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Abstract 

Basic relationships between certain regions of space are formulated in natural lan-

guage in everyday situations. For example, a customer specifies the outline of his 

future home to the architect by indicating which rooms should be close to each other. 

Qualitative spatial reasoning as an area of artificial intelligence tries to develop a the

ory of space based on similar notions. In formal ontology and in ontological computer 

science, mereotopology is a first-order theory, embodying mereological and topologi-

cal concepts, of the relations among wholes, parts, parts of parts, and the boundaries 

between parts. 
.-

We shall introduce abstract relation algebras and p~sent their structural properties 

as well as their connection to algebras of binary relations. This will be followed by 

details of the expressiveness of algebras of relations for region based models. 

Mereotopology has been the main basis for most region based theories of space. Since 

its earliest inception many theories have been proposed for mereotopology in artifi-

cial intelligence among which Region Connection Calculus is most prominent. The 

expressiveness of the region connection calculus in relational logic is far greater than 

its original eight base relations might suggest. In the thesis we formulate ways to 

automatically generate representable relation algebras using spatial data based on re-

gion connection calculus. The generation of new algebras is a two pronged approach 

involving splitting of existing relations to form new algebras and refinement of such 

newly generated algebras. We present an implementation of a system for automating 

aforementioned steps and provide an effective and convenient interface to define new 

spatial relations and generate representable relational algebras. 
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Chapter 1 

Introduction 

The relational methods have been the basis for many conceptual and methodolog

ical tools in computer science since the mid-1970'{ The plethora of applications 

of relational methods has been widely demonstrated by series of RelMiCS seminars 

(International Seminar on Relational Methods in Computer Science). In fact rela

tion algebra has been a reference point for analyzing, modeling or resolving several 

computer science problems such as program specification, heuristic approaches for 

program derivation, automatic prover design, database and software decomposition, 

program fault tolerance, testing, data abstraction and information coding, and more 

importantly in the area of qualitative spatial reasoning (QSR). We refer to [5, 34, 43] 

for a detailed overview. 

QSR being an important branch of Artificial Intelligence predominantly deals with 

the qualitative aspects of representing and reasoning about spatial entities. A ma

jority of the contemporary qualitative spatial reasoning is based on the behavior of 

"part of" and "connection" (or "contact") relations in different domains [8, 23], and 

thereby the objectivity .0f study in QSR has the important components of expressive 

power, consistency and complexity of relational reasoning. 

The origins of region-based theories of space, also referred to as pointless geometries, 

date back to De Laguna [11] and to Whitehead [49]. The most notable feature of 

pointless approach is that it considers the classical notion of point (and the related 

notions of line and surface) as being too abstract to be considered as basic primitive 

notions in the theory of space. Rather than points, these theories take the primi

tives an alternate notion of a spatial region and define binary relations between such 

regions known as connection relation. These theories can then be used to represent 

space in the context of (qualitative) spatial reasoning. This abets humans to perceive 

physical world as a mathematical model. 

1 
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There are many possible applications of QSR; some of which are well known such as 

reasoning about physical systems in the traditional domain of Qualitative Reasoning. 

Other works are motivated by the necessity of giving a semantics to natural language 

spatial expressions, e.g., [4S], which tend to be predominantly qualitative rather than 

quantitative (consider prepositions such as 'in', 'on' and 'through'). Another large 

and growing application area is Geographical Information Systems: there is a need for 

qualitative spatial query languages such as those described in [6] and requires tools 

for navigation as in the case of [40]. Other applications include specifying syntax and 

semantics of Visual Programming languages [9]. 

M ereotopology - consisting of some topological notion of contact and a mereologi

cal notion of parthood - is the common core to most region-based theories of space. 

Broadly speaking, mereotopology is a hybrid of topology, a mathematical model for 

connectedness and contact, and mereology, a descriF>tion of the parthood relation-
" 

ship. It is an indispensable part of any comprehensive framework for qualitative 

spatial reasoning with regard to the characteristic of topology and its close relation 

to how humans perceive space. The history of QSR can be traced back to works in 

the science of phenomena (Husserl, 1913; Whitehead, 1920, 1929)- what we call today 

"commonsensical" in artificial intelligence. Other motivations to study the topologi

cal and mereological relations of space include-an appealing alternative to set theory 

or point-set topology, or as a region-based alternative to Euclidean geometry. In ad

dition , mereotopology is generally flexible and can be applied to many fields whose 

primary purpose may not be of spatial character. 

Since its earliest inception, many possible theories have been proposed for mereotopol

ogy, the Region Connection Calculus (RCC) [7] being the most prominent, originated 

from Clarke's theory [4]. RCC was first proposed by Randell et al. in [37, 39], with 

an intention to describe a logical fram.ework for mereotopology. Later, it was shown .. 
[47] that models of the RCC are isomorphic to so-called Boolean connection algebras 

(or Boolean contact algebras), i.e. , Boolean algebras together with a binary contact 

relation C satisfying certain axioms. Since lattices and Boolean algebras in particu

lar are well-known mathematical structures, this approach led to an intensive study 

of the properties of the RCC including several topological representation theorems 

[12, IS, 20, 47]. 

In the RCC theory, the Jointly Exhaustive and Pairwise Disjoint (JEPD) set of topo

logical relations known as RCC-S were identified as being of particular importance. 

RCC-S contains relations "x is disconnected from y", "x is externally connected to 

y" , "x partially overlaps y", "x is equal to y", "x is tangential proper part of y" , "x is 



CHAPTER 1. INTRODUCTION 3 

non-tangential proper part of y", and the inverses of the latter two relations. In ad

dition this kind of categorization of topological relations was independently given by 

Egenhofer [22] in the context of Geographical Information Systems. RCC-8 supports 

the notion of a composition table (refer to Definition 14) since it is a JEPD. Such a 

composition table appeared first [10] in its most basic form. 

