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James L. Massey. Thank you Jim for allowing me to stay at the ETH and

7



8 CONTENTS

for your and your wife Lis’ big hospitality during my stay in Switzerland.
Thank you Lis for the “wild card” to the ATS seminar 1993.

Also thank you Tor Helleseth for arranging the Nordic crypto course in
June 1992, and to Eli Biham, Kwangjo Kim, Willi Meier, Yuliang Zheng,
and B. Schneier [105] for helpful comments and discussions.
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Abstract

In this thesis we study cryptanalysis, applications and design of secret key
block ciphers. In particular, the important class of Feistel ciphers is studied,
which has a number of rounds, where in each round one applies a crypto-
graphically weak function.

Applications

The main application of block ciphers is that of encryption. We study the
available modes of operation for encryption, introduce a new taxonomy for
attacks on block ciphers and derive a new theoretical upper bound for attacks
on block ciphers. Also another important application of block ciphers is
studied; as building blocks for cryptographic hash functions. Finally we
examine how to use block ciphers as building blocks in the design of digital
signature schemes. In particular we analyse Merkle’s proposed scheme and
show that under suitable and reasonable conditions, Merkle’s scheme is secure
and practical.

Cryptanalysis

We study the most important known attacks on block ciphers, linear crypt-
analysis and differential cryptanalysis and introduce a new attack based on
simple relations. Differential cryptanalysis makes use of so-called differen-
tials (A, B), i.e., a pair of plaintexts with difference A, which after a certain
number of rounds result in a difference B with a non-negligible probability.
This fact can be used to derive (parts of) the secret key. Ideas of how to

9



10 CONTENTS

find the best such differentials are given. Also it is shown that higher or-
der differentials, where more than two plaintexts are considered at a time,
and partial differentials, where only a part of (A, B) can be predicted, both
have useful applications. The above attacks and our new methods of attacks
on block ciphers, are applied to the specific block ciphers, DES, LOKI’91,
s2-DES, xDES1 and xDES2.

Attacks on hash functions based on block ciphers are studied and new
attacks on a large class of hash functions based on a block cipher, including
three specific proposed schemes, are given. Also a fourth scheme, the AR
Hash function, belonging to another class of hash functions based on block
ciphers is studied. The scheme is faster than the known standard ones and
was used in practice by German banks. It is shown that the scheme is
completely insecure.

Design

We discuss principles for the design of secure block ciphers. For both linear
and differential cryptanalysis we establish lower bounds on the complexities
of success of attacks. It is furthermore shown that there exist functions,
which can be used to construct block ciphers provable secure against both
linear and differential attacks, the two most important attacks known to
date. Furthermore we define so-called strong key schedules. A block cipher
with a strong key schedule is shown to be secure against attacks based on
simple relations and the improved immunity to other attacks is discussed.
Also we give a simple design of a strong key schedule. A well-known and
wide-spread way of improving the security of a block cipher is by means of
multiple encryption, i.e., where a plaintext block is processed several times
using the same (component) block cipher, but with different keys. We study
the methods of multiple ecryption and give a new proposal of a scheme,
which is provable as secure as the component block cipher using a minimum
number of component keys.

Some of the work in this thesis has been written as separate articles. In
cooperation with Ivan Damg̊ard the papers [19, 20], with Kaisa Nyberg the
papers [85, 86], with Xuejia Lai the papers [53, 57] and with Luke O’Connor
the paper [54]. On my own the following papers [47, 48, 49, 50, 51, 52].



Chapter 1

Introduction

The thesis is organised as follows. In this chapter we give the outline of
the thesis and explain the birthday paradox. In Chapter 2 an introduction
to block ciphers is given. In Chapter 3 the applications of block ciphers,
modes of operation for encryption, hash functions and digital signatures, are
discussed. In Chapter 4 we describe the security, theoretical and practical,
of block ciphers. In Chapter 5 methods of cryptanalysing block ciphers are
given. The methods are applied to specific block ciphers in Chapter 6. Read-
ers not interested in going into the details about cryptanalytic attacks may
want to skip that part of this thesis. In Chapter 7 we discuss design principles
of block ciphers, in particular we show how to build ciphers immune to the
attacks described in previous chapters. In Chapter 8 hash functions based
on block ciphers are cryptanalyzed. It is shown that a large class of these
hash functions are not as secure as previously believed. In Chapter 9 we
summarise our results. In the Appendix we first give a self-explanatory pic-
torial illustration of conventional cryptography. Furthermore we give some
tedious proofs, which were left out of previous chapters and finally we give a
description of the most well-known block cipher today, the Data Encryption
Standard [90] and of one its successors LOKI’91 [14].
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12 CHAPTER 1. INTRODUCTION

1.1 Birthday Paradox

One of the most used tricks in cryptanalysis is the use of the “birthday
paradox”. It is used throughout this thesis and stated explicitly here. The
“paradox” has its name, because to most people it is a surprise, that in a
collection of only 23 people, the probability that two persons have the same
birthday is greater than one half. In general in a collection of n people the
probability that at least two persons have the same birthday is

1− (
1

365n
×

n−1∏
i=0

(365− i))

where we have assumed that peoples birthdays are independent of each other
and distributed uniformly over the year. For n = 23 this probability is about
0.51. The following more general result holds [82].

Theorem 1.1.1 Let H be a function with image size m. Assume that on
any input, H outputs one of the m values at random. If H is evaluated
k > (2cm)1/2 times where c is a constant, then the probability that two of the
k outputs are equal, i.e., a collision occurs, is at least 1− e−c, e = 2.718 . . .

Corollary 1.1.1 With k � m1/2 the probability of at least one collision
is approximately one half.

The obvious application of the birthday paradox in cryptography is in at-
tacks on hash functions. Consider a hash function H with image size 2m The
standard collision attack goes as follows. Collect two sets of each 2m/2 hash
values Then the probability that at least one element in one set equals one
element in the other set, i.e., at least one collision is found, is

1− (1− 2−m/2)2m/2 � 1− e−1 � 0.63.

It is well-known that given a function f on a finite domain and a ran-
domly chosen starting point x, the sequence f 0(x), f 1(x), . . . , fn(x), . . . ,
is ultimately periodic. That is, for some l and c, it holds that f c+l(x) =
f l(x) and that f i+c(x) = f i(x) for all i ≥ l [106]. f 0(x), . . . , f l−1(x) and
f l(x), . . . , f l+c−1(x) are called the leader and the cycle of f on x respectively
and similarly the integers l and c are called the leader length and the cycle
length of f on x respectively.
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In [30] it is shown that for a random mapping f , l + c �
√

πn/2, where
n is the size of the domain of f . It follows that if l and c are taken to be
the minimum integers, s.t. l is the leader and c is the cycle of f on some x,
we will obtain a collision for f , i.e., f(f l−1(x)) = f(f l+c−1(x)) and f l−1(x) �=
f l+c−1(x). However, a naive approach would still require the storage of

√
n

points.

In [98, 99] Quisquater and Delescaille improved this method by intro-
ducing the method of distinguished points, where only points with a certain
easy-to-calculate attribute are stored. As an example, for a function f with
domain GF (2)64 only points, where the leading 16 bits are zero are stored.
When a cycle is detected one can go back and find the place where the leader
ends and the cycle begins and find a collision for f . In this way only negligible
storage is required for a collision.

Since good hash functions should “act like a random function”, we will
assume that a collision attack on a hash function with image size 2n can be
mounted in about 2n/2 steps without any memory requirements using the
method of distinguished points.
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Chapter 2

Block Ciphers - Introduction

The history of cryptography is long and goes back at least 4,000 years to the
Egyptians, who used hieroglyphic codes for inscription on tombs [22]. Since
then many cryptosystems, also called ciphers, have been developed and used.
Many of these old ciphers are much too weak to be used in applications to-
day, because of the tremendous progress in computer technology. There are
essentially two types of encryption schemes, one-key and two-key ciphers. In
one-key ciphers the encryption of a plaintext and the decryption of the corre-
sponding ciphertext is performed using the same key. Until 1976 when Diffie
and Hellman introduced public-key or two-key cryptography [26] all ciphers
were one-key systems. Therefore one-key ciphers are also called conventional
cryptosystems. Conventional cryptosystems are widely used throughout the
world today, and new systems are published from time to time. There are
two kinds of one-key ciphers, stream ciphers and block ciphers. In stream ci-
phers a long sequence of bits is generated from a short string of key bits, and
is then added bitwise modulo 2 to the plaintext to produce the ciphertext. In
block ciphers the plaintext is divided into blocks of a fixed length, which are
then encrypted into blocks of ciphertexts using the same key. Block ciphers
can be divided into three groups: Substitution ciphers, transposition ciphers
and product ciphers. In the following a few examples of the different types
of block ciphers are given.

Notation: Let AM and AC be the alphabets for plaintexts and ciphertexts,
respectively. Let M = m0, m1, . . . , mn−1 be an n-character plaintext, s.t. for
every i, mi ∈ AM and let C = c0, c1, . . . , cn−1 be a ciphertext, s.t. for every

15



16 CHAPTER 2. BLOCK CIPHERS - INTRODUCTION

i, ci ∈ AC. We assume that an alphabet AX is isomorphic with INAX

2.1 Substitution Ciphers

As indicated in the name every plaintext character is substituted by some
ciphertext character. There are four kinds of substitution ciphers.

• Simple substitution

• Polyalphabetic substitution

• Homophonic substitution

• Polygram substitution

We restrict ourselves to consider substitution ciphers of the first two kinds.

2.2 Simple Substitution

In a cipher with a simple substitution each plaintext character is trans-formed
into a ciphertext character via the same function f. More formally, ∀i : 0 ≤
i < n

f : AM → AM

ci = f(mi)

As an example the following

2.2.1 Caesar substitution

It is believed that Julius Caesar encrypted messages by shifting every letter
in the plaintext 3 positions to the right in the alphabet. This cipher is based
on shifted alphabets, i.e., AM = AC and is in general defined as follows

f(mi) = mi + k (mod |AM|)
For the Caesar cipher the secret key k is the number 3. In general, the cipher
is easily broken in at most |AM| trials. Shift the ciphertexts one position
until the plaintext arises.
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2.3 Polyalphabetic Substitution

In a polyalphabetic substitution the plaintext characters are transformed into
ciphertext characters using a j-character key K = k0, . . . , kj−1, which defines
j distinct functions fk0 , . . . , fkj−1

. More formally ∀i : 0 < i ≤ n

fkl
: AM → AC ∀l : 0 ≤ l < j

ci = fkimodj
(mi)

As an example the following

2.3.1 The Vigenére cipher

The was first published in 1586 [23]. Let us assume again that AM = AC.
Then the Vigenére cipher is defined as follows

ci = fki mod j
(mi) = mi + ki mod j (mod |AM|)

2.4 Transposition Systems

Dansposition systems are essentially permutations of the plaintext charac-
ters. Therefore AM = AC. A is defined as follows ∀i : 0 ≤ i < n

f : AM → AM

η : {0, . . . , (n− 1)} → {0, . . . , (n− 1)}, a permutation

ci = f(mi) = mη(i)

Many transposition ciphers permute characters with a fixed period j. In that
case

f : AM → AM

η : {0, . . . , (j − 1)} → {0, . . . , (j − 1)}, a permutation

ci = f(mi) = m(i div j)+η(i mod j)

A convenient way to express the permutation η(i) in easily memorable form
is by a key word. The alphabetic order of the key characters then defines the
permutation. For example the key K=LARS would represent the permuta-
tion η(i) = {1, 0, 2, 3}. Consider the following transposition cipher
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2.4.1 Row transposition cipher

Let the key be K = k1, . . . , kd. The plaintext is divided into blocks of d
characters, and each block is permuted according to the alphabetic order of
the characters in the key. Let us consider an example:
Example: Let d = 4, the key K=IVAN and the plaintext

M = NOTASTRONGCIPHER

I V A N
1 3 0 2
O A N T
T O S R
G I N C
H R P E

The ciphertext is

C = OANTTOSRGINCHRPE

2.5 Product Systems

An obvious attempt to make stronger ciphers than the ones we’ve seen so
far, is to combine substitution and transposition ciphers. These ciphers are
called product ciphers. Many product ciphers have been developed, in-
cluding Rotor machines [22]. Most of the block ciphers in use today are
product ciphers. A product cipher is called an iterated cipher if the cipher-
text is computed by iteratively applying a round function several times to
the plaintext. In each round a round key is combined with the text input.
More formally,

Definition 2.5.1 In an r-round iterated block cipher the ciphertext
is computed by iteratively applying a round function g to the plaintext, s.t.

Ci = g(Ci−1, Ki), i = 1, . . . , r (2.1)

where C0 is the plaintext, Ki a round key and Cr is the ciphertext. Decryption
is done by reversing (2.1) therefore, for a fixed key Ki, g must be invertible.
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In this thesis we consider mainly iterated block ciphers and assume that
the plaintexts and ciphertexts are bit strings of equal length. The Data En-
cryption Standard (DES) [90] is by far the most widely used iterated block
cipher today. Around the world, governments, banks, and standards organi-
sations have made the DES the basis of secure and authentic communication
[108]. The DES can be seen as a special implementation of a Feistel cipher,
named after Horst Feistel [28].

Definition 2.5.2 A Feistel cipher , with block size 2n and with r rounds
is defined as follows. The round function is defined

g : GF (2)n ×GF (2)n×GF (2)m → GF (2)n ×GF (2)n

g(X, Y, Z) = (Y, F (Y, Z) + X)

where F can be any function taking two arguments of n bits and m bits
re-spectively and producing n bits. ‘+′ is a commutative group operation on
the set of n-bit blocks. We will assume that ‘+′ is the bitwise exclusive-or
operation, if not explicitly stated otherwise.

Given a plaintext P = (PL, PR) and r round keys K1, K2, . . . , Kr the
ciphertext C = (CL, CR) is computed in r rounds. Set CL

0 = PL and
CR

0 = PR and compute for i = 1, 2, . . . , r

(CL
i , CR

i ) = (CR
i−1, F (CR

i−1, Ki) + CL
i−1)

Set Ci = (CL
i , CR

i ) and CL = CR
r and CR = CL

r . The round keys (K1, K2, . . . ,
Kr), where Ki ∈ GF (2)m, are computed by a key schedule algorithm on input
a master key K.

A special class of Feistel ciphers is the so-called DES-like iterated ciphers.

Definition 2.5.3 A DES-like iterated cipher as a Feistel cipher, where
the F function is defined

F (X, Ki) = f(E(X) + Ki)

f : GF (2)m → GF (2)n, m ≥ n

E : GF (2)n → GF (2)m, an affine expansion mapping

Because of the success of the DES, many of the block ciphers proposed
in the last decade are Feistel ciphers. Recently, this tradition was broken by
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X. Lai and J.L. Massey with their Improved Proposed Encryption Standard
[58], later named IDEA, which does not have a Feistel structure.

In Appendix A we give a self explanatory pictorial illustration of the
history of block ciphers. As can be seen, encrypted pictures are an excellent
tool to illustrate old weak ciphers.



Chapter 3

Applications of Block Ciphers

In this chapter we give the applications of block ciphers. In Section 3.1 we
give the modes of operations, which were published for the DES [91], when
used for encryption. In section 3.2 cryptographic hash functions based on
block ciphers are considered. In section 3.3 we show how a block cipher can
be used to construct digital signature schemes, both private systems and
public systems. The latter is illustrated by describing a proposal by Merkle
[72, 73]. We show that under suitable assumptions Merkle’s scheme is a
secure digital signature scheme.

3.1 Modes of Operations

The most obvious and widespread use of a block cipher is for encryption.
In 1980 a list of four modes of operation for the DES was published [91].
These four modes can be used with any block cipher and seem to cover
most applications of block ciphers used for encryption [22]. In the following
let EK(·) be the permutation induced by using the block cipher E of block
length n with the key K and let P1, P2, . . . , Pi, . . . be the blocks of plaintexts
to be encrypted. The four modes are

• Electronic Code Book (ECB) The native mode, where one block at
a time is encrypted independently of the encryptions of other blocks.
Encryption

Ci = EK(Pi)

21
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Decryption

Pi = EK(Ci)

• Cipher Block Chaining (CBC) The chaining mode, where the en-
cryption of a block depends on the encryptions of previous blocks.
Encryption

Ci = EK(Pi ⊕ Ci−1)

Decryption

Pi = DK(Ci)⊕ Ci−1

where C0 is a chosen initial value.

• Cipher Feedback (CFB) The first stream mode, where one m-bit
character at a time is encrypted. Encryption

Ci = Pi ⊕MSBm(EK(Xi))

Xi+1 = LSBn−m(Xi) ‖ Ci

Decryption

Pi = Ci ⊕MSBm(EK(Xi))

Xi+1 = LSBn−m(Xi) ‖ Ci

where X1 is a chosen initial value, ‖ denotes concatenation of blocks,
MSBs and LSBs denote the s most and least significant bits respectively
or equivalently the leftmost and rightmost bits respectively. Here m
can be any number between 1 and the block length of the cipher. If
the plaintext consists of characters m = 7 or m = 8 is usually the
well-chosen parameter.

• Output Feedback (OFB) The second stream mode, where the stream
bits are not dependent on the previous plaintexts, i.e., only the stream
bits are fed back, not the ciphertext as in CFB mode.

Ci = Pi ⊕MSBm(EK(Xi))

Xi+1 = LSBn−m(Xi) ‖ MBSm(EK(Xi))
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Decryption

Pi = Ci ⊕MSBm(EK(Xi))

Xi+1 = LSBn−m(Xi) ‖ MSBm(EK(Xi))

where X1 is a chosen initial value.

In fact, both the CFB and OFB modes have two parameters, the size of the
plaintext block and the size of the feedback value. In the above definition we
have chosen them equal and will do so also in the following.

The ECB is the native mode, well-suited for encryption of keys of fixed
length. It is not suited for the encryption of larger plaintexts, since equal
blocks are encrypted into equal blocks. To avoid this, the CBC mode is rec-
ommended. Not only does a current ciphertext block depend on the current
plaintext but also on all previous ciphertext blocks. In some applications
there is a need for encryptions of characters, instead of whole blocks, e.g.
8 bytes for the CBC mode of DES. For that purpose the CFB and OFB
modes are suitable. The OFB should be used only with full feedback, i.e.,
with m = n, the block length, e.g. 64 for the DES. It comes from the fact,
that for m < n the feedback function is not one-to-one, and therefore has
a relatively short cycle [22]. Furthermore the initial value X1 in the OFB
mode should be chosen uniformly at random. In the case where X1 is the
concatenation of n/m equal m-bit blocks, say (a ‖ a ‖ . . . ‖ a), for about
2k−m keys MSBm(EK(X1)) = a. Therefore X2 = X1 and in general Xi = X1.
This is not dangerous for the CFB mode, where the Xi’s are also dependent
on the plaintext.

An important issue in the applications of the four modes is how an error
in the transmission of ciphertexts is propagated. In the ECB mode an error
in a ciphertext block of course affects only one plaintext block. An error in
a ciphertext in the CBC mode affects two plaintexts blocks. As an example,
assume that ciphertext C3 has an error and that all other ciphertext blocks
are error-free, then P4 = DK(C4) ⊕ C3 inherits the error from C3 and P3 =
DK(C3)⊕ C2 will be completely garbled. Here we assume that even a small
change in the plaintext to the block cipher will produce a very different
ciphertext. All other plaintexts will be decrypted correctly. In the CFB
mode an error in a ciphertext block Ci will be inherited by the corresponding
plaintext block Pi, and moreover since Xi+1 contains the garbled Ci the
subsequent plaintexts blocks will be garbled until the X value is free of Ci,
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i.e., when Ci has been shifted out. In other words in CFB mode with m-
bit ciphertexts, at most n/m + 1 plaintext blocks will be garbled. In the
OFB mode, since the feedback is independent of the plain- and ciphertexts,
a transmission error in a ciphertext block garbles only the corresponding
plaintext block and is not propagated to other plaintext blocks. In Section
4.4.1 we give an analysis of three other suggested modes of operation.

3.2 Cryptographic Hash Fhctions

A hash function takes as argument a bit string of arbitrary length and pro-
duces a hash-code of fixed length. Cryptographic on hash functions hash
functions are used to provide data integrity and to produce short digital
signatures [37, 55, 93]. When used for data integrity, the data blocks are
hashed into a short length hash code, which is then stored securely. Any
modifications in the data would be detected by applying the hash function
to the modified data blocks. If the hash function is strong with a high prob-
ability the obtained hash code will be different from the secure stored hash
code. Digital signature schemes are often based on expensive mathematical
routines. Instead of signing a large document, it is first hashed into a short
length hash code, which is then signed. If the hash function is strong it will
be infeasible to find (meaningful) documents yielding equal hash codes.

In [93], Bart Preneel makes a distinction depending on whether a cryp-
tographic hash function is used with a secret key, in which case the hash
function is called a MAC (Message Authentication Code), or if the hash
function is used without a secret key, in which case the hash function is
called a MDC (Manipulation Detection Code). The non-keyed hash func-
tions, the MDC’s, are further categorised into one-way hash functions and
collision-resistant hash functions.

Definition 3.2.1 A collision resistant hash finction H satisfies the fol-
lowing conditions

1. The description of H must be publicly known and should not require any
secret information for its operation.

2. The argument can be of arbitrary length and the hash code H(·) has a
fixed length.
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3. Given H and an argument X, it should be ‘easy’ to compute H(X).

4. One-way-ness: Given a Y in the image of H, it is ‘hard’ to end a
message X, s.t. H(X) = Y and given X and H(X) it is ‘hard’ to find
a message X ′ �= X, s.t. H(X ′) = H(X).

5. Collision resitance: It is ‘difficult’ to find a pair X, X’, s. t. X �= X ′

and H(X) = H(X ′).

The difference between a collision-resistant hash function and a one-way hash
function is the lack of requirement (5.) for the latter. MAC’s are used for
message authentication and are standardised in the banking world, see for
example [108]. The different applications for MAC’s and MDC’s are treated
in a comprehensive manner in [93] and will not be treated any further here.
From now on we will consider only collision resistant MDC’s, if not stated
otherwise.

Many of the proposed hash functions are so-called iterated hash functions,
where one iterates a hash round function.

Definition 3.2.2 In an iterated m-bit hash function, H, the hash code
H(M) = Hn of the message M = M1, . . . , Mn is computed iteratively by
the equation

Hi = h(Hi−1, Mi)

where h(·, ·) is a function taking two arguments of m bits and l bits respec-
tively and producing an m bit value and where H0 is a chosen initial value.

For message data whose total length in bits is not a multiple of l, one can
apply deterministic “padding” [38, 74] to the message to be hashed by h to
increase the total length to a multiple of l. In the following set the initial
value H0 = IV . We distinguish between the following attacks on a hash
function H, where IV ′ denotes an initial value, not necessarily equal to IV .
We denote by H(IV, X) explicitly the hash codes dependency on the initial
value IV , see also [55].

Preimage attack. The attacker is given IV and H(X) and finds X ′, s.t.
H(IV, X) = H(IV, X ′).
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Second preimage attack. The attacker is given IV , X and H(IV, X) and
finds X ′, s.t. X �= X ′ and H(IV, X) = H(IV, X ′).

Free-start preimage attack. The attacker is given IV and H(X) and
finds IV ′ and X ′, s.t. IV �= IV ′ and H(IV, X) = H(IV ′, X ′).

Free-start second preimage attack. The attacker is given IV , X and
H(X) and finds IV ′ and X ′, s.t. (IV, X) �= (IV ′, X ′) and H(IV, X) =
H(IV ′, X ′).

Collision attack. The attacker is given IV and finds X and X ′, s.t. X �= X ′

and H(IV, X) = H(IV, X ′).

Semi-free-start collision attack. The attacker finds IV ′, X and X ′, s.t.
X �= X ′ and H(IV ′, X) = H(IV ′, X ′).

Free-start collision attack. The attacker finds IV , IV ′, X and X ′, s.t.
(IV, X) �= (IV ′, X ′) and H(IV, X) = H(IV ′, X ′).

Preimage attacks are sometimes also called target attacks [55], where the
intuition is that H(X) is a given “target”, that the attacker tries to “hit”. It
is clear that a free-start collision attack can never be harder than a free-start
preimage attack and a collision attack is never harder than a preimage at-
tack. For an m-bit hash function, brute force preimage attacks, in which one
randomly chooses an M ′ until one hits a given Hn = H(M), require about 2m

computations of hash values. It follows from the birthday paradox, section
1.1.1, that brute force collision attacks require about 2m/2 computations of
hash values. In particular, for hash round functions with l ≥ m so that all 2m

hash values can be reached with one-block messages: brute-force preimage
attacks require about 2m computations of the round function h while brute
force collision attacks require about 2m/2 computations of the round func-
tion h. These complexities also gives us upper bounds on the terms ‘hard’
and ‘difficult’ from Definition 3.2.1 for iterated hash functions, i.e., ‘hard’ is
never harder than the computation of about 2m hash values and ‘difficult’
is no more difficult than the computation of about 2m/2 hash values. There
have been suggested many methods of how to construct ‘secure’ hash func-
tions. A few of them have a security provably equivalent to a hard problem
like factoring a large composite number or computing the logarithm in a fi-
nite field. Often hash functions are based on block ciphers and this is the
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approach that we will take in this thesis. One obvious advantage of using
block ciphers as building blocks in a hash function is to reduce the costs. If
one already has a block cipher used for encryption, all one needs is a mode
of operation of how to transform the cipher into a hash function. History
shows that is not at all an easy task. To avoid some trivial collision attacks,
see e.g. [55], where the messages found are not of the same length, one can
do the following proposed independently by Damg̊ard [18] and Merkle [74]

Definition 3.2.3 (The MD-strengthening) Let M = M1, . . . , Mn be the
message to be hashed. Then one appends an extra last block, Mn+1 to the
message containing the length of the original message.

With the MD-strengthening a secure hash round function implies a secure
hash function [18, 74, 55] with roughly the same security level [18, 74, 55].
Since hash functions are used to produce short digital signatures they should
be reasonably fast. When discussing hash functions based on block ciphers
a natural measurement is

Definition 3.2.4 The hash rate of an iterated hashfunction based on a
block cipher is the number of message blocks processed by one encryption of
the block cipher.

Hash rate =
# message blocks

# encryptions

We note, that in [93] Preneel defines the hash rate the opposite way, i.e., the
hash rate is number of encryptions needed to process one message block. In
our definition (also the one of [37]) the intuition is, the higher the hash rate,
the faster the hash function.

If one has trust in a block cipher confidence can be obtained about the
security of a hash function. The following hash function has a security level,
which can be expressed in terms of the security of the block cipher, see also
[74].

Theorem 3.2.1 Let EK(·) be an m-bit block cipher with a k bit key with
k > m and let the H be an iterated hash function with hash round function

Hi = h(Hi−1, Mi) = EHi−1‖Mi
(Pc)
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where Pc is a constant m-bit block and the message blocks are of length (k−m)
bits. Assume that MD-strengthening is used. Then a free-start collision at-
tack on H is at least as hard as finding a key collision of E in a known
plaintext attack. And a free-start preimage attack on H is at least as hard as
finding a key of E in a known plaintext attack.

Proof: Consider first the free-start collision attack. Assume that an at-
tacker finds IV , IV ′ and messages M , M ′, s.t. (IV, M) �= (IV ′, M ′) and
H(IV, M) = H(IV ′, M ′), that is,

H(M) = EHn−1‖Mn(Pc) = EH′
n−1‖M ′

n
(Pc) = H(M ′)

If M and M ′ are not of the same length, then Mn �= M ′
n′ , and the attacker

has found a key collision for E, i.e., K �= K ′ s.t. EK(Pc) = EK′(Pc). Assume
now that M and M ′ are of the same length, then it follows that either Hn−1 �=
H ′

n−1 in which case the attacker has found a key collision or Hn−1 = H ′
n−1.

It follows by ‘reverse’ induction that for some i

Hi = EHi−1‖Mi
(Pc) = EH′

i−1‖M ′
i
(Pc) = H ′

i ∧ (Hi−1, Mi) �= /H ′
i−1, M

′
i)

Thus, a free-start collision for H implies a key collision for E.
Consider now the free-start preimage attack. The attacker is given IV and
H(M). By a similar argument as above, it follows that in case of a free-start
preimage attack, the attacker finds a key K, s.t. EK(Pc) = C = H(M),
i.e. the attacker has found the secret key in a known plaintext attack. If
MD-strengthening is not used the hash function is trivially broken using a
free-start attack. ✷

The hash functions of Theorem 3.2.1 require that the key size exceeds
the block size, which is not the case for the DES, where the block size is 64
and the key size is 56. Since the DES is so widely in use as an encryption
function many attempts have been made to build a hash mode suitable for
DES.

In [74] Merkle proposed a hash function based on a block cipher (e.g.
DES) based on the so-called “meta-method”. The scheme is related to the
idea of Theorem 3.2.1, but more than one encryption is needed in each round
of the hash function to compensate for the small key and plaintexts. It is
shown that the scheme is as secure as the underlying block cipher under the
assumption that the block cipher is a random function. Since a permuta-
tion does not “act as a random function”, Merkle uses a feedforward-(of the
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plaintext) mode, that is believed to be one-way in some sense. Assume that
an m-bit block cipher with a k-bit key is used, where k < m− 1. The hash
code is of length 2k bits and the message blocks are of length m+k−1. The
drawback of this scheme is that the hash rate is low, only m−k−1

2m
. In case

of the DES this means that only 3.5 bits are hashed per encryption and the
hash rate is 0.05. Merkle also suggests two improved schemes with the same
kind of security connection to the block cipher. However, even the fastest one
has a hash rate of only 0.27. To our knowledge this is the closest someone
has come to “provable security” of a hash function based on the DES.

Many of the proposed hash round functions based on a block cipher are
used in the feedforward-(of the plaintext) mode. A well-known example of
such a hash function is the Davies-Meyer scheme (DM)1 with hash rate 1,
where the hash round function is given by

Hi = EMi
(Hi−1)⊕Hi−1 (3.1)

For hash functions based on block ciphers we have the following definition.

Definition 3.2.5 The complexity of an attack on a hash function based
on a block cipher is the nunaber of encryptions (or decryptions) of the block
cipher, that the attacker has to do.

The DM-scheme with MD-strengthening is generally considered to be se-
cure, if the underlying block cipher with block size m has no weaknesses
[55], in the sense that the complexity of a free-start collision attack is about
2m/2 and the complexity of a free-start preimage attack is about 2m. The
DM-scheme is called a single block length hash function We have following
definition.

Definition 3.2.6 A single block length iterated hash function, H, based
on an m-bit block cipher E with a k-bit key, is an iterated hash function,
where the hash round function is defined

Hi = h(Hi−1, Mi) = Eg1(Hi−1,Mi)(g2(Hi−1, Mi))⊕ (g3(Hi−1, Mi))

where the gi’s are linear finctions of Hi−1 and Mi and where the Mi’s are of
length k or m depending on the gi’s.

1The scheme has in fact never been proposed by D. Davies, as explained in a letter from
Davies to Bart Preneel [92]. Since the hash function is widely known as the Davies-Meyer
scheme, we will refer to it as such, often only by the shorter name, DM.
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As can be seen it is possible to obtain 64 single block length hash func-
tions for a block cipher. In [95] it was shown that only 12 of these are secure
one-way hash functions. This subject is treated further in Chapter 8.

Since most block ciphers have a block length of only 64 bits, the hash code
of a single block length hash function is only 64 bits and the complexity of a
collision attack is small, see Section 1.1.1. Therefore much research has been
done to construct hash functions with double block length. The message M
is now split into subblocks as follows M = M1

1 , M2
1 , . . . , M1

n, M2
n. First we

give the parallel version of double block length hash functions.

Definition 3.2.7 A parallel double block length iterated hash function,
H, based on a block cipher E, is an iterated hash function, where two hash
round finctions h1, h2 are defined

H1
i = h1(H1

i−1, H
2
i−1, M

1
i , M2

i ) = Ef1(f2)⊕ (f3)

H2
i = h2(H1

i−1, H
2
i−1, M

1
i , M2

i ) = Eg1(g2)⊕ (g3)

where both the fi’s and gi’s are linear functions of H1
i−1, H

2
i−1, M

1
i and M2

i .
H1

0 and H2
0 are the initial values and the haah code is (H1

n, H2
n).

In a serial version of a double block length hash function the hash value
of one hash round function, say H1

i , can be used in the computation of the
hash value of the other hash round function.

Definition 3.2.8 A serial double block length iterated hash function,
H, based on a block cipher E, is an iterated hash function, where two hash
round functions h1, h2 is defined

H1
i = h1(H1

i−1, H
2
i−1, M

1
i , M2

i ) = Ef1(f2)⊕ (f3)
H2

i = h2(H1
i−1, H

2
i−1, M

1
i , M2

i , H1
i ) = Eg1(g2)⊕ (g3)

where the fi’s are linear functions of H1
i−1, H2

i−1, M1
i and M2

i , and where
the gi’s are linear functions of H1

i−1, H
2
i−1, M

1
i , M2

i and H1
i . H1

0 and H2
0 are

the initial values and the haah code is (H1
n, H2

n).

It is possible to obtain 163 × 323 = 227 serial double block length “hash
functions” for a block cipher. They are not all “real” hash functions e.g. the
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hash functions were neither the fi’s nor the gi’s contain message blocks, and
many of them are hopelessly weak. In Chapter 8 we will show attacks on a
large class of these hash functions. The difference contain message between
the parallel and serial hash functions is important in hardware, where a par-
allel hash function in general will be faster than a serial hash function. In
(conventional) software everything is “serial”, and there is no difference in
efficiency of the two hash function classes.

Since the DM-scheme is generally considered secure with the only disad-
vantage being a small block length, many attempts have been made double
block length based on the concatenation of two variants of the DM-scheme.
One such scheme, the MDC-2 by Meyer and Schilling [10, 77] is submitted
for publication as an IS0 standard [38].

3.3 Digital Signatures

A digital signature is the electronic version of a hand-written signature. The
main difference is that the digital signature is an encryption of a cleartext
and must be used only once. Therefore a digital signature must include the
names of the participants and a time stamp or serial number etc. A dig-
ital signature scheme provides sender authenticity and data integrity.
Digital signature systems are divided into two parts, the public and private
systems. A public digital signature system identifies the sender to anyone
from publicly available information, whereas a private digital signature sys-
tem identifies the sender only to someone sharing a secret with the sender.

3.3.1 Private digital signature systems

A private digital signature system has the following properties. Imagine that
party A is signing message M to party B. Then

1. B must be able to validate A’s signature on M .

2. It should be infeasible for anyone, including B, to forge A’s signature.

3. If A later denies to have signed M , it should be possible for a third
party to resolve a dispute arising between A and B.
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A conventional cryptosystem itself in its basic mode cannot be used to pro-
duce digital signatures. The key for encryption and decryption is the same
in a conventional cryptosystem and is known by both parties, therefore B
may be able to forge A’s signatures and a third party is not able to solve
a dispute about whether A signed a message M or B made the signature
himself. Using a trusted third party it is possible to obtain a digital signature
satisfying all desired properties. The protocol in Figure 3.1 is useful, where
TP denotes the trusted third party, X is a key known only to TP and KA

and KB are A’s and B’s keys distributed by TP. IA is a string identifying
A. Let EKC

(·) denote encryption using the key KC . The requirements for a
digital signature scheme are all met, but the scheme involves an active third
party for every signature produced and is therefore very inefficient.

1. A sends S1 = EKA
(M) to TP

2. TP decrypts S1, finds M and sends S2 = EKX
(M | IA) to A

3. A sends S2 to B

4. B sends S2 to TP

5. TP decrypts S2, checks the identity of A and sends S3 = EKB
(M | IA)

to B

6. B finds DKB
(S3) = (M | IA) and checks the identity of A.

Figure 3.1: A digital signature scheme based on a conventional cryptosystem.

3.3.2 Public digital signature systems

A public digital signature system has the following properties:

1. Anyone must be able to validate one party’s, say, A’s signature on a
message M without an active third party.

2. It should be infeasible for anyone to forge A’s signature.

3. If A later denies to have signed M , it should be possible for a third
party to resolve a dispute arising between A and B.
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As the name indicates public key cryptosystems are well-suited for public
digital signature systems, see for example [78]. These signature systems can
also be based on conventional cryptosystems. Rompel [101] has shown that
the existence of one-way functions is a necessary and sufficient conditions
for making secure signatures. Consider a block cipher EK(·). If the block
cipher is secure, it is necessary that given pairs (Pi, Ci), s.t. Ci = EK(Pi)
it is difficult to find K. If this is the case, EK(·) can be used to construct
a one-way function, F (K) = EK(P ) for a fixed plaintext P . Let F be a
publicly known one-way function. To sign a one-bit message, a sender A
selects two secret values, (x0, x1), computes y0 = F (x0) and y1 = F (x1)
and authenticates (y0, y1) by placing them in a public file. To sign the one-
bit message b ∈ {0, 1} to B, A sends xb, and yb to B. B checks whether
F (xb) = yb. This is the approach taken in the Lamport-Diffie signature
scheme [26]. To sign an m-bit message, 2m F -values must be authenticated.
To prevent forgery these values can be used only once, and the signatures
produced are therefore called one-time signatures, Merkle has shown how to
reduce the 2m values to about m + log2(m) values. The signer computes
m + log2(m) values xi and places the corresponding yi values in the public
file. He signs a message of m bits in the following way. First he counts the
number of zeroes in the binary string m and appends a bit string representing
this number to m yielding the string m′. Then he reveals xi if the i’th bit of
m′ is a ‘1’-bit otherwise he does nothing. Winternitz-Merkle [72] proposed
a way of signing an n-bit message by computing 2n values but revealing
only 2 values. To sign an n-bit message, a sender A selects two secret values,
(x0, x1), computes y0 = F n(x0) and y1 = F n(x1) and authenticates (y0, y1) by
placing them in a public file. To sign the n-bit message mn ∈ {0, . . . , (n−1)}
to B, A sends mn, Fmn(x0) and F n−mn(x1) to B. B can verify which power
of F (x) A sent him by checking how many evaluations of F are needed to
reach the y-values. B cannot use the values he got from A to forge the
system, without having to invert F .

Merkle’s digital signature tree

In [72, 73] Merkle proposed a digital signature scheme based on a conventional
cryptosystem, e.g. DES, producing an infinite number of one-time signatures
using a tree structure. The basic idea in Merkle’s scheme is to authenticate
the root of a tree by placing it in a public file. The root signs one message



34 CHAPTER 3. APPLICATIONS OF BLOCK CIPHERS

and authenticates its sub-nodes, the sons of the node, in the tree. In general
a node in the tree signs one message and authenticates its sub-nodes. The
tree can be any K-ary tree, for simplicity let us consider a binary tree. We
number the nodes in the following standard way. The root has number 1 and
the subnodes of node j have the numbers 2j and 2j +1 respectively. Assume
that F is a publicly known one-way function and H a publicly known one-
way hash function, as defined in Section 3.2, hashing a string of arbitrary
length into a string of length n bits. The i’th node in the tree has three
arrays,

x[i, left, ∗], x[i, right, ∗], x[i, message, ∗]

where ∗ denotes n values. For every node the signer computes three other
arrays

y[i, left, ∗], y[i, right, ∗], y[i, message, ∗]

where y[i, X, j] = F (x[i, X, j]) for X = {left, right, message} and j =
1, . . . , n. Let the hash value of the concatenation of all n values in y[i, X, ∗]
be denoted by H(y[i, X, ∗]) and let

Hash(i) = H(H(y[i, left, ∗]) ‖ H(y[i, right, ∗]) ‖ H(y[i, message, ∗]))

i.e., the hash value of the concatenation of the hash values of the three y-
arrays. To start the digital signature scheme the signer computes the 3× n
values of the three x arrays and of the three y-arrays at node 1. The node
is authenticated by applying the hash function H to all values of the three
y-arrays, i.e., computing Hash(1), and putting it in a public file. Let again
A and B be the parties in the scheme. A signs the i’th message Mi to B
using the following protocol [72], where ‘/’ means integer division:

1. A sets j = i, sends j and y[j, message, ∗] to B.

2. A signs the message Mj by sending the appropriate values of the
x[j, message, ∗]-array to B, in the same way as in the original Lamport-
Diffie scheme.

3. B checks if the y-values and the x-values sign the message Mj using F .

4. A sends the hash values of the three y[j, ∗, ∗] arrays, i.e., H(y[j, left, ∗]),
H(y[j, right, ∗]) and H(y[j, message, ∗]) to B.
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5. If j = i, B checks if the y[j, message, ∗] received in step 1 yields the
value H(y[j, message, ∗]), received in step 4.

If j �= i, B checks if the y[j/2, left, ∗] (or y[j/2, right, ∗]) received pre-
vious round step 8 (or step 9) yields H(y[j, left, ∗]) (or H(y[j, right, ∗])
received in this round in step 4.

6. If j = 1, B uses H to check if the H(y[1, ∗, ∗]) values received in step
4 yield Hash(1) and the protocol terminates.

7. A computes Hash(j).

8. If j is even, A sends y[j/2, left, ∗] to B. A signs Hash(j) by sending
an appropriate subset of x[j/2, left, ∗] to B. B computes Hash(j) and
checks that it is signed correctly.

9. If j is odd, A sends y[j/2, right, ∗] to B. A signs Hash(j) by sending
an appropriate subset of x[j/2, right, ∗] to B. B computes Hash(j) and
checks that it is signed correctly.

10. A and B set j to j/2 and go to step 4.

Upon termination B has received log2(i) + 1 one-time signatures. The first
signature authenticates the message, the others authenticates the next sig-
nature and the last signature is authenticated by the entry in the public file.
In Merkle’s description [72] of the scheme step 5 is missing. We will show
that this step is crucial for the security of the scheme. Also, since the signa-
tures are one-time signatures only one message can be signed per signature
number. We can prove the following result.

Theorem 3.3.1 If signer A signs only one message per signature num-
ber, the above protocol implements a secure digital signature scheme in the
sense that forging a signature implies either 1) an inversion of F or 2) an
inversion for H, i.e., a preimage attack or a second preimage attack.

Proof: Assume that an enemy C can forge a signature on a message, which
A did not sign. Let I ∈ IN be the signature numbers, M I = {Mi | i ∈ I}
the messages and SI = {Si | i ∈ I} the signatures, which A has signed in
legitimate communications. In the following all variables in a forged signa-
ture are primed. Now assume that C produces a signature S ′

j of the message
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M ′
j /∈ M I . It is clear that C cannot sign anything else than A has already

signed using the appropriate subsets of x[i, X, ∗] ∈ SI . So either

1. C found x[i, X, a] /∈ SI for at least one a, s.t. F (x[i, X, a]) = y[i, X, a] ∈
SI . i.e., C inverted F or

2. C found for at least one value b either

(a) y′[i, X, b] �= y[i, X, b] ∈ SI , s.t. Hash′(i) = Hash(i) for i ∈ I or

(b) y′[i, X, b], s.t. Hash′(k) = Hash(k) for k ∈ I and k < i.

where we note that in step (2b) C has to hit either a Hash(k)-value produced
by A or at least hit Hash(1) from the public file. Also note that that the
attacks C has to perform in steps (2a) and (2b) corresponds to a second
preimage attack and a preimage attack on H according to the classification
of attacks in Section 3.2. ✷

The necessity of step 5 in Merkle’s scheme

In the following we will show how an enemy C can forge A’s signatures, if
step 5 is not included in Merkle’s scheme. C gets a signature Si from A on
a message Mi. Now C can pretend to be A and sign M ′

i �= Mi to a third
party B by the following method

1. Choose at random x′[i, X, ∗] for X = {left,right,message}

2. Compute y′[i, X, j]) = F (x′[i, X, j]) and send y[i,message,∗] to B.

3. Sign M ′
i by sending an appropriate subset of x′[i,message,∗] to B.

4. Send H(y[i, X, ∗]) for X = {left,right,message} from Si obtained in
communication with A.

5. Follow the protocol (without step 5) using the values from Si obtained
in communication with A.

Merkle’s signature scheme can be based on any one-time signature, e.g.
Winternitz’s or Merkle’s method and can be used with any K-ary tree struc-
ture. Winternitz method yields shorter signatures, but requires more evalua-
tions of the one-way function F . Using a K-ary tree yields shorter signatures
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Merkle’s one-time signatures
Tree-structure Size of signatures (bytes) No. of DES operations

4-ary 6700 6300
8-ary 4600 7500

Winternitz’s one-time signatures with n = 8
Tree-structure Size of signatures (bytes) No. of DES operations

4-ary 4300 10000
8-ary 3000 15000

Table 3.1: Trade-offs in Merkle’s signature scheme with a maximum of 500
signatures implemented with the DES.

but requires K +1 arrays at every node and more evaluations of the one-way
hash function H. Using the DES as the one-way function and MDC-2 [10, 77]
based on the DES, we get a trade-off between types of trees and one-time
signature types measured in the number of DES operations. In a signature
system with a maximum of 500 signatures the trade-off is shown in Table
3.1 where the size of signatures and no. of DES operations are worst-case
considerations.
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Chapter 4

Security of Secret Key Block
Ciphers

In this chapter we consider the security of block ciphers. In Section 4.1
we describe the model of reality we are dealing with. In Section 4.2 we
classify the possible attacks on a block cipher. In Section 4.3 we describe
briefly Shannons theory of theoretical secrecy. In Section 4.4 we introduce a
new classification of the kinds of success an attacker has in attacks on block
ciphers. We give attacks on block ciphers used in three of the four well known
modes of operation [91] and establish a new upper bound on the complexity
of attacks on block ciphers used in these modes. Finally we examine two
other non-standard modes of operation.

4.1 The Model of Reality

When discussing the security of cryptographic systems one needs to define
a model of the reality. We will use the model of Shannon [107] which is
depicted in Figure 4.1.

