
B
R

IC
S

R
S

-96-52
H

interm
eieretal.:

C
om

bining
A

lgebraic
and

S
et-T

heoretic
S

pecifications

BRICS
Basic Research in Computer Science

Combining Algebraic and
Set-Theoretic Specifications
(Extended Version)

Claus Hintermeier
Hélène Kirchner
Peter D. Mosses

BRICS Report Series RS-96-52

ISSN 0909-0878 December 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233662065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/52/

Combining Algebraic and Set-Theoretic

Specifications.

(Extended version)∗

Claus Hintermeier, Hélène Kirchner
CRIN-CNRS/INRIA Lorraine

B.P. 239
F-54506 Vandœuvre-lès-Nancy Cedex
email: hinterme,hkirchne@loria.fr

Peter D. Mosses
BRICS†, University of Aarhus

Ny Munkegade, bldg. 540
DK-8000 Aarhus C

email: pdmosses@brics.dk

Abstract

Specification frameworks such as B and Z provide power sets and carte-
sian products as built-in type constructors, and employ a rich notation for
defining (among other things) abstract data types using formulae of pred-
icate logic and lambda-notation. In contrast, the so-called algebraic spec-
ification frameworks often limit the type structure to sort constants and
first-order functionalities, and restrict formulae to (conditional) equations.
Here, we propose an intermediate framework where algebraic specifications
are enriched with a set-theoretic type structure, but formulae remain in the
logic of equational Horn clauses. This combines an expressive yet modest
specification notation with simple semantics and tractable proof theory.

1 Introduction

As is well known, there are two main schools of thought regarding the for-
mal specification of abstract data types: the model-oriented [1, 18, 3], and the
property-oriented [5, 20]. Let us briefly recall the main features of these two
approaches.

Model-oriented specifications. The emphasis is on specifying data types
as set-theoretic structures (products, power sets, etc.), the operations of the
data types then being defined as particular functions on these structures. For
example, to specify a simple abstract data type of sequences, one defines the
type as a set of functions, represents a sequence 〈x1, . . . , xn〉 by the function
mapping i to xi for each i ∈ {1, . . . ,n}, and defines concatenation using function

∗This work was partially supported by Compass (Esprit Basic Research Working Group
6112).
†Centre for Basic Research in Computer Science

1

abstraction and application. The underlying logic for reasoning about such a
specification is a powerful higher-order logic, e.g., based on ZF set theory.

Property-oriented specifications. Here one generally tries to avoid choos-
ing an explicit representation: types are left abstract as so-called sorts—
sometimes equipped with a subsort inclusion relation, but otherwise unstruc-
tured. The operations are specified by axioms that relate them to each other,
often including the main intended algebraic properties. For example, sequences
could be specified by axioms asserting that concatenation is associative, with the
empty sequence as unit. The underlying logic is often a modest Horn-clause frag-
ment of equational first-order logic—supplemented by an induction rule when
dealing with initial algebra semantics rather than loose semantics.

Combinations. In practice, some model-oriented specification languages (such
as Z) do allow types to be left abstract (or ‘given’), with the operations on them
specified by axioms. Moreover, the use of auxiliary (‘hidden’) sorts and opera-
tions in property-oriented specifications can give these a model-oriented flavour.
There are also some wide-spectrum languages (e.g., RSL, Spectrum) which en-
compass both approaches, allowing model- and property-oriented specifications
to be mixed together.

It seems to us that both the model- and property-oriented approaches have
their advantages and disadvantages. In particular, we regard the restriction to
Horn-clause logic in the latter as beneficial, since not only are the consequences
of a specification much more obvious than in full higher-order logic, but also
automated reasoning and prototyping are feasible. The restriction of types to
unstructured sorts in property-oriented specifications, however, we regard as a
definite disadvantage.

This has led us to investigate an intermediate or hybrid approach, combining
the better features of the model- and property-oriented approaches:

• Types include abstract types (of individuals) as well as product, power set,
and function types.

• Operations may be higher-order and partial.

• The only built-in relations are equality, set membership and the existential
predicate (the latter merely abbreviates an equality).

• Formulae are restricted to Horn-clauses (no disjunction, no explicit nega-
tion, variables are universally quantified).

• Models have quite straightforward set-theoretic foundations.

• Specifications have initial models (when consistent).

• Specifications are amenable to prototyping and reasoning using rewriting
and saturation techniques.

2

We hope that the illustrations given in Section 2 will convince the reader that this
framework is rather expressive, at least for specifying abstract data types. The
foundations laid in Section 3 are reasonably simple, and Section 4 demonstrates
the tractability of the logic. Finally, Section 5 concludes by comparing the
proposed framework with related approaches.

This paper is an extended version of [7]. We present proofs of the results,
and improve some technical details in the definitions.

2 Illustrations of Specifications

Before we take a closer look at the foundations of our proposed framework, let
us illustrate its expressiveness, which approaches that of model-oriented frame-
works such as B and Z, and far exceeds that of conventional algebraic specifica-
tions. The examples given correspond to fragments of the standard Mathemat-
ical Toolkit for Z: abstract data types of numbers and sequences.

We have chosen to format our specifications in the style normally used for Z in
the literature, because the symbols here mostly have roughly the same intended
interpretation as that indicated in the Z standard. However, one should bear in
mind that our specifications are not actually in Z itself, and the formal details
of interpretations here are different. Moreover, we want the possibility of initial
algebra semantics for our specifications. For those readers not familiar with Z,
a few extra words of explanation of the examples will be given below.

NaturalNumbers
N : P(I)
0 : N
succ : N 7→ N
≤ , < : N↔ N

∀ x , y : N • 0 ≤ x
x ≤ y ⇒ succ(x) ≤ succ(y)

0 < succ(x)
x < y ⇒ succ(x) < succ(y)

All constants used in the axioms in the lower part of the specification are de-
clared, with their types, in the upper part. The type I is that of all individuals,
and P forms the type of sets with elements from its argument type, thus N is
specified to be a set of individuals. Sets may be used to indicate types in dec-
larations: since N : P(I) is a set of individuals, 0 : N declares the type of 0 to
be I. Moreover, for any constant c declared to have type T , there is an implicit
axiom c ∈ T , where the type T is now interpreted as a set.

The remaining constants declared above are all first-order: succ has the type
of a partial function on N, and ≤ and < are typed as binary relations. (We could
have declared succ to have total function type N→ N, giving a slightly stronger
theory, but we prefer to keep this example minimal to facilitate the discussion
of its operationalization in Section 4.)

3

The axioms above consist of two unconditional and two conditional Horn-
clauses—we leave their conjunction implicit. The universal quantification of the
variables used in the clauses is given explicitly, so that all notation used has been
declared, and to avoid the need for type inference.

Our next example is a generic data type of sequences. X is a type variable,
determining the type of elements in the sequences, and the constants declared
have polymorphic types: they may be used with X instantiated by any ground
(monomorphic) type, e.g., I× I. The reference to the NaturalNumbers specifica-
tion makes the notation declared there available locally, for use in the specifica-
tion of the length operation. The constant seq is supposed to denote a function
that maps any subset S of X to the set seq(S) of sequences whose elements are
all in S .

The type specified for a illustrates the use of product types when specifying
operations of more than one argument. Note also that we use the place-holder
symbol ‘ ’ to indicate where the arguments go when an operation is applied:
we allow not only ordinary prefix notation, but also infix, postfix, outfix, and
general mixfix notation for applications. The place-holder may be omitted in
prefix symbols.

GenericSequences [X]
NaturalNumbers
seq : P(X) 7→ P(I)
〈 〉 : seq(X)
〈 〉 : X 7→ seq(X)
a : seq(X)× seq(X) 7→ seq(X)

length : seq(X) 7→ N

∀ x : X • ∀ s, t , u : seq(X) •
〈 〉a s = s

s a 〈 〉 = s

s a (t a u) = (s a t)a u

length(〈 〉) = 0

length(〈x〉a s) = succ(length(s))

Let us consider now a higher-order example. The notation t ↓ is read as “t
exists” (or “t is defined”).