Following the lead of [10], Diintsch et al. [13, 16, 17] initiated using methods of re

lation algebras to study contact relations and explore their expressive power with 

respect to topological domains. This idea led to the RCC-8 composition table, i.e., 

a relation algebra based on eight atomic relationship between two regions [38]. Sev

eral refinements of the eight atomic relations produced new algebras up to 25 atoms 

[15, 16, 17]. Each time new relations were obtained by splitting certain atoms from 

the previous algebra into two new relations and simultaneously removing certain en

tries in the composition table for one of the new ~t-oms. It is easy to verify that 

there are more atoms within the current set of 25 atoms that can be split. But the 

manual computation of the resulting algebra tends to be impracticable. This is pre

cisely the reason the results in this thesis are outlined so that it details a mechanism 

to overcome these obstacles. We have developed a computer program written in the 

functional programming language Haskell to automate these manual tasks. 

The method of splitting in relational algebras was formulated by H. Andn§ka 

et al. [2] . In [2] the authors adapted an existing method already known in the 

theory of cylindric algebras, originating with L. Henkin [28], which was used to obtain 

nonrepresentable cylindric algebras from representable ones. Their approach uses a 

condition of splitt ability on the atoms in question in order ensure associativity of the 

composition operation after splitting. Contradictorily, this is violated by all the RCC 

tables in consideration starting with RCC-ll or also known as the complemented 

closed disc algebra [13, .• 15]. We will .~how a theorem for splitting atoms in a more 

general setting than [2], by overcoming some of these obstacles and exploring ways to 

accomodate functional elements like bijections during the splitting process. We refer 

to [2, 32, 42, 43] for the terminology and notation including all the theoritical aspects 

used in this thesis. 

The remainder of the thesis is structured as follows. In Chapter 2 we begin with 

the topological background of mereotopology and delve into fundamentals of Relation 

Algebras (RAs) and present their structural properties as well as their connection to 

algebras of binary relations. We will discuss using methods of relation algebras to 

study contact relations and explore their expressive power with respect to topological 

domains. We will recall the definitions of atom structure and complex algebras which 
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are essential tools in implementing any algorithm on relation algebras. In Chapter 3 

we describe the existing theory of splitting atoms in relation algebras and also present 

our approach to splitting. We will provide refinement conditions so that the result 

of a splitting is indeed a relation algebra coupled with some interesting examples. In 

Chapter 4 we focus on the functionality details of such a system and conclude the 

thesis in Chapter 5 with potential for future research work. 



Chapter 2 

Background 

As a formal logical system first-order logic is widely used in mathematics, philosophy, 

linguistics and computer science. First-order logic is .~istinguished from propositional 

logic by its use of quantifiers; each interpretation of first-order logic includes a domain 

of discourse over which the quantifiers range. A sentence in first-order logic is written 

in the form P(x), where P is the predicate and x is the subject, represented as a 

variable. Complete sentences are logically combined and manipulated according to 

the same rules as those used in Boolean algebra. We employ first-order logic for all 

the axiomatizations used in this chapter and thereafter. Both the unary and binary 

relations are considered predicates where as subset and superset relations are consid

ered binary predicates in logic. Interiors (Int), closures (CI) and complements denote 

functions. 

As an area of QSR, mereotopology aims at developing formalisms for reasoning about 

spatial entities [3, 36, 35]. This chapter covers the representational framework of 

mereotopology as a structure comprising of three parts: a topological part, an alge

braic part and a relational (mereological) part. We b~gin with relevant background 

on topological aspects of mereotopology specifically related to point-set topology. 

Mereological relations such as "part-of", "overlap", "non-tangential inclusion" and 

others can be defined in terms of the connection relation. In particular, this connec

tion relation associates some pointless geometries to the field of mereotopology [47]. 

RCC consists of a set of axioms which are intended to characterize spatial regions 

from a qualitative perspective. The axioms constrain two binary operations, sum and 

product, a unary operation, complement, and a binary relation, connection. Sums 

and products of regions correspond to unions and intersections of regions. The com

plement of a region is that region outside it, and two regions are connected if they 

overlap or touch. We describe these axioms in Section 2.4.7. 

5 
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It is well known for some time, that the expressiveness of reasoning with basic opera

tions on binary relations is equal to the expressive power of the three variable fragment 

of the first order logic with at most binary relations [46]. Thus it is imperative to use 

relation algebraic methods, initiated by Tarski [45], to study contact relations in their 

own right, and explore their expressive power with respect to topological domains. 

Egenhofer and Sharma [24] introduced the concept of relation algebras into spatial 

reasoning. Diintsch [13] states Egenhofer 's reason as follows: 

"Spatial databases will benefit from the composition table of topo

logical relations if it is applied during data acquisition to integrate inde

pendently collected topological information and to derive new topologi

cal knowledge; to detect consistency violations among spatial data about 

some otherwise non-evident topological facts ; or during query process-
, ( 

ing, when spatial queries are less expensive to 'be executed or involve less 

objects." 

We refer to [32] for a deeper insight on various aspects of relation algebras including 

its history. 

The following section outlines the idea of Diintsch and Winter [18] who characterized 

the models of region connection calculus in terms of topological spaces. They con

cluded that the earlier assumptions of the topological representations of RCC being 

regular spaces is in fact too strong and that even regularity alone is not always sat

isfied. This is attributed to various possible ways of constructing topological spaces 

from a model of the RCC. The algebraic part usually comprises of an atomless 

Boolean algebra or in general terms, an orthocomplemented lattice, both without the 

smallest element. 

Topological Spaces 

2.1.1 Properties 

We begin with basic definitions for topological spaces as found in standard literature. 

For more details on general topology we refer to [33]. The intention of the definitions 

and concepts are meant to emphasize the characterization of the models of RCC from 

a topological perspective. 

Definition 1. Let X be a non-empty set. A collection T of subsets of X is said to 

be a topology on X if 
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i X and the empty set 0, belong to T, 

ii the union of any (finite or infinite) number of sets in T belongs to T, and 

iii the intersection of any two sets in T belongs to T. 

The pair (X,T) is called a topological space. 