The sender and the receiver share a common key K, which has been trans-
mitted over a secure channel. The sender can encrypt a plaintext P using
the secret key K, send C over an insecure channel to the receiver, who can
restore C into P using K. The attacker has access to the insecure channel
and can intercept the ciphertexts (cryptograms) sent from the sender to the

39
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Figure 4.1: Shannon’s model of a general secrecy system.

receiver. In this section we assume that the legitimate sender and receiver
use a secret key cipher EK(·) of block size n (bits), where the key K is of
size k bits. To avoid an attacker to speculate in how the legitimate parties
have constructed their common key, we will assume

Assumption 4.1.1 All keys are equally likely and a key K is always chosen
uniformly random.

Also we will assume that all details about the cryptographic algorithm used
by the sender and receiver are known to the attacker, except for the secret
key. This assumption is known as

Assumption 4.1.2 (Kerckhoffs’s Assumption [40]) The enemy crypt-
analyst knows all details of the enciphering process and deciphering
process except for the value of the secret key.

4.2 Classification of Attacks

Using these assumptions we classify the possible attacks an attacker can do.

• Ciphertext only attack.
The attacker possesses a set of intercepted ciphertexts.

• Known plaintext attack.
The attacker obtains a set of s plaintexts P1, P2, . . . , Ps and the cor-
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responding ciphertexts C1, C2, . . . , Cs. That is, the attacker has no
control over the pairs of plain- and ciphertexts available to him.

• Chosen plaintext attack.
The attacker chooses a priori a set of s plaintexts P1, P2, . . . , Ps and
obtains in some way the corresponding ciphertexts C1, C2, . . . , Cs.

• Adaptively chosen plaintext attack.
The attacker chooses a set of plaintexts P1, P2, . . . , Ps interactively as
he obtains the corresponding ciphertexts C1, C2, . . . , Cs. That is, the
attacker chooses P1, obtains C1, then chooses P2 etc.

• Chosen ciphertext attacks.
For symmetric ciphers these are similar to those of chosen plaintext
attack and adaptively chosen plaintext attack, where the roles of plain-
and ciphertexts are interchanged.

The chosen text attacks are of course the most powerful attacks an attacker
can do. In many applications they are however also unrealistic attacks. If the
plaintext space contains redundancy, it will be hard for an attacker to ‘trick’
a legitimate sender into encrypting non-meaningful plaintexts and similarly
hard to get ciphertexts decrypted, which do not yield meaningful plaintexts.
But if a system is secure against an adaptively chosen plaintext/ciphertext
attack then it is also secure against all other attacks. An ideal situation for
a designer would be to prove that her system is secure against an adaptively
chosen plaintext attack, although an attacker may never be able to mount
more than a ciphertext only attack.

4.3 Theoretical Secrecy

In his milestone paper from 1949 [107] Shannon defines perfect secrecy for
secret key systems and shows that they exist. We will now give a brief de-
scription of Shannons theory and the most important results. Let P, C and
K be the random variables representing the plaintexts, ciphertexts and the
keys respectively. Let PX(x) be the probability that the random variable X
takes on the value x.
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Definition 4.3.1 (Shannon [107]) The uncertainty (entropy) H (X) of a
random variable X is defined as the expectation of the negative logarithm of
the corresponding probability distribution.

Using the logarithm base 2, we get

H(X)
def
= E[−log2PX(x)] = −

∑
x∈supp(PX)

PX(x)× log2PX(x)

where supp(PX)
def
= {x : PX(x) �= 0}. When using this logarithm the entropy

of X can be seen as the number of bits needed to represent (the possible values
of) X in an optimal binary coded form. Further we define the conditional
entropy of X given Y as

H(X | Y)
def
= E[−log2PX|Y (X | Y )]

= −
∑

x,y∈supp(PX,Y)

PX,Y(x, y)× log2PX|Y(x | y)

in other words the uncertainty about X given that Y is known. The quantity
I(X; Y ) = H(X)−H(X | Y) is called the information that Y gives about
X.

Definition 4.3.2 (Shannon [107]) A secret key cipher is perfect if and
only if H(P) = H(P | C), i.e., when the ciphertext C gives no information
about the plaintext P.

This definition leads to the following obvious result.

Corollary 4.3.1 A perfect cipher ia unconditionally secure against a ci-
phertext only attack.

As noted by Shannon the Vernam cipher, also called the one-time pad, is
a perfect secret key cipher. In the one-time pad the plaintext characters are
exclusive-or’ed with independent key characters to produce the ciphertexts.
However, the practical applications of perfect secret key ciphers are limited,
since, as also noted by Shannon, it requires as many digits of secret key as
there are digits to be enciphered [63]. A less stringent form of theoretical
secrecy is possible, defined by Shannon in terms of
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Definition 4.3.3 (Shannon [107]) The unicity distance, nud, of a ci-
pher is the smallest number s such that there is essentially only one value of
the secret key K that is consistent with the ciphertexts C1, . . . , Cs.

In other words, the unicity distance is the smallest s, s.t.

H(K | C1, . . . , Cs) � 0

The unicity distance depends on both the key size and on the redundancy
in the plaintext space. Redundancy is an effect of the fact that certain
plaintexts appear more frequently than others. For a block cipher of size n,
the redundancy ρ is defined as

ρ = 1−H(P)/n

where P is the random variable representing the plaintexts. H(P)/n esti-
mates the average number of bits of information per bit in a plaintext.

Theorem 4.3.1 (Shannons formula) The unicity distance of a cipher is

nud =
H(K)

ρ

where ρ is the redundancy of the plaintext space.

The smallest number Nud, such that Nud is a multiple of n, the block size,
and Nud ≥ nud, is the least number of ciphertext bits an attacker needs from
a legitimate sender in order to at least in principle be able to determine a
unique key in a ciphertext only attack.

Example 4.3.1 ([63]) The redundancy of English language messages is
about 0.8. So for the DES, k = 56, n = 64 and

nud =
56

0.8
� 70

Therefore Nud is 128 bits, the same is two ciphertext blocks.

Although the unicity distance is small as in the example, it does not nec-
essarily mean that the DES can be broken using only 2 known ciphertexts.
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First of all, Shannons measures are made using a random cipher model, but
more important, the unicity distance gives no indication of the computa-
tional difficulty in breaking a cipher, merely a lower bound on the amount
of ciphertext needed in a ciphertext only attack. However, if the plaintext
space contains (close to) no redundancy, the unicity distance will tend to
infinity, i.e., nud ❀ ∞ as ρ ❀ 0. In this case a ciphertext only attack will
never succeed. A cipher, for which it can be shown that H(K | C1, . . . , Cs)
never approaches zero, even for large s, is called a strongly ideal cipher. The
redundancy can be reduced heavily by inserting random bits in the plaintext.

Example 4.3.2 ([63]) By adding 63 random bits to every bit of the plaintext,
the unicity distance becomes

nud =
56× 64

0.8
� 4480

However, this slows down the perfoimance of the block cipher. The legitimate
sender must encrypt and transmit 64 times as much plaintext as when no
random bits are inserted. Using an insecure channel for transmission this
allows an enemy to get 64 times as much ciphertext as before. A better way to
remove redundancy in a plaintext space is by data compression, but no known
methods achieve perfect data compression [55]. Since perfect and strongly
ideal ciphers are both impractical, Shannon also considered computationally
secrecy, or practical secrecy.

4.4 Practical Secrecy

Traditionally, cryptanalysis has been very focused on finding the key K of
a secret key cipher. We classify the types of breaking a cipher as follows,
inspired by the classification of forgeries on digital signature systems given
by Goldwasser, Micali and Rivest in [31, 32].

• Total break.
An attacker finds the secret key K.

• Global deduction.
An attacker finds an algorithm A, functionally equivalent to EK(·) (or
DK(·)) without knowing the key K.
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• Instance (local) deduction.
An attacker finds the plaintext (ciphertext) of an intercepted ciphertext
(plaintext), which he did not obtain from the legitimate sender.

• Information deduction.
An attacker gains some (Shannon) information about key, plaintexts or
ciphertexts, which he did not get directly from the sender and which
he did not have before the attack.

We assume that all the above attacks are independent of how the keys used
by the legitimate parties are chosen, i.e., we use Assumption 4.1.1. A global
deduction is possible when a block cipher contains a “block structure”. If
certain subsets of the ciphertext are independent of certain subsets of the
plaintext, then no matter how long the key is, the block cipher is vulnerable
to a global deduction in a known plaintext attack. An instance deduction
can be as dangerous as a total break, if the number of likely plaintexts is
small. Consider the situation where the block cipher is used for encrypting a
key in a key-exchange protocol. Here only one plaintext is encrypted and a
total break is equal to an instance deduction. Information deduction is the
least serious attack, however the legitimate parties are often interested in
that no information at all about the plaintexts are obtained by any enemies.

From the above definitions we might derive the rule, that a block cipher
is secure, if an enemy cannot do an information deduction in an adaptively
chosen plaintext attack. But there are trivial attacks, which we have to
consider first.

Brute-force (trivial)

• Total break. All block ciphers are totally breakable in a ciphertext
only attack, simply by trying all keys one by one and check whether the
computed plaintext is meaningful, using only about Nud ciphertexts.
This attack requires the computation of about 2k encryptions. This
number is not accurate and will increase for lower redundancy in the
plaintexts.

To the other extent, the table look-up attack, where the attacker, in a
pre-computation phase, encrypts a fixed plaintext P under all possible
keys and sorts and stores the ciphertexts, he obtains. Thereafter the
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cipher is total breakable in a chosen plaintext attack requiring one
chosen plaintext. There might be some keys encrypting P into the
same ciphertext. Repeating the attack a few times with P ′ �= P will
give a unique key.

• Global deduction. All block ciphers are globally deducible in a
known/chosen plaintext attack. Simply get and store all possible plain-
text/ciphertext pairs. The running time of a deduction is the time of
one table lookup, i.e., negligible.

• Instance deduction. All block ciphers are instance deducible in
a known plaintext attack using 2n − 1 known plaintexts, since the
exclusive-or of all the intercepted ciphertexts will be the ciphertext
of the remaining plaintext, for which the attacker did not get the ci-
phertext.

• Information deduction. All block ciphers are information deducible
in a ciphertext only attack. Consider a block cipher used in the ECB
mode. Denote two plaintexts by Pi and Pj and assume that an attacker
intercepted the two corresponding ciphertext blocks, Ci and Cj. All
entropy quantities after the interception are primed. It follows that
Ci �= Cj ⇒ Pi �= Pj, which means that H ′(Pi | Pj) < H(Pi | Pj),
i.e., the uncertain about Pi given Pj decreases, since we know that the
plaintexts are different. Since I(Pi; Pj) = H(Pi)−H(Pi | Pj), it follows
that I ′(Pi; Pj) > I(Pi; Pj), i.e., the attacker has gained information.
Obviously, if Ci = Cj ⇒ Pi = Pj, information is also gained. A similar
result holds for block ciphers used in CBC mode.

Also, Hellman [33] has presented a time-memory trade-off attack on any block
cipher, which finds the secret key after 22k/3 encryptions using 22k/3 words of
memory. The 22k/3 words of memory are computed in a preprocessing phase,
which takes the time of 2k encryptions.

The above illustrates that we have to consider both the time and the
amount of data needed in an attack. Also of great importance are the storage
requirements.

• Data complexity. The amount of data needed as input to an attack.
Units are measured in blocks of length n. We denote this complexity
Cd.



4.4. PRACTICAL SECRECY 47

• Processing complexity. The time needed to perform an attack.
Time units are measured as the number of encryptions an attacker
has to do himself. We denote this complexity Cp.

• Storage requirements. The words of memory needed to do the at-
tack. Units are measured in blocks of length n. We denote this com-
plexity Cs.

As a rule of thumb, the complexity of an attack is taken to be the maximum
of the three complexities, i.e., Ca = max(Cd, Cp, Cs). In general, there are
some deviations from this rule and furthermore the three types of complexity
of an attack are relative to the attacker. As an example, we may say that the
above attack by Hellman [33] on the DES has complexity 22×56/3 � 238. Al-
though the time of the pre-computation phase is 256, first of all, it is done only
once after which any DES-key can be derived with complexity 238, secondly
256 DES encryptions can be done reasonable fast in hardware on specially
designed machines [112]. On the other hand, the storage requirements may
be unrealistic for most attackers, e.g. the attack on the DES will require
about 220 Mbytes of memory.

Definition 4.4.1 (Weak definition of practical security) A block ci-
pher with block size n and key size k is practically secure, if an enemy cannot
do an information deduction in an adaptively chosen plaintext attack with a
complexity significantly lower than a brute force attack, i.e., with complexity
Ca << min(2k, 2n)

As indicated this definition of practical security is weak. What is “signifi-
cantly lower”?? We will show that for almost all applications of block ciphers
used for encryption, we can establish an upper bound of the complexity, Cup,
of an information deduction in an adaptively chosen plaintext attack. For
the remainder of this section we will always assume that the plaintext space
contains some kind of redundancy.

Theorem 4.4.1 Eveyy block cipher used in the Electronic Code Book (ECB)
mode is information deducible with a non-trivial information gain in a ci-
phertext only attack with complexity about 2H(P)/2.

Proof: Recall that H(P) is the entropy of the plaintext space, that is, there
are approximately 2H(P) meaningful messages. Assume that H(Pi | Pj) ≥ 1
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for i �= j, i.e., there is at least one bit uncertainty about one plaintixt Pi

given another plaintext Pj before the attack. By the “birthday paradox”

(1.1.1) in a collection of t =
√

2H(P) = 2H(P)/2 ciphertexts C1, . . . , Ct with
a high probability there will exist a pair (i, j), s.t. Ci = Cj and Pi = Pp

Clearly H ′(Pi | Pj) = 0 and I ′(Pi; Pj) − I(Pi; Pj) ≥ 1, i.e., the information
gained is non-trivial.

Because of the redundancy in the plaintexts, the attacker can obtain
(valuable) information about the plaintext. If the plaintexts are in natural
English represented in ASCII characters, the single letter frequency of the
English language can be exploited character by character. Of course also
digram, trigram and N -gram frequencies can be used. By using a larger
collection of ciphertexts the probability of finding Pi = Pj = Pk increases,
which greatly improves the attackers knowledge of the plaintexts. ✷

Remark, that the upper bound 2H(P)/2 is met only when all plaintexts
have equal probabilities. The more redundancy in the plaintext space the
less the complexity of the above attack. Theorem 4.4.1 is a trivial result
and is why it is often recommended to use the cipher block chaining mode
(CBC), when encrypting large plaintexts. See Appendix A for an illustra-
tion. However, for the CBC we have the following result.

Theorem 4.4.2 Every block cipher used in the Cipher Block Chaining (CBC)
mode is information deducible in a ciphertext only attack with complexity
about 2n/2.

Proof: By the birthday paradox in a collection of t =
√

2n = 2n/2 n-bit
ciphertexts C1, . . . , Ct there will with a high probability exist a pair (i, j),
s.t. Ci = Cj and thereby

EK(Pi ⊕ Ci−1) = EK(Pj ⊕ Cj−1) ⇒
Pi ⊕ Ci−1 = Pj ⊕ Cj−1

Since by assumption we know the ciphertexts Ci−1 and Cj−1, we can compute
Pi ⊕ Pj = Ci−1 ⊕Cj−1 = α. It follows from the proof of Theorem 4.4.1, that
the information gained is non-trivial. If the plaintexts are redundant then so
is the exclusive-or of pairs of plaintexts. ✷

Here we have assumed that for a block cipher with a fixed key, when
restricted to a subset of plaintexts, the corresponding ciphertexts are dis-
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tributed uniformly on the set of all possible ciphertexts. Sometimes one
makes the more informal assumption that the block cipher “behaves almost
like a random function”. There is a similar result for the CFB mode, also
mentioned by Maurer [70],

Theorem 4.4.3 Every block cipher used in the Cipher Feedback (CFB) mode
is information deducible in a ciphertext only attack with complexity about
2n/2.

Proof: Let Di be a collection of n/m consecutive m-bit ciphertext blocks
starting with Ci, i.e., Di = Ci, . . . , Ci+(n/m−1). By the birthday paradox in

a collection of t =
√

2n = 2n/2 n-bit ciphertexts D1, . . . , Dt there will exist a
pair (i, j), s.t. Di = Dj, which means that Xi+n/m = Xj+n/m and

Ci+n/m = Pi+n/m ⊕ EK(Xi+n/m) ∧ Cj+n/m = Pj+n/m ⊕ EK(Xj+n/m) ⇒
Pi+n/m ⊕ Ci+n/m = Pj+n/m ⊕ Cj+n/m

Since by assumption we know the ciphertexts Ci+n/m and Cj+n/m we can
compute Pi+n/m ⊕ Pj+n/m = Ci+n/m ⊕ Cj+n/m = α. ✷

It is easy to see that the CBC mode and the CFB mode are both in-
formation deducible in a chosen ciphertext attack using only two chosen
ciphertexts. Instead of using the birthday paradox to find two equal cipher-
texts in a large collection of ciphertexts one simply chooses two ciphertext
blocks equal. However, this is a very non-realistic attack and if the plaintext
space contains redundancy there is only little chance that a chosen ciphertext
decrypts into a meaningful plaintext.

Motivated by Theorem 4.4.1, 4.4.2 and 4.4.3 and from the fact that
H(P)/2 is at most n/2 we get an upper bound for practical security and
define

Definition 4.4.2 A block cipher used in the ECB, CBC end the CFB modes
with block size n and key size k is practically secure, if an enemy cannot
do at leaat an information deduction with a non-trivial information gain in
an adaptively chosen text attack with a complexity lower than Cup � 2n/2.

Finally we note that the attacks in Theorem 4.4.1, 4.4.2 and 4.4.3 are
independent of the key size. In the following we analyse two other suggested
modes.
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4.4.1 Other modes of operation

Apart from the four standard modes of Section 3.1 other modes have been
suggested to improve the performance of a block cipher. In this suction we
examine two other modes of operation. We examine both modes with respect
to unicity distance, error propagation and attacks like the ones of Theorems
4.4.1, 4.4.2 and 4.4.3.

Davies-Price mode

In [22] Davies and Price suggest the following mode, but claim “no special
virtues for this mode”. Encryption

Ci = EK1(Pi ⊕ EK2(Ci−1))

where C0 is an initial value. Decryption

Pi = DK1(Ci)⊕ EK2(Ci−1)

This is a variant of the CBC mode and uses two keys. Therefore the unicity
distance is increased by a factor of two. Theorem 4.4.2 is not directly ap-
plicable, since it requires a match in pairs of two blocks, in other words we
need to collect 2n blocks of ciphertexts for a match. It also clear, however,
that this mode is as vulnerable to a meet-in-middle-attack as a conventional
double encryption scheme in CBC mode, see Section 7.9, which requires that
two consecutive ciphertext blocks (and one plaintext block) are available.
Simply decrypt Ci by all possible values of K1 and store the values. Then
encrypt Ci−1 by all possible values of K2 and for every value check whether
the exclusive-or of this results with any value in the table yields a possible
(or an intercepted) plaintext. However, we can use the same methods as in
the proof of Theorem 4.4.2 to do an exhaustive search for the key K1, K2

with less memory. Collect 2n/2 ciphertext blocks and find a match Ci = Cj.
Then

Ci = Cj ⇒
Pi ⊕ EK2(Ci−1) = Pj ⊕ EK2(Cj−1) ⇒

Pi ⊕ Pj = EK2(Ci−1)⊕ EK2(Cj−1)

If the plaintexts contain redundancy, so does the exclusive-or of pairs of
plaintexts. Therefore by doing an exhaustive search over K2, we can check
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if EK2(Ci−1) ⊕ EK2(Cj−1) yields a likely exclusive-or of two plaintexts. The
probability of the attack can be improved by finding more matches C ′

i = C ′
j.

Also note that a match Ci = Cj enables us to do an exhaustive search over
K1 as

Ci = Cj ⇒ Pi+1 ⊕ Pj+1 = DK1(Ci+1)⊕DK1(Cj+1)

An error in the transmission of one ciphertext block propagates to two plain-
text blocks. This is also the case, when a ciphertext block is deleted or an
extra ciphertext block is inserted. The difference from the CBC mode is that
here the two affected plaintext blocks are completely garbled.

OFBNLF mode

In [39] the “OFB with a Non-linear Function (OFBNLF)” is suggested. In
[93] this nonlinear function is taken to be the cipher itself. The secret key is
K. Encryption

Ci = EKi
(Pi), Ki = EK(Ki−1)

where K0 is an initial value. Decryption

Pi = EKi
(Ci), Ki = EK(Ki−1)

This is a variant of the OFB mode, as the name indicates, but also a variant
of the ECB mode. Theorem 4.4.1 is not applicable, since different keys
are used to encrypt different plaintexts. It does not mean that the unicity
distance increases, it remains the same as in the ECB mode. An error in the
transmission of one ciphertext block propagates to only one plaintext block.
However, an infinite error extension arises, when one ciphertext block is lost,
or if an extra ciphertext block is inserted by an enemy. Applied to the DES,
this mode will be slow in software applications, where the key scheduling is
often slow. If the key scheduling takes twice the time of an encryption, this
mode takes three times one DES encryption (with a fixed key) for encryption
of one plaintext block.



52 CHAPTER 4. SECURITY OF SECRET KEY BLOCK CIPHERS



Chapter 5

Cryptanalysis of Block Ciphers

Cryptanalysis is fun, especially in the morning . . . at breakfast.

In this chapter cryptanalysis of block ciphers is considered. After a short
introduction we describe differential cryptanalysis in Section 5.2. We give
a simple method to find an important class of characteristics for DES-like
ciphers to be used in differential attacks. Next we consider differentials,
higher order differentials and partial differentials and show their applications.
In Section 5.3 the method of linear cryptanalysis is described. We give a
similar method as the one above for differentials to find an important class
of characteristics for DES-like ciphers to be used in linear attacks. In Section
5.4 cryptanalysis of the key schedules in block ciphers is considered and
it is shown how simple relations in the key schedules can be exploited in
cryptanalytic attacks. Finally we define a new class of keys, the weak hash
keys, which can be exploited in attacks on hash functions based on block
ciphers.

5.1 Introduction

The history of cryptanalysis is long and at least as fascinating as the his-
tory of cryptography. As an example, in 1917 in an article in “Scientific
American” the Vigenére cipher was claimed to be “impossible of transla-
tion” [23]. The Vigenére and in general substitution ciphers can be broken
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when enough ciphertext is available to the cryptanalyst by the index of co-
incidence, Kasiski’s method, etc. [22, 23, 40]. Transposition ciphers can be
broken using the frequency distributions for digrams, trigrams and N-grams
[22, 23, 40]. The interested reader will find a comprehensive treatment of
early cryptanalysis in [40].

The most well-known method of analysing conventional cryptosystems
today is differential cryptanalysis, published by Eli Biham and Adi Shamir
in 1990. The method has proved to be very efficient and cryptosystems,
which have been conjectured strong, have been broken, for some systems (e.g.
GDES) almost alarmingly easy [7]. Differential cryptanalysis is a chosen
plaintext attack, in which the attacker chooses plaintexts of certain well-
considered differences. Although a chosen plaintext attack may not be a
realistic attack in most settings, Biham and Shamir’s attack on the full 16-
round DES [7, 8] is the first attack in the open literature capable of finding
the secret key faster than an exhaustive search of the key space.

Another method of analysing conventional cryptosystems, is linear crypt-
analysis, proposed by Matsuru Matsui in 1993 [64]. A preliminary version
of the attack on FEAL was described in 1992 [68]. The attack on the DES
[65, 66] has proved to be more efficient than the attack based on differen-
tial cryptanalysis. First of all, the attacks based on linear cryptanalysis are
known plaintext attacks and secondly the attack on the DES is faster than
the attack by Biham and Shamir.

A third method of analysing conventional cryptosystems, is by means of
related keys. The author introduced the method by giving a chosen plaintext
attack on LOKI’91 [47], reducing an exhaustive key search by almost a fac-
tor of four. Later Biham improved the attack [3] on LOKI’91, reducing an
exhaustive key search by almost a factor of six.

5.2 Differential Cryptanalysis

Differential cryptanalysis has been applied to a wide range of iterated ciphers
including the DES [90], GDES [102, 104], Lucifer [109], FEAL [79], LOKI’89
[15], REDOC [17], PES [58] and Khafre [75]. For this reason the differen-
tial attack must be considered one of the most general cryptanalytic attacks
known to date. Furthermore, differential cryptanalysis has caused the re-
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vision and redesign of several cryptosystems and was the first attack which
could (theoretically) recover DES keys in time less than the expected cost of
exhaustive search [7, 8]. Differential cryptanalysis is universal in that it can
be used against any cryptographic mapping which is constructed from iter-
ating a fixed round function. We will give a brief description of differential
cryptanalysis with respect to a general 2n-bit iterated cipher.

We define a difference between two bit strings, X and X ′ of equal length
as

∆X = X ⊗ (X ′)−1

where ⊗ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where (X)−1 is the
inverse element of X w.r.t. ⊗. The idea behind this is, that the difference
between the texts before and after the key is combined is equal, i.e., the
difference is independent of the key. To see this, note that

∆X = (X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1
= X ⊗ (X ′)−1

For most Feistel ciphers, including the above, it is possible to compute
tables, so-called dfference distribution tables, containing the possible differ-
ences in the outputs for every difference in the inputs and the corresponding
probabilities for one round of the cipher.

For a plaintext P = C0 recall that Ci is the ciphertext after i rounds
of encryption. An r-round characteristic is a series of differences defined as
an (r + 1)-tuple (α0, . . . , αr), where αi is the expected value of ∆Ci and
where α0 is the chosen value of ∆P = ∆C0. Here ∆P is said to be a
plaintext difference and, ∆Ci is the ciphertext difference after i rounds of
encryption. The probability of a characteristic is the conditional probability
that ∆Ci = αi is the difference after i rounds given that ∆Ci−1 = αi−1 is the
difference after i−1 rounds. More formally, for a random, uniformly selected
round keys Ki, the probability of a characteristic is

Pr(∆Ci = αi, ∆Ci−1 = αi−1, . . . , ∆C1 = α1 | ∆P = α0) (5.1)

This probability can be hard to calculate. However, for certain ciphers the
probability can be calculated from the probabilities of one-round character-
istics, as we will show now. A sequence of stochastic variables v0, v1, . . . , vr
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is a Markov chain, if for 0 ≤ i < r

Pr(vi+1 = βi+1 | vi = βi, vi−1 = βi−1, . . . , v0 = β0 = Pr(vi+1 = βi+1 | vi = βi)

A Markov chain is called homogeneous, if

Pr(vi+1 = β | vi = α)

is independent of i for all α and β.

Definition 5.2.1 (Lai [55]) An iterated cipher is called a Markov cipher,
if there is a group operation ⊗, such that

Pr(∆C1 = β | ∆C0 = α, C0 = γ) (5.2)

is independent of γ for all α and β (both �= e, the neutral elenaent of the
group), when the round key K is uniformly random.

Theorem 5.2.1 (Lai [55]) If an r-round iterated cipher is a Mavkov ci-
pher and the r round keys are independent and uniformly random, then the
sequence of differences

∆P = ∆C0, ∆C1, . . . , ∆Cr

is a homogeneous Markov chain.

This means that for a Markov cipher the probability of an s-round char-
acteristic (5.1) can be computed as follows

Pr(∆Cs = αs, ∆Cs−1 = αs−1, . . . , ∆C1 = α1 | ∆P0 = α0) =
s∏

i=1

Pr(∆C1 = αi | ∆P = αi−1) (5.3)

Theorem 5.2.2 A DES-like iterated cipher, cf. Definition 2.5.3, is a Markov
cipher with the difference induced by the ‘+’ operation, if the found keys are
independent and uniformly random.

Proof: We will show that the expression in Definition 5.2.1 is independent
of γ = γL ‖ γR. In a DES-like cipher ∆CL

1 = ∆CR
0 independent of γ, so it

suffices to prove the case of ∆CR
1 .



5.2. DIFFERENTIAL CRYPTANALYSIS 57

Pr( ∆CR
1 = βR | ∆C0 = α, C0 = γ) =

Pr( f(E(CR
0 ) + K)−

f(E(CR
0 + αR) + K) + αL = βR | CR

0 = γR, ∆C0 = α) =
Pr( f(E(CR

0 ) + K)−
f(E(CR

0 ) + K + E(αR)) + αL = βR | CR
0 = γR, ∆C0 = α) =

Pr( f(X)− f(X + E(αR)) + αL = βR | CR
0 = γR, ∆C0 = α)

where X = E(CR
0 + K) is uniformly distributed, since K is. The probability

does not depend on γ and the proof is complete. ✷

Experimental results on DES, LOKI’89 and FEAL [7, 6, 48] have shown
that in these ciphers (5.3) also holds, when the round keys are derived from
a key schedule algorithm. To simplify statistical arguments we assume in the
following that the round keys are independent and uniformly random.

A plaintext pair P , P ′ of difference ∆P is called a right pair with respect
to a key K and an r-round characteristic if when the pair P , P ′ is encrypted,
the difference in the intermediate ciphertexts follow the characteristic. About
p ·22n pairs are right pairs, where p is the probability of the characteristic and
2n is the block size of the cipher. On the other hand, if P , P ′ is not a right
pair, then it is said to be a wrong pair (with respect to the characteristic and
the key).

Differential cryptanalysis attempts to determine the round key Kr used
in the final round of the cipher. Consider an iterated block cipher as defined
in Definition 2.5.1. Let Cr and C ′

r be the ciphertexts for some plaint ext pair.
In a chosen plaintext attack the cryptanalyst does not know the inputs Cr−1

and C ′
r−1 to the final round. However, a characteristic can be chosen so that

the difference of the ciphertexts after r − 1 rounds of encryptions, ∆Cr−1,
is known either completely or partially with probability p. Then for two
plaintexts P , P ′ of difference ∆P , the cryptanalyst can solve the following
equation for Kr

g−1(Cr, Kr)⊗ g−1(C ′
r, Kr)

−1 = ∆Cr−1 (5.4)

Let the solutions be k1, k2, . . . , kj, which we will call candidate round keys.
If P , P ′ is a right pair then Kr ∈ {k1, k2, . . . , kj}. On the other hand, if P ,
P ′ is a wrong pair then we assume that the ki are independent of Kr. Then
if many pairs P , P ′ are examined, and the frequency of the candidate keys is
recorded, we expect the correct round key Kr to be counted more often than
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other keys. The method of differential cryptanalysis can be summarised as
follows:

Step 1 Find an r−1-round characteristic (∆P, ∆C1, ∆C2, . . . , ∆Cr−1) which
(partially) determines ∆Cr−1 with a high probability.

Step 2 Uniformly select a plaintext pair P , P ′ with difference ∆P and get
the encryptions of this pair, assuming that P , P ′ is a right pair. Deter-
mine candidate round keys k1, k2, . . . , kj such that each ki could have
caused the observed output difference. Increment a counter for each
candidate round key ki.

Step 3 Repeat Step 2 until one round key ki is distinguished as being
counted significantly more often than other round keys. Take ki to
be the actual round key Kr.

It is then natural to define the complexity of a differential cryptanalysis to
be the number of encrypted plaintext pairs of a specified difference required
to determine the key or round key. from experiments on restricted versions
of DES, Biham and Shamir [7] found that the complexity of the attack was
approximately c/p, where p is the probability of the characteristic being used,
and c is a constant bound as 2 < c < 8.

To measure the efficiency of a differential attack Biham and Shamir use
the so-called signal to noise ratio [7]. Assume that m pairs of chosen plain-
texts are used in a differential attack and that p is the probability of the
characteristic used. Then about m × p pairs are right pairs, each of which
suggest the right key value among other values. In some attacks [7] the at-
tacker can determine pairs of plaintexts as wrong pairs from the intercepted
ciphertexts, in which case the pair is discarded and not used in the analysis.
Let k be the number of possible values of the key, we are looking for, γ is
the number of keys suggested by each non-discarded pair of plaintexts and λ
is the ratio of non-discarded pairs to all pairs. The average number of times
a random (wrong) key is suggested is now m×γ×λ

k
. The signal to noise ratio,

S/N , is the number of times the right key is counted over the number of
times a random key is counted, i.e.,

S/N =
m× p
m×γ×λ

k

=
k × p

γ × λ
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A necessary condition for the success of a differential attack is that the signal
to noise ratio is greater than one, and the expected success of the attack
increases with the ratio. The quantity λ is quite important for differential
attacks on DES-like iterated ciphers.

Figure 5.1: An r-round DES-like cipher.

Differential attacks on DES-like ciphers

For DES-like iterated ciphers the inputs to the F -function in the last round
can be read as the right halves of the ciphertexts. In a differential attack
on an r-round cipher, cf. above, knowledge about the difference of pairs of
ciphertext after r - 1 rounds is necessary. In a DES-like iterated cipher the
important difference to know for an attacker is the difference of the outputs
of the F -function of the last round. But since ∆CL

i = ∆CR
i−1, in some cases it

suffices to obtain knowledge about the difference of pairs of ciphertext after r
- 2 rounds. The difference of the outputs of the F -function in the r’th round
can then be read as the exclusive-or of ∆CR

r−2 and ∆CL
r (the left halves of

the difference in the ciphertexts), see Figure 5.1. Assume we are considering
an r-round DES-like cipher with block size 2n bits. Knowledge about ∆CR

i−2

is used to determine the difference of the outputs of F and ∆CL
i−2 and to

discard wrong pairs in the following way. If ∆CL
r−1 = ∆CR

r−2 can lead to



60 CHAPTER 5. CRYPTANALYSIS OF BLOCK CIPHERS

only a fraction of all differences, say M, in the outputs if the F -function in
the second last round, an attacker can check whether ∆CL

r−2 ⊕ ∆CR
r yields

one of the possible differences in M. If it does not, the pair is discarded and
not used any further in the analysis. This prevents some suggested wrong
values of the key. In that way, even though knowledge about only ∆CR

r−2 is
used to obtain suggested key values, the knowledge about ∆CL

r−2 is in some
cases crucial for a successful differential attack. To illustrate that, assume
that Pr(∆Cr−2 = β | ∆P = α) <

√
2−2n = 2−n, and that the discarding of

wrong pairs is avoided. Then the signal to noise ratio is less than one, since
any other (random) value of ∆CR

r−2 has a probability of about 2−n and the
differential attack would fail.

The first round trick

In their attack on the full 16-round DES Biham and Shamir introduced, what
we will call, the first round trick . Assume an attacker found a characteristic
whose first two rounds have the values of Figure 5.2, where a difference Φ in
the inputs to the F-function can lead to a difference Ψ in the outputs of the
F-function with probability p < 1. This will be denoted Ψ ← Φ.

Figure 5.2: Two rounds in a characteristic.

In a conventional differential attack using 2N plaintexts to form N pairs
of plaintexts, the attacker would get about N × p pairs of ciphertexts, whose
difference after one round is (Φ, Γ ⊕ Ψ), where p is the probability of the
characteristic in the first round. This can be improved by choosing the
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chosen plaintexts more carefully in the following way. Assume that

|{v | v ← Φ}| = n

i.e., the number of possible output differences of the F -function is n, when Φ
is the difference in the inputs. We number these values v1, . . . , vn. Assume
that the set {vi} is closed under the exclusive-or operation. If it is not, we
extend it to be closed. Pick a random plaintext P = (PL | PR). Choose n
plaintexts of the form

(PL ⊕ vj ⊕ Γ | PR ⊕ Φ)

and n plaintexts of the form

(PL ⊕ vi ⊕Ψ | PR)

By pairing each plaintext from the first set with each plaintext of the second
set we obtain n2 pairs of plaintexts, whose characteristic will have the form
of Figure 5.3. But since there are only n possible values of vl and of vk by
definition in n pairs out of the n2 pairs vl = vk. That means that from
2n plaintexts the attacker gets n pairs with the desired difference after one
round of encryption. The efficiency of this first round trick depends on the
value of n. If n is too large the pairing of the two sets of plaintexts may
increase the overall complexity of the differential attack too much.

Figure 5.3: The first round trick.
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The first two rounds trick

The above trick can be extended to two rounds in the following way. Assume
an attacker has found a characteristic, whose first three rounds have the
values in Figure 5.4. Assume now that

Figure 5.4: Three rounds in a characteristic.

|{w | w ← Γ⊕Ψ}| = n1,

and number these values w1, . . . , wn1 . For the values wi assume that

n1∑
i=1

|{v | v ← Φ⊕ wi}| = n2,

and number these values v1, . . . , vn2 . Assume that both sets are closed under
the exclusive-or operation. Pick a random plaintext P = (PL | PR). Choose
n1 × n2 plaintexts of the form

(PL ⊕ vi ⊕ Γ | PR ⊕ Φ⊕ wj)
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and n1 × n2 plaintexts of the form

(PL ⊕ vl ⊕Ψ | PR ⊕ wm)

By pairing each plaintext from the first set with each plaintext of the second

Figure 5.5: The first two rounds trick.

set we obtain (n1 × n2)
2 pairs of plaintexts, whose characteristic will have

the form of Figure 5.5. Since there are only n2 possible values of vk for about
(n1 × n2)

2/n2 = n2
1 × n2 pairs of plaintexts, the difference in the ciphertexts

after one round will be (Φ⊕wj ⊕wm | Γ⊕Ψ) for some j and m, i.e., v0 = 0.
For one out of every n1 of the remaining pairs wp = wj ⊕ wm, note that Λ
is one of the n1 possible w-values. It is seen that from 2 × n1 × n2 chosen
plaintexts an attacker gets about (n1 × n2) pairs with the desired difference
after two rounds of encryption.

The first two rounds trick applied to the DES does not seem to improve
a differential attack. By using the same characteristics as in the attack by
Biham and Shamir [7], one gets structures with n1 � 212 and n2 � 232, i.e.
structures of 244 plaintexts. Although one can get one round further in the
characteristic, the complexity of filtering out wrong pairs increases and slows
down the attack.
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The first two rounds trick seems to be applicable to the LOKI ciphers
[15, 14], but more work has to be done in that direction.

5.2.1 Iterative characteristics

Most of the reported differential attacks make use of what is called iterative
characteristics.

Definition 5.2.2 For an iterated block cipher (see Definition 2.5.1) an s-
round iterative characteritic is an s-tuple (∆Ci, . . . , ∆Ci+s) s.t. ∆Ci =
∆Ci+s.

It is easily seen that an s-round iterative characteristic can be extended
to an n-round characteristic, for any integer n ≥ s.

5.2.2 Iterative characteristics for DES-like ciphers

In DES-like iterated ciphers equal inputs (to the F-function) always lead to
equal outputs. This fact can be used to construct a 1-round characteristic
with probability one, called a trivial one-round characteristic. An obvious
attempt in construction of characteristics with a larger number of rounds is to
include as many trivial one-round characteristics as possible. Building long
characteristics from scratch has turned out to be a difficult task. An easier
way is to construct iterative characteristics with a relatively small number of
rounds, and concatenating these into longer characteristics. In the following
we will show different models of iterative characteristics for DES-like iterated
ciphers. In Sections 6.1, 6.2, 6.3 and 6.4 we will justify the usability of the
models by showing concrete examples of these in DES, LOKI’91 and s2-DES.

Recall that for a DES-like iterated cipher ∆CL
i = ∆CR

i−1. In this section
we shall write ∆Ci = (∆CL

i , ∆CR
i ). The combinations β ← α of input

and output differences for one round of most DES-like ciphers are easily
calculated and saved in a difference distribution table. In the following an
s-round characteristic is described as follows. On the first line we have the
difference of the inputs to the characteristic, (ciphertexts after i round). Then
for each round we state the difference of the inputs to the F -function and
the resulting difference of the outputs of the F -function. On the last line the
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difference of the ciphertexts after (i+s)-rounds is listed. We will also assume
that the only one-round characteristic with probability one is obtained when
the inputs to the F-function are equal. We call this a zero-round.

1-round iterative characteristics

For DES-like iterated ciphers a 1-round iterative characteristics must have
the following form

(Φ, Φ)
0 ← Φ prob. p > 0

(Φ, Φ)

It comes from the fact that ∆CL
i = ∆CR

i−1. This characteristic is never used
in attacks on DES-like iterated ciphers, since the combination 0 ← Φ can be
used to build a 2-round iterative characteristic with a better probability per
round.

2-round iterative characterist its

Two consecutive zero-rounds in a characteristic of DES-like cryptosystems
lead to equal inputs and outputs of all rounds. We get equal plaintexts
resulting in equal ciphertexts, a trivial fact. The maximum occurrences of
zero-rounds therefore is every second round. This situation evolves by using
and iterating the following 2-round characteristic, also used in [7].

(Φ, 0)
0 ← 0 always
0 ← Φ prob. p > 0

(Φ, Φ)
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3-round characteristics

We proceed to the situation where every third round in a characteristic is a
zero-round.

(Γ, 0)
0 ← 0 always
Φ ← Γ prob. p1 > 0
Γ ← Φ prob. p2 > 0

(Φ, 0)

The differences of the inputs and outputs are not equal and is not iterative
in the sense of Definition 5.2.2. However, the characteristic is one half of
an iterative characteristic. Concatenated with the characteristic with rounds
no. 2 and 3 interchanged we obtain:

(Γ, 0)
0 ← 0 always
Φ ← Γ prob. p1 > 0
Γ ← Φ prob. p2 > 0
0 ← 0 always
Γ ← Φ prob. p2 > 0
Φ ← Γ prob. p1 > 0

(Γ, 0)

In that way we get a 6-round iterative characteristic. Still we choose to call
the 3-round characteristic an iterative characteristic.

4-round characteristic

When every fourth round is a zero-round we need a 4-round characteristic,
which extended to 8 rounds becomes an iterative characteristic. It must have
the following form:

(Γ, 0)
0 ← 0 always
Φ ← Γ prob. p1 > 0

Γ⊕Ψ ← Φ prob. p2 > 0
Φ ← Ψ prob. p3 > 0

(Ψ, 0)
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It means that we have to find two input differences Ψ and Γ both resulting
in Φ and Φ resulting in the difference between Ψ and Γ.

Longer characteristics

We can of course continue the search for n-round characteristics, n > 4.
However, the complexity of finding the best combinations in an n-round
iterative characteristic rapidly increases for larger n. For some ciphers it
is not necessary to go much further than n = 4 as we will demonstrate
for the ciphers, LOKI’89, LOKI’91 and s2-DES. For the DES we also give
strong evidence, that for n > 4 there are no ‘good’ iterative n-round iterative
characteristics.

5.2.3 Differentials

A closer look at differential attacks shows that for an s-round characteris-
tic (∆P, ∆C1, ∆C2, . . . , ∆Cs) only the plaintext difference ∆P and the last
ciphertext difference ∆Cs need to be fixed. That is, the intermediate differ-
ences ∆C1, ∆C2, . . . , ∆Cs−1 can be arbitrarily selected. The notion of dif-
ferentials (∆P, ∆Cs) was introduced by Lai and Massey [58, 55] to account
for this observation. The probability of an s-round differential (∆P, ∆Cs)
is the conditional probability that given an input difference ∆P at the first
round, the output difference at the s’th round will be ∆Cs. More formally,
the probability of an s-round differential is given as

Pr(∆Cs = βs | ∆P = β0) =∑
β1

∑
β2

· · ·
∑
βs−1

s∏
i=1

Pr(∆Ci = βi | ∆Ci−1 = βi−1) (5.5)

when ∆C0 = ∆P . Here we are assuming that a sequence of differences
can be modeled as a homogeneous Markov chain P = [Pij], 1 ≤ i, j < 2n.
This subject is treated further in Section 7.4. Whereas in a Markov cipher
the probability of an s-round characteristics can be easily calculated as the
product of the probabilities of s one-round characteristics, the probabilities
of s-round differentials for large s, s > 2, seem hard to calculate. Note that
in a Feistel cipher the concepts of characteristics and differentials coincide for
s ≤ 2. LOKI’89 [15] was attacked using an iterative 3-round characteristic
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[48]. This characteristic iterated to a 5-round characteristic has a probability
of about 2−21. The probability of a corresponding 5-round differential, i.e.,
where input and output differences are the same as in the characteristic, was
approximated to 2−21 + 2−45, that is, not significantly higher than for the
characteristic. Similar tests for characteristics and differentials with more
than 5 rounds have a much higher complexity.

In order to make a successful attack on a DES-like iterated cipher by dif-
ferential cryptanalysis the existence of good characteristics is sufficient. On
the other hand to prove security against differential attacks for DES-like iter-
ated ciphers one has to ensure that there is no differential with a probability
high enough to enable successful attacks. Whereas it is difficult to approxi-
mate the probability of a specific differential, it is possible to determine lower
bounds on the probabilities for all differentials. A bound on the probability
of all differentials can be obtained in terms of pmax, the probability of the
most likely 1-round difference. We will return to this topic in Chapter 7.

Hypothesis of stochastic equivalence

In a differential attack the attacker does not know the key. Therefore in
finding a good differential, the attacker computes the probabilities of differ-
entials assuming that all the round keys are uniformly random and indepen-
dent. However, the pairs of encryption an attacker gets are encrypted using
the same key, where the round keys are fixed and (can be) dependent. Put
informally “there is a difference between what an attacker can expect to see
and what he actually sees”. In [55] this problem is dealt with by introducing
the

Definition 5.2.3 (Hypothesis of stochastic equivalence.) For virtu-
ally all high probability (r − 1)-round diflerentials (α, β)

PrP (∆C1 = β | ∆P = α, K = k) ≈ PrP,K(∆C1 = β | ∆P = α, )

holds for a substantial fraction of the key values k.

In Section 6.1 we will show that for the DES the probability of the best
known differential varies for different subspaces of the key space. The hy-
pothesis of stochastic equivalence is further discussed in Section 7.4.
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5.2.4 Higher order differentials

In [56] the definition of derivatives of cryptographic functions was given.

Definition 5.2.4 (Lai [56]) Let (S, +) and (T, +) be Abelian groups. For
a function f : S �→ T , the derivative of f at the point a ∈ S is defined as

∆af(x) = f(x + a)− f(x)

Definition 5.2.5 (Lai [56]) Let f be as in Definition 5.2.4. The i’th deriva-
tive of f at the point a1, . . . , ai is defined as

∆(i)
a1,... ,ai

f(x) = ∆ai
(∆(i−1)

a1,... ,ai−1
f(x))

Note that the characteristics and differentials used by Biham and Shamir in
their attacks correspond to the first order derivative described by Lai. There-
fore it seems natural to extend the notion of differential into higher order
differentials.

