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Isruel 

Abstract. The piIpt\r proposes an axiomatic approach to specification languages, and introduces 

notions vf reducibility and equivalence as tools for their study and comparison. Algk*br:ric 

specification languages are characterized up to cquivslence. They are shown to be limited in 
cxpreh>;ve powtx by implicational language\. 

1. Introduction 

Specification of abstract data types has been widely discussed in the litzratu,re of 

the last decade and a great variety of specification languages and techniques has 
been proposed. In this paper we present a most general axiomatic framework to 

speak about specification languages, to compare their expressive power and to 

axiomatize their semantic behavior. This framework is meant to capture only the 

basic properties which are satisfied by reasonable specification languages. Properties 

concerning syntactic representation of specifications or modularization techniques 

are not considered in this framework which may be viewed as a;, abstract logic for 

specification. Unlike for various other logics we do not demand closure under 
conjunction, negation and quantification., but closure under isomorphism and renam- 

ing, and compatibility with reducts. In this respect our framework is closely reLtted 

to the concept of ‘institution’, which was independently developed by &~gileIl arid 

Hurstall [4, 97. 

Wc use this frmwwx-k to characterize those specification Lbnguages uhich are 

‘strongly algebraic’ and ‘admit initial semantics’. Our main result states: 

,&I algehmic- :gx~c(ficutiot~ hrguage udmits itzitiul semantics if and only if 
it is fully equivalent to an impiicationnl language. 
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Here, strongly algebraic ensures that the initial objet s in K are exactly the free 

objects over the empty set of generators. A specification language is called ‘implica- 

tional’ if it is powerful enough to specify all varieties and if all specifications consist 

of a set of implications with possibly infinitary premises. 1Jndcr additional assump- 

tions ‘finite’ implications are sufficient. 

The proofs of this and other results in this paper mainly consist in an adaptation 

of two important results in universal algebra to our framework: Mal’cev’s [ 181, and 

Cudnovskii’s [KJ (independently also found by Andwka and Ncmoti [2] and 

Hanachewski and Herrlich C-51). Our results shows that in a sense only the use of 

implications (or equivalent formulas) is ‘safe’ for specifications with initial semantics. 

This confirms some long-held prejudices and ‘defends’ the use of equations and 

implications of equations in the ADJ-approach to data type specification (see. e.g., 

[ I 1). Note that inequalities are a special case of this of the form ‘equation implich 
false’. For a detailed discussion of the significance of such a characterization theorem 

the rcadcr is rt3ferra.i to [ 161. I’hi>, paper is tuscci on our pr-cscntation given in [ 151. 

2. The specification language framework 



domains, constants. operations and relations, named by the symbols in (7. Kelzarzling 
carries ocer to smwfurt~s, and we denote by A”‘, with respect to a renaming r, the 
structure which is identical to A, except that its domains, constants, cpcrations and 

relations are renamed according to K 

For signatures 7~ G WC’ define A/ T to be the redrrcr of the cr-structure A to 

signature 7. By Strcrct( 7) WC denote the class of all mtnrctwes and by Struct-l- the 

class UT, I Strw( 7) for some class of signatures T. 
If T is algebraic then ,4 c Smct( T) is also called afgehm, and S!ruc’t( T) is sometimes 

denote; . J by Ng( 7). Also /I/g, tnav he used for Strucf I, if 7’ is a class of algebraic e 
kipnatures. 

Caniirtn1.s are denoted by cy, the t dimlit~ o_f the rzatwal nm~bers by LO, and we 

use &(LL ) to denote the word algaho with cy generators of signature T (ncglccting 

predicate s!*mbol\). Elements of F,( cr’) are called WW. 
Other notion5 art‘ :htandarcl in universal algebra or logic md WC refer to [ 10, 191 

for further background. 

(3) lf r: T + cr is a renaming, then ,A c K(T) iff .41r’ E: K (CT). 

(4) !f r: T-, u is a renaming and cp E L(T), then there is a sentence q”) E L(U) 

such that for all A E K( TM I== q iff ,4’% q’? 

(5) If rc= U, then L(T) c L(U). 

