖y0).

Whilst this does not break the security of the signature scheme in the standard security

game, this could be a problem in practice. However, we can tie signatures to a specific

public key by including it in the hash used to generate the challenge in the NIZKPoK.

The security of key generation now depends on the ECB construction which is

clearly not a PRF family, but we can instead rely on the assumption that ECB mode

is OW-CPA and we provide a similar argument as in [39] to formalise this assumption.

Claim 9.1. If Fk(x) is OW-CPA then fx(k) is a OWF.
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Level Circuit λ T τ |aux(n)| |msg(i)| Est. size

L3

picnic2-AES-192-bin

192 570 39

13312 13312 149.1 kB

picnic2-Rijndael-192-bin 10752 10752 124.2 kB

picnic2-AES-192-inv 3416 10440 86.9 kB

picnic2-Rijndael-192-inv 2768 8496 74.2 kB

L5

picnic2-AES-256-bin

256 803 50

16000 16000 233.7 kB

picnic-Rijndael-256-bin 17920 17920 257.7 kB

picnic2-AES-256-inv 4096 12544 133.7 kB

picnic2-Rijndael-256-inv 4576 13984 149.7 kB

Table 9.7: Estimates for Picnic signatures using AES-192, AES-256 and Rijndael.

Proof. The proof follows similary to the proof in [39, Appendix D]. Indeed, given an

adversary A that can return k on input y = fx(k), we can build a adversary B against

the OW-CPA challenger for Fk as follows. First, B submits x to the encryption oracle

and receives y = Fk(x) for random k ∈ K chosen by the oracle. Then B runs A on

input y to obtain k with high probability. Finally, B requests the challenge ciphertext

y∗ and uses k to compute x∗ = F−1
k (y∗) and return it as its answer to the OW-CPA

challenge. With high probability, B returns the correct pre-image.

Both of the ECB-mode circuits result in executing two AES circuits but this

drawback is inherent to the fixed block-length of the AES block-cipher and therefore

applies equally to our inversion approach and the naive binary approach. We estimate

the proof sizes obtained with these designs in Table 9.7.

For the binary circuits, we use the same figure of 32 AND gates per S-box [27].

In the case of the picnic2-AES-192-bin and picnic2-AES-256-bin circuits, we double

the number of round S-boxes presented in Table 9.2 to obtain figures for |aux(n)|
and |msg(i)|. We keep the same number of key-schedule S-boxes as both circuits use

the same key k and therefore the key-schedule needs to be computed only once. For

the inversion circuits, we also double the number of round S-boxes in our formulæ

for |aux(n)| and |msg(i)| but we must also change number m of additional triples due

to the increased risk of sampling zero randomness during the inversion computation.

A quick calculation similar to the one used for Table 9.4 shows that our doubled-up

circuits for AES-192 and AES-256 require m = 11 and m = 12 respectively to have a

probability of abort below 2−20.

We see that implementing our doubled-up AES-192 and AES-256 using the best
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current binary circuit would increase the signature sizes by a factor of 5.30 and 4.87

respectively compared to the estimated signature size for picnic2-L3-FS and picnic2-

L5-FS given in Table 9.1. However, our inversion technique yields increases only

by a factor of 3.09 and 2.79 respectively, thus reductions of 41.7% and 42.8% over

the binary circuits. We note that this improvement comes with the caveat that our

technique of non-zero inputs reduces the key-space for k by | log2(0.196)| = 2.35 bits

and | log2(0.141)| = 2.83 bits from the 192 and 256 bit-security levels respectively.

Rijndael-192 and Rijndael-256

To avoid the reliance on ECB mode and on a slightly different security assumption,

we also provide estimates of proof sizes that make use of the original Rijndael-192

and -256 circuits which use an equal block and key size with the same S-box as AES.

The number of rounds in Rijndael-192 (resp. Rijndael-256) is the same as in AES-192

(resp. AES-256), i.e. 12 (resp. 14).

We use the figures of Table 9.3 to obtain figures for |aux(n)| and |msg(i)|, presented

in Table 9.7. As above, we calculate that values of m = 10 and m = 12 are required

by the Rijndael-192 and -256 circuits respectively to have a probability of abort below

2−20.

We see that implementing the Rijndael-192 and -256 circuits using the best cur-

rent binary circuit would increase the signature sizes by a factor of 4.42 and 5.38

respectively compared to the estimated signature size for picnic2-L3-FS and picnic2-

L5-FS given in Table 9.1. However, our inversion technique yields increases only by

a factor of 2.64 and 3.12 respectively, thus reductions of 40.2% and 41.8% over the

binary circuits. We note that this improvement comes with the caveat that our tech-

nique of non-zero inputs reduces the key-space for k by | log2(0.268)| = 1.90 bits and

| log2(0.112)| = 3.16 bits from the 192 and 256 bit-security levels respectively.

It is not surprising that the Rijndael-192 results are overall better those with

AES-192, since the ECB construction with extra padding performs more work than

it should. On the other hand, the AES-256 constructon is more efficient than the

Rijndael-256 design since the latter has a larger key schedule.

9.2.4 Alternative computations of the AES S-box

Representing the AES S-box as the map s 7→ s−1 (with 0 7→ 0) over F28 is one of

three methods described by Damg̊ard and Keller [53] for this task in standard MPC.

In fact, it is the most efficient method of that work to compute the AES arithmetic
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circuit in real-world MPC. However, their treatment of the s = 0 difficulty differs

from ours, and they also present two alternative methods to compute the inversion

operation. We discuss these methods and their cost here, along with other methods,

to study the possibilities for computing the AES circuit in the MPCitH paradigm.

Square-and-multiply

The first method of [53] is not to compute s 7→ s−1 but rather s 7→ s254. As ord(F28
∗)−

1 = 255− 1 = 254, this achieves the same result with the additional advantage of not

requiring a special case for s = 0 which maps to 0 naturally. However, s254 requires

a square-and-multiply chain to be computed. The shortest such chain given in [53]

requires 11 multiplications. Combining the cost of the openings and the auxiliary

information required for triple generation, this method would cost 11 · 3 = 33 bytes

per S-box, compared to only 4 bytes per S-box for our method in Section 9.2.2.

Masked exponentiation

This second method of [53] computes the same map s 7→ s254 but using the fact that

(a+b)2i = a2i+b2
i

in fields of characteristic 2. Here, they are able to take advantage of

the preprocessing model; they first pre-compute the squares 〈r〉, 〈r2〉, 〈r4〉, . . . , 〈r128〉
for a random value r ∈ F28 . Then, to invert 〈s〉, they additively mask 〈s〉 + 〈r〉,
open (s + r) and square locally to obtain (s + r)2, (s + r)4, . . . , (s + r)128. Finally,

they unmask each power-of-two with the corresponding shared power-of-two of r,

(s + r)2i + 〈r2i〉 = 〈s2i〉 and then perform an online multiplication chain to obtain∏7
i=1 〈s2i〉 = 〈s254〉.

Unlike in [53], the requirement on the MPC protocol for only semi-honest security

means that the successive shared powers of 〈r〉 can be computed locally. Indeed, in

characteristic 2, r2 = (
∑n

i=1 r
(i))2 =

∑n
i=1(r(i))2, so each party can compute their

shares locally. Therefore the cost of this method in our paradigm is the opening of

(s+ r) and the six multiplications required for the computation of 〈s128〉. This would

still amount to 1 + 6 · 3 = 19 bytes per S-box (broadcast and auxiliary information

put together).

Masked inversion

In [53], Damg̊ard and Keller also conclude that the masked inversion method that we

presented in Section 9.2.2 is the most efficient. Indeed, at its core it only requires 3

bytes in the online phase and 1 triple in the preprocessing phase. However, the leakage
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that occurs when s = 0 must be prevented. While it is possible in our application to

Picnic signatures to generate the public-/private-key pairs so that this leakage does

not take place, this is not possible for generic computations of the AES circuit.

The solution given in [53] is to have the parties compute a shared “zero-indicator”

value 〈δ(s)〉 defined as

δ(s) =

1 if s = 0,

0 otherwise.

It is then easily verified that the inversion mapping of (9.3) is equivalent to

s 7→ (s+ δ(s))−1 + δ(s)

When δ(s) is computed in shared form, then the parties can perform the inversion

computation with 〈s+ δ(s)〉 instead of 〈s〉. Once 〈(s+ δ(s))−1〉 is obtained, the parties

can locally compute 〈(s+ δ(s))−1〉+〈δ(s)〉. This ensures that if s = 0 then s+δ(s) = 1

is instead inverted to (s + δ(s))−1 = 1 and that the second addition of δ(s) returns

the value to 0, as F28 has characteristic 2.

This technique could be applied to our MPCitH circuit for AES to avoid the

loss of generality and security that come with the efficient method presented in the

previous section. We present here two methods to compute the zero-indicator δ(s) in

secret-shared form.

Method 1. In [53], the value 〈δ(s)〉 is computed by first bit-decomposing 〈s〉, then

not-ing each bit and finally computing the joint and of the eight bits of s. This

joint and requires 7 bit-wise and gates to output the final value. If these gates are

performed so that each party eventually holds δ(s)(i) ∈ F2, then each party can embed

its share into F28 to obtain its share of 〈δ(s)〉.
As before, bit-decomposition is trivially obtained by each party locally bit-decom-

posing its share into ~s(i) = φ(s(i)). The not gates are then also performed locally by

each party. For the and gates, we make use of the same technique of preprocessed

multiplication triples, but over F2 instead of F28 . For each and gate, 1 bit then needs

to be added to aux(n) to correct the triple and 2 bits need to be opened in the online

phase to compute the multiplication.