Definition 5.2.6 A one round differential of order i is an i+1-tuple (α1, . . . , αi, β),
s.t.

∆(i)
α1,... ,αi

f(x) = β

When considering functions over GF (2) the points a1, . . . , ai must be lin-
early independent for the i’th derivative not to be trivial zero.

Proposition 5.2.1 (Lai [56]) Let L[a1, a2, . . . , ai] be the list of all 2i pos-
sible linear combinations of a1, a2, . . . , ai. Then

∆(i)
a1,... ,ai

f(x) =
∑

γ∈L(α1,... ,αi)

f(x⊕ γ)

If ai is linearly dependent of a1, . . . , ai−1, then

∆(i)
a1,... ,ai

f(x) = 0

We use also the following proposition in this paper.
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Proposition 5.2.2 (Lai [56]) Let ord(f) denote the nonlinear order1 of
a multi-variable polynomial function f(x). Then

ord(∆af(x)) ≤ ord(f(x))− 1

This leads to the following proposition.

Proposition 5.2.3 If ∆a1,... ,ai
f(x) is not a constant, then the nonlinear

order of f is greater than i.

Proof: From Proposition 5.2.2 it follows that

ord(f) ≥ ord(∆a1f(x)) + 1 ≥ . . . . . . . . . . . . . . . ≥ ord(δa1,... ,ai
f(x)) + i

✷

5.2.5 Attacks using higher order differentials

We consider in the following DES-like iterated block ciphers with block size
of log2 p2, where p is a prime. The plaintext block is divided into two halves
L and R each of a size log2 p. Each round takes a text input of size log2 p2

and a round key of size log2 p. We assume that there is no expansion of the
text input to the F-function. One also calls the function F , the round func-
tion. In this section we adopt this convention for convenience, since it should
cause no confusion. In the attacks we are going to present the complexity
is measured as the number of encryptions of the analysed cipher, that the
attacker has to perform for success.

Theorem 5.2.3 Let f(x, k) = (x+k)2 mod p, p prime, be the round function
in a DES-like iterated cipher of block size log2 p2, where ‘+’ is addition mod-
ule p. Then every non-trivial one round differential of f has a probability of
1/p. Secondly, the second order derivative of f is a constant.

Proof: Since a differential in general is independent of the key we will write
f(x) instead of f(x, k) in the following. To prove the first statement, consider

1In [56] called the nonlinear degree.
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a fixed a �= 0 mod p. Then

f(x)− f(x + a) =p f(y)− f(y + a) ⇔
x2 − (x2 + a2 + 2ax) =p y2 − (y2 + a2 + 2ay) ⇔

−a2 − 2ax =p −a2 − 2ay ⇔
2a(x− y) =p 0 ⇔

x =p y

since p is prime. To prove the second statement, let a1, a2 be constants, then

∆a1,a2f(x)

= f(x + a1 + a2)− f(x + a1)− f(x + a2) + f(x)

= a2
2 + 2a2(x + a1)− (a2

2 + 2a2x)

= 2a1a2

✷

Theorem 5.2.4 Let f(x, k) = (x+k)2 mod p, p prime, be the round function
in a 5 round DES-like iterated cipher of block size log2 p2 with independent
round keys, i.e., a key size of 5× log2 p. Then a differential attack using
first order diflerentials needs about 2p chosen plaintexts and has a running
time of about p3.

Proof: When doing a differential attack counting on the round key in the
fifth round of the above cipher we need a 3 (or 4) round differential. It is
easy to see that every 3 round differential has a probability of at most p−1

and we obtain

S/N =
p× 1

p

1× 1
= 1

where S/N is the signal to noise ratio defined on page 58 and λ = 1, since
we use all pairs in the analysis and γ = 1, since in average one key value
will be suggested by a pair. This attack is not possible, since the right key
cannot be distinguished from other random keys. When doing a differential
attack counting on the round keys in both the fourth and fifth rounds we
need only a 2 round differential. And since the concepts of characteristics
and differentials coincide for 2 rounds in a DES-like cipher, the probability
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of a 2 round differential is at least 1/p for the above cipher. In this case we
obtain

S/N =
p2 × 1/p

1× 1
= p

This attack is possible. We need about 2p chosen plaintexts and for every
pair of plaintexts we do two rounds of encryption for every p2 possible keys of
the fourth and fifth rounds. Therefore we obtain a complexity of about p3. ✷

Theorem 5.2.5 Let f(x, k) = (x+k)2 mod p, p prime, be the round function
in a 5 round DES-like iterated cipher of block size log2 p2 with independent
round keys, i.e., a key size of 5× log2 p. Then a differential attack using
second order differentials needa about 8 chosen plaintext with a running time
of about p2.

Proof: In the following addition is modulo p. Consider ∆α,βf(x) where
α = a ‖ 0 and β = b ‖ 0 for some fixed a, b, i.e the right halves of α and
β are zero. See also Figure 5.6, where (0, 0) denotes the trivial second order
derivative of f and where in the second round the second order derivative is
(a, b, 2× a× b). Consider the following attack

1. Choose plaintext P1 at random.

2. Set P2 = P1 + α, P3 = P1 + β and P4 = P1 + α + β.

3. Get the encryptions C1, . . . , C4 of P1, . . . , P4

4. For every value k5 of the round key RK5 do

(a) Decrypt all ciphertexts C1, . . . , C4 one round using k5. Denote
these 4 ciphertexts D1, . . . , D4.

(b) For every value k4 of the round key RK4 do

i. Calculate ti = f(DR
i + k4) for i = 1, . . . , 4.

ii. If (t1 + t4 − (t2 + t3))− (DL
1 + DL

4 − (DL
2 + DL

3 )) = 2× a× b
then output k5 and k4.

Here XL and XR denote the left and right halves of X respectively. In
the first round all inputs to the f -function are equal. In the second round
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Figure 5.6: A second order differential of a five round DES-like iterated
cipher.

the inputs form a second order differential with (a, b, 2 × a × b). Since this
differential has probability one according to Theorem 5.2.3, the difference in
the four inputs to the third round is Γ = 2×a×b. Therefore the difference in
the outputs of the fourth round can be computed as the exclusive-or sum of Γ
and of the left halves of the ciphertexts after four rounds. Upon termination a
few keys will have been suggested, among which the right keys appear, since
the two round second order differential has probability one. Therefore by
repeating this attack a few times only one value of (RK4, RK5) is suggested
every time. This value is guaranteed to be the secret fourth and fifth round
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keys. The signal to noise ratio of the attack is

S/N =
p2 × 1

1× 1
= p2

where we have assumed that one key in average is suggested by each pair of
plaintexts. Now it is trivial to find the remaining three round keys by similar
attacks on cryptosystems with less than five rounds. As in [7] we can pack
the chosen plaintexts in economical structures, thus as an example obtain
four second order differentials from 8 chosen plaintexts. ✷

If the prime p above is of size, say about 225, according to Theorem 5.2.4 a
differential attack using first order differential has a complexity of about 275

using about 226 chosen plaintexts, i.e., not at all a practical attack. According
to Theorem 5.2.5 a differential attack using second order differentials has a
complexity of about 250 using only about 8 chosen plaintexts, a practical
attack or at least not far from being one.

The attack in the proof of Theorem 5.2.5 can be applied to any 5 round
DES-like iterated cipher, where the round function contains no expansion
and where the output coordinates are quadratic, i.e., the nonlinear order of
f is 2. Furthermore the attack can be converted into an attack on any 5
round DES-like iterated cipher, as we will show now. For convenience let us
consider functions over GF (2). We state explicitly the definition of higher
order differentials for this important case.

Definition 5.2.7 Consider a Feistel cipher. A one round differential of or-
der i is an (i + 1)-tuple (α1, . . . , αi, β), s.t. all αj’s are linearly independent
and

⊕γ∈L(α1,... ,αi)g(P ⊕ γ) = β

where g is the round function.

It is seen there are 2i plaintexts in a differential of order i.

Theorem 5.2.6 Let f(x, k) be the round function in a 5 round DES-like
iterated cipher of block size 2n with independent round keys, i.e., a key size
of 5×n bits. Assume that the nonlinear order of f is r. Then a differential
attack using differentials of order r needs about 2r+1 chosen plaintexts with
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a running time of about 2n.

Proof: According to Proposition 5.2.3 the r′th-order derivative of a func-
tion of nonlinear order r is a constant. Therefore we can obtain a 2 round
r’th-order differential with probability one and do a similar attack as in the
proof of Theorem 5.2.5. ✷

To illustrate that the above attack works, we consider now the mappings
f(x) = x2k+1 in GF (2n) described in [85]. According to Theorem 7.3.3 every
3 round differential has a probability of at most 23−2n, when n is odd and
gcd(k, n) = 1.

Lemma 5.2.1 Consider f(x) = x2k+1 in GF (2n) for n odd and gcd(k, n) =
1. Then every non-trivial one round differential of f has a probability of at
most 2

2n = 21−n and the second order derivative of f , ∆α,βf(x) is a constant

with the value Γ = α× β × (α2k−1 ⊕ β2k−1).

Proof: The first statement is proved in Theorem 7.3.4 and that the sec-
ond derivative is a constant follows from Proposition 5.2.2. The constant is
computed as follows.

∆α,βf(x) = f(x⊕ α⊕ β)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x)

= (x⊕ α⊕ β)2k+1 ⊕ (x⊕ α)2k+1 ⊕ (x⊕ β)2k+1 ⊕ (x)2k+1

= (α⊕ β)2k+1 ⊕ α2k+1 ⊕ β2k+1

= α× β × (α2k−1 ⊕ β2k−1)

where we note that (x⊕ α)2k+1 = (α× x2k
)⊕ (x× α2k

)⊕ x2k+1 ⊕ α2k+1 ✷

We implemented the attack of Theorem 5.2.5 counting on both the fourth
and fifth round key using second order differentials in a five round DES-like
iterated cipher with f(x) of Lemma 5.2.1 as round function and with n = 9
and k = 1, i.e., a 18-bit cipher with a 45 bit key. In 100 tests using 12 chosen
plaintexts only one pair of keys was suggested and every time this pair was
the right values of the fourth and fifth secret round keys. We could have used
quartets as defined in [7], thereby reducing the number of chosen plaintexts
to about 8.

Note, that for this cipher the probability of any 3 round differential is
at most 23−2n [85] where 2n is the block size. Therefore in a differential
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attack using first order differentials counting only on the round key in the
fifth round, the last round, would yield a signal to noise ratio of

S/N =
2n × 23−2n

1× 1
= 23−n

and would not be possible for n > 3. A differential attack counting on the
round keys in both the fourth and fifth rounds using, what we will call, par-
tial differentials is possible as is demonstrated in the next section.

Conclusion of the attacks. We showed there exist ciphers secure against
a differential attack using first order differentials, but which can be bro-
ken using second order differentials. We used quadratic functions as round
functions and second order differential attacks. We exploit the fact that for
quadratic functions the second derivative is a constant. The attack can also
be applied to ciphers using higher order functions as round functions. In
general, a cipher with five rounds (or less) using round functions of nonlinear
order r can be attacked using r’th-order differentials. However, attacks on
a cipher with round functions of nonlinear order r involve encryptions of 2r

chosen plaintexts and the practicality of the attack decreases as r increases.
Our attacks are limited to ciphers with 5 rounds or less and cannot be ex-
tended to 6 or more rounds. In the following we will show that even in the
case where the round functions are of high order, differential attacks can be
mounted.

5.2.6 Partial differentials

The attacks we are about to demonstrate use so-called partial differentials
of first order and can be used in attacks on any four or five round cipher,
where for at least one non-trivial difference in two inputs to the f -function
not all differences in the outputs are possible. These attacks are therefore
not applicable to the cipher example of Theorem 5.2.5.

In [83] it is shown that the functions f(x) = x−1 in GF (2n), where
f(x) = 0 for x = 0, are differentially 2-uniform for odd n and differentially 4-
uniform for even n. In both cases the nonlinear order of the outputs is n−1.
As an example consider a 5 round cipher using as round function the inverse
function above for n odd. This cipher is highly resistant against differential
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attacks using full differentials, since any 3-round differential has a probabil-
ity of at most 23−2n according to Theorem 7.3.3. That is using differentials,
where full n-bit differences are used. Note that in a 2n-bit DES-like iterated
cipher differentials are constructed from the concatenation of two n-bit values
in each round. However, for every non-trivial input difference to one round
there are only 2n−1 possible differences in the outputs, each one with a proba-
bility of 2/2n, since the round function is differentially 2-uniform. That is, for
a non-trivial input difference we get one bit of information about the output
differences. From this fact we can construct a 2 round differential of proba-
bility one, where only one bit of the differences after 2 rounds of encryption
is predicted. We call that a partial differential. The following result holds.

Theorem 5.2.7 Let f(x) in GF (2n) be the round finction in a 5 round
DES-like iterated cipher with block size 2n bits using 5 round keys, each of
size n bits. Let α be an input difference for which only a fraction W of all
output differences are possible. Then a differential attack using partial dif-
ferentials has a complexity of 22n using about 2L plaintexts, where L is the
smallest integer s.t. (W )L < 2−2n.

Proof: Consider the following attack.

1. Let α be the non-trivial difference of two inputs to f , for which only a
fraction W of the output differences can occur.

2. Compute a table T (initialised to zero in all entries), s.t. for i =
0, . . . , 2n − 1
T [f(i)⊕ f(i⊕ α)] = 1.

3. Choose plaintext P1 at random and set P2 = P1 ⊕ (α ‖ 0).

4. Get the encryptions C1 and C2 of P1 and P2

5. For every value k5 of the round key RK5 do

(a) Decrypt the ciphertexts C1, C2 one round using k5. Denote these
ciphertexts D1, D2.

(b) For every value k4 of the round key RK4 do

i. Calculate ti = f(DR
i ⊕ k4) for i = 1, 2.

ii. If T [t1 ⊕ t2 ⊕DL
1 ⊕DL

2 ] > 0 then output k5 and k4.
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Since the nonlinear order of f(x) can be as high as n−1, the one bit informa-
tion about the output differences we get from a given input difference is not
necessarily easily determined. Therefore we first compute a table T , s.t. for
a fixed input difference α, if T [β] > 0 then an output difference β is possible.
The inputs to the first round are equal and the inputs to the second have
difference α. That is, we can compute a fraction W of all possible values of
the output difference of the fourth round from the right halves of the cipher-
texts and from the values in table T . Upon termination about W × 22n of
the possible values of (RK4, RK5) have been suggested, one of which is the
right pair of keys. By repeating the attack sufficiently many times only one
unique pair of keys, the right pair of keys, will be left suggested. Any other
keys will be suggested with probability W × 2−2n for each run of the above
attack. Therefore after trying L pairs of plaintexts any key but the right key,
is suggested L times with a probability of (W )L and if (W )L < 2−2n with a
high probability the right keys are uniquely determined. ✷

The attack can be extended to work on ciphers with any number of rounds
by counting on all but the first three round keys. We implemented the attack
on a 5 round 18-bit cipher with a key of 45 bits using as round function
f(x) = x−1 in GF (29). In this case W is one half. Using 24 pairs of chosen
plaintexts in 100 tests only one pair of keys was found, the right keys in the
fourth and fifth rounds. The attack can be applied to a 5 round cipher with
the cubing function of the previous section as the round function with the
same probability of success.
Conclusion of the attacks. We showed an attack exploiting the fact that
a cipher with five rounds (or less), where for one difference in the inputs
to the round function only a fraction of the differences in the outputs are
possible. The success of the attack depends on the size of this fraction in the
way that the smaller the fraction the faster the attack, and on the size of the
round keys. Imagine a five round 64-bit cipher constructed as above where
the text input to the f -function is expanded to 48 bits, whereafter a 48-bit
key is exclusive-or’ed. The above attack would then have a running time of
at least about 296 encryptions, which is hardly possible to do in the next few
decades. As for the attacks using higher order differentials it is not possible
to extend the above attacks to ciphers with 6 or more rounds.
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5.2.7 Differential cryptanalysis in different modes of
operation

The attacks by differential cryptanalysis are chosen plaintext attacks. How-
ever, the efficiency of a differential attack depends on the mode of operation,
which is used for the attacked block cipher. The complexity of the attacks
by Biham and Shamir [7] is the number of encryptions of chosen plaintexts,
which the attacker needs in the attack, assuming that the block cipher is
used in the native ECB mode. A chosen plaintext attack is not a realistic
attack in many settings. lt is possible to Convert a differential attack on
a block cipher used in ECB mode into a known plaintext attack, which is
a more realistic attack. Assume that we need m pairs of plaintexts with a
certain difference. By collecting about 2n/2×

√
2m known plaintexts, we can

form, at least theoretically,

(2n/2 ×
√

2m)× (2n/2 ×
√

2m− 1)

2
� 2n ×m

pairs of plaintext pairs. If m and n are big, this forming of pairs may be
computationally infeasible. Anyway, since there are exactly 2n pairs of plain-
texts with any certain difference, we can expect to get about m pairs with
the needed difference [7]. This is not the whole story, though. If the plain-
texts contain redundancy the differences of plaintext pairs are not necessarily
uniformly distributed. As an example, take the exclusive-or as the difference
operation. Then if the plaintexts consist of ASCII characters, every parity
bit in a byte is zero, therefore in an exclusive-or of any two plaintexts all
parity bits are zero.

For most of the differential attacks many pairs of plaintexts are needed
[7]. It is not advisable to use the ECB mode when many plaintext blocks
are to be encrypted, therefore an attacker can expect that the attacked block
cipher is not used in the ECB mode. When a block cipher is used in the
CBC mode, the attacker has no control over the inputs to the block cipher.
Assume in the following that a differential attack needs m pairs of chosen
plaintexts, when the block cipher is used in the ECB mode. Then there
exists a differential attack on the same block cipher used in the CBC mode,
that needs 2n/2 ×

√
2m known or chosen plaintexts by an argument similar

as above. A complexity of m pairs can be obtained for the block cipher
used in the CBC mode in an adaptively chosen plaintext attack, if the initial
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value is not secret. The attacker chooses one random plaintext P and gets
the encryption C = EK(P ⊕ IV ), where IV is an initial value. He then
repeats the with plaintext P ′, s.t. P ⊕ P ′ have the desired difference and
gets C ′ = EK(P ′ ⊕ IV ). Assuming that the initial value is unchanged the
inputs to the block cipher for the two encryptions have the desired difference.
If the initial value changes for every CBC encryption an attacker cannot do
an adaptively chosen plaintext attack.

An adaptively chosen plaintext attack is the least practical of all attacks.
It is important to note, that even though Biham and Shamir’s results on the
DES [7] are very impressive, the attacks are by far no practical attacks.

Assume again that a differential attack needs m pairs of chosen plain-
texts, when the block cipher is used in the ECB mode. Then there exists a
differential attack on the same block cipher used in the OFB mode with full
feedback, that needs 2n/2×

√
2m known or chosen plaintexts by an argument

similar as for the CBC mode. A similar argument holds for the CFB mode.
But whereas the OFB mode should be used only with full feedback, as noted
in Section 3.1, the CFB can be used with any feedback. If n′ < n bits are
fed back, the attacker does not know the full output of the block cipher and
the success of a differential attack decreases. Differential attacks on the DES
used in the CFB mode have been considered in [97]. A modified differential
attack is presented, which works for m ≥ 3, where m is the size of plaintext
and ciphertext blocks and where m bits are used in the feedback. The attacks
on the DES are faster than exhaustive search only for a restricted number
of rounds, i.e., up to 10 rounds. The work is motivated by the fact that
for m < n, encryption in the CFB mode is slow and for small m it may
be tempting to reduce the number of rounds in the DES to achieve better
performance.

5.3 Linear Cryptanalysis

In 1993 M. Matsui introduced linear cryptanalysis of the DES [64]. A similar
attack on FEAL appeared already in 1992 [68]. Linear cryptanalysis [64] is a
known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, ciphertext and key. In the attack on the DES
(or on DES-like iterated ciphers) the linear approximations are obtained by
combining approximations for each round under the assumption of indepen-
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dent round keys. The attacker hopes in this way to find an expression (5.6),
which holds with probability pL �= 1

2
over all keys [64] T such that |pL − 1

2
|

is maximal.

(P · α)⊕ (C · β) = (K · γ) (5.6)

where P , C, α, β, γ are m-bit strings and where ‘·’ denotes the dot product.

Since an expression (5.6) in the ideal case will have a probability one half,
and since it contains only linear expressions, we call the expression (5.6) a
linear approximation. Given an approximation (5.6) a linear attack using N
plaintexts and the N corresponding ciphertexts goes as follows.

Linear attack [64]

1. For all plaintexts, P , and ciphertexts, C, let T be the number of times
the lefthand side of (5.6) is zero.

2. If T > N/2 guess that K · γ = 0, otherwise guess that K · γ = 1.

The attack finds one bit of information about the key, K · γ, and the com-
plexity of a successful attack, i.e., the number of known plaintexts needed,
using the above algorithm can be approximated in the following way. Let
T be a binomial random variable taking on the value 0 with probability p.
Assume that |p− 1/2| is small and w.l.o.g. that p > 1/2. Then

Pr(T > N/2) = 1− Pr(T ≤ N/2)

� 1− Φ(
N/2 + 1/2−Np√

p(1− p)×
√

N
)

� 1− Φ(−2
√

N |p− 1/2|)
= Φ(2

√
N |p− 1/2|)

where Φ is the normal distribution function. With N = |p − 1/2|−2 the
success rate is about 97.72%. Since the number of plaintexts needed is the
dominating factor in a linear attack, the complexity, NP , of the above linear
attack is [64]

NP � |pL − 1/2|−2



82 CHAPTER 5. CRYPTANALYSIS OF BLOCK CIPHERS

where pL is the probability of a linear approximation of the form (5.6). This
estimate shows that the quantity of interest in a linear attack is |pL−1/2|−2.
For DES-like iterated ciphers linear approximations of the form (5.6) can be
found by combining linear approximations of each round in the cipher. As
in differential cryptanalysis we can define characteristics to be used in linear
cryptanalysis.

Definition 5.3.1 A one-round linear characteristic is a list of input, key
and output bits of one round of the block cipher and a probability p over all
keys and plaintexts, s.t. the boolean value obtained by adding (modulo 2)
the input and key bita equals the boolean value obtained by adding (modulo
2) the output bits with probability p. An r-round linear characteristic is the
concatenation of r one-round linear characteristics.

In some rounds of a linear characteristic linear approximations are not needed.
We call these rounds trivial one-round linear characteristics.

As in differential cryptanalysis by assuming that the r one round approxi-
mations are independent we can calculate the probability of an r-round linear
approximation from the probabilities of the r one round approximations, for
example by assuming that the round keys in the cipher are independent. The
probability of an r-round linear characteristic is calculated using the Piling
Up-Lemma [64].

Lemma 5.3.1 Let Zi, 1 ≤ 2 ≤ n, be independent random variables, whose
boolean values are 0 with probability pi. Then

Pr(Z1 ⊕ Z2 ⊕ · · · ⊕ Zn = 0) = 1/2 + 2n−1

n∏
i=1

(pi − 1/2) (5.7)

The above linear attack is not very efficient, since it finds only one bit
of information about the key. However, there exists an extended linear at-
tack, which finds more key bits. Instead of approximating the first and last
round in an r-round iterated cipher, since we know both the plaintext and
the ciphertext, we can count on all keys which affects the bits in the lin-
ear approximation (5.6) in the first and last round, yielding the following
approximation

(P · α)⊕ (C · β)⊕ (F (PR, K1) · α1)⊕ (F (CR, Kr) · αr) = (K · γ) (5.8)
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where PR, CR are the right halves of the plain- and ciphertexts respectively.
K1 and Kr are the key bits affecting the linear approximation in the first and
r’th rounds. For all choices of the keys K1 and Kr the approximation (5.8)
can be seen as an approximation of a cipher of r-2 rounds, i.e., two rounds
shorter than the original cipher. The attack goes as follows with N available
plaintexts.

Extended linear attack [64]

1. For all, say n, values of the two keys, K1 and Kr do:

For all plaintexts, P , and ciphertexts, C, let Ti, i = 1, . . . , n, be the
number of times the lefthand side of (5.6) is zero.

2. Let Tmax and Tmin be the maximum and minimum values of the Ti’s
for i = 1, . . . , n. If |Tmax−N/2| > |Tmin−N/2| guess that K1 and Kr

are the key values from the computation of Tmax.

If |Tmax−N/2| < |Tmin−N/2| guess that K1 and Kr are the key values
from the computation of Tmin.

In case of the DES it is conjectured and confirmed by computer experiments
[64, 65, 66] that the efficiency of (5.8) decreases, when the values of K1 or
Kr are incorrect values. The complexity of success of this extended attack is
somewhat larger than the complexity using the first attack. In [64, 65, 66]
it is estimated that the complexity of an extended linear attack on the DES
with up to 16 rounds is about

NP � c× |pL − 1/2|−2

where c ≤ 8 [65, 66]. Note that the success of the extended attack is inde-
pendint of the parity of the key bits from the intermediate rounds, K · γ.
And opposite to Matsui’s attack we will not use the right side of (5.8) in
the attack. The reason for this follows in the coming section. Note that
the practicality of this extended attack depends also on how many key bits
are needed to count on in the first and last rounds. In his attack on the
DES, because only one S-box is active in every round of the linear approxi-
mation, Matsui counts on and finds 12 bits of the key. By using other linear
approximations other bits of the key can be found.
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5.3.1 The probabilities of linear characteristics

Let X ∈ GF (2)m and K ∈ GF (2)( be random variables and Y = Y (X, K),
Y ∈ GF (2)n, be a random variable which is a function of X and K. Then we
have the following generalisation of Parseval’s Theorem, see Theorem 7.5.1,
an important result found recently by Kaisa Nyberg [84].

Theorem 5.3.1 (The Fundamental Theorem) If X and K are indepen-
dent and K is uniformly distributed, then for all a ∈ GF (2)m, b ∈ GF (2)n

and γ ∈ GF (2)(

2−(
∑

k∈GF (2)�

|PX(X · a + Y (X, k) · b = 0)− 1/2|2 =

2−(
∑

k∈GF (2)�

|PX(X · a + Y (X, k) · b + k · γ = 0)− 1/2|2 =

∑
c∈GF (2)�

|PX,K(X · a + Y (X, K) · b + K · c = 0)− 1/2|2 =

For DES-like ciphers this can interpreted in the following manner [84].

Theorem 5.3.2 If the round keys of r rounds of a DES-like cipher are
independent and unifomaly random then = = mr and for all a and b∑

c∈GF (2)�

|PX,K(X0 · a + Y (X0, K) · b + K · c = 0)− 1/2|2 =

4r
∑

c∈GF (2)�

|PX(X0 · (a + b0) = 0)− 1/2|2 ×

r∏
i=1

|PZ(f(Z) · bi
R = Z · ci)− 1/2|2 (5.9)

where X0 is the plaintext, Y = Xr the corresponding ciphertext and Z =
E((XR) + K). Furthermore,

br = (bL, bR), bi−1 = (bi
R, bi

L + Et(ci)), for i = 1, 2, . . . , r, and
c = (c1, . . . , cr)

and Et is the transpose of the expansion E.
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Corollary 5.3.1 ([84]) If the plaintexts are uniformly distributed∑
c∈GF (2)�

|PX,K(X · a + Y (X; K) · b + K · c = 0)− 1/2|2 =

4r−1
∑

ck∈GF (2)�

r∏
i=1

|PZ(f(Z) · bi
R = Z · ci)− 1/2|2

where aL + bL +
∑r/2

i=1 Et(c2i) = 0 and aR + bR +
∑(r−1)/2

i=1 Et(c2i−1) = 0,
assuming that r is even.

These theorems say that the probability of an approximation (5.6) does not
depend on the value of γ. Moreover for the probability p of a linear approx-
imation it holds that |p − 1/2|2 is the sum of |pγ − 1/2|2 for all values of
γ.

For the first linear attack this may have the effect that the probability
of success decreases. As also noted by Biham [4], if there exists more than
one expression of (5.6) for different values of γ, they may cancel the effect of
each other.

It is seen that the above way of calculating the probabilities of a linear
approximation is reminiscent of the way of calculating the probabilities of
differentials in differential cryptanalysis, see 5.5 on page 67, which at the same
time indicates that in practice for longer characteristics/approximations it is
hard to calculate the exact probability. In Section 6.1.5 we show the effect
of the above results on Matsui’s attack on the DES [64, 65, 66].

5.3.2 Iterative linear characteristics for DES-like ci-
phers

As noted by Matsui [64, 65, 66] we can obtain iterative linear approximations
for DES-like ciphers, if approximations exist where only bits of the right
halves of (intermediate) ciphertexts are known. As in differential cryptana-
lysis our goal is to maximise the number of trivial one round characteristics.
For these rounds in linear cryptanalysis no linear approximations are needed.
In the following let Xi be the right half of the ciphertext after i rounds of
encryption, i.e., Xi is the input to the F-function in the (i + 1)’th round.
X0 denotes the right half of the plaintext input to the linear characteristic.
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Also for every round let us fix a key k and for convenience let F (X) denote
F (X, k).

2-round iterative characteristics

In this type of characteristic every second round contains no linear approx-
imation, see Figure 5.7. This type of characteristic is not possible if the
coordinate functions of the F -function are all balanced, e.g. if F is a permu-
tation. We assume that we have knowledge about the bits X0 · α and that
F (X1) · α = 0 with probability p �= 1/2. Then

|PrX(X2 · α = X0 · α)− 1/2|2 = |p− 1/2|2

Figure 5.7: A 2 round iterative linear characteristic.

3-round iterative characteristks

In this type of characteristic every third round contains no linear approxi-
mation, see Figure 5.8. It follows that X3 · β = (F (X2) · β) ⊕ (X1 · β) and
that X0 · α = (F (X1) · α)⊕ (X2 · α). Assuming that F (X1) · α = Xi · β with
probability p1 and that F (X2) ·β = X2 ·α with probability p2, it follows that
for the 3 round characteristic

|PrX(X3 · β = X0 · α)− 1/2|2 = 4× |p1 − 1/2|2 × |p2 − 1/2|2
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When concatenating two three round iterative characteristic, the rounds two
and three in the second characteristic are interchanged.

Figure 5.8: A 3 round iterative linear characteristic.

4-round iterative characteristics

In this type of characteristic every fourth round contains no linear approxi-
mation, see Figure 5.9. Let us fix a value of A from Figure 5.9 and let the
probabilities of the 3 last rounds be p1(A), p2(A), p3(A) respectively. It fol-
lows that X4 ·β = (F (X3)·β)⊕(X2 ·β) and that X0 ·α = (F (X1)·α)⊕(X2 ·α).

X2 · (β ⊕ α) = (F (X3) · β)⊕ (F (X1) · α)⊕ (X4 · β)⊕ (X0 · α) ⇒
X2 · (β ⊕ α) = (x3 · A)⊕ (X1 · A)⊕ (X4 · β)⊕ (X0 · α)

= (F (X2) · A)⊕ (X4 · β)⊕ (X0 · α)

with probability 1/2+2(p1(A)−1/2)(p3(A)−1/2). And since X2 · (β⊕α) =
F (X2) · A with probability p2(A) it follows from Theorem 5.3.2 that

|PrX(X4 · β = X0 · α)− l/2|2

= 42 ×
∑

A

|p1(A)− 1/2|2 × |p2(A)− 1/2|2 × |p3(A)− 1/2|2
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When concatenating two four round iterative characteristic, the rounds two
and four in the second characteristic are interchanged. This is the type of
characteristic Matsui uses in his attack on the full 16-round DES. As we will
see, the probability of Matsui’s approximation is (somewhat) better than his
estimate in [64, 65, 66].

Figure 5.9: A 4-round iterative linear characteristic.

Longer characteristics

As for differential cryptanalysis it is possible, and quite trivial, to go further
in the above process to n-round iterative linear characteristics. For a 5-round
iterative characteristic there will be two ‘free’ variables (like A for 4-round
characteristics) in the equations to solve. In practice, to calculate the exact
probability gets much more complex for larger values of n. Note here the
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resemblance with characteristics and differentials in differential cryptanaly-
sis. In [67] Matsui devised a method to find the best linear characteristics
in a Feistel cipher, but although that in itself is impressive, note that his
characteristics are for one value of the variables like A of Figure 5.9.

5.4 Analysis of the Key Schedules

In this section we consider the key schedules of block ciphers. Much research
on the DES has been focused on the S-boxes, but a weak key schedule can
be exploited in cryptanalytic attacks.

5.4.1 Weak and pairs of semi-weak keys

We consider an n-bit block cipher, where EK(·) denotes encryption with the
key K and DK(·) denotes decryption.

Definition 5.4.1 A weak key K, is a key for which encryption equals de-
cryption, i.e., EK(X) = DK(X) for all n-bit texts X.

Definition 5.4.2 A pair of semi-weak keys K, K∗, are keys for which en-
cryption with one keys equals decryption with the other key, i.e., EK(X) =
DK∗(X) for all n-bit texts X or equivalently, DK(X) = EK∗(X) for all n-bit
texts X.

A well-known example is

Example 5.4.1 There are at least four weak keys and six pairs of semi-
weak keys for the DES.

In [16] D. Coppersmith showed that there are exactly 232 fixpoints for the
DES used with a weak key.

Theorem 5.4.1 Consider an r-round DES like iterated cipher for r even. A
key K, for which all r round keys Ki, i = 1, . . . , r are equal, is a weak key.
Furthermore, there are exactly 2n/2 fixpoint for the cipher used with a weak
key.
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Proof: Since the only difference between the encryption and decryption func-
tion of a DES-like iterated cipher is the values of the round keys, the first
part of the proof follows. To prove the second part, let the value of the input
to the (r/2)’th and (r/2 + 1)’th rounds be equal, say a. Because the round
keys are equal the outputs of the rounds are also equal and therefore the
inputs to the (r/2 − 1)’th and (r/2 + 2)’th rounds are equal. It follows by
induction that the inputs to the i’th and the (r − i + 1)’th rounds are equal
for all i and that the plaintext equals the ciphertext. Since there are 232

possible values of a there are at least as many fixpoints. Now let P be a
fixpoint for a weak key. The inputs to the F-function in the first and last
rounds are equal, therefore the outputs are equal. But then the inputs to the
F-function in the second and second last rounds are equal etc. Finally the
inputs to the (r/2)’th and (r/2 + 1)’th rounds axe equal, proving that there
are exactly 232 fixpoints for a weak key. ✷

If a weak key is known, the 2n/2 fixpoints can be computed using only half
an encryption. If the number of weak and pairs of semi-weak keys are small
they are of no importance for the security of a block cipher used for encryption
in practice, if the keys are chosen at random, i.e., under Assumption 4.1.1.
However, when block ciphers are used in hash modes where e.g. the key
input can be chosen by the attacker in attempts to find collisions, they play
an important role as demonstrated in Section 8.2.4.

5.4.2 Simple relations

First we define

Definition 5.4.3 Let E be a block cipher, s.t. EK(·) denotes the encryp-
tion finction using the key K and let f, g1, g2 be ‘simple’ functions, such that
the total complexity of one evaluation of each of f, g1, g2 is smaller than one
evaluation of E (one encryption). Then if

EK(P ) = C ⇒ Ef(K)(g1(P, K)) = g2(C, K) (5.10)

E is said to contain a simple relation between the encryption functions
EK(·) and Ef(K)(·).
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This definition is different from that of linear structures given in [27]. Simple
relations for which (5.10) holds for all plaintexts and all keys can be exploited
in a chosen plaintext attack as follows

1. Denote by PK the set of all potential keys.

2. Choose a random plaintext P .

3. Get the encryption C = EK(P ) where K is the secret key.

4. Choose a key K ′ ∈ PK

(a) Calculate C ′ = EK′(P ). If C ′ = C output K ′ and stop

(b) Get the encryption C∗ = EK(g1(P, K ′)).
If g2(C

′, K ′) = C∗ output f(K ′) and stop

5. Remove K ′ and f(K ′) from PK and go to 4

Note that in step 4b we get Ef(K′)(g1(P, K ′)) = g2(C
′, K ′) = C∗. That is,

in general one can check two keys using one chosen plaintext and doing one
encryption and one evaluation of f and the gi’s. The restriction to ‘easy’
evaluations of f and the gi’s is now obvious and the efficiency of this attack
depends on the complexity of the evaluations of the simple functions. Also
of great importance is the complexity of the enumeration of the keys. The
operations in steps (1) and (5) have to be of low complexity. If the gi’s are
independent of the keys a further improvement of the attack is possible as
we will illustrate now.

For the DES and LOKI’91 there is a well-known simple relation known as
the complementation property, where f(K) = K (the complemented value of
K) and gi(X, K) = X. In this case we need only ask for the chosen plaintext
once in step 4b of the above attacks.

5.4.3 Weak hash keys

We consider as before iterated block ciphers with block size m and for con-
venience we assume that the group operation is the exclusive-or.
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Definition 5.4.4 A weak hash key K is a key for which

P ⊕ EK(P ) = δ (5.11)

with probability p >> 2−m for fixed δ over all plaintexts P .

It is clear that weak hash keys should be avoided in hash modes where the
input to the block cipher is added modulo 2 to the output to obtain some
kind of one-wayness.

As stated earlier, for each weak key in DES, LOKI’89 and LOKI’91 there
are 232 fixpoints, therefore a weak key in DES-like iterated ciphers, e.g. the
DES and the LOKI’s, is also a weak hash key. In [80] Moore and Simmons
generalised the idea of Coppersmith for the DES to the following.

Theorem 5.4.2 (DES) Suppose for some key K, that ∀i : K(i) = K(17−
i) = E(σ) where E is the 48 bit expansion of some 32 bit string σ. Then
there are exactly 232 plaintexts P , s.t. DESK(P )⊕ P = σ ‖ σ.

Proof: Assume that for some key K, K(i) = K(17 − i) = E(σ). Then
choose the inputs to the two middle rounds (r/2) and (r/2 + 1), s.t. the
difference is σ. Now the inputs after addition of the keys in the two middle
rounds are equal and the difference between the inputs to the (r/2 − 1)’th
and (r/2 + 2)’th rounds before addition of the keys will be σ, in general the
difference between the inputs to the i’th and ((r + 1) − i)’th round will be
σ. Finally the difference between the plaintext and the ciphertext will be
(σ ‖ σ). To complete the proof we note that there are exactly 232 ways to
choose a pair of 32 bit strings with difference σ. ✷

Also, Moore and Simmons stated the following result [80]

Corollary 5.4.1 For the DES there are only eight keys satisfying the condi-
tion in Theorem 5.4.2. Four are weak keys and the other four are semi-weak
keys.

The method can be extended to the case where the inputs after addition
of the key in the i’th and ((r + 1) − i)’th round are not equal, but where
equal outputs of the rounds are obtained with some probability. We leave it
as an open problem if there exist other keys for the DES than the above eight
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for which (5.11) holds with a probability greater than 2−64. We proceed and
define

Definition 5.4.5 A pair of semi-weak hash keys are keys for which

EK1(P )⊕ α = DK2(P ⊕ α) (5.12)

with probability p >> 2−m for fixed α.

In this case we have a parallel to the semi-weak keys. With α = 0 equa-
tion (5.12) is always true for semi-weak key pairs. Semi-weak hash keys may
be found using differential cryptanalysis and can be used in cryptanalytic
attacks. Assume we have a pair of semi-weak hash keys K1 and K2 for which
equation (5.12) holds with probability p. With EK1(P1) = C1, C2 = P1 ⊕ α
and P2 = DK2(C2) one obtains:

EK1(P1)⊕ P1 ⊕ C2 = DK2(C2) ⇒ C1 ⊕ P1 = P2 ⊕ C2

with probability p. In that way, we would find a (free-start) collision for a
hash mode, where the plaintext is added to the ciphertext.
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Chapter 6

Analysis of Specific Block
Ciphers

In this chapter we analyse specific block ciphers. In Section 6.1 we anal-
yse the most well known block cipher, the Data Encryption Standard (DES)
[90]. First we do differential cryptanalysis on the algorithm and show that
the characteristics used by Biham and Shamir [7] are the best choices. Fur-
thermore we show how to improve Biham and Shamir’s attack on the full
16-round DES by using more characteristics. Next we analyse the key sched-
ule and show several new pairs of weak keys for the DES. Interesting higher
order and partial differentials for the DES are given and it is shown that
partial differentials are useful in attacks on the DES with a small number of
rounds. Finally we consider linear cryptanalysis of the DES and show several
new linear characteristics. It is shown that there exists linear characteristics,
which improve the probability of the best known linear approximations of
the DES. Although this improvement is hardly measurable for the DES, it
illustrates that the method of calculating the probability of linear approx-
imations given in Section 5.3 is important. In Section 6.2 we analyse the
LOKI ciphers, proposed by Brown, Pieprzyk and Seberry in 1990 [15] and
by Brown, Kwan, Pieprzyk and Seberry in 1991 [14]. We concentrate our
analysis on the latest proposal, LOKI’91 and do differential cryptanalysis,
show a weakness in the F-function, and give a chosen plaintext attack re-
ducing an exhaustive key search by a factor of four exploiting a weakness
in the key schedule. Finally we show that there are several weak hash keys
for LOKI’89 and a few for LOKI’91. In Section 6.3 we analyse the s2-DES

95
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S-boxes proposed by K. Kim in [43] and show there are several characteristics
much better than the known characteristics for the DES, thus showing that
a conjectured improvement of the DES S-boxes was not obtained. In Section
6.4 we analyse the s3-DES S-boxes proposed by K. Kim in [44] as a conse-
quence to our attacks on s2-DES. We show that the estimates given by Kim
for the best possible characteristics are too optimistic and give one charac-
teristic with a probability 230 times better than Kim’s estimates, though still
not enabling a successful differential attack. In Section 6.5 we analyse the
xDESi block ciphers proposed by Zheng in [115]. We give attacks on both
xDES1 and xDES2, which show that Zheng’s constructions are not optimal.

6.1 DES

The Data Encryption Standard (DES) [90] is the most popular encryption
system in use today. Around the world, governments, banks, and standard
organisations have made the DES the basis of secure and authentic com-
munication [108]. Since its publication in January 1977, a huge volume of
research on the DES has been published; we refer to [13] and to the references
in this thesis. This research probably makes the DES the most analysed ci-
pher ever and to its credit, no serious weaknesses have been found in the
algorithm. The best an attacker can do is to search exhaustively for a key.
On the other hand this has become reasonably feasible as demonstrated by
Wiener [112]. Although no practical shortcut attacks on the DES have been
found, the analysis on the algorithm has been very fruitful and in some cases
attacks has been generalised and applied to other ciphers with big success
[7]. Already in 1976, before the official publication of the DES as a Federal
Information Processing Standard in the U.S.A., a group of scientists at Stan-
ford University, U.S.A.Y cryptanalyzed the algorithm and found the only
real weakness known to date [35].

The complementation property Let C = DESK(P ), i.e.,
C is the encrypted value of plaintext P using key K. Then
DESK(P ) = C.

The complementation property can be used in a chosen plaintext attack using
one known and one chosen plaintext to reduce an exhaustive search for the
key by a factor 2. See the simple relation attack in Section 5.4.2. The full
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description of the DES algorithm is given in Appendix C. The cryptographic
strength in the DES lies in the substitution boxes (S-boxes) of which the
following 5 properties are well known [12].

1. No S-box is a linear or affine function.

2. Changing one bit in the input to an S-box results in changing at least
two output bits.

3. The S-boxes were chosen to minimise the difference between the number
of 1’s and 0’s when any single bit is held constant.

4. S(x) and S(x ⊕ (001100)) differ in at least two bits.

5. S(x) �= S(x ⊕ (11ef00)) for any e and f .

In Section 6.1.1 we give our analysis of the search for the best character-
istics to be used in a differential attack on the DES. Also, we give a slightly
improved differential attack on the DES evolved by a closer study of the key
schedule. In Section 6.1.2 we give an analysis of the key schedule and show
new pairs of weak keys. In Sections 6.1.3 and 6.1.4 we give new higher order
differentials and partial differentials of the DES.

6.1.1 Iterative characteristics

In differential cryptanalysis of the DES the difference of two bit strings is
defined as the bitwise exclusive-or of the strings. A DES S-box consists of 4
rows of 4-bit bijective functions. The input to an S-box is 6 bits. The left
outermost bit and the right outermost bit (the row bits) determine through
which function the four remaining bits (the column bits) are to be evalu-
ated. This fact gives us a sixth property of the DES S-boxes important for
differential cryptanalysis.

6. S(x) �= S(x ⊕ (0abcd0)) for any a, b, c and d, abcd �= 0000.

The inner input bits for an S-box are input bits that do not affect the inputs
of other S-boxes. There are two inner input bits for every S-box. Because
of the P-permutation the following property is also important for differential
cryptanalysis.
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The inner input bits property. The inner input bits for an S-box, Si,
come from S-boxes, whose inner input bits cannot come from Si.

Example: The inner input bits for S1 come from S2 and S5, whose inner
input bits come from S3 and S7 respectively S2 and S6.

In the following sections we will refer to the skeletons of iterative charac-
teristics from Section 5.2.2 without further notice.

2-round iterative characteristics

As shown in [67] the best characteristics for a differential attack on the 16-
round DES is based on a 2-round iterative characteristic. The following
theorem was already proven in [24]. We give the proof in a different manner.

Theorem 6.1.1 If two inputs to the F-unction result in equal outputs, the
inputs must differ in at least 3 neighbouring S-boxes.

