73,448 research outputs found

    Betweenness and Diversity in Journal Citation Networks as Measures of Interdisciplinarity -- A Tribute to Eugene Garfield --

    Get PDF
    Journals were central to Eugene Garfield's research interests. Among other things, journals are considered as units of analysis for bibliographic databases such as the Web of Science (WoS) and Scopus. In addition to disciplinary classifications of journals, journal citation patterns span networks across boundaries to variable extents. Using betweenness centrality (BC) and diversity, we elaborate on the question of how to distinguish and rank journals in terms of interdisciplinarity. Interdisciplinarity, however, is difficult to operationalize in the absence of an operational definition of disciplines, the diversity of a unit of analysis is sample-dependent. BC can be considered as a measure of multi-disciplinarity. Diversity of co-citation in a citing document has been considered as an indicator of knowledge integration, but an author can also generate trans-disciplinary--that is, non-disciplined--variation by citing sources from other disciplines. Diversity in the bibliographic coupling among citing documents can analogously be considered as diffusion of knowledge across disciplines. Because the citation networks in the cited direction reflect both structure and variation, diversity in this direction is perhaps the best available measure of interdisciplinarity at the journal level. Furthermore, diversity is based on a summation and can therefore be decomposed, differences among (sub)sets can be tested for statistical significance. In an appendix, a general-purpose routine for measuring diversity in networks is provided

    Controllability of Social Networks and the Strategic Use of Random Information

    Get PDF
    This work is aimed at studying realistic social control strategies for social networks based on the introduction of random information into the state of selected driver agents. Deliberately exposing selected agents to random information is a technique already experimented in recommender systems or search engines, and represents one of the few options for influencing the behavior of a social context that could be accepted as ethical, could be fully disclosed to members, and does not involve the use of force or of deception. Our research is based on a model of knowledge diffusion applied to a time-varying adaptive network, and considers two well-known strategies for influencing social contexts. One is the selection of few influencers for manipulating their actions in order to drive the whole network to a certain behavior; the other, instead, drives the network behavior acting on the state of a large subset of ordinary, scarcely influencing users. The two approaches have been studied in terms of network and diffusion effects. The network effect is analyzed through the changes induced on network average degree and clustering coefficient, while the diffusion effect is based on two ad-hoc metrics defined to measure the degree of knowledge diffusion and skill level, as well as the polarization of agent interests. The results, obtained through simulations on synthetic networks, show a rich dynamics and strong effects on the communication structure and on the distribution of knowledge and skills, supporting our hypothesis that the strategic use of random information could represent a realistic approach to social network controllability, and that with both strategies, in principle, the control effect could be remarkable

    Communities, Knowledge Creation, and Information Diffusion

    Get PDF
    In this paper, we examine how patterns of scientific collaboration contribute to knowledge creation. Recent studies have shown that scientists can benefit from their position within collaborative networks by being able to receive more information of better quality in a timely fashion, and by presiding over communication between collaborators. Here we focus on the tendency of scientists to cluster into tightly-knit communities, and discuss the implications of this tendency for scientific performance. We begin by reviewing a new method for finding communities, and we then assess its benefits in terms of computation time and accuracy. While communities often serve as a taxonomic scheme to map knowledge domains, they also affect how successfully scientists engage in the creation of new knowledge. By drawing on the longstanding debate on the relative benefits of social cohesion and brokerage, we discuss the conditions that facilitate collaborations among scientists within or across communities. We show that successful scientific production occurs within communities when scientists have cohesive collaborations with others from the same knowledge domain, and across communities when scientists intermediate among otherwise disconnected collaborators from different knowledge domains. We also discuss the implications of communities for information diffusion, and show how traditional epidemiological approaches need to be refined to take knowledge heterogeneity into account and preserve the system's ability to promote creative processes of novel recombinations of idea

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    Community structure and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Transparency effect in the emergence of monopolies in social networks

    Get PDF
    Power law degree distribution was shown in many complex networks. However, in most real systems, deviation from power-law behavior is observed in social and economical networks and emergence of giant hubs is obvious in real network structures far from the tail of power law. We propose a model based on the information transparency (transparency means how much the information is obvious to others). This model can explain power structure in societies with non-transparency in information delivery. The emergence of ultra powerful nodes is explained as a direct result of censorship. Based on these assumptions, we define four distinct transparency regions: perfect non-transparent, low transparent, perfect transparent and exaggerated regions. We observe the emergence of some ultra powerful (very high degree) nodes in low transparent networks, in accordance with the economical and social systems. We show that the low transparent networks are more vulnerable to attacks and the controllability of low transparent networks is harder than the others. Also, the ultra powerful nodes in the low transparent networks have a smaller mean length and higher clustering coefficients than the other regions.Comment: 14 Pages, 3 figure
    • …
    corecore