4

MappingSequences [X ,Y]
GenericSequences
mapseq : (X 7→ Y) 7→ (seq(X) 7→ seq(Y))

∀ x : X • ∀ s, t : seq(X) • ∀ f : X 7→ Y •
mapseq(f)(〈 〉) = 〈 〉
f (x) ↓ ⇒ mapseq(f)(〈x〉) = 〈f (x)〉
mapseq(f)(s) ↓ ∧ mapseq(f)(t) ↓ ⇒

mapseq(f)(s a t) = mapseq(f)(s)amapseq(f)(t)

In this example we have to be a bit careful about existence: equations are
interpreted as ‘existential’, so x = y asserts the existence of both x and y .
Since f ranges over partial functions, f (x) may not exist for some x . If f were
restricted to being a total function, we could replace all the 7→’s by →’s above,
and drop the existence conditions from the axioms altogether.

3 Foundations

Here we provide the formal foundations for our specification language. For
perspicuity, we treat first a simpler kernel language, giving syntax, semantics,
proof rules, and various results; in particular, we show how to decide whether
a term is well-typed, as soon as each constant and variable has a type. Models
for specifications in the kernel language are defined in a set theoretic framework.
Sound proof rules are given for this class of models, which has an initial model.
The construction of this initial model is a key point to prove completeness of
deduction, more precisely that any atomic formula valid in all models is deducible
with these proof rules. At the end of this section we define the syntax of our
complete language, and indicate how it can be reduced to the kernel language.
First, we make some general remarks about the novel aspects of our work.

Compared to conventional algebraic specification languages, the type system
of our language is very rich, being close to that of Z. We follow Z in interpreting
types as sets, and in allowing them to be used as values in terms too. However,
we take a slightly intensional view of sets: two sets that have the same values
as members are not necessarily equal! This is achieved by what amounts to a
labelling of sets, provided by a choice function (denoted by choose) which gives
a unique element for any set given as argument. This provides the key to the
completeness of our logic.

The motivation for not using extensional equality on sets is twofold. First,
an axiom in a specification could have an equality between sets as a condition.
If two differently-specified sets (say, subsets of the natural numbers) happened
to have the same members, unexpected consequences might follow. By insisting
that two sets are only regarded as equal when this follows by algebraic reason-
ing, rather than by membership equivalence, we remove this (admittedly minor)
danger. Second, for tractability and operationalization of reasoning, we wish to

5

remain in Horn-clause logic (with equality), and it is well-kown that extensional-
ity cannot be axiomatized in (finitary) Horn-clause logic. Adding a choice func-
tion, freely interpreted, allows formulating a deduction rule for an extensional
equality on sets with non-standard elements. Our treatment of higher-order op-
erations is similarly intensional: two operations do not get equated just because
they give the same results on the same arguments. We claim that this kind of
intensional equality of sets and functions is necessary to keep our framework
truly ‘algebraic’. Other frameworks for higher-order algebraic specification, e.g.,
that of [11], provide extensionality and term-models, but the proof theory seems
less tractable.

For expressing types, we propose, in addition to the constant I for the built-
in type of individuals1 and variables, several type constructors: partial power
set operator P and cartesian product ×, and partial function space constructor
7→ and relation space constructor ↔. Furthermore, we introduce the term-

generated subset constructor T that extracts from any set its term-generated
part; this is needed by our choice to consider also non-standard (i.e. non term-
generated) models. Finally, for technical reasons, we include in our type system
a universal type U.

In Z, the function space S 7→ T and relation space S ↔ T are both inter-
preted as subtypes of P(S ×T). This may seem rather natural, but it has some
unfortunate pragmatic consequences in connection with overloading and subtype
polymorphism: specifying f : S 7→ T restricts the graph of f to be a subset of
S ×T , preventing f from being extended to give results on arguments not in S !
For example, in the Z framework specifying succ : N 7→ N implies succ ⊆ N×N ,
which prevents an extension to succ : Z 7→ Z with succ(−1) = 0. (According to
the Z Draft Standard, N is not a type, but merely a subset of Z. The constant
succ thus gets a unique interpretation on Z, and (−1, 0) 6∈ N × N.) Similarly,
in Z a relation p : S ↔ T cannot be extended to other types, so specifying e.g.
≤ : N×N prevents overloading with ≤ : seq(N)× seq(N).

Here, in contrast to Z, our interpretation of S 7→ T is as a set of partial
functions which always (when defined) give results in T when applied to argu-
ments in S! Thus specifying f : S 7→ T does not say anything at all about what
might result when f is applied to arguments outside S . An axiom f ∈ S 7→ T
here corresponds to S C f ∈ S 7→ T in Z, where S C f denotes the restriction
of f to domain S (but our type assertion f : S 7→ T appears to have no exact
counterpart in Z). Similarly, we interpret S ↔ T as a set of binary relations
that may relate other pairs than those in S × T .

By this means, we are able to avoid a significant danger of accidental in-
consistency in specifications, and permit the use of subtype polymorphism and
overloading, as common in some algebraic specification frameworks. Notice that
our change of interpretation does not prevent type-checking: f (s) is only con-
sidered type-correct when f : S 7→ T and s : S hold for some S and T .

1For simplicity in this paper, we do not consider further ‘given’ types of individuals.

6

3.1 Syntax

A presentation P in our kernel language consists of a set of declarations of typed
constants (including I,P,T, choose, ×, 7→,↔) and variables, together with a set
of Horn-clauses built from terms over the declared items using three built-in
predicates: equality =, membership ∈ and existence ↓. The fixed notation is
indicated by the following BNF-like grammar:

CLAUSE ::= ATOMS ⇒ ATOM | ATOMS ⇒
ATOMS ::= ATOM ∧ ATOMS | ATOM

ATOM ::= TERM = TERM | TERM ∈ TERM | TERM ↓
TERM ::= CONST | VAR | TERM (TERM) | TERM ,TERM

CONST ::= I | P | T | choose | × | 7→ | ↔ | . . .
VAR ::= . . .

where the ‘. . . ’s indicate declared constants and variables. Place-holders ‘ ’ in
constant symbols indicate that these are to denote functions, and that applica-
tions are to be written concretely with the argument(s) in the position of the
place-holder(s). Parentheses are allowed for disambiguating the grouping. Thus
the application of P to I may be written P I or P(I), and that of × to
(I, I) as I× I. The syntax for pairs TERM ,TERM and applications of product
TERM × TERM is assumed to be left-associative. Note that a list of ATOMS
may be empty.

Types are denoted by type terms generated by the following grammar:

TYPE ::= VAR | I | U | TYPE ×TYPE

| P(TYPE) | TYPE 7→ TYPE | TYPE ↔ TYPE

RTYPE ::= T(VAR) | T(I) | T(U) | T(TYPE × TYPE)

STYPE ::= T(P(TYPE)) | T(TYPE 7→ TYPE) | T(TYPE ↔ TYPE)

TTYPE ::= RTYPE | STYPE

Type terms will be interpreted as sets of values (when defined), with variables
VAR indicating polymorphism. We shall regard TYPE , RTYPE , STYPE , and
TTYPE as kinds, writing T : K to assert that T is a well-formed type term
of kind K . Intuitively, values of types in TTYPE are generated by ‘standard’
terms, excluding the use of choose; the types in STYPE are simply those that
are interpreted as sets of sets, so that choose may be used on their elements.
For example, the types I×P(I), P(I) 7→ P(I) and P(P(I)) are of kind TYPE and
T(I× P(I)× P(P(I))) is of kind TTYPE .

