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Abstract 

Previous work has established that judgments of relative phase variability of two visually 

presented oscillators co-vary with mean relative phase. 90° is judged to be more variable than 0° 

or 180°, independently of the actual level of phase variability. Judged levels of variability also 

increase at 180°. This pattern of judgments matches the pattern of movement coordination 

results. Here, participants judged the phase variability of their own finger movements, which 

they generated by actively tracking a manipulandum moving at 0°, 90° or 180° and with one of 

four levels of Phase Variability. Judgments co-varied as an inverted U-shaped function of mean 

relative phase. With an increase in frequency 180° was judged more variable while 0° was not. 

Higher frequency also reduced discrimination of the levels of Phase Variability. This matching 

of the proprioceptive and visual results, and of both to movement results supports the 

hypothesized role of on-line perception in the coupling of limb movements.  Differences in the 

two cases are discussed as due primarily to the different sensitivities of the systems to the 

information. 
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Introduction 

 
Relative phase (φ) is a measure of coordination in studies of human rhythmic limb movement. 

Bingham, Zaal, Shull & Collins (2000) investigated the perception of mean relative phase and 

phase variability. Participants judged the degree of coordination in the movement of two visually 

presented oscillating dots. On average, judgments of mean relative phase were accurate. 

Judgments of phase variability, however, varied in an asymmetric inverted U-shaped function of 

mean relative phase. A mean relative phase of 180° was judged to be intrinsically more variable 

than a mean relative phase of 0°, and 90° was judged to be the most variable mean relative 

phase. The asymmetry was magnified by increasing the frequency of the oscillators from 0.75Hz 

to 1.25Hz, which increased judged variability at 180° but not at 0°. Bingham and Collins 

(submitted) replicated the frequency results using frequencies ranging from 1Hz to 3Hz, and 

showed that the variability in judgments of both mean relative phase and of phase variability was 

also an inverted U-shaped function of mean relative phase. Bingham, Schmidt and Zaal (1999) 

replicated these results by using oscillators driven by actual human movement. Zaal, Bingham 

and Schmidt (2000) used dots oscillating in both the fronto-parallel plane and in depth, and 

showed that the levels of phase variability were discriminated best at 0°, then 180°, and not at all 

at 90°.  

 

The overall pattern of the judgments, then, is an asymmetric inverted U-shaped function, with 

90° judged to be inherently noisy and 180° to be noisier than 0° and in response to an increase in 

frequency, 180° was judged to be increasingly noisy while 0° was unaffected. This pattern 

mirrors three characteristic phenomena from the movement coordination literature. First, 
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participants can spontaneously (without training) produce only two stable states: 0° (in-phase; 

both oscillators at the same point in their cycle at a given time) and 180° (anti-phase; the two 

oscillators at opposite points in their cycle at a given time; Kelso, 1984, 1995). This is reflected 

in the judgment studies by participants judging relative phases other than 0° and 180° to be 

inherently noisy. Second, 0° is more stable than 180°; movement at 180° is characterized by 

higher phase variability (Kelso, 1984). This is reflected in the judgment studies by participants 

judging 0° to be less variable than 180°. Third, increased frequency yields increased phase 

variability at 180° but not 0°. Under an instruction of non-interference, this eventually leads 

participants to spontaneously transition from 180° to 0°. There is no spontaneous tendency to 

switch in the reverse direction, from 0° to 180°, with changes in frequency - 0° remains stable 

while 180° destabilizes (Kelso, 1984; Kelso, Scholz & Schöner, 1986; Kelso, Schöner, Scholz & 

Haken, 1987). This is reflected in the judgment studies by their judgments at 0° being unaffected 

by the frequency manipulation, but not the judgments made at other mean relative phases which 

were judged to be more variable at higher frequency. 

 

This pattern of results in the movement literature persists even when the coupling is visual, for 

instance when a participant is coordinating with either another person (Schmidt, Carello, & 

Turvey, 1990) or with a simulated oscillator (Wimmers, Beek & van Wieringen, 1992). The 

similarity between our visual results and the movement results suggests that the movement 

phenomena may be due in part to differential stability in the perception used to couple (and 

hence coordinate) oscillating limbs. The movement phenomena are all based on a person 

rhythmically moving two of their own limbs. In this case, the coupling could either be 

understood at an informational (proprioceptive) level of analysis or at a neural level of analysis, 
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that is, as some kind of neural crosstalk (the latter motivating several modeling efforts, e.g. Beek, 

Peper & Daffertshofer, 2002; Cattaert, Semjen & Summers, 1999).1  The previous visual results 

were interpreted in the context of a visual informational coupling, and the current study was 

designed to test a proprioceptive informational coupling. 

 

We had one immediate problem. The movement literature has all demonstrated that people are 

unable to spontaneously produce mean relative phases other than 0° and 180°. To investigate 

proprioceptive perception of relative phase, we needed participants to generate reasonably stable 

movements at other mean relative phases.   To enable them to do this, we designed a haptic 

tracking task, which would produce proprioceptive perceptual information about the state of the 

limbs being moved. Haptics entails active movement with contact between skin and 

environmental surfaces (Gibson, 1966)2. Participants actively tracked two haptic stimulators 

(platforms) with their fingers moving at three relative phases with four levels of phase 

variability.  It was uncertain whether in fact participants would be able to do this.  Nevertheless, 

the goal was for participants to produce appropriate movements and therefore be able to make 

judgments of phase variability on the basis of the proprioceptive information generated by those 

movements. The tracking aspect of the task also allowed us to separate information about the 

coordination (proprioceptive judgment task) from the actual production of the coordination 

(haptic movement task).  If we replicated the visual judgment results, this would support a 

hypothesis about an informational component in the performance of (non-haptic) coordination 

tasks. 
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More specifically, we report results from experiments with one (1Hz) and three (1Hz, 2Hz and 

3Hz) frequencies. We tested three mean relative phases (0°, 90° and 180°). We only dared to test 

movement at 90° in addition to 0° and 180°.  Because there were only three levels of mean 

phase, there was no point in testing judgments of mean phase.  Participants made judgments of 

phase variability.  We predicted that we would find the pattern from the visual judgment studies 

now using proprioception, specifically that judgments of phase variability would follow an 

asymmetric inverted U-shaped function of mean relative phase, and that participants' ability to 

discriminate various levels of phase variability would be a function of both mean relative phase 

and frequency. 

 

Experiment One – 1Hz only 

Method 

Participants 

Seven students at Indiana University participated. They were aged 18-39. All were free of motor 

disabilities, and were paid $7 for participation. Each session lasted about 1hr.  