Example 1. Let X = { a,b,c,d,e,j } and Ti. = {X ,0,{a} ,{c ,d},{a,c,d},{b,c,d,e,j}}. 

Then Ti. is a topology on X as it satisfies all the conditions of Definition 1. 

Example 2. Let X = { a,b,c,d,e} and 72 = {X,0,{a},{c,d},{a,c,e},{b,c,d}}. Then 

72 is not a topology on X as the union {c,d} U {a ,c,e} = {a,c,d, e} of two members 

of 72 does not belong to 72; that is, 72 does not satisfy condition (ii) of Definition 1. 

Definition 2. Let (X , T) be any topological space. then the members of T are said 

to be open sets. 

Proposition 3. If (X, T) is any topological space, then 

i X and ° are open sets, 

ii the union of any (finite or infinite) number of open sets is an open set and 

iii the intersection of any finite number of open sets is an open set. 

Definition 4. Let (X, T) be a topological space. A subset 8 of X is said to be a 

closed set in (X, T) if its complement in X , namely X \8, is open in (X, T). 

Proposition 5. If (X, T) is any topological space, then 

i X and ° are closed sots, 

ii the intersection of any (finite or infinite) number of close sets is a closed set and 

iii the union of any finite number of close sets is a close set. 

2.1.2 Regular Closed Sets 

An illustration of open and close sets is shown in Figure 2.1. In the Figure 2.1 the 

points (x, y) satisfying x2 + y2 = r2 are located on the circumference where as the 

points less than r2 are located interior of the region. The interior points form an open 

set and the union of both the interior and exterior points forms a close set. 
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Figure 2.1: Regular region Figure 2.2: Non-regular region 

Definition 6. For any subset S of X, the interior of S denoted as Int (8) is the 

largest open set contained in S i.e., 

Int(S) = U Topen 

Topenr;S 
TopenET 

(2.1) 

Definition 7. For any subset S of X, the interior of S denoted as Cl(8) is the 

smallest closed set contained in S i. e. , 

Cl(S) = n Tclosed 

Tclosed-:JS 
TclosedET 

(2.2) 

Let x, YET, then x and yare called separated if Cl(x) n y = x n Cl(y) =0. 

A non-empty open set x is called connected if it is not the union of two separated 

nonempty open sets. A set U ~ X is called regular open if u = I nt( Cl (u)), and regular 

closed, if u = Cl(Int(u))f The set complement of a regular open set is regular closed 

and vice versa. Figure 2.1 and Figure 2.2 show examples for regular and non-regular 

regions respectively. It is worth to note that we will be mentioning regions models 

only in terms of regular closed sets in this thesis. 

Boolean Contact Algebra 

We begin this section with the basic notions of Boolean algebras. 

Definition 8. A structure s:B = (B, +, - ) of type (2,1) is called a Boolean algebra 

(BA) iff it satisfies the following (Vx, y, z E B): 
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Bl x+y=y+x. 

B2 x+(y+z)=(x+y)+z. 

B3 X + y + x + 17 = x 

In addition to the union + and complementation - operators of a Boolean algebra 

we can define an intersection . by x· y = x + 17; Furthermore the empty element 0 

and the universal element 1 are defined as 0 = x· x and 1 = x + x for an arbitrary 

x E B respectively. A Boolean algebra is also equipped with a partial order :::; 

definable as x :::; y iff x + y = y or, equivalently, x::; y iff x . y = x. 

The distributive identity holds for any given Boolean algebra i.e., for all x, y, z we 

have x . (y + z) = (x . y) + (x . z) and x + (y • z) ri: (x + y) . (x + z). 

2.2.3 Properties 

We will use some basic topological properties required to describe Boolean contact 

algebras using following lemma. 

Lemma 2.2.1. Let RC(X) be a collection of regular closed sets of (X, T), then 

RC(X) is a complete Boolean algebra under set inclusion. Then we have: 

1. v+w=vUw. 

2. v· w = Cl(Int(v n w)). 

3. v* = Cl(15). 

Figure 2.3: Regions v and w in contact by means of a point. 
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In the Lemma 2.2.1 it is important to note that v· w ~ v n w. This condition can 

be demonstrated pictorially by Figure 2.3. In Figure 2.3 we observe that although 

v . w = 0, the regions v and w are still in contact with each other by means of a 

single point i.e., v n w i= 0. Using such a notion we define a contact relation C on 

RC(X) as follows. 

Definition 9. [19] A standard model of regions are the regular closed sets of a regular 

Tl topological space (X, n with a relation C defined on RC(X) by 

1 uCv <===? un v T 01 (2.3) 

C will be called the standard (topological) contact on X. 

2.2.4 Definitions / 
" 

The origins of Boolean contact algebras can be traced back to the works of [11, 49] 

who tend to use regions instead of points as the basic entity of geometry. The no

tion of "connection" (or "contact") of regions was crucial in all the theories which is 

basically a reflexive and symmetric relation C among non-empty regions, satisfying 

an additional extensionality axiom [14]. In order to formalize mereological structures 

which are essentially complete Boolean algebras B except the smallest element to

gether with Whitehead's connection relation C, Clarke proposed additional axioms 

such as compatibility and summation in [4] . Subsequently RCC [38], also supposed 

that each proper non-zero region was connected to its complement. Boolean alge

bras of regular closed sets of regular Tl spaces albng with Whitehead's connection 

uCv <===? u n v i= 0 serves as standard models for such "connection algebras". Stell 

[44] axiomatized RCC as a Boolean algebra enhanced with contact relation C satis-
., 

fying the axioms in [38]. 

Definition 10. [21] Let Rel(B) denote the set of all the binary relations for any given 

set B. Suppose that C E Rel(B) satisfying the following properties: for all x, y, z in 

B we have, 

co. 0 (C) x 

c 2 • xCy * yCx 

C 3 - xCy and y :::; z * xCz 

(Null discohl1ectedness). 

(Reflexivity) . 

(Symmetry). 

