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Abstract
Qualitative temporal and spatial reasoning is in many cases based on binary relations such as before,
after, starts, contains, contact, part of, and others derived from these by relational operators. The
calculus of relation algebras is an equational formalism; it tells us which relations must exist, given
several basic operations, such as Boolean operations on relations, relational composition and converse.
Each equation in the calculus corresponds to a theorem, and, for a situation where there are only
�nitely many relations, one can construct a composition table which can serve as a look up table
for the relations involved. Since the calculus handles relations, no knowledge about the concrete
geometrical objects is necessary. In this sense, relational calculus is �pointless�.
Relation algebras were introduced into temporal reasoning by Allen [1] and into spatial reasoning
by Egenhofer and Sharma [32]. The calculus of relation algebras is also well suited to handle binary
constraints as demonstrated e.g. by Ladkin and Maddux [55]. In the present paper I will give an
introduction to relation algebras, and an overview of their role in qualitative temporal and spatial
reasoning.

1 Introduction
1.1 Qualitative temporal and spatial reasoning
Qualitative temporal and spatial reasoning (QTSR) aims to express non�numerical relationships among
temporal and spatial objects. The basis for qualitative temporal reasoning (QTR) are relations between
points in time or relations between time intervals, such as

• Points in time � �before�, �after�, �at the same time�. Situations di�erent from linear time have
also been considered, for example, when the past is �xed, but the future is indeterministic, see e.g.
Figure 4.

• Time intervals � �meets�, �starts�, �ends�, see Figure 5,

Qualitative spatial reasoning (QSR) expresses relationships between regions, for example, in physical
space, such as

• Regions in the plane � �part of�, �in external contact�, �overlapping�, see Figure 6,
∗The author gratefully acknowledges support by the Natural Sciences and Engineering Research Council of Canada.
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• Cardinal directions � �North�, �East�, . . . .

Except for points in time, the basic entities of QTSR are sets of individual points, such as time intervals
or regions in space. Points are now second order de�nable as sets of regions, similar to the representation
of Boolean algebras, where points can be recovered as sets of ultra�lters. As pointed out by Gerla [38],
as early as 1835, Lobachevskij [64] already exhibited a �pointless� geometry by considering solids as the
basic entities and the relation of �contact� among them.

The formalization of the �part � of� relationship, together with the notion of �fusion�, goes back to
the mereological systems of Stanisªaw Le±niewski, developed from 1915 onwards [59, 60, 65, 92]. It may
be worthy of mention that Tarski was Le±niewski's doctoral student, indeed, his only one.

Based on earlier work of de Laguna [16], Whitehead [97] uses a relation �x is extensionally connected
with y� as the basic relation between regions. His system includes Le±niewski's mereology, and was not
formalized. Later, Grzegorczyk [39] and Clarke [14] gave axiomatizations of Whitehead's contact. More
recent spatial calculi include the Region Connection Calculus of Randell et al. [86] and the Occlusion
Calculus of Randell et al. [85] and Köhler [51].

Nowadays, �mereology� has almost become synonymous in the QSR community with the study of
spatial relations in appropriate domains. Since the frequently studied models of the structures are
interpreted in topological spaces, one also speaks of �mereotopology�, in particular, when topological
properties of regions such as �connected� or �convex� are considered [see e.g. 7, 82, 83].

1.2 Relation algebras
Why would relation algebras be interesting to researchers in the area of temporal or spatial reasoning?
As we have seen in the previous Section, a large part of (no pun intended) contemporary spatial reasoning
is based on the investigations of the properties of �part of� relations and their extensions to �contact
relations� in various domains.

The relational calculus (which should not be confused with relational algebra used in the theory
of relational databases) is an equational formalism; it tells us which relations must exist, given several
basic operations, such as Boolean operations on relations, relational composition and converse. Each
equation in the calculus corresponds to a theorem, and, for a situation where there are only �nitely
many relations, one can construct a composition table (de�ned below) which can serve as a look up table
for the relations involved. Since the calculus handles relations, no knowledge about the object domain
is necessary. In this sense, relational calculus is truly �pointless�.

Relations and their algebras have been studied since the latter half of the last century, e.g. by
de Morgan [17], Peirce [81] and Schröder [90]. In the seminal paper �On the calculus of relations�
[93], Tarski picked up where Schröder had left o� forty �ve years earlier. He gave two axiomatizations
of a theory of binary relations, one in the style of Hilbert and Ackermann, and one as an equational
formalism. At the end of this paper, Tarski raises some questions in the solution of which he would be
engaged for the rest of his life:

1. Is every model of the axiom system of the calculus of relations isomorphic to an algebra of binary
relations?

2. What is the expressive power of the calculus of relations? To what extent can this calculus provide
a framework for the development of �rst order logic or, indeed, Mathematics?

3. Is there a decision procedure for expressible �rst order sentences?

Tarski had proved in the late 1940s that set theory and number theory could be formulated in the
calculus of relation algebras:
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�It has even been shown that every statement from a given set of axioms can be reduced to
the problem of whether an equation is identically satis�ed in every relation algebra. One
could thus say that, in principle, the whole of mathematical research can be carried out by
studying identities in the arithmetic of relation algebras�. [13]

A full account of this appeared for the �rst time in 1987 after Tarski's death [95].
Relation algebras were introduced into temporal reasoning by Allen [1] and into spatial reasoning by

Egenhofer and Sharma [32], and Egenhofer [28] writes

�Spatial databases will bene�t from the composition table of topological relations if it is
applied during data acquisition to integrate independently collected topological information
and to derive new topological knowledge ; to detect consistency violations among spatial
data about some otherwise non�evident topological facts; or during query processing, when
spatial queries are less expensive to be executed or involve less objects.�

For a brief overview of the history of relation algebras and algebraic logic, I invite the reader to
consult [6] and also [72]. An introduction to relation algebras is given in [71], and for a more complete
treatment the reader is invited to consult the excellent book by Hirsch and Hodkinson [45].

This paper is organized as follows: After a brief introduction to binary relations and their algebras
in Section 2, I shall present several algebras of relations which have been studied in the context of
temporal�spatio reasoning. In Section 3 I will introduce abstract relation algebras (RAs) and present
their structural properties as well as their connection to algebras of binary relations. This will be followed
in Section 4 by a discussion of the expressiveness of algebras of relations. Section 5 will be devoted to the
question which relations must be necessarily present in any RCC model. I will also present a countable
model for the RCC calculus. Finally, Section 6 will be concerned with network satisfaction problems in
the relation algebraic context.

2 Binary relations and their algebras
A binary relation R on a set U is a subset of U × U , i.e. a set of ordered pairs 〈x, y〉 where x, y ∈ U .

I shall usually just speak of R as a relation, and instead of 〈x, y〉 ∈ R, I shall usually write xRy. The
collection of all binary relations on U is denoted by Rel(U). The smallest relation on U is the empty
relation, and the largest one the universal relation U × U which I will denote by V .

A pictorial representation of the fact that xRy can be given by drawing an arrow from x to y, which
is labeled R:

x
R - y

Each relation R induces a mapping U → 2U via the assignment x 7→ {y : xRy}. With some abuse of
notation I will write R(x) for this set.

We are going to introduce two operators on relations and a constant, namely, composition, converse,
and identity. The composition or relative multiplication R ◦ S of two relations is de�ned as

R ◦ S = {〈x, y〉 : (∃z)[xRz and zSy]} (2.1)
z
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R ◦ S - y
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Observe that x(R ◦S)y implies the existence of some z with xRz and zSy. This is sometimes called
existential import [9].

Another distinguished unary operator is relational converse or just converse:

R˘ = {〈y, x〉 : xRy}. (2.2)

The structural interplay between ◦ and ˘ is given by

Proposition 2.1. ˘ is an involution on the semigroup 〈Rel(U), ◦〉, i.e.
1. ˘ is bijective and of order two, i.e. x˘̆ = x.

2. (R ◦ S)̆ = S˘◦R˘ for all R,S ∈ Rel(U).