 

Design 

There were two within-subject factors, Mean Relative Phase (3 levels; 0°, 90°, 180°) and Phase 

Variability (4 levels; 0°, 5°, 10°, 15°). Phase Variability was added to the signal using three 

different Methods (described below) for each trial type, making a total of 36 trials per subject. 

We obtained measures of mean relative phase and phase variability for both judgments and the 

participant's actual kinematics for each trial as they tracked the presented signal.  
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Apparatus and Stimuli 

The system used to generate the movements to be tracked by participants consisted of a generic 

486 personal computer, custom microcontroller and servoamplifier circuits, and, as actuator, the 

head positioning motor from a Micropolis 1355 hard disk drive. This system flexed and extended 

the index finger of each hand about the metacarpal phalangeal (knuckle) joint. A lever arm 

(normally horizontal) was mounted to the motor's rotor. A 1.4cm x 1.9cm finger plate was 

mounted to the distal arm end, and a plastic washer was glued to it. This washer served as the 

finger rest. Rotor-to-plate separation was 9.4cm. The plate moved primarily in the vertical 

direction, with a maximum plate displacement of about 5cm. A positional error feedback 

servoamplifier was used to control the actuator. Absolute position was obtained by connecting 

the slider of a high quality linear potentiometer (ETI LCP-12A-25) to the arm. As the motor 

moved, the potentiometer generated a feedback signal that caused deviations in the movement 

waveform (due to loading) to be compensated for by additional opposing force. Additional 

details of the construction and capabilities of the system may be found in Eberhardt, Bernstein, 

Barac-Cikoja, Coulter and Jordan (1994).  

 

The trajectories of the two finger-plates were generated through numerical simulation. Two 

aspects of their relative motion were manipulated. First, the plates could move with a mean 

relative phase of 0°, 90° or 180°. Second, at each level of relative phase, four levels of phase 

variability were determined in terms of standard deviations of relative phase equal to 0°, 5°, 10°, 

and 15°.  
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Variability of relative phase was produced by slowing down and speeding up the individual 

oscillators. This was accomplished by manipulating the size of the time steps in the numerical 

simulations. A time step longer than a nominal time step (i.e. a time step appropriate for the 

display rate) would advance an oscillator, and a time step shorter than a nominal time step would 

delay an oscillator. By differentially changing the time steps of the two oscillators, their 

difference in phasing, and hence their relative phase, was perturbed. 

 

The time steps were determined as follows. The time t of each oscillator i at time step n was the 

time at the previous time step plus a modified (shortened or lengthened) new time step; 

ti(n) = ti(n-1) + (1 + N*i)δt ,     (2) 

 

where δt is the nominal time step of 0.03s. The temporal noise N*i had two components: 

Ni = AN,i cos(ωNt) + 0.1 AN, i ξt,         (3) 

N*i = [-0.95 <Ni <0.95].     (4) 

First, the noise consisted of an oscillating component with a frequency ωN of 1, 0.5, or 0.25 times 

the frequency of plate oscillation (ωP = 1Hz). This component had amplitude AN, i, that when 

combined with a smaller Gaussian component was appropriate to introduce a specific relative-

phase difference between the two oscillators, that is, an amplitude such that over the entire trial 

the standard deviation of relative phase was 0°, 5°, 10° or 15°. The oscillating component was 

combined with a smaller Gaussian component (ξt is Gaussian white noise of unit variance), with 

the restriction that the total advance or delay in timing of the oscillator was smaller than 0.95 

times a nominal time step. The phase φi(n) of each oscillator at each time step then was  

φi(n) = ωPti(n) + ∆ φi,     (5) 
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where ∆φi is an initial phase offset to introduce differences in mean relative phase. Finally, the 

motion of each oscillator was generated as 

Xi(n) = Apcos(φi(n)),           (6) 

Where Ap is the amplitude of the plate motion. 

 

In producing each level of variability in relative phase (standard deviation of 0°, 5°, 10°, or 15°), 

we added the noise to the oscillators in one of three different ways to ensure that the phase 

variability was not confounded with specific kinematic characteristics, such as the timing of the 

end points in the oscillation. As a first method, noise signals of equal amplitude and opposite 

phase were added to each oscillator. A second method was to add noise signals with equivalent 

phase but with one amplitude triple the other. Third, a noise signal could be added to only one of 

the oscillators. We used a constrained random procedure to determine which oscillator received 

the larger perturbation in the second and third methods, so that each received it equally often. 

 

Procedure 

Refer to Figure 1. Participants were brought into the lab and shown the manipulandum. The way 

the plates could move was demonstrated, and participants were instructed to rest their fingers on 

the finger-plates and actively track the movement with their eyes closed, without resisting or 

pulling on the plates. Active tracking was crucial – good proprioceptive perception requires 

active movement (e.g. Pagano & Turvey, 1996, Paillard & Brouchon, 1968, 1974; see also Clark 

& Horch, 1986 for a review). The active tracking restriction was monitored in three ways. First, 

the manipulandum platforms were slightly elastic. If participants did not actively move their 

fingers, the platforms would simply press against the fingers rather than move them. Second, if 
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this occurred, a light went on that told participants they were not tracking the platforms correctly. 

The experimenter monitored this light. Third, we measured the participants’ kinematics for later 

analysis – this measurement (of the participants’ movements, not the motor’s activity) revealed 

that they were indeed moving appropriately (see below). 

 

Three instances of each combination of mean relative phase and phase variability were 

presented, yielding 36 trials per session. A single trial consisted of an 8s movement. Participants 

were instructed to actively track the movement of the device and then indicate their judgment of 

phase variability by making a mark on an unscaled line, left being minimum and right being 

maximum variability.  

 

Mean relative phase was then explained and demonstrated. Participants were shown examples of 

the plates moving at 0°, 90° and 180° (with no phase variability). Phase variability was then 

explained, and demonstrated (15° phase variability at 0°, 90 and 180° mean relative phase). 

Participants were instructed that their task was to judge variability. To make their judgments, 

participants marked a line on a piece of paper (one per trial). The line represented a scale, with 

far left being no phase variability and far right being maximum phase variability. To get an 

intuition for this range, participants received 12 practice trials; 0°, 90° and 180° mean relative 

phase with 10° ("a medium level"), 0° ("a low level"), 15° ("the highest level"), and 5° ("a 

different medium level") phase variability. All trials were at 1Hz. Each judgment sheet was taken 

and the location of the subject’s judgment measured to the nearest millimeter as a distance from 

the left end of the line. A higher value, therefore, indicates a judgment of higher variability. 
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The session then proceeded in two parts. In the first part, 36 trials were blocked by Mean 

Relative Phase as practice trials. The second part consisted of 36 trials completely randomized. 