(6) !f T~U, qK&). /&k&r) and f-irtE:k'(~), then Al== iff Af~bp. 
( 7) For iill f C 7’ we have false c L( 7) and for no A we have A I=- false. 
WC extend the ‘satisfaction rtllation’ to ccts of sentcnccs and define for ii set 

Ct, C- !_( ~1 of I,-sentences ,4 k Q, ifi A I== q for all cp c- @. By Mod{ Cp) we denote the 

cliis\ c>f structures A such that A I= @. A specificatim irt L is a pair* (T, @) with TE T 

aIId ~0 ~-1 f2( 7). A class K r_ . ..fruct( T) is tailed L-definalile if there is a spccificati~~n 

( T. (/I) in I, huch that K = ;%Ion( @) CT K (7). In this case we call K the CUSS dqfir~ed 

hy ( r. a). Axioms i 1) and (2) say that specification languages do not make a 

distinction between isomorphic structures. Axioms (3) and (4) say that names have 

no impact on definability; and changing of names does not violate validity of 

sentences in structures. Axioms (5) and (6) assure that validi’:y of sentences is 
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independent from operations and relations to which they are not related. Axiom 

(7) is for technical convenience only. 

It is important to notice that we have not assumed sentences to be of a special 

form. Sentences can be Giidel numbers, equations, second-order sentences or even 

functors-just any object in some formalism, which defines structures. Most 

naturally, sentences (or sets of sentences) can be axioms used in existing specification 

languages. We illustrate this definition of specification language by a number of 

examples that we will also use in Section 4 of this paper. \ 

2.3. k-xa niples of specification languages 



(t-l) if {p,: jE .I’ J is an indexed family of elements p, E: In?p( 7, w) then 

Elements in ~III~( r, o) can be interpreted as sets of implicational equations with 

set-many equations ifi the premise%;. If e is false, WC have actually a negation of an 

infinite coniunction. We call the elements of Imp( T, o) which do not contain false 
strict implicatiom. 

T’ne satisii;ction rc!ation for Iinp(7. 0 ) is defined accordingly: A ‘-$ p iff ~4 

sat isfics 9. 

We call classc~ dei&iCe by seks of finite Horn formulas qzrusi-wricties. ‘1 her-c 

ih some confusion in the literature and what we call strict Horn formula+ are 

simply calkd Horu formulas. Accordingly. quasi-varieties appear in the literature 

\omctime\ as classes definable bv strict Horn formulas. We shall call the latter 

strict qllnsi- wrieries. The nwirl d#ermces lies in the fact that strict quasi-varieties 

always contain the I(riciaI structure (which is the same as the empty artesian 

product ). 

ILlany more examples arc possible which show the usefulness and generality (4 

,NJ~ aykmak framework Among such examples are final data type specifications 

icf. [l.? _ , . ’ I]) specifications 3s proposed hv Maibaum et al. [7] or languages a3 

\t u&d by Kamin [ l-31 and Pergstra and .I.&er [6 1. 

The axiomatic framrzwork given above, is close& related to ‘institutions’ intro- 

duccd and studied by liurstall and &guen [3, 91. Institutions are defined in cdtegori- 

cnl terminology and are more general by allowing signatures and structures different 
from those 1st have defined. Axiomatic frameworks like the above are also studied 

in ;ibs,tract model theory. as illustrated in the collection of surveys in the monograph 

edited by Barwise and Feferman [3], especially. the e:<pository articles by Makowsky 
[ 171. But there the emphasis is more on closure operations and definabilily theor), 

on one side, and on algebraic construction in general on the other side. A discussion 

of the difference between abstract model theory and axiomatic semantics, as pro- 

posed here, may also be found in [ Ifi]. 

3. Reducibility and equivalence 

We introduce in this section the notions of redzrcihi!it). between ;;nd c~!!idetzc*c 

of specification languages. This allows us to study the rel:lt ionship betwr:en specifca- 

tion languages as ~~11 as their expressive power. 

3.1. Lk~firiitiot~ ( redlicihility arid rqniaalence) 

Given sperifi cntion languages L =(KK.L,k_) and L’=(T’,K’,L’,+=), a map- 
pill t. <‘ : 2 -+ 2”““’ ‘L with C(T) c Struct( T), and a cardinal cy. Then we say: 
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( 1 f L is (,C, CY ) -reducible to L’, and write L < pl L’, if 

9 E L,( 7) there is $ c L’(T) with card($) < cy such that 

We write L +.L’, if there is an a! such that L <F- L’, and we lvrite L <;‘: L’, if the 

cardinality of 4’/ cannot be bounded by some cardinal. 