The identity relation {〈x, x〉 : x ∈ U} will be denoted by 1′, and its complement by 0′. Then,

Proposition 2.2. 〈Rel(U), ◦, 1′〉 is a monoid, i.e.

1. ◦ is associative.

2. 1′ ◦R = R ◦ 1′ = R for all R ∈ Rel(U).

Besides the semigroup structure 〈Rel(U), ◦, 1′〉, the collection of all relations on U is a Boolean
algebra 〈Rel(U),∩,∪,−, ∅, U2, 〉 under the set operations. Combining these structures we obtain the
full algebra of binary relations on U as 〈Rel(U),∩,∪,−, ∅, U2, ◦, ,̆ 1′〉. If A ⊆ Rel(U) is closed under
the distinguished operations and contains the constants, then we call it an algebra of binary relations
(BRA).

I shall usually identify algebras with their base set, and, with some abuse of notation, I will also
denote classes of algebras by the abbreviation of their type, e.g. BRA is also the class of all algebras of
binary relations. If A is an algebra and B is a subalgebra of A, I denote this by writing B ≤ A.

For R ⊆ Rel(U), let [R] be the subalgebra of Rel(U) generated by R. In other words, [R] is the
smallest subset of Rel(U) which is closed under the Boolean and relational operators, and contains the
constants.

Many properties of relations can be expressed by equations (or inclusions) among relations. Here are
a few examples:

R is re�exive ⇐⇒ (∀x)xRx,

⇐⇒ 1′ ⊆ R.

R is symmetric ⇐⇒ (∀x, y)[xRy ⇐⇒ yRx],
⇐⇒ R = R .̆

R is transitive ⇐⇒ (∀x, y, z)[xRy ∧ yRz =⇒ xRz],
⇐⇒ R ◦R ⊆ R.

R is dense ⇐⇒ (∀x)x(−R)x ∧ (∀x, y)[xRy =⇒ (∃z)xRzRy],
⇐⇒ R ∩ 1′ = ∅ ∧R ⊆ R ◦R,

⇐⇒ R ∩ (1′ ∪ −(R ◦R)) = ∅.
R is extensional ⇐⇒ (∀x, y)[R(x) = R(y) =⇒ x = y],

⇐⇒ [−(R ◦ −R )̆ ∩ −(R˘◦ −R)] ⊆ 1′.

As the last equivalence is not completely trivial and will be relevant for things to come, I will give a
proof:
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�=⇒�: Suppose that R is extensional and x[−(R ◦−R )̆∩−(R˘◦−R)]y; we need to show that x1′y,
i.e. that x = y. Assume w.l.o.g. that R(x) 6⊆ R(y); then there is some z such that xRz and y(−R)z, i.e.
xR ◦ −R y̆, contradicting our hypothesis. Therefore, R(x) = R(y), and the extensionality of R implies
that x = y.

�⇐=�: Suppose that the right hand side holds and that R(x) = R(y). Assume that x 6= y. Then,
xR ◦ −R y̆ or xR˘ ◦ −Ry. In the �rst case, there is some z such that xRz and z − R y̆, i.e. xRz and
y(−R)z. This contradicts R(x) = R(y). Similarly, the second case cannot hold, and it follows that
x = y. 2

If A is a �nite BRA, then, as a Boolean algebra, it is atomic, i.e.

(∀b ∈ A)[b 6= 0 =⇒ (∃a ∈ A)[(0 � a ≤ b) ∧ (∀c)[c ≤ a =⇒ c = 0 ∨ c = a]]].

In this case, the actions of the Boolean operators are uniquely determined by the atoms. To determine
the structure of A it is therefore enough to specify the relative multiplication and the converse operation.
This is usually done in a composition table (CT), which is a quadratic array. Rows and columns are
labeled with the atoms of A, and the cells contain sets of atoms (with the brackets usually omitted).

An entry T0, . . . , Tk in cell 〈R, S〉 of such a table means that R ◦ S = T0 ∪ · · · ∪ Tk. Such an entry
leads to two kinds of theorem:

(∀x, y, z)[xRz ∧ zSy =⇒ xT0y ∨ · · · ∨ xTky], (2.3)
(∀x, y)[xTiy =⇒ (∃z)xRz ∧ zSy]. (2.4)

If 1′ is an atom of A, we call the algebra integral1. In this case, 1′ need not be listed in the composition
table, since it is clear how composition with 1′ works. Observe that the converse of an atom is again an
atom, and that each atom either is contained in 1′ or disjoint from it; thus, in a relational representation
of a BRA, we can obtain the converse of R by looking for the unique element Q of the table for which
(R ◦Q) ∩ 1′ 6= ∅.

I need to mention another form of relational composition which has appeared in the literature [86],
and which works only in the �=⇒� direction given in (2.3). I will call this weak composition to distinguish
it from the �true� relational composition: Suppose that R is a set of relations on U , and R, S ∈ R. Then,

R ◦w S =
⋃
{T ∈ R : (R ◦ S) ∩ T 6= ∅}. (2.5)

A weak composition table (WCT) contains thus in 〈R, S〉 all relations T ∈ R for which (R ◦S)∩T 6= ∅,
and

x(R ◦w S)y ⇐⇒ (∃T ∈ R)[xTy and (R ◦ S) ∩ T 6= ∅]. (2.6)

I will call a WCT T extensional for A, if there is a BRA A whose composition table is T . We will
see that a WCT can be non-extensional for some structures and extensional for others. It is of prime
importance to �nd out whether a WCT can be the �real� composition table of a BRA, and, if so, what
the relations look like. Necessary and su�cient conditions for a WCT to be the composition table of a
relation algebra are given in Proposition 3.1.

2.1 Examples
Before I consider examples from the area of temporal and spatial reasoning, I want to present a com-
position table with di�erent interpretations. Let S be the disjoint union of a K3 and a K4 on a seven
element set U .
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Figure 1: The relation S, �rst version
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Table 1: The BRA A

◦ S T

S −T T

T T −T

S generates a BRA A on U with atoms S, T, 1′ and the composition shown in Table 1. Note that T is
the complement of S∪1′. If S is the relation shown in Figure 2, then the table of the BRA generated by
S will also be given by Table 1. This shows that di�erent BRAs can have the same algebraic structure,
and that, in general, the algebraic structure of a BRA is too weak to determine the size of the base set
or what the relations look like. Nevertheless, the expressive power of BRA can be surprisingly strong.
We shall return to this theme in Section 4.

Figure 2: The relation S, second version
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At the other end of the spectrum is the BRA generated by the relations shown in Figure 3.
The relation R is the pentagon, S is the pentagram, and together they generate the pentagonal

algebra P whose composition is given in Table 2. It can be shown that every BRA with such a table
must be de�ned on a base set U with �ve elements, say U = {0, 1, 2, 3, 4}, and consist of the relations
given in Figure 3 [4]. Thus,

xRy ⇐⇒ |x− y| mod 5 ∈ {1, 4}, xSy ⇐⇒ |x− y| mod 5 ∈ {2, 3}

It may be worthy to mention that, unlike the class of Boolean algebras, the class of BRAs is not
locally �nite, i.e. there are �nitely generated BRAs which are in�nite � take as an example the relation
R between natural numbers where nRm ⇐⇒ |n−m| = 1.

2.1.1 The point algebra
Our �rst temporal example is an algebra generated by the dense linear �ow of time without beginning
or end: Let U be the set Q of rational numbers, and let Pt ≤ Rel(U) be generated by the natural strict
ordering PP on Q. If xPPy, this can be interpreted as

1I will give another, but equivalent, de�nition in Section 3.

6



Figure 3: Pentagon and pentagram

R

S

0

1

23

4

xSy iff |x-y| = 2,3

xRy iff |x-y| = 1,4

Table 2: The pentagonal algebra

◦ R S

R 1′, S 0′

S 0′ 1′, R

Time point x occurs earlier than time point y.

The resulting relation algebra, called the point algebra, has the three atoms PP, PP ,̆ 1′ and composition
as in Table 3.