Type terms are partially ordered by a subtype inclusion ordering ≤. The
cartesian product constructor is monotone in both arguments, as are P and T
in their only argument. The function space constructor is anti-monotone in the
first argument and monotone in the second. The relation space constructor is
anti-monotone in both arguments, just as if it were a boolean function. So the
subtype inclusion ordering ≤ on type terms satisfies the following assertions,

7

where S , T , V , W range over well-formed type terms of kind TYPE only:

S ≤ V ⇒ P(S) ≤ P(V)

S ≤ V ∧ T ≤W ⇒ S × T ≤ V ×W

V ≤ S ∧ T ≤W ⇒ S 7→ T ≤ V 7→W

V ≤ S ∧W ≤ T ⇒ S ↔ T ≤ V ↔W

S ≤ U
V 7→W ≤ P(U× U)

V ↔W ≤ P(U× U)

S ≤ V ⇒ T(S) ≤ T(V)

T(S) ≤ S

together with reflexivity and transitivity of ≤. Note that the omission of the
inclusions S 7→ T ≤ S ↔ T ≤ P(S × T) is deliberate, to allow overloading, as
discussed at the start of Section 3. The inclusion V 7→W ≤ P(U×U) reflects the
fact that a partial function (graph) is a set of pairs, without restriction on the
components of the pairs; similarly for binary relations in V ↔W ≤ P(U×U).

Proposition 3.1 The validity of formulae ∃ . . .∀ . . . (S1 ≤ T1 ∧ . . . ∧ Sn ≤ Tn)
where Si ,Ti for i ∈ {1, . . . ,n} are of kind TYPE or TTYPE, is decidable.

Proof: Given a type inclusion problem of the form ∃∀(S1 ≤ T1 ∧ . . . ∧ Sn ≤
Tn), we start with the replacement of universally quantified type variables
by new constants of the same type. Let the so obtained purely existentially
quantified problem C be ∃(S ′1 ≤ T ′1 ∧ . . . ∧ S ′n ≤ T ′n).

The conjunction is then rewritten using the following set of rewrite rules,
closely corresponding to subtyping assertions above, and taking into ac-
count in the last additional rule that an inequation with the T operator,
that can only occur at the top of type terms, can be weakened.

P(S) ≤ P(V) → S ≤ V
S ×T ≤ V ×W → S ≤ V ∧ T ≤W

S 7→ T ≤ V 7→W → V ≤ S ∧ T ≤W
S ↔ T ≤ V ↔W → V ≤ S ∧W ≤ T

S ≤ U → true
V 7→W ≤ P(U× U) → true
V ↔W ≤ P(U× U) → true

T(S) ≤ T(V) → S ≤ V
T(S) ≤ S → true
T(T) ≤ S → T ≤ S

if S 6∈ VAR, S not of kind TTYPE .

This system terminates since each rewrite step strictly decreases the num-
ber of symbols P,×, 7→,↔,U,T in the conjunction. After simplifying with
respect to the usual properties of conjunction, the result C ′ is either true

8

or a conjunction of inequations in which one side is a variable or the con-
stant I. Clearly, if C →∗ C ′, then C ′ ⇒ C logically. In particular if
C →∗ true, then C is true. Otherwise, the resulting set of inequations has
a solution if and only if the left and right-hand sides of the inequations are
unifiable with respect to kinds (which is decidable in this order-sorted regu-
lar signature of type terms of kinds {TYPE ,RTYPE ,STYPE ,TTYPE}).
2

Finally, we define type membership for terms (potentially) denoting values,
writing s : T to assert that s is a well-formed term of type T . Let X , Y be
type variables of kind TYPE , and let f , s, t range over arbitrary terms. Then
we assert:

s : S ∧ S ≤ T ⇒ s : T

f : T(S 7→ T) ∧ s : T(S)⇒ f (s) : T(T)

s : T(S) ∧ t : T(T)⇒ (s, t) : T(S × T)

I : T(P(I))
P : T(P(X) 7→ P(P(X))) T : T(P(X) 7→ T(P(X)))

choose : T(P(X)) 7→ X × : T(P(X)× P(Y) 7→ P(X ×Y))

choose : T(X 7→ Y) 7→ (X ×Y) 7→ : T(P(X)× P(Y) 7→ P(X 7→ Y))

choose : T(X ↔ Y) 7→ (X ×Y) ↔ : T(P(X)× P(Y) 7→ P(X ↔ Y))

Observe that in general, constants are declared to have types of kind TTYPE ,
the exception being choose.

Proposition 3.2 Assuming that the declarations in a presentation provide types
for each constant and variable used, it is decidable to check that each term is
well-typed.

Proof: From constant and variable types, it is possible to determine in a bottom-
up process a type for any term built from these constants and variables
with the pairing and function application operators. Because of subtyping
and overloading, a term may have several types.

In order to type f (a) knowing a : A and f : F , we solve

∃S ,T (F ≤ T(S 7→ T) ∧ A ≤ T(S)).

Let µ be a solution. Then f (a) : T(µ(T)).

In order to type (a1, a2) knowing a1 : A1 and a2 : A2, we solve

∃S ,T (A1 ≤ T(S) ∧ A2 ≤ T(T)).

Let µ be a solution. Then (a1, a2) : T(µ(S)× µ(T)). 2

9

For example, if N : T(P(I)), then we can form the term P(N), which is of type
T(P(P(I))) since P : T(P(X) 7→ P(P(X))) and the system

∃S ,T (T(P(X) 7→ P(P(X))) ≤ T(S 7→ T) ∧ T(P(I)) ≤ T(S))

has a solution with X = I, S = P(I)) and T = P(P(I)).
In the following sections, for an arbitrary presentation P, we write F,X for

the declared type constructors and variables (with their respective kinds), F ,X
for the remaining constants and variables (with their respective types), Σ for
(F ,F,X), and Σ for Σ without the constant choose (which plays a special role
in our framework). A Σ-presentation is given by a signature (Σ,X) and a set
of (Σ,X)-Horn-clauses. In the following, (Σ,X)-terms are called standard terms
and (Σ,X)-terms are called non-standard terms.

3.2 Semantics

The semantics for our formulae are structural set theoretic models. We therefore
start with the definition of an interpretation for the type constructors (from F)
and other constants (from F). These interpretations are not given separately,
since both can be used in terms. Remark that we use a classical notion of set in
the definition, as e.g. in [19].

Note furthermore that typing and membership are not to be confused: except
for declared constants, deriving t : T does not imply that t ∈ T holds. This
difference comes from the use of partial functions. E.g., div(1, 0) may be of type
I, but may fail to exist, i.e. div(1, 0) does not denote a member of the set I.

Definition 3.3 A standard set-theoretic Σ-interpretation I is a pair (UI , .
I) of

a universe UI and an interpretation function .I , such that:

• UI is a set of atomic objects (individuals and pairs) and sets (the special
constant U is not interpreted as an element of UI , to avoid foundational
problems—conceptually, it may be interpreted as the entire universe UI);

• II is a set of individuals;

• PI is a partial function such that PI (S), when defined, is a subset of the
ordinary powerset of S;

• ×I is a partial function yielding, when defined, the cartesian product of its
arguments;

• 7→I is a partial function yielding, when defined, a set of (graphs of) partial
functions such that when g ∈ S 7→I T then (s, t) ∈ g and s ∈ S imply
t ∈ T ;

• ↔I is a partial function yielding, when defined, a set of (graphs of) binary
relations;

• (,)I is a partial function yielding, when defined, the pair of its arguments;

10

• f (s)I is t when f is a function graph and (s, t) ∈ f ;

• for all constants c in F ∪ F (other than U, T and choose), cI ∈ αI (T)
when c : T for all (X, I)-variable assignments α (i.e. a mapping from type
variables to (F,∅)-type term interpretations), and where αI is the natural
extension of α to terms under interpretation .I . When α is ∅, αI (T) is
written as T I .

Note that TI is left unrestricted above. Now we relax the notion of interpretation
to allow non-standard elements (i.e. not denoted by a Σ-term) that represent
(but are not themselves) sets. These non-standard elements may be regarded as
‘labels’ that distinguish between sets which include the same standard elements.