This method therefore results in 7 ·3 = 21 bits per S-box in addition to the 4 bytes

required for the inversion of 〈s+ δ(s)〉. This results in approximately 6.6 bytes per

S-box which is only 17.5% less than implementing the best binary circuit for AES in

the model of [86].

176



9.2. REVISITING AES FOR MPC-IN-THE-HEAD

Method 2. In the world of MPC, the computation of the shared zero-indicator

〈δ(s)〉 can be seen as an n-party functionality which takes 〈s〉 as input and distributes

〈δ(s)〉 to all the parties.4 As we are in the MPCitH setting, the prover can observe

the value of s and act as this functionality by providing each party with their share

of δ(s). To further optimize this, we can assume that Pi, for i = 1→ n− 1, samples

their share of δ(s) pseudo-randomly and that the prover only gives Pn a correction

value which makes the reconstructed value equal to δ(s).

This approach is the first here that deviates from a normal MPC scenario and

exploits the MPCitH paradigm to reduce the cost. However, it comes with the caveat

that a malicious prover is able to select an arbitrary correction value for Pn. This

implies that they have the freedom to arbitrarily modify the computation of the

circuit. A partial fix for this is to specify that the shares of δ(s) must be either 0 or 1

within F28 . This is only natural, as δ(s) can only take either of these values and the

sum of such values is again 0 or 1. In this way, the prover can at most substitute a

1 for a 0 or vice-versa thus greatly limiting their ability to cheat arbitrarily. They

can only inject an arbitrary F28 value into Pn and not get caught if Pn is the party

that is not revealed to the verifier, which corresponds exactly to their usual cheating

capability in Picnic. Furthermore, this approach means that the additional auxiliary

input required for Pn is only one bit of information, as opposed to one byte.

The remaining drawback is then that a malicious prover can arbitrarily change the

value of δ(s) from 0 to 1 in the computation. Note that this 1-bit fault can only be

injected in the least significant bit of the input of the AES inversion, and if injected,

the same fault is automatically applied to the inversion output as well, corresponding

to the second xor with δ(s). Unfortunately, it remains as an open question to compute

what the soundness would be of a proof which used this technique for the computation

of the AES circuit. This kind of fault injections have not been studied in the side-

channel analysis literature, since a fault attacker typically injects faults in order to

obtain an exploitable (non-zero) output difference in the ciphertext (i.e. differential

fault analysis [22]). A malicious prover in MPCitH on the other hand would be trying

to modify an execution yielding a wrong ciphertext into an apparently correct one.

In the normal MPCitH scenario, a malicious prover who does not have knowledge

of the secret key k, has a probability 2−λ to produce a valid signature by guessing the

key, where λ ∈ {128, 192, 256} is the key and block size. In this adapted scenario with

very specific 1-bit faults, the size of the prover’s search space increases to 2λ ·2# S-boxes,

as they can guess both a key and a fault configuration by selecting which of the S-box

4The majority of the analysis for this method is the work of L. De Meyer.

177



CHAPTER 9. USING AES IN PICNIC SIGNATURES

computations to infect. Let k̃ be the key guess and F̃ be the circuits of Section 9.2.2

with injected faults; then the prover succeeds if the correct ciphertext is output at

the end, i.e. for a public key (x,y), F̃k̃(x) = y. We again assume that all S-box

calculations are independent and treat AES as a PRF, hence we assume that each

of the 2λ possible outputs are equiprobable. We thus estimate that the number of

correct choices is

# correct choices ≈ total # choices

# outputs
=

2λ+#S-boxes

2λ
= 2#S-boxes.

This results in the following success probability for a malicious prover:

Pr[F̃k̃(x) = y] ≈ # correct choices

total # choices
=

2#S-boxes

2λ+#S-boxes
= 2−λ

which corresponds exactly to the success probability in the MPCitH scenario without

fault injections.

This methods originates from using an n-party functionality within the MPCitH

paradigm, which is normally not permitted as a malicious prover is then able to cheat

arbitrarily. However our analysis shows that, for this particular application, this

additional freedom does not seem to give the Prover further advantages to forge a

signature. Therefore, while n-party functionalities may not be permitted in general,

this shows that case-by-case analysis may reveal that they do not affect the soundness

for specific proofs. This then raises the question of what other proofs may be realized

by taking advantage of such functionalities, which are in fact “free”, in terms of

communication between parties, as they can be computed outside of the MPC protocol

by the prover themselves.
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Chapter 10

Faster MPCitH from verification

protocols

In the previous chapter, the MPCitH method used consists in computing the entire

circuit as it would have been in a real MPC execution. In that case, no advantage

is gained from the fact that the prover is in fact able to reconstruct the simulated

secret-sharing of the intermediary values. This strategy is only briefly considered in

the description of the last method to realize the masked inversion technique. In that

work, we did not consider this to be an advantage, only an opportunity for a malicious

prover to cheat, and we analyzed the security risk of letting this cheating be possible.

Taking a different approach, Baum and Nof were the first to suggest that this

capability of the prover could be used for efficiency gains [10]. In that work, they

allowed the prover to “fill-in” certain values in the computation. To prevent cheating,

the prover then has to simulate the execution of a verification protocol on these filled-

in values, and the verifier then checks that this verification protocol succeeded and

was executed correctly. This replaces the prover’s commitment to an execution and

the verifier’s checking of that execution.

In this chapter we describe two further signature schemes derived from this tech-

nique. The first is based on the proof of knowledge of a pre-image of the Legendre

PRF and the second is an improvement to the proof of knowledge of an AES key

presented in the previous chapter.

The contents of Section 10.1 are selected from the work of W. Beullens1 and

this author; it was published in the proceedings of Post-Quantum Cryptography -

11th International Conference, PQCrypto 2020 and was presented virtually at the

1KU Leuven, Belgium
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conference on 21–23 September 2020 [19] by this author. The majority of the ideas

and writing were the work of W. Beullens so we only include a brief description of the

principles and of the protocol itself.

The contribution of Section 10.2 is selected from work in progress of C. Baum2, E.

Orsini3, P. Scholl4 and this author. The core idea of the polynomial-based verification

protocol was the work of C. Baum, P. Scholl and E. Orsini; the formalizing of the

verification protocol together with that of the signature scheme and its proof is the

work of this author.

10.1 Post-quantum signatures from the Legendre PRF

We first recall the definition of the Legendre PRF and of its generalizations to residue

symbols of higher order. After stating the relation that the scheme will provide a proof

of, we then describe the verification mechanism used to replace the computation of

the actual PRF evaluations. We finally state the formal description of the signature

scheme and quote implementation results from [19].

10.1.1 The Legendre PRF and higher order variants

Let p be an odd prime. The Legendre PRF family, indexed by a key K ∈ Zp, is the

family of functions

LK : Fp → Z2,

a 7→
⌊

1

2

(
1−

(
K + a

p

))⌋
,

where (ap ) ∈ {−1, 0, 1} is the quadratic residuosity symbol of a mod p, i.e. whether a

is a square (1), not a square (-1) or 0 modulo p. Given the above definition, we have

that L0(a · b) = L0(a) + L0(b) for all a, b ∈ F×p and that LK(a) = L0(K + a).

This function family is conjectured to be pseudo-random and was first proposed

for use in cryptography by Damg̊ard in 1988 [52]. Since then, its security as a PRF

family has been studied in many attack models. In the case of quantum adversaries,

if they are only able to make classical queries to a PRF evaluation oracle, then the

state-of-the-art is an attack which requires O(p1/2 log p) computation of Legendre

symbols and O(p1/2 log p) queries to the PRF oracle [90]. Restricting the adversary to

2Aarhus University, Denmark.
3KU Leuven Belgium.
4Aarhus University, Denmark.
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only L queries to the evaluation oracle then increases the required Legendre symbol

computations to O(p log2 p/L2) [18].

In his original work, Damg̊ard also considers higher order power residues as a

generalization of the Legendre PRF. Instead of using the quadratic residue symbol

(ap ) = a
p−1

2 mod p, these generalizations instead use the k-th power residue symbol

(ap )k = a
p−1
k mod p for any integer k which divides p−1. Analogously to the Legendre

PRF, the power residue PRF family, indexed by a key K ∈ Zp, is defined as

LkK : Fp → Zk,

a 7→

i if (a+K)/gi ≡ hk mod p for some h ∈ F×p ,

0 if (a+K) ≡ 0 mod p,

where g is a fixed generator of F×p . The original Legendre PRF is then a special case

with k = 2; we therefore use the generic notation for the rest of the section.

For implementations, the power residue PRF has the advantage of providing log k

bits of output, instead of just 1 for the Legendre PRF. In the setting where an ad-

versary is only allowed to query L evaluations of the power residue PRF, the best

known attack currently requires computing O(p log2 p/(kL log2 k)) power residue sym-

bols [18].

The power residue PRF relation

In the previous chapter, the language for which we provided a proof was based on

the relation R((x,y),k) = {((x,y = Fk(x)),k)} for some block cipher F . Here we

define the Legendre and power residue PRF relations RLk for k ≥ 2 and their relaxed

versions RβLk for a parameter β.