Table 3: The point algebra Pt

◦ PP PP˘
PP PP V

PP˘ V PP˘

Any representation of Pt must be on an in�nite set: Since PP ∩ PP˘ = ∅, we see that PP is
asymmetric. The fact that PP ◦ PP = PP tells us two things:

1. PP is transitive, since PP ◦ PP ⊆ PP .

2. PP is dense, since PP ⊆ PP ◦ PP , i.e. between two di�erent elements of U there is a third one:

(∀x, y)[xPPy =⇒ (∃z)(xPPz and zPPy)].

This implies that U is in�nite.

2.1.2 The left linear point algebra
The representation of the point algebra given above was generated by a dense linear order which can
be thought of as deterministic instance of time. This can be generalized to an indeterministic scenario:
Consider the ordering ≺ indicated in Figure 4; it is a strict dense partial order without endpoints and
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Figure 4: An ordering for L

densely branching. Thus, at any given point there are in�nitely many choices for the future. Furthermore,
≺ induces a sup � semilattice, and it is linearly ordered looking left into the past. These two properties
can be interpreted in the sense that two events have a common ancestor, and that the past is uniquely
determined. The BRA L generated by ≺ has four atoms, and its composition is given in Table 4; there
we set PP = ≺. L was introduced by Comer [15], and the �rst concrete representation of L was given
in [19].

Table 4: The algebra L

◦ PP PP˘ DC

PP PP 1 DC

PP˘ −DC PP˘ PP ,̆DC

DC PP, DC DC 1

2.1.3 The interval algebra
The most widely investigated relation algebra in the temporal context was given by Allen [1]. He has
presented 13 distinguished relations, which characterize the possible relations between closed intervals
of time. These are the six relations indicated in Figure 5, their converses, and the identity:

Together with their converses, they are the atoms of an integral BRA I on the set of all closed
intervals on the real line; its composition table can be found e.g. in [55]. Observe that this model is
�pointless� in the sense that the basic object in the ontology of time is the interval, as opposed to a
point.
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Table 5: Interval relations
before: {〈[q, r], [q′, r′]〉 : q < r < q′ < r′, q, r, q′, r′ ∈ R}
meets: {〈[q, r], [q′, r′]〉 : q < r = q′ < r′, q, r, q′, r′ ∈ R}

overlaps: {〈[q, r], [q′, r′]〉 : q < q′ < r < r′, q, r, q′, r′ ∈ R}
starts: {〈[q, r], [q′, r′]〉 : q = q′ < r < r′, q, r, q′, r′ ∈ R}
ends: {〈[q, r], [q′, r′]〉 : q′ < q < r = r′, q, r, q′, r′ ∈ R}

contains: {〈[q, r], [q′, r′]〉 : q < q′ < r′ < r, q, r, q′, r′ ∈ R}

Figure 5: Interval relations

2.1.4 Compass algebras
Compass algebras were introduced by Maddux [70, 73]. The domain of the relations are the points in
an n�dimensional Euclidean plane Rn. For each element ~v of Rn we de�ne two relations

D~v = {〈~x, ~y〉 ∈ Rn : (∃r ∈ R+)[~x + r · ~v = ~y]}, (2.7)
E~v = {〈~x, ~y〉 ∈ Rn : (∃r ∈ R)[~x + r · ~v = ~y]}. (2.8)

Here, R+ is the set of all positive real numbers. Observe that E~v = D~v ◦ D~v .̆ If ~v1, . . . ~vm ∈ Rn,
then Cn[~v1, . . . ~vm] is de�ned as the subalgebra of the full algebra of relations over Rn generated by
D ~v1

, . . . D ~vm . It is called the n�dimensional compass algebra determined by ~v1, . . . ~vm. The name for
these algebras comes from the 2�dimensional compass algebra determined by 〈1, 0〉, 〈0, 1〉. One can
interpret E〈1,0〉 as the �east�west� direction, and E〈0,1〉 as the �north�south� direction. Other directions
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are

1′ = D〈0,0〉 = identity,
a = D〈1,0〉 = east, b = a ◦ c = northeasterly
ă = D〈−1,0〉 = west, b̆ = ă ◦ c̆ = southwesterly
c = D〈0,1〉 = north d = ă ◦ c = northwesterly
c̆ = D〈0,−1〉 = south, d̆ = c̆ ◦ a = southeasterly.

These relations are the atoms of an integral RA whose composition table is given in Table 6.

Table 6: Composition table for the compass algebra C2[〈1, 0〉, 〈0, 1〉]

◦ a ă b b̆ c c̆ d d̆

a a 1′, a, ă b b̆ , c̆ , d̆ b d̆ b, c, d d̆

b b b, c, d b 1 b a, b, d̆ b, c, d a, b, d̆

c b d b d, ă , b̆ c 1′, c, c̆ d a, b, d̆

d b, c, d d b, c, d d, ă , b̆ d d, ă , b̆ d 1
ă 1′, a, ă ă b, c, d b̆ d b̆ d b̆ , c̆ , d̆

b̆ b̆ , c̆ , d̆ b̆ 1 b̆ d, ă , b̆ b̆ d, ă , b̆ b̆ , c̆ , d̆

c̆ d̆ b̆ a, b, d̆ b̆ 1′, c, c̆ c̆ d, ă , b̆ d̆

d̆ d̆ b̆ , c̆ , d̆ a, b, d̆ b̆ , c̆ , d̆ a, b, d̆ d̆ 1 d̆

An application based on a spatial planning problem is given in [70]. Cardinal directions were also
investigated by Frank [37].

2.1.5 The containment algebra
An �extension� of the point algebra to the two�dimensional case is the containment algebra C. Suppose
that U is the collection of all open (or closed) disks in the plane,and that xPPy ⇐⇒ x ( y. The BRA
C generated by PP on Rel(U) contains �ve atoms, and its composition is given in Table 7. According
to Ladkin and Maddux [55], C was �rst investigated by Ladkin & Hayes in the early 1980s; it has later
re�appeared as the �RCC5 table� in [10]. To see how the relations other than PP and PP˘ are generated

Table 7: The containment algebra C

◦ PP PP˘ PO DC

PP PP V PP, PO,DC DC

PP˘ −DC PP˘ PP ,̆ PO PP ,̆ PO,DC

PO PP, PO PP ,̆ PO, DC V PP ,̆ PO,DC

DC PP,PO, DC DC PP, PO, DC V
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let us �rst de�ne several auxiliary relations which we will need throughout the sequel:

P = PP ∪ 1′ part�of (2.9)
O = P˘◦ P overlap (2.10)
# = −(P ∪ P )̆ incomparable (2.11)

The relations are generated as follows:

PO = O \#,

DC = V \ (O ∪ P ∪ P )̆.

2.1.6 The closed disk algebra
Extending the point algebra to two dimensions led to the containment algebra. If we want to extend
the time interval relations to two dimensional space, a natural domain to choose is the set U of closed
(or open) disks. In this domain, we do not have the unique directions �left - right� of the real line any
more, and thus, for example, we cannot distinguish between the �starts� and the �ends� relations, and
between the �before� relation and its converse. In this spirit, we de�ne a binary relation C on U by
xCy ⇐⇒ x ∩ y 6= ∅. The BRA generated by C on U has the eight atoms

1′, DC,EC, PO, NTPP, NTPP ,̆ TPP, TPP ,̆ (2.12)

some of which are shown in Figure 6.

Figure 6: Closed disk relations

D
C

E
C

P
O

T
P

P

The relational de�nition of these and some other relations are given in Table 8, and its relational
composition is given in Table 9. It has recently been shown that the collection of simple regions in
the Euclidean plane � put forward by Egenhofer [26] as a domain for spatial reasoning � is also a
representation of this algebra [61].