(Compatibility) . 
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C 4 0 xC(y + z) :::;. (xCy or xCz) (Summation). 

C 5 ° C(x) = C(y) :::;. x = y (Extensiohality) . 

C 6 0 (xCz or yCz*) :::;. xCy (Interpolation) . 

C 7 0 (x =1= O!\ x =1= 1) :::;. xCx* (Connection) . 

A binary relation C on a Boolean algebra B (0, 1, +, 0, *) satisfying Co - C4 is 

called a contact relation. The structure (B, 0,11 +, 0, *, C) is known as a Boolean 

contact algebra. C is called extensional contact relation if it satisfies Co - C5 . If C 

satisfies C7 , we call it connected. 

Relation Algebraic Properties 

2.3.5 Definitions 

Relation algebras have become a core entity for researchers in the area of qualitative 

spatial reasoning. As we already discussed in the ptelude to this chapter, a large part 

of the contemporary spatial reasoning is based on investigations of the properties 

of "part of" relations and their extensions to "cohtact relation" in various domains. 

Relation algebra is an equational formalism from which it can be inferred to access 

the existence of relations, given several basic operations, such as Boolean operations 

on relations, relational composition and converse. Every equation in relation algebra 

corresponds to its individual theorem, and if these relations are finite, it is possible 

to construct a composition table (refer Definition 14) which serves as a look-up table 

for such relations. 

In this section we will ~~e the notion ~d basic definitions from [32]. In particular, 

we use the varieties NA and RA of nonassociative and associative relation algebras. 

Definition 11. A structure ~ = (A, +, . ,-,0,1;;" ;,1') of type (2,2,1,0,0,1,2,0) 

is called a relation algebra (RAJ iff it satisfies the following: 

Rl (A, +, . ,-,0,1) is a Boolean algebra. 

R2 (A,;,,~ 1') is an involuted monoid i.e. , 

R 2a (A,;, 1') is a semigroup with identity 1;. 

R ~~ (0 b)~ b~ ~ 2b a = a, a, = ; a . 
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Rs For all x, y, Z E A the following formulae are equivalent: 

x ; y. z = 0 <===? x~; z . y = 0 <===? Z; y~ • x = o. 

We say that 2( is a nonassociative relation algebra (NA) if 2( is a structure satis

fying all of the axioms above except associativity of the composition operation ;, i.e., 

R2 is weakened by only requiring that l' is a neutral element for composition. Also 

in our definitions we adopt complementation notation - instead of * for historical 

reasons. 

We adopt the regular convention to denote the diversity element r by 0'. 

The notion of a subalgebra is as usual, and we will denote the fact that s.B is a 

sub algebra of 2( by s.B ~ 2(. 

Oriented triangles can be used to visualize Ra and+its immediate consequence the 
" 

so-called cycle law. It states that the following properties are equivalent: 

• • • 
Y z""Z ;/ y~ Y'Z x . ~ . 
x;y· Z = 0 

. ) . 
x~;z· y = 0 

. ) . 
Z; y~. x = 0 

• • 
;/ y~ Y~ x . ( . • • • 
z~;x· y~ = 0 y;z~· x~ = 0 

Besides the cycle law above, we will need some basic properties which are sum

marized in the following lemma. A proof can be found in any of [45, 30, 46, 32, 41]. 

Lemma 2.3.2. Let s.B be a relation algebra, and let x, y, z E s.B. Then we have: 

1. O~ = 0, 1~ = 1, (1')~ = 1'. 

2. x::; x; x~; x. 

3. x; (y + z) = x; y + x; z. 

4. if x~; x ::; 1', then x; (y . z) = x; y • x; z. 

5. ifx~;x::;l', thenx;y::;x;y. 

A relation x is called univalent (or functional) iff x~; x ::; 1'. It is called injective 

if x~ is univalent. A univalent and injective relation is called bijective. We denote the 

set of all bijections (bijective relations) of a relation algebra s.B by Bijs.B. On addition, 
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we say that x is total if l ' ~ x;x~ and surjective if x~ is total. A function (or map) 

is a univalent and total relation. 

In the next lemma we have summarized some properties of atoms in relation 

algebras that will be needed in this thesis. We will denote the set of atoms of a 

relation algebra ~ by At~. 

Lemma 2.3.3. Let ~ be a relation algebra, and x, y, z E At~. Then we have: 

1. There is an atom i ~ l ' with x; i = x. 

3. If y is a bijection and x; y =1= 0, then x; y is an atom. 

Again, a proof can be found in any of [29, 30, 31,(32]. 

Of particular interest are integral relation alge6ras. They form basic building 

block in constructing arbitrary algebras. For details on their importance, we refer to 

[50,51]. 

Definition 12. A relation algebra !.2t is called integral iff for all x, y E !.2t, x; y = ° 
implies that x = ° or y = 0. 

It is well-known that the property of being integral is equivalent to the fact that 

the identity is an atom of!.2t. Another equivalent property is the requirement that all 

relations of the algebra are total, i.e., l ' ~ x; x~. 

Notice that (1) and (3) of Lemma 2.3.3 become trivial in integral relation algebras 

because the identity is an atom respectively every relation is total. 

An important example of relation algebra is the full algebra of binary relations 

on the underlying set fl., denoted by ~tructure (Rel(U), U, n, - ,0, V,,~; ,1') of type 

(2,2,1,0,0,1,2,0) where 

Rel(U) - the set of all binary relations on U. 

U - the union operation on U. 

n - the intersection operation on U. 

- - the complement operation on U. 

o - empty relation on U. 

v - is the product U xU, a universal relation. 
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'-./ - the relational converse. 

; - the relational composition. 

l' - the identity relation on U. 