Proof: If the inputs differ only in the input to one S-box the expanded
input xor must have the following form: 00ab00 (binary), where ab �= 00.
Because of properties 2 and 4 above, these inputs cannot give equal outputs.
This also tells us that the inputs must differ in neighbouring S-boxes. If the
inputs differ in only two neighbouring S-boxes, Si and S(i+1), the two input
xors must have the following forms: Si : 00abcd and S(i + 1) : cdef00. Now

cd �= 00, because of properties 2 and 4.
cd �= 01, because of property 6 for S(i + 1).
cd �= 10, because of property 6 for S(i).
cd �= 11, because of property 5 for S(i + 1).

✷

There are several 2-round iterative characteristics for DES, where the
inputs differ in three neighbouring S-boxes. By consulting the difference
distribution table for the 8 S-boxes it is easy to find the best possibilities.
The two best of these are used in [[7] to break the full 16-round DES using
247 chosen plaintexts. The probability of the two characteristics is 1

234
for the

two rounds.
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3-round iterative characteristics

We proceed trying to find a 3-round iterative characteristic for the DES
with a higher probability per round than the 2-round iterative characteristic.
The highest probability for a non trivial input/output xor combination in
the DES is 1

4
. Because (1

4
)x ≥ ( 1

234
)1.5 ⇒ x < 6, there can be different

inputs to at most 5 S-boxes for the two nonzero rounds together. Because of
the inner input bits property of the P-permutation in DES, Φ and Γ must
differ in the inputs to at least two S-boxes each. Property 2 of the S-boxes
implies that the inputs differ in at least one additional S-box, making Φ and
Γ together differ in the inputs to at least 5 S-boxes. The full proof is given
in the Appendix B.1, Theorem B.1.1. In a 3-round iterative characteristic
the input/output xors, where the inputs together differ in the inputs to 5
S-boxes and yielding the highest probability are Φ = 31200000x and Γ =
00004200x. The probability for the 3-round iterative characteristic is 2−18.42.
This probability is very low and there are in fact input xors, which together
differ in the inputs to 6 S-boxes with a higher probability, Φ = 03140000x

and Γ = 00004014x. The probability for the 3-round iterative characteristic
is 2−18.1 Both characteristics have a probability too low to be used in a
successful differential attack.

4-round iterative characteristics

For a 4-round iterative characteristic with a higher probability per round
than the 2-round iterative characteristic, there can be different inputs to at
most 7 S-boxes, because (1

4
)x ≥ ( 1

234
)2 ⇒ x < 8, however there is no 4-round

iterative characteristics for the DES with a probability higher than for the
best 2-round iterative characteristic concatenated with itself. The proof is
tedious and is given in Appendix B.1.

Longer characteristics

We believe that it can be proved that one cannot find n-round iterative
characteristics, n > 4, with probabilities higher than for the best 2-round
iterative characteristic concatenated with itself n

2
times. To obtain this for

a 5-round iterative characteristic there can be different inputs to at most 9
S-boxes, as (1

4
) ≥ ( 1

234
)2.5 ⇒ x < 10. It seems impossible that one can find
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such a characteyistic different in the inputs to 9 S-boxes and all combinations
with a probability close to the highest possible of 1

4
If one goes one round

further to a 6-round iterative characteristic the doubt will be even bigger.
Before making any conclusions for the best differential attack on the DES
using characteristics, one must also check that no non-iterative characteristics
exist, as stated in Section 5.2.2. Recently, M. Matsui [67] published the result
of an exhaustive search for the best characteristics of the DES confirming our
scepticism.

Probabilities of iterative characteristics

As stated earlier the best characteristics for a differential attack on the DES
are based on 2-round iterative characteristics. The two best of these have the
following input xors in the second round: Φ = 19600000x and Γ = 1b600000x.
Both xors lead to equal outputs with probability 1

234
, when calculated assum-

ing independent inputs to neighbouring S-boxes. However, this probability
is only an “average” probability. As stated in [7, section 4.4.5], if the sixth
key bit used in S2 is different from the second key bit used in S3 the prob-
ability for Φ increases to 1

146
and the probability for Γ decreases to 1

585
. If

the two key bits are equal the probabilities will be interchanged. We call
these key bits, critical key bits for Φ and Γ. In their attack on the DES
[7] Biham and Shamir use these two characteristics to build 13-round char-
acteristics, where six rounds have input xor Φ or Γ. The probability is cal-
culated to be ( 1

234
)6 � 2−47.22. But depending on the values of the six pairs

of critical key bits the probability for Φ will vary from ( 1
146

)6 � 2−43.16 to
( 1

585
)6 � 2−55.16 and the other way around for Γ. Using both characteristics

as in [7] we can expect to get one characteristic with a probability of at least
( 1

146×585
)3 � 2−49.16. Table 6.1 shows the probabilities and for how many keys

they will occur. As noted earlier in Section 5.2 calculating the probabilities
of a characteristic as the product of the probabilities of one-round character-
istics is only a valid method if the round keys are independent, which they
are not for the DES. However, we made tests confirming that in an actual
attack with fixed keys the probabilities for the above characteristics used by
Biham and Shamir are close to 1

146
and 1

585
per round depending on the values

of the critical key bits. It is seen that for one out of 32 keys, we will get a
13-round characteristic with the highest probability and for about one out of
three keys we will get the lowest probability. We found that for other 2-round
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iterative characteristics the probability splits into more than one depending
on equality/inequality of certain critical key bits. It turns out that we can
find 2-round iterative characteristics for which the best of these probabilities
is better than the lowest for Φ and Γ. For the 2-round characteristic (with
input xor) 00196000x there is only one probability. It means that regardless
of the key values this characteristic will have a probability of 1

256
.

#Keys (log2) Probability (log2)
51.00 -43.16
53.58 -45.16
54.88 -47.16
54.30 -49.16

Table 6.1: The probabilities for the best 13-round characteristic obtained by
using the 2 characteristics Φ and Γ.

Table 6.2 shows the probabilities for Φ and Γ and for the 2-round it-
erative characteristics, whose best probability is higher than 1

256
. It seems

unlikely that we can find n-round characteristic, n > 2, for which the exact
probabilities will be higher than for the above mentioned 2-round iterative
characteristics. The round keys in the DES are dependent, therefore some
key bits might be critical for one characteristic in one round and for an-
other characteristic in another round. For example by using characteristic
19400000x we have the two probabilities 1

195
and 0. But this division of the

probability depends on the values of the same critical key bits as Φ and Γ
and we would get a probability of 1

146
for either Φ or Γ. The characteristics

marked with (+) in Table 6.2 depend on the values of the same critical key
bits as for Φ and Γ. Two of these characteristics also show that is important
to consider this splitting of the probabilities. Assume that the characteristic
19400000x or 1b400000x is (by far) the best characteristic for an attack on
the DES A 13-round characteristic built from this characteristic will have
probability zero if the value of the critical key bits are ‘wrong’ in just one
round. It means that the characteristic only holds if the value of the critical
key bits are ‘right’ in all 6 rounds, where they matter, i.e., 13-round charac-
teristics built from either the characteristic 19400000x or 1b400000x are only
possible for one out of 64 keys. Doing an attack on the DES similar to the
one given in [7], this time using the first 5 of the above characteristics will
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Characteristic Probabilities (1/n) Average Prob.(1/n)
19600000x 146, 585 234
1b600000x 585, 146 234
00196000x 256 256
000003d4x 210, 390 273
4000001dx 205, 1024 341

19400000x (+) 0, 195 390
1b400000x (+) 195, 0 390
40000019x ($) 248, 390, 744, 1170 455
4OOOOO1fx ($) 248, 390, 744, 1170 455
1d600000x (+) 205, 512, 819, 2048 468
1f600000x (+) 205, 512, 819, 2048 468

Table 6.2: Exact probabilities for 11 characteristics.

give us better probabilities for a 13-round characteristic. Table 6.3 shows

#Keys (log2) Probability (log2)
51.00 -43.16
53.58 -45.16
49.64 -46.07
49.64 -46.29
54.88 -47.16
50.90 -47.18
54.10 -48.00

Table 6.3: The probabilities for the best 13-round characteristic obtained by
using 5 characteristics.

the best probabilities and for how many keys these will occur. The above
probabilities are calculated by carefully examining the critical key bits for
the 5 characteristics in the rounds no. 3, 5, 7, 9, 11 and 13, i.e., the rounds
where we will expect the above input xors to be. By using the two charac-
teristics in Table 6.2 marked with ($) in addition would yield slightly better
probabilities. However, the best probability we would get by using these
characteristics is ( 1

248
)6 � 2−47.7 and it would occur only for a small number
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of keys. As indicated in Table 6.3 we can expect to get a characteristic with a
probability of at least 2−48 . However, the attacks will become more complex.

6.1.2 Analysis of the key schedule

In this section we consider the key schedule of the DES, as described in Ap-
pendix C. Theorem 6.1.1 shows that to have equal outputs of the F -function
with two different inputs using the same key, the inputs must be different
in the inputs to at least 3 neighbouring S-boxes. We state here a converse
result, i.e.,

Lemma 6.1.1 (DES) There exist pairs of round keys different in the inputs
to only one S-box, such that using the same (text)-input, equal outputs of the
F-function are obtained.

Proof: Because the keys are added to the input after the expansion, they
do not (automatically) affect neighbouring S-boxes. ✷

Furthermore there exist many pairs of 48 bit keys Ki and K ′
i different in

the inputs to only one S-box, such that equal inputs lead to equal outputs.

Example 6.1.1 From the diflerence distribution table of the DES (see [7])
it follows that for S-box 1 an input xor 03x leads to the output xor 00x with
probability 14

64
. This means that for two round keys Ki and K ′

i different only
in the inputs to S-box 1 with xor 03x, equal inputa will lead to equal outputa
with probability 14

64
.

Note that although Lemma 6.1.1 tells us that we can get equal outputs
of one round in the DES with keys different in the inputs to only one S-box,
it does not mean, that it is easy to find iterative characteristics in this case.
Once we have chosen a certain difference in the keys in one round, because
of the dependencies of the round keys in DES, we have at the same time
chosen the difference in all other rounds. And they might not lead to equal
outputs. In fact we believe that it is impossible to find pairs of keys for the
DES, such that in each round equal inputs and different round keys lead to
equal outputs. However, we can use Lemma 6.1.1 to find what we will call
quasi weak keys for DES.
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Quasi weak keys for DES

It is clear that there should be no simple relation between the two func-
tions DESK(·) and DESK∗(·) for any two keys K and K∗. The wellknown
exceptions are the weak and semi-weak keys, a total of 16 for DES. We show
that for several other pairs of keys for the DES there exists a simple relation
between the encryption functions, at least for a fraction of all plaintexts.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LSi 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
a[i] 1 2 4 6 8 10 12 14 15 17 19 21 23 25 27 28

Table 6.4: The circular shifts in the key schedule of DES.

Next we consider the key schedule of the DES. The input is a 64 bit key.
First the key is permuted and the parity bits are removed. This permutation
has no importance for what we are about to show and we assume in the
following that the input is a 56 bit (permuted) key. The 56 bits are divided
into two blocks C0 and D0 of 28 bits each. The round keys Ki for i = 1, . . . , 16
are defined

Ki = PC2(Ci ‖ Di)

where Ci = LSi(Ci−1), Di = LSi(Di−1), PC2 is a permutation and where LSi

is a left circular shift by the no. of positions given in Table 6.4. Alternatively,
we could define

Li(C0 ‖ D0) = (LSa[i](C0) ‖ LSa[i](D0))

where a[i] is the accumulated number of shifts given in Table 6.4 and then
define

Ki = PC2(Li(K))

where K = (C0 ‖ D0), the 56 bit key. In the following we will use the alter-
native definition of the key schedule of DES.

Theorem 6.1.2 (DES) For every key K, there exists a key K∗, such that

Ki+1 = K∗
i , for i ∈ {2, . . . , 7} ∪ {9, . . . , 14}
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i.e., K and K∗ have 12 common round keys.

Proof: Suppose we are given the key K. Set K∗ = L2(K), where L is
defined as above. Now it follows easily that

K3 = PC2(L3(K)) = PC2(L2(K
∗)) = K∗

2 .

And similarly, Ki+1 = K∗
i for i = 2, . . . , 7. Further, K9 = PC2(L9(K)) and

K∗
8 = PC2(L8(K

∗)). After this the round keys get ‘re-synchronised’, since

K10 = PC2(L10(K)) = PC2(L9(K
∗)) = K∗

9 .

And Ki+1 = K∗
i for i = 9, . . . , 14. ✷

Theorem 6.1.3 (DES) There exist 256 pairs of keys K and K∗, such that

Ki+1 = K∗
i , for i ∈ {2, . . . , 14}

i.e., K and K∗ have 13 common round keys.

Proof: From Theorem 6.1.2 and by searching exhaustively for pairs of keys
K and K∗, for which K9 = PC2(L9(K)) = PC2(L8(K

∗)) = K∗
8 . ✷

For these pairs of keys we found that there is some connection between
the two encryption functions defined by the pair. In the following δi and εj

denote 32 bit values. For every pair {δi, εj} a probability pi,j is connected.

Theorem 6.1.4 (DES) Let K and K∗ be a pair of keys from Theorem 6.13
Then there exist sequences {δi, pδi

} and {εj, pεj
}, such that with P = PL ‖ PR

and P ∗ = PR ⊕ δi ‖ PL ⊕ F (K1, PR)

DES(K, P ) = CL ‖ CR ⇒
DES(K∗, P ∗) = CR ⊕ F (K∗

16, CL ⊕ εj) ‖ CL ⊕ εj (6.1)

with probability pδi
×pεj

= pi,j. Furthermore for the pairs of keys of Theorem
6.1.3 ∑

i,j

pi,j = 1
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Figure 6.1: The two encryptions using quasi weak keys.

Proof: Let K and K∗ be a pair of keys from Theorem 6.1.3. Choose a
random plaintext P = PL ‖ PR. Encrypt P using K obtaining C = CL ‖
CR = DES(K, P ). Let the right half of P ∗ be PL ⊕ F (K1, PR). The right
half inputs (before addition of the keys) to the second round of DES(K, P )
and the first round of DES(K∗, P ∗) are equal, see also Figure 6.1. Let the
difference in the round keys be ∆K2,1 = K2 ⊕K∗

1 . That is, the difference in
the inputs to the S-boxes of respectively the second and first round is ∆K2,1.

It is now easy from the difference distribution table of the DES to find a
possible xor of the outputs of the respective rounds. Denote the outputs Ψ
and Ψ∗ and define δ = Ψ ⊕ Ψ∗; the corresponding probability from the xor
table is denoted pδ. Let the left half of P ∗ be PR⊕δ. Now the right half input
to the third round of the encryption with K is PR ⊕ Ψ and the right half
of the input to the second round of the encryption with K∗ is PR ⊕ δ ⊕Ψ∗,
i.e.,the inputs are equal, since PR ⊕ Ψ ⊕ PR ⊕ δ ⊕ Ψ∗ = 0. The left halves
of the inputs to the corresponding rounds are also equal and since the keys
are equal from now on and until the 16’th and 15’th round respectively, ac-
cording to Theorem 6.1.3, it follows that the two encryptions are the same
until the last and second last round respectively. For these rounds the right
halves of the inputs are equal and the xor of keys is ∆K16,15 = K16 ⊕ K∗

15.
Let ε denote a possible xor of the outputs with input xor ∆K16,15 and the
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corresponding probability pε.
Now equation (6.1) holds with probability pδ,ε = pδ × pε. To complete the
proof we notice that for a given plaintext there is only one value for δ and ε
above and that for all plaintexts there are only a limited number of choices
for δ and ε, which depend on the keys (K, K∗) and they can easily be iden-
tified using the difference distribution table. ✷

Example 6.1.2 Let K∗ = 4020 0000 1080 9080x and K = 0000 0080 9080 9080x

in hexadecimal notation, this pair is one of the pairs from Theorem 6.1.3.
The connection between the round keys of the pair is as follows. K∗

i = Ki+1

for i = 2, . . . , 14 and

K∗
1 ⊕K2 = 00x, 20x, 00x, 00x, 00x, 00x, 00x, 00x

K∗
15 ⊕K16 = 05x, 00x, 00x, 00x, 00x, 00x, 00x, 00x

where we have arranged the key bits into 8 groups of 6 bits each (hex).
From the difference distribution table of the DES we find that for S-box 2,
there are 9 possible xors of the outputs with an input xor 20x. The most likely
xor of the outputs is Cx, which has probability 14

64
. Let δ1 = P (0C000000x),

where P is the 32-bit permutation at the end of the F-function, and denote
the probability pδ1 .
Similarly, we find that there are 14 possible xors of the outputs with an input
xor 05x for S-box 1. The most likely xor of the outputs is (again) Cx, which
has probability 12

64
. Let ε1 = P (C0000000x) and denote the probability pε1 .

With

P = PL ‖ PR and P ∗ = PR ⊕ δ1 ‖ PL ⊕ F (K1, PR)

we obtain DES(K, P ) = CL ‖ CR ⇒

C∗ = DES(K∗, P ∗) = CR ⊕ F (K∗
16, CL ⊕ ε1) ‖ CL ⊕ ε1

with probability p1,1 = pδ1 × pε1 = 14×12
642 � 1

24
. For the two keys in this exam-

ple there are 9× 14 = 126 pairs {δi, εj} in Theorem 6.1.4.

Since this phenomenon is due to only the xor of some round keys of K
and K∗, a similar result holds for the complemented pairs of keys K and K∗.

For all pairs of keys, K and K∗ from Theorem 6.1.2, K9 �= K∗
8 except

for the 256 pairs of keys of Theorem 6.1.3. As shown above the input to the
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ninth round for encryption with K∗ and the input to the eighth round for
encryption with ∗ will be equal with some probability δ. That means that the
input xor for the two encryptions will be (K9 ⊕K∗

8), since the (text)-inputs
are equal. Lemma 6.1.1 shows that it is possible for keys that differ in the
inputs to only one S-box to lead to equal outputs. Since the key schedule of
the DES operates on 24 bit halves it is possible to do an exhaustive search
for this phenomenon for all keys. We implemented this test and found that
for 248.7 pairs of keys, K and K∗, the input xor (K9⊕K∗

8) will lead to equal
outputs for some fraction of all plaintexts. For the 248.7 pairs of keys this
fraction varies from 1

4
to 2−39. Therefore for these keys we have a parallel to

Theorem 6.1.4.

Theorem 6.1.5 (DES) For 248.7 pairs of keys K and K∗, it holds that for
a fraction pKK∗ of all plaintexts there exist sequences {δi, pδi

} and {εj, pεj
},

such that with pobability pδi
× pεj

= pi,j and

P = PL ‖ PR and P ∗ = PR ⊕ δi ‖ PL ⊕ F (K1, PR)

DES(K, P ) = C = CL ‖ CR ⇒
DES(K∗, P ∗) = CR ⊕ F (K∗

16, CL ⊕ εj) ‖ CL ⊕ εj

where pi,j is defined as in Theorem 6.1.4. Similarly it holds that

∑
i,j

pi,j = 1

Corollary 6.1.1 There are 2368 pairs of keys for which the fraction PKK∗

is 1
4
.

We conclude that for many pairs of keys in the DES there is a simple relation
between the encryption functions induced by these keys. This simple rela-
tion corresponds to one round of DES encryption and for 256 pairs of keys
it holds for all plaintexts. For other 248.7 pairs of keys it holds for a fraction
of all plaintexts.

Applications. Since the phenomenon of Theorem 6.1.4 and Theorem
6.1.5 holds only for a small subset of keys and for most keys only for a
fraction of all plaintexts, it is doubtful that the quasi weak keys can be
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exploited in attacks on the DES itself. However, it is interesting to note that
the phenomenon could easily have been avoided, e.g. by changing two ‘2’
shifts, e.g. in rounds 6 and 7, see Table 6.4, in the key schedule by a ‘3’ and
a ‘1’ shift respectively.

The DES is often used in hash functions where the keys are fixed or
can be chosen as part of the (hash) message [93]. It seems possible that
quasi weak keys can be exploited in attacks on these hash functions. In
differential attacks on hash functions based on block ciphers one could find
two plaintexts, such that the (δ, ε)’s of Theorem 6.1.4 are equal, thereby in
a differential the δ’s and the rightmost ε’s in (6.1) would cancel out.

By trying sufficiently many pairs of plaintexts useful differentials (with
fixed keys) might be found and used in attacks on hash functions.

The round key bits

The key schedule of the DES take a 64 bit input K and outputs 16 round
keys of 48 bits each, a total of 768 bits. The parity bits of K are removed
and only 56 bits of K are used. Since 768/56 � 13.7 is not an integer, some
bits in key K are used more often than other key bits in the round keys. By
a closer look at the key schedule it follows that the key bits are contained
in either 12, 13, 14 or 15 round keys. Table 6.5 lists the exact number of
round keys for all key bits in K = k1, . . . , k64. Consider an attack where the

# Round keys The bit numbers
12 3 , 42 , 52 , 58
13 7 , 10 , 12 , 14 , 19 , 23 , 26 , 28

29 , 33 , 36 , 38 , 39 , 43 , 45 , 49
54 , 55 , 59 , 61

14 1 , 4 , 5 , 6 , 9 , 11 , 13 , 15
17 , 20 , 21 , 22 , 25 , 27 , 30 , 35
46 , 51 , 62 , 63

15 2 , 18 , 31 , 34 , 37 , 41 , 44 , 47
50 , 53 , 57 , 60

Table 6.5: The number of times the key bits appear in round keys.

attacker guesses some of the key bits and tries to find the remaining key bits
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faster than by exhaustive search, a “chosen key bit” attack. By guessing the
12 key bits, which appear in 15 round keys, the attacker would get 180 out
of 768 round key bits, i.e., 180

768
� 23.4% of the round key bits, by guessing

12
56
� 21.4% of the bits in the key K. Whether this phenomenon can be used

in a cryptanalytic attack is an open question.

6.1.3 Higher order differentials

As mentioned in Section 5.2.4 the use of higher order differentials is restricted
to iterated block ciphers with a small number of rounds. Next we consider
higher order differentials for the 8 S-boxes of the DES. As noted in Section
5.2.4 first order differentials correspond to the differentials used by Biham
and Shamir [7]. Therefore the set of first order differentials for one S-box cor-

S-box no. 1. order 2. order 3. order 4. order
1 16 24 48 64
2 16 28 48 64
3 16 28 40 64
4 16 48 64 64
5 16 28 40 64
6 16 24 40 64
7 16 28 40 64
8 16 28 40 64

Table 6.6: The probabilities (×64) of the best higher order differentials for
the 8 S-boxes of DES.

responds to the difference distribution tables for the DES S-boxes [7]. Table
6.6 lists the probabilities of the most likely n’th order differentials for the 8
S-boxes of the DES, for n = 1, . . . , 4. Note that the probability of any fifth
order differential is one, since the output coordinates of the DES S-boxes have
order 5 and the fifth derivative is a constant, see Section 5.2.4. The numbers
for S-box 4 in Table 6.6 are substantially different from the numbers of the
other S-boxes and there exist 3. order differentials with probability one.

Example 6.1.3 With α1 = 25x, α2 = 24x and α1 = 30x the third order
differential of S-boz 4, ∆α1,α2,α3(S4) = fx with prbability one, Note that
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∆α1,α2,α3(S4) is the exclusive-or of eight six bit inputs.

We have found no way of exploiting higher order differentials for the DES,
other than by attacking a four round version of the DES. However, since the
DES with four rounds is trivially broken using first order differentials, this
application is not of much use.

6.1.4 Partial differentials

As mentioned in Section 5.2.6 the use of partial differentials is restricted to
iterated block ciphers with a small number of rounds. For the DES there are
partial differentials with probability one. When two inputs to the F -function
are equal in the inputs to an S-box, the outputs from that S-box are always
equal, independently of the values of the inputs to other S-boxes. These
partial differentials are used to a wide extent in Biham and Shamir’s attacks
on the DES [7].

The outputs of S-box Does not affect S-boxes
1 1, 7
2 2, 6
3 3, 1
4 4, 2
5 5, 8
6 6, 4
7 7, 5
8 8, 3

Table 6.7: Flow of the S-box output bits.

The output of an S-box affects the inputs of at most six S-boxes in the
following round, because of the P-permutation, see Table 6.7. This fact can
be used to construct a four round partial differential for the DES, which
gives knowledge about the difference of eight bits in the ciphertext after four
rounds. Consider a pair of plaintexts with a difference, such that the right
halves are equal and the left halves differ, such that the inputs to only one
S-box, say S-box 1, are different after the E-expansion. The first round in
the differential holds always, and in the second the outputs of all S-boxes
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except S-box 1 are equal. In the inputs to the third round the inputs of two
S-boxes, S-boxes 1 and 7, are always equal, since S-box 1 does not affect
these S-boxes according to Table 6.7. Therefore the outputs of these S-boxes
are equal, and the xor of eight bits in the right halves of the ciphertexts after
three rounds are known, since the xor in the inputs in the second round is
known. Since the right halves after three rounds equal the left halves after
four rounds, the xor of eight bits after four rounds of encryption are known
with probability one. This differential can be used to attack the DES with 6
rounds in a differential at tack using only a few chosen plaintexts.

Theorem 6.1.6 There exists a differential attack on the DES with 6
rounds, which finds the secret key using 32 chosen plaintexts in time about
20,000 encryptions, which can be done in a few minutes on a PC.

Proof: We consider a differential chosen plaintext attack using the differ-
ential in Figure 6.2. Assume first that the outputs of the first round have
difference α. The inputs to the third round differ in only two bits both af-
fecting only S-box 1. According to the above discussion, the inputs with
difference X to the fourth round are equal in the inputs to the S-boxes 1
and 7. Therefore eight bits of the difference Y are zero. Since the difference
of the inputs to the third round is known, the attacker knows eight bits of
the difference of the outputs of the F-function in the sixth round, since he
knows the difference in the ciphertexts. These eight bits are the output bits
of S-boxes 1 and 7. The attacker now tries for all 64 possible values of the
key whether the inputs to S-box 1 yield the computed expected output dif-
ference, and does the same for S-box 7. For every pair of ciphertexts used in
the analysis for both S-boxes the attacker will get an average of 4 suggested
key values, among which the right key value appears, since the used differ-
ential has probability one. By trying a few pairs, e.g. four pairs, only one
key value, the right key value, will be left suggested by all pairs.

In the following, let Kij denote the six bit key in S-box no. j in the i’th
round. We assumed above that the difference of the outputs of the first round
is α, which it will not automatically be. However, we can apply a variation
of the first round trick described in Section 5.3. First we note that since the
inputs to the first round differ in the inputs to only one S-box, there are only
16 possible values of α. Choose a set of 16 plaintexts Pi = (ai | PR), for
i = 0, . . . , 15, where PR is a randomly chosen 32-bit string and the values
ai are different only in the four bits corresponding to the outputs of S-box 1
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Figure 6.2: A 4 round differential af DES.
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after the P-permutation, i.e., the exclusive-or ai⊕ aj = P (z0000000x) for all
16 values of i, j. Get the encryptions of those 16 plaintexts. Now choose a set
of 4 plaintexts P1,j = (b1,j | PR⊕Φ1), for j = 0, . . . , 3, where Φ1 = 60000000x

and where the b1,j’s differ only in the same subset of bits as the ai’s and get
the encryptions of these plaintexts. The attack proceeds as follows.

1. For every value k1,1 of the key K1,1 to S-box 1 in the first round do

(a) Find c1 = F (k1,1, PR) and c2 = F (k1,1, PR ⊕ Φ1)
For j = 0 to 3 find the plaintext Pi, such that ai = c1 ⊕ c2 ⊕ b1,j.
The pair of plaintexts Pi and P1,j is a right pair with respect to
the characteristic in Figure 6.2.

(b) Use the four right pairs in the differential attack described above.
First do the attack on S-box 1 in the last round. If one key value
k6,1 of K6,1 is suggested by all four pairs, perform the differential
attack on S-box 7 in the last round. If one key value k6,7 of K6,7

is suggested by all four pairs, take k6,1 and k6,7 as the key values
of K6,1 and K6,7 and take k1,1 as the values of K1,1.

The above attack finds 18 key bits with a high probability. For every value
of K1,1 we do two rounds of encryption in the first round. Then for every
value of K6,1 we do one round of encryption for the 8 ciphertexts in the 4
pairs, totally the time used is about the time of 5000 encryptions of six round
DES. Note that the differential used in the attack has probability one. The
remaining key bits can be found in similar attacks by choosing further 3 sets of
4 plaintexts Pn,j = (bn,j | PR⊕Φn), for j = 0, . . . , 3, and n = 2, . . . , 4, where
Φ2 = 06000000x, Φ3 = 00600000x and Φ4 = 00060000x. The 16 plaintexts
Pi in the above described attack can be reused. The attack needs a total of
32 plaintexts and runs in time about 20, 000 encryptions of six round DES,
which can be done in a few minutes on a PC. Since the DES has dependent
round keys many of the key bits tried in the first and in the sixth round will
be the same, and many key values do not have to be tried. Finally we note
that the performance of the attack can be improved by pre-computing tables
to reduce the number of encryptions needed in step (1b) of the attack. Also
our estimates are worst-case considerations; the expected time will be the
time of about 10, 000 encryptions. ✷

It should be noted that the linear attack combined with differential ‘tech-
niques’ by Hellman and Langford [34] exploits the same phenomenon as in
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our attack, but the two attacks are different.

There are other interesting partial differentials for the DES. Consider
a six bit input difference (xor) to one S-box, x1, x2, x3, x4, x5, x6 and the
corresponding difference in the outputs y1, y2, y3, y4. Instead of considering
all 4 output bits as in traditional differentials, we consider only one of the yi’s.
The probabilities of these partial 1-bit output differentials in the ideal case
will be 1/2. In Table 6.8 for all 8 S-boxes the partial differentials for which
|p− 1/2| ≥ 20/64 are listed, where p is the probabilities of the differentials.
Note That if p is the probability that an xor bit is one, 1−p is the probability
that the bit is zero. As an example consider S-box 2, where an input xor of
20x leads to an output xor, for which the xor of the second most significant
bits of the outputs is one in 60 out of all 64 possible pairs of inputs. It is
also interesting to note that for the S-box 4, the probabilities of partial 1-bit
output differentials are all between 20/64 and 44/64, i.e., |p−1/2| ≤ 12/64 for
S-box 4. S-box 4 has been the subject of much debate since the publication of
the DES and it has been conjectured the weakest S-box. It is 75% redundant,
see [35] and it has a strange difference distribution table (see [7]). See also the
previous section on higher order differentials. To our knowledge the above
properties show for the first time a case, where S-box 4 is the strongest of
the 8 S-boxes.

Another interesting property of the S-boxes is revealed by considering
pairs of input where the only the two middle input bits differ, i.e., xors 04x,
08x and 0cx. These xors are of particular interest in differential cryptanalysis,
since this allows neighbouring S-boxes to have equal inputs, i.e., xors 00x.
For these input xors, the probability that one particular bit in the output
xor is zero is at most 36/64 for S-boxes no. 2, 3 and 7. For the S-boxes 1, 5,
6 and 8 the probability is at most 32/64 and for S-box 4 at most 24/64. We
can use the above partial differentials to construct a four round differential,
which gives knowledge about the difference of more than eight bits in the
ciphertext after four rounds.

As an example, for S-box 7, an input xor of 04x will yield an output xor,
such that the xor of the second output bits (y2) is zero with probability 36/64.
Consider a pair of plaintexts with difference 00000020x | 00000000x, that is
where the right halves are equal and the left halves differ in only one bit. After
one round of encryption the difference will always be 00000000x | 00000020x.
After two rounds of encryption the difference will be 00000020x | Yx with
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S-box Input xor Bit i (yi) of output xor Probability
(hex) i (p− 1/2)× 64

1 24 3 -20
2 2 2 20

c 4 20
20 2 28
22 2 -20
2d 1 20

3 2 1 20
4 1 20
10 4 24
20 2 24

5 1 2 20
6 4 3 20

c 4 20
24 1 -24

7 2 2 24
c 2 20
e 2 -20
20 4 24

8 1 2 20
10 3 20
20 4 20

Table 6.8: The partial 1-bit output differentials with |p − 1/2| ≥ 20/64 for
the 8 S-boxes of DES.
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probability 36/64, where E(Y ) is different in the inputs to only S-boxes 1,
2, 6, and 8. Therefore the outputs of S-boxes 3, 4, 5, and 7 will be equal
after three rounds of encryption. In other words one gets knowledge of the
xor of 16 bits in the right halves of the ciphertexts after three rounds and
therefore in the left halves of the ciphertexts after four rounds of encryption
with probability 36/64.

In a similar way, one can use two of the combinations of Table 6.8, namely
the input xor 04x for S-box 6 and the input xor 04x for S-box 3, both with
probability 52/64 to obtain a four round partial differential with probability
(52/64)2 � 42/64 where the xor of nine ciphertext bits are known.

Note that although the above differentials can be used to deduce key bits
of the DES with 6 or fewer rounds in a partial differential attack, it is also
clear that when considering the DES with more than 6 rounds the method
will only work locally in the first few and last few rounds of the cipher.

Finally we note that in [97] Preneel et al. exploited, what they called,
reduced exors, in differential attacks on the DES in CFB mode. The reduced
exors have some resemblance with partial differentials.

6.1.5 Linear cryptanalysis

In this section we examine the DES for the iterative linear characteristics
described in Section 5.3. We will use the same notation as given in [64].

Definition 6.1.1 (DES) For a given S-box Si, i = 1, . . . , 8, α ∈ GF (2)6

and β ∈ GF (2)4 define

NSi(α, β) = #{x ∈ GF (2)6, x · α = Si(x) · β} (6.2)

where ‘·’ denotes the dot product.

In the following we refer to the figures in Section 5.3 and denote by Xi

be the right half of the ciphertext after i rounds of encryption, i.e., Xi is the
input to the F-function in the (i + 1)’th round. X0 denotes the right half of
the plaintext input to the linear characteristic. Also for every round let us
fix a key k and for convenience let F (X) denote F (X, k).
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2-round iterative characteristics

For this type of characteristic we consider the following expression

maxα|PrX(F (X) · α = 0)− 1/2| (6.3)

One S-box of the DES is a balanced function, therefore (6.3) is zero for all Q
only affecting one S-box. In [65] equation (6.3) was examined for two neigh-
bouring S-boxes. The best expression uses the following two approximations,

NS7(3x, fx) and NS8(30x, dx)

which combined give a probability of 0.453. Since the input bits to the two
S-boxes are shared combining the two expressions will cancel out all input
bits and leave only output and key bits. It is the best linear approximation
of the type (6.3). Also one can look for the following expressions with three
neighbouring S-boxes involved.

NSi(2x, ∗), NSi+1(23x, ∗) and NSi+2(30x, ∗)
NSi(3x, ∗), NSi+1(33x, ∗) and NSi+2(30x, ∗)
NSi(3x, ∗), NSi+1(31x, ∗) and NSi+2(10x, ∗)

where ‘∗’ denotes the any of the 16 possible values. When combined each
of these three expressions will leave only output and key bits in the linear
expression. For the DES the best one of these is of the third type,

NS1(3x, 9x)NS2(31x, bx) and NS3(10x, bx)

with a probability of 0.488.

3-round iterative characteristics

For this type of characteristic we consider the following expression

maxα,β(|PrX1(F (X1) · α = X1 · β)− 1/2| × |PrX2(F (X2) · β = X2 · α)− 1/2|)
(6.4)

This kind of characteristic has not been reported by Matsui. However, they
exist for the DES with only one active S-box per round. The best one is
NS7(4x, 8x) and NS8(2x, 4), with a probability of 1/2− 2−8. Extended to a
14 round characteristic, one obtains a probability of 1/2− 2−32.
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4-round iterative characteristics

As noted in Section 5.3 this is the type of characteristic used by Matsui in
the attack on 16-round DES [64, 65, 66]. For this type of characteristic we
consider the following expression

maxα,β|PrX(X4 · β = X0 · α)− 1/2|2 (6.5)

where (see also Figure 5.9, page 88)

|PrX(X4 · β = X − 0 · α)− 1/2|2
= |p4R − 1/2|2

= 42 ×
∑

A

|p1(A)− 1/2|2 × |p2(A)− 1/2|2 × |p3(A)− 1/2|2

and where

p1(A) = PrX1(X1 · A = F (X1) · α)
p2(A) = PrX2(X2 · (α⊕ β) = F (X2) · A)
p3(A) = PrX3(X3 · A = F (X3) · β)

For one value of A one obtains the best probability using

NS5(10x, ex), NS1(4x, 4x) and NS5(10x, fx)

in the second, third and fourth rounds respectively, where the 32 bit quanti-
ties are A = 00008000, α = 01040080x and β = 21040080x. The probability
is 0.506 [64]. However, there is another value of A for the same values of
α and β, namely A = 00008800, where the combinations are NS5(11x, ex)
in the second round, NS8(03x, 1x) and NS1(34x, 4x) in the third round and
NS5(11x, fx) in the fourth round. The probability is 1/2 − 2−15. For the 4
round iterative characteristic with α = 01040080x and β = 21040080x

|PrX(X4 · β = X0 · α)− 1/2|2 ≥ 42 × (|0.006|2 + |2−15|2) � 16× |0.006|2
(6.6)

It is seen that the improvement is hardly measurable. However, “many a
little makes a mickle” and in the coming section we illustrate that for longer
characteristics the improvement is bigger.
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Name 2. round 3. round 4. round −log2(|pL − 1/2|)
L1 NS5(10x, ex) NS1(4x, 4x) NS5(10x, fx) 07.36
L2 NS5(11x, ex) NS8(03x, 1x) NS5(11x, fx) 15.00

NS1(34x, 4x)
L3 NS5(22x, ex) NS8(03x, 4x) NS5(22x, ex) 10.00

NS1(30x, 4x)
L4 NS5(22x, fx) NS8(03x, 4x) NS5(22x, fx) 10.83

NS1(30x, 4x)
L5 NS5(22x, ex) NS8(03x, 4x) NS5(22x, ax) 11.42

NS1(38x, 4x)
L6 NS5(22x, fx) NS8(03x, 4x) NS5(22x, bx) 11.83

NS1(38x, 4x)

Table 6.9: 4 round iterative linear characteristics.

Longer characteristics

As noted earlier calculating the probabilities of linear r-round characteristics
for large r, r > 4, is a difficult task. We end this section by giving some
other linear characteristics for the DES, for which the bits of the plaintext
and ciphertext are the same as for Matsui’s 14 round linear characteristic
used in his attack on 16 round DES [65, 66]. Matsui counts on key bits in
the first and last rounds, so we consider the characteristic starting in the
second round, where we assume that we know the bit X1 ·α, where X1 is the
right half of the ciphertext after one round of encryption and α = 01040080x.
The characteristic ends in the fifteenth round with knowledge about the bit
X15 · β, where β = 21040080x. Let Li denote the four round characteristic
obtained from Li by interchanging the rounds number two and four. Mat-
sui’s characteristic is the concatenation of L1, L1, L1, one round without any
approximation and one round with the combination NS5(10x, fx). Totally
this characteristic has a probability, pL, s.t. |pL − 1/2|2 � 2−42.97. In Table
6.9 we have listed some other 4 round iterative linear characteristics, that can
replace L1 in a 14 round characteristic. As also explained above L2 can re-
place L1 directly, since for four rounds exactly the same bits of the plaintext
and ciphertext are affected. The concatenation L3, L3 can replace L1, L1.
This holds also for L5, L5. The concatenation L4, L4 can replace L1, L1. This
holds also for L6, L6. Totally this gives us eight paths from X1 ·α to X15 · β,
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yielding

|PrX(X1 · α = X15 · β)− 1/2|2 ≥ 2−42.96.

This is only slightly higher than for the best single characteristic.

We found other characteristics like the ones in Table 6.9, however with
even smaller probabilities. We looked only for other 4-round iterative char-
acteristics. By examining also n-round characteristics, n > 4, one might get
other interesting results. Since Matsui’s expression involves at most one S-
box for each round and optimises the use of the best one-round expression,
with probability 52

64
it is doubtful that the probability of his characteristic

will be higher than the above estimate.

Probabilities of iterative characteristics

In Section 6.1.1 we showed that the probabilities of characteristics in differ-
ential attacks varies, when neighbouring S-boxes are considered. One S-box
in the DES take a 6 bit text input and a 6 bit key input. Two neighbouring
S-boxes in the DES share two input text bits and take a 10 bit text input
and a 12 bit key input. Also in linear characteristics the probabilities of ap-
proximations involving neighbouring S-boxes varies depending on the actual
values of the four key bits, that affect the shared text bits for two S-boxes.

Example 6.1.4 Consider L2 from Table 6.9. In the second round we use

NS8(03x, 1x), NS1(34x, 4x)

When the two approximations are calculated separately the probability, |pL −
1/2| is 2 × 2×4

64×64
� 2−8 using the Piling-Up Lemma. However, if the sixth

key bit of S8 and the second key bit of S1 are equal the exact probability,
|pL−1/2| is 6

1024
� 27.42 and when they are different, |pL−1/2| is 2

1024
� 2−9.

This splitting of the probability does not seem to have the same importance
in linear cryptanalysis on the DES as in differential cryptanalysis on DES.
Whether the phenomenon can be used to find good linear approximation,
where neighbouring S-boxes in some rounds are considered, is left as an open
problem.
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6.1.6 Epilogue

Since its introduction in the late seventies, the DES has been the subject of
intense debate and cryptanalysis. Like any other practical cryptosystem, the
DES can be broken by searching exhaustively for the key.

One natural direction of research is therefore to find attacks that will be
faster than exhaustive search, measured in the number of necessary encryp-
tion operations. The most successful attack known of this kind is the linear
attack by Matsui [64, 65, 66]. This attack requires about 243 known plaintext
blocks. Although this is less than the expected 255 encryptions required for
exhaustive key search, the attack is by no means more practical than ex-
haustive search. There are two reasons for this: first, one cannot in practice
neglect the time needed to obtain the information about the plaintext; sec-
ond, when doing exhaustive key search the enemy is free to invest as much
in technology as he is capable of to make the search more efficient, while in
a known plaintext attack he is basically restricted to the technology of the
legitimate owner of the key, and to the frequency with which the key is used.
In virtually any practical application, a single DES key will be applied to
much less than 243 blocks, even in its entire life time. The difference between
the two kinds of attacks is illustrated in a dramatic way by the results of
Wiener [112] who shows by concrete design of a key search machine that
if the enemy is willing to make a million dollar investment, exhaustive key
search for the DES is certainly not infeasible.

As a result, we have a situation where the DES has proved very resistant
over a long period to cryptanalysis and therefore seems to be as secure as it
can be in the sense that by far the most practical attack is a simple brute
force search for the key. The only problem is that the key is too short given
today’s technology, and that therefore, depending on the value of the data
you are protecting, plain DES may not be considered secure enough anymore.

What can be done about this problem? One obvious solution is to try
to design a completely new algorithm. This can only be a very long term
solution: a new algorithm has to be analysed over a long period before it can
be considered secure; also the vast number of people who have invested in
DES technology will not like the idea of their investments becoming worthless
overnight. An alternative is to devise a new system with a longer key using
the DES as a building block. This way existing DES implementations can
still be used. This subject is treated further in Section 7.9.
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6.2 LOKI’91

In 1990 Brown, Seberry and Pieprzyk [15] proposed a new encryption prim-
itive, called LOKI, later renamed LOKI’89, as an alternative to the Data
Encryption Standard (DES), with which it is interface compatible. Crypt-
analysis showed weaknesses in LOKI’89 [7, 14, 48] and a redesign, LOKI’91
was proposed in [14]. We give a full description of LOKI’91 in Appendix D.
The ciphers from the LOKI family are variants of the DES-like iterated block
ciphers of Definition 2.5.3, where the key is added to the text input before
the expansion. The F -function uses 4 (identical) S-boxes, each substituting
a 12 bit value by a 8 bit value. Four bits of the input are used to select
one of sixteen functions, each of which are exponentiations in the finite field
GF (28). The F -function is defined as follows

F (Ki, Ri−1) = P (S(E(Ri−1 ⊕Ki)))

where E is an expansion from 32 to 48 bits, S are the 4 identical S-boxes, P
a 32-bit permutation and Ki is a 32-bit round key.

In the first section we do differential cryptanalysis of LOKI’91 and show
that there is no characteristic with a probability high enough to do a suc-
cessful differential attack. In the second section we examine the size of the
image of the F-function, the round function in LOKI’91. Because the key is
added to the input text before the expansion in the F-function, the inputs
to the 4 S-boxes are dependent. We show that this has the effect that the
size of the image of the F-function is 8

13
× 232. In the third section we show a

simple relation of LOKI’91 and exploit this in a chosen plaintext attack that
reduces an exhaustive key search by almost a factor 4 using 233 + 2 chosen
plaintexts.

6.2.1 Differential cryptanalysis of LOKI’91

In [14] it is indicated that LOKI’91 is resistant against differential crypt-
analysis. As stated in Section 5.2 the existence of a r-3-round characteristic
in an r-round DES-like cipher with a too high probability might enable a
successful differential attack. The difference distribution table for LOKI’91
is a table with 220 entries. Table 6.10 shows the most likely combinations for
input/output xors for one S-box in isolation. Note that although input xor
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Input Output Probability Input Output Probability
( × 4096) ( × 4096)

004x 01x 132 00cx 01x 76
080x 04x 52 0a0x e8x 46
173x f7x 46 185x 90x 46
37bx cdx 48 3e0x 24x 48
42ax 41x 46 498x cfx 56
49ex 97x 46 790x 46x 50
a20x 00x 46 a21x d7x 48
c43x 76x 46 c76x f0x 48
debx c9x 46 e7bx 5fx 48
ea6x 5dx 46 eecx abx 46
f33x e9x 46

Table 6.10: The most likely combinations from the difference distribution
table in hex notation.

004x leads to output xor 01x, written 004x → 01x, with probability 132
4096

for
one S-box it does not mean that there exists a one round characteristic with
this probability. Because the key is added to the input text before the E-
expansion in LOKI’91 the inputs to two neighbouring S-boxes are dependent.
In the above case a neighbouring S-box will have input xor 4ijx where i, j
are some hex digits. The best one-round characteristic with a nonzero input
difference has probability 52

4096
� 2−6.29, where for one S-box 080x → 04x.