(2) L is fdly cu-reducible to L’, written as L <‘I L’, if L is (C’, &reducible to L’ 
for every C. Analogously, we write L < L’ if there is an cy such that L<” L’, and 

A!,< ‘- L’ if there is no bound cy. 

(3) L is (C, cu)-equivalent to L’, denoted by L = T. L’ if L < ;‘L’ and L’ < ;‘- L. 

L is fully a-equivalent to L’, written as L =“L’, if L = ;‘- L’ for all C. Analogously 

to ( 1) and (2) we write L =Q- L’, L E ;.L’ arld L G L’ and L & L’. 

The role of the mapping C k to restrict the comparison of specification languages 

to algthras which arc in the domain of C. It turns reducibility into an extremeI> 
sensitive tool. The role of the cardinal (Y is to give additional information about the 

relation between specification languages. The following facts are easily derived from 

the definition. 

( 3) L <’ 1,’ or L (: ’ L’ if and onlv if every L-dcfin&le class is also L’ definable. 

(4) For any cardin;ll (Y :a o the re1ati.m c:: ;‘. is rcfeske and transitive. and = ;’ 
k an cquivaltznce rt2lation. 

Had we assumed sentences to be clostx~ under conjunction, this would tx trutl 

for all CY. 

4. Initial semantics 
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(3) A specification language L = ( T, K, L, I==) is called strongly algebraic, if all 

signatures contain at least one constam S-j-mbol and all non-empty t-definable 

classes contain a reachab’le structure. (In [ 111 strongly algebraic langcages are said 

to ‘admit reachable structures’. ) 

(4) An algebraic specification language L is said to admit initinl semantics, if all 

non-empty L-ckfinable classes K contain an initial object, i.e., there is an A E K 
such that for a!! R E K there is exactly one homomorphism h:A -+B. 

Note, if a specification language L is algebraic. then for every r E T the class 

Afg(~) is L-d&nable, since it is the variety specified by the empty set of equations. 

Thus K ( d = A/g ( 7) in any algebraic specification language. 

4.2. Examples and jacts 

( 1) The 1angu;iges L, (equational logic), L, (equatkx4 Horn logic) and L, 

(generalized implicational logic) defined in Section 2.3 are all algebraic and even 

strongly algebraic, provided every r E T contains at least a constant symbol. They 

also admit initial smaniics. For L1 this is well known. for the languages L4 and L5, 

this will also follow from the results below. \ 

(2) The I~euage L2 (equational logic with hidden functions) is algebraic, but 

does not admit initial semantics. This can be seen from the foilowing counter- 

example: Let (7, @) be ;\ specificatiorl i ii Z1 such that T is Gngle-sorted and contains 

only one unary operation symbol in. Let @ = {q,, . . . , q,} such that {p,, . . . , ps} is 

a set of equations defining the variety of groups of order 3 (i.e.. satisfying the 

equation s + x + s = 0). and pl, is the equation id(s) = A-. Then Mo& @) contains no 

algebra with t\\o elements, but an algebra with three elements, say .B. L31 7 is just 
CL. 
lilr’ j-element set with the identity function, which has the two-element set with 

ijentity as a sub-algebra. But this two-element set cannot be the reduct of some 

algebra whic!l satisfies Cp: so it cannot be &-definable. 
(3) The 1; nguage L(, (first-order logic) is not algebraic, even if restricted to 

Agebraic signatures only: though in the latter casL L, i(; an algebraic language, it 

does not admit initial semantics. 

The following arc 5ome useful facts: 

(4) Let IA” I!,‘. If L ih (st,rongly) algebraic, then L’ is also (strongly) ~&LLJIc. 

(S j Let I, c ‘If,‘, and L, and f,’ be (strongly) algebraic. lf L admits initial semantics. 

tht\n L’ ;ldnlit!J initial stmantics. 

If N’L’ rcstrjit our ;ittentioll to (rc;ichiikle) initial algebras (i.e., algebras wIthout 

endornc,r~~hism4). then the language L, Of simple tquatilons provides full tfxr)rCSsiVci 

po\it‘r. I‘hi\ stem\ from the fxt that ittl algcbrtl A is initial in some class of mlgebra!l 

itf it is initial in the class {A} iff A is endomorphism-free. Therefore we have the 

i‘ollouing t heorcm. 
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Proof. The proof is simple: We only have to build a spxification in L, from all the 

equations true in the initial object of the L-defined class under consideration. The 

converse is trivial by assumption that L is algebraic. 0 

A characterization of strongly algebraic specification languages which admit initial 

semantics, even if we allow arbitrary algebras, is given in the next theorem. Here 
we use the concept of full equivalence. 