These full algebras are large even in case of small sets. The cardinality of Rel(U) is 

given by 21u1
2

• 

Example 3. Consider a full algebra Rel(3) where 3 = {O, 1, 2}. Rel(3) has 512 

elements and 9 atoms. Then the atoms of Rel(3) are given by { (0,0), (0,1), (0,2), 

(1,0), (1,1), (1,2), (2,0), (2,1), (2,2) } 

Definition 13. For a given subset B of Rel(U) closed under the distinguished oper

ations ; and '-./ and contains l' is called an algebra of binary relations (BRA) on 
J 

u. <" 

Suppose R is a binary relation on set U and is a subset of V i.e., a set of ordered 

pairs (x,y) where x,y E U. We usually substitute xRy instead of writing (x,y) E R. 

The domain and range of R are defined by 

dom(R) = {x E U: (:Jy E U)xRy}, 

ran(R) = {x E U: (:Jy E U)yRx}. 
(2.4) 

In addition we let R(x) = { y E U : xRy }. Most of the properties for relations can 

be expressed by equations (or inclusions) among relations, for example 

and 

R is reflexive {::::::} (\ix) xRx, 

{::::::} l' ~ R. .. ' . 
R is symmetric {::::::} (\ix, y) [xRx {::::::} yRx], 

{::::::} R = R~. 

R is transitive {::::::} (\ix, y, z) [xRy 1\ yRx ~ xRz], 

{::::::} R ; R ~ R. 

R is extensional {::::::} (\ix, y) [R(x) = R(y) ~ x = y], 

{::::::} [-(R; - R~) n -(R~; - R)] ~ 1'. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Notice that all the above formulae contain at most three variables in them. This 

is not a mere coincidence but specifically due to the Theorem 2.3.4 stated below. 

Theorem 2.3.4. (26, 46) 

(i) The first order properties of binary relations on a set U that can be expressed by 

equations using the operators (n, U, -, 0, V, ; ,"-/, 1') are exactly those which 

can be expressed with at most three distinct variables. 

(ii) If B is a collection of binary relations on U, then the closure of B under the 

operations (n, U, -, 0, V, ; ,"-/ , 1') is the set of all binary relations on U 

which are definable in the (language of the) relational structure (U,B) by first 

order formulae using at most three variables, two of which are free. 

The algebra of binary relations (BRA) on U is a ~{ibalgebra of Rel(U) denoted by 

B ::; Rel(U). If ~ E Rel(U) for i E I, we refer the BRA generated by ~ : i E I by 

(~ : i E I). Suppose X E (Ri : i E 1), we say that X is a relation algebra - definable 

by ~ : i E I. A relation algebra ~ is called representable if it is isomorphic to a 

subalgebra of a product of full algebras of binary relations. 

Suppose ~ is a complete and atomic relation algebra specifically if ~ is finite, then 

the actions of the Boolean operators are uniquely determined by the atoms. In order 

to determine the structure of~, it is sufficient to specify the composition and converse 

operations. In case of an atomic BRA, it is more appropriate to mention composition 

operation with the aid of composition table (CT), which, for any two atomic relations 

~ and Rj , specifies the relation ~ ; Rj purely in terms of its constituent atomic 

relations. Considering these factors, a composition table may be defined as follows, 

Definition 14. [is} ~. composition table is a mapping CT : At(~) x At(~) ~ 

2At('B) such that for all R , S , T we have CT (R, S ) '{=:> T ~ R; S and iff ~ is 

atomic, we have 

(2.9) 

Note that a CT can be described by a matrix, whose rows and columns are labelled 

by the atoms and an entry (P, Q) is the set of atoms contained in P; Q. For such 

an algebra ~, if l' is an atom, we discard column and row pertaining to l ' in its 

composition table. 

BRA is one among the many instances in the class of relation algebras (refer to 

Lemma 2.3.2) , which may be seen as an abstraction of algebras of binary relations 

[45]. 
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We will employ the BRA definition from DefilIition 13 to a define a weak compo

sition as follows. 

Definition 15. [15] If'!R = (I4)iEI is a partition of V such that '!R is closed under 

converse, and either I4 ~ l' or I4 n l' =@ for all i E I, we define the weak 

composition as;w : '!R x '!R --+ 2R of'!R as the mapping 

(2.10) 

Example 4. Consider the weak composition table for RCC-8 relations as shown in 

Table 2.1. It is shown as a (7,7) matrix where an entry (i, j) contains a list of atoms 

below the composition of relations Xi and Xj i.e., (Xi; Xj). Suppose Xi = EC and 

Xj = T P P, we get resultant composition by the cell entry which contains the atoms 

(EC,PO,TPP,NTPP). ./ 

From Definition 15, we have Ri ;w Rj ~ I4 ; Rj and in essence if equality holds ev

erywhere i.e., if ;w = ; then such a weak composition table is termed as extensional. 

I I DC I EC Ipo I TPP I NTPP ; Cco 

... , . _, . 

DC DC, EC, po DC, EC, po DC, EC, po DC, EC; po DC DC,EC,PO DC 
TPP, TPpu, l' TPP TPP TPP TPP 
NTPP, NTPpu NTPP NTPP NTPP NTPP 

EC DC, EC, po DC, EC, po DC, EC, po EC,PO DC, EC po DC 
TPPU TPP, TPPU TPP TPP TPP 
NTPpu l' NTPP NTPP NTPP 

po DC, EC, po DC, EC, po DC, EC, po po DC, EC, po po DC,EC,PO 
TPpu TPpu TPP, TPPU, l' TPP TPpu TPP TPpu 
NTPpu NTPpu NTPP, NTPpu NTPP NTPpu NTPP NTPpu 

TPP DC DC,EC DC, EC, po DC, EC, po DC, EC, po 
TPP TPP TPP, TPpu TPPV 
NTPP NTPP l' NTPP NTPPU 

TPP~ DC, EC, po EC,PO po po po 
TPpu TPpu TPpu TPP, TPP" TPpu TPP 
NTPpu NT~ru NTPpu .. NTPpu NTPP NTPpu 

NTPP DC DC DC, EC, po DC;"EC, po DC, EC, po 
TPP TPP TPP, TPpv, l' 

c', NTPP NTPP NTPP NTPP NTPP, NTPpu 
NTPP~ DC, EC, po po po po po 

TPpu TPpu TPpu TPpu TPP, TPpu, l ' 
NTPpu NTPpu NTPpu NTPpu NTPpu NTPP, NTPpu NTPpu 

Table 2.1: RCC-8 Composition Table. 