The data reported are from this second session. 

 

We recorded a position signal for each hand, for each trial and from each subject. Each position 

signal was filtered (using a low pass Butterworth filter with a cutoff at 10Hz), rescaled such that 

the values matched the amplitudes of the movements (in mm), differentiated to yield a velocity 

signal, and filtered again. These signals were used to compute a phase angle time series for each 

trial, using the Matlab atan2 function. A relative phase time series for each trial was produced by 

subtracting the phase of the right hand from the phase of the left. These relative phase time series 

were averaged over the three methods used to generate phase variability, and a mean relative 

phase and mean phase standard deviation were calculated for each Phase by Phase Variability 

trial. 

 

Results and Discussion 

There were three questions to be addressed. First, we intended to replicate the signal used in Zaal 

et al (2000), in which there was no Phase x Phase Variability interaction – did we actually make 

the manipulandum move in this fashion? To address this, we ran the manipulandum in a baseline 

(unloaded) condition and measured the kinematics of the device. Second, how well could the 

participants track whatever the manipulandum was doing? This was equally crucial, as it was this 

tracking that was to be the basis for participants’ judgments of phase variability, and it was 

intended that there be no Phase x Phase Variability interaction in these movements. To address 

this, we compared the kinematics from the unloaded condition to the kinematics from the 



Proprioceptive Perception of Phase Variability 13 

participants. Third, how did this tracking relate to participants’ judgments about phase variability 

in the signal? In particular, had we replicated the Phase x Phase Variability interaction in the 

judgment data? To address this, we compared the judgment data to the kinematics (using z-

scores). 

 

1. Manipulandum Kinematics. 

We ran the manipulandum unloaded (no participant, although we placed two quarters on each 

platform to dampen jitter at each peak flexion and extension point) through a full set of trials and 

measured its movements under each Phase and Phase Variability condition. Figure 2a illustrates 

the comparison between the mathematical signal (the dotted lines) and the kinematics of the 

unloaded manipulandum (solid lines). As is illustrated by the dotted lines, the intention was to 

produce the four different levels of Phase Variability constantly over changes in Mean Relative 

Phase. This was trivial to achieve in Zaal et al (2000) – the stimuli were merely dots on the 

screen. However, we had to pass this signal into the manipulandum, a device with its own 

dynamic properties. As can be seen in Figure 2a, we came close to reproducing the signal in the 

10° and 15° conditions, but we did less well at 0° and 5°. The device added some phase 

variability to the 0° and 5° Phase Variability trials. 

 

2. Participant Kinematics 

The second question was how well did the participants’ track this manipulandum output? As 

shown in Table 1, participants successfully reproduced the three levels of mean relative phase, 

0°, 180°, and even the potentially problematic 90°. This allowed us to include data from the 90° 

trials in our analyses. 
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As can be seen in Figure 2b, participants (solid lines) reproduced the manipulandum output 

(dotted lines) with reasonable fidelity, although less well at 0° and 5° Phase Variability. We 

computed difference scores, subtracting the standard deviations of the unloaded manipulandum 

from the standard deviations of the participants’ movements. There was extra noise at lower 

levels of intended Phase Variability, but this peaked at only around 2.5°. A repeated measures 

ANOVA revealed a significant effect of Phase (F(2,30) = 10.99, p<0.01; % variance = 12.3%), 

and of Phase Variability (F(3, 45) = 25.14, p<0.01, % variance = 79.89%) but no significant 

interaction. This lack of an interaction and the fact that most of the variance is captured by the 

intended separation between levels of Phase Variability suggests that participants successfully 

reproduced an adequate version of the intended signal. 

 

We then wished to examine the participants’ movements in more detail, to ensure that they had 

indeed reproduced the manipulandum movements and had not introduced any significant Phase x 

Phase Variability interaction.  

 

As shown in Figure 2b, participants also produced four levels of phase variability, although 

levels that were slightly different than intended. While four levels of Phase Variability were 

generally discriminable, they were less separated and somewhat greater at low levels of Phase 

Variability when the Mean Relative Phase was 90° or 180°. We performed a repeated measures 

ANOVA on the mean relative phase standard deviations (phase SDs). There was a significant 

main effect of Phase, F(2,18)=15.47, p<0.01, % variance = 5.4% and of Phase Variability, 
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F(3,27)=312.37, p<0.01, % variance = 93.1%. There was also a significant interaction, F(6,54) = 

7.00, p<0.01, % variance = 1.5%. 

 

Simple effects showed that the main effect of Phase was present at all levels of Phase Variability 

(all p < .05). Post-hoc Scheffé tests revealed that the significant effect of Phase was due to the 

variability of movements at 0° being significantly different from variability at 90° and 180°, and 

movements at 90° being more variable from those at 180° (all p<.05). This implied problems for 

interpreting the predicted Phase effect in the judgment data. This issue will be addressed more 

directly in Section 4 below. 

 

Simple effects demonstrated that the main effect of Phase Variability remained significant at all 

levels of Phase (all p<.01).  Pair-wise t-tests revealed that the only means not significantly 

different from each other were the means for 0° versus 5° Phase Variability at 180° Phase.  

 

These results suggested that the various levels of phase variability were successfully separated in 

the movements being judged, which in turn suggests that any absence of this discrimination in 

the judgments would not be a signal based artifact. The significant Phase x Phase Variability 

interaction, although small, needed to be accounted for to determine whether it was responsible 

for any effects found in the judgments. Section 4 deals directly with this issue. 

 

3. Participant Judgments of Phase Variability 
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There were three replications of each Phase x Phase Variability trial. A mean judgment and a 

judgment standard deviation was computed for each Phase x Phase Variability cell, collapsing 

over Method. 

 

Refer to Figure 3, and compare it to Figure 2b (the kinematic ‘signal’ being judged). Phase 

variability was judged overall to be highest at 90°. The various levels of Phase Variability were 

not uniformly discriminated from one another; this discrimination changed with level of Phase, 

getting worse at 90° as compared to 0° and 180°. These results exhibit the inverted U-shaped 

function predicted, but not the predicted asymmetry between 0° and 180°. A repeated measures 

ANOVA was performed on the mean judgments of phase variability. There was a main effect of 

Phase, F(2,18) = 18.19, p<0.01, % variance = 61.26, as well as a main effect of Phase 

Variability, F(3,27) = 29.96, p<0.01, % variability = 34.25. There was also a significant Phase x 

Phase Variability interaction, F(6,54) = 2.65, p<0.05, % variability = 4.47% (as compared to 

1.5% in the kinematics). Post-hoc Scheffé tests revealed that overall, judgments of phase 

variability at 90° were significantly higher than judgments at 0° (p<0.001) and 180° (p<0.01) but 

that there was no significant difference between judgments at 0° and 180°.  