Definition 3.4 A (non-standard) Σ-interpretation I is a standard set-theoretic
Σ-interpretation with the following differences:

• The sets in PI
(S) may include non-standard elements that represent (but

are not themselves) subsets of S;

• TI is a partial function such that, when defined, TI (S) is the Σ-term-
generated subset of S (excluding all non-standard elements);

• chooseI is a partial function which gives a unique arbitrary element from
any non-empty set S ∈ UI , and is otherwise undefined.

A Σ-interpretation where II is a set of Σ-terms is called a Σ-term interpre-
tation.

Let us illustrate Definition 3.4 with an example.

Example 3.5 Let F = {s, 0, ≤ } with 0 : I, s : I 7→ I, ≤ : I ↔ I.
Let furthermore Nat and Even be of type P(I). Then I defined as follows is a
Σ-interpretation:

• UI is a set containing all natural numbers, the set of even natural num-
bers, the set of all natural numbers, the graph of the successor function,
the graph of the less or equal relation, and all pairs of natural numbers.
Moreover, UI has to contain the denotations of all the built-in constants
(other than U), i.e., I, P, ×, 7→, ↔, T, and choose.

• II is the set of natural numbers,

• PI
maps II to {Nat I ,EvenI } and is undefined for all other arguments.

• ×I is the empty partial function graph;

• 7→I maps (II , II) to the singleton containing the graph of the successor
function only; it is undefined for all other arguments.

• ↔I maps (II , II) to the singleton containing the graph of the less or equal
relation; it is undefined for all other arguments.

11

• ()I is defined as required for Σ-interpretations.

• (,)I maps any two natural numbers to their pair, and is otherwise unde-
fined;

• 0I is zero, sI is the (graph of the) successor function on natural numbers,
≤I is less or equal on natural numbers, Nat I is the set of natural numbers
and EvenI is the set of even natural numbers.

• TI is the identity on II , PI
(II), II 7→I II , and II ↔I II ; and all their

cartesian products built with ×; it is undefined otherwise.

• The choice function chooseI gives2 zero for EvenI , one for Nat I (and hence
for II), the graph of the successor function for (I 7→ I)I and the less or
equal relation for (I↔ I)I .

Hence, we get for example, 0I ∈ II , Nat I ∈ PI
(II)),EvenI ∈ PI

(II)), and
s(0)I = one as expected. Remark that T(P(I))I is the set containing only the
set of natural numbers and the set of even natural numbers but not the set of
odd natural numbers.

However, since we also consider non-standard interpretations, any interpre-
tation J defined as I , except that IJ is the set of (positive and negative) integers,
is another Σ-interpretation. Then, II and IJ differ, but all other interpretations
remain unchanged, since the term generated part of I and J is equal. Here TJ

on IJ cuts out the negative integers.

Definition 3.6 Let I , J be Σ-interpretations.
A Σ-homomorphism h : I → J is a (total) function h : UI → UJ satisfying:

• for all (F,∅)-terms T , t ∈ T I implies h(t) ∈ T J ;

• for all constants c ∈ F ∪F (apart from U), h(cI) = cJ ;

• for all (F,∅)-terms T1,T2 of kind TTYPE, for all t1 ∈ T I
1 , t2 ∈ T I

2 ,
h((t1, t2)I) = (h(t1), h(t2))J whenever (t1, t2) exists;

• for all (F,∅)-terms T ,T ′ of kind TYPE, for all t2 ∈ T(T)I and for all
t1 ∈ T(T 7→ T ′)I , h(t1(t2)I) = h(t1)(h(t2))J whenever t1(t2) exists.

Definition 3.7 A (X∪X , I)-variable assignment α is a mapping from variables
in X∪X to (F,∅)-type terms and elements of II respectively, such that α |X is
a (X, I)-variable assignment and α(x) ∈ (α(T))I if x : T , where T is a (F,X)-
type term. The assignment α is extended to a partial function αI mapping terms
(possibly containing variables) to their interpretations.

2Remark that the interpretation of choose is not restricted—it may be any interpretation
realising a choice.

12

Σ-substitutions are defined as usual as (X ∪ X , I)-variable-assignments α in
Σ-term interpretations I , such that {x ∈ X ∪ X | α(x) 6= x} is finite. The set
{x ∈ X ∪ X | α(x) 6= x} is then called the domain of α, written Dom(α). The
set of Σ-substitutions with domain included in X is written SUBSTΣ(X ∪ X).

Now, given a Σ-interpretation I , we can define the truth value of a formula
by universal quantification over all (X ∪ X , I)-variable assignments.

Definition 3.8 Let I be a Σ-interpretation and α be a (X ∪ X , I)-variable as-
signment.

• An existential formula T ↓ holds in I under α if αI (T) is defined.

• An equality S = T holds in I under α if αI (S) and αI (T) are both defined
and are identical.

• A membership formula S ∈ T holds in I under α if αI (S) and αI (T) are
both defined and αI (S) is an element of αI (T).

• An implication A1∧ . . .∧An ⇒ A holds in I under α if A holds in I under
α whenever all of A1, . . . ,An hold in I under α. A negative implication
A1 ∧ . . . ∧ An ⇒ holds in I under α if A1, . . . ,An never hold together in
I under α. A trivial implication ⇒ A holds in I under α if A holds in I
under α.

A (Σ,X)-Horn clause holds in I if it holds in I for all (X ∪ X , I)-variable
assignments α. I is a model of a presentation P if all Horn clauses in P hold
in I .

Formula satisfaction is written I |= Φ, or P |= Φ in case all models of P
satisfy the formula Φ. P is consistent if it has a model.

3.3 Proof Rules

From this section on, we restrict the possible sets of formulas, such that some
atoms, trivially unsatisfiable due to type mismatches, are eliminated.

Definition 3.9 A standard Σ-presentation is a Σ-presentation P, where:

• All non-variable terms occurring in P belong to a type of kind TTYPE.

• If a constant c (other than U) is declared to be of type T , then c ∈ T is a
fact in P.

• choose does not occur in the conclusion of any clause in P.

• All variables of type T with T : TYPE in P occur only as the left-hand-side
of a membership relation ‘∈’.

• All equalities s = t satisfy that the sets of types of σ(s) and σ(t) are the
same for every Σ-substitution σ.

13

• All membership formulas s ∈ t satisfy that σ(t) is of type T(S 7→ T),
T(S ↔ T) or T(P(S ×T)), if σ(s) is of type S ×T , and of type T(P(T))
if σ(s) is of any other type, for every Σ-substitution σ.

The proof rules shown in Table 1 are for a deduction relation ` taking two
arguments. The first argument is a standard Σ-presentation. The second ar-
gument is a Σ-formula Φ. These rules are divided into four groups: the upper
one is for the embedding of typing into set theory, and uses the subtype inclu-
sion defined in Section 3.1. Then there are rules handling function and relation
graphs. Note that z is here intended to be of type U 7→ U, which is a subtype of
P(U × U). These are followed by general set theoretic rules, which correspond
to the axiom of choice and the axiom of (non-standard) extensionality. Last
but not least, there are the logic inference rules; the meta-variables G , G ′ range
over possibly-empty conjunctions of atomic formulae, and L, L′ may be a single
atomic formula or empty.

One of the inference rules (SubstConform) uses P-conform Σ-substitutions.
These are defined as follows:

Definition 3.10 Let σ ∈ SUBSTΣ(X ∪ X) and P be a Σ-presentation. Then
σ is P-conform if for any variable x in Dom(σ)∩X , P ` σ(x) ↓. The set of all
P-conform substitutions is denoted by P-SUBSTΣ(X ∪ X).

P-conform substitutions have the nice property that they behave like Σ-
substitutions for composition with general variable assignments.

3.4 Results

We first address correctness of the deduction rules.

Theorem 3.11 Let P be a standard Σ-presentation. Then, all deduction rules
in PL are sound, i.e. if P ` Φ then P |= Φ.

Proof: We have to check that each rule is sound in any Σ-interpretation which
is a model of P.