The concept of residuation of a relation algebra plays a predominant role in most 

mereological parts of spatial relations. In fact the "part of" in meroelogical terms 

turns out to be the right residual of the "connection" C relation. 

Suppose that ~ is a relation algebra and a, b E ~. The equations a ; X = band 

X ; a = b may not always be resolvable but there are always elements a \ b and b / a 
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known as "right" and "left residual" of b such that it satisfies: a ; x ::; b ~ x ::; a \ b 

and x ; a ::; b ~ x ::; b / a i.e., a \ b is the greatest solution of a ; x ::; band b / a 

is the greatest solution of x ; a ::; b. In relation algebraic terms these residuals are 

computed by, 

a \ b = -(a~; ~ b), 

b / a = -(b ; d~). 

(2. 11 a) 

(2.11b) 

If a = b, then we consider only right (left) residual of a. These residuals have the 

following properties: 

Lemma 2.3.5. [17] 

(1) a \ a and a / a are reflexive and transitive. /' 

(2) If a is reflexive, then a \ a ::; a. 

(3) If a is symmetric, then a \ a ::; a iff (a \ a)'"' ; (a \ a) ::; a. 

Region Connection Calculus 

2.4.6 RCC Description 

The Region Connection Calculus (RCC ) made its debut in [39] as an alternative sys

tem similar to the mereological and quasi-Boolean counterpart of Clarke's calculus of 

individuals, the differing point being the definition of complementation. RCC is in

tended to provide a logical framework for incorporating spatial reasoning into artificial 

intelligence systems. . # 

Clarke [4] generalized Lesniewski's classical mereology by considering the "con

tact" relation C as the basic structural element. The duopoly - a set U of nonempty 

regions and a binary contact relation C on U, forms the basis of an RCC model. 

Recall from Definition 10 that a binary relation C on a set of nonempty regions U 

is called "extensional contact relation" if it satisfies the axioms Co - C5 i.e., C needs 

to fulfil: 

C is reflexive and symmetric, 

C(x) = C(y) ~ x = y. 

(2.12a) 

(2.12b) 
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and it was shown in [17] that the extensionality axiom C5 may be replaced by 

C \ C is antisymmetric. (2.13) 

An important definable relation in terms of contact C is normally interpreted as the 

part relation, 

xPy ~ C(x) ~ C(y), or 

pd~C\C 

(2.14a) 

(2.14b) 

We can infer from Lemma 2.3.5 and Equation 2.13 that P is a partial order. 

It is evident from Equation 2.14a that we may as well denote xPy by x ::; y. We 

also write PP for the asymmetric part of P, i.e., PP,t P n -1'. 

Mereological (jonnection Definition 
Relation Interpretation using Ordered Pairs 

DCd~ -C x is disconnected from y xCy 
pd~C\C x is part of y \iz[zCx -+ zCy] 
ppd~pn_l' x is proper part y xPy and xPy 
otI;!p~ ;p x overlaps y 3z[zPx and zPy] 
POd~ On(PuP~) x partially overlaps y xOy and xPy and yPx 

ECd~ Cn-O x is externally connected to y xCy and xOy 

TPPtI;! ppn(EC;EC) x is a tangential proper part of y xPPy and 3z[xECz 
and zECy] 

NTPPtI;! PPn-TPP x is non-tangential proper part of y xPPyand - (3z[xECz 
and zECy]) 

DRd~ -0 x is discrete from y xOy 

Table 2.2: Relations between regions defined in terms of "C". 

Further definitions and intended meaning of the relations on C can be nicely 

summarized by Table 2.2. Among these relations, the set {DC ,EC ,PO ,T P P 

, T P P~, NT P P, NT P P~} are depicted in the Figure 2.4 and its composition table 

is given by Table 2.1. These relations belong to the domain of set of all nonempty 

closed disks in the Euclidean plane defined by Definition 9 where C = EC u PO u 
TPP U TPP~ u NTPP u NTPP~ u 1'. 

2.4.7 RCC Axioms 

RCC basically uses a contact relation C which satisfies the conditions 2.12a and 2.12b. 
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Figure 2.4: Closed Disk Relations. 

Figure 2.5: xDCy Figure 2.6: xECy 

Figure 2.7: xPOy 

Figure 2.8: xTPPy Figure 2.9: xTPP~y 

Figure 2.10: xNTPPy Figure 2.11: xNTPP~y 

Definition 16. [27, 44] A model of the Region Connection Calculus consists of a 

base set U = RUN such that R, N are disjoint, a distinguished element 1 E R, a 

unary operation * : Ro --+ Ro, where Ro d;J R \ {1}, a binary operation + : R x 
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R -+ R, another binary operation· : R x R -+ RUN, and a binary operation C on 

R. 

(a) Splitting of atom :Be 

(b) Splitting of atom PO 

Figure 2.12: Atom splitting in RCC-8 

We use the properties from Definition 16 to satisfy the following axioms which 

make use of the relations derived from C as defined in the Table 2.2. Also, for all the 

axioms we assume lUI ;:(2 to forego tri·vialities. 

RCC l (\:Ix E R) xCx. 

RCC2 (\:Ix, Y E R) [xCy ~ yCx]. 

RCCs (\:Ix E R) xCl. 

RCC4 (\:Ix E R, y E Ro), 

RCC4a xCy* ~ xNTPPy, 

RCC4b xOy* ~ xPy. 
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RCC5 (\Ix, y, z E R) [xC(y + z) ~ xCy or xCz]. 

RCC6 (\lx,y,z E R) [xC(y· z) ~ (:3w E R)(wPy and wpz and xCw)). 

RCC7 (\Ix, Y E R) [(x· y) E R ~ xOy). 

RCCs xPy and yPx ===? x = y. 