Let I = (i1, . . . , iL) denote a list of L elements of Zp. We denote a length-L k-th

power residue PRF as

F kI : Fp → ZLk
K 7→ (LkK(i1), . . . ,LkK(iL)).

Definition 10.1 (k-th power residue PRF [19, Definition 1]). For an odd prime p, a

positive integer k | p− 1 and a list I of L elements of Zp, the k-th power residue PRF

relation RLk with output length L is defined as

RLk = {(F kI (K),K) ∈ ZLk × Fp}.
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In short, the language defined by this relation consists of all strings of length L

defined by K and I. The second relation below is a relaxed version of the first. The

induced language consists of strings which are very close to those of the first language,

where the Hamming distance dH is used and β parameterizes the slack.

Definition 10.2 (β-approximate k-th power residue PRF [19, Definition 2]). For

β ∈ [0, 1], an odd prime p, a positive integer k | p − 1 and a list I of L elements of

Zp, the β-approximate k-th power residue PRF relation RβLk with output length L is

defined as

RβLk = {(s,K) | ∃a ∈ Zk : dH(s+ (a, . . . , a), F kI (K)) ≤ βL} ⊂ ZLk × Fp.

Theorem 1 of [19] proves that, for sufficiently small β and large L, then the β-

approximate language is as hard at the exact one because every witness for the first

is also a witness for the second with overwhelming probability over the choice of the

list I.

10.1.2 Signature scheme from the power residue PRF relation

The signature scheme we present here is the one of [19, Section 5] based on the

identification scheme of [19, Section 4]. Instead of the LowMC block cipher used in

Picnic, this scheme uses the PRF F kI , for some fixed list I. The secret key is then

sk = K, corresponding to the public key pk = F kI (K), and a signature consists in a

proof of knowledge of sk with a simulated N -party computation of pk.

To avoid expensive computation of so many power residue symbols, three optimiza-

tions were proposed. The first is to compute only B symbols out of the L contained

in the public key. The B indices of I that are to be computed are selected at random

by the verifier (or by a random oracle, following the Fiat–Shamir paradigm). This

turns the scheme into a proof of knowledge for the β-approximate language but, by

Theorem 1 of [19], this does not induce a noticeable loss in security.

The second optimization is to multiplicatively mask the B inputs K + I(j) and let

the verifier compute their residue symbols. In order to do so, the prover first commits

to B random values r(j) together with their residue symbols s(j) = Lk0(r(j)). After

the verifier has selected the B elements I(j) of I to be checked, the prover makes the

simulated MPC protocol compute the B output values o(j) = (K + I(j))r(j). On the

one hand, the multiplicative masks ensure that no information about K is leaked,

and on the other, the verifier can check himself whether Lk0(o(j)) = pkI(j) + s(j), thus

avoiding the expensive computation of the residue symbol in the MPC protocol.
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The third optimization is of the kind discussed at the beginning of this chapter.

Instead of computing the outputs o(j) in the MPC protocol, the prover can instead

compute them and send them to the verifier directly. Then the verifier will challenge

him to check that these o(j) values are indeed the correct results of the multiplications.

The optimization comes from the fact that it is possible to verify a random linear

combination of these equations, rather than all B of them individually. Indeed, when

given B random coefficients λ(j) by the verifier (or the random oracle in the signature

scheme), the prover with make the MPC protocol compute the error term

E =

B∑
j=1

λ(j)
(

(K + I(j))r(j) − o(j)
)
.

If all the o(j) products were computed honestly by the prover, E will be 0; otherwise,

if one or more are wrong, E will be uniformly random because of the λ(j) coefficients,

except with probability 1/p, which is negligible. The value of E can in fact be com-

puted with a single non-linear operation since K can be taken to the outside of the

sum:

E = K ·
B∑
j=1

λ(j)r(j) +

B∑
j=1

λ(j)(I(j)r(j) − o(j)).

As non-linear operations are the only ones requiring communication between parties

in MPC, this makes for an extremely efficient MPCitH protocol.

We note that despite the 1/p probability of cheating on the output values, the

prover can still cheat in 1 out of the N parties computing the verification protocol.

Since N must be relatively small for computational efficiency, we still run M parallel

executions to reduce the cheating probability to a negligible value.

The signature scheme

We now present the formal signature scheme. The verifier challenges are computed us-

ing three random oracles H1, H2 and H3 according to the Fiat–Shamir transform [68].

The message to be signed is added to the first challenge computation, together with

a 2λ-bit salt value.

The parameters params consist of the values p, k, L,B,N and M together with a

pseudo-random list I as described above. The key-generation algorithm KGen samples

a random secret-key sk = K←$Fp uniformly at random and computes the public-key

pk = F kI (K). The signing algorithm Sig is described in Figures 10.1 and 10.2 and the
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Sig(params, sk,m)—part 1
Phase 1: Commitment to sharings of K, randomness and triples

1: Pick a random salt: st← {0, 1}λ.
2: for e from 1 to M do
3: Sample a root seed: sde←$ {0, 1}λ.
4: Build binary tree from sde with leaves sde,1, . . . , sde,N .
5: for i from 1 to N do
6: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

7: Commit to seed: Come,i ← Hsd(st, e, i, sde,i).

8: Compute witness offset: ∆Ke ← K −
∑N
i=1Ke,i.

9: Adjust first share: Ke,1 ← Ke,1 + ∆Ke.

10: Compute triple: ae ←
∑N
i=1 ae,i, be ←

∑N
i=1 be,i and ce ← ae · be.

11: Compute triple offset: ∆ce ← ce −
∑N
i=1 ce,i.

12: Adjust first share: ce,1 ← ce,1 + ∆ce.
13: for j from 1 to B do

14: Compute residuosity symbol: s
(j)
e ← Lk0(r

(j)
e ) where r

(j)
e ←

∑N
i=1 r

(j)
e,i .

15: Set σ1 ← ((Come,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆ce)e∈[M ].

Phase 2: Challenge on public key symbols

1: Compute challenge hash: h1 ← H1 (m, st, σ1).

2: Expand hash: (I
(j)
e )e∈[M ],j∈[B] ← Expand(h1), where I

(j)
e ∈ I.

Phase 3: Computation of output values

1: for e from 1 to M and for j from 1 to B do

2: Compute output value: o
(j)
e ← (K + I

(j)
e ) · r(j)

e .

3: Set σ2 ← (o
(1)
e , . . . , o

(B)
e )e∈[M ].

Figure 10.1: k-th power residue PRF signature scheme—part 1.

verification algorithm Vfy is described in Figure 10.3. We state below the security

theorem from [19].

Theorem 10.3 ([19, Theorem 2]). In the classical random oracle model, the signature

scheme defined above is EUF-CMA secure under the assumption that computing β-

approximate witnesses for a given public-key is hard.

To compare with the AES-based proposal of Chapter 9, we note that the Legendre

PRF based instantiation (i.e. with k = 2) of this scheme achieves signature sizes

ranging from 16.0kB to 12.2kB for the number of parties N ranging from 16 to 256

respectively. This is much smaller than the average size of 31.6kB estimated for the

AES-based signatures. We note that, as the number of parties is increased to achieve

lower signature sizes, so does the signing time increase as well, from 2.8ms to 15.7ms

respectively.

As no alternative method of computing the Legendre PRF in MPC is considered
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Sig(params, sk,m)—part 2
Phase 4: Challenge for sacrificing-based verification

1: Compute challenge hash: h2 ← H2 (h1, σ2).

2: Expand hash (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2), where εe, λ

(j)
e ∈ Zp.

Phase 5: Commitment to views of sacrificing protocol

1: for e from 1 to M do
2: for i from 1 to N do
3: Compute shares: αe,i ← ae,i + εeKe,i and βe,i ← be,i +

∑B
j=1 λ

(j)
e r

(j)
e,i .

4: Compute values: αe ←
∑N
i=1 αe,i and βe ←

∑N
i=1 βe,i.

5: for i from 1 to N do
6: Compute product shares: ze,i ←

∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

7: if i
?
= 1 then ze,i ← ze,i +

∑B
j=1 λ

(j)
e o

(j)
e .

8: Compute check value shares: γe,i ← αebe,i + βeae,i − ce,i + εeze,i.

9: Set σ3 ← (αe, βe, (αe,i, βe,i, γe,i)i∈[N ])e∈[M ].

Phase 6: Challenge on sacrificing protocol

1: Compute challenge hash h3 ← H3 (h2, σ3).
2: Expand hash (̄ie)e∈[M ] ← Expand(h3), where īe ∈ [N ].

Phase 7: Opening the views of sacrificing protocol

1: for e from 1 to M do
2: seedse ← {log2(N) nodes in tree needed to compute sde,i for i ∈ [N ] \ ī}.
3: Output: σ = (st, h1, h3, (∆Ke,∆ce, o

(1)
e , . . . , o

(B)
e , αe, βe, seedse, Come,̄ie)e∈[M ]).

Figure 10.2: k-th power residue PRF signature scheme—part 2.

in [19], we do not estimate the signature sizes that would result from a naive MPC

protocol. We note that the final optimization of computing only the error term E

in the MPC protocol, instead of the B output values, already reduces the number of

multiplications from B to only 1. As the value of B ranges from 9 to 16, depending

on the number of parties, we could expect the non-optimized computation to result

in signatures that many times bigger (approximately).