• SubType: if t ∈ S holds in a Σ-interpretation I , for any assignment
α, αI (t) ∈ αI (S). Then if S ≤ T , αI (S) ⊆ αI (T) (since when both
t ∈ S and T ↓ hold, neither S nor T can involve U at all, hence either
S = T or S = T(T)). So it is sound to deduce that αI (t) ∈ αI (T)
for any assignment α, thus t ∈ T holds in the Σ-interpretation I ,

• PairType1, PairType2, AppTyp, FApply, FGraph, RApply,
RGraph: these axioms are valid in any Σ-interpretation by construc-
tion.

• SubSet,Choice are sound due to the interpretation of P as a partial
power set function and of choose as a choice function (defined on all
non-empty sets) in every Σ-interpretation.

14

SubType:
t ∈ S ,T ↓

t ∈ T if S ≤ T

PairType1: x ∈ X ∧ y ∈ Y ∧ (x , y) ↓∧ (X ×Y) ↓⇒ (x , y) ∈ (X ×Y)

PairType2: (x , y) ∈ (X ×Y)⇒ x ∈ X ∧ y ∈ Y

AppType: x ∈ X ∧ z ∈ (X 7→ Y) ∧ z (x) ↓ ⇒ z (x) ∈ Y

FApply: x ∈ X ∧ y ∈ Y ∧ z ∈ (X 7→ Y) ∧ (x , y) ∈ z ⇒ z (x) = y

FGraph: x ∈ X ∧ y ∈ Y ∧ z ∈ (X 7→ Y) ∧ z (x) = y ⇒ (x , y) ∈ z

RApply: x ∈ X ∧ y ∈ Y ∧ z ∈ (X ↔ Y) ∧ (x , y) ∈ z ⇒ z (x , y)

RGraph: x ∈ X ∧ y ∈ Y ∧ z ∈ (X ↔ Y) ∧ z (x , y)⇒ (x , y) ∈ z

SubSet: x ∈ y ∧ y ∈ P(z)⇒ x ∈ z

Choice:
s ∈ t

choose(t) ∈ t
if t : T for some T : STYPE

Ext:
choose(x) ∈ y , choose(y) ∈ x

x = y if x , y : T for some T : STYPE

WellDef:
Φ[t]
t ↓ if Φ[t] is a (Σ,X)-atom containing t

PartialReflex:
t ↓

t = t

Axioms: G ⇒ L if (G ⇒ L) ∈ P is a (Σ,X)-clause

SubstConform:
G ⇒ L

σ(G)⇒ σ(L)
if σ ∈ P-SUBSTΣ(X ∪ X)

Cut:
G ∧ L′ ⇒ L,G ′ ⇒ L′

G ∧G ′ ⇒ L

Paramodulation:
G ⇒ L[s],G ′ ⇒ (s = t)

G ∧G ′ ⇒ L[t]

Table 1: PL – Deduction Rules for P ` Φ

15

• Ext is sound and expresses extensional equality on non-standard sets,
due to the fact that choose is free in every Σ-interpretation. Exten-
sional equality of two sets can only be deduced when the premisses
hold for all interpretations of the choose function, i.e. for any ele-
ment in the sets. This amounts to check that both sets have the same
elements.

• WellDef is sound since if an atom Φ[t] is valid in every model of P,
any term t in this atom should denote an element in the model. This
is due to the fact that atoms only hold when their argument terms
denote elements—in particular, our equality is existential.

• PartialReflex is the restriction of reflexivity to well-defined terms,
so is sound.

• Axioms is trivially sound in every model of P.

• SubstConform, Cut, Paramodulation are standard sound rules
for Horn clause logic with equality.

2

The following lemma is needed in order to show that the initial model defined
below actually is a model. It can be proved by simple composition of P-conform
substitutions with variable assignments:

Lemma 3.12 Let Σ be a signature, P a presentation, I a Σ-interpretation, G a
conjunction of (Σ,X)-atoms, σ ∈ P-SUBSTΣ(X) and δ be a variable assignment
for X ∪ X in I . Then σ(G) holds in I under δ iff G holds in I under δ ◦ σ.

Proof: Let us first prove that if σ ∈ P-SUBSTΣ(X) and δ is a variable assign-
ment for X ∪ X in I , δ ◦ σ(x) is also a variable assignment of X ∪ X in I .
This amounts to prove that for all x ∈ X with x : T , δ ◦ σ(x) ∈ δ ◦ σ(T)I .
If x 6∈ Dom(σ), then this is implied by δ being a (X ∪ X , I)-variable as-
signment. Otherwise, we know that δ(σ(x)) ∈ T(UI), since P |= σ(x) ↓.
Moreover σ(x) ∈ σ(T) by definition of a substitution as a special variable
assignment in a term interpretation. Hence, δ(σ(x)) ∈ δ(σ(T))I .

Then let us denote I , δ |= σ(G) the statement σ(G) holds in I under δ.
Assume that G is a conjunction of atoms p(. . . , t , . . .). Then

I , δ |= σ(p(. . . , t , . . .)) iff I , δ |= p(. . . , σ(t), . . .)
iff (. . . , δ(σ(t)), . . .) ∈ pI

iff I , δ ◦ σ |= p(. . . , t , . . .).

2

The initial model constructed in the next definition interprets individuals (t
of type T(I)), pairs (t of type T(S × T)) and non-standard terms (t of type
T : TYPE) as representative of their equivalence class (written [t]), whenever
they exist. Sets t (of type T(P(T))) and graphs of functions and relations are

16

interpreted such that they contain exactly those term interpretations [u] with
u being provably in t , also only if t exists. Remark that this includes the
interpretation of terms built from type constructors. Var(t) denotes the set of
variables of t .

Definition 3.13 Let P be a standard Σ-interpretation and V ⊆ X ∪ X . We
define IP(V) to be the Σ-interpretation I whose universe UI is the set of all [t]
where t is a (Σ,V)-term with P ` t ↓, and where [.] is defined as follows:

• ∀ t with Var(t) ⊆ V , such that t : T where T : RTYPE or T : TYPE,
[t] is a representative of {u | u : T ,Var(u) ⊆ V and P ` u = t} if P ` t ↓;

• ∀ t with Var(t) ⊆ V , such that t : T with T : STYPE,
[t] = {[u] | u : U ,Var(u) ⊆ V and P ` u ∈ t} ∪ {[choose(t)]} if P ` t ↓,
where U is S when T is T(P(S)), and R × S when T is T(R 7→ S) or
T(R ↔ S).

For all constants c, let cI = [c]. Finally, for any [t1], [t2] ∈ UI : let ([t1], [t2])I =
[(t1, t2)] if P ` (t1, t2) ↓, otherwise undefined; and let [t1]([t2])I = [t1(t2)] if
P ` t1(t2) ↓, otherwise undefined.

One may check that this definition is a Σ-interpretation in the sense of Def-
initions 3.3 and 3.4.

The difficulty in the initiality proof is hidden in the extensionality of sets.
The following lemma is crucial for the interpretation of equality and membership.
It decomposes into three steps: (1) Equality on individuals (type T(I)), pairs
(type T(S × T)) and non-standard elements (type T : TYPE) coincides with
deductive equality. (2) The same holds for the membership atoms in standard
presentations. (3) This is true for equality of sets represented by standard terms.

Lemma 3.14 Consider [.] as defined in Definition 3.13.

1. For all s, t : T with T : TYPE or T : RTYPE, P ` s = t iff [s] = [t].

2. For all s : S with S : TYPE or S : RTYPE, and t : T with T : STYPE,
P ` s ∈ t iff [s] ∈ [t].

3. And for all s, t : S with S : STYPE, P ` s = t iff [s] = [t].

Proof: The left-to-right direction is trivial by definition and the reflexivity,
paramodulation, well-definedness rules of our logic. From right-to-left, let
us assume s : S and t : T .