 

Post-hoc analysis of the main effect of Phase Variability revealed that judgments of phase 

variability co-varied with actual Phase Variability but that not all levels of Phase Variability 

were discriminated from each other. Judgments of phase variability in the 0° and 5° Phase 

Variability trials were not significantly different from each other (p>0.5), but judgments of 0° 

trials were different from those of 10° (p<0.01) and 15° (p<0.01). Judgments of 5° were also 

different from 10° (p<0.05) and 15° (p<0.01). 
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Simple effects revealed a significant effect of Phase Variability at all levels of Phase (all 

p<0.05). This suggested that at all levels of Phase the different levels of Phase Variability were 

being discriminated from each other. However, pair-wise comparisons revealed that the 

significant effect of Phase Variability at 90° Phase reflected only a difference between 15° Phase 

Variability and all other levels of Phase Variability (which were not significantly different from 

each other). In other words, the only level of Phase Variability discriminated at 90° Phase was 

15°. This is still noteworthy, however, in contrast to the visual discrimination performance at 

90°, in which no levels of Phase Variability were discriminated (Zaal, Bingham and Schmidt, 

2000). 

 

Simple effects also revealed a significant effect of Phase at all levels of Phase Variability (all 

p<0.01). Regardless of the level of phase variability, 90° was judged to be more variable than 0° 

or 180°. 

 

The pair-wise comparisons did reveal a portion of the predicted asymmetry between 0° and 180°. 

At 0° Phase, 15° Phase Variability trials were judged to be significantly more variable than the 

other three levels, and 10° Phase Variability trials were judged more variable than both 5° and 

0°. However, at 180° Phase, 10° and 15° Phase Variability were not discriminated from each 

other, nor were 0° and 5°. This pattern in participants’ ability to resolve the levels of Phase 

Variability as a function of Phase is consistent with previous results in the literature. 
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We have a strong test case for the hypothesis that the judgment results are a perceptual effect – 

the 0° Phase Variability trials, where there was intended to be no phase variability in the signal 

to be judged. The variability in the manipulandum movements was not 0°, but it was quite low 

(see Figure 2a and 2b). In this case subjects still judged 90° to be more variable. We performed 

an ANOVA on the judgments of phase variability using the data from the 0° Phase Variability 

condition only (see Figure 3, filled diamonds). There was a significant main effect of Phase, 

F(2,22) = 4.50, p<0.05. Post-hoc Scheffé tests revealed that judgments of phase variability at 0° 

were significantly lower than those at 90° (p<0.05) but were not different from those at 180°. 

Judgments at 90° and 180° were not significantly different. This is the predicted inverted U-

shaped function but again without the predicted asymmetry between 0° and 180°. 

 

4. Z- Score Difference Analysis 

Given the presence of a significant main effect of Phase in the kinematic data, we performed an 

analysis designed to factor out the effect of the kinematics from the judgments, and then re-test 

to see whether the key effects (especially the main effect of Phase) remained in the judgment 

data. We transformed the kinematics and judgments into z-scores and computed a difference 

score, judgments minus kinematics. Z-scores were used to bring the kinematics and judgments 

onto the same scale. If the judgments were a perfect report of the kinematic signal, we would 

expect the differences of z-scores to all come out to 0. Positive z-score differences would reflect 

a tendency to over-estimate the relative amount of phase variability (the judgment z-score is 

relatively larger than the kinematic z-score); conversely, a negative z-score difference would 

reflect a relative underestimation of phase variability. 
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As shown in Figure 4, judgments of movements at 90° Phase generally over-estimated phase 

variability relative to judgments at the two other Mean Relative Phases. We performed a 

repeated measures ANOVA on the difference scores, with Phase and Phase Variability as within-

subject factors. All three effects remained significant. There was a main effect of Phase, F(2,18) 

= 6.25, p<0.01, % variance = 29.6%, and of Phase Variability, F(3, 27) = 28.88, p<0.01, % 

variance = 65.2%, and a significant Phase x Phase Variability interaction, F(6,54) = 2.33, 

p<0.05, % variance = 5.2%. The key finding remained, namely the main effect of Phase. Post-

hoc Scheffé  analysis showed that, averaging over Phase Variability, judgments of phase 

variability at 90° significantly overestimated the amount of phase variability as compared to 

judgments at 0° (p<.05) and 180° (p<.05). This is again the predicted inverted U-shaped 

function. Once the effects in the kinematic data have been accounted for, the effect of the 

perception of phase remains - 90° is judged as inherently more noisy. 

 

Experiment Two – 1, 2 and 3Hz 

The results of the first experiment replicated the key results from the visual tasks. Participants 

successfully produced appropriate movements, but when judging those movements, 90° was 

judged to be more variable than 0° or 180°. The levels of Phase Variability in the signal were not 

all discriminated at 90°, implying that 90° is already perceived as inherently variable. 

 

This second experiment was a replication of Experiment 1, with the addition of a frequency 

manipulation. Here, we intended to replicate the differential effect of frequency on phase in the 

proprioceptive discrimination of phase variability. Again, we analyzed the kinematics of the 

subjects, as well as their judgments of phase variability. We predicted a) to replicate the main 
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effect of Phase on judgments of phase variability, specifically the asymmetric inverted U-Shaped 

function with a peak at 90°, and b) a Frequency x Phase interaction, such that an increase in 

Frequency from 1Hz to 3Hz would differentially affect judgments of phase variability at the 

different levels of Phase. Specifically, judgments of phase variability made at the stable 0° 

Relative Phase would be relatively unaffected by Frequency. Judgments of phase variability 

made at the less stable 180° and unstable 90° would become higher with an increase in 

Frequency. The increase may be more noticeable at 180° due to a ceiling effect caused by 90° 

being judged to be noisy to begin with. This would replicate the asymmetric stability of 0° versus 

180° commonly found in the movement and phase perception literature.  

 

Method 

Participants 

Sixteen students at Indiana University participated. Seven of the participants were the same as 

those from Experiment 1, with nine additional subjects. They were aged 18-35. All were free of 

motor disabilities, and were paid $7 for participation. Each session lasted about 1hr.  