For the higher order power residue PRF, this scheme achieves even lower signature

sizes ranging from 8.6kB to 6.3kB for the same range of N . Due to the increased

soundness gained from increasing k, less repetitions M are required, and less symbols

of the public key need to be checked; both of these advantages contribute to the

reduced size and also to reduced computation times, ranging from 1.2ms to 7.9ms.

10.2 Improving AES in MPCitH with S-box verification

We now present a method similar to Section 10.1’s to improve the performance of the

proof of knowledge of AES key presented in Chapter 9.
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Vfy(params, pk,m, σ):

1: Parse σ = (st, h1, h3, (∆Ke,∆ce, o
(1)
e , . . . , o

(B)
e , αe, βe, seedse, Come,̄ie)e∈[M ]).

2: Compute h2 ← H2(h1, (o
(j)
e )e∈[M ],j∈[B]).

3: Expand challenge hash 1: (I
(1)
e , . . . , I

(B)
e )e∈[M ] ← Expand(h1), where I

(j)
e ∈ I.

4: Expand challenge hash 2: (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).

5: Expand challenge hash 3: (̄ie)e∈[M ] ← Expand(h3).
6: for e from 1 to M do
7: Use seedse to compute sde,i for i ∈ [N ] \ īe.
8: for i from 1 to īe − 1 and from īe + 1 to N do
9: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

10: if i
?
= 1 then

11: Adjust shares: Ke,i ← Ke,i + ∆Ke and ce,i ← ce,i + ∆ce.

12: Recompute commitments: Com∗e,i ← H(st, e, i, sde,i)

13: Recompute shares: α∗e,i ← ae,i + εeKe,i and β∗e,i ← be,i +
∑B
j=1 λ

(j)
e r

(j)
e,i .

14: Recompute product shares: ze,i ←
∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

15: if i
?
= 1 then

16: ze,i ← ze,i +
∑B
j=1 λ

(j)
e o

(j)
e .

17: Recompute check value shares: γ∗e,i ← αebe,i + βeae,i − ce,i + εeze,i.

18: Compute missing shares: α∗
e,̄ie
← αe −

∑
i 6=ī α

∗
e,i and β∗

e,̄ie
← βe −

∑
i 6=ī β

∗
e,i.

19: Compute missing check value share: γ∗
e,̄ie

= αeβe −
∑
i6=ī γ

∗
e,i.

20: for j from 1 to B do

21: Recompute residuosity symbols: s
(j)∗
e ← Lk0(o

(j)
e )− pk

I
(j)
e

.

22: Check 1: h1
?
= H1(m, st, ((Com∗e,i)i∈[N ], (s

(j)∗
e )j∈[B],∆Ke,∆ce)e∈[M ])

23: Check 2: h3
?
= H3(h2, (αe, βe, (α

∗
e,i, β

∗
e,i, γ

∗
e,i)i∈[N ])e∈[M ])

24: Output accept if both checks pass.

Figure 10.3: k-th power residue PRF signature verification.

Recall that the only non-linear operations that the MPC protocol must compute

are the application of the AES S-boxes:

S : s 7→ φ−1
(
A · φ

(
s−1
)

+~b
)
,

for which, in fact, only the operation s 7→ s−1 requires communication. To follow the

approach of the previous section, we let the prover “open” the MPCitH sharing of s to

compute t = s−1 directly and insert it into the computation. (We assume that s 6= 0.)

The prover then simulates a verification protocol which checks that every inserted t

is indeed the inverse of the corresponding s.

We first detail the verification protocol, proposed by C. Baum and P. Scholl, before

formally describing the resulting signature scheme and giving its security proof.
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10.2.1 Polynomial-based verification of inverse pairs

Let m denote the number of S-boxes in the circuit for fx(k) = AESk(x) and let

〈s1〉, . . . , 〈sm〉 denote the secret-shared inputs to each of these S-boxes. As it simulates

the execution of the circuit, we let the prover open each 〈si〉 to compute ti ← s−1
i and

then insert 〈ti〉 back into the execution by having each party j sample t
(j)
i from seed

and then inserting a correction value ∆ti to correct t
(1)
i . The verification protocol

then has, as inputs, the sharings 〈si〉 and 〈ti〉, for i ∈ [m], and needs to verify that

si · ti = 1 for every i.

The method proposed by Baum and Scholl consists in building two polynomials:

S(x) from the si values, and T (x) from the ti values, and then verifying that their

product P = S · T satisfies the required relation.

The first idea was to set S(i) := si, and thus have S and T be polynomials of degree

m−1, and then verify that P (i) = 1 for i ∈ [m]. This verification is done by enforcing

P (i) = 1 when interpolating P and then checking that P (R) = S(R) · T (R) for a

randomly sampled point R different from all used to interpolate P . The soundness of

this check follows from the following lemma.

Lemma 10.4 (Schwartz–Zippel Lemma [129, 115]). Let Q ∈ F[x] be a non-zero

polynomial of degree d > 0. For any finite subset S of F,

Pr
r←$S

[Q(r) = 0] ≤ d

|S|
.

This check was then improved by constructing S and T using random coefficients

together with the pairs to be checked. The idea is to instead check m2 random linear

combinations of m1 elements each, where m1 · m2 = m. To further increase the

soundness of the check, we also lift the values, which belong to F28 , to the bigger field

F28ρ , for ρ ≥ 2. We assume that there exists a non-interactive injective homomorphism

to lift from F28 to F28ρ . The verfication protocol, in non-secret-shared form, therefore

proceeds as follows.

1. Lift s1, . . . , sm and t1, . . . , tm to F28ρ .

2. Sample random challenges ri ← F28ρ for i ∈ {1, . . . ,m1}.

3. Compute s′ij = ri · si+m1j and write t′ij = ti+m1j for i ∈ {1, . . . ,m1}, j ∈
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{0, . . . ,m2 − 1}. Observe that
s′1j
...

s′m1j

(t′1j · · · t′m1j

)
=
∑
i

ri for j ∈ {0, . . . ,m2 − 1}. (10.1)

These are the m2 linear combinations to be verified.

4. For i ∈ {1, . . . ,m1} sample s̄i, t̄i←$F28ρ and define the polynomials Si, Ti such

that Si(m2) = s̄i, Ti(m2) = t̄i and Si(j) = s′ij , Ti(j) = t′ij for j ∈ {0, . . .m2 − 1}.
By definition each such polynomial has degree m2.

5. Let P be the degree 2m2 polynomial P =
∑

i Si ·Ti. Observe that P (j) =
∑

i ri

for j ∈ {0, . . . ,m2 − 1} as per (10.1).

6. Sample a random challenge R←$F28ρ \ {0, . . . ,m2 − 1}.

7. Compute P (R) as well as Si(R) and Ti(R) for i ∈ {1, . . . ,m1} and verify whether

P (R) =
∑

i Si(R) · Ti(R).

The secret-shared verification protocol

Since polynomial interpolation is linear, parties can interpolate shares of polynomials

Si and Ti from shares of s′ij and t′ij , since the challenges ri are public. From this,

each party can compute their share of Si(R) and Ti(R) for each i and then reveal it

in order to perform the check.

So the only non-linear part is the computation of the polynomial P . Here we let

the prover inject the shares for m2 + 1 values of P (as another m2 values are already

specified by the publicly known P (j) =
∑

i ri for each j) and we rely on the check

with the challenge R to capture any cheating. With those 2m2 + 1 shares, the parties

can locally interpolate a share of P and then compute and reveal their shares of P (R).

In summary, each party Pk performs the following operations.

1. Lift s
(k)
1 , . . . , s

(k)
m and t

(k)
1 , . . . , t

(k)
m to F28ρ .

2. Receive challenges ri ∈ F28ρ for i ∈ {1, . . . ,m1}.

3. Compute s
′(k)
ij = ri · s(k)

i+m1j
and write t

′(k)
ij = t

(k)
i+m1j

for i ∈ {1, . . . ,m1}, j ∈
{0, . . . ,m2 − 1}.
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4. For i ∈ {1, . . . ,m1} sample s̄
(k)
i , t̄

(k)
i ←$F28ρ . Interpolate polynomials S

(k)
i and

T
(k)
i such that S

(k)
i (m2) = s̄

(k)
i , T

(k)
i (m2) = t̄

(k)
i and S

(k)
i (j) = s̄

′(k)
ij , T

(k)
i (j) =

t̄
′(k)
ij for j ∈ {0, . . . ,m2 − 1}.

5. Receive m2 + 1 shares P (k)(j) for j ∈ {m2, . . . , 2m2} (j = m2 is included as

parties cannot compute
∑

i s̄i · t̄i locally). For j ∈ {0, . . . ,m2 − 1}, if k = 1, set

P (k)(j) =
∑

i ri; if k 6= 1, set P (k)(j) = 0. Interpolate P (k) from those 2m2 + 1

points.

6. Receive challenge R ∈ F28ρ \ {0, . . . ,m2 − 1}.

7. Compute P (k)(R), S
(k)
i (R) and T

(k)
i (R) and open all 2m1 + 1 values.