1. [s] is a representative of {u | u : T ,Var(u) ⊆ V and P ` u = s} and
[t] is a representative of {v | v : T ,Var(v) ⊆ V and P ` v = t}. If
[s] = [t], there exists w such that P ` w = s and P ` w = t . So
P ` s = t .

17

2. Assume that P ` t ↓ and P ` s ↓. [s] is a representative of {u | u :
S ,Var(u) ⊆ V and P ` u = s}, T is of the form T(P(S)), T(R 7→ S),
or T(R ↔ S), and [t] = {[w] | w : W , Var(w) ⊆ V and P ` w ∈ t}.
W is S when T is T(P(S)), and R × S in the other two cases.

If [s] ∈ [t], there exists [w] such that [s] = [w] and P ` w ∈ t . Since s :
S and w : W (where W cannot be of kind STYPE , since S is not, and
[s] and [w] must therefore both be representative terms rather than
actual sets) from (1) we get P ` s = w . Hence, Paramodulation
gives us P ` s ∈ t .

3. If [s] = [t], then [choose(s)] ∈ [t], since [choose(s)] ∈ [s] by Choice.
Using (2), we know now that we can derive choose(s) ∈ t from P.
Analogously, we can derive choose(t) ∈ s and therefore by Ext also
s = t .

2

Now, we can prove that our candidate for an initial model is actually a model
in our logics.

Theorem 3.15 Let P be a consistent standard Σ-presentation and V ⊆ X∪X .
Then IP(V) is a model of P.

Proof: Let I stand for IP(V) in the following.

Lemma 3.14 guarantees that the relations ∈ and = are interpreted cor-
rectly. Remark that Paramodulation and PartialReflex guarantee that
the relation = is a congruence. The satisfaction of existential formulas ‘t ↓’
follows from the definition of the interpretation: by construction of I , [t]
is defined if and only if t ↓.
In order to prove that I is a model of P, we prove that all clauses in P
are valid in I . Suppose G ⇒ L is in P and δ is a (I ,X ∪ X)-variable
assignment, such that I |= δ(G). Let us define the Σ-substitution δ′, such
that [δ′(x)] = δ(x) for all x ∈ X ∪ X , i.e. I |= δ′(G) by Lemma 3.12 (use
δ′ as σ and δ defined by δ(x) = [x] for all x ∈ X). So I |= δ′(A) for any
atom A in the conjuction of atoms G . By definition of I and Lemma 3.14
P ` δ′(A) and so P ` δ′(G). Then we can use the SubstConform rule
on G ⇒ L, followed immediately by k times Cut (where k is the number
of atoms in G), in order to get P ` δ′(L). Hence, I |= δ(L) by definition
of I . 2

There remains to show completeness of deduction and initiality. Both proofs
are in fact similar to those for Gn -logics [6].

Theorem 3.16 Let P be a consistent standard Σ-presentation and L a (Σ,X)-
atom. P |= L if and only if P ` L.

18

Proof: Since the rules in PL are correct we already know that if P ` L, then
P |= L. Conversely if P |= L, since IIP (V) is a model of P, we know that
under any assignment α, IIP (V), α |= L. Applying this to the assignment
δ defined by δ(x) = [x] for any x in V , we get that δ(L) is valid in IIP(V).
δ(L) is of one of the following forms: [s] = [t], [s] ∈ [t], or [s] ↓. From
IIP (V) |= [s] = [t], IIP(V) |= [s] ∈ [t], IIP (V) |= [s] ↓, we get by definition
of IIP (V), P ` s = t , P ` s ∈ t , P ` s ↓. So P ` L. 2

Theorem 3.17 Let P be a consistent standard Σ-presentation. For all models
J of P, there is a unique Σ-homomorphism h : IP(∅)→ J .

Proof: The homomorphism is defined by h([t]) = tJ for any Σ-term t . Let
us check that it satisfies Definition 3.6. Let I be IP(∅), J be any Σ-
interpretation, and h : I → J be the function h : UI → UJ defined by
h([t]) = tJ . It satisfies:

• for all (F,∅)-terms T , [t] ∈ [T] implies P ` t ∈ T , so tJ ∈ T J . Then
h([t]) = tJ ∈ h([T]) = T J ;

• for all constants c ∈ F ∪F other than U, h([c]) = cJ ;

• for all (F,∅)-terms T1,T2 of kind TTYPE , for all [t1] ∈ [T1] and
[t2] ∈ [T2], h(([t1], [t2])I) = h([(t1, t2)]) = (t1, t2)J = (tJ

1 , t
J
2)J =

(h([t1]), h([t2]))J whenever ([t1], [t2]) exists;

• for all (F,∅)-terms T ,T ′ of kind TYPE , for all [t] ∈ T(T)I and for
all [f] ∈ T(T 7→ T ′)I , h([f]([t])I) = h([f (t)]) = f (t)J = f J (tJ)J =
h([f])(h([t]))J whenever [f]([t]) exists.

Unicity of the homomorphism h from I to J is proved as usual by structural
induction on t . 2

3.5 Pragmatics

The following extension to the grammar given in Section 3.1 covers the entire
specification language used in the illustrations in Section 2:

SPEC ::= NAME DECLS CLAUSE | NAME [VARS] DECLS CLAUSE

DECLS ::= DECL | DECL,DECLS

DECL ::= NAME | CONST : TERM

CLAUSE ::= . . . | ATOMS ⇒ CLAUSE | CLAUSE ∧ CLAUSE

| ATOMS ⇔ ATOMS | ATOMS | ∀VARS : TYPE • CLAUSE

CONST ::= . . . | →
VARS ::= VAR | VAR,VARS

TYPE ::= TERM

The main points to note in the transformation from the above into the kernel
language defined in Section 3.1 are these: a name used in a declaration is replaced
by the declarations to which it refers, the associated variables and clauses being
incorporated too; set-valued terms used as types in declarations have to be

19

replaced by their element types (cf. Z); the same holds for types of quantified
variables in clauses; each constant declaration c : T generates a clause c ∈ T ;
each quantified variable declaration x : T generates an atom x ∈ T in the
premiss of the clause where x occurs; declarations of total functions f : S → T
generate f : S 7→ T and a clause s ∈ S ⇒ f (s) ∈ T ; and clauses have to be
converted to Horn form.

4 Illustrations of Proofs

Compared to Z specifications, our framework has some restrictions: we do not
allow arbitrary quantifications, nor explicit negation. However this is a deliber-
ate decision, since restricting our presentations to Horn clauses with equalities
and membership atoms gives three great advantages:

• The operational semantics of our presentations is given by conditional
rewriting. Our specifications are actually programs executable with an
interpretor of rewrite rules.

• We claim that we can provide an automatic tool for building a conditional
term rewriting system equivalent to a given presentation using a saturation
technique.

• We also think possible to obtain with the same technique, a refutationally
complete procedure for proving a theorem in the initial model of a pre-
sentation. This proof procedure uses an ordering on terms and atoms to
apply inference rules only on maximal literals in the clauses, which reduces
the search space.

Using the saturation procedure or the refutational theorem prover we have
in mind, requires to be in equational Horn clause logic. So the first step is to
establish a correspondance between deduction with rules in PL written P ` Φ,
and deduction in Horn clause logic written P `HCL Φ.

Let us replace SubType, Choice and Ext by Horn clause axioms and con-
sider the set HA of Horn axioms described in Table 2.

Now deduction rules WellDef , PartialReflex, Axioms, SubstConform,
Cut and Paramodulation are deduction rules for partial Horn deduction. A
little more work must be done for eliminating WellDef , PartialReflex, that
requires to transform atoms t ↓ into t ∈ U (see [6]). Eventually every predicate
different from equality has to be turned into a boolean function. Let us call Θ
these two transformations. Then one can prove as in [6] that for any ground
atom L, P ` L if and only if Θ(P ∪HA) `HCL Θ(L).

However, for a better readability, in the examples below, we do not perform
the transformation Θ.