Therefore to find a 13-round characteristic with a probability high enough
to enable a successful differential attack some of the 13 rounds must be zero
rounds. In the following we will use the skeletons for iterative characteristics
from Section 5.2.2 without further notice. The best characteristic for an
attack on LOKI’89 is based on a 3-round iterative characteristic [14, 46, 48],
where every third round is a zero round. The probability of the best 2-round
iterative characteristic for LOKI’91 is 122

220 � 2−13 [14]. In the following we
refer to the figures of Section 5.2.2.

Lemma 6.2.1 The probability of the best 3-round iterative characteristic
is ( 16

212 )
2 = 216.

Proof: Consider the case where Φ and Γ differ in the input to only one
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Input Output Probability
( × 4096)

080x 80x 10
040x 20x 16
020x 08x 6
010x 02x 12

Table 6.11: XOR combinations with only inner input bits set.

S-box each, Si and Sj respectively. Because of the P-permutation it follows
easily that the input/output xor combinations for Si and Sj must have one
of the four forms in Table 6.11. The highest probability for a 3-round it-
erative characteristic is therefore when the combination in both Φ and Γ is
040x → 20x. From the difference distribution table it follows easily that if Φ
and Γ differ in the inputs to more than 2 S-boxes totally, we obtain proba-
bilities smaller than 2−16. ✷

Lemma 6.2.2 The probability for a 4-round iterative characteristic is at
most 2−22.

Proof: By a similar argument as for the 2-round characteristics, we can
assume that Φ, Γ and Ψ differ in the inputs to only one S-box each. Obvi-
ously Γ and Ψ must differ in the inputs to the same S-box. It means that
the combination in round (i+1) must have one of the forms from Table 6.11.
The combination in both round (i) and (i+2) must have the following form:
0Y 0x → Z, where Z ∈ {2x, 8x, 20x, 80x} and Y ∈ {0x, . . . . . . , fx}. The two
highest probabilities for 0Y 0x → Z are 34

4096
and 28

4096
found by exhaustive

search, therefore the probability of a 4-round iterative characteristic is at
most

34× 16× 28
236 < 2−22

Note that Ψ �= Γ otherwise round (i + 1) must be Φ → 0 and γ would have
to differ in the inputs to at least two neighbouring S-boxes [14]. ✷

Now we can prove the following theorem.

Theorem 6.2.1 A 13-round characteristic for LOKI’91 has a probability
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of at most 2−63.

Proof: The best one-round characteristic with a nonzero input difference
has probability 52

4096
� 2−6.29. Because

(
52

4096
)n > 2−63 ⇒ n ≤ 10

there must be at least 3 rounds with equal inputs in the 13-round char-
acteristic (13R). Since two consecutive zero-rounds force all rounds to be
zero-rounds there can be at most 7 zero-rounds.
7 zero-rounds: There are six 2-round iterative characteristics, therefore

P (13R) ≤ (2−13)6 = 2−78

6 zero-rounds: There are at least three 2-round iterative characteristics, the
remaining 6 non-zero rounds have a probability at most 2−6.29 each, therefore

P (13R) ≤ (2−13)3 × (2−6.29)4 = 2−64.2

5 zero-rounds: There can be at most one 2-round iterative characteristic,
since

(2−13)n × (2−6.29)8−n > 2−63 ⇒ n ≤ 1

There are two cases to consider

1. No 2-round characteristics, thereby four 3-round characteristics

P (13R) ≤ (2−16)4 = 2−64

2. One 2-round characteristic, thereby at least two 3-round characteristics

P (13R) ≤ 213 × (2−16)2 × (2−6.29)3 = 2−63.9

4 zero-rounds: There are no 2-round characteristics, since

(2−13)n × (2−6.29)9−n > 2−63 ⇒ n < 1
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There can be at most one 3-round characteristic, since

(2−16)m × (2−6.29)9−2m > 2−63 ⇒ m ≤ 1

There are two cases to consider

1. No 3-round characteristic, thereby three 4-round characteristics:

P (13R) ≤ (2−22)3 = 2−66

2. One 3-round characteristic, thereby at least one 4-round characteristic

P (13R) ≤ 2−16 × 2−22 × (2−6.29)4 = 2−63.2

3 zero-rounds: All 10 nonzero rounds must be based on the best combination
080x → 04x, since the second best combination has probability 2−6.47 and
(2−6.29)9 × 2−6.47 < 2−63. However it is easy to see that it is not possible to
construct a 13-round characteristic based solely on the best combination. ✷

6.2.2 The F-function of LOKI’91

In the redesign of LOKI’89 [14] one of the guidelines was

• to ensure that there is no way to make all S-boxes give 0 outputs,
to increase the ciphers security when used in hashing modes.

004 0049 08e 0d3 514 559 59e 5e3
a24 a69 aae af3 c03 f34 f79 fbe

Table 6.12: Inputs yielding 0 output for one S-box (hex notation).

The 4 S-boxes in LOKI’91 are identical. Each S-box takes a 12 bit input and
produces an 8 bit output. Each output value occurs exactly 16 times. The
inputs to one S-box that result in a 0 output are listed in Table 6.12. Because
the key is added to the input text before the E-expansion, the input to one
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S-box is dependent on the inputs to neighbouring S-boxes. Let the input to
one S-box be hijx, then the input to one of the neighbouring S-boxes is jklx.
From Table 6.12 we see that to get 0 output from both S-boxes it must hold
that h, j ∈ {0, 5, a, c, f} and j, l ∈ {3, 4, 9, e} leaving no possible values for
j. Therefore we cannot get 0 outputs from any two neighbouring S-boxes.
Let the output from the F-function be B = {b1, b2, b3, b4} where bi repre-
sents the output byte from S-box i. Then B = {0, 0, ∗, ∗}, B = {∗, 0, 0, ∗},
B = {∗, ∗, 0, 0} and B = {0, ∗, ∗, 0}, where ‘∗’ represents any byte value, are
values not in the image of the F-function. We found many similar values
and therefore made an exhaustive search for the size of the image of the F-
function in LOKI’91.

Theorem 6.2.2 The F-function is not surjective, indeed the size of the im-
age of F is about 231.3.

Note that once we found that B = {b1, b2, b3, b4}, where bi represents the
output byte from S-box i, is not in the image of F, then because the 4 S-
boxes in LOKI’91 are equal any rotation of the four bytes yields a value not
in the image of F. The size of the image of the F-function is about 8

13
× 232.

It means that about 5 out of 13 values are never hit in the output of the
F-function. In the DES the inputs to the S-boxes in one round are indepen-
dent, because the key is added after the E-expansion. Therefore the size of
the image of the F-function in the DES is 232. A consequence of the obser-
vation is that for LOKI’91 the left and right halves of a ciphertext reveals
0.7 bit of information about the inputs (before addition of the keys) to the
second last round respectively the third last round of the encryption. It is
an open question how to exploit this observation in an attack on LOKI’91.

6.2.3 A chosen plaintext attack reducing key search

We begin by giving the notation used in this section.
Notation:

• Roln(X) is bitwise rotation of X n positions to the left.

• E16(P, K) is a full 16 round encryption of P using K.

• E2(P, K ′) is a 2 round encryption of P using the 32 bit key K ′ in the
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first round and Rol13(K
′) in the second round.

• Swap(X, Y ) is the swapping of X and Y .

• Swap(Z) is the swapping of the left and right halves of Z.

The attack we are to describe makes use of a property of the key schedule in
LOKI’91. The key size is 64 bits. The key is divided into two 32 bit halves
KL, KR and the 16 round keys K(i), i = 1, . . . , 16, are derived as follows:

1. i = 1

2. K(i) = KL; i = i + 1

3. KL = Rol13(KL)

4. K(i) = KL; i = i + 1

5. KL = Rol12(KL)

6. Swap(KL, KR)

7. go to 2.

The key schedule allows two different keys to have several round keys in com-
mon.

Theorem 6.2.3 For every key K there exists a key K∗, such that

K(2 + i) = K∗(i), i = 1, . . . , 14

i.e., K and K∗ have 14 mmd keys in common.

Proof: Let K(1), . . . , K(16) be the round keys for K = KL ‖ KR. Let
K∗ = KL ‖ Rol25(KL). Then K(2 + i) = K∗(i), i = 1, . . . , 14. ✷

For exactly two keys, the all zero and the all one key, the two keys K
and K∗ in the construction in the above proof are the same key. But these
keys are the only ones for which that happens, because K = K∗ ⇒ (KL =
KR)∧(KR = Rol25(KL)) ⇒ KR = KL = Rol25(KL) ⇒ K = 00. . . . .00∨K =
11. . . . .11, since gcd(25, 32) = 1.
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Corollary 6.2.1 There exists 236 pairs of keys, K and K∗, such that K
and K∗ have 16 round keys in common.

Proof: Let K = KL ‖ KR, KL = hh . . . hhx for some hex digit h and let KR

be any 32 bits. From Theorem 6.2.3 it follows that there exists a key K∗ such
that K and K∗ have 14 round keys in common and furthermore K∗(15) =
Rol100(KL) = KL = K(1) and K∗(16) = Rol113(KL) = Rol13(KL) = K(2),
i.e. K and K∗ have 16 round keys in common. ✷

Theorem 6.2.3 can be used in a chosen plaintext attack to reduce an ex-
haustive key search by almost a factor 2. The complementation property,
see page 96, holds also for LOKI’91. This property and Theorem 6.2.3 can
be used to reduce an exhaustive key search by almost a factor 4 in a chosen
plaintext attack that needs 233 + 2 plaintexts. Note that the above phe-
nomenon is what we call a simple relation, cf. Section 5.4.2. The algorithm
is similar to the general one given in Section 5.4.2. We state here the exact
algorithm for the attack on LOKI’91.

Algorithm:

1. Pick P = PL ‖ PR a random. Get encryptions C, C∗ for P , P .

2. For all a ∈ {0, 1, . . . , (232 − 1)}:
Let P (a) be E2(P, a). More precisely P (a) = PL(a) ‖ PR(a), where

PL(a) = F (PR, a)⊕ PL

PR(a) = F (PL(a), Rol13(a))⊕ PR.

3. Get encryptions C(a), C∗(a) for P (a), P (a) for all a.

4. Let all keys be non discarded.

5. Exhaustive search for key:
For every non discarded key K = KL ‖ KR, do

(a) Find C ′ = E16(P, K)

(b) Then
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Estimates for Time Space Chosen plaintexts
1.07× 262 233 + 2 233 + 2

Table 6.13: Complexity of the chosen plaintext attack on LOKI’91.

• if C ′ = C return K and stop

• if C ′ = C∗ return K and stop

• if E2(Swap(C ′), Rol100(KL)) = C(KL)
return (KR ‖ Rol25(KL)) and stop

• if E2(Swap(C ′), Rol100(KL)) = C∗(KL)
return (KR ‖ Rol25(KL) and stop

(c) Discard the four keys in (b).

Upon termination we have found either the secret key or a collision for
LOKI’91, i.e., K �= K∗, such that E16(P, K) = E16(P, K∗). Note that in
step 5, once we have encrypted P using key K = KL ‖ KR without suc-
cess, we do not have to encrypt P using neither K, (KR ‖ Rol25(KL)) nor
(KR ‖ Rol25(KL)). If one of these three keys is the secret key, then the algo-
rithm would have terminated earlier. At some points in the algorithm some
of the four keys in 5(b) are equal, for example the all zero key will appear
twice in the same iteration of step 5. Therefore we cannot find an enumer-
ation of the keys in step 5, s.t. the total number of iterations of step 5 is
exactly one quarter of the size of the key space, i.e., 262. There exists however
an enumeration, s.t. the number of iterations of step 5 is about 262 + 248.
This is proved in Appendix B.2 in every glory detail. Table 6.13 shows the
estimates for space, time and number of chosen plaintexts for the attack,
where one time unit is a full 16-round encryption and one space unit is 64
bits. The estimate for Time is the number of encryptions made in the anal-
ysis. In every iteration of step 5 we do one full 16.round encryption in 5(a).
For the two last tests in step 5(b) we do at most 2 rounds of encryption. For
most iterations however, we need only to do one round of encryption, because
we can test for equality of the right halves of E2(Swap(C ′), Rol100(KL)) and
C(KL) (resp. C∗(KL)) already after one round of encryption of Swap(C ′).
If the tests fail we need not do the second round of encryption. Therefore for
only about one out of 231 iterations we need to do two rounds of encryption
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in 5(b). The total amount of time therefore is

(262 + 248)× 17

16
+ (

262 + 248

231
× (1

16
� 1.07× 262.

Compared to this the time used in step 2 is negligible. The above attack is a
weak attack. First of all, it is not very likely that we can get the encryptions
of 233 + 2 chosen plaintexts, furthermore an improvement of a factor four of
an exhaustive search for the key is not much. The LOKI cipher is meant as
an alternative to DES, with which it is interface compatible. The steps 2, 3
and 5 can be carried out in parallel, for instance by letting KL = a in step 5,
in that way we don’t have to store the 232C(a), C∗(a)’s in step 3. It seems
impossible however to obtain an enumeration that at the same time makes
the total number of iterations of step 5 be close to 262 and enables a parallel
run of the algorithm.

6.2.4 Weak hash keys for LOKI’89 and LOKI’91

For the LOKI ciphers the keys are added before the expansion and the fol-
lowing result holds for the LOKI ciphers.

Theorem 6.2.4 (LOKI) If K(i) ⊕ K(17 − i) = σ for all i ∈ {1, . . . , 16}
then K is a weak hash key and (5.11), page 92, holds with probability 2−32

over all plaintexts.

Note that the inputs to the eighth and ninth round uniquely determine both
the plaintext and ciphertext and that the difference will be σ for exactly 232

plaintexts. Also note that although equation (5.11) holds with probability
only 2−32 for the above keys the plain- and ciphertexts, for which (5.11)
holds, can be found using only half an encryption, when the key is known. It
is clear that once we have found a weak hash key for the LOKI’s (or DES),
the complemented key is also a weak hash key.

Corollary 6.2.2 For LOKI’89 there are at least 216 weak hash keys.

Proof: It follows from the key schedule of LOKI’89, that the keys K =
KL ‖ KR, where

KL = vwyzvwyzx and KR = V WY ZV WY Zx

)
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where v⊕w⊕y = z and V ⊕W ⊕Y = Z and v⊕V = w⊕W = y⊕Y , satisfy
the condition in Theorem 6.2.4. The key K = KL ‖ KR is added (modulo 2)
to the plaintext and the ‘swapped’ key (KR ‖ KL) is added to the ciphertext
[15]. The xor of the plaintext and the ciphertext for LOKI’89 (δ in (5.11))
is σ ⊕ c ‖ σ ⊕ c, where c = KL ⊕KR. ✷

Corollary 6.2.3 For LOKI’91 there are at lead 16 weak hash keys.

Proof: Let h be a hex digit, h ∈ {0, 3, 5, 6, 9, A, C, F}. From the key schedule
of LOKI’91 it follows that the keys K = KL ‖ KR, where KL = hhhhhhhhx

and KR = Rol3(KL) or KR = Rol3(KL) are weak hash keys. ✷

Eight of these keys are also either weak or semi-weak [14], but the other
eight are neither weak nor semi-weak.

6.2.5 Conclusion and open problems

We have shown that we cannot find a characteristic for LOKI’91 good enough
to do a successful differential attack on LOKI’91. Still it is not enough to
conclude that LOKI’91 is secure against this kind of attack. To do that we
need an efficient way of calculating the probabilities of differentials.

We have shown that the size of the image of the F-function in LOKI’91 is
only 8

13
of the size of the image of the F-function in DES. This is a weakness,

since it means that the ciphertext reveals information about the inputs to
the second and third last rounds. Whether it represents a serious weakness
for the algorithm is left as an open question.

We introduced a chosen plaintext attack on LOKI’91 that reduces an
exhaustive key search by almost a factor 4. The attack exploits a simple
relation based on a weakness in the key schedule of LOKI’91. It might also
be possible to use this simple relation to find collisions for LOKI’91 when
used in a hash function. This is left as an open question.

Finally we showed that there are many weak hash keys for LOKI’89 and
a few weak hash keys for LOKI’91.
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6.3 s2-DES

After Biham and Shamir’s differential attack on the full 16-round DES re-
search has been going on to try to reconstruct the DES to withstand this
kind of attack. There has been a huge volume of research on DES, since its
publication in the mid 70’s. Some of this work has been concentrating on the
design of secure S-boxes. In [43] Kwangjo Kim provides a way of construct-
ing DES-like S-boxes based on boolean functions satisfying the SAC (Strict
Avalanche Criterion). Kim lists 5 criteria for the constructions, including
“Resistance against differential attacks”. Furthermore 8 concrete examples
of these S-boxes, the s2-DES S-boxes, are listed. The cryptosystem s2-DES
is obtained by replacing all the 8 DES S-boxes by the 8 s2-DES S-boxes,
keeping everything else as in DES. It is suggested that s2-DES withstands
differential attacks better than DES. We show that this is indeed not the
case. The conclusion is that Kim’s 5 criteria for the construction of DES-like
S-boxes are insufficient to assure resistance against differential attacks.

In differential cryptanalysis of the s2-DES the difference of two bit strings
are defined as the bitwise exclusive-or of the strings. Kim’s s2-DES S-boxes
do not have the DES properties 2, 4 and 5. They do have a property though
that is part of property 2 for the DES S-boxes.

4a. S(x) �= S(x ⊕(a0000b)) for ab �= 00.

Since the s2-DES S-boxes are built as 4 rows of 40 bit bijective functions,
they have property 6 like the DES S-boxes.

2-round characteristics

Because of property 6 there is no 2-round iterative characteristic for Kim’s
s2-DES S-boxes where the inputs differ only in one S-box, however the lack
of property 5 enables us to build a 2-round iterative characteristic where the
inputs differ in two neighbouring S-boxes. We have

0x ← 00000580x with prob. 8×10
64×64

� 1
51

Extending this characteristic to 15 rounds yields a probability of 2−39.7. Us-
ing the original attack by Biham and Shamir [5] we will need about 242 chosen
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plaintexts for a successful differential attack. To do a similar attack as by
Biham and Shamir in [7] we construct a 13-round characteristic with proba-
bility 2−34. The structures of plaintexts, see [7], used in the attack will consist
of 29 plaintexts and we will need a total of about 235 chosen plaintexts for the
attack. The above characteristic is not the only 2-round iterative character-
istic for s2-DES that is better than the best 2-round iterative characteristics
for DES. There are several others, the two second best characteristics both
with probability 6×10

64×64
� 1

68
are based on the combinations: 0x ← 07e00000x

and 0x ← 5c000000x.

3-round characteristics

We proceed trying to find a better characteristic than the ones we have
already found. The best non-trivial input/output xor combination in s2-DES
has probability 1

4
. Therefore there can be at most 4 S-boxes with different

inputs in the 3 rounds all together, as (1
4
)x ≥ ( 1

50
)1.5 ⇒ x < 5. As with

DES, because of the P-permutation, Φ and Γ must differ in the inputs to
at least two S-boxes each. Unlike for the DES it is possible for two inputs
different in only 1 bit to result in two outputs different in 1 bit. Therefore we
can build a 3-round characteristic with Φ = 04040000x and Γ = 00404000x.
The probability for the characteristic is 8×6×4×10

644 � 2−13.5. This is the best
3-round characteristic we have found for s2-DES. We can build a 13-round
characteristic to be used as in the attack in [7]. The probability for the
characteristic is 2−52.5. However, we can use the combinations from the
3-round characteristic to build 6-round iterative characteristics, which are
better, as we will show later.

4-round characteristics

There can be at most 5 S-boxes with different inputs, because (1
4
)x ≥ ( 1

51
)2 ⇒

x < 6, and again we exploit the fact that s2-DES S-boxes do not have
property 2. We construct a 4-round characteristic based on the following
combinations:

00000002x ← 0000006ex withprob. 8×10
64×64

00080000x ← 00020000x withprob. 8
64

00000002x ← 0000002ex withprob. 6×10
64×64
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We have P (00000002x) = 00020000x and P (00080000)x = 00000040x =
0000006ex ⊕ 0000002ex. The total probability for the 4round characteris-
tic is 2−14.77. Extended to 13 rounds we obtain a probability of 2−44.3.

Longer characteristics

A 5-round iterative characteristic will have to differ in the inputs to at least 6
S-boxes. However, we can find 6-round iterative characteristics also different
in the inputs to only 6 S-boxes as indicated above. The P-permutation makes
it impossible to find Φ → Γ and Γ → Φ, where both Φ and Γ differ only in
the inputs to one S-box. However, it is possible to find Φ, Γ, Ψ and Ω, all four
different only in the input to one S-box and such that Φ → Γ, Γ → Ψ, Ψ → Ω
and Ω → Φ. We use this observation to construct a 6-round characteristic:

(Φ, 0)
0 ← 0 prob. 1
Γ ← Φ some prob.
Ψ ← Γ some prob.

Γ⊕ Ω ← Φ⊕Ψ some prob.
Φ ← Ω some prob.
Ω ← Ψ some prob.

(Ψ, 0)

With Φ = 04000000x, Γ = 00004000x, Ψ = 00040000x and Ω = 00400000x we
get a total probability for the 6-round characteristic of 8×10×8×6×4×6

646 � 2−19.5.
Extended to 13 rounds the probability becomes 2−39. Starting with (Γ, 0)
we get a similar 6-round characteristic with probability 2−19.5. Starting with
(Ψ, 0) or (Ω, 0) yield 6-round characteristics with probibility 2−19.8. These
6-round characteristics differ in the inputs to 6 S-boxes, that is, different
inputs to one S-box per round on the average. In the construction of n-
round iterative characteristics, n > 6, one will get more than one S-box
difference per round on the average.

Conclusion on Kim’s s2-DES S-boxes.

The above illustrates that one has to ensure that DES-like S-boxes have the
six properties of the DES S-boxes as listed in Section 6.1. The fact that
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for s2-DES two inputs different only in the inputs to two neighbouring S-
boxes can result in equal outputs enabled us to build a 2-round iterative
characteristic more than 4 times as good as the best 2-round characteristic
for DES, thus enabling a differential attack on s2-DES about 213 times better
than Biham and Shamir’s best attack on DES. The fact that two S-box inputs
different in only one bit can result in outputs different in one bit enabled us
to construct 4-round and 6-round iterative characteristics both better for
differential attacks on s2-DES than the 2-round characteristic for DES.

6.4 s3-DES

As a consequence of our differential attacks on s2-DES, a new method of
constructing DES-like S-boxes was proposed in [45]. Furthermore 8 concrete
examples of these S-boxes, the s3-DES S-boxes, are listed. The cryptosystem
s3-DES is obtained by replacing the 8 DES S-boxes by the 8 s3-DES S-boxes,
keeping everything else as in DES. These S-boxes have the property that they
prevent the construction of good 2-round iterative characteristics, because to
have equal outputs of one round the inputs to all 8 S-boxes in a pair must be
different. In the difference distribution table for s3-DES there are 15 entries
with probability 20

64
and 22 with probability 18

64
. For comparison, for the DES

the highest probability for a non-trivial entry is 16
64

, which does not necessarily
mean that we can find better characteristic for s3-DES than for DES.

Iterative characteristics

It is easy to show that we cannot find a 2-round or 3-round characteristic for
s3-DES that is better than the 2-round iterative characteristic used by Biham
and Shamir in their attack on DES. We did an ad-hoc search for a 4-round
iterative characteristics and found one based on the following combinations.

00000054x ← 070a0000x with prob. 2−7.09

02100000x ← 00000054x with prob. 2−6.19

00000054x ← 051a0000x with prob. 2−7.09

That is, for 4 rounds we obtain a probability of 2−22.16. To do an attack simi-
lar to the one by Biham and Shamir in [7], we need a 13-round characteristic.
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Using the 4-round iterative characteristic we obtain a probability of 2−66.50,
which is too low for a differential attack to be successful. However, it is al-
most 230 times better than the estimates made in [45]. This illustrates once
again that we have to be careful in concluding resistance against differential
cryptanalysis. For certain key bits the above 4-round characteristic will have
a probability of 2−19.5 and for the 13-round characteristic 2−58.5. That is for
certain keys the complexity of a differential attack is not far away from the
exhaustive key search border of 256.

We conclude that the analysis in [45] is insufficient to conclude resistance
against differential attacks. There exists a 4-round characteristic that ex-
tended to 13 rounds yields a much better probability than the estimates made
in [45]. We stress that our analysis has not been an exhaustive search for the
best characteristics and note that a new version of [45] contains our above
analysis [44]. Although it seems like the s3-DES S-boxes resist differential
attacks better than the DES, we will show in Section 8.3 that in differential
attacks on hash functions based on block cipher, there exist characteristics
for s3-DES much better than for the DES.

6.5 xDESi

In [115, 113] Zheng, Matsumoto and Imai used the DES as a building block
to build a series of block ciphers, called xDESi, based on the work by Luby
and Rackoff [61] and on a theory of the construction of secure block ciphers
developed in [114, 113]. The block ciphers are mainly used as building blocks
of hash functions, but it is noted that they can be used for encryption also
[115, 113]. xDES0 is just the DES and for i > 0,

xDESi : GF (2)56i(2i+1) ×GF (2)128i → GF (2)128i

i.e., a 128×i bit block cipher with a 56×i×(2i+1) bit key. We consider first
xDES1, a 128 bit block cipher using a 168 bit key. xDES1 is defined as a three
round Feistel-cipher, where in each round the DES is used as the f -function
and where all three 56 bit round keys Ki, i = 1, . . . , 3, are independent. It is
noted in [115] that any secure block cipher may be used instead of the DES
in the construction.

It is clear that xDES1 is faster than conventional triple encryption, cf.
Section 7.9, since the plaintext blocks are twice as large. However, it follows
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that there is a simple meet in the middle attack on xDES1, which given the
encryptions of a few known plaintexts finds the secret key using a table of
size about 2k, where k is the key size of the underlying block cipher. Simply
encrypt the right half of a plaintext with all possible values of K1 exclusive-or
the left half of the plaintext and store these 2k values and exclusive-or the
left half of the ciphertext to all entries in the table. Then encrypt the right
half of the ciphertext with all possible values of K3 and look for a match
in the table. If a match is found, the values of the pair K1, K3 are possible
candidates for the right key. By repeating the attack a few times, only one
pair of values will remain. This attack is independent of the underlying block
cipher and of how the three round keys are computed. Although the memory
requirements are quite large, i.e., 256 when using the DES as the basic block
cipher, it is clear that xDES1 is not an optimal solution. Furthermore we
show in the following that in a chosen plaintext attack using only negligible
memory, xDES1 is not much stronger that the underlying block cipher.

6.5.1 A chosen plaintext attack on xDES1

We introduce some notation. Ij and Oj are defined to be the input to and
output from the f -function in the j’th round. Now we can prove the follow-
ing result:

Theorem 6.5.1 Let Y be a 3-round 2m-bit Feistel cipher using the m-bit ci-
pher X as the round finction with 3 independent round keys, RKi i = 1, 2, 3.
Assume that exhaustive key search of X takes time 2t using one known plain-
text. Then there exists an attack that finds the key of Y in time 2t+2 using
one chosen plaintext and one known plaintext.

Proof: Let P = PL | PR be a known plaintext and C = CL | CR the corre-
sponding ciphertext. Define P ′ = P ′

L | P ′
R, where P ′

L is a random m-bit value
and P ′

R = PR and denote by C ′ = C ′
L | C ′

R the corresponding ciphertext. The
intermediate values, the I’s and O’s, are also primed for this encryption.
Now calculate

O3 ⊕O′
3 = PL ⊕ P ′

L ⊕O1 ⊕O′
1 ⊕ CL ⊕ C ′

L

= PL ⊕ P ′
L ⊕ CL ⊕ C ′

L

since O1 = O′
1.
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Since I3 and I ′
3 can be read as the right halves of the ciphertexts, the third

round key can be found by exhaustive search in time (about) 2 × 2t. With
the knowledge of RK3, the ciphertext C (and/or C ′) can be decrypted one
round obtaining the encrypted values after two rounds of encryption, which
means that I2 is now known. Since O2 = PR⊕CR, an exhaustive search finds
the second round key, RK2 in time 2t. Similarly, I1 = PR and O1 = PL ⊕ I2,
and an exhaustive search finds RK1 also in time 2t. Totally the attack takes
time 4× 2t. ✷

Corollary 6.5.1 There exists an attack on xDES1 which on input one known
plaintext and one chosen plaintext attack finds the secret key in time about
258.

We conclude that xDES1 is not a candidate for an extended version of
DES. The security gained is too small compared to the large increase in the
key. Note that the chosen plaintext attack also work for dependent round
keys. It is clear from our attacks that the major weakness in xDES1 is the
use of only three rounds.

It should be noted that our attacks are not contradictory with the re-
sults by Luby and Rackoff [61], which say that if X (from Theorem 6.5.1)
is a pseudorandom function then Y is a pseudorandom permutation. Their
result says nothing about the security connection between X and Y , merely
that Y is secure against attacks by polynomial time running algorithms, if
X is.

6.5.2 A differential attack on xDES2

In this section we consider xDES2 which has a 560 bit key working on 256 bit
blocks. xDES2 can be seen as two five round Feistel ciphers, where in each of
the ten rounds the DES is used as the f -function and where the outputs of
each round are mixed, see Figure 6.3. In [115] it is assumed that all ten 56 bit
round keys are independent and noted that any secure block cipher may be
used instead of DES. We will assume in the following that the DES is used.
The 256 bit plaintext is divided into four block of 64 bits each, c0,1, c0,2, c0,3,
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Figure 6.3: One round of xDES2

and c0,4. In general the computation of the ciphertext is as follows.

ci,1 = ci−1,4

ci,2 = ci−1,1 ⊕DESKi,1
(ci−1,2)

ci,3 = ci−1,2

ci,4 = ci−1,3 ⊕DESKi,2
(ci−1,4)

where Ki,1 and Ki,2 for i = 1, . . . , 5 are ten 56 bit round keys. After
five rounds of encryption the ciphertext is defined as the concatenation of
c5,4, c5,3, c5,2, and c5,1. Note that the final permutation of these ciphertext
blocks is not the same as the permutation of the four intermediate cipher-
text blocks in the round function. The final permutation of the ciphertext
block has no influence on our attacks, so in the following we will assume that
permutation of blocks are the same in all rounds. We can prove the following
result.

Theorem 6.5.2 There exists an attack on xDES2, which on input about
233 known plaintext finds the secret 560 bit key in time O(264).

Proof: First we describe a chosen plaintext attack. We define the following
characteristic ∆P = (0 | 0 | Γ | Φ) for some values of Γ and Φ. If a difference
Φ in the inputs to the rightmost DES-encryption of Figure 6.3 lead to out-
puts with difference Γ in the first round, the difference ∆Ci = ci ⊕ c′i in the
values ci = (ci,1 | ci,2 | ci,3 | ci,4) and c′i = (c′i,1 | c′i,2 | c′i,3 | c′i,4) for i = 0, . . . , 5
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of the two encryptions are depicted in Table 6.14 where for i = 1, . . . , 4, Xi

are values we cannot predict. The attack now proceeds as follows

∆C0 = 0 | 0 | Γ | Φ
∆C1 = Φ | 0 | 0 | 0
∆C2 = 0 | Φ | 0 | 0
∆C3 = 0 | X1 | Φ | 0
∆C4 = 0 | X2 | X1 | Φ
∆C5 = Φ | X3 | X2 | X4

Table 6.14: A five round characteristic for xDES2.

1. Choose a plaintext pair with the desired difference ∆P = (0 | 0 | Γ | Φ).

2. Get the corresponding encryptions in a chosen plaintext attack.

3. If the difference of the leftmost 64 bit ciphertext blocks c5,1 is Φ, try
for all possible values of the key K1,2 if the encryptions of the two
corresponding 64 bit plaintext blocks c0,4 yield a difference Γ and store
the keys for which that holds.

4. If the difference of the leftmost 64 bit ciphertext blocks c5,1 is not Φ,
go to step 1.

In all pairs of plaintexts we choose the same values in the fourth plaintext
blocks with difference Φ. Since there are 264 possible values of the exclusive-
or of the outputs of the rightmost DES encryption, we let the third plaintext
blocks run through all possibilities, i.e., the input differences we use are
∆Pi = (0 | 0 | Γi | Φ) for i = 0, . . . , 264 − 1. After 264 trials with different
pairs of plaintext blocks, we are guaranteed that for at least one pair the
condition for an exhaustive search in step 3 will be true and we will find
the right value of K1,2. Also we will get wrong pairs that by accident hit
the difference Φ in leftmost ciphertext blocks, but by repeating the attack a
few times, only the right key value of K1,2 will be left suggested. Also we
can use the knowledge in ∆C4 above to search for the key K5,1. For a pair
satisfying the condition in step 3 it holds that encryptions of the ciphertext
blocks with difference X2 yield a difference of X3 after encryption with K5,1,
since the xor’ed difference from the fourth round is zero. Also we can use a
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similar characteristic to attack the leftmost DES encryption in the first round
and find K1,1 and K5,2 in a similar way as above. Then we can decrypt all
ciphertexts one round and repeat the attack on a 4-round version of xDES2,
where our probability of success will be higher.

As shown by Matsui [67] the best characteristic for an attack on the
DES is the concatenation of the 2-round iterative characteristic. For the
full 16-round DES this characteristic will have an average probability of
( 1

234
)8 � 2−63. Using this characteristic we fix the values for Φ and Γ above

iId we need to try about 263 pairs of plaintexts to get one right pair. How-
ever, we can do better than that. We assume that for a random pair of
plaintexts, the output difference is distributed uniformly for the DES. That
seems a reasonable assumption in general for a good block cipher, and espe-
cially for the DES, where only two characteristics have a probability below
the trivial one of 2−64. Therefore for a randomly chosen pair of plaintexts
the probability that the condition in step 3 is satisfied is about 2−64. In
a collection of 232 plaintexts we can form about 264 pairs of plaintexts and
with a high probability we get at least one right pair. We note that, first
of all, these characteristics are dependent in some way and the success of
some characteristic may depend on the success of other characteristics and
secondly, since the DES with a fixed key is a permutation, pairs with Γ = 0
will never be a right pair. However, by using more plaintexts, i.e., 233 or 234,
we can expect to get a right pair. ✷

Finally we note that our attacks can also be applied when xDES2 is used
with dependent round keys.

For i ≥ 3, xDESi is probably too big for the cipher to be a serious
candidate-for a block cipher. As an example, for i = 3 the block size is 384
bits and the key size is 1176 bits and 21 encryptions of the DES are needed
to encrypt one block of size six times a DES block.
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Chapter 7

Design of Block Ciphers

In this chapter we discuss some of the problems involved in the design of a
block cipher. In Section 7.1 the danger of focusing solely on a few design
criteria is discussed and a set of necessary design principles is listed. In
Section 7.2 we discuss the block and key sizes in block ciphers. In Section
7.3 it is shown how to obtain provable security against a differential attack.
In Section 7.4 the Markov theory for block ciphers is considered and it is
shown that with a high probability all iterated block ciphers will be resistant
against differential attacks after sufficiently many rounds. In Section 7.5 it
is shown how to obtain provable security against a linear attack. In Section
7.7 we define and show how to build strong key schedules. In Section 7.8 we
give a new test for checking the nonlinear order of a block cipher. Finally in
Section 7.9 multiple encryption of a block cipher is considered. We give a new
proposal for a triple encryption scheme, which under reasonable assumptions
is as secure as the underlying scheme though requiring only a minimum
number of component keys.

7.1 Design Principles

Two generally accepted design principles for practical ciphers are the princi-
ples of confusion and diffusion that were suggested by Shannon. In his own
words: “The method of confusion is to make the relation between the simple
statistics of the ciphertext and the simple description of the key a very com-
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1. Confusion

2. Diffusion

3. Sufficiently large block size

4. Sufficiently large key size

5. Resistance against known attacks

(a) - differential attacks

(b) - linear attacks

6. All keys are equally good

7. No simple relations

8. High nonlinear order

Table 7.1: Special design principles for block ciphers.

plex and involved one” [107].
“In the method of diffusion the statistical structure of the plaintext which
leads to its redundancy is dissipated into long range statistics” [107]. Massey
[63] interprets Shannon’s concepts of confusion and diffusion as follows

Confusion
The ciphertext statistics should depend on the plaintext statistics
in a manner too complicated to be exploited by the cryptanalyst.

Diffusion
Each digit of the plaintext and each digit of the secret key should
influence many digits of the ciphertext.

Shannon’s design principles are very general and informal. There have been
many suggestions in the past of how to obtain good properties (diffusion/
confusion) for a block cipher, but so far there is no known exact recipe of
how to construct a secure block cipher. A necessary and obvious requirement
is that the cipher is resistant against all known attacks. In Table 7.1 we list
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more specific design principles for the design of block ciphers. We stress that
a cryptographic design principle should not be over-interpreted. Design prin-
ciples should be seen as “guidelines” in the construction of ciphers, evolved
from years of experience, and as necessary, but not sufficient requirements.
There are many examples of this in the history of cryptography. We give a
few of the most recent examples.

Consider SP (substitution-permutation)-networks, product ciphers, where
the ciphertext is computed from the plaintext by applying in turn (key-
dependent) substitutions and permutations to the plaintexts. The DES can
be seen as a special implementation of a SP-network. In [41] a method of
constructing SP-networks is given, where for every key all ciphertext bits
depend on all plaintext bits. However, this fact is information that an at-
tacker can exploit. In [88] O’Connor describes a differential attack on the
SP-networks of [41] using a number of chosen plaintexts linear in the number
of S-boxes in the network.

In [62] the group properties of a cryptosystem based on permutation
groups were studied. It was claimed that the ability of a system to generate
the symmetric group on the message space is “one of the strongest security
conditions that can be offered”. In [81] an example of a cipher was given,
that generates the symmetric group, but still is a weak cipher vulnerable to
a known plaintext at tack.

7.2 Sufficiently Large Block and Key Size

It is clear from the discussion in Section 4.2 that if either the block or key size
is too small or both, a block cipher is vulnerable to a brute force attack. These
attacks are independent of the internal structure and intrinsic properties of
an algorithm. Most block ciphers, e.g. DES, IDEA, FEAL, LOKI, have a
block size of 64 bits. For these ciphers the birthday attacks of Theorems
4.4.1, 4.4.2 and 4.4.3 require storage/collection of 232 ciphertext blocks for
a success of about one half. These are not realistic attacks. First of all,
no single key is likely to be used to process that many ciphertexts, second
storage of 232 ciphertext blocks of each 64 bits will require about 215 Mbytes
of memory. Still, if an attacker can predict approximately how frequently a
key is changed, he can repeat his attack several times with fewer ciphertext
blocks and get a non-negligible probability of success. This should be taken
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into consideration, when designing new block ciphers.

The key size of the DES is only 56 bits, which is too short as discussed in
Section 6.1.6. Some of the latest block cipher proposals have a larger key, e.g.
IDEA [55] has a key size of 128 bits. In [11] Denning et al. estimated that
a block cipher with a key size of 80 bits is not vulnerable to an exhaustive
search within the next 30-40 years. The fastest exhaustive search machine on
the DES is the one by Wiener [112], which at the cost of 1 million US$ finds
the secret key of the DES in average time 3.5 hours. Using this estimate it
would take about 6,700 years to break a block cipher with a 80 bit key.

7.3 Resistance Against Differential Attacks

We consider an r-round iterated block cipher with round function g. Denote
by pg the highest probability of a non-trivial one-round differential achievable
by the cryptanalyst.

pg = max
β

max
α �=0

PrK(∆C1 = β | ∆P = α) (7.1)

where the probabilities are taken over all possible keys. In the following we
will omit the subscript of the probabilities. In Section 5.2.3 the probability
of a differential is given (5.5). It is easy to obtain a lower bound of any
differential in an r-round iterated cipher expressed in terms of pg.

Theorem 7.3.1 Consider an r-round iterated cipher with independent round
keys. Any s-round differential, s ≥ 1, has a probability of at most pg, where
pg has the probability of the most likely one-round differential.

Proof: The case s = 1 is trivial. For any s > 1,

Pr(∆Cs = βs | ∆P = β0) =
Σβs−1 Pr(∆Cs = βs | ∆Cs−1 = βs−1, ∆P = β0)
× Pr(∆Cs−1 = βs−1 | ∆P = β0)

Since the cipher is a Markov cipher, see Definition 5.2.1 (page 56),

Pr(∆Cs = βs | ∆Cs−1 = βs−1, ∆P = β0 =
Pr(∆Cs = βs | ∆Cs−1 = βs−1)
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Now

Pr(∆Cs = βs | ∆Cs−1 = βs−1) ≤ pg

and ∑
βs−1

Pr(∆Cs−1 = βs−1 | ∆C0 = β0) ≤ 1

Therefore Pr(∆Cs = βs | ∆P = β0) ≤ pg. ✷

Figure 7.1: A four round differential of a DES-like cipher.

For DES-like iterated ciphers, Theorem 7.3.1 is trivial, since pg = 1, when
the right halves of a pair of inputs are equal. For DES-like iterated ciphers,
these differentials are called trivial one-round differentials. It is possible to
get a lower bound on all differentials in a DES-like iterated cipher expressed
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in terms of the most likely non-trivial one-round differential. Let now pmax

denote

pmax = max
β

max
αR �=0

Pr(∆C1 = β | ∆P = α) (7.2)

where αR is the right half of α. We assume in the following that pmax < 1.

Theorem 7.3.2 Consider an r-round iterated DES-like cipher with inde-
pendent round keys. Any s-round diferential, s ≥ 4, has a probability of at
most 2p2

max.

Proof: It follows from Theorem 5.2.2 that we are considering a Markov ci-
pher. We shall first give the proof for s = 4, i.e.,

Pr(∆X(4) = β | ∆X(0) = α) ≤ 2p2
max

for any β, α(�= 0). Let αL, αR and βL, βR be the left and right halves of α and
β. We denote by ∆XR(i) the right input differences at the i’th round, see
Figure 7.1. Let δ → ε denote that, in order for the s-round differential (α, β)
to occur, it is necessary that inputs to F with difference δ lead to outputs
with difference ε. We split the proof into cases where βL = 0 and βL �= 0.
Note that when βL = 0 then βR �= 0, otherwise αL = αR = βL = βR = 0,
which is of no use in differential cryptanalysis. Similarly if αL = 0 then
αR �= 0.

1. βL = 0. Then clearly ∆XR(2) = βR �= 0. If ∆XR(1) = 0 then ∆XR(2) =
αR = βR �= 0. It then follows that αR = βR → αL in the first round and
∆XR(2) = βR → 0 in the third round, both combinations with probability
at most pmax. If ∆XR(1) �= 0 then it follows that for any given ∆XR(1)
the second round must be ∆XR(1) → αR + βR and the third round must be
∆XR(2) = βR → ∆XR(1), both combinations with probability at most pmax.
We obtain
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Pr(∆X(4) = β | ∆X(0) = α)

=
∑

∆XR(2)

Pr(∆XR(1) | ∆X(0) = α)×

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1))

= Pr(∆XR(2) = 0 | ∆X(0) = α)×
Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1) = 0)

+
∑

∆XR(2) �=0

Pr(∆XR(1) | ∆X(0) = α)×

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1))

≤ p2
max +

∑
∆XR(1) �=0

Pr(∆XR(1) | ∆X(0) = α)× p2
max

≤ 2p2
max

since
∑

∆XR(1) �=0 Pr(∆XR(1) | ∆X(0) = α) ≤ 1.

2. βL �= 0.

We consider first the 3-round differential obtained by fixing ∆XR(1). In
the first inequality we use that if ∆XR(2) = 0 then ∆XR(1) = βL �= 0, and
it follows that in the second and fourth rounds each of the combinations are
upper bounded by pmax. For any given non-zero value of ∆XR(2) each of the
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combinations in the last two rounds are upper bounded by pmax. We obtain

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1))

=
∑

∆XR(2)

Pr(∆XR(2) | ∆X(0) = α, ∆XR(1))×

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1), ∆XR(2))

= Pr(∆XR(2) = 0 | ∆X(0) = α, ∆XR(1))×
Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1), ∆XR(2) = 0)

+
∑

∆XR(2) �=0

Pr(∆XR(2) | ∆X(0) = α, ∆XR(1))×

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1), ∆XR(2))

≤ pmax × pmax +
∑

∆XR(2) �=0

Pr(∆XR(2) | ∆X(0) = α, ∆XR(1))× p2
max

≤ 2p2
max

The above shows that Theorem 7.3.2 holds for s-round differentials for s ≥ 3,
if βL �= 0. Now

Pr(∆X(4) = β | ∆X(0) = α)

=
∑

∆XR(1)

Pr(∆XR(1) | ∆X(0) = α)×

Pr(∆X(4) = β | ∆X(0) = α, ∆XR(1))

≤
∑

∆XR(1)

Pr(∆XR(1) | ∆X(0) = α)× 2p2
max

≤ 2p2
max

Let now s > 4. Then

Pr(∆X(s) = β | ∆X(0) = α)

=
∑

∆X(s−4)

Pr(∆X(s− 4) | ∆X(0) = α)×

Pr(∆X(s) = β | ∆X(0) = α, ∆X(s− 4))
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Since we assumed that the round keys are independent and uniformly random
it follows from the proof for s = 4 that

Pr(∆X(s) = β | ∆X(0) = α)∆X(s− 4)) =

Pr(∆X(s) = β | ∆X(s− 4) ≤ 2p2
max

Thus Pr(∆X(s) = β | ∆X(0) = α) ≤ 2p2
max. ✷

We say that the F -function in a DES-like cipher is a permutation, if F
is a permutation, when each one of the two arguments are held constant. In
this case Theorem 7.3.2 can be proved for s ≥ 3. It comes from the fact that
to have equal outputs of one round we must have equal inputs.

Theorem 7.3.3 Consider an r-round iterated DES-like cipher with inde-
pendent round keys where the F -function in a permutation. Any s-round
differential, s ≥ 3, has a probability of at most 2p2

max.