 

Design 

There were three within-subject factors. As before, we manipulated Mean Relative Phase (3 

levels; 0°, 90°, 180°) and Phase Variability (4 levels; 0°, 5°, 10°, 15°). We also manipulated 

Frequency (3 levels; 1Hz, 2Hz, and 3Hz). We obtained measures of phase variability both for 

judgments and for the participant's kinematics as they tracked the presented signal. 

 

Apparatus, Stimuli and Procedure 
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The device used and the signal generation were the same as reported in Experiment 1, with the 

exception that we now produced signals at each of the three Frequencies for each combination of 

Mean Relative Phase and Phase Variability. This was achieved by increasing the speed of the 

manipulandum – in all cases the signal sent into the device was the same as in Experiment 1. The 

Procedure was the same as Experiment 1, with the frequency manipulation described verbally 

but not demonstrated. 

 

Results and Discussion 

As before, we performed three separate analyses. First, we analyzed the movements of the 

manipulandum and of the participants. Here, as in Experiment 1, we were dealing with a 

manipulandum with its own dynamic properties, as well as the need for participants to be 

actively tracking the device. We were concerned that adding the Frequency manipulation would 

exacerbate any problems the manipulandum or participants might have had at 90° or 180°. We 

needed to ensure that the kinematic signal being judged was still an adequate version of the 

signal, and if not, be able to control for its effects in our analyses. Second, we analyzed 

participants' judgments of phase variability, made on the basis of their active tracking of the 

signal from the manipulandum. Third, we analyzed the judgments after controlling for the 

kinematics, to ensure that our results from the second analysis remained. 

 

1. Manipulandum Kinematics 

To address the first question, we ran the manipulandum unloaded through a full set of trials as 

before, and measured its movements under each Frequency x Phase and Phase Variability 

condition. Figure 5a illustrates the comparison between the mathematical signal (dotted lines) 
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and the kinematics of the unloaded manipulandum (solid lines). As is illustrated by the dotted 

lines, the intention was to produce the four different levels of Phase Variability consistently over 

changes in Frequency and Mean Relative Phase. As can be seen in Figure 5a, across levels of 

Frequency, we came close to reproducing the signal in the 10° and 15° conditions, but we did 

less well at 0° and 5°; the device added some phase variability to these trials. Trials at 1Hz and 

2Hz show essentially the same pattern – however, the problems at 0° and 5 Phase Variability 

become even worse at 3Hz. Trials with an intended Phase Variability of 0° are actually closer to 

5°, and those intended to be at 5° are closer to 8°.  

 

2. Participant Kinematics 

The second question was how well did the participants’ track this manipulandum output? As can 

be seen in Figure 5b, participants reproduced the manipulandum output reasonably, although less 

well at 0° and 5° Phase Variability and with increasing difficulty with these lower levels of 

Phase Variability at 3Hz as compared to 1Hz and 2Hz. Frequency, while having no overall 

effect, did exacerbate the effects of Phase, Phase Variability, and their interactions on 

participants movements. An ANOVA on the difference scores, subtracting the standard 

deviations of the unloaded manipulandum from the standard deviations of the participants’ 

movements, confirmed these results. Phase (F(2,30) = 8.75, p<0.05), and Phase Variability (F(3, 

45) = 38.68, p<0.01) both affected participants’ ability to track the manipulandum, but not 

Frequency (p>0.1). All interactions were significant: Frequency interacted with the effect of both 

Phase (F(4, 60) = 5.00, p<0.05) and Phase Variability (F(6, 90) = 4.78, p<0.01). Frequency also 

interacted with the Phase x Phase Variability interaction (F(12, 180) = 3.92, p<0.01). 
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We tested the participants' kinematics in more detail to test whether the movements (the basis of 

the judgments) were an adequate version of the pure signal. We were especially interested in the 

various effects that included Frequency, because our design goal was to minimize these in the 

kinematics. As suggested by the above analysis, we had not been entirely successful. To 

establish the extent of Frequency related effects, we computed a movement phase SD for each 

Frequency x Phase x Phase Variability condition by collapsing across the three methods of 

introducing variability to the signal and calculating a cell mean and SD.  

 

As shown in Table 2, participants were again able to reproduce the intended Mean Relative 

Phase, at all Frequencies. As shown in Figure 5b (solid lines), the four levels of Phase Variability 

were also reproduced successfully by participants, although the lower levels were more variable 

than intended. There was also a tendency for the movements to become more variable with 

changes in Phase and Frequency. The effect of Frequency was primarily due to movements at 

3Hz, which were quite noisy. However, the effect of Phase on the pattern of movements 

remained the same across all levels of Frequency. 

 

We performed a repeated measures ANOVA on the kinematic phase SD data, with Frequency, 

Mean Relative Phase and Phase Variability as within-subject factors. Frequency (F(2,30) = 

75.48, p<0.01, % variance = 1.23%), Phase (F(2,30 = 287.25, p<0.01, % variance = 5%) and 

Phase Variability (F(3,45) = 1760.16, p<0.01, % variance = 93.75%) were all significant, as was 

the Frequency x Phase Variability (F(6, 90) = 22.79, p<0.01, % variance = 0.03%) and Phase x 

Phase Variability (F(6,90) = 30.78, p<0.01, % variance = 1.3%) interactions. The significant 

effects of Frequency were a potential problem for the interpretation of our judgment results, 
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although the low percentage of variance explained indicated there was unlikely to be a major 

problem. By design, we wanted no effects of Frequency in the movements. Post-hoc analysis 

showed that there was no difference in the movements at 1Hz versus 2Hz, but that 3Hz was 

responsible for the main effect and the interaction term. Figure 6 illustrates this effect of 

Frequency. Note that the phase variability is appropriate (a little above the expected average of 

7.5° that we obtained by collapsing over Phase Variability) and almost identical for 1Hz and 2Hz 

(the design intention) but jumps at 3Hz to an average of around 10° (as shown with the solid 

line). Accordingly, we performed an analysis on the judgment data (below) that excluded the 

3Hz trials.  

 

One noteworthy result was the non-significant Frequency x Phase interaction (F(4,60) = 1.14, 

p>0.1). This matched the (by design) non-significant Frequency x Phase interaction in the signal. 

In other words, the effect of Phase was not changing over levels of Frequency in the movements 

people were making.  