The composition table of Dc has been considered by Egenhofer and Sharma [33] and Smith and
Park [91] in the context of binary topological relations, and is also known as the RCC8 table [86], see
Section 5. The algebra Dc (as an abstract relation algebra to be explained below) is isomorphic to the
subalgebra of I generated by the union of the �before� relation and its converse.
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Table 8: Relational de�nition of the atoms of Dc

P = −(C ◦ −C), part of (2.13)
PP = P ∩ −1′. proper part of (2.14)

O = P˘◦ P overlap (2.15)
PO = O ∩ −(P ∪ P )̆ partial overlap (2.16)
EC = C ∩ −O external contact (2.17)

TPP = PP ∩ (EC ◦ EC) tangential proper part (2.18)
NTPP = PP ∩ −TPP non�tangential proper part (2.19)

DC = −C disconnected (2.20)

Table 9: The composition table of Dc
C

O◦ DR PP PP˘
DC EC PO TPP NTPP TPP˘ NTPP˘

DC 1 DR,PO,PP DR,PO,PP DR,PO,PP DR,PO,PP DC DC
EC DR,PO,PP˘ 1',DR,PO,

TPP TPP˘
DR,PO,PP EC,PO,PP PO,PP DR DC

PO DR,PO,PP˘ DR,PO,PP˘ 1 PO,PP PO,PP DR,PO,PP˘ DR,PO,PP˘
TPP DC DR DR,PO,PP PP NTPP 1',DR,PO,

TPP,TPP˘
DR,PO, PP˘

NTPP DC DC DR,PO,PP NTPP NTPP DR,PO,PP 1
TPP˘ DR,PO,PP˘ EC,PO,PP˘ PO,PP˘ 1',PO,

TPP,TPP˘
PO,PP PP˘ NTPP˘

NTPP˘ DR,PO,PP˘ PO,PP˘ PO,PP˘ PO,PP˘ O ∪1' NTPP˘ NTPP˘

2.1.7 The complemented closed disk algebra
If we take as a domain all closed disks in the plane along with the closure of their complements, the
connection relation C as de�ned for the closed disk algebra, generates an RA with 11 atoms. Com-
pared to the closed disk algebra, the relation EC splits into ECD and ECN , and PO splits into
PODZ, PODY,PON . The de�nitions are given in Table 10. This algebra was �rst considered in
[22](where its composition table can be found), and the representation was discovered by Li et al. [63].
They also point out that these relations can be described by the 9�intersection model of Egenhofer and
Herring [30], Egenhofer [34].

2.1.8 The Boolean order algebra
All previous examples disregarded a possible algebraic structure on the universe of the relations. The
next example is, in a way, an extension of the open disk model of the containment algebra to domains
whose underlying algebraic structure is a Boolean algebra. Suppose that B is an atomless Boolean
algebra, B+ = B \{0, 1}, and that PP is the relation de�ned on B+ by xPPy ⇐⇒ x � y. Furthermore,
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Table 10: Complemented closed disk relations

ECD = −(P ◦ P )̆ ∩ −(P˘◦ P )
ECN = EC ∩ −ECD

PODZ = ECD ◦NTTP

PODY = ECD ◦ TPP

PON = PO ∩ −(PODZ ∪ PODY )

de�ne the following relations on B+:

T = (PP ◦ PP )̆ ∩ −1′ = {〈x, z〉 : x 6= z, x + z 6= 1}
PON = O ∩# ∩ T = {〈x, z〉 : x#z, x · z 6= 0, x + z 6= 1}
POD = O ∩# ∩ −T = {〈x, z〉 : x#z, x · z 6= 0, x + z = 1}
DN = −O ∩ T = {〈x, z〉 : x · z = 0, x + z 6= 1}
DD = −(O ∪ T ∪ 1′) = {〈x, z〉 : x · z = 0, x + z = 1},

where x, z ∈ B+. Then, PP generates a BRA G with atoms

1′, PP, PP ,̆ PON, POD, DN, DD

whose composition table is given in Table 11.

Table 11: The Boolean order algebra G
DR O◦ DN DD PON POD PP PP˘

DN −(POD ∪DD) PP DN,PON,PP PP −(P˘∪ 1′) DN
DD PP˘ 1' PON PP POD DN
PON DN, PON, PP˘ PON 1 PON,POD,PP PON,POD,PP DN,PON, PP˘

POD PP˘ PP˘ PON,POD, PP˘ O ∪ 1′ POD −(PP ∪ 1′)
PP DN DN DN, PON, PP −(PP ∪ 1′) PP −(POD ∪DD)

PP˘ −(PP ∪ 1′) POD PON,POD, PP˘ POD O ∪ 1′ PP˘

3 Abstract relation algebras
One of Tarski's aims was to give a formal axiomatization of the calculus of relatives [93]. This led to
the de�nition of the class of relation algebras.

A relation algebra (RA)
〈A, +, ·,−, 0, 1, ◦, ,̆ 1′〉

is a structure of type 〈2, 2, 1, 0, 0, 2, 1, 0〉 which satis�es

(R0). 〈A, +, ·,−, 0, 1〉 is a Boolean algebra.
(R1). x ◦ (y ◦ z) = (x ◦ y) ◦ z.
(R2). (x + y) ◦ z = (x ◦ z) + (y ◦ z).
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(R3). x ◦ 1′ = x.
(R4). x˘̆ = x.
(R5). (x + y)̆ = x˘+ y .̆
(R6). (x ◦ y)̆ = y˘◦ x .̆
(R7). (x˘◦ −(x ◦ y)) ≤ −y.

This axiom system is the one given in [40]. With some abuse of language, I will denote the class of
relation algebras also by RA.

A decisive property of RA is the following cycle law, which is de Morgan's Theorem K [17]:

The following conditions are equivalent: (3.1)
(a ◦ b) · c 6= 0, (ă ◦ c) · b 6= 0, (c ◦ b̆ ) · a 6= 0.

If a, b, c are concrete relations over some domain, (3.1) together with the properties of the converse
relation, express the fact that if one of the directed triangles in Figure 7 is satisfable with x, y, z, then
so are the others. This simpli�es the computation and storage of composition tables, as well as checking

Figure 7: Cycle law for binary relations

a a^ cb c b^

x z z yy x

y x z

c b a

b c^

a^

b^ a^

c^

c^ a

b^
y

z

x z

y

x z

x

y

for path consistency (as de�ned below).
The following Proposition makes precise when a composition table is indeed the composition table

of a relation algebra:

Proposition 3.1. [47] Let B be a complete and atomic Boolean algebra with 1′ ∈ B a distinguished
element, ˘ a unary operation on B, and ◦ a binary operation, both of which are completely distributive
over +, and for which 0˘ = 0 and (0 ◦ x) = (x ◦ 0) = 0. Let At(B) be the set of atoms of B. Then,
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〈B, ◦, ,̆ 1′〉 is an RA if and only if the following conditions hold for all x, y, z ∈ At(B):

x˘ ∈ At(B).
x ◦ (y ◦ z) ≤ (x ◦ y) ◦ z.

x ◦ 1′ = 1′.
x ≤ y ◦ z implies x˘≤ z˘◦ y˘ and y ≤ x ◦ z .̆

These conditions can be used to check whether a given weak composition table is indeed the com-
position table of a relation algebra. There are several implementations for the arithmetic of relations
algebras, e.g. Kahl and Schmidt [50] and Behnke et al. [8].

It is not hard to see that each BRA is an RA; more generally, an RA is called representable (RRA)
if it is isomorphic to a subalgebra of a direct product of BRAs.

For things to come, I will introduce some more concepts at this stage. In analogy to rings, an RA A
is called integral, if for all x, y ∈ A,

x ◦ y = 0 implies x = 0 or y = 0. (3.2)

It is well know that (3.2) is equivalent to

1′ is an atom of A. (3.3)

Another concept we require is that of residuation. Since 〈A, ◦, 1′〉 is in general not a group, the equation
a ◦ x = b does not necessarily have a solution. However, it can be shown that the inequality

a ◦ x ≤ b

always has a greatest solution, called the (right) residual of b by a, written as a�r b. The concept of
residuation is intimately related to Axiom (3.1) of RAs, cf. Maddux [72], Pratt [84], and also Birkho�
[12].