Proof: We give the proof for s = 3. The general case can then be proved like
in the preceding theorem. Again we separate between two cases and use the
same notation as before.
1. βL = 0. Then ∆XR(0) = αR �= 0, otherwise different inputs would have to
yield equal outputs in the second round, but that is not possible, since f is
a permutation. The difference in the inputs at the first round is αR �= 0 and
the difference in the inputs at the second round is βR �= 0, thus Pr(∆X(3) =
β | ∆X(0) = α) ≤ p2

max.
2. βL �= 0. Like in the proof of Theorem 7.3.2 we split into cases where
∆XR(1) is zero or not. Note that ∆XR(1) = 0 ⇒ αL �= 0 otherwise
αR ⇒ αL = 0 ⇒ αR = 0. We obtain

Pr(∆X(3) = β | ∆X(0) = α)

=
∑

∆XR(1)

Pr(∆XR(1) | ∆X(0) = α)×

Pr(∆X(3) = β | ∆X(0) = α, ∆XR(1))

= Pr(∆XR(1) = 0 | ∆X(0) = α)×
Pr(∆X(3) = β | ∆X(0) = α, ∆XR(1) = 0)
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+
∑

∆XR(1) �=0

Pr(∆XR(1) | ∆X(0) = α)×

Pr(∆X(3) = β | ∆X(0) = α, ∆XR(1))

≤ p2
max +

∑
∆XR(1) �=0

Pr(∆XR(1) | ∆X(0) = α)× p2
max

≤ 2p2
max

✷

We will show in the following that the round function in an iterated cipher
can be chosen in such a way that the probability of any non-trivial one-round
differential, pmax, is small.

7.3.1 Differentially uniform mappings

By using the functions studied in [85, 2, 83, 25] one can obtain round func-
tions in a DES-like cipher such that pmax is small. The functions in a binary
field can be used to construct mappings with a difference distribution table,
whose entries are either 0 or 2. This is the ‘most uniform’ distribution of
differences one can obtain in a field where the difference operation used is
commutative.

Definition 7.3.1 (Nyberg [83]) A mapping F : G1 → G2, where G1

and G2 are Abelian groups, is differentially δ-uniform, if for all α ∈ G1 \{0}
and β ∈ G2

|{z ∈ G1 | F (z + a)− F (z) = β}| ≤ δ

As an example, consider

Theorem 7.3.4 The mapping f(x) = x2k+1 in GF (2n) over GF (2), where
gcd(2k − 1, 2n − 1) = t is differentially (t + 1)-uniform for the difference
induced by addition module 2. Furthermore, if gcd(2k + 1, 2n− 1) = 1, f is a
pemautation.

Proof: First note that for α �= 0 the equation

f(x⊕ α)⊕ f(x) = β (7.3)
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f(x) δf N(f) ord(f) Conditions

x2k+1 2s 2 s = gcd(k, n) [83, 2]

x2k+1 2n−1 − 2(n+s)/2−1 s = gcd(k, n), n
s

odd[83]

(x2k+1)−1 2 2n−1 − 2(n+s)/2 (n + 1)/2 gcd(k, n) = 1, n odd [83]
x−1 2 2n−1 − 2n/2 n− 1 n odd [83, 2]
x−1 4 2n−1 − 2n/2 n− 1 n even [83, 2]
x7 6 3 n odd [2]

Table 7.2: Differentially uniform mappings in GF (2n) over GF (2).

has at least two or no solutions for x, i.e., if x = γ is a solution, then so is
x = γ ⊕ α. And

(x⊕ α)2k+1 ⊕ x2k+1 = (x⊕ α)× (x⊕ α)2k ⊕ x2k+1 =

(x⊕ a)× (x2k ⊕ α2k

)⊕ x2k+1 = (α× x2k

)⊕ (x× α2k

)⊕ α2k+1

Thus, by letting x and y be two different solutions to equation (7.3) it follows
that

(α× x2k

)⊕ (x× α2k

)⊕ α2k+1 = (α× y2k

)⊕ (y × α2k

)⊕ α2k+1 ⇔
α× (x2k ⊕ y2k

) = α2k × (x⊕ y) ⇔
(x⊕ y)2k−1 = α2k−1 (7.4)

since x �= y. It is well known (see e.g. [59, Th. 1.151]) that for any positive
divisor d of the order of a cyclic group, the group contains precisely one
subgroup of order d. Here the group order is N = 2n − 1 and since t divides
N by definition, there is a subgroup Z = {z1, z2, . . . , zt}. It follows that
there are exactly t solutions to equation (7.4), namely x ⊕ y = α × zi and
therefore there are either t + 1 or no solutions to equation (7.3). The last
part of the proof is trivial. ✷

We note that, δf = t+1, where t = gcd(2n−1, 2k−1) is equivalent to δf =
2s, where s = gcd(k, n). We summarise the results of [85, 2, 83] in Table 7.2,
where δf is the highest non-trivial entry in the difference distribution table for
f . N(f) is the nonlinearity of f , i.e., the smallest of the Hamming distances
of any non-zero linear combination of the output coordinate functions to the
set of all affine functions. ord(f) is the order of the coordinate functions of f ,
e.g. when ord(f) = 2, every output coordinate of f is a function of quadratic
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and linear terms of the input coordinates. Note that squaring in GF (2n) over
GF (2) is a linear function, which means that for any of functions f(x) = xd

in Table 7.2 and the functions g(x) = (f(x))2l
= xd2l

it holds that δf = δg

and N(f) = N(g).

When moving to other fields it is possible to obtain difference distribution
tables with all 1 entries. As an example

Example 7.3.1 The mapping f(x) = x2 mod p, where p in a prime, is
differentially 1-uniform, where the difference is induced by addition module
p.

The proof is given in Theorem 5.2.3. Note that the mapping in Example
7.3.1 is not a permutation. Also note that for a mapping, whose domain
and range are of the same size, differentially 1-uniformity means that all
entries in the difference distribution table for a non-zero input difference are
1. Therefore a permutation cannot be differentially 1-uniform, since different
inputs never yields equal outputs.

As can be seen from Table 7.2 differential uniformity often requires the
size of the domain and image of the functions to be odd. This is inconvenient
in the design of block ciphers. The following result is useful.

Theorem 7.3.5 Consider a mapping F : GF (2n) → GF (2n) and assume
that F is differentially d-uniform. Then the mapping Fl obtained from F by
discarding any l output bits is differentially 2l × d-uniform.

Proof: Consider the difference distribution table for F . All columns have
a maximum entry of d. The difference distribution table for F1, obtained
from F by discarding one output bit, is the table for F where columns are
added pairwise together. Therefore F1 is differentially 2 × d-uniform. The
result now follows by induction on l. ✷

7.4 Markov Ciphers and Differentials

In Section 7.3 we showed that it is possible to obtain an upper bound on the
probabilities of any differential in an iterated cipher. However, this upper
bound can only be used to prove resistance against a differential attack, when
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pmax, the probability of the most likely one-round difference, is chosen to be
small. For many practical ciphers pmax is relatively high. As an example,
for the DES pmax is 1/4, which means that for the DES with independent
round keys the upper bound of the probability of any s-round differential,
s ≥ 4, is 2 × p2

max = 1/8. Thus a differential attack needs at least 8 chosen
plaintext pairs. This lower bound on the complexity of a differential attack
is, of course, too low to conclude resistance against a differential attack. We
consider from now on an iterated cipher of block length n. For Markov ciphers
more information about the probabilities of differentials can be obtained. The
theory of Markov chains is well explored, see e.g. Feller [29]. Theorem 5.2.1
connects the theory of differential cryptanalysis with the theory of Markov
chains.

Denote by P the transition pobability matrix of the homogeneous Markov
chain, the N×N(N = 2n−1) matrix representing the difference distribution
table for one round of the cipher. Let ps

ij denote the probability that state
j can be reached from state i in s steps. In other words for our case, that
a certain difference i in the ciphertexts after t rounds, can result in another
certain difference j in the ciphertexts after t + s rounds. In the same way
we let Pt denote the transition matrix with entries pt

ij. If all probabilities pt
ij

are sufficiently small for some t, then we can expect the cipher to be secure
against a differential attack after t rounds. Calculating Pt for t = 2, 3, . . .
is usually computationally infeasible. For example, the transition matrices
of the DES and IDEA are of size 264 − 1, and for the DES with t = 15,
finding P15 is equivalent to finding the probabilities of all 15 round differ-
entials. However, it is possible to study the asymptotic behaviour of the
transition matrices. Note, that the transition matrix of a cipher is doubly
stochastic, i.e., every row and every column sum to one. One row of P is
a probability distribution, so every row sum to one [55]. A column of P is
equivalent to a row of the transition matrix for the inverse of the round func-
tion and since it is bijective by definition, every column of P also sum to one.

Definition 7.4.1 ([29]) A finite Markov chain is said to be irreducible,
if for any (i, j) there exists an r, s.t. pr

ij > 0.

In our case, it means for example, that starting with a difference i in the
plaintext, then any difference j is possible after r rounds.
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Definition 7.4.2 ([29]) A state i called periodic with period di, if di > 1
and ps

ii = 0 except when di | s. A state i is called aperiodic with di = 1, if
p1

ii > 0. The period of P is defined as gcd(d1, . . . , dN).

It is seen that P is aperiodic, if there exists an i, s.t. di = 1

Definition 7.4.3 ([29]) A Marcov chain, which is both aperiodic and ir-
reducible is called ergodic.

Theorem 7.4.1 ([29]) If a Marcov chain is ergodic, then there exists an
unique distribution {uk}, s.t. for all (i, j)

lim
n→∞ pn

ij = uj > 0 (7.5)

Furthermore, if the transition matrix is doubly stochastic, {uk} is the uni-
form distribution.

In our case of differential cryptanalysis, the uniform distribution is when
uk = 1/N for all k and Theorem 7.4.1 tells us, that if the transition matrix
is irreducible and aperiodic, then the cipher is resistant against a differential
attack after sufficiently many rounds. It does not give us an exact number of
how many rounds. The aperiodicity of a transition matrix is sometimes easy
to show, e.g. for the DES an input xor Γ = (1960000 1960000) results in an
output xor Γ with probability 1
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i.e., Γ is aperiodic. Also IDEA has aperi-

odic states [55, Prop.4, p. 61]. To show irreducibility is a harder problem.
Note, that the transition matrix P of a Markov cipher is irreducible, if there
exists an r, s.t. Pr contains no zero entries. Moreover, it suffices to prove
that Pr0 has a row or a column with no zero entries for some r0 [1, 55].

A transition matrix P can be seen as a directed graph G, where the nodes
represent the states in the Markov chain, which has an edge from node i to
node j, if a difference i can result in a difference j. O’Connor [87, 54] showed,

Theorem 7.4.2 If the round function in an iterated cipher is selected uni-
formly from the set of all n-bit permutations S2n then

Pr(P is ergodic) → 1

for large n.
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The proof of O’Connor’s result makes use of a result from graph theory,
saying that for large N if the number of edges is dominating Nlog2N , where
N is the number of nodes in the graph, then with a high probability G is
strongly connected, i.e., from every node there is a path to all other nodes,
which in our case means that P is ergodic. This result suggests, that most
iterated ciphers will be resistant against differential attacks after sufficiently
many rounds.

In Section 5.2.3 we described the hypothesis of stochastic equivalence.
O’Connor examined the difference distribution table for randomly chosen
permutations, where the difference operator is the XOR operation.

Theorem 7.4.3 (O’Connor [89]) Let π ∈ S2m , the set of all m-bit pe-
mutations, be uniformly selected. Then for large m, the expected value of the
largest entry in the XOR table of π is less than 2m, and the expected fraction
of the table that is zero is tending towards e−

1
2 ≈ 0.6065.

It means that although in an ergodic m-bit Markov cipher the probabili-
ties of all differentials are tending towards the uniform distribution, in an
actual attack, a fixed key is used and some differential will have a proba-
bility of about 2m/2m for large m. However, if the cipher is ergodic and
has sufficiently many rounds, an attacker has no chance of knowing which
differential has a high probability, since he does not know the key.

We will now consider Markov ciphers in the special case, where the iter-
ated cipher has a Feistel structure.

7.4.1 Feistel ciphers

In this section we consider Feistel ciphers, cf. Definition 2.5.2, with block size
2n. In [55] it is recommended that for an iterated block cipher, the transition
matrix P is non-symmetric. It means, that it should not be possible that a
difference α can result in difference β and at the same time a difference β
can result in difference α. These combinations can be iterated any number of
times, and if there exist combinations with a high probability the cipher may
be vulnerable to differential attacks. Note that one round in a Feistel cipher
includes the swapping of the halves after the evaluation of the F-function.
For Feistel ciphers we have the following result.
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Theorem 7.4.4 If the round function F of a Feistel cipher is a permu-
tation, see page 153, then the transition matrix P is non-symmetric.

Proof: Assume that (αL, αR) → (βL, βR) and that (βL, βR) → (αL, αR),
where (αL, αR) �= (0, 0). Because the right half of a ciphertext in one round
in a Feistel cipher equals the left half of the ciphertext in the following round,
αR = βL and αL = βR. It follows that inputs to the F -function with differ-
ence αL and inputs with difference αR both have to lead to equal outputs.
Since F is a permutation, this implies that αL = αR = 0. ✷

If the round function is not a permutation, then it is possible to construct
2-round iterative characteristics, like in Biham and Shamir’s attack on the
DES [7].

The result of O’Connor [87, 54], that most iterated ciphers are resistant
to differential attacks, does not apply directly to the case of Feistel iterated
ciphers, but we will show that the result also holds in that case.

Lemma 7.4.1 In a Feistel cipher, the number of non-zero entries in one
row of the transition matrix P is at most

√
22n = 2n. If the round function

F is chosen uniformly from S2n , then for large n the expected number of
non-zero entries of one row is 2n × e−

1
2 ≈ 2n−1.

Proof: The first part follows from the structure of Feistel ciphers. i.e., an
input difference (β, α) leads always to an output difference (α, X), where α, β
and X are n-bit values. Now the second part follows from Theorem 7.4.3. ✷

From Lemma 7.4.1 it follows that the expected number of non-zero entries in
P is 22n × 2n−1 = 23n−1, when n is large. But since 23n−1 > 22n × log2 22n =
n×22n+1 for n large, the result of 7.4.2 holds also for Feistel ciphers. Although
Lemma 7.4.1. assumes that the round function of the cipher is a permuta-
tion, a similar result will hold for any uniformly selected round function. In
other words the following result holds.

Theorem 7.4.5 If the round function (permutation) in a Feistel cipher in
selected uniformly from the set of all n-bit function, then

Pr(P is ergodic) → 1
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for large n.

As noted in the previous section it is not possible to calculate Pr when the
block size is large. For Feistel ciphers with round permutations it is possible
to derive the following property.

Theorem 7.4.6 If the F -function of a Feistel cipher is a permutation, then
the transition matrices Pr, r ≤ 5, have zero entries.

Size (bits) F perm. F not perm. All
F-fct. Cipher No. Markov No. Markov No. Markov

2 4 24 0.0% 232 41.4% 256 37.5%
3 6 8! 80.0% 224 - 8!% 88.5% 224 88.4%

Table 7.3: The ratio of Markov to all ciphers in 4 and 6 bit ciphers (exhaustive
search).

Proof: We prove only the case r = 5. The other cases are quite similar. In
a 5-round differential an input difference (Γ, 0) will never result in an output
difference (0, Γ) for any Γ �= 0. The differential must have the following form.

(Γ, 0)
0 ← 0
Φ ← Γ
0 ← Φ
Φ ← Γ
0 ← 0

(0, Γ)

It is seen that it is necessary that Φ = 0, but 0 �← Γ by assumption. ✷

This result suggests that if the F-function in a Feistel cipher is a permu-
tation, it may take more rounds before P reaches the uniform distribution,
since a similar result does not hold when the F-function is not a permutation.

To test Feistel ciphers for ergodicity we did an exhaustive search for all
four and six bit Feistel ciphers. We split the tests in cases depending on
whether the F -function is a permutation or not. The result of this experiment
is summarised in Table 7.3. For 8-bit Feistel ciphers it is not possible to do an
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exhaustive search in reasonable time, since the number of 8-bit Feistel ciphers
is 1616 = 264 and the number of ciphers with F a permutation is 16! � 244

We did 1000 tests, where in each test we chose a round function/permutation
at random. Also we calculated the smallest number of rounds t, s.t. P t

contained no zero entries. The result of these tests is summarised in Table
7.4. It is seen from Table 7.4 that almost all 8 bit ciphers are Markov ciphers
and that it takes about 6 rounds before P t contains no zero entries, i.e.,
all nonzero differences are possible. The difference between using round
functions and round permutations is visible but not significant.

Size (bits) F perm. F not perm.
F-fct. Cipher No. Markov #Rounds No. Markov #Rounds

4 8 1000 > 99% 6.4 1000 > 99% 6.3

Table 7.4: The ratio of Markov to all ciphers in 8 bit ciphers (1000 tests).

7.5 Resistance Against Linear Attacks

In this section we consider iterated block ciphers. It is possible to get a lower
bound on all linear approximations of an iterated cipher expressed in terms
of the most likely one-round approximation.

Definition 7.5.1 For a boolean function f : GF (2)n + GF (2), the Walsh
transform is defined

F (w) =
∑

x∈GF (2)x

(−1)f(x) × (−1)x·w (7.6)

where ‘·’ denotes the dot poduct.

The following theorem is well known, see e.g. [42, 71].

Theorem 7.5.1 (Parseval’s Theorem) For any boolean function, f : GF (2)n →
GF (2), ∑

x∈GF (2)x

(F (w))2 = 22n
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where F is the Walsh transform of f .

Parseval’s theorem tells us that the squares of all Walsh transforms, F (w),
sum to a constant and the following result follows

Corollary 7.5.1 Let g : GF (2)n → GF (2)m. For any b ∈ GF (2)m

∑
a∈GF (2)n

|PrX(a ·X = b · g(X))− 1/2|2 = 1/4 (7.7)

Proof: Let f : GF (2)n → GF (2), f(x) = b · g(x). Then

F (a) =
∑

x∈GF (2)n

(−1)f(x) × (−1)x·a

= #{x : a · x = f(x)} −#{x : a · x �= f(x)}
= 2×#{x : a · x = f(x)} − 2n

= 2n+1 × (PrX(a · x = f(x))− 1/2)

Since
∑

a∈GF (2)n(F (a))2 = 22n we have completed the proof. ✷

In the following let Xi denote the ciphertext after i rounds of encryption,
where X0 is the plaintext. We consider first an r-round iterated m-bit ci-
pher with round function g. Denote by pg the probability of the best linear
approximation of g, i.e.,

|pg − 1/2| = max
k∈GF (2)m

max
α,β �=0

|PrX(g(X, k) · β = X · α)− 1/2| (7.8)

Theorem 7.5.2 Consider an r-round iterated cipher with independent round
keys. Any s-round linear approximation, s ≥ 1, has a probability pL, such
that

|pL − 1/2|2 ≤ |pg − 1/2|2.
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Proof:

|PrX(X0 · α = Xs · β)− 1

2
|2

≤
∑

b1∈GF (2)m

22 × |PrX(X0 · α = X1 · b1)− 1/2|2 ×

|PrX(X1 · b1 = Xs · β)− 1/2|2

= |pg −
1

2
|2 × 22 ×

∑
b1∈GF (2)m

|PrX(X0 · α = b1 ·X1)− 1/2|2

= |pg −
1

2
|2

where we have upper bounded the first linear approximation in terms of pg

and used Corollary 7.5.1 to upper bound the remaining rounds. ✷

We consider now DES-like iterated ciphers with block size 2n, cf. Defini-
tion 2.5.3, Recall that

F (X, Ki) = f(E(X)) + Ki)
f : GF (2)m → GF (2)n, m ≥ n
E : GF (2)n → GF (2)m, an affine expansion mapping

Since pg is trivially one, we let pf denote the probability of the most likely
non-trivial one round approximation, i.e.,

|pf − 1/2| = max
k∈GF (2m)

max
b�=0, a

|PrX(F (X, k) · b = X · a)− 1/2| (7.9)

Theorem 7.5.3 Consider an r-round iterated DES-like cipher with indepen-
dent round keys. Any s-round linear approximation, s ≥ 4, has a probability
pL such that

|pL − 1/2|2 ≤ 8|pf − 1/2|4.

Proof: We consider first s = 4 and the four round linear approximation in
Figure 7.2, where αL, αR, βL, βR ∈ GF (2)n are fixed values. We omit the key
k and let F (X, k) be denoted by F (X). Note that in the right half of the
ciphertext after the first round although we have knowledge about the bits
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Figure 7.2: A four round linear approximation.

determined by αL it doesn’t necessarily mean that we use exactly those bits
to approximate the F -function in the second round, so bR is not in general
equal to αL. However, it follows from Figure 7.2 that the values of the left
and right halves of α, β, a, b, c and d are dependent.

In Figure 7.3 we give the skeleton of a four round linear approximation,
where we have omitted the Xi’s and F (Xi)’s. We split the proof in two cases
depending on the value of βR.

1. βR = 0.
There are no approximations in the last round. It follows that βL �= 0,
bL = cR, dR = cL⊕βL = 0 and bR = αL⊕βL. Also for a fixed value of cR = γ
all values of the skeleton of Figure 7.3 are fixed, i.e.,
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Figure 7.3: The skeleton of a four round linear approximation.

aL = αL aR = αR ⊕ γ
bL = cR = γ bR = αL ⊕ βL

cL = βL cR = γ
dL = 0 dR = 0

In particular, if cR = 0 then bL = 0 and bR = 0. In this case, there can be no
approximation in the second round and the approximation in the first and
third rounds are non-trivial, i.e.,

|PrX(X0 · α = X4 · β)− 1
2
|2 ≤ 4× |pf − 1/2|4.

If cR = γ �= 0 the approximations in the second and third rounds are non
trivial and both upper bounded by |pf−1/2|. The approximation in the first
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round is upper bounded using Corollary 7.5.1. More explicitly we obtain,

|PrX(X0 · α = X4 · β)− 1

2
|2

≤
2m∑
γ=0

|PrX(X0 · α = X4 · β, cR = γ)− 1

2
|2

=
2m∑
γ=1

|PrX(X0 · α = X4 · β, cR = γ)− 1

2
|2

+ |PrX(X0 · α = X4 · β, cR = 0)− 1

2
|2

≤
2m∑
γ=1

|4× (PrX(X0 · (αR ⊕ γ) = F (X0) · αL)− 1

2
)

× (PrX(X1 · (αL ⊕ βL) = F (X1) · γ)− 1

2
)

× (PrX(X2 · γ = F (X2) · βL)− 1

2
)|2

+ 4× |pf −
1

2
|4

≤ |pf −
1

2
|4 ×

2m∑
γ=1

|4× PrX(X0 · (αR ⊕ γ) = F (X0) · αL)− 1

2
|2

+ 4× |pf −
1

2
|4

= 8× |pf −
1

2
|4

2. βR �= 0.
In this case it suffices to consider a three round approximation, depicted in
Figure 7.4. Note that fixing a value of cL = γ all other values in the skeleton
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of Figure 7.4 are fixed. We proceed in a way similar as above.

|PrX(X1 · α = X4 · β)− 1

2
|2

≤
2m∑
γ=0

|PrX(X1 · α = X4 · β, cL = γ)− 1

2
|2

=
2m∑
γ=1

|PrX(X1 · α = X4 · β, cL = γ)− 1

2
|2

+ |PrX(X1 · α = X4 · β, cL = 0)− 1

2
|2

≤
2m∑
γ=1

|4× (PrX(X1 · (αR ⊕ γ) = F (X1) · αL)− 1

2
)

× (PrX(X2 · (αL ⊕ βR) = F (X2) · γ)− 1

2
)

× (PrX(X3 · (γ ⊕ βL) = F (X3) · βR)− 1

2
)|2

+ 4× |pf −
1

2
|4

≤ |pf −
1

2
|4 ×

2m∑
γ=1

|4× PrX(X1 · (αR ⊕ γ) = F (X1) · αL)− 1

2
|2

+ 4× |pf −
1

2
|4

= 8× |pf −
1

2
|4
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Figure 7.4: The skeleton of a three round linear approximation.

Now we consider the case where s > 4.

|PrX(X0 · α = Xs · β)− 1

2
|2

≤
∑
βs−4

22 × |PrX(X0 · α = Xs−4 · bs−4|2 ×

|PrX(Xs−4 · bs−4 = Xs · bs)|2

= 23 × |pf −
1

2
|4 × 22 ×

∑
bs−4

|PrX(X0 · (α = bs−4 ·Xs−4)|2

= 8× |pf −
1

2
|4

And we have completed the proof. ✷

Finally we note that a similar but different result appears in [84]
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7.6 Ciphers Resistant to Differential and Lin-

ear Attacks

In the following we will show examples of ciphers resistant to both differential
and linear attacks. We will use the differentially uniform mappings from
Section 7.3.1, which we will see are also highly nonlinear. Note that when
the nonlinearity of a function f , where f : GF (2n) → GF (2m), is N(f), any
linear approximation of f is bounded as follows (see also [36]),

|pf − 1/2| ≤ 2m−1 −N(f)

2m

In the following examples it is assumed that the round keys are independent.

7.6.1 Iterated cipher

Let h(x) = x−1 in GF (264), where h(x) = 0 for x = 0, be the round function
in an r-round iterated 64 bit cipher EK(·). Each round take a 64 bit text
input and a 64 bit round key, which are exclusive-or’ed to form the input
to g, i.e., g(X, K) = h(X ⊕K). Obviously h is a permutation and its own
inverse and according to Table 7.2, h is differentially 4-uniform. Following
Theorem 7.3.1 every s-round differential of EK(·) for s ≥ 1 has a probability
of at most 4/264 = 2−62.

The nonlinearity N(h) = 263−232 according to Table 7.2 and by Theorem
7.5.2

|pL − 1/2|2 ≤ |ph − 1/2|2 ≤ (
232

264
)2 = 2−64

It follows that h is highly resistant to both differential and linear attacks.

7.6.2 DES-like iterated cipher

Let g(x) = x5 in GF (250) be the round function in a DES-like iterated 100
bit cipher. Each round take a 50 bit input and a 50 bit key, which exclusive-
or’ed to form the input to F , i.e., F (X, K) = f(X⊕K). From Theorem 7.3.4
it follows that pmax of f is 4

250 and f is a permutation. From Theorem 7.3.3
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it follows that every s-round differential of this block cipher has probability
less than or equal to 2−95 for s ≥ 3.

According to Table 7.2 the nonlinearity N(f) is 249 − 225. Therefore
|pf − 1/2| ≤ 2−25 and by Theorem 7.5.3

|pL − 1/2|2 ≤ 8× |pf − 1/2|4 = 2−97

It follows that this cipher is highly resistant to both differential and linear
attacks.

7.7 Strong Key Schedules

In [100] ideas of how to improve the resistance of the DES to an exhaustive
key search attack were given. The ideas given in this section are inspired by
[100]. In [7] it is shown that the DES with independent round keys, i.e., a
768 bit key, is not essentially stronger than the DES with a 56 bit key. An
attack using 259 pairs of encryptions is presented, which finds the secret 768
bit key in time about 261 encryptions. The improved attack on DES [7, Sect.
5] exploits the dependencies in the round keys and is not directly applicable
to the DES with independent round keys. The complexity of an improved
differential attack on the DES with independent round keys is not known to
us. It seems, however, to require more than the 247 chosen plaintexts used
to attack the DES with dependent round keys as in [7]. In [64, 65, 66] a
linear attack on the full 16-round DES is outlined. It finds 26 bits of the 56-
bit key using 245 known plaintexts. It is suggested to find the remaining 30
bits by exhaustive search. It is obvious that the existence of a linear attack
finding the full round key of the last round would enable a possible attack
on the DES with independent round keys, since the ciphertexts can then be
decrypted one round with the obtained round key and a linear attack on
the DES with 15 rounds can be performed. It seems though, that a linear
attack on the round key in the last round of the DES will require many linear
expressions [64, 65, 66], including expressions with a probability that requires
many known plaintexts for the key to be uniquely determined.

The above speaks in favour of independent round keys in DES-like iter-
ated ciphers. However, as an example, a 768 bit key for the DES is of no
practical interest. The security gained seems, after all, to be small compared
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to the big increase in the key size. We introduce new properties of a key
schedule in a Feistel cipher.

Definition 7.7.1 Consider an r-round iterated 2m-bit block cipher with r
round keys, each of length n bits. A strong key schedule has the following
properties

1. Given any s bits of the r round keys, derived from an unknown master
key, where s < rn, it is ‘hard’ to find any of the remaining rn− s key
bits from the s known bits.

2. Given some relation between two master keys it is ‘difficult’ to predict
the relations between any of the round keys derived from the two master
keys.

The terms ‘hard’ and ‘difficult’ can be replaced by more precise definitions
depending on the applications. Of course ‘hard’ cannot be harder than per-
forming the key schedule for all keys, and ‘difficult’ cannot be more difficult
than performing the key schedule for the two master keys.

The above properties will complicate differential and linear attacks and
thwart the attacks based on simple relations discussed in Section 5.4.2.

A simple design of a strong key schedule

Let EK(·) be an r-round Feistel cipher of block length 2m bits, using master
key K for which the r round keys are of length n bits each and n ≤ 2m.

1. Define an initial key schedule, which on input a master key K outputs
r dependent round keys {Ki} = K1, . . . , Kr, s.t.

(a) E{Ki}(·) is secure against a known plaintext attack using encryp-
tions of at most r known plaintexts, in the sense that an informa-
tion deduction (see page 45) with a non-trivial information gain
is not possible.

(b) E{Ki}(·) contains no simple relations where g1(P, K) = P ⊕ α, α
a constant, see Definition 5.4.3, page 90.
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2. Define the round keys {RKl} = RK1, . . . , RKr used for encryption as

RKl = nMSB(E{Ki}(IV ⊕ l)),

where IV is a fixed value and nMSB(X) denotes the n leftmost bits
of X.

At a first glance it may seem strange and difficult to construct an initial key
schedule yielding a cipher secure against a known plaintext attack and with
no simple relations. However, for a 16 round cipher, as an example, it does
not seem difficult to prove or at least be strongly convinced that the ob-
tained cipher is secure against an attack using only 16 encryptions of known
plaintexts and the condition on the simple relations is easy to meet. For a
16 round cipher the relation in (1b) would be g1(P ) = P ⊕ h, h a hex digit,
so this relation would not even hold for a cipher with the complementation
property, the most well-known simple relation. As an example of such an
initial key schedule, see the key schedules of the DES [90] and the LOKI
ciphers [15, 14]. We can prove

Theorem 7.7.1 The key schedule just defined is a strong key schedule, where
‘hard’ means as hard as a brute force attack on E{Ki}(·) and ‘difficult’ means
as difficult as one encryption of E{Ki}(·). Furthermore the absence of weak
keys in guaranteed and pairs of semi-weak keys are very unlikely to occur.

Proof: By contradiction. Assume that property 1 of Definition 7.7.1 can
be compromised faster than exhaustive search for all keys of E{Ki}(·). This
means, that given s bits of the set {RKl}, which are ciphertext bits corre-
sponding to less than r encryptions E{Ki}(IV ⊕ l), it is possible in time less
than brute force to find (bits of) ciphertexts, which were not given to us.
But that yields a contradiction because of (1a).

Assume that property 2 of Definition 7.7.1 can be compromised faster
than one encryption of E{Ki}(·). This means, that we can find some relation
between two master keys, K and K∗, s.t. f(K) = K∗ and some relation
between two round keys, RKl and RK∗

n, s.t. g2(RKL) = RK∗
n, where the

total complexity of f and g2 is less than that of one encryption of E{Ki}(·).
But that yields a contradiction because of (1b) and Definition 5.4.3, since
then

E{Ki}(P ) = C ⇒ Ef({Ki})(P ⊕ (l ⊕ n)) = g2(C)
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where P = IV ⊕ l and C = RKl.

To prove the final statements we note that RKl �= RKn for l �= n, i.e.,
there are no weak keys. Furthermore it is very unlikely that we can find pairs
of semi-weak keys, K and K∗, s.t. EK(IV ⊕ l) = EK∗(IV ⊕ (r + 1− l)) for
all l = 1, . . . , r. ✷

The above method applied to the DES may yield a DES-version with
improved immunity to differential, linear and other attacks. However, this
DES-version is only 16 times harder to break than the DES by exhaustive
search of all keys and in view of [112] a larger master key is needed. A
possibility would be to define the round keys as follows:

RKi = 48MSB(DESK1(DES−1
K2(DESK1(IV ⊕ i)))),

i.e., use two-key triple DES to calculate the new round keys.

The above method involves encryptions in the generation of the round
keys, but note that encryption with these ciphers is as fast as encryption
with the same cipher using a conventional key schedule when the key is held
constant (see also [100]).

7.8 A Test for Nonlinear Order

In [103] it was considered to cryptanalyzed the DES by the method of formal
coding. The conclusion was that this is hardly possible. It was also shown
that the nonlinear order of any of the 8 S-boxes in the DES is 5. An open
question is: what is the order of the outputs for the full 16-round DES? In
general, a cipher will be vulnerable to attacks like the method of formal cod-
ing if the nonlinear order of the outputs is too low. Higher order differentials
can be used to determine a lower bound on the nonlinear order of a block
cipher.
Test for nonlinear order
Input: EK(·), a block cipher, a key K, plaintexts x1 �= x2 and r, an integer.
Output: i ≤ r, a minimum nonlinear order of EK .
Let a1, a2, . . . , ai be linearly independent.

1. Set i = 1

2. Compute y1 = ∆a1,... ,ai
EK(x1) and y2 = ∆a1,...ai

EK(x2)
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3. If y1 = y2 output i and stop

4. If i ≥ r output i and stop

5. Set i = i + 1 and go to step (2)

If in step (3), y1 �= y2 then the nonlinear order is greater than i according to
Proposition 5.2.3. If y1 = y2 then the nonlinear order may be greater than
i, because it is possible for other values of x′

1 and x′
2 that y′

1 �= y′
2. However,

the above test must stop, since if the i’th derivative of f is constant, then the
(i + r)’th derivative of f is zero for all r > 0. Also, note that computing an
i’th order derivative of f , is equivalent to computing two times an (i− 1)’th
order derivative of f . Therefore the values of y1, y2 can be stored and re-used
in following steps.

To test a block cipher E pick a random key K and two random plaintexts
and run the test for nonlinear order. If the output of the test is d then the
nonlinear order of EK is at least d. Repeat this procedure for as many keys
and plaintexts as desired. The input r and the test in step (4) is necessary
for block ciphers like the DES and r should be chosen not much greater than
32, since it takes about 2r encryptions to check a nonlinear order of r.

7.9 Cascade Ciphers

In Section 6.1.6 we discussed the future of DES. We are in the situation,
where we have a block cipher, that has proved to be very strong, the only
problem being that the keys are too small and a simple brute-force attack
has become possible. Thus, this section is motivated by the following general
question: Given cryptosystem X , which cannot in practice be broken faster
than exhaustive key search, how can we build a new system Y , such that

1. Keys in Y are significantly longer than keys in X (e.g. twice as long)

2. Given an appropriate assumption about the security of X ,Y is provably
as hard to break as X under any natural attack (e.g. ciphertext only,
known plaintext, etc.).
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3. It can be convincingly argued that Y can in fact not be broken faster
than exhaustive key search, and is therefore in fact much stronger than
X .

Possible answers to this question have already appeared in the literature.
The best known example is two-key triple encryption, where we encipher
using one key, decipher using a second key, and finally encipher using the
first key. Van Oorschot and Wiener [111] have shown, refining an attack of
Merkle and Hellman [76], that this construction is not optimal: in a known
plaintext attack, it can be broken significantly faster than exhaustive key
search.

We propose a new variant of two-key triple encryption, which has all the
properties we require above.

7.9.1 Multiple encryption

In this section, we look at methods for enhancing cryptosystems based on the
idea of encrypting plaintext blocks more than once. Following the notation
of the introduction, we let X be the original system, and we let EK resp. DK

denote encryption resp. decryption in X under key K. We assume that the
key space of X consists of all k-bit strings, and that the block length of X
is m. In a cascade of ciphers it is assumed that the keys of the component
ciphers are independent. The following result was proved by Maurer and
Massey [69].

Theorem 7.9.1 (The importance of being first.) A cascade of ciphers
is at least as hard to break as the first cipher.

By restricting ourselves to the most powerful attack, the chosen plaintext
attack, we can prove the following more general result.

Theorem 7.9.2 (The importance of being there.) A cascade of ci-
phers is at least as hard to break in any attack as any of the component
ciphers in the cascade in a chosen plaintext attack.

Proof: Assume that we have an algorithm A, which on input the encryp-
tions of n known or chosen plaintexts or on input just n ciphertexts, breaks
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a cascade of Nc ciphers, Y . We will use A to break any of the component
ciphers in a chosen plaintext attack. Assume that X is the i’th cipher of
the Nc ciphers in the cascade and that we can get encryptions of any cho-
sen plaintext. Choose Nc − 1 keys at random for the ciphers exclusive X .
Whenever A asks for the encryption of a chosen or known plaintext P , we
multiple encrypt P using the first i − 1 keys, yielding PP . In a ciphertext
only attack we choose a plaintext P ourselves. Then we get the encryption
CC of PP in the chosen plaintext setting from X . Now use the remaining
Nc − i keys to multiple encrypt CC, yielding C, which we input to A. Since
by assumption, A breaks the cascade, it will output the Nc keys, amongst
which we will get a candidate for the secret key of X . We have proved that
if we can break the cascade, we can break any of the component ciphers in
a chosen plaintext attack. Thus, if a component cipher X is secure against
a chosen plaintext attack, then a cascade of ciphers containing X is secure
against any attack. ✷

A special case of a cascade of ciphers is when the component ciphers are
equal, also called multiple encryption. In the following we consider different
forms of multiple encryption.

Double Encryption

The simplest idea one could think of would be to encrypt twice using two keys
K1, K2, i.e., let the ciphertext corresponding to P be C = EK2(EK1(P )). It is
clear (and well-known), however, that no matter how K1, K2 are generated,
there is a simple meet-in-the middle attack that breaks this system in a
known plaintext attack using 2k encryptions and 2k blocks of memory, i.e.
the same time complexity as key search in the original system. Even though
the memory requirements may be unrealistic, it is clear that this is not a
satisfactory improvement over X .

Triple Encryption

Triple encryption with three independent keys K1, K2, and K3, where the
ciphertext corresponding to P is C = EK3(EK2(EK1(P ))), is also not a sat-
isfactory solution for a similar reason as for double encryption. A simple
meet-in-the-middle attack will break this in time about 22k encryptions and
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space 2k blocks of memory. Thus we do not get full return for our effort in
tripling the key length - as stated in demand 3 in the introduction, we would
like attacks to take time close to 23k, if the key length is 3k. In addition
to this, if X = DES, then a simple triple encryption would preserve the
complementation property, and preserve the existence of weak keys.

It is clear, however, that no matter how the three keys in triple encryption
are generated, the meet-in-the-middle attack mentioned is still possible, and
so the time complexity of the best attack against any triple encryption variant
is not larger than 22k. It therefore seems reasonable to try to generate the
three keys from two independent X -keys K1, K2, since triple encryption will
not provide security equivalent to more than 2 keys anyway.

Two-key Triple Encryption

One variant of this idea is well-known as two-key triple encryption, pro-
posed by W. Tuchmann [110]: we let the ciphertext corresponding to P be
EK1(DK2(EK1(P ))). Compatibility with a single encryption can be obtained
by setting K1 = K2. As one can see, this scheme uses a particular, very
simple way of generating the three keys from K1, K2. For two-key triple en-
cryption there is a result similar to Theorem 7.9.2.

Theorem 7.9.3 In a chosen plaintext/ciphertext attack two-key triple en-
cryption is at least as hard to break as the underlying cipher.

Proof: Assume that we have an algorithm B, which on input n chosen
plaintexts, breaks a two-key triple encryption scheme, Z, where W is the
underlying cipher. Choose one key K1,3 at random. Whenever B asks for
the encryption of plaintext P , we encrypt P using the key K1,3, yielding PP .
Then we get the decryption CC of PP in the chosen ciphertext setting from
W . Now encrypt CC using again the key K1,3 yielding C, which is input to
B. Since by assumption B breaks the two-key triple scheme, it will output
a candidate for the key in the second round, i.e., for the secret key of W . ✷

Even though this result establishes some connection between the secu-
rity of two-key triple encryption with the underlying cipher, it holds only
for a chosen plaintext/ciphertext attack and still does not meet our second
demand.
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For the two-key triple encryption scheme, each of K1 and K2 only influ-
ences particular parts of the encryption process. Because of this, variants
of the meet-in-the-middle attack are possible that are even faster than ex-
haustive search for K1, K2. In [76] Merkle and Hellman describes an attack
on two-key triple DES encryption requiring 256 chosen plaintext-ciphertext
pairs and a running time of 256 encryptions using 256 words of memory. This
attack was refined in [111] into a known plaintext attack on the DES, which
on input n plaintext-ciphertext pairs finds the secret key in time 2120/n using
n words of memory. The attacks can be applied to any block cipher.

Since the attacks exploit that the keys used in the first and third encryp-
tion are equal, an initial attempt to thwart the attacks could be to let the
third key be dependent on both the first and second key. Define encryption
by EK1(DK2(EK3(P ))), where K3 = EK1(K2) ⊕ K2. Compatibility with a
single encryption can still be obtained by setting K2 = DK1(0), in that way
K2 = K3. By the security of the DM-scheme, see (3.1) on page 29, know-
ing K1 (or K2) does not give immediate knowledge about K3 and vice versa
and the scheme seems invulnerable to the attacks by Merkle and Hellman.
However, we found no proof that this scheme is at least as secure as a single
encryption.

We therefore propose what we believe to be stronger methods for gener-
ating the keys. Our main idea is to generate them pseudorandomly from 2
X keys using a generator based on the security of X . In this way, an en-
emy trying to break Y either has to treat the 3 keys as if they were really
random which means he has to break X , according to Theorem 7.9.1; or
he has to use the dependency between the keys – this mean breaking the
generator which was also based on X ! Thus, even though we have thwarted
attacks like Merkle-Hellman and van Oorschot-Wiener by having a strong
interdependency between the keys, we can still, if X is secure enough, get a
connection between security of X and Y .

General Description of Y

Let a block cipher X be given, as described above. The key length of X
is denoted by k. By EK(P ), we denote X -encryption under K of block P ,
while DK(C) denotes decryption of C. We then define a new block cipher Y
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using a function G:

G(K1, K2) = (X1, X2, X3)

which maps 2 X -keys to 3 X -keys. We display later a concrete example of a
possible G-function. This is constructed from a few X -encryptions. Keys in
Y will consist of pairs (K1, K2) of X -keys. Encryption in Y is defined by

EK1,K2(P ) = EX3(EX2(EX1)P )))

where (X1, X2, X3) = G(K1, K2). Decryption is clearly possible by decrypt-
ing using the Xi’s in reverse order.

Relation to the security of X

We would like to be reasonably sure that we have taken real advantage of
the strength of X when designing Y . One way of stating this is to say that Y
is at least as hard to break as X . By Theorem 7.9.1, this would be trivially
true if the three keys used in Y were statistically independent. This is of
course not the case, since the Xi’s are generated from only 2 keys. But if the
generating function G has a pseudorandom property as stated below, then
the Xi’s are “as good as random” and we can still prove the result we want.

Definition 7.9.1 Consider the following experiment: an enemy B is pre-
sented with three k-bit blocks X1, X2, X3. He then tries to guess which of two
cases has occurred:

1. The Xi’s are chosen independently at random.

2. The Xi’s are equal to G(K1, K2), for randomly chosen K1, K2.

Let p1 be the probability that B guesses 1 given that case 1 occurs, and p2

the probability that B guesses 1 given that case 2 occurs. The generator
function G is said to be pseudorandom, if for any B spending time equal to
T encryption operations,

|p1 − P2| ≤ T
V ,

where V is the total number of possible values of the pair (K1, K2).
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The intuition behind this is that B could always spend his time simply
trying random pairs of keys, seeing if they could be a possible value of K1, K2,
and guessing that he is in case 2 if he finds a solution. If case 2 really occurs,
he finds the right value with probability at most T/V (we assume here that
he would need at least one encryption to test a pair). In case 1 there is most
likely no solution. Thus the definition says that if G is pseudorandom, there
is no better method for B than this naive attack. Definition 7.9.1 is inspired
by the complexity theoretic definition of a strong pseudorandom generator
introduced by Blum and Micali [9].

In the rest of this subsection we consider attacks against X and Y in a
fixed scenario with a given plaintext distribution and a given form of attack,
such as known plaintext, chosen plaintext, etc. We do not specify these
things further, because the reasoning below will work for any such scenario.
The time unit will be encryptions in system X .

The next theorem shows the promised connection between security of X
and Y , i.e., in a given amount of time, an attack cannot do much better
against Y than what is possible against X .

Theorem 7.9.4 Let p be the success probability of the bedst attack against X
running in time T . Assume now that an attacker A against our new system
Y runs in time T and has success probability p + ε. If the function G used
to construct Y is pseudorandom, then

ε ≤ T
V ,

Proof: Let Y0 be the same system as Y , but with independent keys Xi.
By Theorem 7.9.1. using A against Y0 leads to an attack against X with
the same success probability. Hence by assumption, A’s success probability
against Y0 will be at most p. But then we can use A to make an algorithm
B that fits Definition 7.9.1: Given X1, X2, X3, B uses these as keys in the
triple encryption system and simulates A’s attack. If A is successful, B will
guess that the Xi’s are generated from K1, K2, if not, B will guess that they
are independent. Since in one case A will be attacking Y , and in the other
case Y0, it is clear that for this B, we have by Definition 7.9.1

ε ≤ |p1 − p2| ≤ T
V ,
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✷

As an example of what the statement of the theorem means, consider
an ideal case, where the best an attack against X can do, is to spend its
time choosing random keys and test whether they fit with the information
available. The success probability for time T would then be T/2k assuming
a key can be tested in 1 encryption. Then the above theorem says that if G
is pseudorandom, the success probability of any attack against Y running in
time T can be at most Y/2k + T/22k. This is larger than the original success
probability against X by a factor of only 1 + 2−k.