 

3. Participant Judgments of Phase Variability 

The previous results indicated that the actual movements which were to serve as the basis for 

people's judgments of phase variability were in most important respects an adequate version of 

the intended signal. The next step was to see if we had replicated the key Frequency x Phase 

interaction in the judgment data. 

 

We computed a mean judgment of phase variability for each trial, collapsing across the three 

methods of introducing variability to the signal. As shown in Figure 7a, judgments of phase 
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variability reproduced the predicted asymmetric inverted U-shaped function of Mean Relative 

Phase. Phase variability was discriminated best at 0° Mean Relative Phase and 1Hz, with the 

discrimination getting worse with an increase in Frequency. This effect was also present at the 

other levels of Mean Relative Phase, but less so due to the levels of Phase Variability being less 

discriminable initially at 90° and 180°. We performed a repeated measures ANOVA with 

Frequency (all three frequencies at this point), Mean Relative Phase and Phase Variability as 

within-subject factors. There was no main effect of Frequency (F(2,30) = 1.34, p=0.28), but the 

other two main effects were significant (Phase, F(2,30) = 61.45, p<0.01, % variance = 83.37; 

Phase Variability, (F(3, 45) = 23.42, p<0.01, % variance = 11.55%). The only significant 

interaction was the predicted Frequency x Phase (F(4,60) = 4.32, p<0.01, % variance = 3%).  

 

Figure 7b illustrates judgments of phase variability about visually perceived oscillators for 

comparison (from Bingham and Collins, submitted). At 1Hz, the levels of phase variability were 

discriminated best at 0°, discriminated somewhat at 180° and not discriminated at all at 90°. 

Judgments were highest at 90° and lowest at 0°. This asymmetry is magnified by the Frequency 

manipulation (although note that while Frequency reduces participant’s ability to resolve levels 

of phase variability at 0°, judgments are still lower than at the other two mean relative phases). 

Judgments at 180° become more similar to judgments at 90° with an increase in Frequency. 

Compare this to Figure 7a. The judgments about the proprioceptively perceived oscillators 

follow the identical pattern – the levels of Phase Variability were discriminated best at 0° Mean 

Relative Phase and 1Hz, but overall this discriminability decreases with Frequency.  
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We repeated the ANOVA on judgment data of movements at 1Hz and 2Hz only, because the 

kinematics analysis had revealed that we had failed to eliminate Frequency effects at 3Hz (as 

shown in Figure 6). The Frequency x Phase interaction remained significant (F(2,30) = 5.84, 

p<0.01, % variance = 3.02%), and all the other results remained the same as the 3Hz analysis. 

We therefore continued analyzing the 1Hz and 2Hz data only.  

 

Simple effects tests from the 1Hz and 2Hz analysis revealed that judgments of phase variability 

became higher with an increase in Frequency at 90° (F(2,32) = 5.05, p<0.05) and at 180° 

(F(2,32) = 5.03, p<0.05) but not at 0° (p=0.99). This is the predicted differential perturbation of 

stability that we predicted – Frequency did increase judgments of phase variability but only at 

90° and 180°, the two less stable mean relative phases. 2 

 

We then analyzed the 1Hz and 2Hz data from the 0° Phase Variability trials, to see whether 

judgments of phase variability varied even with the lowest level introduced variability2. See 

Figure 7a (0° Phase Variability is depicted with filled diamonds). Again, even in the 0° Phase 

Variability trials, 90° was judged to be more variable than either 0° or 180°.We performed a 

repeated-measures ANOVA, with Frequency and Phase as within-subject variables. There was a 

main effect of Phase only (F(2, 32) = 48.26, p<0.01).  

 

4. Z-Difference Score Analysis 

As in Experiment 1, we wished to confirm that the results obtained in the judgments were not the 

result of an accurate judgment of a distorted signal. The analysis on the kinematics did reveal a 

main effect of Phase and an interaction between Phase and Phase Variability, but not the 
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Frequency x Phase interaction. In the latter case, at least, the judgment results cannot be credited 

to the signal. To double-check the other results we performed an ANOVA on the difference 

scores between the z-transformed judgment and kinematic data (see Experiment 1’s Results for 

details on this analysis).  

 

As shown in Figure 8a, judgments of phase variability at 90° were overestimated as compared to 

judgments made at 0° and 180° Mean Relative Phase. A repeated measures ANOVA revealed a 

significant effect of Phase (F(2,30) = 36.88, p<0.01, % variance = 26.05%) and Phase Variability 

(F(3,45) = 241.02, p<0.01, % variance = 71.56%). There were two significant interactions: 

Frequency x Phase (F(4,60) = 3.79, p<0.01, % variance = 1.33%, and Phase x Phase Variability 

(F(6, 90) = 4.26, p<0.01, % variance = 1.77%). We repeated this ANOVA with the 1Hz and 2Hz 

data only, due to the problems in producing an adequate 3Hz signal (as discussed above). All 

significant effects remained significant.  

 

Refer to Figure 8b, which plots the means for the Frequency x Phase interaction in the z-

difference scores from the 1Hz and 2Hz data only. The predicted asymmetry between 0° and 

180° is demonstrated here. Post-hoc pairwise t-tests revealed no significant differences at 0°, but 

significant differences at 90° and 180° across Frequency. Judgments were consistently 

overestimated at 90° as compared to judgments at 0° and 180°. Judgments became increasingly 

overestimated at 90° and 180° with the increase in Frequency, but not at 0°. 

 

Discussion 
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The movement phenomena are all based on a person rhythmically moving and coordinating two 

of his or her own limbs. In cases where the coordination was between people, visual coupling 

reproduced all the effects. The question we addressed was, is the within-person coupling 

informational as well, that is, is the coupling proprioceptive as opposed to some other form of 

interaction best understood at a neural level of analysis? The current results tell us that 

proprioceptive information exhibits all of the same characteristics as the visual case and the 

within-person coupling might indeed be understood at a perceptual level of analysis. 

Participants’ proprioceptively perceived their own movements and made judgments about the 

phase variability of those movements. Judgments in both of the current experiments co-varied 

with Phase rather than simply Phase Variability - 90° was consistently judged to be the noisiest 

condition, even in the absence of actual phase variability. There was also a Frequency x Phase 

interaction in Experiment Two, such that increases in Frequency made mean relative phases 

other than 0° look increasingly noisy. 

 

This pattern of results matches the relative stabilities of phase coordinations seen in the 

movement literature, in which 0° is the maximally stable (least variable) coordination and 180° is 

only stable at low frequencies. The pattern reported here reinforces the previous studies’ 

conclusions that the ability to resolve phase variability may play an important role in determining 

the movement stability asymmetries. 