The residual can be expressed as an RA term in a and b by

a�r b = −(ă ◦ −b). (3.4)

If R, S ∈ Rel(U), then the residual is given by the condition

x(R�r S)y ⇐⇒ R (̆x) ⊆ S (̆y). (3.5)

One of the �rst questions which arose was whether the system (R0) � (R7) captures RRA, i.e. whether
each RA is representable. Unfortunately, this is not the case; the �rst non-representable RA was found
by Lyndon [66]. It had 56 atoms and was constructed using projective planes; other examples were
subsequently given by [46] and [67]. A non-representable RA A of smallest size was found by McKenzie
[74]. It is integral, has four atoms, and is 1-generated; its composition is listed in Table 12.

It is not hard to show that A is not representable: Assume that a, b, c ∈ Rel(U) for some U ; since A
is integral, we can assume that 1 = U × U . Now,

1. 1′ ≤ b ◦ c implies that c = b̆ .

2. 1′ · b = 0, and b ◦ b = b imply that b is a strict dense partial order. I will sometimes write � for b,
and ≤ for b + 1′.

3. b ◦ c = c ◦ b = 1 imply that for each pair 〈x, y〉, there are p, q ∈ U such that p ≤ x, y and x, y ≤ q. .
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Table 12: A non-representable RA

◦ b c d

b b 1 b + d
c 1 c c + d
d b + d c + d b + c + 1′

4. d ◦ d = b + b̆ + 1′ implies that x, y are comparable if and only if they are incomparable to a third
element.

These conditions cannot live together: Suppose that x, y ∈ U are incomparable, and that p ≤ x, y ≤ q
as provided by 3. above. By 4. there is an s ∈ U such that s is incomparable to p and x. If s were
incomparable to y, then, by the other direction of 4., x would be comparable to y, which is not the case.
Hence, s is comparable to y; furthermore, s � y, since otherwise, p ≤ y ≤ s. Similarly, there is some
t ∈ U , such that t � x, and t is incomparable to p and y. Since p is incomparable to both s and t, 4.
implies that s and t are comparable. If s ≤ t, then s ≤ x, and if t ≤ s, then t ≤ y, a contradiction in
both cases. 2

The following proposition summarizes the structural properties of RRA:
Proposition 3.2. 1. RRA is an equational class [94].

2. The equational theory of RRA is undecidable [see 95, Section 8.7. for references].
3. RRA is not �nitely axiomatisable [75].
4. RRA is not axiomatisable with �nitely many variables [48].

As already noted by Tarski, at times the property of associativity of the relational composition is
too strong, and weaker properties are considered [69]. A structure similar to RAs is called a

1. non-associative RA (NA), if it satis�es (R0) and (R2) � (R7).

2. weakly associative RA (WA), if it satis�es (R0) and (R2) � (R7) and

((1′ · x) ◦ 1) ◦ 1 = (1′ · x) ◦ (1 ◦ 1). (3.6)

3. semi-associative RA (SA), if it satis�es (R0) and (R2) � (R7) and

(x ◦ 1) ◦ 1 = x ◦ (1 ◦ 1). (3.7)

It was shown by Maddux [69] that

RA ⊆ SA ⊆ WA ⊆ NA.

An alternative axiomatization of NA consists of (R0), (R2), (R4), (R5), the identities

1′ ◦ x = x ◦ 1′ = x,

and de Morgan's Theorem K (3.1) [69].
The equational theory of WA is decidable [80]. Moreover, each WA is isomorphic to a subalgebra

of an algebra 〈2W ,∪,∩,−W , ∅,W, ◦W , ,̆ 1′〉, where W is a re�exive and symmetric binary relation on a
set U, and x ◦W y = (x ◦ y) ∩W . It may be intersting to note that the �container�surface� algebra of
Egenhofer and Rodríguez [31] is a WA.

For many decidability results for various classes of relation algebras, as well as pointers to earlier
work, the reader will �nd [3] and [53] valuable sources.
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4 The expressiveness of BRAs
The question arises what can be expressed by the logic of relation algebras. To answer this question
needs some preparation. A �rst order language consists of predicate symbols, logical connectives ∧,
¬, the existential quanti�er ∃ and equality, and the usual abbreviations. When considering relational
structures 〈U,R〉 as �rst order models, I tacitly assume that an appropriate �rst order language L is
given. For notational convenience, I shall sometimes identify predicate symbols with the predicates
which interpret them, when no confusion is likely to arise.

If ϕ(x, y) is a formula with the free variables x, y, and 〈U,R〉 is a model of the language L, then the
truth set of ϕ(x, y) in the model 〈U,R〉 is the relation

def ϕ(x, y) = {〈a, b〉 ∈ U2 : 〈U,R〉 |= ϕ(x|a, y|b).
If S ⊆ U2 and S = def ϕ(x, y) for some ϕ, then S is called de�nable in the model 〈U,R〉. Similarly, we
extend this de�nition to languages with more than one predicate symbol and formulas with other than
two free variables. For example, (the result of) relative composition is de�nable by the formula

ϕ(x, y) : (∃z)[xRz ∧ zSy],

and the fact that x is R�related to every element is expressed by
ϕ(x) : (∀y)xRy.

A relation S is RA de�nable from R0, . . . , Rk, if it is in the BRA generated by the Ri. In other
words, S is RA de�nable from the Ri, if it is equal to a relational term constructed from the Ri and the
relational operators and constants.

As an example which we will need later, I shall show how extreme elements of an ordered set can
be relationally de�ned. As a consequence of this, when considering relation algebras which contain an
order relation, it is enough to look at the base set with the extreme elements removed.

Let 〈U,P 〉 be an ordered set with largest element 1 and smallest element 0; furthermore, set PP =
P∩0′. Let U0 = U\{1}, U1 = {1}, and Uij = Ui×Uj for i, j ≤ 1. We �rst observe that 〈1, 1〉 6∈ PP ◦PP ,̆
since there is no element of U which is strictly greater than 1. On the other hand, 〈x, x〉 ∈ PP ◦ PP˘
for all x 6= 1, since xPP1PP˘x. Thus,

U11 = 1′ ∩ −[(PP ◦ PP )̆ ∩ 1′],

de�nes {〈1, 1〉}. Now, set
1′u = 1′ ∩ −U11.

Then,

U00 = 1′u ◦ U2 ◦ 1′u,

U10 = U11 ◦ U2 ◦ U00,

U01 = U00 ◦ U2 ◦ U11,

which shows that all Uij and 1′u are RA de�nable from P . The equation which tells us that 1 is the
largest element with respect to P now is

U01 ⊆ P. (4.1)
Similarly, we can RA de�ne {0}.

The expressiveness of BRAs corresponds to a fragment of �rst order logic, and the following funda-
mental result is due to A. Tarski [see 95]:
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Proposition 4.1. If R ⊆ Rel(U), then [R] is the set of all binary relations on U which are de�nable
in the (language of the) relational structure 〈U,R〉 by �rst order formulas using at most three variables,
two of which are free.

The question arises: Is this as good as it gets? Let us call a BRA A �rst order closed, if it contains
every relation which is �rst order de�nable in A, regarded as a relational structure. It is worthy to
point out that �rst order closedness is domain dependent, i.e. it is a property of a concrete relational
representations of an (abstract) RA.

For small sets, we have the following

Proposition 4.2. [2] Every BRA on a set with at most six elements is �rst order closed.

Hence, on small sets, RA logic, i.e. the three variable fragment of �rst order logic, is as powerful as
full �rst order logic. In the sequel, we will meet many other �rst order closed BRAs.

Look again at the RA of Table 1, and its two representations. The K3 in the right representation is
�rst order de�nable by

ϕ(x, y) : xSz ∧ (∀u)(∀z)[xRu ∧ yRu ∧ xRz ∧ yRz

=⇒ x = u ∨ x = z ∨ y = u ∨ y = z ∨ u = z].

As a relation, the K3 is not in the BRA A generated by S1, and thus, A is not �rst order closed. On
the other hand, the representation of A shown in Figure 2 is �rst order closed by Proposition 4.2.

In our context, examples of �rst order closed algebras are

• Any representation of the point algebra over the set of rational numbers.

• The representation of the left linear point algebra [42].

• The interval representation of Allen's algebra I [42].

• The representation of the Boolean order algebra over all proper nonempty regular closed sets of
the Euclidean plane [23].

In all these cases, RA logic is su�cient to describe the �rst order properties of these structures.