A Concrete Two-key Triple Encryption Construction

We propose here a new construction for triple encryption, called TEMK
for Triple Encryption with Minimum Key. In this construction the keys
X1, X2, X3 are all used for encryption. We define this construction of

G(K1, K2) = (X1, X2, X3)

by

X1 = EK1(DK2(EK1(IV1)))

X2 = EK1(DK2(EK1(IV2)))

X3 = EK1(DK2(EK1(IV3)))

where IVi are three initial values, e.g. IVi = C + i where C is a constant. It
is seen that two-key triple encryption is used.

Here, the reader may ask a (very legitimate) question: why are we using
ordinary two-key triple DES here, when we have just spent half a paper
arguing that it does not provide good enough security? The answer is that we
are using two-key triple DES in a special situation where we can guarantee
that for any particular pair of keys, the enemy will get at most a known
plaintext attack with three known plaintexts. This follows from the fact that
the three constants IV1, IV2, IV3 are universally fixed, such that the pair
of keys K1, K2 will never be applied to anything else than the IVi’s. The
best known attack against two-key triple DES with three known plaintexts
is the one by van Oorschot and Wiener [111], which has the complexity
2120/3 � 1.3×2118. Since in our case the keys are only 112 bits, we conjecture
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Scheme Key size # KS # EN Total W.k. C.p.
TEMK-DES 112 5 9 19 No No
DES 56 1 0 2 Yes Yes
Two-key triple-DES 112 2 0 4 Yes Yes
Three-key triple-DES 168 3 0 6 Yes Yes

Table 7.5: Comparison of the proposed scheme and the existing ones, all used
with DES.

that this G is pseudorandom with the value V = 2112. The most natural
attack against pseudorandomness of G seems to be to guess either K1 or K2

and try to find the other value faster than exhaustive search.

The key scheduling in the above construction is slower than for the two-
key triple encryption. In most software applications of the DES the key
scheduling takes about twice the time of a single encryption. Using this es-
timate the key scheduling in the triple encryption scheme above takes time
about 19 DES-encryptions. For comparison the key schedules for two-key
triple DES and triple DES with three independent keys take 4 and 6 encryp-
tions, respectively. In encryption with our new construction the key schedule
should be performed once and the three round keys stored. In that way en-
cryption with TEMK-DES is as fast as for other triple encryption schemes
with fixed keys.

We conjecture that for the above construction, the fastest attack is a
simple meet in the middle attack, which will be of time complexity at least
22k. In particular we conjecture that because of the strong interdependency
between the Xi’s, attacks like the ones from [76, 111] will not be possible.
Finally we note that the absence of weak keys is guaranteed, since the three
round keys are never equal and the complementation property does not hold.
In Table 7.5 we give a schematic overview of the differences between our
proposed scheme and the existing ones. KS and EN are the numbers of DES
key schedules and DES encryptions respectively, needed in the key schedule
of the triple encryption scheme. ‘Total’ is the total number of encryptions
in the new key schedule using the above estimate. Finally we state if weak
keys exist and if the complementation property holds.
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Extensions

In the preceding sections we focused on triple encryption schemes. It is
clear that our ideas can be extended to quadruple, quintuple, . . . , n-fold
schemes. Let X be a component cipher with a key size k. In general a 2i-fold
encryption scheme based on X is vulnerable to a meet in a middle attack
using 2ik words of memory taking time about 2ik encryptions. Similarly,
a (2i + 1)-fold encryption scheme based on X is vulnerable to a meet in a
middle attack using 2ik words of memory taking time about 2(i+1)k. Therefore
one does not get the security of the full key length. It is obvious that by
generating the 2i (2i+1) keys pseudorandomly, defined in a similar manner as
Definition 7.9.1, from i (i+1) keys one can prove a similar result as Theorem
7.9.4.



Chapter 8

Cryptanalysis of Hash
Functions

In this chapter we consider cryptanalysis of hash functions based on a block
cipher. In Section 8.1 we give attacks on a large class of hash functions
based on a block cipher. We show that there exist attacks on all double
block length hash functions of hash rate 1, according to Definition 3.2.7 and
Definition 3.2.8, that is, iterated hash functions where in each round the
block cipher is used twice, s.t. one message block requires one encryption
of the underlying block cipher. This result suggests, that it is difficult to
construct a more efficient scheme with security equivalent to the hash rate
1/2 scheme, the MDC-2 [77, 10], which is published as an ISO/IEC standard
[38]. In Section 8.2 we apply our results to the specific double block length
hash functions, the Parallel-DM [37], the PBGV hash function [96] and the
LOKI-DBH function [15]. Also we give attacks (not related to the above) on
the AR Hash Function proposed in [60], that breaks the scheme. In Section
8.3 we give a new kind of characteristics for iterated block ciphers, which can
be used in differential attacks on hash functions based on a block cipher and
give the best possible such characteristic for the DES. To our knowledge this
is the best characteristic for the DES, where the input difference equals the
output difference.

185
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8.1 The Solving One-half Attack

In this section we consider a double block length hash function based on
a block cipher according to Definition 3.2.8. For double block length hash
functions of rate 1/2 or 1 the following upper bounds exist.

Theorem 8.1.1 (HLMW-93 [37]) For a 2m-bit iterated double block length
hash function with hash rate 1/2 or 1, the complexity of a free-start second
preimage attack is upper bounded by about 2m and the complexity of a free-
start collision attack is upper bounded by about 2m/2. The attacks succeed
with probability about 0.63.

Hash functions obtaining these upper bounds as lower bounds for the free-
start attacks are said to be optimum against a free-start attack [37]. The
idea is, that given a specific initial value of the hash function the designer
hopes that the complexities of real collision and real second preimage attacks
are higher than the proven lower bounds for free-start attacks.

The basic idea behind the attacks in the proof of the Theorem 8.1.1 is
to attack the two equations in Definition 3.2.8 separately. Such a method
of “separately attacking the two functions” can also be used in real attacks,
namely, the solving-one-half attacks, as we will show in the following.

Theorem 8.1.2 (Solving one-half attack (parallel)) Consider a dou-
ble block length hash function of rate 1 with hash round function of the form
(8.1), where each hi contains one encryption.{

H1
i = h1(H1

i−1, H
2
i−1, M

1
i , M2

i )
H2

i = h2(H1
i−1, H

2
i−1, M

1
i , M2

i )
(8.1)

If for a fixed value of H1
i or H2

i or H1
i ⊕H2

i ), it takes T operations to find
one pair of (M1

i , M2
i ) for any given value of (H1

i−1, H
2
i−1), such that the re-

sulting 4-tuple (H1
i−1, H

2
i−1, M

1
i , M2

i ) yields the fixed value for H1
i (or H2

i or
H1

i ⊕H2
i ), then a second preimage attack on the hash function needs at most

(T + 3) · 2m operations; and a collision attack on the hash function needs at
most (T +3)·2m/2 operations. The attacks succeed with probability about 0.63.

Proof: The second preimage attack: Let (H1
0 , H

2
0 ) be the given initial value

and (H1
n, H2

n) be the hash code of a message M . We proceed as follows:
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1. Compute forward the pair (H1
n−1, H

2
n−1) from the given hash value

(H1
n−2, H

2
n−2) and a randomly chosen pair of messages (M1

n−1, M
2
n−1).

2. Find the pair (M1
n, M2

n) from the pair (H1
n−1, H

2
n−1) obtained above so

that the 4-tuple (H1
n−1, H

2
n−1, M

1
n, M2

n) yields the fixed value for H1
n.

3. Compute the value for H2
n from the 4-tuple (H1

n−1, H
2
n−1, M

1
n, M2

n).

Repeat the above procedure 2m times. Note that H2
n is m bits long, so after

obtaining 2m values of H2
n, with a high probability we hit the given value of

H2
n. Finally, note that step 1 takes two operations, step 2 takes T operations

and step 3 takes one operation.

The collision attack: Let (H1
0 , H

2
0 ) be the given initial value. We shall

find two different messages M and M ′, such that both messages yield the
same hash code (H1

n, H2
n). Choose some random values and compute a value

for H1
n and fix it, then proceed in the same way as in the second preimage

attack, i.e., perform steps 1, 2 and 3 above. Repeat this procedure 2m/2

times. Because H2
n is m bits long, the “birthday argument” implies that

some two values of the H2
n will be the same with high probability. One can

use the method of distinguished points by Quisquater and Delescaille, see
Section 1.1.1, to find collisions using only negligible memory.

We note that the messages found in these attacks are of the same length.
Therefore the MD-strengthening is of no importance. The case of collision
attacks is obvious and for second preimage attacks, it follows that given a
message M and the hash code H(M) we can compute the hash code of the
message M without the blocks containing the message length and proceed
from there. ✷

The result of Theorem 8.1.2 is for the parallel form of a double block
length hash function in which the two encryptions work side-by-side. Similar
attacks can be applied to the serial form in which one encryption is computed
after the other.

Theorem 8.1.3 (Solving one-half attack (serial)) Consider a double
block length hash finction of rate 1 with round unction of the form (8.2),
where each hi contains one encryption.{

H1
i = h1(H1

i−1, H
2
i−1, M

1
i , M2

i )
H2

i = h2(H1
i−1, H

2
i−1, M

1
i , M2

i , H1
i )

(8.2)
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If for a fixed value of H1
i , it takes T operations to and one pair of (M1

i , M2
i )

for any given value of (H1
i−1, H2

i−1), such that the resulting 4-tuple (H1
i−1,

H2
i−1, M1

i , M2
i ) yields the fixed value for H1

i , then a second preimage attack
on the hash function needs at most (T + 3) · 2m operations; and a collision
attack on the hash function needs at most (T + 3) · 2m/2 operations. The
attacks succeed with probability about 0.63.

8.1.1 Attacks on a large class of double block length
hash functions of hash rate 1

In [95] it was shown that there exist basically two secure single block length
hash functions. The DM-scheme (3.1) is one of them, the other one is the
following

Hi = EMi
(Hi−1)⊕Hi−1 ⊕Mi (8.3)

All other secure single block length hash functions can be transformed into
either (3.1) or (8.3) by a linear transformations of the inputs Mi and Hi−1 [95].
It means that for a double block length hash function one can obtain optimum
security against free-start attacks if the scheme is equivalent to either two
runs of (3.1) or two runs of (8.3) by a simple invertible transformation of the
inputs M1

i , M2
i , H1

i−1 and H2
i−1. In the following we will show that all double

block length hash functions of rate 1, for which (at least) one of two hash
round functions has the form of either (3.Q page 29, or (8.3), the solving-one-
half attack is applicable with T � 0. First we write a double block length
hash function, Definition 3.2.8, as follows

{
H1

i = EA(B) ⊕ C
H2

i = ER(S) ⊕ T
(8.4)

where, for a rate 1 scheme, A, B and C are binary linear combinations of
the m-bit vectors H1

i−1, H
2
i−1, M

1
i and M2

i , and where R, S and T are some
binary linear combinations of the vectors H1

i−1, H
2
i−1, M

1
i and M2

i . For a rate
1/2 scheme, A, B and C are binary linear combinations of the m-bit vectors
H1

i−1, H
2
i−1, Mi and R, S and T are some combinations of the m-bit vectors

H1
i−1, H

2
i−1, Mi and H1

i .
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We can write, in case of a rate 1 scheme, A, B and C in matrix-form as


 A

B
C


 =


 a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4







H1
i−1

H2
i−1

M1
i

M2
i


 (8.5)

for some binary values ai, bi and ci(1 ≤ i ≤ 4).

We denote by L the 3× 4 matrix in (8.5). We distinguish between cases
depending on the rank of matrix L. We consider first all double block length
hash functions, for which the matrix L has rank less than 3. This case in-
cludes the schemes for which one of the hash round functions is equivalent up
to a linear transformation to either (3.1) or (8.3). We can prove the following
result.

Theorem 8.1.4 For the 2m-bit iterated hash finction with rate 1, for which
(at least) one of the round functions the matrix L of (8.5) has a rank of less
than or equal to two, the complexity of a second preimage attack is upper
bounded by about 3×2m encryptions, and the complexity of a collision attack
is upper bounded by about 3×2m/2. The attacks succeed with probability about
0.63.

Proof: We will show that the T of Theorem 8.1.3 is about zero. We as-
sume w.l.o.g. that the hash round functions of type (8.5) is H1

i and that we
are given the target (H1

n, H2
n). Rank(L) = 1: Tivial, since with the same

intermediate hash values (H1
n−1, H

2
n−1) used in the computation of the target

H1
n, there are at least 2m possible values of (M1

n, M2
n) obtaining H1

n. Thus,
Theorem 8.1.3 holds with T � 0.
Rank(L) = 2: We can rewrite (8.5) as follows[

A
B

]
= N1

[
H1

i−1

H2
i−1

]
⊕N2

[
M1

i

M2
i

]
(8.6)

where N1 and N2 are 2 × 2 binary matrices. We distinguish between cases
depending on the rank of N2.

Rank(N2) ≤ 1 : Then with the same intermediate hash values
(H1

n−1, H
2
n−1) used in the computation of the target H1

n, there
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are at least 2m possible values of (M1
n, M2

n) obtaining H1
n. Thus,

Theorem 8.1.3 holds with T � 0.

Rank(N2) = 2: N2 is invertible and we can rewrite (8.6) into[
M1

i

M2
i

]
= N−1

2

[
N1

[
H1

i−1

H2
i−1

]
⊕

[
A
B

]]
(8.7)

Given the target H1
n and by letting (A, B) be the same values used

in the computation of the target H1
n, we can find (M1

n, M2
n)′ for

any values (H1
n−1, H

2
n−1), such that we hit the target H1

n. Thus,
Theorem 8.1.3 holds with T � 0 (time used to do the additions
is negligible and the inversion of the matrix N2 has to be done
only once).

✷

The conclusion of this section is that a double block length hash function
of hash rate 1 which by a linear transformation of the inputs is equivalent to
a secure single block length hash function, i.e., optimum with respect to free-
start attacks, is vulnerable to the solving one half attack with a complexity
about the same as the complexity of the free-start attacks, which means that
one does not gain (much) security by doubling the block length.

8.1.2 Attacks on all double block length hash functions
of hash rate 1

In the following we will consider any double block length hash functions of
hash rate 1, that is, we consider equation (8.5)

Theorem 8.1.5 For the double block length hash functions of hash rate 1, for
which one of the m-bit hash round functions is of type (8.5), the complexity
of a second preimage attack ia upper bounded by about 4× 2m and the com-
plexity of a collision attack is upper bounded by about 4× 2m/2. However in
three cases, the attack needs a pre-computed table with 2m 2m-bit values. For
these cases only the complexities for the preimage attacks hold. The attacks
succeed with probability about 0.63.

Proof: We will show that the T of Theorem 8.1.3 is at most 1. The case
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where Rank(L) < 3 is proved in Theorem 8.1.4.
Rank(L) = 3: Assume w.l.o.g. that first hash round function in this scheme
has the form H1

i = EA(B)⊕C, where A, B and C are linearly independent.
A and B can be expressed as in (8.6). We split the proof into two cases.

1. Rank(N2) = 1. Let MZ be the set {M1
i , M2

i , M1
i ⊕M2

i } and let Mab ∈
MZ be the message variable contained in A and B. If C does not
contain any of the messages in MZ or contains only Mab, Theorem
8.1.3 holds with T � 0, since in this case we use the same intermediate
values (H1

n−1, H
2
n−1) used in the computation of the target H1

n (i.e.,
use the same messages M1, . . . , Mn−1). Since the rank of N2 is one,
for a fixed value of Mab there are still 2m possible values of (M1

n, M2
n)

obtaining the hash code H1
n.

If C contains one message Mc ∈ MZ , such that Mc �= Mab then for any
given (H1

n−1, H
2
n−1), compute EA(B) = z for a random value of Mab.

Now use the correct value of the 2m possible values of Mc to hit H1
n, i.e.,

such that C ⊕ z = H1
n. In this case Theorem 8.1.3 holds with T � 1.

2. Rank(N2) = 2. H1
i can be written

H1
i = EA(B)⊕ C0

= EA(B)⊕B ⊕ C1

= EA(B)⊕ A⊕ C2

= EA(B)⊕ A⊕B ⊕ C3

Since the rank of L is 3 and the rank of N2 is 2, either C0, C1, C2 or
C3 does not contain any of the messages M1, M2 or M1⊕M2. Let Ci

denote that value of C.

(a) Ci = C0. It is possible for any given value of (H1
n−1, H

2
n−1) and

thereby also for C0, to find (M1
n, M2

n) such that the target H1
n is

hit. Simply decrypt DA(C0 ⊕H1
n) = B using one of the two free

message variables in A and using the other free message variable to
adjust to the given (H1

n−1, H
2
n−1) appearing in B. Again Theorem

8.1.3 holds with T � 1.
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(b) Ci = C1. We first pre-compute (and sort) a table KT of 2m triples
(Kl, xl, yl), such that

Kl = Exl
(yl)⊕ yl

for random values (xl, yl). Then for any given (H1
n−1, H

2
n−1) com-

pute Q = C1⊕H1
n. Look up Q = Kj in table KT and set A = xj

and set B = yj for A and B in equation (8.6). Since N2 is invert-
ible, by assumption, we find the values of (M1

n, M2
n), such that

the target H1
n is hit. Theorem 8.1.3 holds with T � 0. We have

assumed here that the time to sort a table of size 2m is negligible
compared to the time of 2m encryptions.

(c) Ci = C2. We first pre-compute (and sort) a table KT of 2m triples
(Kl, xl, yl), such that

Kl = Exl
(yl)⊕ xl

for random values (xl, yl) and proceed similar as in the case where
Ci = C1.

(d) Ci = C3. We first pre-compute (and sort) a table KT of 2m triples
(Kl, xl, yl), such that

Kl = Exl
(yl)⊕ xl ⊕ yl

for random values (xl, yl) and proceed similar as in the case where
Ci = C1.

Note that in the last three cases the complexity of a collision attack is 2m/2

by Theorem 8.1.3 but the storage requirements are 2m, i.e., nothing is gained
compared to a brute force collision attack. ✷

We have shown that for all double block length hash functions of hash rate
1 based on a secret key block cipher, there exist second preimage attacks with
complexity of about 4 × 2m. For three classes of hash functions the attack
needs a pre-computed table of size 2m. A natural requirement for a double
block length hash function is that the complexities of both second preimage
and collision attacks are higher than the complexities for similar attacks on
single block length hash functions. Our results show that there are no double
block length hash functions of hash rate 1 meeting this requirement; however
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in the cases where a pre-computed table is needed the space requirements
are so large, so our results can also be seen as a classification of strong and
weak double block length hash functions of hash rate 1.

In the following sections we apply our results to the schemes Parallel-DM,
PBGV-scheme and the LOKI-DBH hash function.

8.2 Analysis of Specific Hash Functions

8.2.1 Parallel-DM

In [37], the Parallel-DM, a new hash function based on a secret-key block
cipher was proposed. The Parallel-DM scheme is a 2m-bit hash function
based on an m-bit block cipher with an m-bit key. The security of Parallel-
DM relies on the security of the DM-scheme in the way that by a linear
transformation the scheme is equivalent to two parallel runs of the DM-
scheme. Thereby the scheme obtains optimum security against free-start
attacks. The scheme is defined (see also Figure 8.1){

H1
i = EM1

i ⊕M2
i
(H1

i−1 ⊕M1
i ) ⊕ H1

i−1 ⊕M1
i

H2
i = EM1

i
(H2

i−1 ⊕M2
i ) ⊕ H2

i−1 ⊕M2
i

(8.8)

Figure 8.1: The 2m-bit round function of the proposed Parallel-DM scheme.

To avoid trivial attacks MD-strengthening is used. First we apply the
solving one half attack to the Parallel-DM.
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Theorem 8.2.1 There exists a second preimage attack on the Parallel-DM
scheme which succeeds with probability 0.63 in time 3 × 2m. There exists a
collision attack on the Parallel-DM scheme which succeeds with probability
0.63 in time 3× 2m/2.

Proof: Let A and B be two fixed (given or chosen) values such that H1
n =

EB(A)⊕A. For any given value of (H1
n−1, H

2
n−1), one can obtain on: pair of

(M1
n, M2

n) where

M1
n = A⊕H1

n−1 and M2
n = B ⊕M1

n

such that the 4-tuple (H1
n−1, H

2
n−1, M

1
n, M2

n) will yield the fixed value for H1
n

in (8.8). Theorem 8.1.2 then implies that the complexity of a second preimage
attack is about 3 · 2m (with T = 0) and the complexity of a collision attack
is about 3 · 2m/2. ✷

Note that attacks on the corresponding single block length hash function,
the DM-scheme (3.1), has roughly the same complexities. There is also a
second collision attack on the Parallel-DM. It has the same complexity and
probability of success as the previous, but is different.

Theorem 8.2.2 There exists a collision attack on the Parallel-DM scheme
which succeeds with probability 0.63 in time 2m/2.

Proof: In this attack we proceed as follows

1. For a given pair (H1
n−1, H

2
n−1) set M1

n = H1
n−1 ⊕H2

n−1 and set M2
n = 0.

Now H1
n = EM1

n
(H2

n−1) ⊕ H2
n−1 = H2

n. That is, the two m-bit values in the
hash codes are equal. By repeating this attack 2m/2 times with probability
1 − (1 − 2−m/2)2m/2 � 0.63 for one pair of k, l we have H1

n(k) = H1
n(l) =

H2
n(k) = H2

n(l). ✷

8.2.2 The PBGV hash function

This scheme was proposed in [96] and its round function is defined as follows.

H1
i = EM1

i ⊕M2
i
(H1

i−1 ⊕H2
i−1)⊕M1

i ⊕H1
i−1 ⊕H2

i−1 (8.9)

H2
i = EM1

i ⊕H1
i−1

(M2
i ⊕H2

i−1)⊕M2
i ⊕H1

i−1 ⊕H2
i−1 (8.10)
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Theorem 8.2.3 There exists a second preimage attack on the PBGV scheme
which succeeds with probability 0.63 in time 4× 2m. There exists a collision
attack on the PBGV-scheme which succeeds with probability 0.63 in time
4× 2m/2.

Proof: Let H1
n be a fixed (given or chosen) hash value and let K be a fixed

(given or chosen) value of the key input in (8.9). For any given value of
(H1

n−1, H
2
n−1), let d = H1

n−1⊕H2
n−1, then one can obtain one pair of (M1

n, M2
n)

where

M1
n = EK(d)⊕ d⊕H1

i and M2
n = K ⊕M1

n

such that the 4-tuple (H1
n−1, H

2
n−1, M

1
n, M2

n) will yield the fixed value for
H1

n in (8.9). Theorem 8.1.2 then implies that the complexity of a second
preimage attack is about 4 × 2m and the complexity of a collision attack is
about 4× 2m/2. ✷

Note that the similar attacks have been reported before in [55, 93], but
the above attack has a simpler form.

8.2.3 The LOKI DBH mode

The LOKI DBH Mode was proposed in [15]. It is a 2m-bit iterated hash
function, where the 2m-bit round function is given by{

H2
i = EH1

i−1⊕M1
i
(H1

i−1 ⊕M2
i ) ⊕ H1

i−1 ⊕H2
i−1 ⊕M2

i

H1
i = EH2

i−1⊕M2
i
(H1

i−1 ⊕M1
i ⊕H2

i ) ⊕ H1
i−1 ⊕H2

i−1 ⊕M1
i

(8.11)

Note that (8.11) differs from the description used in [37], which is not correct.

Theorem 8.2.4 There exists a second preimage attack on the LOKI DBH
Mode scheme. The attack uses a precomputed table with 2m 2m bit values
and succeeds with probability 0.63 in time about 3× 2m.

Proof: First note that H2
i has the form

H2
i = EA(B)⊕B ⊕H2

i−1 (8.12)

The matrices L and N2 in the proof of Theorem 8.1.5 have rank three and
two respectively. It follows that by pre-computing a table with 2m 2m bit
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values Theorem 8.1.3 holds with T � 0, where we have assumed that the
time needed to sort the table and all table look-ups equals O(2m). ✷

The above attack is the best attack reported in the literature to our
knowledge. Note that this attack is also applicable to the first Quisquater-
Girault hashing scheme from which the LOKI DBH was built [55, 37].

8.2.4 The AR hash function

In implementations of the DES the key schedule takes about twice the time
of a single encryption in both hardware and software [4]. Therefore in hash
functions based on a block cipher, where the chaining variable and/or the
message variable is used as the key input to the DES, the key schedule has
to be performed many times. In a hash function built from the DES used
with fixed keys, the key schedules have to performed only once and faster
schemes can be obtained. One such hash function, the AR hash function has
been proposed by Algorithmic Research Ltd. It has been distributed in the
ISO community [60] for informational purposes, but was not included in a
standard. At the time of [60] it was in use in the German banking world.

In the following, Ek(y) will denote the DES-encryption of block y using
key k. The basic structure in AR hash can be described as a variant of
the DES in CBC-mode, where the last 2 ciphertext blocks are added to the
current input, and where the state consists of the last two “ciphertext” blocks
computed. To do the entire function, the message is processed with two keys,
yielding a result of 2 times 128 bits. This is then further compressed to get
a result of 128 bits.

To define AR more precisely, we first divide the message m to be hashed
into 8-byte blocks, denoted by m1, m2, . . . , mn (0-padding is used on the last
block if it is incomplete). We then define a series of 64-bit blocks o−1, o0, o1,
..by

o−1 = o0 = 0

and

oi = mi ⊕ Ek(mi ⊕ oi−1 ⊕ oi−2 ⊕ η),

where k is an arbitrary DES key, and the constant η is defined by

η = 01 23 45 67 89 AB CD EF
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in hexadecimal notation. We now let f0(m, k), f1(m, k), f2(m, k) denote on−2,
on−1, on respectively, In the actual hash function AR/DFP, two different keys
k1 and k2 are used, specified as

k1 = 00 00 00 00 00 00 00 00, k2 = 2A 41 52 2F 44 46 50 2A

One then first computes

c1 = f1(m, k1), c2 = f2(m, k1), c3 = f1(m, k2), c4 = f2(m, k2)

and the hash value is now the concatenation of the two 8 byte blocks

G(G(c1, c2, k1), G(c3, c4, k1), k1) and G(G(c1, c2, k2), G(c3, c4, k2), k2),

where G is the function defined by

G(x, y, k) = Ek(x⊕ y)⊕ Ek(x)⊕ Ek(y)⊕ y.

For convenience in the following, we will let DFP (c1, c2, c3, c4, k) denote the
final hash result.

Properties of f1, f2 and G

Let A and B be messages of length a multiple of 8 bytes, and let A ‖ B be
the concatenation of A and B. Choose a fixed, but arbitrary DES key k,
and let y = f1(A, k), z = f2(A, k). Let m be an arbitrary 8-byte block. Let
C(A, m) be the three-block message

m⊕ η ⊕ y ⊕ z ‖ Ek(m)⊕ y ‖ Ek(m)⊕ z

Let D(A, m) be the three-block message

m⊕ η ⊕ y ⊕ z ‖ m⊕ y ‖ m⊕ z

Let E(A, m) be the three-block message

m⊕ η ⊕ y ⊕ z ‖ m⊕ y ‖ E2
k(m)⊕ z

Then we have the following result, showing that it is very easy to find colli-
sions for the functions f1, f2:

Lemma 8.2.1 For arbitrary A, B, k, m as above, we have that
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fi(A ‖ B, k) = fi(A ‖ C(A, m) ‖ B, k), i = I, 2
f2(A, k) = f2(A ‖ E(A, m), k)

If k is a weak DES key, then we alao have

fi(A ‖ B, k) = fi(A ‖ D(A, m) ‖ B, k), i = 1, 2

Proof: By combining the definition of C(A, m) and f0, f1, f2 we obtain

f0(A ‖ C(A, m), k)

= m⊕ η ⊕ y ⊕ z ⊕ Ek(m⊕ η ⊕ y ⊕ z ⊕ y ⊕ z ⊕ η)

= m⊕ η ⊕ y ⊕ z ⊕ Ek(m)

f1(A ‖ C(A, m), k)

= Ek(m)⊕ y ⊕ Ek(Ek(m)⊕ y ⊕m⊕ η ⊕ y ⊕ z ⊕ Ek(m)⊕ z ⊕ η)

= y

f2(A ‖ C(A, m), k)

= Ek(m)⊕ z ⊕ Ek(Ek(m)⊕ z ⊕ y ⊕m⊕ η ⊕ y ⊕ z ⊕ Ek(m)⊕ η)

= z

This proves the first statement. The second and third are proved similarly,
using for the third that if k is a weak key, then by definition it holds that
Ek(Ek(m)) = m for all m. ✷

By inspection of the definition of G, it is trivial to show the following
lemma:
Lemma 8.2.2 The functions G, DFP have the following properties for ar-
bitrary c1, c2, k:

G(c1, c2, k) = G(0, c1, k) = Ek(0)⊕ c1

G(c1, c2, k) = G(c1 ⊕ c2, c2, k)

G(c1, 0, k) = Ek(0)

DFP (c1, c1, c1, c1, k) = (c1, c1), DFP (c1, 0, c2, 0) = 0

Thus, it is also very easy to find collisions for G and DFP . Although none
of these properties imply directly a collision for the hash function itself, they
will be useful in the following.
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Attacks on AR Hash

Collision attack

This first attack on AR hash exploits the fact that for a weak key k of the
DES there are 232 fixpoints and they are easy to find, i.e., to find m s.t.
Ek(m) = m, see Theorem 5.4.1.

If A is the empty message in Lemma 8.2.1, then y = z = 0. Let X(m)
be the 3-block message m⊕ η ‖ Ek2 ‖ Ek2(m). This means that by Lemma
8.2.1

f1(X(m), k2) = 0

f2(X(m), k2) = 0

for any m. Let m be a fixpoint for k1, then

f1(X(m), k1) = Ek2(m)⊕ Ek1(Ek2(m))

f2(X(m), k1) = Ek2(m)⊕ Ek1(Ek1(Ek2(m))) = 0

since k1 is a weak key. The above four values are also the ci values produced
by hashing X(m). But by Lemma 8.2.2, a G-value is invariant in the first
argument if the second is 0, so it is clear that for fixpoints (for k1) m �= m′,
X(m) and X(m′) will be hashed to the same value. Finding two fixpoints
for k1 takes in time one DES encryption, which leads to:

Theorem 8.2.5 There exists an algorithm, which finds in time one DES
encryption, two different messages with the same AR hash value.

The above attack can be extended to attacks that in time n/2 encryptions
find n messages that hash to the same value, where n ≤ 232. By contrast, a
brute force attack that finds two messages that hashto the same value would
require computation of about 264 hash values.

Preimage attack

AR hash uses two fixed keys. In the following we consider arbitrary keys,
where one key, k1 is a weak key. Recall that the DES has 4 weak keys. The
basic idea in this second attack on AR hash is to try to find a message which



200 CHAPTER 8. CRYPTANALYSIS OF HASH FUNCTIONS

takes the initial state back to itself, i.e., leads to a set of all-zero c-values.
If Z is such a message, then clearly AR(M) = AR(Z ‖ M) = AR(Z ‖ Z ‖
M) = · · · . It is also clear that once we have found such a Z, any message
M can be attacked at no further cost.

In more detail, we try, inspired by Lemma 8.2.1, with Z of the form
Z = m1 ⊕ η ‖ m2 ‖ m2. It is now easy to write down the equations that
m1, m2 must satisfy in order for f1(Z, ki) = f2(Z, ki) = 0, i = 1, 2. We get
the following:

Ek1(m1)⊕m1 = E−1
k1

(m)⊕m2 (8.13)

Ek2(m1)⊕m1 = E−1
k2

(m)⊕m2 (8.14)

It is difficult in general to say anything about the number of solutions to
these equations, or how hard it is to find them. There is a special case,
however, that is easier:

Put m2 = Ek2(m1), then (8.14) is always satisfied. Let m1 be a fixpoint
for k1, then (8.13) is true if

Ek1(Ek2(m1)) = Ek2(m1) (8.15)

which is true if also Ek2(m1) is a fixpoint for k1. It is reasonable to assume
that the mapping Ek2(·) distributes fixpoints for k1 uniformly. Therefore the
probability that Ek2(m1) is a fixpoint for k1 is 2−32. By running through all
fixpoints for k1 the probability that (8.15) is satisfied is

1− (1− 2−32)232 � 1− e−1 � 0.63

Since checking whether a message is a fixpoint for a weak key takes half a
DES encryption, the attack needs a total of 2×232 = 233 DES encryptions. A
similar attack appeared in [93]. To confirm the validity of the 0.63 probability,
we did a computer simulation on a “scaled-down” version of DES, working
with 32-bit blocks, thus making it easy to run through all fixpoints. The
experiments confirmed the theory. The test ran through all 216 fixpoints for
100 pairs of keys, where one key was a weak key in a 32 bit block version of
DES. Out of 100 key pairs, the equation (8.15) had a solution for 62 pairs.

The above attack is quite feasible, and can be executed in at most a few
days, even hours, using up to date hardware. Later in this section we give
the results of an implementation of the attack on AR hash with the two keys
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given in [60]. The above probability can be improved to almost 1 at the cost
of a squared complexity. In this case we proceed as follows (where m1 is not
necessarily a fixpoint for k1):

If we put m2 = Ek1(m1) then equation (8.13) is trivially satisfied, and
(8.14) is satisfied as well, if

Ek1(m1) = Ek2(m1) (8.16)

or

Ek2(m1)⊕m1 = Ek1(m1)⊕ E−1
k2

(Ek1(m1)) (8.17)

Symmetrically, we can put m2 = Ek2(m1). This means that (8.14) is now
always satisfied, and that (8.13) is true if either Ek1(m1) = Ek2(m1) (same
condition as (8.16)) or if

Ek1(m1)⊕m1 = Ek2(m1)⊕ E−1
k1

(Ek2(m1)) (8.18)

Finally, since k1 is a weak key, there is another possibility, namely to put
m1 = m2. Once again, this trivially satisfies (8.13), and (8.14) is in this case
satisfied, if

E2
k2

(m1) = m1 (8.19)

To summarise, if we can find a 64-bit block m1 that satisfies (8.16), (8.17),
(8.18) or (8.19) then we have a 3-block sequence Z that makes the attack
successful. Checking if a block satisfies any of the equations requires at most
5 encryptions, so going through all possibilities for m1 will require about
5 · 264 � 266 encryptions. The remaining question is of course if there are
any solutions to the equations at all. Simply doing the 266 encryptions is
not feasible today (although it probably will become feasible in the not too
distant future). Therefore the best we can do is to see if we can estimate
the probability that solutions exist, assuming that the two keys k1, k2 are
randomly chosen, but where k1 is a weak key. Each of the 4 equations can
be written in the form h(m1) = 0, where h is some function that depends on
the keys, and is built from a number of DES encryptions and decryptions.
It is a generally accepted assumption that the DES in a context like this
one behaves like a random function. This means that the 3 equations (8.16),
(8.17) and (8.19) each have solutions with an independent probability of

1− (1− 2−64)264 � 1− e−1 � 0.63
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However, since (8.18) contains (8.15) as a special case this probability splits
into two depending on whether fixpoints are examined or not, the probability
that (8.18) has a solution therefore is

1− ((1− 264)264−232 × (1− 2−32)232

) � 1− e−2

Thus the probability over the choice of k1, k2 with k1 weak that solutions do
exist is about 1− e−5 � 0.99.
In summary we have the following:

Theorem 8.2.6 There exists two second preimage attacks on AR hash, which
take time at most about 233 and about 266 DES encryptions, respectively. Un-
der reasonable heuristic assumptions, the attacks can be shown to be success-
ful for respectively about 63% and 99% of the possible choices of keys in AR
hash. Both attacks can be done in a preprocessing phase, afier which each
message can be attacked at no further cost.

These attacks are much faster than a brute-force attack, which would re-
quire computation of about 2128 hash values.

For the keys chosen in AR hash we did an exhaustive search through all
fixpoints for the weak key, k1 = 0. We obtained

Theorem 8.2.7 For AR hash there exists two 3-block messages Z1 and
Z2, s.t. any message M can be prefixed with either Z1 or Z2 (or both) any
number of times, yielding unchanged AR hash value, where

Z1 = 7a6199a238bb8643 | 8073d91a57ca1e2a | 8073d91a57ca1e2a
Z2 = 02bb2604aafcbecf | 6421e999f02ddfd6 | 6421e999f02ddfd6

Conclusion

The weaknesses we have found in AR hash clearly make it very problematic
to continue using the hash function as it is. The collision and preimage at-
tacks can be thwarted by adding the message length to the message, however
because of Theorem 8.2.7 collisions still can be obtained in constant time,
because Z1 ‖ M and Z2 ‖ M would hash to the same value. So the question
arises whether one can repair the function so that our attacks are prevented.
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We have of course exploited the fact, that there are 232 fixpoints for a
weak DES key and that they are easy to find. However, avoiding weak keys
still would enable a preimage attack, since equations (8.16), (8.17) and (8.18)
can be set up independently of the nature of the keys. The probability for
success for this attack is expected to be 1− e−3 � 95%. To confirm this we
did another computer simulation on a “scaled-down” vision of DES. The test
used 16 bit blocks and ran through all 216 possible messages for 100 pairs of
random keys. Out of 100 key pairs, for only 3 key pairs none of the equations
(8.16), (8.17) and (8.18) had solutions thus confirming the theory.

Furthermore we made essential use of the fact that the initial state is
all-zero, in particular that it consists of 4 blocks that are equal. Trying to
prevent attacks only by changing the initial values is extremely dangerous
and it is shown in [93] how to find collisions even in this case.

The Lemmas 8.2.1 and 8.2.2 show a number of problematic properties
of f1, f2 and G that are independent of the initial state and of the chosen
keys. Therefore, we believe that the basic design of f1, f2 and G should
be reconsidered. One can perhaps guess that AR hash (or rather the f1, f2

functions) was designed starting from the standard MAC-mode for the DES
(which uses a secret key), obtaining a hash function by using a known, fixed
key, and adding some extra elements (the feedforward, etc.) to compensate
for the weaknesses implied by the fact that the key is now known.

Our attacks can be seen as an illustration that constructing a hash func-
tion in this way from a MAC is not easy, and that it is perhaps a better
strategy to build a hash function mode “from scratch”.

8.3 Attacks based on Differential Cryptana-

lysis

In this section we consider hash functions based on an r-round block cipher
with block size m bits and key size k bits. All secure hash functions of this
kind use a mode with a feedforward of the plaintext [95]. In [93, 94] it is
shown how to improve a differential attack when attacking a hash function
based on a block cipher. The main idea is to look for a characteristic whose
input difference equals the output difference, where for convenience we will
assume that the exclusive-or is the appropriate difference. In that way a
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feedforward of the plaintext will yield a collision for the hash round function.
In other words, let EK(·) be a block cipher used with key K and let P and P ∗

be two plaintext blocks. If P ⊕ P ∗ = EK(P ) ⊕ EK(P ∗) then P ⊕ EK(P ) =
P ∗ ⊕ EK(P ∗). In the following we will assume that the attacker is given
a key input to the block cipher, which can be an initial hash value or an
intermediate hash value, and that he has full control over the plaintext input
to the block cipher. Differential attacks on hash functions are similar to those
on the block cipher itself with some important differences.

• The key is known. As stated in Section 6.1.1, characteristics for the
DES vary depending on values of critical key bits. Since the attacker
knows the key, he can optimise his choice of characteristic with respect
to the key. Furthermore, it can be checked after every round of encryp-
tion, whether the pair of plaintexts analysed follow the extected values
in the characteristic. Therefore for most pairs of plaintext only a few
rounds of encryption have to be performed.

• A single right pair is sufficient for a collision. In many differential
attacks more than one right pair is needed to uniquely determine the
key.

• The characteristic used must be a full r-round characteristic. In differ-
ential attacks on iterated block ciphers, often a shorter characteristic
is sufficient for a successful attack, see Section 5.2.

Unless the characteristic used in a differential attack on a hash function
has a high probability, the method is not suitable for a preimage attack, in
which case the attacker is given also the plaintext input, P , to the block
cipher and for every characteristic he wants to use in the attack, there is
only one choice for the collision message P ∗. If the given message is long
and/or many good characteristics have been found, the attacker is given the
several plaintext inputs to the block cipher and has an increased probability
of success. On the other hand if there exist many characteristics with high
probabilities, the block cipher should probably not be used at all. We con-
sider therefore mainly collision attacks, but we note that if one can find a
characteristic of probability less than 2−(m−1), where m is the block length
and length of the hash code, a second preimage attack using only two en-
cryptions would succeed with a higher probability than a brute force attack.
We define
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Definition 8.3.1 The work factor of a differential attack on hash functions
based on block ciphers is the estimated number of encryptions the attacker
needs to do to find a right pair.

In a differential attack if the work factor is larger than 2m/2, a better ap-
proach would be a brute-force collision attack based on the birthday paradox
with complexity 2m/2.

8.3.1 Single block length hash functions based on DES-
variants

Consider the hash function with the following hash round function

Hi = h(Hi−1, Mi) = EHi−1
(Mi)⊕Mi (8.20)

This hash function has the same security level as the DM-scheme [55]. The
only difference between the two is the interchanged role of the intermediate
hash value and the message variable and since the DM-scheme is considered
to be secure against a free-start attack then so is (8.20). Note also that the
MDC-2 [10, 38] uses two parallel runs of (8.20). Therefore the attacks we
are to describe can also be applied to double block length hash functions
which uses two parallel runs of (8.20) and the complexities of the attacks are
squared. The DES is the most widely used block cipher for encryption and
naturally also the most used block cipher in hash functions based on block
ciphers. We can use the 2-round iterative characteristic to do a differential
collision attack on (8.20) based on DES variants with an odd number of
rounds. Let Φ = 19600000x and Γ = 1b600000x be the non-trivial xor half of
the two characteristics used by Biham and Shamir to attack the DES [7]. As
discussed in Section 6.1.1 the probabilities of these characteristics depend on
certain values of two critical key bits. The probability for two rounds is 1

146

for Φ if the key bits are equal and 1
585

for Γ. If the key bits are different the
probabilities are interchanged.

We construct an n-round characteristic, n odd, in an attack on a hash
function based on an n-round version of the DES using either Φ or Γ as the
different inputs in the left halves and with equal inputs in the right halves,
i.e., using a input difference (Φ | 0) or (Γ | 0). The probability 1

146
can be
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obtained for every two rounds for about one out of 2n/2−1 keys. There are
n/2 rounds in the characteristic with different inputs to the F -function and
the characteristic Φ is used if all n/2 pairs of critical key bits are equal and
Γ is used if all n/2 pairs of critical key bits are different. It is assumed that
the initial hash value (the key input to DES) given to the attacker enables
him to construct characteristics with a probability of 1

146
per two rounds. If

the initial hash value does not meet that requirement he chooses a random
message and hashes the message obtaining a new intermediate hash value
and proceeds from there.

Let us consider a hash function (8.20) based on a 7-round version of the
DES. The characteristic, say (Φ | 0), we use has a probability of ( 1

146
)3 �

2−21.6 However we can start our characteristic in the second round; simply
choose two ciphertexts after one round with difference (0 | Φ), then the
difference in the plaintexts is exactly as we desire. The actual values of
the plaintexts can be computed once a right pair is found. Furthermore
we choose the inputs to the characteristic in the second round such that the
probability after two complete rounds is one. The success of the combination
0 ← Φ in the second round depends on only pairs of 14 bits and they can
be calculated in a pre-processing phase. In the third round we obtain equal
inputs to the F -function and in the fourth round the difference in the inputs
to the F -function will again be Φ. It is seen that the inputs can be chosen
such that the characteristic has probability one after 3 rounds of encryption,
i.e., the probability of our characteristic is ( 1

146
)2 � 2−14.4. We will assume

that the number of pairs we have to try to get one right pair is the reciprocal
value of the characteristic used, in this case about 214.4 pairs. For most of
these pairs we have to compute only 3 rounds of encryptions, namely in the
second, third and fourth rounds after which only 27.2 pairs are left. The work
factor of the differential attack is therefore about 214.4× 3

7
× 2 � 214.2, where

we note that the number of encryptions needed is twice the number of pairs
needed in the attack.

In Table 8.1 we give the work factors and the probabilities of the n-round
characteristics in differential collision attacks on hash functions based on
DES versions with n, odd, number of rounds. It is seen that the differential
collision attack is better than a birthday collision attack on hash functions
based on the DES with up to 11 rounds. With 13 rounds the two attacks have
similar complexities. When the probability of the n-round characteristic is
below 2−64 we cannot expect to get a right pair using a fixed key, since there
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# Rounds Work factor (log2) Probability (log2) of the
(n) n-round characteristic
7 14.2 -21.6
9 21.0 -28.8
11 27.9 -36.0
13 34.9 -43.2
15 41.9 -50.3
17 48.8 -57.5

Table 8.1: Complexities of a differential collision attack on DES-based hash
functions for DES versions with a restricted odd number of rounds.

are only 264 possible pairs with a given difference. If we do not get a right
pair we could compute a new intermediate hash value to get a new key and
proceed from there. Also we note that similar calculations were made in [95]
but contained some errors. Finally, it should be stressed once again that the
above attacks are not applicable to hash functions using the DES with an
even number of rounds.

Preneel’s proposal using DES

As stated in Section 6.1 the best characteristic for an attack on the DES is
the 2-round iterative characteristic. However, since the halves in the DES are
not swapped after the last round of encryption we cannot use the iterative
characteristic, used to attack the DES itself in [7], to attack a hash function
based on DES. An xor in the plaintexts ∆P = (X, 0) would lead to an xor
in the ciphertexts ∆C = (0, X). In [93, 94] the following characteristic was
proposed. Let X be an 32 bit xor, such that 0 ← X with probability p1

and X ← X with probability p2. Then a 16-round characteristic with equal
input xor and output xor can be built by using seven times the first com-
bination and two times the second combination. In the remaining rounds
equal inputs are obtained, i.e., the combination used is 0 ← 0. The char-
acteristic will have a total probability of p7

1×p2
2. We state the following result.