 

As is often noted, moving at 90° is not a spontaneously stable coordination for people. 

Participants in our task, however, were indeed able to produce movements at 90° mean relative 

phase (refer to Tables 1 and 2). This was important for our analysis, as it enabled us to compare 
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judgment performance at three levels of mean relative phase and to replicate the finding that 

judgments of phase variability vary as an inverted U-shaped function of Phase. It is clear that the 

active tracking component of the task, which required participants to move so as to maintain 

constant pressure on the manipulandum from their fingers, made 90° relatively simple to 

produce. There is now additional and more general evidence that people can 

track movements to produce coordinations that they would not otherwise 

be able to produce spontaneously (Rosenbaum, 2002). 

 

Our proprioceptive results replicated the pattern of the visual results in their similarity to the 

standard movement results. This replication of such a complex pattern of results in both visual 

and proprioceptive modalities was a remarkable result. To our knowledge, this has never been 

previously shown, and therefore the current results provide strong support for our hypothesis of a 

common informational basis for the performance of coordination tasks.  The fact that the 

judgments are quite different from the actual pattern of the movements produced in the haptic 

tracking task indicates that efference copies of the motor commands cannot be the basis of the 

judgments.  This is further supported by the visual judgment results where no motor commands 

were involved in producing actual limb movement patterns that were like the judgment patterns.  

Rather, in both the visual and the proprioceptive cases, further analysis must turn to a 

consideration of the information used to make the judgments and its relation to the movements 

so judged.     

 

The proprioceptive results and the visual results are not absolutely the same in all respects, and 

this needs to be addressed. First, there was some ability, using proprioception, to resolve levels 
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of Phase Variability at a mean Relative Phase of 90°, even at higher frequencies. Compare the 

move from 1Hz to 2Hz in the visual data (figure 7b) as compared to the proprioceptive data 

shown in Figure 7a. In the proprioceptive case, the frequency increase did not completely 

eliminate the participants’ ability to discriminate levels of phase variability. Second, in the visual 

data, judgments of phase variability at 180° rose with increase in frequency to be equal to 

judgments made at 90°. This did not occur in the proprioceptive judgments. Judgments made at 

180° did increase with frequency, but the change was much less in the proprioceptive case than 

the visual. Overall, proprioceptive perception of phase variability at 180° was much more stable 

than visual perception.  

 

One possible account for the differences is that the information may actually be different in the 

proprioceptive case as compared to the visual case. Bingham and Collins (submitted) 

hypothesized that the information about relative phase in the visual case is the relative directions 

of movement.  The relative directions of movement are always the same in 0° mean phase and 

always the opposite in 180° mean phase (ignoring in either case the effect of phase variability).  

Visual psychophysical studies have shown that the perceptual ability to resolve directions of 

motion is conditioned by speeds of motion (De Bruyn & Orban, 1988; Snowden & Braddick, 

1991).  Resolution is good at medium speeds and poorer at slow and fast speeds. Bingham and 

Collins (submitted) have found evidence that resolution of relative phase and phase variability is 

a function of the relative speed of the oscillators’ movements (that is, the difference in their 

speeds).  Again, if the effect of phase variability is ignored, the relative speed is always the same 

at 0° mean relative phase, namely zero.  In contrast, at 180° mean relative phase, the relative 

speed ranges from zero (at the endpoints, where both speeds are zero) to a maximum (midway 
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through a cycle where the speeds are maximum and oppositely directed).  This means that the 

relative directions of movement and thus, the relative phase would be less well discriminated at 

180° than at 0° mean phase.  The relative direction is intrinsically more variable over the course 

of a cycle at 90° because the movements are in the same direction half the time and in opposite 

directions half the time. Bingham and Collins (submitted) hypothesized that these are the 

underlying causes of the judgment results they obtained, namely that 180° was judged to be more 

variable than 0° and only somewhat less variable than 90°.  This pattern was not quite the same 

in our proprioceptive data. Judgments of phase variability at 180° mean phase were higher than 

at 0°mean phase, but only somewhat, and they were always lower than at 90°mean phase. It is 

possible that the proprioceptive system detects phase using different information than the visual 

system, and this information may show different stability properties. The differences are small, 

however, and minor quantitative differences are more likely to be the result of differences in 

sensitivity between the visual and proprioceptive systems. Proprioceptive perception is much 

more involved in our day-to-day rhythmic limb coordination tasks than vision. Most of these 

tasks also involve a mean relative phase other than 0° - walking, for instance. While these 

activities generally occur at preferred frequencies (around 1Hz), other frequencies are not 

uncommon. A higher tolerance for noise in the detection of phase variability would certainly be a 

useful trait of a system working to maintain stability under these conditions, and the system’s 

regular coordination activity would frequently make the relevant perceptual information 

available to be learned. It may therefore be the case that the proprioceptive system is more 

sensitive and thus, better able to discriminate relative directions of motion under conditions of 

high relative speeds. 
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These results and the results of the previous experiments all emphasize the role of information in 

producing the phenomena associated with bimanual coordination tasks. They should not be 

construed as an attempt to explain the properties of rhythmic movement and its coordination as 

solely due to perception, however, as has been suggested by Mechsner, Kerzel, Knoblich and 

Prinz (2001). In movement, there are always actual oscillators involved. Some rhythmic 

movement properties (such as phase resetting after perturbations (Kay, Kelso, Saltzman & 

Schöner, 1987; Kay, Saltzman & Kelso, 1991) suggest that the oscillators must be modeled with 

a non-linear, autonomous dynamic. The relevant coordination phenomena are therefore the result 

of the coupling of two such oscillators. Some recent modeling efforts have focused on neural 

crosstalk (Cattaert, Semjen & Summers, 1999) or a combination of neural and oscillator 

dynamics (Beek, Peper & Daffertshofer, 2002) to produce these phenomena. The current results 

suggest that combining the role of perception with oscillator dynamics is also a viable modeling 

strategy.  This conclusion is  further supported by recent results showing that the passive 

movements of one limb (e.g. the left arm) affect the coordinated movements of two other limbs 

(e.g. right arm and leg) thus demonstrating a role of proprioception in the coupling of limb 

movements (Serrien, Li, Steyvers, Debaere & Swinnen, 2001).  Furthermore, Peper and Carson 

(1999) showed that when cyclic isometric contractions of muscles in one arm are coordinated at 

180° with oscillatory movements of the other arm, no phase transition results from increases in 

frequency as they normally do with oscillatory movements of both arms.  This result implies that 

proprioceptive information about actual limb movement is an intrinsic component of these 

coordination phenomena.  Thus, evidence is mounting that a perceptual level of analysis may be 

appropriate for an understanding of the coupling of rhythmic limb movements.        
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The fact that the perceptual information in question needs to be detectable by both the visual and 

proprioceptive systems constrains what that information could be, while the need for specific 

dynamic characteristics from the oscillators constrains what form the information could take. 