Soundness. Assume that each party honestly follows the protocol but there exists

` ∈ [m] such that s` · t` 6= 1. Since the embedding into F28ρ is an injective homo-

morphism, it must then also hold that si · ti 6= 1. Assume that the above protocol

succeeds, then one of the following conditions must hold:

1. In Step 2, values r1, . . . , rm1 were sampled such that the equations from Step 3

hold, despite s` · t` 6= 1.

2. In Step 6 a value R was chosen such that P (R) =
∑

i Si(R) · Ti(R) while P 6=∑
i Si · Ti.

For the first case, by assumption we have that ∃i, j such that
∑

i ri =
∑

i s
′
ij · t′ij

while ri 6= s′ij · t′ij . By the choice of ri this will happen with probability at most 2−8ρ.

For the second, the polynomials on both sides are of degree 2m2 and can have

at most 2m2 points in common. Following from the Schwartz–Zippel Lemma, the

probability of such a value of R being sampled is then at most 2m2/(2
8ρ −m2).

This discussion illustrates the soudness of each check in isolation. We next describe

the final protocol and analyse its security in full.

10.2.2 Signature scheme from polynomial-based S-box verification

Notation. In this section, we use e to index executions, i to index parties, ` to index

S-boxes and j, k, . . . when further indexing is required. Let M denote the number of

parallel execution, N denote the total number of parties and m denote the number of

S-boxes.
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Sig(params, sk,m)—part 1
Phase 1: Committing to the seeds and the execution views of the parties.

1: Sample a random salt st←$ {0, 1}2λ.
2: for each parallel execution e do
3: Sample a root seed: sde←$ {0, 1}λ.

4: Compute parties’ seeds sd(1)
e , . . . , sd(N)

e as leaves of binary tree with root sde.
5: for each party i do

6: Commit to seed: C
(i)
e ← Commit(st, e, i, sd(i)

e ).

7: Sample witness share: sk(i)
e ← Expand(sd(i)

e ).

8: Compute witness offset: ∆ske ← sk−
∑
i sk(i)

e .

9: Adjust first share: sk(1)
e ← sk(1)

e + ∆ske.
10: for each S-box ` do
11: For each party i, locally compute the share s

(i)
e,` of the S-box input se,`.

12: Compute the S-box output: te,` = (
∑
i s

(i)
e,`)
−1

.

13: For each party i, sample the share of the output: t
(i)
e,` ← Expand(sd(i)

e ).

14: Compute output offset: ∆te,` = te,` −
∑
i t

(i)
e,`.

15: Adjust first share: t
(1)
e,` ← t

(1)
e,` + ∆te,`.

16: Set σ1 ← ((C
(i)
e )i∈[N ],∆ske, (∆te,`)`∈[m])e∈[M ].

Figure 10.4: Phase 1: commitment to executions of AES.

Protocol description. We describe the protocol in phases and give the rationale

behind each one. The MPC-in-the-Head computation is divided into two steps: the

AES execution and then the verification of the inverse injections.

Figure 10.4 describes the computation of the first signature component: the com-

mitment to the M parallel executions.

• Line 1 introduces a random salt to add additional randomness into the hash

function calls.

• On line 12, we assume that the input is non-zero for every S-box.

• On line 16, the prover commits to the seeds, the injection of sk and the injection

of the m inverse values te,` for each execution e. These values suffice to determine

uniquely the output values of the distributed AES circuit.

Figure 10.5 describes the computation of the challenge for the randomized inner

products and the commitments to the checking polynomial P for each execution.

Figure 10.6 describes the computation of the challenge for the committed check-

ing polynomial and the commitments to the views of the check openings for each

execution.
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Sig(params, sk,m) - part 2
Phase 2: Challenging the multiplications.

1: Compute challenge hash: h1 ← H1(m, st, σ1).
2: Expand hash: (re,j)e∈[M ],j∈[m1] ← Expand(h1) where re,j ∈ F28ρ .

Phase 3: Committing to the checking polynomials.

1: for each execution e do
2: for each party i do

3: Lift s
(i)
e,`, t

(i)
e,` ↪→ F28ρ for ` ∈ [m].

4: for j ∈ [m1] do

5: Rearrange shares: s
′(i)
e,j,k ← re,j · s(i)

e,j+m1k
and t

′(i)
e,j,k ← t

(i)
e,j+m1k

for k ∈
{0, . . . ,m2 − 1}.

6: Sample additional random points: s̄
(i)
e,j , t̄

(i)
e,j ← Expand(sd(i)

e ).

7: Define S
(i)
e,j(k) = s

′(i)
e,j,k and T

(i)
e,j (k) = t

′(i)
e,j,k for k ∈ {0, . . . ,m2 − 1}, S(i)

e,j(m2) =

s̄
(i)
e,j and T

(i)
e,j (m2) = t̄

(i)
e,j .

8: Interpolate polynomials S
(i)
e,j and T

(i)
e,j of degree m2 using defined m2 + 1 points.

9: Compute product polynomial: Pe ←
∑
j

(∑
i S

(i)
e,j

)
·
(∑

i T
(i)
e,j

)
.

10: for each party i do

11: For k ∈ {0, . . . ,m2 − 1}, if i = 1, set P
(i)
e (k) =

∑
j re,j ; if i 6= 1, set P

(i)
e (k) = 0.

12: For k ∈ {m2, . . . , 2m2}, sample P
(i)
e (k)← Expand(sd(i)

e ).

13: for k ∈ {m2, . . . , 2m2} do

14: Compute offset: ∆Pe(k) = Pe(k)−
∑
i P

(i)
e (k).

15: Adjust first share: P
(1)
e (k)← P

(1)
e (k) + ∆Pe(k).

16: For each party i, interpolate P
(i)
e of degree 2m2 using defined 2m2 + 1 points.

17: Set σ2 ← ((∆Pe(k))k∈{m2,...,2m2})e∈[M ]
.

Figure 10.5: Phases 2 and 3: Computation of randomized inner product checking
polynomials.

Figure 10.7 describes the computation of the challenge for and the opening of the

views of the verification protocol.

Finally, Figure 10.8 on p. 193 describes the verification of the signature by re-

computation of the polynomial shares and checking of the relations.

Security proof

Following the technique used for the signature scheme of Section 10.1, we prove

that the scheme presented above achieves EUF-CMA security. We first show that

it achieves EUF-KO security and then build a reduction between the two notions.

Theorem 10.5. In the classical random oracle model, the signature scheme described

in Figures 10.4, 10.5, 10.6, 10.7 and 10.8 is EUF-CMA secure under the assumption
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Sig(params, sk,m)—part 3
Phase 4: Challenging the checking polynomials.

1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (Re)e∈[M ] ← Expand(h2) where Re ∈ F28ρ \ {0, . . . ,m2 − 1}.

Phase 5: Committing to the views of the checking protocol.

1: for each execution e do
2: for each party i do

3: For j ∈ [m1], compute: a
(i)
e,j ← S

(i)
e,j(Re) and b

(i)
e,j ← T

(i)
e,j (Re).

4: Compute: c
(i)
e ← P

(i)
e (Re).

5: Open ce, and ae,j , be,j for j ∈ [m1].

6: Set σ3 ← (ce, (c
(i)
e )i∈[N ], (ae,j , be,j , (a

(i)
e,j , b

(i)
e,j)i∈[N ])j∈[m1])e∈[M ].

Figure 10.6: Phases 4 and 5: Computation of the views of the randomized check
openings.

Sig(params, sk,m)—part 4
Phase 6: Challenging the views of the checking protocol.

1: Compute challenge hash: h3 ← H3(h2, σ3).
2: Expand hash: (̄ie)e∈[M ] ← Expand(h3) where īe ∈ [N ].

Phase 7: Opening the views of the checking protocol.

1: for each execution e do
2: sdse ← {log2(N) nodes needed to compute sde,i for i ∈ [N ] \ {̄ie}}.
3: Set σ ← (st, h1, h3, (sdse,C

(̄ie)
e ,∆ske, (∆te,`)`∈[m], (∆Pe(k))k∈{m2,...,2m2}, Pe(Re),

(Se,j(Re), Te,j(Re))j∈[m1])e∈[M ]).

Figure 10.7: Phases 6 and 7: Challenging and opening of the views of the checking
protocol.

that the chosen AES circuit is a OWF on its key-space.

Proof. The proof follows from Lemma 10.6, for the reduction of the EUF-KO security

to the OWF security of fx(k) = AESk(x), and Lemma 10.7, for the reduction of

EUF-CMA security to EUF-KO security based on the simulatability of the MPC

protocol.

Lemma 10.6. Let Commit, H1, H2 and H3 be modeled as random oracles. If there

exists a probabilistic poly(λ)-time adversary A against the EUF-KO security of the

signature scheme that makes Qc, Q1, Q2 and Q3 queries to the respective oracles, then

there exists a probabilistic poly(λ)-time algorithm B which, given pk = (x,y), outputs

a pre-image for fx(k) = y with probability at least AdvEUF-KO
A (1λ)−ε(Qc, Q1, Q2, Q3),
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Vfy(params, pk,m, σ)

1: Parse σ ← (st, h1, h3, (sdse,C
(̄ie)
e ,∆ske, (∆te,`)`∈[m], (∆Pe(k))k∈{m2,...,2m2}, Pe(Re), (Se,j(Re),

Te,j(Re))j∈[m1])e∈[M ]).
2: Compute h2 ← H2(h1, ((∆Pe(k))k∈{m2,...,2m2})e∈[M ]).
3: Expand challenge hash 1: (re,j)e∈[M ],j∈[m1] ← Expand(h1).
4: Expand challenge hash 2: (Re)e∈[M ] ← Expand(h3).
5: Expand challenge hash 3: (̄ie)e∈[M ] ← Expand(h3).
6: for each execution e do
7: Use sdse to compute sd

(i)
e for i ∈ [N ] \ īe.