5 RCC algebras
The region connection calculus (RCC) of [86] is one of the widely studied systems of qualitative spatial
reasoning. RCC structures are of the form 〈B, C〉, where B is a Boolean algebra and C is a binary
relation on the set B+ = B \ {0, 1} such that for all x, y ∈ B+,

RCC 1. C is symmetric and re�exive.
RCC 2. xC − x.
RCC 3. xC(y + z) implies xCy or xCz,
RCC 4. xCy and y ≤ z imply xCz.
RCC 5. For all x ∈ B+ there is some y ∈ B+ such that 〈x, y〉 6∈ C.

One prominent model of the RCC is the Boolean algebra of regular open sets RegOp(X) of a connected
regular T1 space (such as a Euclidean space Rn), with xCy ⇐⇒ cl(x) ∩ cl(y) 6= ∅ for x, y 6= ∅, X. A
representation Theorem by Düntsch and Winter [25] shows that each RCC model is isomorphic to a
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dense substructure of RegOp(X) for a weakly regular connected T1 space X. Here, a space is weakly
regular, if it has a basis of regular open sets, and for each non�empty open u, there is some non�empty
open v such that cl(v) ⊆ u. Each regular space is weakly regular, but not vice versa. This result shows
two things:

• Algebraic reasoning is equivalent to topological reasoning in the class of weakly regular connected
T1 spaces.

• The RCC calculus, as it stands, is too weak to capture regularity of topological spaces, and therefore
not the best instrument for topological reasoning in regular spaces.

Since RCC is a �rst order theory with in�nite models it must have a countable model, and here is
one construction of such a model: Suppose that 〈L,≤〉 is a countable dense linear order with smallest
element m, and that ∞ 6∈ L. Let L∞ = L∪{∞}, and extend the ordering of L to L∞ by setting y ≤ ∞
for all y ∈ L∞. The set IntAlg(L) of �nite unions of left-closed, right-open intervals of L∞ is an atomless
Boolean algebra, called the interval algebra of L (see [52], p 10, for details). Each x ∈ IntAlg(L){m}
can be written in the form

[x0
0, x

1
0) ∪ [x0

1, x
1
1) ∪ . . . ∪ [x0

t(x), x
1
t(x)),

where xi
j ∈ L+, x0

j < x1
j < x0

j+1, and the intervals [x0
j , x

1
j ] are pairwise disjoint. These intervals are

called relevant for x. For each x 6= ∅, we let

CP (x) = {x0
j : j ≤ t(x)} ∪ {x1

j : j ≤ t(x)}
be the set of critical points of x. Now we de�ne for m � x, y �∞,

xCy
def⇐⇒ x · y > 0 or CP (x) ∩ CP (y) 6= ∅. (5.1)

We now have

Proposition 5.1. [24] 〈IntAlg(L), C〉 is an RCC model.

I will �nish the introduction to RCC structures with a construction of RCC models from a given
model:

Proposition 5.2. [24] Let 〈B,C〉 be an RCC model, F,G be distinct maximal �lters of B, and R =
C ∪ (F ×G) ∪ (G× F ). Then, 〈B, R〉 is an RCC model.

Seeing that an RCC model is, in particular, a relational structure, the question arises what the
relation algebras generated by C look like on various models. It was already noted in [86] that the
relations

TPP, TPP ,̆NTPP,NTPP ,̆DC, EC, PO, 1′ (5.2)

which have been de�ned above, are present in the relation algebra generated by C in any RCC model,
and they are usually taken as the base relations of the RCC, called RCC8.

A weak composition table for the relations of (5.2) was presented in [86]; this table had the same
cell entries as the �real� composition table of the closed disk algebra Dc, given in Table 9. It became
clear, however, that this table could not be extensional in any RCC model: Suppose that 〈B, C〉 is such
a model, and consider, for example, the entry

TPP ◦w TPP˘ = 1′ ∪DC ∪ EC ∪ PO ∪ TPP ∪ TPP .̆ (5.3)
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Figure 8: sDCt, sDCw, tDCw, s + t + w � 1, aNTPPs, bNTPPt.

s t

b

w

a

c

If x ∈ B \ 〈0, 1〉, then xEC − x, but x[−(TPP ◦ TPP )̆] − x, so that EC 6⊆ TPP ◦ TPP ,̆ and thus,
the table is not extensional for 〈B, C〉. It was conjectured by Bennett et al. [11] that every example
which shows that a cell in the weak RCC8 table is not extensional must involve the universal region.
However, it was shown by Li and Ying [62] that this fails in every possible way. For each instance of
R ◦w S 6= R ◦ S an example is given which does not involve the universal region.

It is problematic to regard the RCC calculus as a spatial counterpart to Allen's interval algebra, as
proposed in [89]:

• The domain of intervals considered by Allen is not assumed to have a particular algebraic structure,
while RCC models are Boolean algebras with a contact relation which is not independent of the
algebraic structure.

• The relations of Allen's interval domain are the atoms of the interval algebra I, while the RCC8
relations are never the atoms of a relation algebra generated by the contact relation of a model of
RCC.

Possible spatial counterparts to I are the extensional interpretations of the RCC8 table given above �
the set of closed disks or the set of planar regions bounded by Jordan curves.

For these reasons, closed disks are not a proper illustration of the atoms of Dc, when interpreted in
the RCC calculus. The situations where the relations hold, and the landscape of relations which must
exist in an RCC model is much richer than the pictures of closed disks indicate. As a simple example, let
x be the union of two disjoint disks y and z. Then, yTPPx, zTPPx, which, topologically, is a totally
di�erent situation from the TPP picture of Figure 6.

Currently, no relation algebra arising from an RCC model is completely known, but partial results
are available: Observing that EC splits into two relations ECN and ECD, one could conjecture that
the complemented closed disk algebra could provide a composition table which would also work for RCC
models. This turned out not to be the case; starting from the relations de�ned in Table 10, Düntsch
et al. [22] give a list of 25 disjoint relations and show that they are not empty in any RCC model; these
are shown in Table 13.

To give an impression of some of these relations in the algebra of regular opens sets in the Euclidean
plane, consider Figures 8 � 10.

xTPPAz: In Figure 9 set x = a + t, z = s + t.
xTPPBz: In Figure 8, set x = s, z = s + t or x = a∗ · s, z = s.
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Table 13: Relations present in every RCC model

1′
TPPA = TPP ∩ (ECN ◦ TPP )
TPPA˘ = TPP˘∩ (ECN ◦ TPP )̆
TPPB = TPP ∩ −(ECN ◦ TPP )
TPPB˘ = TPP˘∩ −(ECN ◦ TPP )̆
NTPP
NTPP˘
PONY A1 = PON ∩ (ECN ◦ TPP ) ∩ −(ECN ◦ TPP )̆ ∩ (TPP ◦ TPP )̆ ∩ (TPP˘◦ TPP )
PONY A1̆ = PON ∩ (ECN ◦ TPP )̆ ∩ −(ECN ◦ TPP ) ∩ (TPP ◦ TPP )̆ ∩ (TPP˘◦ TPP )
PONY A2 = PON ∩ (ECN ◦ TPP ) ∩ −(ECN ◦ TPP )̆ ∩ (TPP ◦ TPP )̆ ∩ −(TPP˘◦ TPP )
PONY A2̆ = PON ∩ (ECN ◦ TPP )̆ ∩ −(ECN ◦ TPP ) ∩ (TPP ◦ TPP )̆ ∩ −(TPP˘◦ TPP )
PONY B = PON ∩ (ECN ◦ TPP ) ∩ −(ECN ◦ TPP )̆ ∩ −(TPP ◦ TPP )̆
PONY B˘ = PON ∩ (ECN ◦ TPP )̆ ∩ −(ECN ◦ TPP ) ∩ −(TPP ◦ TPP )̆
PONXA1 = PON ∩ (ECN ◦ TPP ) ∩ (ECN ◦ TPP )̆ ∩ (TPP ◦ TPP )̆ ∩ (TPP˘◦ TPP )
PONXA2 = PON ∩ (ECN ◦ TPP ) ∩ (ECN ◦ TPP )̆ ∩ (TPP ◦ TPP )̆ ∩ −(TPP˘◦ TPP )
PONXB1 = PON ∩ (ECN ◦ TPP ) ∩ (ECN ◦ TPP )̆ ∩ −(TPP ◦ TPP )̆ ∩ (TPP˘◦ TPP )
PONXB2 = PON ∩ (ECN ◦ TPP ) ∩ (ECN ◦ TPP )̆ ∩ −(TPP ◦ TPP )̆ ∩ −(TPP˘◦ TPP )
PONZ = PON ∩ −(ECN ◦ TPP ) ∩ −(ECN ◦ TPP )̆
PODY A = ECD ◦ (TPP ∩ (ECN ◦ TPP ))
PODY B = ECD ◦ (TPP ∩ −(ECN ◦ TPP ))
PODZ = ECD ◦NTPP
ECNA = ECN ∩ (TPP ◦ TPP )̆
ECNB = ECN ∩ −(TPP ◦ TPP )̆
ECD
DC