Let us now briefly recall the saturation procedure as described for instance
in [2, 16]. The three main inference rules are superposition into conclusion,
superposition into premisses and equality resolution. Subsumption by another
clause and elimination of tautologies are also used to eliminate redundant clauses.

20

SubType-H: t ∈ S ∧ T ↓∧ S ≤ T ⇒ t ∈ T

PairType1: x ∈ X ∧ y ∈ Y ∧ (x , y) ↓∧ (X ×Y) ↓⇒ (x , y) ∈ (X ×Y)

PairType2: (x , y) ∈ (X ×Y)⇒ x ∈ X ∧ y ∈ Y

AppType: x ∈ X ∧ z ∈ (X 7→ Y) ∧ z (x) ↓ ⇒ z (x) ∈ Y

FApply: x ∈ X ∧ y ∈ Y ∧ z ∈ (X 7→ Y) ∧ (x , y) ∈ z ⇒ z (x) = y

FGraph: x ∈ X ∧ y ∈ Y ∧ z ∈ (X 7→ Y) ∧ z (x) = y ⇒ (x , y) ∈ z

RApply: x ∈ X ∧ y ∈ Y ∧ z ∈ (X ↔ Y) ∧ (x , y) ∈ z ⇒ z (x , y)

RGraph: x ∈ X ∧ y ∈ Y ∧ z ∈ (X ↔ Y) ∧ z (x , y)⇒ (x , y) ∈ z

SubSet: x ∈ y ∧ y ∈ P(z)⇒ x ∈ z

Choice-H: s ∈ t ⇒ choose(t) ∈ t

Ext-H: choose(x) ∈ y ∧ choose(y) ∈ x ⇒ x = y

Table 2: HA –Horn axioms

An ordered strategy is used for reducing the search space by using only maximal
terms and literals w.r.t. a given ordering for inference computation. A saturation
process is a sequence of presentations (P0,P1, . . .), also called a derivation, where
Pi is deduced from Pi−1 by application of one inference rule. This derivation
must be fair in the intuitive sense that no clause is forgotten in the process of
generating consequences. P0 is consistent if and only if the empty clause does
not belong to any Pi . Moreover if P∞ is the set of persisting clauses in this
fair derivation and does not contain the empty clause, then one can construct
from P∞ a conditional term rewriting system which is terminating and confluent
in the initial model of P0. This indeed provides a way to compute in a finite
and unambiguous way the normal form of any expression in P0. The complete
description of the process and its proof can be found in [6].

For understanding the proof tools proposed below, we first show the trans-
formation of the initial Z-style specification NaturalNumbers given in Section 2
into a presentation in our logic, according to Section 3.5. Note that specifying
succ to be a total function would amount to adding to the following presentation
the clause: x ∈ N⇒ succ(x) ∈ N.

21

NaturalNumbers
N : T(P(I))
0 : T(I)
succ : T(I 7→ I)
≤ , < : T(I↔ I)

∀ x , y : T(I) •
0 ∈ N
succ ∈ N 7→ N
≤ ∈ N↔ N
< ∈ N↔ N
x ∈ N⇒ 0 ≤ x
x ∈ N ∧ y ∈ N ∧ x ≤ y ⇒ succ(x) ≤ succ(y)
x ∈ N⇒ 0 < succ(x)
x ∈ N ∧ y ∈ N ∧ x < y ⇒ succ(x) < succ(y)

Considering this last set of clauses, with an adequate ordering on terms
and formulas, and an ordered strategy, there is no possible superposition into
the conclusions, neither into premises, so the presentation is saturated, hence
consistent. The ordering may be built with a lexicographic path ordering (see for
instance [4]) from a precedence � including ≤, <, succ � N. To order formulas,
we may ignore the membership and equality relations, map atoms and terms to
multisets of sequences, and compare sequences with the multiset extension of the
lexicographic extension of �. For instance to compare the two atomic formulas
x ≤ y and x ∈ N, we compare {(≤, x , y)} and {(N, x)}. Since ≤ � N, we get
(≤, x , y) �lex (N, x), {(≤, x , y)} �mult

lex {(N, x)}, and thus x ≤ y greater than
x ∈ N. It may be worth emphasising that with this saturation technique, we can
handle a limited form of negative assertion. Assume for example that we want
to state in our presentation that ∀ x ∈ N • ¬(x = succ(x)). The negative clause
(x ∈ N) ∧ (x = succ(x)) ⇒ is added to the presentation and superpositions
are performed. With an ordered strategy, the saturation process terminates
and proves the consistency of the whole presentation. Here to compare the
two atomic formulas x = succ(x) and x ∈ N, we compare {(x), (succ, x)} and
{(N, x)}. Since succ � N, we get (succ, x) �lex (N, x), {(x), (succ, x)} �mult

lex

{(N, x)}, and thus x = succ(x) greater than x = succ(x) and x ∈ N.
Then we can prove by refutation ∃ x ∈ N • ¬(x = succ(0)). In this case, the

clause⇒ (x ∈ N) ∧ (x = succ(0)) is added, and superposition is performed with
a renaming of (x ∈ N) ∧ (x = succ(x)) ⇒ and generates ⇒ (0 ∈ N) ∧ (0 ∈ N),
then the empty clause.

Taking N for X in GenericSequences, the specification gets transformed into
the following one:

22

NaturalSequences
NaturalNumbers
seq : T(P(I) 7→ P(I))
〈 〉 : T(P(I))
〈 〉 : T(I 7→ P(I))
a : T((P(I)× P(I)) 7→ P(I))

length : T(P(I) 7→ I)

∀ x : T(I) • ∀ s, t, u : T(P(I)) •
seq ∈ P(N) 7→ P(I)
〈 〉 ∈ seq(N)
〈 〉 ∈ N 7→ seq(N)
a ∈ seq(N)× seq(N) 7→ seq(N)

length ∈ seq(N) 7→ N

s ∈ seq(N)⇒ 〈〉a s = s

s ∈ seq(N)⇒ s a 〈 〉 = s
s ∈ seq(N) ∧ t ∈ seq(N) ∧ u ∈ seq(N)

⇒ s a (t a u) = (s a t)a u

length(〈 〉) = 0

x ∈ N ∧ s ∈ seq(N)⇒ length(〈x〉a s) = succ(length(s))

Extending the previous precedence with length � seq , 0, succ, this presenta-
tion is proved consistent. With similar arguments as previously, one can prove
that it remains consistent if we add the following statement:

@x ∈ N, s ∈ seq(N) • length(s) = length(〈x〉a s).
The technique extends to the higher-order example of MappingSequences

in Section 2. The difficulty again is to compare the terms mapseq(f)(s a t)

and mapseq(f)(s) a mapseq(f)(t) with a suitable ordering. This can be done
also by mapping each term to a sequence and comparing them with a lexi-
cographic path ordering. The sequence corresponding with the first term is,

e.g., (mapseq , f , (a, s, t)). The sequence corresponding with the second term

is (a, (mapseq , f , s), (mapseq , f , t)). Assuming mapseq � a in the precedence,

mapseq(f)(sat) is greater than mapseq(f)(s)amapseq(f)(t), and superposition
can be applied only on the first term. Then it is not difficult to see that the
whole presentation is saturated, thus consistent.

However, in order to prove a theorem such as ∀ f , s • length(mapseq(f)(s)) =
length(s), we need an inductive theorem prover. Induction is also necessary to
prove the totality of functions declared as partial, and this is certainly a domain
for further investigations. This discussion leads to the conclusion that rewriting
techniques offer good possibilities for (semi-)automated theorem proving in our
framework. There is surely some work to adapt existing theorem provers for our
logic, but the changes seem to be reasonably simple.

23

5 Conclusion

The framework proposed here has been largely compared to the abstract data
types approach and to Z specifications in the previous sections. But other works
have strong connections too.