With these constraints in mind, Bingham (1995) and Bingham and Collins (submitted) have 

developed a model related to the model of Kay, Kelso, Saltzman & Schöner (1987) to explicitly 

represent the functional characteristics of the perception-action system. The model consists of 

two oscillators with a mass-spring dynamic derived from the equilibrium point-models of limb 

movement, coupled informationally by the perceived phase of the other oscillator. The perceived 

phases are ultimately represented in the model as the normalized velocities of the oscillators.  

This representation is both motivated and justified by the current findings and the visual results 

we have replicated – velocity is an information source detectable by both vision and 

proprioception. This information, used to drive the biologically motivated oscillators, 

successfully captures the key phenomena of bimanual coordination (see Bingham & Collins, 

submitted, for details of the model). Note that the properties of the oscillators are as important as 

the properties of the detected information in modeling the movement phenomena. Both 

perception and action are necessary to fully account for the phenomena of bimanual coordination 

in humans. 
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FOOTNOTES 

 

1. Perceptual and neural are different levels of analysis that cannot be mixed in a single analysis.  

By definition, perception involves the nervous system and perceptual interactions thus entail 

neural interactions.  So, as such, neural cross talk does not exclude the possibility of perceptual 

involvement and perceptual interactions.  Furthermore, given the extensive role of sensory 

elements in all coherent motor activity as revealed for instance by recent accounts of  severe 

somatosensory deficits (Cole, 1995) as well as the outcome of recent debates about CPG’s  (e.g. 

Pearson, 1985) it is unlikely that perception can be ruled out in neural level analyses of 

coordinated movement.  In any case, perceptual and neural levels of analysis should not be 

confounded.  

2. In this paper, “haptics” will refer to the tracking task, while “proprioception” will refer to the 

information about the coordinated limb movements and the systems detecting that information. 

3. This is analogous to the visual case, where we were able to analyze the trials in which there 

actually was no variability present. The dynamics of the device made this impossible; however 

our kinematic analysis suggested we were close enough to make this analysis relevant. 
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TABLES 

Mean Relative   Phase Variability 
Phase   0°  5°  10°  15°  
0°   1.77  1.605  2.06  1.94 
90°   92.29  94.01  92.29  93.44 
180°   180.00  178.85  180.57  180.00 
 
Table 1. Mean kinematic relative phases produced by participants in Experiment 1.  
 
 
Mean Relative   Phase Variability 
Frequency      Phase   0°  5°  10°  15°  

0°   3.20  3.21  3.24  2.63 
1Hz  90°   92.40  86.26  92.17  87.09 

180°   177.19  183.39  182.83  177.21 
0°   2.71  3.43  2.37  2.72 

2Hz  90°   87.38  92.11  85.80  92.76 
180°   183.34  176.96  177.07  183.05 
0°   3.28  2.78  2.87  2.83 

3Hz  90°   93.43  86.46  92.57  85.37 
180°   177.37  183.27  177.45  183.24 

 
Table 2. Mean kinematic relative phases produced by participants in Experiment 2. 

 
 



Proprioceptive Perception of Phase Variability 36 

FIGURE CAPTIONS 

1. Photograph of the manipulandum. The participant, eyes closed, actively tracked the 

manipulandum platforms (levers) with their index fingers. See text for more detail. 

 

2. The top panel (2a) compares the phase variability of the signal (dotted lines) to the phase 

variability in the movement of the manipulandum (solid lines) in Experiment 1.  

The second panel (2b) compares the phase variability in the movement of the 

manipulandum (dotted lines) to the phase variability in the movement of the participants tracking 

the manipulandum (solid lines). Diamond: 0° Phase Variability. Square: 5° Phase Variability. 

Triangle: 10° Phase Variability. Circle: 15° Phase Variability. 

 

3. Mean judgments of phase variability in Experiment 1, expressed in mm (refer to text for 

details). Closed Diamond: 0° Phase Variability. Open Square: 5° Phase Variability. Open 

Triangle: 10° Phase Variability. Open Circle: 15° Phase Variability. 

 

4. Z-score differences for Experiment 1 (z(Judgments)-z(Kinematics)). Closed diamond: 0° 

Phase Variability. Open Square: 5° Phase Variability. Open Triangle: 10° Phase Variability. 

Open Circle: 15° Phase Variability. 

 

5. The top panel (5a) compares the phase variability of the signal (dotted lines) to the phase 

variability in the movement of the manipulandum (solid lines) in Experiment 2.  

The second panel (5b) compares the phase variability in the movement of the 

manipulandum (dotted lines) to the phase variability in the movement of the participants tracking 
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the manipulandum (solid lines). Diamond: 0° Phase Variability. Square: 5° Phase Variability. 

Triangle: 10° Phase Variability. Circle: 15° Phase Variability. 

 

6. A plot of the Frequency x Phase (collapsed over Phase Variability) interaction in the 

participants’ kinematic data from Experiment 2. Open Diamond: 1Hz. Open Square: 2Hz. Closed 

Triangle: 3Hz. 

 

7. The top panel (7a) shows mean judgments of phase variability in Experiment 2, expressed in 

mm (refer to text for details). Closed Diamond: 0° Phase Variability. Open Square: 5° Phase 

Variability. Open Triangle: 10° Phase Variability. Open Circle: 15° Phase Variability. 

 The bottom panel (7b) shows mean visual judgments of phase variability, expressed as a 

number on a scale from 1-10 (adapted from Bingham and Collins, submitted). Closed Diamond: 

0° Phase Variability. Open Square: 5° Phase Variability. Open Triangle: 10° Phase Variability. 

Open Circle: 15° Phase Variability. 

 

8. The top panel (8a) shows the z-score differences for Experiment 2 (z(Judgments)-

z(Kinematics)). Closed diamond: 0° Phase Variability. Open Square: 5° Phase Variability. Open 

Triangle: 10° Phase Variability. Open Circle: 15° Phase Variability. 

 The bottom panel (8b) shows the Frequency x Phase interaction for the 1Hz and 2Hz z-

score difference data. Closed Diamond: 1Hz. Closed Square: 2Hz. 
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