8: for each party i ∈ [N ] \ īe do

9: Recompute commitment: C
(i)
e

′
← Commit(st, e, i, sd

(i)
e ).

10: Sample witness share: sk
(i)
e ← Expand(sd

(i)
e ).

11: if i
?
= 1 then

12: Adjust first share: sk(i)
e ← sk(i)

e + ∆ske.

13: for each S-box ` do
14: Compute local linear operations to obtain s

(i)
e,`.

15: Sample output share: t
(i)
e,` ← Expand(sd

(i)
e ).

16: if i
?
= 1 then

17: Adjust first share: t
(i)
e,` ← t

(i)
e,` + ∆te,`.

18: Do as in Phase 3, lines 3–8 to interpolate S
(i)
e,j

′
, T

(i)
e,j

′
for j ∈ [m1].

19: for k from 0 to m2 − 1 do

20: If i
?
= 1, set P

(i)
e (k)

′
=

∑
j re,j ; otherwise set P

(i)
e (k)

′
= 0.

21: for k from m2 to 2m2 do
22: Sample share: P

(i)
e (k)

′
← Expand(sd

(i)
e ).

23: if i
?
= 1 then

24: Adjust first share: P
(i)
e (k)

′
← P

(i)
e (k)

′
+ ∆Pe(k).

25: Interpolate P
(i)
e

′
.

26: For j ∈ [m1], compute a
(i)
e,j

′
← S

(i)
e,j

′
(Re) and b

(i)
e,j

′
← T

(i)
e,j

′
(Re).

27: Compute: c
(i)
e

′
← P

(i)
e

′
(Re).

28: Compute missing shares:

a
(̄ie)
e,j

′
← Se,j(Re)−

∑
i 6=īe

a
(i)
e,j

′
, b

(̄ie)
e,j

′
← Te,j(Re)−

∑
i 6=īe

b
(i)
e,j

′
, for j ∈ [m1]

c(̄ie)
e

′
← Pe(Re)−

∑
i 6=īe

c(i)e
′

29: Set h′1 ← H1(st, ((C
(i)
e

′
)i∈[N ],∆ske, (∆te,`)`∈[m])e∈[M ]), with C

(̄ie)
e

′
= C

(̄ie)
e .

30: Set h′3 ← H3(h2, (Pe(Re), (c
(i)
e )i∈[N ], (Se,j(Re), Te,j(Re), (a

(i)
e,j , b

(i)
e,j)i∈[N ])j∈[m1])e∈[M ]).

31: Check h′1
?
= h1, h′3

?
= h3 and

Pe(Re)
?
=

∑
j

Se,j(Re) · Te,j(Re).

32: Output accept if all three checks pass.

Figure 10.8: Verification algorithm.
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Algorithm 5 Commit(qc = (st, e, i, sd)):

1: x←$ {0, 1}2λ.
2: if x ∈ Bad then abort. . Check if x is fresh.

3: x→ Bad.
4: (qc, x)→ Qc.
5: Return x.

with

ε(Qc, Q1, Q2, Q3) =
(MN + 1)(Qc +Q1 +Q2 +Q3)2

22λ
+ Pr[X + Y + Z = M ]

where X = maxq1∈Q1{Xq1} with Xq1∼B(M, 1/28ρ), Y = maxq2∈Q2{Yq2} with Yq2 ∼
B(M −X, 2m2/(2

8ρ−m2)) and Z = maxq3∈Q3{Zq3} with Zq3 ∼ B(M −X−Y, 1/N),

where B(n, p) denotes the binomial probability distribution with n samples each with

probability p of success.

Proof. We build a probabilistic poly(λ)-time algorithm B which uses a EUF-KO ad-

versary A to compute a pre-image for fx.

The reduction B simulates the EUF-KO game using the random oracles Commit,

H1, H2 and H3 and query lists Qc,Q1,Q2 and Q3. In addition, B also maintains three

tables Tsh, Tin and Top to store the shares, inputs and openings that it is able to recover

from A’s queries to the random oracles.

Behaviour of the reduction. The reduction B receives a OWF challenge (x,y) and

forwards it to A as the public key of the signature scheme. It lets A run and answers

its random oracle queries in the following way.

• Commit : When A queries the commitment random oracle, B records the query

to learn which commitment corresponds to which seed. See Algorithm 5.

• H1 : When A commits to seeds and sends the offsets for the secret key and the

inverse values, B checks whether the commitments were output by its simulation

of Commit. If any were for some e and i, then B is able to reconstruct the shares

for party i in execution e. If B was able to reconstruct every party’s share for

any e, then it can use the offsets included in σ1 to extract the values used by A
in that execution. See Algorithm 6.

• H2 : When A commits to the checking polynomials, B checks whether the chal-

lenge h1 that A uses is one output by its simulation of H1. If it is, then B uses
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Algorithm 6 H1(q1 = (st, σ1)):

Read σ1 as ((C
(i)
e )i,∆ske, (∆te,`)`)e.

1: for e ∈ [M ], i ∈ [N ] do C
(i)
e → Bad.

2: for (e, i) ∈ [M ]× [N ] : ∃sd
(i)
e : ((st, e, i, sd

(i)
e ),C

(i)
e ) ∈ Qc do

3: sk
(i)
e , (t

(i)
e,`)` ← Expand(sd

(i)
e ).

4: if i
?
= 1 then sk

(i)
e ← sk

(i)
e + ∆ske and (t

(i)
e,`)` ← (t

(i)
e,` + ∆te,`)`.

5: (sk
(i)
e , (t

(i)
e,`)`)→ Tsh[q1, e, i].

6: for each e : ∀i, Tsh[q1, e, i] 6= ∅ do

7: ske ←
∑

i sk
(i)
e and (te,`)` ← (

∑
i t

(i)
e,`)`.

8: (ske, (te,`)`)→ Tin[q1, e].

9: x←$ {0, 1}2λ.
10: if x ∈ Bad then abort.

11: x→ Bad.
12: (q1, x)→ Q1.
13: Return x.

Algorithm 7 H2(q2 = (h1, σ2)):

Read σ2 as (∆Pe(k))k,e.
1: h1 → Bad.
2: x←$ {0, 1}2λ.
3: if x ∈ Bad then abort.

4: x→ Bad.
5: if ∃q∗1 : (q∗1, h1) ∈ Q1 then
6: (re,j)e,j ← Expand(h1) and (Re)e ← Expand(x).
7: for each e : Tin[q∗1, e] 6= ∅ do
8: (Pe(Re), (Se,j(Re), Te,j(Re))j)e → Top[q2, e].

9: (q2, x)→ Q2.
10: Return x.

h1 and the newly sampled H2 response to expand the challenges and extract the

checking polynomials. See Algorithm 7.

• H3 : No extraction takes place during this simulation. See Algorithm 8.

When A terminates, B checks the Tin table for any entry where the extracted ske is

a valid secret key for the public key that it received. If one is, B wins the secret key

recovery game; if no entry is satisfactory, B outputs ⊥.

Advantage of the reduction. Given the behaviour presented above, we have the fol-
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Algorithm 8 H3(q3 = (h2, σ3)):

1: h2 → Bad.
2: x←$ {0, 1}2λ.
3: if x ∈ Bad then abort.

4: x→ Bad.
5: (q3, x)→ Q3.
6: Return x.

lowing by the law of total probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]

+ Pr[A wins ∧ B outputs witness]

≤Pr[B aborts] + Pr[A wins | ⊥] + Pr[B outputs witness]. (10.2)

Given the way in which values are added to Bad, we have:

Pr[B aborts] = (#times an x is sampled) · Pr[B aborts at that sample]

≤ (Qc +Q1 +Q2 +Q3) · max |Bad|
22λ

= (Qc +Q1 +Q2 +Q3) · Qc + (MN + 1)Q1 + 2Q2 + 2Q3

22λ

≤ (MN + 1)(Qc +Q1 +Q2 +Q3)2

22λ
. (10.3)

Where Qc, Q1, Q2 and Q3 denote the number of queries made by A to each respective

random oracle.

We now analyze the probability of A winning the EUF-KO experiment condition-

ning on the event that B ouputs ⊥, i.e. that no suitable witness (that is, pre-image to

fx(·) = y) was found on the query lists.

Cheating in the first round. For any query q1 ∈ Q1, and its corresponding answer

h1 = (re,j)e∈[M ],j∈[m1], let G1(q1, h1) be the set of indices e ∈ [M ] of “good executions”

where both Tin[q1, e] = (ske, (te,`)`∈[m]) is non-empty and the equations
s′e,1k

...

s′e,m1k

(t′e,1k · · · t′e,m1k

)
=
∑
j

re,j for k ∈ {0, . . . ,m2 − 1} (10.4)
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hold, where the s′e and t′e values are derived from ske the extracted te,` values and the

challenge re,j values. For any such good execution e ∈ G1(q1, h1), since B outputs ⊥,

then ske cannot be a valid pre-image for fx. However, since A wins nonetheless, then

there must exist at least one ` ∈ [m] such that se,` · te,` 6= 1; this then implies that

the challenge values re,j were sampled such that Equation (10.4) held. This happens

with probability at most 1/28ρ.

