23 research outputs found

    Discrete Mereotopology

    Get PDF
    PublishedWhereas mereology, in the strict sense, is concerned solely with the part–whole relation, mereotopology extends mereology by including also the notion of connection, enabling one to distinguish, for example, between internal and peripheral parts, and between contact and separation. Mereotopology has been developed particularly within the Qualitative Spatial Reasoning research community, where it has been applied to, amongst other areas, geographical information science and image analysis. Most research in mereotopology has assumed that the entities being studied may be subdivided without limit, but a number of researchers have investigated mereotopological structures based on discrete spaces in which entities are built up from atomic elements that are not themselves subdivisible. This chapter presents an introductory treatment of mereotopology and its discrete variant, and provides references for readers interested in pursuing this subject in further detail

    Modal logic of planar polygons

    Get PDF
    We study the modal logic of the closure algebra P2P_2, generated by the set of all polygons in the Euclidean plane R2\mathbb{R}^2. We show that this logic is finitely axiomatizable, is complete with respect to the class of frames we call "crown" frames, is not first order definable, does not have the Craig interpolation property, and its validity problem is PSPACE-complete

    Mathematical methods in region-based theories of space: the case of Whitehead points

    Full text link
    One of the main goals of region-based theories of space is to formulate a geometrically appealing definition of points. The most famous definition of this kind is probably due to Whitehead. However, to conclude that the objects defined are points indeed, one should show that they are points of a geometrical or a topological space. So far, this part of Whitehead's theory was missing: no spaces of Whitehead points have ever been constructed. This paper intends to fill this gap via demonstration of how the development of duality theory for Boolean and Boolean contact algebras lets us show that Whitehead's method of extensive abstraction offers a~construction of objects that are fundamental building blocks of specific topological spaces

    Mereotopological Connection

    Get PDF
    The paper outlines a model-theoretic framework for investigating and comparing a variety of mereotopological theories. In the first part we consider different ways of characterizing a mereotopology with respect to (i) the intended interpretation of the connection primitive, and (ii) the composition of the admissible domains of quantification (e.g., whether or not they include boundary elements). The second part extends this study by considering two further dimensions along which different patterns of topological connection can be classified—the strength of the connection and its multiplicity

    Relation algebras and their application in temporal and spatial reasoning

    Get PDF
    Abstract Qualitative temporal and spatial reasoning is in many cases based on binary relations such as before, after, starts, contains, contact, part of, and others derived from these by relational operators. The calculus of relation algebras is an equational formalism; it tells us which relations must exist, given several basic operations, such as Boolean operations on relations, relational composition and converse. Each equation in the calculus corresponds to a theorem, and, for a situation where there are only nitely many relations, one can construct a composition table which can serve as a look up table for the relations involved. Since the calculus handles relations, no knowledge about the concrete geometrical objects is necessary. In this sense, relational calculus is pointless. Relation algebras were introduced into temporal reasoning by Allen [1] and into spatial reasoning by Egenhofer and Sharm

    Generating Relation Algebras for Qualitative Spatial Reasoning

    Get PDF
    Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras

    Mereotopological Connection

    Get PDF
    corecore