xPONY A1z: In Figure 8, set x = a + t + w, z = s + w.
xPONY A2z: In Figure 8, set x = t + a, z = s.
xPONY Bz: In Figure 9, set x = b, z = s · a∗.
xPONXA1z: In Figure 8, set x = t + a, z = s + b.
xPONXA2z: In Figure 8, set x = s, z = a + c.
xPONXB1z: In Figure 10, set x = s · (a + c)∗, z = s∗ + b.
xPONXB2z: In Figure 9, set x = b, z = a + s · b∗.
xPONZz: In Figure 8, set x = s + t · b∗, z = t + s · a∗.
The topological properties of some of these relations are shown in Table 14. There, ∂(x) denotes

the topological boundary of x. From these, the topological characterizations of most of the remaining
ones can be determined, since they are intersections, respectively, complements of the given ones. For

Figure 9: aNTPPbNTPPs � 1

a

b

s
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Figure 10: aNTPPb, bNTPPs, cNTPPs, bDCc

c
a

b
s

example,

xTPPAz ⇐⇒x(TPP ∩ (ECN ◦ TPP ))z
⇐⇒x ( z, ∂(x) ∩ ∂(−x ∩ z) 6= ∅,

∂(z) ∩ ∂(−x ∩ z) 6= ∅, cl(x) ∪ cl(z) 6= X.

Table 14: Topological interpretation of some RCC25 relations

Atom Name x, z ∈ RegOp(X) \ {∅, X}
Base relations

TPP x ( z, ∂(x) ∩ ∂(z) 6= ∅
∗ NTPP cl(x) ( z

PON x 6⊆ z, z 6⊆ x, x ∩ z 6= ∅, cl(x) ∪ cl(z) 6= X
POD x 6⊆ z, z 6⊆ x, x ∩ z 6= ∅, cl(x) ∪ cl(z) = X
ECN x ∩ z = ∅, ∂(x) ∩ ∂(z) 6= ∅, cl(x) ∪ cl(z) 6= X

∗ ECD x ∩ z = ∅, ∂(x) ∩ ∂(z) 6= ∅, cl(x) ∪ cl(z) = X
∗ DC cl(x) ∩ cl(z) = ∅

Other relations
ECN ◦ TPP ∂(x) ∩ ∂(−x ∩ z) 6= ∅, ∂(z) ∩ ∂(−x ∩ z) 6= ∅, cl(x) ∪

cl(z) 6= X
TPP ◦ TPP˘ ∂(x)∩∂(int(cl(x∪z))) 6= ∅, ∂(z)∩∂(int(cl(x∪z))) 6=

∅
TPP˘◦ TPP ∂(x) ∩ ∂(x ∩ z) 6= ∅, ∂(z) ∩ ∂(x ∩ z) 6= ∅
ECD ◦NTPP x ∪ z = X

∗ PODZ x ∪ z = X
∗ ECNA xECNz, ∂(x)∩∂(x+z) 6= ∅, ∂(z)∩∂( x + z ) 6= ∅
∗ ECNB xECNz, cl(x) ⊆ x + z or cl(z) ⊆ x + z

It turns out that in the RCC model of the regular open (or closed) sets of a connected regular T1

space X, the relation algebra generated by C is not �nite [77]. The key to this result is the construction
of a �hole relation� H, which is de�ned by

xHy ⇐⇒ xECNy and ECN(x) ⊆ O(y). (5.4)
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A pictorial representation is shown in Figure 11; there, x is the grey disk and y the white �doughnut�
around it.

Figure 11: x is a hole of y

x

y

It turns out that H can be de�ned algebraically by H = ECN ∩ (ECN �r O), and that in RO(X),
Hn 6= Hk for all 1 ≤ k � n; it is unknown whether this is true for all RCC models. It is worth pointing
out that a more restricted de�nition of a hole relation has been given earlier by Egenhofer et al. [35].
Furthermore, there are models of the RCC theory, realizable as regular closed sets of a regular connected
T1 space, in which NTPP ◦NTPP ( NTPP [24].

6 Constraint problems and relation algebras
Constraint satisfaction problems have played a signi�cant part in the study of temporal or spatial
relations [49, 73, 79, 87, 88], and have also received attention in the relation algebra community [41�
44, 54, 55, 57, 58, 73]. In particular, the work of Ladkin and others shows that �the relation algebra
of Tarski is an appropriate mathematical context in which to represent and solve binary constraint
problems� [58]. This works well for situations in which the RA generated by the constraints is �nite
(and hence, atomic). If this is not the case, the problem is more intricate and one has to look for
approximations to such RA or use only a proper subset of the relational operators for constraint checking.
I will return to this topic below.

A (binary) constraint satisfaction problem on n variables consists of a �nite set X = {x0, x1, . . . , xn}
of individuum variables and a formula

ϕ =
∧

i,j≤n

xiPijxj (6.1)

where each Pij is a binary predicate symbol, called a constraint. In our context, the individuum variables
and predicate symbols are interpreted by a �nite set S of relations over a speci�ed domain D such that

C1. The relations in S are nonempty and pairwise disjoint.

C2. The union of the relations in S is the universal relation of the domain.

If S has the properties 1.and 2. it is called a jointly exhaustive and pairwise disjoint (JEPD) set of
relations. The elements of S are usually called base relations.
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C3. All (interpretations of) constraint relations are unions of members of S.
Following the convention of graph theory, a pair N = 〈V, ϕ〉 is called a binary constraint network (BCN)
or just network. Here, we think of the edge 〈xi, xj〉 labeled with Pij , if the constraint xiPijxj appears in
ϕ. If all edges of N are labeled with elements of S, then the network is called atomic. The elements of
S will be called atomic constraints. Together with the empty relation, the set of all possible unions of
atomic constraints forms a Boolean algebra B(S). If this algebra is closed under composition, converse,
and contains the identity, then it is a BRA.

The network satisfaction problem NSP (S) over a �xed domain D is the following:

Instance: An network 〈V, ϕ〉.
Question: Is there an instantiation h : V → D of the variables such that h(xi)Pijh(xj) for

all i, j ≤ n?

N is called satis�able in case the answer is yes. Satis�ability depends, of course, on the domain D:
Consider the square and its diagonals in Figure 12, and label the sides of the square with PO and its
diagonals with DC. This network cannot be satis�ed in any representation of I as shown in [55], but it
can be satis�ed in the closed circle algebra by the indicated con�guration.

Figure 12: A network satis�able in Dc and not in I
PO

PO

POPO

DC

DC

A network is called path consistent if for all a, b ∈ D for which aPijb holds, there is, for each
k ≤ n, some c ∈ D such that aPikcPkjb [58, 68]. In relation algebraic parlance, this is equivalent to
Pij ⊆ Pik ◦ Pkj for all i, j, k ≤ n. If the elements of S are the atoms of a BRA, then path consistency
is necessary for consistency [76], but not su�cient. For the latter, consider the atomic network given in
Figure 13 with relations from the pentagonal algebra P, which is path consistent, but not satis�able.