As the response h1 = (re,j)e∈[M ],j∈[m1] is sampled uniformly at random, each

e ∈ [M ] has the same independent probability of being in G1(q1, h1), given that

B outputs ⊥. We therefore have that #G1(q1, h1) |⊥∼ Xq1 where Xq1 = B(M, 1/28ρ).

Letting (qbest1 , hbest1) denote the query-response pair which maximizes #G1(q1, h1),

we then have that #G1(qbest1 , hbest1) |⊥∼ X = maxq1∈Q1{Xq1}.

Cheating in the second round. For any query q2 = (h1, σ2) ∈ Q2, and its corresponding

answer h2 = (Re)e∈[M ], if there exists q1 such that (q1, h1) ∈ Q1, let G2(q2, h2) be

the set of indices e ∈ [M ] of “good executions” where Top[q2, e] = (Pe(Re), (Se,j(Re),

Te,j(Re))j∈[m1]) is non-empty, and it holds that

Pe(Re) =

m1∑
j=1

Se,j(Re) · Te,j(Re). (10.5)

If there does not exist such a q1, let G2(q2, h2) = ∅. Once again, for any such good

execution e ∈ G2(q2, h2), since B outputs ⊥ but A wins nonetheless, this implies that

either the challenges in the first round were such that Equation (10.4) held (in which

case any value of Re passes the check), or the challenge Re was sampled such that

Equation (10.5) held. Conditioning on the first event not happening, the Schwartz–

Zippel Lemma gives us that the second happens with probability at most 2m2
28ρ−m2

,

given that h2 is sampled uniformily at random.

We therefore have that #G2(q2, h1) |⊥∧G1(q1,h1)=M1
∼ M1 + Yq2 where Yq2 =

B(M −M1, 2m2/(2
8ρ − m2)). By taking M1 as a random variable, maximized by

(qbest1 , hbest1) and letting (qbest2 , hbest2) denote the query-response pair which maxi-

mizes #G2(q2, h2) | ⊥ ∧#G1(qbest1 , hbest1), we then have that

#G2(qbest2 , hbest2) |⊥∼ X + Y,

where X is as above, Y = maxq2∈Q2 Yq2 and the Yq2 are independently and identically

distributed as B(M −X, 2m2/(2
8ρ −m2)).

Cheating in the third round. Similarly to the proof of the same stage in [19], each third
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round query q3 = (h2, σ3) that A makes to H3 can only be used in a winning signature

if there exists a corresponding query (q2, h2) ∈ Q2. Then for each “bad” second-round

execution e ∈ [M ] \ G2(q2, h2), either the verification protocol failed, in which case

A couldn’t have won, or the verification protocol passed, despite Equation (10.5) not

being satisfied. This implies that exactly one of the parties must have cheated during

the MPC execution of the verification protocol. Less than one and the verification

protocol would have failed; more than one and the verification of the signature would

have failed.

Since the third-round challenge h3 ∈ [N ]M is chosen uniformly at random, the

probability that this happens for all such “bad” second-round executions e is(
1

N

)M−#G2(q2,h2)

≤
(

1

N

)M−#G2(qbest2 ,hbest2 )

.

The probability that this happens for at least one of the Q3 queries made to H3 is

Pr[A wins | #G2(qbest2 , hbest2) = M2] ≤ 1−

(
1−

(
1

N

)M−M2
)Q3

.

Finally conditioning on B outputting ⊥ and summing over all values of M2, we have

that

Pr[A wins | ⊥] ≤ Pr[X + Y + Z = M ] (10.6)

where X and Y are as before and Z = maxq3∈Q3{Zq3} where the Zq3 variables are

independently and identically distributed as B(M −X − Y, 1/N).

Conclusion. Bringing (10.2), (10.3) and (10.6) together, we obtain the following.

Pr[A wins] ≤ (MN + 1)(Qc +Q1 +Q2 +Q3)2

22λ
+ Pr[X + Y + Z = M ]

+ Pr[B outputs witness]

This finally gives us the relation

AdvOWF
B,(f,x,y)(1

λ) ≥ AdvEUF-KO
A (1λ)− ε(Qc, Q1, Q2, Q3),

which concludes the proof.

Lemma 10.7. Modelling Commit as a random oracle, if the signature scheme pre-

sented above is EUF-KO-secure, then it is EUF-CMA secure.
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Proof. (This proof is modelled on the proof of [19, Lemma 2].) Let A be an adversary

against the EUF-CMA security of the scheme, we construct an adversary B against its

EUF-KO security. When B is run on input pk, it starts A also on input pk. We first

describe how B deals with random oracle queries and signature queries, then argue

that its signature simulations are indistinguishable from real ones, and finally show

that EUF-KO security implies EUF-CMA security.

Random oracle responses. When A queries one of its random oracles, B first checks if

that query has been recorded before. If it has, it responds to A with the corresponding

recorded answer. If not, B forwards the query to its corresponding random oracle,

records the query and the answer it receives and forwards the answer back to A.

Signature simulation. When A queries the signing oracle, B simulates a signature σ

by sampling a random witness and cheating in the MPC verification phase to hide the

fact it has sampled the witness as random. It then programs the last random oracle

to always hide the party for which it has cheated. Formally, the reduction B proceeds

as follows:

1. Phase 1: to simulate σ1, B follows Phase 1 as in the scheme with two differences.

First, for each e ∈ [M ], it samples ∆ske uniformly, effectively sampling ske at

random. Second, when committing to the seeds using Commit, B aborts if any

of its queries has already been made to the commitment oracle.

2. B receives h1 ← H1(m, st, σ1), expands it, and continues.

3. To simulate the other phases, B first samples h2 at random, providing it with

challenges (Re)e∈[M ] for Phase 5. It will use these values to cheat on the sampling

of the ∆Pe values

4. For each execution e, B simulates the interpolation of S
(i)
e,j and T

(i)
e,j as in the

protocol.

5. Instead of computing the honest product polynomial, B first computes Pe(k) =∑
i P

(i)
e (k) as in the protocol only for k ∈ {0, . . . ,m2 − 1}. For k ∈ {m2, . . . ,

2m2− 1}, the reduction samples the shares as in the protocol, and the offsets at

random. Intead of sampling the final value Pe(2m2) at random, B first computes

Pe(R) =
∑

j

(∑
i S

(i)
e,j(R)

)
·
(∑

i T
(i)
e,j (R)

)
. Using this as the last interpolation

value, B now computes Pe and evaluates Pe(2m2). It then computes the offset

∆Pe(2m2) ← Pe(2m2) −
∑

i P
(i)
e (2m2). In summary, Pe determined by the
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offsets is a random polynomial with the restriction that it statisfies both checking

relations.

6. Given the simulated σ̃2 computed as above, B now programs the random oracle

H2 to output the value of h2 it sampled as answer to the query (h1, σ̃2). If that

query has already been made, B aborts.

7. Since the offsets where computed such that the relation between Pe, Se,j and Te,j

is always satisfied, no cheating is required in the third round and B computes

Phases 5 to 7 as in the protocol to produce a simulated signature.

Finally, when A outputs a forgery for its EUF-CMA game, B forwards it as its forgery

for the EUF-KO game.

Simulation indistinguishability. We next show that B’s simulation of a signature is

indistinguishable from a real one. When verifying a signature, A will see all but

one seeds and therefore the distribution of ske, remains perfectly uniform as long as

A obtains no information regarding the last seed sd
(̄ie)
e .

As we model the commitment scheme as a random oracle the commitment C
(̄ie)
e

included in the signature does not reveal any information about sd
(̄ie)
e to A. This

implies that the real product polynomial Pe is indistinguishable from random in the

view of A since it cannot compute the real polynomials Se,j and Te,j . Furthermore,

since the distribution of the sampled Re is uniformly random, so is the distribution

of the computed offset ∆Pe(2m2). Therefore B’s simulation of phases 1 and 3, by

producing uniformly random ∆ske and (∆Pe(k))k∈{m2,...,2m2}, produce σ1 and σ2 that

are indistinguishable from the output of a real signer. Finally, σ3 is computed honestly

exactly as in the scheme and contains no information about sd
(̄ie)
e as argued above.

We can conclude that B’s simulation of the signing oracle is indistinguishable and that

therefore A behaves exactly as in a normal EUF-CMA game.

EUF-KO security implies EUF-CMA security. Finally, we establish B’s advantage

against the EUF-KO security game. There are two moments at which B could abort:

phases 1 and 4. For each of these, B aborts only if the query it makes to the respective

random oracle has been made previously. Let Qc and Q2 denote the total number

of queries made to Commit and H2 respectively by A during its executions, including

those made by B as part of A’s signing queries. Each time B attempts a query to

Commit, it has a maximum probability of Qc/2
2λMN of aborting. Similarly for H2, B

has a maximum probability of Q2/2
2λ of aborting. Given that B makes M ·N queries
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to Commit and one query to H2 for each signature query, we have that

Pr [B aborts] ≤ Qs ·
(
MNQc

22λMN
+

(
1− MNQc

22λMN

)
Q2

22λ

)
≤ Qs (Qc +Q2)

22λ

where Qs denotes the number of signing queries made by A. As A can only make

a total amount of queries polynomial in λ, we have that Pr [B aborts] ≤ negl(λ)

asymptotically.