• First of all, this work is derived from Rn -/Gn -logics presented in [8].
The construction of Rn -/Gn -logics starts with Russell’s ramified theory
of types, to build a set-theoretic framework providing expressive typing,
higher-order functions and initial models at the same time. The parameter
n, which is a natural number, gives a bound on the nesting depth of the
sets used in interpretations. The difference from Russell’s ramified theory
of types is the consideration of non-term-generated models. Rn -logics are
axiomatisable by an order-sorted equational Horn logic with a member-
ship predicate, and Gn -logics provide in addition partial functions. The
framework proposed in this paper is a refinement of Gn–logics with an
extended type system. Kinds, not existing in Gn -logics, are added, and
operators ×, 7→ and ↔ provide further refinements of the type structure.
The deduction rules are quite similar to those given for Gn-logics.

• ETL [10] is in fact a fragment of Rn -logics [6]. An ETL presentation is
a triple [[Ω,V ,E]], such that Ω is a set of function symbols, V is a set of
unsorted variables and E is a set of Ω-Horn clauses using only equality
“=” and the typing relation “:” as binary operators. The typing relation
satisfies the paramodulation axiom and therefore it can be used as a new
relation symbol in our logic. Remark that we cannot reuse “∈” for this
purpose, since it has more properties than “:” in ETL. So it is possible to
construct a presentation, such that an Ω-atom is true in our logic if and
only if it holds in ETL.

• Power and unified algebras have been proposed and compared in [15] and
also greatly influenced our framework. Concerning power algebras, the
main difference is the absence of a predefined empty set, which corresponds
to the bottom element in unified algebra, and of predefined singletons. In-
stead we can define empty sets and singletons in our logic. The other
operators of power algebras: inclusion, intersection and union, can be ax-
iomatized in the same way as in unified algebras [15]. Hence we can encode
power algebras (apart from extensional equality of sets, of course) in our
framework, and come quite close to unified algebras.

• More generally this work has similarities with higher-order functional lan-
gages. Some higher-order features are provided, since function graphs are
specified as set constants, which can be passed to other functions as higher-
order arguments. During the last years, a number of papers have dealt with
the extension of first-order algebraic specifications to higher-order ones.
Among them are [9, 17, 12, 14, 13, 11]. Our approach differs from [11]
for instance in that our formal basis is set-theoretic rather than purely

24

algebraic and provides a uniform treatment of typing and higher-order
functions. Compared with λ-calculi, we have deliberately omitted the ab-
straction operator in order to minimize the functions in the initial model,
which may be crucial for limiting the search space for automated theorem
proving.

References

[1] J. R. Abrial. B-Tool Reference Manual. Edinburgh Portable Compiler, 1991.

[2] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation
and superposition. In Proceedings 11th International Conference on Automated
Deduction, Saratoga Springs (N.Y., USA), pages 462–476, 1992.

[3] J. Dawes. The VDM-SL Reference Guide. Pitman, 1991.

[4] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1
& 2):69–116, 1987.

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations
and initial semantics, volume 6 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

[6] C. Hintermeier. Déduction avec sortes ordonnées et égalités. Thèse de Doctorat
d’Université, Université Henri Poincaré – Nancy 1, Oct. 1995.

[7] C. Hintermeier, H. Kirchner, and P. D. Mosses. Combining algebraic and set
theoretic specifications. In M. Haveraaen, O. Owe, and O-J. Dahl, editors, Re-
cent Trends in Data Type Specification”, Proc. 11th Workshop on Specification of
Abstract Data Types joint with the 9th general COMPASS workshop. Oslo, Nor-
way, September 1995. Selected papers, volume 1130 of Lecture Notes in Computer
Science, pages 255–273. Springer-Verlag, 1996.

[8] C. Hintermeier, H. Kirchner, and P. D. Mosses. Rn - and Gn -logics. In G. Dowek,
J. Heering, K. Meinke, and B. Möller, editors, Higher-Order Algebra, Logic, and
Term Rewriting, volume 1074 of Lecture Notes in Computer Science, pages 90–108.
Springer-Verlag, 1996.

[9] T. S. E. Maibaum and C. J. Lucena. Higher order data types. International
Journal of Computer and Information Sciences, 9:31–53, 1980.

[10] V. Manca, A. Salibra, and G. Scollo. Equational type logic. Theoretical Computer
Science, 77(1-2):131–159, 1990.

[11] K. Meinke. Universal algebra in higher types. Theoretical Computer Science,
100:385–417, 1992.

[12] B. Möller. Algebraic specifications with high-order operators. In L. Meertens, edi-
tor, Proceedings IFIP TC2 Working Conf. on Program Specification and Transfor-
mation, pages 367–392. IFIP, Elsevier Science Publishers B. V. (North-Holland),
1987.

[13] B. Möller, A. Tarlecki, and M. Wirsing. Algebraic specification with built-in
domain constructions. In M. Dauchet and M. Nivat, editors, Proceedings of
CAAP’88, Lecture Notes in Computer Science, pages 132–148. Springer-Verlag,
1988.

25

[14] B. Möller, A. Tarlecki, and M. Wirsing. Algebraic specifications or reachable
higher-order algebras. In D. Sannella and A. Tarlecki, editors, Recent Trends in
Data Type Specification, volume 332 of Lecture Notes in Computer Science, pages
154–169. Springer-Verlag, 1988.

[15] P. D. Mosses. Unified algebras and institutions. In Proceedings 4th IEEE Sympo-
sium on Logic in Computer Science, Pacific Grove, pages 304–312, 1989.

[16] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses.
In D. Kapur, editor, Proceedings 11th International Conference on Automated De-
duction, Saratoga Springs (N.Y., USA), volume 607 of Lecture Notes in Computer
Science, pages 477–491. Springer-Verlag, 1992.

[17] A. Poigné. Partial algebras, subsorting and dependent types. prerequisites of error
handling in algebraic specifications. In Proceedings of Workshop on Abstract Data
Types, volume 332 of Lecture Notes in Computer Science. Springer-Verlag, 1988.

[18] J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

[19] A. N. Whitehead and B. Russell. Principia Mathematica, volume 1. Cambridge
University Press, Cambridge, MA, 1925.

[20] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science B: Formal Methods and Semantics, chapter 13, pages
675–788. Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 1990.

26

Recent Publications in the BRICS Report Series

RS-96-52 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses.Combining Algebraic and Set-Theoretic Specifica-
tions (Extended Version). December 1996. 26 pp. Appears
in Haveraaen, Owe and Dahl, editors,Recent Trends in
Data Type Specification: 11th Workshop on Specification
of Abstract Data Types, joint with 8th COMPASS Work-
shop, Selected Papers, LNCS 1130, 1996, pages 255–274.

RS-96-51 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses. Rn- and Gn-Logics. December 1996. 19 pp.
Appears in Gilles, Heering, Meinke and Möller, edi-
tors, Higher-Order Algebra, Logic, and Term-Rewriting:
2nd International Workshop, HOA ’95 Proceedings,
LNCS 1074, 1996, pages 90–108.

RS-96-50 Aleksandar Pekěc. Hypergraph Optimization Problems:
Why is the Objective Function Linear?December 1996.
10 pp.

RS-96-49 Dan S. Andersen, Lars H. Pedersen, Hans Hüttel, and
Josva Kleist.Objects, Types and Modal Logics. December
1996. 20 pp. To be presented at the4th International
Workshop on the Foundations of Object-Oriented, FOOL4,
1997.

RS-96-48 Aleksandar Pekěc.Scalings in Linear Programming: Nec-
essary and Sufficient Conditions for Invariance. December
1996. 28 pp.

RS-96-47 Aleksandar Pekěc. Meaningful and Meaningless Solu-
tions for CooperativeN -person Games. December 1996.
28 pp.

RS-96-46 Alexander E. Andreev and Sergei Soloviev.A Decision Al-
gorithm for Linear Isomorphism of Types with Complexity
Cn(log2(n)). November 1996. 16 pp.

RS-96-45 Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitz-
mann. Statistical Secrecy and Multi-Bit Commitments.
November 1996. 30 pp. To appear inIEEE Transactions
on Information Theory.