Lemma 8.3.1 (DES) Two inputs with xor X for which X ← X and 0 ← X
must differ in the inputs to at least six S-boxes.
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Proof: Follows from the E-expansion and P-permutation of the DES. ✷

A similar result does not hold for inputs which differ in the inputs to six
neighbouring S-boxes, however it follows by a closer look at the DES that
only for inputs different in the inputs to S-boxes 5, 6, 7, 8, 1, and 2 we can
obtain the desired characteristic. By consulting the difference distribution
table it is easy to find that the one round characteristics 0 ← X and X ← X
where the inputs differ only in the inputs to S-boxes 5, 6, 7, 8, 1, and 2 will
have probabilities of at most 2−17.6 and 2−16.9, respectively.

It may possible to build the 16-round characteristic where in the nontrivial
rounds the two inputs are different in the inputs to six not neighbouring S-
boxes. In that case there have to be different inputs to two times three
S-boxes leading to equal outputs. But this can happen with a maximum
probability of less than 1

234
× 1

341
, (see Table 6.2). For the combination X ← X

the maximum probability will be (16
64

)6.

For inputs different in the inputs to seven S-boxes the probability for any
non-trivial one-round characteristic can be at most (16

64
)7. The work factor

for the differential attack will be about (p6
1 × p2)

−1 × 3
16
× 2, where we note

that for most pairs we have to compute only about 3 rounds of encryptions
in the same way as discussed earlier in this section.

Different inputs to Probability (log2) of the Work Factor
16 round characteristic (log2)

Six neighbouring S-boxes -157 120
Six not neighbouring S-boxes -138 109
Seven S-boxes -126 96
Eight S-boxes -144 110

Table 8.2: Maximum probabilities and minimum work factors for a differen-
tial collision attack using 16-round DES.

We summarise the maximum probabilities and work factors for a collision
attack on the 16-round characteristic in Table 8.2.

From Table 8.2 it is seen that the Preneel’s characteristic has a probability
too low to be used a differential collision attack using the DES with 16 rounds.
We are convinced, that by consulting the difference distribution table more
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carefully or by doing exhaustive search for the combinations X ← X and
0 ← X much lower probabilities will be found.

8.3.2 New characteristics for differential collision at-
tacks

As we have seen it is not possible to use the characteristics which are optimal
to attack the DES itself, to attack hash functions based on the DES with an
even number of rounds. In this section we look for characteristics, whose in-
put difference equals the output difference. Consider an r-round block cipher,
r even. The basic idea is to build a characteristic, for which the difference in
the two halves of the ciphertexts after (r/2) rounds is equal, see Ψ in Figure
8.2. Then with the same probability the output difference of the two rounds
will be some Λ (here we assume that the round keys are independent). It is
easy to see that by choosing the values in the characteristic from the (r/2)’th
round and backwards to the difference in the plaintexts equal to the values
from the (r/2 + 1)’th round and to the difference in the ciphertexts, will
yield a characteristic for which the differences in the plaintexts and in the
ciphertexts are equal.

DES

The problem in finding good characteristics for the DES is, that when too
many bits are different in the outputs of one round, because of the avalanche
effect of DES, these differences spread to many S-boxes in the next round,
which causes the overall probabilities to be low. To get equal outputs of the
rounds we can use the 2-round iterative characteristic in the construction of
Figure 8.2. In every round the combination 0 ← Φ is used and the 16 round
characteristic has a probability of ( 1

146
)8 � 2−115. Although this is better

than for the characteristic we analysed in the previous section it is still too
low to hope for a successful attack using 16-round DES.

As stated by Theorem 6.1.1, inputs to the F-function different in the in-
puts to less than three S-boxes cannot lead to equal outputs of the F-function.
And inputs different in the inputs to only one S-box, S(i) yield different in-
puts to at least two S-boxes (and not S(i)) in the following round. However, it
is possible to find inputs different in the inputs to two neighbouring S-boxes,
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Figure 8.2: A characteristic to be used in a differential collision attack.

S(i) and S(i + 1), such that the outputs differ in only one bit, which via the
P-permutation goes back to either S(i) or S(i + 1) in the following round.
This phenomenon can be used to construct the 4-round iterative characteris-
tic in Figure 8.3 for the DES, where Λ⊕α = Ψ For every pair of neighbouring
S-boxes in the DES there is exactly one possible value of α, which is due to
the P-permutation and several possible values of Ψ and Λ. It is easy to find
the best one for the DES by consulting the difference distribution table. With
Λ = e0000004x, Ψ = e0000006x and α = P (10000000x) = 00000002x, one ob-
tains a 4-round iterative characteristic with probability (8×10×6×10

644 )2 � 2−23.6.
Like the 2-round iterative characteristics for the DES this probability splits
into two per two rounds depending on the values of certain key bits. For
the above characteristic these probabilities are between 2−23.0 and 2−24.2 re-
spectively, where in the first case α ← Λ has probability 2−5.7 and α ← Ψ
has probability 2−5.8. This characteristic can be concatenated with itself
any number of times and by starting in the middle rounds it can be used
to construct any s-round characteristic for s even, such that the difference
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Figure 8.3: A 4-round iterative characteristic of DES-like ciphers.

in the plaintexts equals the difference in the ciphertexts. In characteristics
with an even number of rounds, but not divisible by four, we maximise the
probability by optimising the use of the combination α ← Λ. In that way we
obtain estimates calculated in the same way as for characteristic with odd
number of rounds, see Table 8.3. Consider a 6-round variant of the DES. The
characteristic we will use has the differences Λ in the inputs to the third and
fourth rounds, therefore the difference in the plaintexts and in the ciphertexts
will be (Λ | Λ) with probability 2−34.4. Again we start the characteristic in
the second round, i.e., we choose the pairs in the inputs to the F-function
in the first and in the second round of the characteristic, such that the pair
is a right pair after two rounds of encryption. The left halves of the plain-
text pairs then automatically have the desired difference. In that way the
probability of the characteristic increases to about 2−22.9. The work factor
is 222.9 × 2

6
× 2 � 222.3, since for most pairs only two rounds of encryption
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# Rounds Work factor (log2) Probability (log2) of the
(n) n-round characteristic
6 22.3 -34.4
8 33.5 -46.0
10 44.7 -57.4
12 55.9 -69.0
14 - -80.4
16 - -92.0

Table 8.3: Complexities of a differential collision attack on S3-DES-based
hash functions for s3-DES versions with a restricted even number of rounds.

are needed, i.e., in the second and third rounds. From Table 8.3 it is seen
that a differential collision attack is superior to the birthday collision attack
in variants of the DES up to 8 rounds. It is seen that extended to 16 rounds
our characteristic will have a probability of about 2−92, which is much higher
than for Preneel’s proposal.

s3-DES

In Section 6.4 we made an ad hoc search for characteristics to be used in dif-
ferential attacks on the block cipher s3-DES. Recall that s3-DES is identical
to the DES except for the S-boxes, which have been replaced. Our analysis
showed that it is doubtful whether good characteristics exist for a success-
ful differential attack. As for the DES there exist characteristics to be used
differential collision attacks on the hash function (8.20) used with s3-DES.
With Λ = 0001e000x, Ψ = 0005e000x and α = P (00004000x) = 00040000x

of Figure 8.3, one obtains a 4-round iterative characteristic with probabil-
ity (10×12×12×12

644 )2 � 2−19.8. Depending on certain values of the key, this
probability splits into different values, the highest being 2−19. Using this
probability we obtain estimates on a differential collision attack on the hash
function (8.20) using s3-DES as the block cipher as listed in Table 8.4. It
is interesting to note that although the block cipher s3-DES seems to be
more secure against a differential attack than the DES, differential attacks
on hash functions using s3-DES have lower complexities than the attacks on
hash functions using DES.
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# Rounds Work factor (log2) Probability (log2) of the
(n) n-round characteristic
6 18.0 -28.2
8 27.6 -38.2
10 36.9 -47.2
12 46.1 -57.2
14 55.4 -66.3

Table 8.4: Complexities of a differential collision attack on s3-DES-based
hash functions for s3-DES versions with a restricted even number of rounds.

The LOKI ciphers

For LOKI’89 the best known differential attack uses a 3-round iterative char-
acteristic of probability (28/4096)2 � 2−14.4, see [48]. The characteristic is

(Γ, 0)
0 ← 0 always
Γ ← Γ prob. p = 28/4096
Γ ← Γ prob. p = 28/4096

(Γ, 0)

where Γ = 00400000x.

For LOKI’91 the best known differential attack uses also the above 3-
round iterative characteristic of probability 2−16, see [14] and also Section
6.2.

This characteristic can be used to construct an s-round characteristic
for s even, where the input difference equals the output difference for both
LOKI’89 and LOKI’91. As in the case for the DES, we let the input dif-
ferences in the two middle rounds be equal, here Γ. Table 8.5 gives the
probabilities and work factors for a differential collision attack on the hash
function (8.20) using the LOKI ciphers as the underlying block cipher. Note
that the work factors are the number of encryptions needed by the underly-
ing block cipher. Therefore the work factor in real time for LOKI with 10
rounds is higher than for LOKI with 8 rounds, despite the lower value for
the former in Table 8.5. It is interesting to note that although the block
cipher LOKI’91 is (probably) secure against a differential attack, differential
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Cipher # Rounds Work factor (log2) Probability (logs) of the
(n) n-round characteristic

LOKI’89 6 14.3 -28.8
8 28.4 -43.2
10 28.0 -43.2
12 42.2 -57.5

LOKI’91 6 16.0 -32.0
8 31.6 -48.0
10 31.3 -48.0
12 47.0 -64.0

Table 8.5: Complexities of a differential collision attack on LOKI-based hash
functions for LOKI versions with a restricted even number of rounds.

attacks on hash functions using the LOKI’s have lower complexities than the
attacks on hash functions using DES.
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Conclusions

The constructions of block ciphers have traditionally been based on ad hoc
methods evolved from years of experience. No theory of how to build a secure
block cipher has been developed. The design and cryptanalysis of ciphers are
closely related, which is illustrated to a wide extent in this thesis.

There are three main applications for block ciphers, first of all and mainly,
for encryption, but also as building blocks in cryptographic hash functions
and digital signature schemes. We establish a new upper bound on the
complexities of attacks on block ciphers, when used for encryption in the
standard modes of operation.

During the last three years the two most important methods of crypt-
analysing block ciphers have seen the light of the day, namely differential
cryptanalysis and linear cryptanalysis. In this thesis lower bounds on the
complexities of differential and linear attacks were given, and it was shown
that there exist functions to be used in constructions of block ciphers provably
resistant against the two attacks. The method of differential cryptanalysis
was extended to include higher order differentials and partial differentials.

A third attack, based on simple relations was introduced. We defined
and showed how to construct strong key schedules, that will thwart attacks
based on simple relations and at the same time avoid so-called weak keys.

Extensive analyses were given of the specific block ciphers, DES, LOKI’91,
s2-DES, xDES1, and xDES2.

One way of enhancing the strength of a block cipher is by means of

215



216 CHAPTER 9. CONCLUSIONS

multiple encryption. A new multiple encryption scheme was given, using a
minimum number of key material, but provably as secure as single encryption
under relevant and suitable assumptions.

Finally we cryptanalyzed hash functions based on block ciphers. At tacks
on a large class of such hash functions were given. The results of our analysis
are that it is difficult to construct hash functions based on block ciphers, that
are both fast and with a high security level.



Appendix A

A Pictorial Illustration

The following five pages contain a pictorial illustration of conventional cryp-
tography. The first figure shows a non encrypted picture, a plain-text, the
following four figures show encryptions of the plaintext, using a substitution
cipher, a transposition cipher, and using a product cipher in both the ECB
and CBC modes.

217



218 APPENDIX A. A PICTORIAL ILLUSTRATION

Figure 1: The Plaintext
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Figure 2: Substitution Cipher
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Figure 3: Transposition Cipher
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Figure 4: Product Cipher in ECB Mode



222 APPENDIX A. A PICTORIAL ILLUSTRATION

Figure 5: Product Cipher in CBC Mode
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Tedious Proofs

B.1 Iterative Characteristics for the DES

In this section we give the proofs of the claims given in Section 6.1.1. No-
tation: Let Γ be an xor-sum of two inputs Y , Y ∗ to the F-function. Then
∆S(Γ) is the set of S-boxes, whose imputs are different after the E-expansion
of Y and Y ∗. Furthermore #∆S(Γ) denotes the number of S-boxes in
∆S(Γ). Example: Let Γ = 0f000000x (hex), then ∆S(Γ) = {S1, S2, S3}
and #∆S(Γ) = 3. Note that xor-addtiton is linear in both the E-expansion
and the P-permutation of DES. In the proofs below the following tables and
lemmata are used. Table B.1 shows thor each of the 8 S-boxes, which S-boxes
are affected by the output of the particular S-box. Numbers with a subscript
indicate that the particular bit affects one S-box directly and another S-box
via the E-expansion. Example: If the output difference of S1 is 6x (hex),
then S-boxes 5 and 6 are directly affected and S-box 4 is affected after the
E-expansion in the following round. Table B.2 shows the reverse of Table
B.1, i.e., for every S-box it is shown which S-boxes from the preceding round
affect the input, see also [21].

The next five lemmata follow form Tables B.1 and B.2.

Lemma B.1.1. The six bits that make the input for an S-box, Si, come
from six distinct S-boxes and not from Si itself.

Lemma B.1.2. The middle six input bits for two neighbouring S-boxes come

223
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S1 → 3 2 5 4 6 8
S2 → 4 3 7 8 1 5
S3 → 6 7 4 5 8 2
S4 → 7 5 6 3 1 8

S5 → 2 3 4 7 6 1
S6 → 1 2 8 7 3 5
S7 → 8 1 3 4 6 2
S8 → 2 1 7 4 6 5

Table B.1: Where the bits from an S-box go to.

S1 S2 S3 S4 S5 S6 S7 S8
4 2 5 6 8 3 7 5 1 4 6 7 2 5 8 3 1 2 6 4 8 7 1 3 5 4 8 2 6 3 1 7

Table B.2: Where the bits from an S-box come from.

from six distinct S-boxes.

Lemma B.1.3 The middle ten input bits for three neighbouring S-boxes come
from all 8 S-boxes. Six of the ten bits come from six distinct S-boxes and four
bits come from the remaining two S-boxes.

Lemma B.1.4 The middle two bits in the input of an S-box Si, the inner in-
put bits, come from two S-boxes, whose inner input bits cannot come from Si.

Lemma B.1.5 Let Φ be the difference in two inputs to the F-function and
let Γ be the difference of two outputs of the F-function, such that Φ → Γ.
If #∆S(Φ) = #∆S(Γ) = 2 then for at least one S-box of ∆S(Γ) the inputs
differ in only one bit.

We are now ready to give the proof of the first claim in Section 6.1.1, page 99.

Theorem B.1.1 For the xors, Γ and Φ, i.e., Γ → Φ and Φ → Γ, the
inputs to at least 5 S-boxes are different. That is, #∆S(Γ) + #∆S(Φ) ≥ 5.

Proof:
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1. #∆S(Γ) = 1. The inputs to ∆S(Γ) differ in the inner input bits, i.e.,
at most two bits. Because of properties 2 and 4 of the DES S-boxes
#∆S(Φ) ≥ 2. The inputs of each S-box in ∆S(Φ) differ in at most one
bit each. Because of property 2 the outputs of Φ differ in at least four
bits. Therefore Φ �→ Γ.

2. #∆S(Γ) = 2. Because of the symmetry of the characteristic it follows
a immediately that #∆S(Γ) ≥ 2. There are two cases to consider:

(a) ∆S(Γ) are not neighbours. Because of properties 2 and 4 the
outputs of both S-boxes in ∆S(Γ) will differ in at least two bits,
making #∆S(Φ) ≥ 3 according to Table B.1.

(b) ∆S(Γ) are neighbours. From Lemma B.1.2 it follows that the out-
puts of ∆S(Φ) differ in at most one bit each. Property 2 requires
the inputs of ∆S(Φ) to differ in at least two bits each. From Ta-
ble B.1 it follows that the only way two neighbouring S-boxes in
Γ can make the inputs of ∆S(Φ) differ in at least two bits each,
is when #∆S(Φ) = 3. This is however not possible for all pairs of
neighbouring S-boxes. For example let ∆S(Γ) = {S5, S6}, then
it is possible to get ∆S(Φ) = {S1, S2, S3} where for each S-box
the inputs differ in two bits. But for ∆S(Γ) = {S1, S2} there will
always be at least one S-box in ∆S(Φ) , whose inputs differ in
only one bit.

3. #∆S(Γ) ≥ 3. Because of the symmetry of these xors #∆S(Φ) ≥ 2. ✷

Next we will prove the second claim of Section 6.1.1, page 99, i.e., we
will show that there is no 4-round iterative characteristic with a probability
higher than the best 2-round iterative characteristic concatenated with itself.
First we prove

Theorem B.1.2 For a 4-round iterative characteristic with input sums Γ, Φ
and Ψ, see Section 5.2.2,

#∆S(Γ) + #∆S(Φ) + #∆S(Ψ) ≥ 7.

Furthermore, for at least one of the input sums the inputs to three neighbour-
ing S-boxes differ.



226 APPENDIX B. TEDIOUS PROOFS

Proof: We are looking for input sums Γ, Φ and Ψ, such that Γ → Φ, Ψ → Φ
and Φ → Γ ⊕ Ψ. Note that ∆S(Γ) ∩ ∆S(Ψ) �= ∅ and that if ∆S(Γ) are
neighbours then so are ∆S(Ψ).

1. #∆S(Γ) = 1. From the proof of Theorem B.1.1 we have #∆S(Φ) ≥ 2,
and each of the inputs to those S-boxes differs in exactly one bit.

(a) #∆S(Φ) = 2. The S-boxes in ∆S(Φ) are not neighbours and the
inputs differ in one inner input bit, therefore each of the outputs
differ in at least two bits. From a close look at Table B.1 it follows
that if ∆S(Γ) = {S7} then it is possible to get #∆S(Ψ) = 3, but
then for one S-box ∈ ∆S(Ψ), not S7, the inputs differ in only one
bit, an inner input bit. If ∆S(Γ) �= {S7} then #∆S(Ψ) ≥ 4 and
for at least one S-box, not ∆S(Γ), the inputs differ in onlyine bit.
Therefore Ψ �→ Φ.

(b) #∆S(Φ) ≥ 3. The outputs for every S-box of ∆S(Φ) differ in at
least two bits. It follows easily from Table B.1 that #∆S(Γ⊕Ψ) ≥
4. Since ∆S(Γ) ⊆ ∆S(Ψ), #∆S(Ψ) ≥ 4.

2. #∆S(Γ) = 2. By the symmetry of the characteristic #∆S(Ψ) ≥ 2 and
therefore #∆S(Φ) ≥ 3. There are two cases to consider:

(a) ∆S(Γ) are not neighbours. #∆S(Φ) ≥ 3 because of proper-
ties 2 and 4, leaving only the possibility that #∆S(Ψ) = 2 and
#∆S(Φ) = 3. The S-boxes in ∆S(Φ) must be neighbours. If not,
let Si be an isolated S-box, different in the inputs in only inner
bits. The outputs of Si differ in at least two bits, that must go to
the inner bits of the two S-boxes in ∆S(Γ), since ∆S(Γ) = ∆S(Ψ).
But that is not possible according to Lemma B.1.4.

(b) ∆S(Γ) are neighbours.

i. #∆S(Φ) = 1. The outputs of ∆S(Φ) differ in at least two
bits. From Table B.1 it follows easily that for at least one
S-box in ∆S(Ψ) not in ∆S(Γ) the inputs differ in only one
bit and Ψ �→ Φ.

ii. #∆S(Φ) = 2. Assume that #∆S(Ψ) = 2. If ∆S(Γ) =
∆S(Ψ) then the outputs of ∆S(Φ) can differ in at most one
bit each, according to Lemma B.1.2. But by Lemma B.1.5,
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the inputs of at least one S-box in ∆S(Φ) differ in only one bit,
a contradiction by property 2. Therefore ∆S(Γ) �= ∆S(Ψ).
Since ∆S(Γ)∩∆S(Ψ) �= ∅ and ∆S(Γ) are neighbours we must
have ∆S(Γ) = {S(i−1), Si} and ∆S(Ψ) = {S(i), S(i+1)} or
vice versa. The outputs from S(i− 1) in Γ must be equal as
must the outputs from S(i + 1) in Ψ. Therefore Γ⊕ Ψ must
have the following form (before the expansion):

S(i− 1) ‖ S(i) ‖ S(i + 1) = 0xyz ‖ 1 ∗ ∗1 ‖ 0vw0,

where ‘∗’ is any bit, xyz �= 000 and vw �= 00. From Table
B.2 it follows that Φ �→ Γ⊕Ψ for #∆S(Φ) = 2 and therefore
#∆S(Ψ) ≥ 3.

iii. #∆S(Φ) = 3. Then #∆S(Ψ) = 2. If ∆S(Γ) �= ∆S(Ψ)
then the differences in the inputs to Φ is the effect of one
S-box. For every S-box in ∆S(Φ) the inputs differ in only
one bit, therefore Φ �→ Γ ⊕ Ψ. By similar reasoning we find
that for both S-boxes in ∆S(Γ) the outputs have to differ.
Furthermore ∆S(Φ) are neighbours. Assume that they are
not. Then the outputs of the isolated S-box differ in at least
two bits, and from Table B.1 it follows that they affect at least
2 not neighbouring or 3 neighbouring S-boxes, a contradiction
with ∆S(Γ) = ∆S(Ψ).

∆S(Γ) ∆S(Φ) ∆S(Ψ)
Case A 2 2 3
Case B 2 3 2
Case C 3 1 3

3. #∆S(Γ) = 3. Because of the symmetry in the characteristic we cov-
ered the cases where ∆S(Ψ) < 3. Therefore #∆S(Γ) = #∆S(Ψ) = 3
and #∆S(Φ) = 1. ∆S(Γ) must be neighbours. Furthermore ∆S(Γ) =
∆S(Ψ) otherwise Φ �→ Γ⊕Ψ. ✷

Theorem B.1.3 There are no 4-round iterative characteristics with a prob-
ability higher than ( 1

234
)2.

Proof: From the proof of Theorem B.1.2 we find that to have a 4-round
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iterative characteristic, the inputs to seven S-boxes must be different in the
three nonzero rounds. Furthermore for at least one round the inputs to three
neighbouring S-boxes must be different. There are three cases to consider.
Case A: By Lemma B.1.5 we know that for at least one S-box in ∆S(Φ) the
inputs differ in only one bit. Furthermore for at least one of the three neigh-
bouring S-boxes in ∆S(Ψ) the outputs must be equal, otherwise Γ �→ Φ.
There are two cases to consider:

1. For both S-boxes in ∆S(Φ) the inputs differ in only one bit. By prop-
erty 2 the outputs differ in at least two bits each. For every three neigh-
bouring S-boxes in Ψ we know the only two possible S-boxes of ∆S(Φ)
by Lemma B.1.3 and Table B.2. Example: If ∆S(Ψ) = {S1, S2, S3}
then ∆S(Φ) = {S5, S6}. Furthermore the outputs of either S1 or S3
must be equal.
We have eight triples of three neighbouring S-boxes in Ψ to examine
and from Tables B.1 and B.2 it follows that there are only three possible
values for ∆S(Ψ) and ∆S(Φ). From the difference distribution table,
see [7], we find that the best combination for Ψ → Φ has probability
8×12×10

643 . But then the probability for a 4-round iterative characteristic
Pr(4R) ≤ 1

44 × 8×12×10
643 < ( 1

234
)2.

2. For one of the S-boxes in ∆S(Φ) the inputs differ in one bit, for the
other S-box the inputs differ in two bits. For every three neighbouring
S-boxes of Ψ there are only two possibilities for the S-box in ∆S(Φ),
whose inputs differ in only one bit. From a closer look at Table B.1 it
follows that ∆S(Φ) must be neighbours and there are only two possible
values for ∆S(Ψ) and ∆S(Φ). from the difference distribution table we
find that the best combination for Ψ → Φ has probability 12×10×4

643 . But
then the probability for the 4-round iterative characteristic Pr(4R) ≤
1
44 × 12×10×4

643 < ( 1
234

)2.

Case B: The three S-boxes in ∆S(Φ) are neighbours. From the proof of The-
orem B.1.2 we have ∆S(Γ) = ∆S(Ψ). Then by Lemma B.1.2 the outputs of
each of the three neighbouring S-boxes in ∆S(Φ) can differ in at most one
bit, therefore the inputs must differ in at least two bits each by property 2.
Then it follows from Table B.2 that for each of the S-boxes in ∆S(Γ) the out-
puts must differ in two bits. For every triple of three neighbouring in ∆S(Φ)
there is only one possible way for the inputs to differ and only one possibility
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for ∆S(Γ). The best combination of ∆S(Γ) and ∆S(Φ) gives a probability

for the 4-round iterative characteristic Pr(4R) ≤ 12×12×16×(8×4)2

647 < ( 1
234

)2.
Case C: From Theorem B.1.2 we have ∆S(Γ) = ∆S(Ψ). The only pos-
sibility we have for a 4-round iterative characteristic of this kind is when
∆S(Γ) = {S2, S3, S4} and ∆S(Φ) = {S7}. The best combinations yields a
probability for the 4-round iterative characteristic

Pr(4R) ≤ 1

44
× 14× 8× 8

643
< (

1

234
)2

✷

B.2 Key Enumeration in LOKI’91

In this section we give an enumeration of the keys in the chosen plaintext
attack of Section 6.2. We use the same notation as in Section 6.2. Let A be
a function from GF (2)64 to itself

A : KL ‖ KR → KR ‖ Rol25(KL)

As stated above, once we have tried the key K = KL ‖ KR in step 5 of the
algorithm without success, we don’t have to try the keys

A(K), K, A(K)

The idea is to use A to construct a set of keys about half the size of the key
space and s.t.

• the biggest block of bits in every key consists of 1’s.

• for every key K, A(K) is also in the set.

Then let the enumeration of the keys be every second key from the above
constructed set of keys. Later in this section we show that the enumeration
obtained this way makes the total number of keys tried in the attack be very
close to 262.
Let Alist(K) be the set of 64 keys {K,A(K),A2(K), . . . . . . ,A63(K)}. Note
that A64(K) = K. Define for K = KL ‖ KR

MK = ∪p,q{Alist(Rolp(KL) ‖ Rol q(KR)) ∪ Alist(Rolp(Kp) ‖ Rol q(KL))}
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for p = 0, 1, 2, 3 and q = 0, 8, 16, 24.

Lemma B.2.1 For K = KL ‖ KR, MK is the set of all keys of the forms:

Rolx(KL) ‖ Roly(KR)
Rolx(KR) ‖ Roly(KL)

for all x, y ∈ {0, 1, . . . . . . , 31}

Proof: For fixed K there are 2× 32× 32 = 211 keys of the above form. Since
Alist produces 64 keys, the total number of keys in MK is 2×16×64 = 211.
Therefore it suffices to show that the pairs of rotations of the keys in MK

are distinct, i.e., that Rola(KL) ‖ Rol b(KR) does not appear twice for any
a, b. It is obvious that Rola(KL) ‖ Rol b(KR) does not appear twice in one
Alist . There are two cases to consider, Rola(KL) ‖ Rol b(KR) appears in

1. Alist(Rolp(KL) ‖ Rolq(KR)) and Alist(Rolp′(KL) ‖ Rolq′(KR))

Rola(KL) ‖ Rolb(KR) = Rolp+25n(KL) ‖ Rolq+25n(KR)∧
Rola(KL) ‖ Rolb(KR) = Rolp′+25n(KL) ‖ Rolq′+25n(KR) ⇒
p + 25n = p′ + 25n mod 32 ∧ q + 25n = q′ + 25n mod 32 ⇒
p− p′ = q − q′ mod 32 ⇒ (p, q) = (p′, q′),
since p− p′ ∈ {−3,−2,−1, 0, 1, 2, 3} and q − q′ ∈ {0, 8, 16, 24}.

2. Alist(Rolp(KL) ‖ Rolq(KR)) and Alist(Rolp′(KR) ‖ Rolq′(KL))

Rola(KL) ‖ Rolb(KR) = Rolp+25n(KL) ‖ Rolq+25n(KR)∧
Rola(KL) ‖ Rolb(KR) = Rolq′+25n(KL) ‖ Rolp′+25+25n(KR) ⇒
p + 25n = q′ + 25n mod 32∧
q + 25n = p′ + 25 + 25n mod 32 ⇒
p + p′ + 25 = q + q′ mod 32
A contradiction, since p + p′ + 25 ∈ {25, 26, . . . , 31} and
q + q′ mod 32 ∈ {0, 8, 16, 24} ✷

Let Ka and Kb be two 32-bit key halves, s.t. Ka and Kb are no rotations
of each other, i.e., Rolx(Ka) �= Kb for any x, 0 < x < 32.
For K = Ka ‖ Kb, MK is a set of distinct keys except in the cases where
Rolx(Ka) = Ka for some x and/or Roly(Kb) = Kb for some y.

Lemma B.2.2 Let H be a 32-bit key. There are 2gcd(n,32) possible values
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of H, such that H = Roln(H), where 0 < n < 32.

From Lemma B.2.2 it follows for K = KL ‖ KR, where KL and KR are
no rotations of each other, that

Lemma B.2.3 There at most 249 keys for which the elements in MK are
not distinct.

Proof: Assume we have two equal keys K ′ and K∗ from MK . Then

K ′ = Rola(KL) ‖ Rolb(KR), K∗ = Rolc(KL) ‖ Rold(KR)

Clearly from the proof of Lemma B.2.1 (a, b) �= (c, d). Then

Rola(KL) = Rolc(KL) ∧Rolb(KR) = Rold(KR) ⇒
Rola−c(KL) = KL ∧Rolb−d(KR) = KR

If a = c then there are 232 possible values for KL, but then there are at most
216 possible values for KR according to Lemma B.2.2, since (a, b) �= (c, d). If
b = d then a �= c and we get a total number of 2× 232 × 216 = 249 keys. ✷

The following algorithm makes a list of 32 bit strings, where no two strings
are rotations of each other and where the biggest block of bits in every string
consists of 1’s.

ALGORITHM - No-rotations-of-keys (NRK)
For all positive k ≤ 32, list all k-tuples (a1, a2, . . . , ak), s.t.

1.
∑k

i=1 ai = 32

2. ai ≥ 1 for 0 < i ≤ k

3.
∑k

i=1 ai × 32k−i ≥ ∑k
i=1 ai+n mod (k+1) × 32k−i, for all n ≤ k

Method: For every k-tuple (a1, . . . . . . , ak) output the 32-bit key, where the
a1 MSB’s are 1-bits, the next a2 bits are 0-bits and so on.

Lemma B.2.4 No two keys in the output from (NRK) are rotations of each
other.
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Proof: Because of the inequality in 3. above if k > 1, then k is even.
Therefore for k > 1 the ak LSB are 0-bits and furthermore a1 ≥ ai for i ≤ k.
Let A and A′ be two 32 bit keys from (NRK), s.t. A = Rolx(A

′) for some
fixed x. Write A and A′ as tuples (a1, . . . , am) and (a′

1, . . . , a′
l) according to

the method in (NRK). Clearly l = m otherwise A cannot be a rotation of A′.
Because A = Rolx(A

′) we have for some i

a1+n = a′
i+n mod (m+1), 0 < n ≤ m

Especially we have a1 = a′
i and am−i+2 = a′

1. Because of the inequality in 3.
above we have

a′
i ≤ a′

1 ∧ a1 ≤ am−i+2

Therefore a′
i = a′

1 ⇒ a1 = a′
1. Now a1 = am−i+2 ⇒ a2 ≥ am+i+3. Similar as

before

a2 = a′
i+1 ≤ a′

2 = am−i+3 ⇒ a′
2 = a2

By induction we obtain A = A′ ✷

ALGORITHM - Enumeration (EN)

1. i = 1

2. Let KL be the i’th output from (NRK)

3. For j = 1 to i do

(a) Let KR be the j’th output from (NRK)

(b) For K = KL ‖ KR output the first and then every second key
from all Alists in MK

(c) For K = KL ‖ KR do as in 3b

4. Set i = i + 1 and goto 2

We are left to check whether the set

KS = ∪Ki
{Ki,A(Ki), Ki,A(Ki)}
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where the Ki’s are the keys output from (EN), contains the entire key space.
Let K∗ = K∗

L ‖ K∗
R be an arbitrary key. Rotate K∗

L and K∗
R such that the

biggest blocks of bits (0’s or 1’s) are the MSB. Let K(j) = K ′
L ‖ K ′

R be that
key.

If the MSB in both K ′
L and K ′

R are 1’s then they are both output from
(NRK). Then at some point K(j) or K(l) = K ′

R ‖ K ′
L say K(j), is the key

considered in step 3(b) of (EN). Let K(n), 0 < n < 210 be all keys output
in step 3(b) when K = K(j). Then L = {K(n),A(K(n))}, 0 < n ≤ 210 are
all rotations of the key halves in K(j) according to Lemma B.2.1. Therefore
K∗ ∈ L ∈ KS.
If MSB in both K ′

L and K ′
R are 0’s, then at some point either K(j) or K(l)

is the key considered in step 3(b). Let K(n) be as before, when K = K(j)
Then L = {K(n),A(K(n))}, 0 < n ≤ 210 are all rotations of the key halves in
K(j) according to Lemma B.2.1. Therefore K∗ ∈ L ∈ KS ⇒ K∗ ∈ L ∈ KS.
If the MSB in K ′

L and K ′
R are 1’s and 0’s resp. or vice versa similar argu-

ments hold for step 3(c).
We have implemented (NRK) on a SUN-Spare workstation. The number of
key halves output from (NRK) is 226 + 2068. It means that the number of
keys output from (NRK) in 2. and 3(a) above is about

(226 + 2068)2

2
� 251 + 237.

Every second key from MK gives 210 keys for each K. The total number of
keys in the enumeration therefore is about

(251 + 237)× 2× 210 = 262 + 248.

We have given an enumeration of the keys, s.t. the total number of iterations
of step 5 in the algorithm of the chosen plaintext attack is close to 262. The
time used in the enumeration (EN) is negligible compared to the 1.07× 262

full 16 rounds of encryption of LOKI’91, since it runs only once per every
2× 210 runs of step 5 in the algorithm of the chosen plaintext attack.
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Appendix C

The Data Encryption Standard

The Data Encryption Standard was published as a Federal Information Pro-
cessing Standard in January 1977 [90]. In this section we give a full descrip-
tion of the algorithm.

The algorithm encrypts a 64 bit plaintext block P into a 64 bit ciphertext
block C using a 64 bit key K. The bits are numbered from 1 to 64, s.t. the
most significant bit has the lowest index, i.e., P = p1, . . . , p64, where the pi’s
are bits. The key K is the input to the key schedule algorithm (described
below), which outputs 16 round keys, each of 48 bits. The plaintext is first
permuted using the permutation IP, Table C.2, s.t.

P = p1, . . . , p64

IP (P ) = p58, p50, . . . , p7

thereafter IP (P ) is divided into two halves PL and PR of 32 bits each. Given
a permuted plaintext IP (P ) = (PL, PR) and the round keys (K1, K2, . . . , K16)
the ciphertext C = (CL, CR) is computed in 16 rounds. Set CL

0 = PL and
CR

0 = PR and compute for i = 1, 2, . . . , 16

(CL
i , CR

i ) = (CR
i−1, F (CR

i−1, Ki)⊕ CL
i−1)

Set Ci = (CL
i , CR

i ) for i = 1, . . . , 15, and C16 = (CR
16, C

L
16). The ciphertext is

then permuted using the inverse of IP, i.e., the ciphertext is C = IP−1(C16).
Note that the halves are not swapped after the last evaluation of F . In that
way the decryption algorithm equals the encryption algorithm, except that

235



236 APPENDIX C. THE DATA ENCRYPTION STANDARD

the round keys are used in reverse order, i.em., K16 is used in the first round,
K15 in the second and so on.

The function F is depicted in Figure C.1. The 32 bit text input X is
expanded by the E-expansion, Table C.3. Next, the exclusive-or of E(X)
and a 48 bit round key is divided into 8 blocks of six bits each. The 8 blocks
are used as the inputs to the 8 S-boxes in Table C.1 in the following way. Let
b1, b2, b3, b4, b5, b6 be six input bits to an S-box. The integer corresponding
to the bits b1b6 selects one of four rows in the S-box and the integer b2b3b4b5

selects one of sixteen columns. The 32 bits output from the S-boxes are
concatenated and permuted using the permutation P, Table C.4.

The key schedule algorithm takes a 64 bit key K as input. Initially the
parity bits of K are removed and the remaining 56 bits are permuted, using
the permuted choice function PC-1, Table C.5. The result PC-1(K) is divided
into two halves C0 and D0. The halves are then rotated successively to the left
in the following way, Ci = LSi(Ci−1) and Di = LSi(Di−1), where the number
of shifts LSi is listed in Table C.7. The 16 round keys Ki, i = 1, . . . , 16 are
computed as follows Ki = PC-2(Ci, Di), where PC-2 is the permuted choice
function in Table C.6.
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Figure C.1: The F-function in DES.
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S1: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2: 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3: 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4: 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5: 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6: 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7: 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8: 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table C.1: The 8 S-boxes of the DES.
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58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table C.2: The initial permutation IP.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table C.3: The E-expansion.

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

Table C.4: The P-permutation.
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57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table C.5: The initial permuted choice PC-1.

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table C.6: The permuted choice table PC-2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LSi 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table C.7: The circular shifts in the key schedule of DES.
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LOKI’91

In 1990 Brown, Seberry and Pieprzyk [15] proposed a new encryption prim-
itive, called LOKI, later renamed LOKI’89, and a redesign, LOKI’91 was
proposed in [14]. In this section we give a full description of the LOKI’91.

The algorithm encrypts a 64 bit plaintext block P into a 64 bit ciphertext
block C using a 64 bit key K. The bits are numbered from 64 to 1, i.e., the
opposite way as in the description of the DES, s.t. P = p64, . . . , p1, where
the pi’s are bits. The key K is the input to the key schedule algorithm
(described below), which outputs 16 round keys, each of 32 bits. A plaintext
P is divided into two halves PL and PR of 32 bits each. Given a plaintext P =
(PL, PR) and the round keys (K1, K2, . . . , K16) the ciphertext C = (CL, CR)
is computed in 16 rounds. Set CL

0 = PL and CR
0 := PR and compute for

i = 1, 2, . . . , 16

(CL
i , CR

i ) = (CR
i−1, F (CR

i−1, Ki)⊕ CL
i−1

Set Ci = ((CL
i , CR

i ) for i = 1, . . . , 15, and C16 = (CL
16, C

R
16). The ciphertext

is C = C16.

The function F is depicted in Figure D.1. The 32 bit text input X is
exclusive-or’ed to a 32 bit round key and is thereafter expanded to 48 bits
by the E-expansion, Table D.2. Next the bits are divided into 4 blocks of 12
bits each. Each block is substituted by a 8 bit value by SB the only S-box
in LOKI’91, in the following way.

Let b12, b11, . . . , b2, b1 be twelve input bits to an S-box. The integer r =
b12, b11, b2, b1 and the integer c = b10, b9, . . . , b4, b3 are formed. The integer

241
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r selects one of sixteen irreducible polynomials, polr, from Table D.1. The
S-box operates as follows

SB(r, c) = (c + ((r ∗ 17)⊕ ffx)&ffx)
31mod polr

where ffx is a byte with eight 1-bits, ‘+’ and ‘∗’ refer to arithmetic addition
and multiplication, ⊕ is addition modulo 2, & is bitwise and-operation, and
the exponentiation is performed in GF (28).

The four times eight bits output from the S-boxes are concatenated and
permuted using the permutation P, Table D.3.

The key schedule algorithm takes a 64 bit key K as input. The key
is divided into two 32 bit halves KL, KR and the 16 round keys K(i), i =
1, . . . , 16, are derived as follows:

1. i = 1

2. K(i) = KL; i = i + 1

3. KL = Rol13(KL)

4. K(i) = KL; i = i + 1

5. KL = Rol12(KL)

6. Swap(KL, KR)

7. go to 2.

where Roln(X) is a bitwise rotation of X, n positions to the left and Swap(X, Y )
swaps X and Y .
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Figure D.1: The F-function in LOKI
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r 1 2 3 4 5 6 7 8
polr 375 379 391 395 397 415 419 425

r 9 10 11 12 13 14 15 16
polr 433 455 451 463 471 477 487 499

Table D.1: The 16 irreducible polynimials in decimal notation

3 2 1 0 31 30 29 28 27 26 25 24
27 26 25 24 23 22 21 20 19 18 17 16
19 18 17 16 15 14 13 12 11 10 9 8
11 10 9 8 7 6 5 4 3 2 1 0

Table D.2: The E-expansion

31 23 15 7 30 22 14 6
29 21 13 5 28 20 12 4
27 19 11 3 26 18 10 2
25 17 9 1 24 16 8 0

Table D.3: The permutation P.



Appendix E

Dansk resume

Denne licentiatafhandling omhandler kryptoanalyse, anvendelser og design
af konventionelle blokkryptosystemer. Hovedvægten er lagt p̊a en speciel og
vigtig klasse af bloksystemer, de s̊akaldte Feistel -systemer. Disse systemer
best̊ar af et antal runder, hvor man i hver runde bruger en kryptografisk svag
funktion, som ved iteration forventes af were stærk.

Anvendelser

Den mest udbredte anvendelse af et blokkryptosystem er til kryptering. De
forskellige måder at bruge et bloksystem til kryptering gennemg̊aes og a-
nalyseres, og vi introducerer et nyt klassifikationssystem af mulige angreb
p̊a bloksystemer. Dette udmønter sig i en ny (teoretisk) øvre grænse for
kompleksiteten af angreb p̊a bloksystemer.

En anden anvendelse af bloksystemer er som bygge-klods i kryptografiske
hashfunktioner, hvilke vi gennemg̊ar og analyserer.

Endelig analyseres en tredje anvendelse af bloksystemer, som byggeklods
i digitale signatursystemer. Specielt vises, at et system foresl̊aet af R. Merkle
er b̊ade sikkert og praktisk med passende og rimelige antagelser om bloksys-
temet.
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Kryptoanalyse

De vigtigste kendte angreb pa bloksystemer, lineaer og differentiel krypto-
analyse gennemg̊as og forbedringer til begge metoder gives. Endvidere intro-
ducerer vi et nyt angreb baseret p̊a s̊akaldte simple relationer og anvender
det p̊a et australsk foresl̊aet bloksystem. Differentiel kryptoanalyse bruger
s̊akaldte differentialer (A, B), d.v.s. et par af klartekster med differens A,
som efter et vist antal runder resulterer i differensen B med en ikke ubetydelig
sandsynlighed. Derved kan (dele af) den hemmelige nøgle findes. Vi giver nye
metoder til, hvordan de bedste s̊adanne differentialer kan bestemmes. End-
videre introducerer vi højere ordens differentialer og delvise differentialer og
viser, at begge har brugbare anvendelser. Ovennævnte angreb udføres p̊a
fem specifikke bloksystemer, DES, LOKI’91, s2-DES, xDES1 og xDES2.

Angreb p̊a hashfunktioner baseret p̊a bloksystemer klassificeres og nye
angreb p̊a en stor klasse af hashfunktioner introduceres, og anvendes p̊a tre
eksisterende systemer, som vises ikke at være s̊a gode, som tidligere antaget.
En fjerde hashfunktion, AR Hash, tilhørende en anden klasse af hashfunk-
tioner, studeres. Systemet er hurtigere end de kendte standarder og blev
brugt i den tyske bankverden. Vi viser, at systemet er totalt usikkert.

Design

Principper for design af nye bloksystemer diskuteres. Eksisterende systemer
er baseret p̊a ad hoc metoder, og ingen egentlig teori eksisterer p̊a omr̊adet.
Vi giver nye nedre grænser for kompleksiteterne af angreb p̊a bloksystemer
ved lineær og differentiel kryptoanalyse, og viser, at der eksisterer funktioner,
som kan bruges til konstruktion af kryptosystemer, bevisligt sikre mod de to
angreb. Endvidere defineres s̊akaldte stærke nøgleskemaer. I et rundebaseret
kryptosystem anvendes som oftest et nøgleskema, som med inddata en rela-
tiv kort nøgle giver en række rundenøgler. Et kryptosystem med et stærkt
nøgleskema vises at være immun overfor angreb baseret p̊a simple relationer.
En simpel metode til konstruktion af stærke nøgleskemaer angives. En ud-
bredt metode til forøgelse af sikkerheden af et konventionelt kryptosystem
er ved gentagne krypteringer, d.v.s. hvor en klartekst krypteres adskillige
gange med samme kryptosystem, men hver gang med en forskellig nøgle.
Ved denne metode er det nødvendigt at sikre sig, at sikkerheden for et sys-
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tem ved gentagen kryptering ikke er lavere end sikkerheden for systemet
ved en enkelt kryptering. Vi analyserer eksisterende metoder for gentagen
kryptering og giver et nyt forslag til et system, som er bevisligt liges̊a sikkert
som engangskryptering og med et minimalt forbrug af forskellige nøgler.

Dele af arbejdet i denne afhandling er skrevet som separate artikler. I
samarbejde med lektor Ivan B. Damg̊ard artiklerne [19, 20], med Kaisa Ny-
berg artiklerne [85, 86], med Xuejia Lai artiklerne [53, 57] og med Luke
O’Connor artiklen [54]. Endvidere har undertegnede selv skrevet artiklerne
[47, 48, 49, 50, 51, 52].
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