Given that the winning conditions for the EUF-KO and EUF-CMA games are

identical, if A is a successful EUF-CMA adversary, then B is a successful EUF-KO

adversary as long as it does not abort. This implies that

AdvEUF-KO
B ≥ Pr [B wins|¬B aborts] · Pr [¬B aborts]

= Pr [A wins EUF-CMA] · (1− Pr [B aborts])

≥ AdvEUF-CMA
A ·

(
1− Qs(Qc +Q2)

22λ

)
where Qs denotes the number of signing queries made by A. Therefore, if A has

a non-negligible advantage against the EUF-CMA game, then B has non-negligible

advantage against the EUF-KO game as long as Qs(Qc+Q2)
22λ remains negligible in λ,

contradicting the assumption that the scheme is EUF-KO-secure; hence it is also

EUF-CMA secure.

Parameters and signature size estimates

Finally we present parameters and proof size estimates which we compare to the

estimates for the first method of Chapter 9.

After fixing the security parameter λ, the first consideration is to ensure that the

cheating probability of a dishonest prover is negligible. The first summand of the

definition of ε(Qc, Q1, Q2, Q3) in Lemma 10.6 will always be negligible as long as the

number of queries made to each of the random oracles remains polynomial in λ. For

the second summand, we must compute the appropriate parameters M,N,m2 and ρ

such that Pr[X + Y + Z = M ] < 2−λ.

To decide m2 (recall that m = m2 ·m1 is the number of S-boxes in the function

fx(k)), we first state the formula for estimating the size of a signature. Looking at
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AES- 128 192 256

m 200 416 500

m2 20 26 25

m1 10 16 20

Table 10.1: Chosen factorizations of the number m of S-boxes.

the signature σ output by Phase 7, we have

|σ| = 6λ+M · (λ(log2(N) + 3) + 8m+ 8ρ(m2 + 2m1 + 2)) bits.

From this we see that the factor m1 weighs twice as much as m2 in the final proof size.

Taking into account this imbalance, we therefore factorize m as shown in Table 10.1

(note that for AES-192 and AES-256 we use the same ECB mode combination as was

presented in Chapter 9).

We initially set N = 16 to remain consistent with the latest version of the Picnic

algorithm5 but then also consider N = 64 and N = 256 to observe the effect on the

number of repetitions required and on the final signature size estimate.

To set M and ρ, we follow the strategy of [84] where we consider that an attacker

can re-randomize the first two challenge computations in the hope of obtaining good

challenge values for which it does not have to cheat. For the first round, we have

P1(M1) = Pr[at least M1 good out of M ] =
M∑

i=M1

(
1

28ρ

)i(
1− 1

28ρ

)M−i(M
i

)
;

for the second round we have

P2(M1,M2) = Pr[at least M2 good out of M −M1]

=

M−M1∑
i=M2

(
2m2

28ρ −m2

)i(
1− 2m2

28ρ −m2

)M−M1−i(M −M1

i

)
.

For the third round, the prover then has to cheat on one of the parties when opening

the shares, this will not be discovered if exactly these parties are selected for the

5The Picnic3 specification document is available at https://raw.githubusercontent.com/

microsoft/Picnic/master/spec/spec-v3.0.pdf, last retrieved September 7, 2020.
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Security N AES-λ m2 ρ M AES verif. AES exec. Picnic3

L1

16

128 20

4 41 19.31 40.0 12.56

64 4 31 15.59 31.6 11.41

256 6 21 13.28 – –

L3

16

192 26

4 62 50.03 110.1 27.55

64 6 40 38.89 86.9 –

256 6 32 33.42 – –

L5

16

256 25

4 84 81.56 171.9 48.72

64 6 54 62.94 133.7 –

256 6 43 52.85 – –

Table 10.2: Parameters and corresponding proof sizes (in kB) for the verification-
based AES circuits (estimates) with comparison with Picnic3 [85, Table 7] (averages)
and execution-based AES circuits (estimates).

remaining executions. This happens with probability

P3(M1,M2) =

(
1

n

)M−M1−M2

.

If we consider that each re-randomization has unit cost, then the total cost of the

attack is

cost =
1

P1(M1)
+

1

P2(M1,M2)
+

1

P3(M1,M2)

Fixing a value of ρ, for each value of M there exist values M∗1 and M∗2 which minimize

this cost. We therefore present in Table 10.2 our computed values of M and ρ for

which the minimum possible cost is greater than 2λ and for which the signature size is

as small as possible. Without specifying other parameters, other than the number N

of parties, we also include figures for the execution-based AES circuit of Chapter 9 and

for the Picnic3 scheme. We see that the new verification-based proofs are consistenly

less than half the size of the execution-based ones, accross different security levels and

number of parties. Table 10.2 also shows that the AES-based proofs now reduce the

gap with the state-of-the-art Picnic3 ones, and almost closes it when using N = 256

parties, albeit at an (anticipated) significant cost to computing time.
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Chapter 11

Conclusion and future work

As illustrated by the diversity of content of this thesis, the field of post-quantum

cryptography has cast a wide net in search of new techniques and constructions. Here

we discussed three distinct directions and presented contributions in each under the

umbrella of post-quantum security. We now summarize these and discuss potential

future research questions for each of them.

Authenticated key-exchange

In Part I of this work we identified gaps in previous definitions of authentication se-

curity for AKE protocols, proposed remedies, and presented a new transformation

for key-exchange (KE) protocols. Chapter 3 presented a formulation of the Bellare–

Rogaway (BR) model augmented to handle the new definitions of several authenti-

cation notions given in Chapter 4. The latter also formalized and proved not only

certain relations between these notions but also the folklore idea that making use of

a secret key established with implicit authentication was sufficient to obtain explicit

guarantees. In Chapter 5 we turned to questions of protocol design by studying three

existing protocol in light of the new definitions: the Diffie–Hellman, HMQV and TLS

v1.3 protocols. We also proposed a new transformation for KE protocols designed

with post-quantum security considerations for the selection of its building blocks.

With the increased popularity of messaging applications on personal devices and

the growing concern for individual privacy, the last couple of years have seen an

emergence of multi-key key-exchange protocols [109, 17, 45]. Specifically designed

for securing long-live messaging conversations, these protocols derive and update one

or multiple keys over the course of a single session. As before, the focus in the

development of security models for such protocols has been on key secrecy, with less
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concern for authentication properties. An interesting extension of our work would be

to develop comparable definitions for such protocols and study whether authentication

is necessarily maintained along the multiple key updates or whether security gaps

could exist. Similarly, these multi-key protocols have been constructed from pre-

quantum hardness assumptions given their advanced stage of deployment. A natural

continuation of the post-quantum effort would be to design either transformations,

or protocols from scratch, for the same purpose using post-quantum techniques and

primitives.

Isogeny-based cryptography

Part II described contributions in the field of isogeny-based cryptography, another

contender for post-quantum assumptions and constructions. (The only isogeny-based

construction, SIKE [6], submitted to the NIST project has been selected as an al-

ternate candidate for the third round.) Chapter 6 described preliminaries and exist-

ing constructions before presenting a new PKE scheme achieving IND-CCA security.

With the concern of facilitating protocol design from isogeny assumptions, Chapter 7

defined semi-commutative masking structures and described their instantiations in

different isogeny-based settings. Chapter 8 then made use of these structures to build

two new OT protocols, one of which could be made secure against active adversaries

using a recent transformation [63].

Since our work of this last chapter was concluded, others have proposed further,

more efficient, constructions for OT protocols in the setting of Fp-restricted isoge-

nies [95, 2]. There have also been attempts at constructing mechanisms to obfuscate

the images of torsion points in order to contruct more complicated primitives from

new assumptions derived from the SIDH variants of computational problems [121]. It

is yet unknown whether these new mechanisms could provide sufficient flexibility in

the setting of supersingular isogenies over Fp2 to build more efficient OT protocols.

Concerning our new framework of semi-commutative masking structures, a natural

direction would be to expand it to capture principles of protocol design other than

only exponentiation-based. This could permit the adaptation of more complex proto-

cols to the isogeny settings that we instantiated. An interesting direction would also

be to broaden the avalaible instantiations of our framework, such as using Kummer

varieties as done by Vitse in their work on isogeny-based OT [125].
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Signatures from MPC-in-the-head

In Part III we finally turned to the design and improvement of signature schemes

based on the MPCitH paradigm. Chapter 9 presented the mechanisms of the Picnic

submission to the NIST project [38] and explored the efficiency of replacing the original

LowMC block cipher with AES. In Chapter 10 we then made use of a verification

technique by Baum and Nof and studied the use of both AES and the Legendre PRF

in this setting.

The ability of MPCitH proof systems to prove any relation for which an MPC pro-

tocol exists is promising, but further work is required to understand which technique

would best suit each relation. In Chapter 10 we demonstrated efficient verification of

Legendre symbols (based on multiplications) and of inverse computations; this could

now be extended to other frequently used computations to broaden the potential of

this technique. In order to make use of existing efficient MPC protocols, MPCitH

proof systems could also be developed to make use of other paradigms, such as gar-

bled circuits, and potentially offer the possibility of mixing-and-matching to obtain

tailor-made protocols.
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