Figure 2.13: New relations in RCC-ll 

Figure 2.14: xECNy Figure 2.15: xECDy 

Figure 2.16: xPONy 

Figure 2.17: xPODYy Figure 2.18: xPODZy 

21 

From the set of axioms given above, RCCl and RCC2 imply that the connectedness 

relation C is a reflexive and symmetric binary relation. Axiom RCC3 reflects the 

universal property of region "1". Other axioms such as RCC4a and RCC4b represent 
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NTPP = ECD; NTPP~; ECD 
P; NTPP:::; NTPP 

NTPP;TPP=NTPP 
NTPP;P=NTPP 

TPP'NTPP=NTpp 
- , - - c 

ECN = TPP; ECD 
xDCz===? xTPP(x + z) 

xNTPPz and yNTPPz ~ (x+y)NTPPz 
xNTPPz ===? x' zTPPz 

xNTPPy and xNTPPz :r xNTPPy· z 
ECD; DC:::; NTPP~ 

xECN; TPPz ~ xECNx* 'xTPPz 
xTPP~; TPPz ~xTPP"'x' iTPPz 

xTPP ;TPP~z ~ xTPP(x + z)TPP~z 
yNTPP(x + z) and yDCz: yNTPPx 

BCD; NTPP:$ POD 

Table 2.3: Salient properties of RCC-I0 relations. 
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the idea of complement of a region, RCC5 denotes the summation of two regions 

and axioms RCC6 and RCC7 represent the product of two regions respectively. As 

such these axioms show that the structure (R, 0 , +) is a weak model of mereology. 

However it was proven not to represent a complete model of mereology in [15] since it 

has an entirely different interpretation of complement. This is attributed to the fact 

that in RCC models, each proper region x is connected to its complement x*, which 

happens to be a total contradiction in models of mereology. 

If a structure (U, " +, *) represents the algebraic part of an RCC model, then it 

is a Boolean algebra [16, 44] and every atomless Boolean algebra can be structured 

into an RCC model by defining an appropriate contact relation [14]. -. 

2.4.8 RCC Sequels 

The relations between regions as pictured in the Figure 2.4 were considered the base 

relations in a system commonly referred to as RCC -8. Evidently the universal el

ement 1 is the largest which can be relation algebtaically defined from C. More so 

it was determined in [17] that the investigation of RCC can be restricted to the set 

U = R n -{I} and the relations EC and PO split into disjoint nonempty relations 

definable in terms of P as shown in Figure 2.12. The relation EC i.e., 'x is externally 

connected to y' splits into two situations depending on whether or not x is equal to 
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fj (complement of y), given by EC D and EC N as, 

ECD = -(P ; P~) n -(P~ ; P) xECDy ~ y = -x (2.15a) 

ECN = EC n -ECD xECNy ~ x . y = 0, x + y i 1, xCy (2.15b) 

Also the relation PO i.e., 'x partially overlaps y' splits into two situations depending 

on whether or not x is a tangential or non-tangential proper part of fj , given by PO N 

and POD as, 

POD = PO n -(P ; P~) 

PON = PO n -POD 

xPODy ~ xPOy,x+y = 1 

xPONy {=:::}- xPOy, x + y ~ 1 

(2.16a) 

(2.16b) 

Consequently we get 10 disjoint base relations {l' ; Dr; , ECD ,ECN ,POD, PON 

, T P P , T P P~ , NT P P , NT P P~ } from which we cab express other relations. These 

are commonly referred to as RCC -10 relations [15]; We refer to [15] for an extensive 

elaboration of their relational properties and subsequent interplay with the algebraic 

operators, some of which are listed in Table 2.3. We may note that the weak composi

tion of these 10 relations is not a relation algebraic composition albeit they constitute 

the atoms of a semi-associative relation algebra [32]. 
We observe that the relation POD can further be split into new atoms PODY 

and POD Z given by, 

PODZ = ECD; NTPP 

PODY = POD n -(ECD ; NTPP) 

(2.17a) 

(2.17b) 

The 11 atoms 1', DC, ECN, ECD, PON; PODY, PODZ, TPP, TPP~, 

NTPP, NTPP~ i.e. , T'symmetric and 4 non-symmetric atoms comprise an RCC-

11 model. In addition to the existing relations as in Figure 2.4, the new relations 

ECN, ECD, PON, PODY, PODZ in RCC -11 are depicted in Figure 2.13. A 

weak composition table for such a model is portrayed by Table 2.4. 

In the following chapter we continue to explore the splitting properties of RCC models 

from a relation algebraic perspective and their implications on mereotopology. 
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PON, ECN, DC PON, ECN, DC PON,ECN,DC PON, PODY PON, PODY 

ECN,ECD PODZ -
ECD NTPP~ TPP~ l' PON TPP NTPP PODY ECN PODZ DC 
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, PODZ ECD,DC 

TPP DC ECtw, DC , ECN TPP,NTPP TPP,NTPP : TPP, NTPP TPP,NTPP !',TPP, TPP" NTPP TP'P ", NTPP" 

,:;~ PON, ECN, DC PON, PODY PON, PODY PON,ECN PON, ECN 
,,' . , , ECN,ECD PODZ ',", DC DC N • 

;]TP~~t TPP~ , NTPP~ TPP~ , NTPP~ PODY TPP~ , NTPP~ PODY,PODZ PODZ 1', TPP, TPP~ TPP~, NTPP~ TPP, NTPP NTPP~ 

PON, ECN,DC PON,PODY PON, PODY PON,PODY PON, PODY 

"I, ECN,ECD PODZ PODZ PODZ 

NTPP DC 
J' 

DC DC TPP, NTPP TPP, NTPP TPP, NTPP NTPP TPP, NTPP NTPP 1' , TPP, TPP~ 

PON,ECN, DC PON,ECN, DC PON, PODY PON,ECN NTPP, NTPP~ 

PODZ, ECN DC PON, ECN 
,/', ECD,DC DC 
NTPP':' TPP~ , NTPP~ TPP~, NTPP~ PODZ TPP~ , NTPP~ PODZ PODZ TPP~ , NTPP~ NTPP~ 1', TPP, TPP~ NTPP~ 

:?~(i'l'l',\I" ,1,':" PON, PODY PON, PODY PON, PODY PON, PODY NTPP, NTPP~ 

PODZ, ECN PODZ PODZ PODZ PON, PODZ 
,~ , 

, " 
ECD,DC PODZ 

Table 2.4: RCC-ll Composition Table. 



