12,823 research outputs found

    Proprioceptive perception of phase variability

    Get PDF
    Previous work has established that judgments of relative phase variability of 2 visually presented oscillators covary with mean relative phase. Ninety degrees is judged to be more variable than 0° or 180°, independently of the actual level of phase variability. Judged levels of variability also increase at 180°. This pattern of judgments matches the pattern of movement coordination results. Here, participants judged the phase variability of their own finger movements, which they generated by actively tracking a manipulandum moving at 0°, 90°, or 180°, and with 1 of 4 levels of Phase Variability. Judgments covaried as an inverted U-shaped function of mean relative phase. With an increase in frequency, 180° was judged more variable whereas 0° was not. Higher frequency also reduced discrimination of the levels of Phase Variability. This matching of the proprioceptive and visual results, and of both to movement results, supports the hypothesized role of online perception in the coupling of limb movements. Differences in the 2 cases are discussed as due primarily to the different sensitivities of the systems to the information

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    On the effects of action on visual perception & How new movement types are learned

    Get PDF
    Perception can induce effects on action. Perception of others´ actions can thus influence our own actions. However, research on how action can shape perception is sparse. In this thesis, the effects of (i) motor learning and (ii) simple movements, can influence visual perception. Furthermore, the issue of motor learning is addressed; how can new movement types be learned and do active and passively guided motor training lead to differences in successful acquisition of a new movement

    Cognitive science and epistemic openness

    Get PDF
    Recent findings in cognitive science suggest that the epistemic subject is more complex and epistemically porous than is generally pictured. Human knowers are open to the world via multiple channels, each operating for particular purposes and according to its own logic. These findings need to be understood and addressed by the philosophical community. The current essay argues that one consequence of the new findings is to invalidate certain arguments for epistemic anti-realism

    Training compliance control yields improvements in drawing as a function of beery scores

    Get PDF
    Many children have difficulty producing movements well enough to improve in sensori-motor learning. Previously, we developed a training method that supports active movement generation to allow improvement at a 3D tracing task requiring good compliance control. Here, we tested 7–8 year old children from several 2nd grade classrooms to determine whether 3D tracing performance could be predicted using the Beery VMI. We also examined whether 3D tracing training lead to improvements in drawing. Baseline testing included Beery, a drawing task on a tablet computer, and 3D tracing. We found that baseline performance in 3D tracing and drawing co-varied with the visual perception (VP) component of the Beery. Differences in 3D tracing between children scoring low versus high on the Beery VP replicated differences previously found between children with and without motor impairments, as did post-training performance that eliminated these differences. Drawing improved as a result of training in the 3D tracing task. The training method improved drawing and reduced differences predicted by Beery scores

    Distal engagement: Intentions in perception

    Get PDF
    Non-representational approaches to cognition have struggled to provide accounts of long-term planning that forgo the use of representations. An explanation comes easier for cognitivist accounts, which hold that we concoct and use contentful mental representations as guides to coordinate a series of actions towards an end state. One non-representational approach, ecological-enactivism, has recently seen several proposals that account for “high-level” or “representation-hungry” capacities, including long-term planning and action coordination. In this paper, we demonstrate the explanatory gap in these accounts that stems from avoiding the incorporation of long-term intentions, as they play an important role both in action coordination and perception on the ecological account. Using recent enactive accounts of language, we argue for a non-representational conception of intentions, their formation, and their role in coordinating pre-reflective action. We provide an account for the coordination of our present actions towards a distant goal, a skill we call distal engagement. Rather than positing intentions as an actual cognitive entity in need of explanation, we argue that we take them up in this way as a practice due to linguistically scaffolded attitudes towards language use

    Enkinaesthetic polyphony: the underpinning for first-order languaging

    Get PDF
    We contest two claims: (1) that language, understood as the processing of abstract symbolic forms, is an instrument of cognition and rational thought, and (2) that conventional notions of turn-taking, exchange structure, and move analysis, are satisfactory as a basis for theorizing communication between living, feeling agents. We offer an enkinaesthetic theory describing the reciprocal affective neuro-muscular dynamical flows and tensions of co- agential dialogical sense-making relations. This “enkinaesthetic dialogue” is characterised by a preconceptual experientially recursive temporal dynamics forming the deep extended melodies of relationships in time. An understanding of how those relationships work, when we understand and are ourselves understood, when communication falters and conflict arises, will depend on a grasp of our enkinaesthetic intersubjectivity

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Visual and control aspects of saccadic eye movements

    Get PDF
    Physiological, behavioral, and control investigation of rapid saccadic jump eye movement in human

    Annotated Bibliography: Anticipation

    Get PDF
    corecore