We call a non-empty class K c Al@ T) irnplicntiorml if there is a specification 

(7, Q) in the language Ls (cf. Section 2.3( 5)) which defines K. We call K strictly 

ittzplimtiotml, if there is a specification (7, @) in the language L,,, consisting of strict 

implications only, which defines K. A specification laniruage L is called implicntioml 

~stridy itt~plicutiorral) if it is strongly algebraic and if all specifications in L are also 

specitic;\tions in f& (consisting of strict implications only). 

In the literature there is some confusion concerning this theorem. Mal’cev also 

allows the empty product and therefore one has to msu~nt” that the C‘~S K always 

contains the trivial structure. Howevtx his proof can be modifik:d to yield the above 

version of his theorem. In fact, this corresponds tt,j two version of his theorem: wt 

characterizing quasi-varieties and OIIC characterizing strict quasi-varieties in terms 

of the existence of suficiently many fret structurt‘5. 

The second theorem, which was given indepcncl<ntly by sc’vtx~l authors (SW. CF.. 

f 2. 5. 811 charxtcrizcs implic;ttion;~l classes: 

Roth theorems remain true if adopted to the many-sorted case. They are related 

to our framework by the following lemma. 
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Proof (idea). If an L-defintible class K is free, it contains an initial algebra, the free 
algebra of rank 0. Here we use our reachability assumption. Conversely, if L admits 

initial semantics, then any non-empty L-definable class K is free. Construct the 

free algebras as reducts of initial algebras in appropriate classes Exp( K) by interpret- 

ing the generating elements as zero-ary operations. Cl 

Proof of Theorem 4.2. Putting together Theorem 4.3, Theorem 4.4 and Lemma 

4.5, one easily obtains the result stated in Theorem 4.2. q 

The characteriz;jtion of initial semantics in terms of equivalence to sets of infinitary 

formulas is certainly not a result very appealing from a practical point of view. 

Indeed, it would be desirable to find characterizations which use only finitary 

formulas, and additmn~ally imply specifications which are recursively enumerable or 

even finite. A first step into this direction is based on the following classical 

characterization. 

Let us call a non-empty class K c Alg( T) universal Horn (strictly universal Horn), 

if there is specification (T, @) in the language L, (cf. Section 2.3(4)) which defines 

K (and consists of strict Horn formulas only). 

Theorem A6. @lcKinscp, 1943). Let K be u class definable by a set of first-order 

sentewes, then K is (strkrly) rrniversal tiwn if ad only if K contains all subalgebras 

and 1 rlon-empty ) direct products of its members. 

For a proof one may consult, e.g., [ 101. For an axiomatization of the consequence 

relation of finite Horn sentences one may consult [20]. 
We call a specification language L Horn if it is strongly algebraic and if all 

specifications in I, are also specifications in L,. 

Theorem 4.7. Let I, be an algebraic specification language which is fully w-reducible 

to the language L3, i. 4.. L s(“L.?, then L admits initial semantics if and only if it is 

fdlv equivalent to a speci_fication latlguage L’ which is Horn. . 

Thih result is a direct consequence of the previous theorems and the lemma 

men t ioncd a hove. 

M/c hacc Aeen that specification languages which are implicational or Horn are 

strongI>. ;@ubraic and admit initi;ll semantics. From what is known about implica- 

tions, this is not new. Rut Theorems 4.2 and 4.7 also state, in some sense, the 

~OWC~W and show th& IN other strongly algebraic specification language which 

admits initial semantics has more expressive power than Horn or implicational 

languages. This, in fact, makes clear, that any attempt to increase the expre!;,sive 

power beyond implicational or Horn languages, but with the desired property of 

;tdmitting initial semantics preserved, must fail. 

Str~@y algebraic specification languages which admit initial semantics are 

bounrled in their expressive power: From below by the language L, and from dme 
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by the language Lg. They form, with respect to lnion and intersection, up to 

equivalence, a complete lattice between L1 and Ls 

What happens if we weaken our assumption and drop the reachability require- 

ment? The characterization Theorems 4.2 and 4.7 become false for trivial reasons. 

But from the point of view of data structures it seems rather unnatural to deal with 

algebras (structures) where there are elements which are not the interpretation of 

some term. If such a situation occurs, one can usually achieve reachability by changing 

the signature. 
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