There are well known algorithms to check whether a network N contains a path consistent subnet-
work. The basic principle underlying many of these can be formulated as follows: For all i, j, k, compute
the relation Pij ◦ Pjk and intersect it with Pik; here is an illustration given in [55]:

x1 x1
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- x2 x0
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This results in the possibly smaller relation Pik∩ (Pij ◦Pjk), which can be used as the new constraint
on the edge 〈xi, xk〉; Ladkin and Maddux [55] call this the triangle operation.
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Figure 13: A path consistent but not satis�able network over P
R
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A triangle operation stabilizes if Pik∩ (Pij ◦Pjk) = Pik. Clearly N is path consistent if every triangle
operation stabilizes. The complexity of the triangle operation over a �nite relation algebra is O(n3),
where n is the number of nodes. For a variety of tractable procedures which improve on the triangle
operation, the reader is invited to consult [44] and [58].

Observe that the triangle operation only guarantees success, if the set S of base relations is not only
JEPD, but also the set of atoms of a �nite relation algebra A. In this case, Pij ◦Pjk is a union of atoms,
i.e. elements of S, and Pik ∩ (Pij ◦ Pjk) will again be a union of atoms (or empty). The �niteness of A
implies that the algorithm terminates. Otherwise, it may happen that a triangle operation Pik∩(Pij◦Pjk)
leads to a relation outside the unions of the base relations, and the algorithm need not terminate, even
if the set of base relations is �nite.

The triangle operation works with all examples given in Section 2.1, but not for the RCC8 base
relations, when they are interpreted over an RCC model, since the relation algebra generated by the
base relations is in�nite and not atomic. This has the unfortunate consequence, that a network may be
satis�able, but not path consistent:

Proposition 6.1. There is an atomic network N over the RCC8 base relations such that for all RCC
models M,

1. N is satis�able in M.

2. N is not path consistent in M.

Proof. Consider the network of Figure 14. The network is consistent since EC ∩ (TPP ◦ TPP )̆ 6= ∅
which follows from the RCC axioms, and can be obtained from the RCC weak composition table 8;
thus, it is model independent. On the other hand, let M = 〈B, C〉 be any model of the RCC. Choose
x, z ∈ B \ {0, 1}, such that x is a hole of z; such elements exist in any RCC model. Then, by de�nition
(5.4) of the hole relation,

xECz, x + z 6= 1, (∀t)[t + x 6= 1 and xECt =⇒ t · z 6= 0].

Now, let xTPPy. Then, y 6= 1, and from Lemma 5.1.2 of [22] we obtain xECy∗. Thus, y∗ · z 6= 0, which
implies that z(−P )y, i.e. y(−P )̆ z.

The analysis of the RCC8 weak composition table, started by [23] and was continued by Düntsch
et al. [22] who already exhibit many instances of triples 〈T, S, R〉 of RCC8 base relations for which
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Figure 14: A consistent but not path consistent network over any RCC model
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T 6⊆ R ◦ S in any RCC model. In an exhaustive investigation Li and Ying [62] identify altogether 18
essentially di�erent such triples; on a more positive note, they identify 127 triples 〈T, S,R〉 for which
T ⊆ R ◦ S if the universal region is not an element of the domain. Since the universal region can be
relationally de�ned � and thus �excluded� from relational reasoning �, it may be worthwhile (and more
realistic) to use the relations of the complemented closed disk algebra as RCC base relations, and their
composition table as a weak composition table for RCC models.

One may argue that the operators used in the triangle operation are only ∩, ◦ and ,̆ applied to unions
of base relations, and that the full power of relation algebras, which includes complementation, is not
required. For �nite RAs, this is immaterial, since every element is a union of atoms, but for a (�nite)
JEPD set of base relations which generate an in�nite RA, the restriction to these operators need not be
the desired remedy. As we have seen above, there are RCC models in which the {∩, ◦, }̆ � closure Ŝ of
a set S of base relations is in�nite, for example a model where NTTP k+1 ( NTPP k for all k ≥ 1. This
puts some doubt on several results of Renz [87] and Renz and Nebel [89], whose proofs seem to assume
that Ŝ is always �nite.

Given a �nite (abstract) representable RA A, and a network N whose edges are labeled with elements
from A, we can ask whether there is a representation D of A such that the NSP over D has a solution.
This is the general network satisfaction problem (GNSP). In practice, one usually works over a particular
domain, and therefore the GNSP is of more theoretical interest. The GNSP is investigated in several
papers concerned with constraint problems over RCC models, e.g. [49, 78, 89].

The complexity of the (G)NSP for many of our examples is known:

The pentagonal algebra P : Even though this algebra is small and has only one representation,
which is �nite, all that is known is that the NSP over P is in NP [42].

The point algebra Pt : This algebra is homogenous in the sense that (a copy) of the ordering on the
rationals embeds in any representation, and it follows that the GNSP and the NSP coincide. It
was shown in [96] that the NSP has cubic complexity.

The left linear point algebra L : In this algebra, path consistency does not imply satis�ability;
nevertheless, there is an algorithm with quintic complexity which decides whether a given network
is satis�able over a given representation [42].

Allen's interval algebra I : All countable representations of I are (base) isomorphic to the repre-
sentation by Allen's interval relations with rational endpoints [55], and thus, GNSP and NSP are
equivalent. Since path consistency implies satis�ability in I, the complexity is cubic for atomic
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networks; in general, the NSP complexity is NP complete [96]. A maximal tractable set of interval
interval relations has been identi�ed by Nebel and Bürckert [79].

Compass algebras : It was shown by Maddux [70] that the GNSP is NP complete for any compass
algebra with at least two directions.

The containment algebra C : Here, the NSP and the GNSP di�er, as the example of Figure 12
shows. It was shown in [56] that there are unsatis�able path consistent atomic networks in C,
and an unpublished result of Maddux, mentioned in [56], shows the GNSP to be NP hard. Renz
and Nebel [89] improved this result by showing that the GNSP is NP complete. A complete
classi�cation of tractable networks was given by Jonsson and Drakengren [49].

As we can see, NSP complexity is usually high. But this is not as bad as it gets: Hirsch [43] has exhibited
a �nite relation algebra A and a representation D of A such that the NSP over D is undecidable.

7 Conclusions and outlook
We have seen that �nite relation algebras are a useful scenario for reasoning about temporal constraints.
For spatial reasoning, the containment algebra C, the algebra Dc, interpreted over bounded closed Jordan
curves in the plane, and the compass algebra are also positive examples. Topological relationships are
explored in the relation algebraic context by Egenhofer and his co�workers, exhibiting many powerful
properties [27�31, 34, 36]. Furthermore, many of the examples of temporal or spatial RAs given in
Section 2.1 are �rst order closed, and thus, anything that can be said about them in �rst order logic can
be stated with formulas which use only three variables.

Reasoning about the elements of Dc, when interpreted over an RCC model, is more intricate, since the
RA generated by these relations is in�nite, and the standard consistency algorithms need not work. The
composition table of Dc has no extensional interpretation over RCC models, and thus, there may be a
di�erence between path consistency and satis�ablity of a triangle as Proposition 6.1 shows. Furthermore,
even the ∩, ◦,˘ closure of a �nite set of RCC base relations need not be �nite. It may therefore be useful
to investigate, which sets of RCC relations have a �nite closure under these operations, and determine
their complexity.

The general algebraic framework for constraint problems seem to be inf � semilattices with converse
and relative multiplication, and it would interesting to �nd a suitable set of axioms for such structures;
investigations in this direction have already been started in [21] and [20].

Epilogue
I should like to �nish this paper with the closing sentences of Tarski's 1941 article, which express a
feeling for Mathematics which often is lost in our days, when commercial exploitability is of primary
concern, and recognition (and funding) is often given by the criterion of immediate applicability, but
which, at least for me, is still a major motivation for engaging in the pursuit of mathematical knowledge:

�Aside from the fact that the concepts occurring in this calculus possess an objective impor-
tance and are in these times almost indispensable in any scienti�c discussion, the calculus of
relations has an intrinsic charm and beauty which makes it a source of intellectual delight to
all who become acquainted with it.� [93]
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