478 research outputs found

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Fuzzy Logic Control and PID Controller for Brushless Permanent Magnetic Direct Current Motor: A Comparative Study

    Get PDF
    Electrical machines based on permanent magnet material excitations have been applied in many sectors since they are distinguished by their high torque-to-size ratio and offer high efficiency. Brushless permanent magnetic direct current (BLPMDC) motors are one type of these machines. They are preferable over conventional DC motors. one of the main challengings of the BLPMDC motor drives is the inherited feature of nonlinearity. Therefore, a conventional PID controller would not be an efficient choice for the speed control of such motors. The object of this paper is to design an efficient speed control for the BLPMDC motor. The proposed controller is based on the Fuzzy logic technique. MATLAB/ Simulink has been employed to design and test the drive system. Simulations were carried out for three cases, the first without a controller, the other using conventional control, and the third using expert systems. The results proved the possibility of improving the engine's working performance using the control systems. They also proved that the adoption of expert systems is better than the traditional nonlinear systems. The simulation response shows that the Rise Time(tr) at PID equals 66.306ms, while it equals 19.530ms for the Fuzzy logic controller. Moreover, Overshoot for PID and Fuzzy logic controller are 6.989% and 1.531%, respectively. On the other hand, undershoot is equal to 1.788% and 11.924% for PID and Fuzzy logic controller, respectively

    Improved speed estimation in sensorless PM brushless AC drives

    Get PDF
    The application of flux-observer-based sensorless control to permanent-magnet brushless AC motor drives is described. Current methods of speed estimation are assessed, both theoretically and experimentally, and an improved method, which combines the best features of methods in which speed is derived from the differential of rotor position and from the ratio of the electromotive force to excitation flux linkage, is proposed. Its performance is verified experimentally

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Maximum power point tracking for brushless DC motor-driven photovoltaic pumping systems using a hybrid ANFIS-FLOWER pollination optimization algorithm

    Get PDF
    In this research paper, a hybrid Artificial Neural Network (ANN)-Fuzzy Logic Control (FLC) tuned Flower Pollination Algorithm (FPA) as a Maximum Power Point Tracker (MPPT) is employed to amend root mean square error (RMSE) of photovoltaic (PV) modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC)-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS)-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred

    Stability analysis and speed control of brushless DC motor based on self-ameliorate soft switching control methods

    Get PDF
    In recent years, electric vehicles are the large-scale spread of the transportation field has led to the emergence of brushless direct current (DC) motors (BLDCM), which are mostly utilized in electrical vehicle systems. The speed control of a BLDCM is a subsystem, consisting of torque, flux hysteresis comparators, and appropriate switching logic of an inverter. Due to the sudden load torque variation and improper switching pulse, the speed of the BLDCM is not maintained properly. In recent research, the BLDC current control method gives a better way to control the speed of the motor. Also, the rotor position information should be the need for feedback control of the power electronic converters to varying the appropriate pulse width modulation (PWM) of the inverter. The proposed optimization work controls the switching device to manage the power supply BLDCM. In this proposed self-ameliorate soft switching (SASS) system is a simple and effective way for BLDC motor current control technology, a proposed control strategy is intended to stabilize the speed of the BLDCM at different load torque conditions. The proposed SASS system method is analyzing hall-based sensor values continuously. The suggested model is simulated using the MATLAB Simulink tool, and the results reveal that the maximum steady-state error value achieved is 4.2, as well as a speedy recovery of the BLDCM's speed

    In-wheel motor vibration control for distributed-driven electric vehicles:A review

    Get PDF
    Efficient, safe, and comfortable electric vehicles (EVs) are essential for the creation of a sustainable transport system. Distributed-driven EVs, which often use in-wheel motors (IWMs), have many benefits with respect to size (compactness), controllability, and efficiency. However, the vibration of IWMs is a particularly important factor for both passengers and drivers, and it is therefore crucial for a successful commercialization of distributed-driven EVs. This paper provides a comprehensive literature review and state-of-the-art vibration-source-analysis and -mitigation methods in IWMs. First, selection criteria are given for IWMs, and a multidimensional comparison for several motor types is provided. The IWM vibration sources are then divided into internally-, and externally-induced vibration sources and discussed in detail. Next, vibration reduction methods, which include motor-structure optimization, motor controller, and additional control-components, are reviewed. Emerging research trends and an outlook for future improvement aims are summarized at the end of the paper. This paper can provide useful information for researchers, who are interested in the application and vibration mitigation of IWMs or similar topics

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    Boost converter fed high performance BLDC drive for solar PV array powered air cooling system

    Get PDF
    This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV) array and the Voltage Source Inverters (VSI) in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC) motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC) motor drive system and from the simulated results it is found that the proposed system performs better
    corecore