3,333 research outputs found

    An Open Challenge Problem Repository for Systems Supporting Binders

    Get PDF
    A variety of logical frameworks support the use of higher-order abstract syntax in representing formal systems; however, each system has its own set of benchmarks. Even worse, general proof assistants that provide special libraries for dealing with binders offer a very limited evaluation of such libraries, and the examples given often do not exercise and stress-test key aspects that arise in the presence of binders. In this paper we design an open repository ORBI (Open challenge problem Repository for systems supporting reasoning with BInders). We believe the field of reasoning about languages with binders has matured, and a common set of benchmarks provides an important basis for evaluation and qualitative comparison of different systems and libraries that support binders, and it will help to advance the field.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    Structural operational semantics for stochastic and weighted transition systems

    No full text
    We introduce weighted GSOS, a general syntactic framework to specify well-behaved transition systems where transitions are equipped with weights coming from a commutative monoid. We prove that weighted bisimilarity is a congruence on systems defined by weighted GSOS specifications. We illustrate the flexibility of the framework by instantiating it to handle some special cases, most notably that of stochastic transition systems. Through examples we provide weighted-GSOS definitions for common stochastic operators in the literature

    Characterizing specification languages which admit initial semantics

    Get PDF
    AbstractThe paper proposes an axiomatic approach to specification languages, and introduces notions of reducibility and equivalence as tools for their study and comparison. Algebraic specification languages are characterized up to equivalence. They are shown to be limited in expressive power by implicational languages

    Combining Algebraic and Set-Theoretic Specifications (Extended Version)

    Get PDF
    Specification frameworks such as B and Z provide power sets and cartesianproducts as built-in type constructors, and employ a rich notation fordefining (among other things) abstract data types using formulae of predicatelogic and lambda-notation. In contrast, the so-called algebraic specification frameworks often limit the type structure to sort constants andfirst-order functionalities, and restrict formulae to (conditional) equations.Here, we propose an intermediate framework where algebraic specificationsare enriched with a set-theoretic type structure, but formulae remain in thelogic of equational Horn clauses. This combines an expressive yet modestspecification notation with simple semantics and tractable proof theory
    • ā€¦
    corecore