Chapter 3 

Splitting & Refinement of Atoms 

As we already explored in Chapter 2, contact relation algebra contains more relations 

than the original RCC -8 relations might suggest; in p;frticular it was refined to RCC -

11 and the corresponding weak composition table was also given by Table 2.4. More 

so it was shown in [15] that each relation algebra generated by the contact relation of 

an RCC model contains an integral algebra Q{ with 25 atoms as a subalgebra. These 

new atoms were obtained by a two pronged process of splitting certain atoms from 

the previous algebra into two new relations followed by the removal of certain entries 

from the composition table for one of the new atoms. Indeed there are more atoms 

within the current set of 25 atoms that are splittable which can be conveniently veri

fied. Lamentably such a manual task of computing the resulting algebra tends to be 

impracticable. In this chapter we will develop a mechanism that can be implemented 

in a computer program in order to support this taSk. We will capitalize on the various 

properties discussed earlier in Chapter 2 to formulate such a mechanism. The system 

implementation for the same will be discussed in Chapter 4. 

This chapter is orgaRized as follom. In Section 1. we continue to build on fun

damentals of relation algebras discussed in previous chapter. Basically, we recall 

essential topics of atom structure and complex algebras which act as fundamental 

tools in algorithm implementation based on relation algebras. In Section 2 we will 

follow up with existing theory of splitting atoms in relation algebras. We will illus

trate its shortcoming in an example by our implementation. In Section 3 we will 

present our approach to splitting with necessary conditions to ensure that the end 

result of splitting is certainly a relation algebra and provide few examples. In Section 

4 we will discuss the application of splitting atoms in unison with the refinement 

process from a mereotopological perspective and provide examples. 

25 
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Atom Structures and Complex Algebras 

Boolean algebra forms a reduct of relation algebras with distinguished operations, 

so every such algebra provides an atom structure. A complete and atomic relation 

algebra can be recovered from its atom structure with the aid of its comple:L algebra 

construction. Considering that some relation algebras are made for special purposes, 

e.g., see [1], arid it is difficult to store them, these atom structures prove to be very 

useful. This property is particularly advantageous during storage since atom structure 

warrants exponentially less space than the entire algebra (see Example 5). For further 

details on atom structures and complex algebras not mentioned here we refer to [32]. 

Example 5. Consider the comparison table given by Table no. 3.1. The first column 

represents the number of atoms of the relation algebra. The second column denotes 

the size of the composition table, which arguably confains the largest portion of the 

data needed to store the relation algebra. Finally; the last column represents the size 

of the composition table being reduced to atoms. 

Total atoms I Size of composition table I Reduction in atom count 

1 
2 
3 
4 
5 

n 

4 
16 
64 

256 
1024 

1 
4 
9 
16 
25 

nxn 

Table 3.1: Comparitive size analysis - Algebra vs Atom 

Definition 17. An atom structure QttQt = (At21,C(Qt),f,I(2l)) of aNA 2l consists 

of a non-empty set AtQt of atoms, a unary predicate I(Qt) = {x E AtQt : x ::; 1'}, 

a unary function f : AtQt ---7 AtQt defined by J (x) = x~, and a ternary relation 

C(Qt) = {(x,y,z) : x,y,z E AtQt,x;y ~ z}. 

Conversely, we start from a relational structure (5 = (U, C, f, /), i.e., a set U 

together with a ternary relation C on U, a unary function f : U ---7 U, and a subset 

I of U. One may construct an algebra of relational type on Rel(U) of U as follows. 
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Definition 18. Given a relational structure <5 = (U, C, j, 1) the complex algebra 

<tm<5 = (Rel(U), U, n, -,0, U,;, '-', 1') is defined by 

X; y = {z E U : :Jx E X:Jy E Y(x, y, z) E C} and X~ = {j(x) : X EX}. 

The notion of a cycle is very helpful working with atom structures. Cycles basically 

reflect axiom R3 or the cycle law introduced earlier. For three elements x, y, z of a 

relational structure <5 = (U, C, j, I) we write [x, y, zJ for the following set of up to six 

triples: 

[x, y, zJ ={ (x, y, z), (x~, z, V), (y, z~, x~), 

(y~,x~,z~), (z~,x,y~),(z,y~,x)} 
(3.1) 

[x, y, zJ is called a cycle. Its importance can be seep' in the next theorem. A proof 

can be found in [31J. 

Theorem 3.0.6. Let <5 = (U, C, j, 1) be a relational structure consisting of a set U 

together with a ternary relation C on U, a unary function j : U -+ U, and a subset 

IofU. 

1. The following three conditions are equivalent: 

(i) <5 is the atom structure of some complete atomic NA. 

(ii) <tm<5 is aNA. 

(iii) <5 satisfies condition (a) and (b) 

(a) if(x,y,z) E C, then U(x),z,y) E C and (z,j(y),x) E C. 

(b) for all x, y E U, x = y iff there is some wEI such that (x, w, y) E C. 

2. <tm<5 is a relation algebra iff <tm<5 is a NA and 'it satisfies condition (c): 

(c) for all x, v, w, x , y, z E U, if (v , w, x) E C and (x, y, z) E C, then there is 

some u E U such that (w, y, u) E C and (v, u, z) E C. 

From the theorem above one can easily see that condition (a) is already satisfied if 

C is a union of cycles. Property (c) can nicely be visualized by the following diagram. 

;/.~ ...... ~ ........ . . ~. 
z 
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Notice that Q:m6 is integral iff I is a singleton [32J. In an integral atom structure, 

i.e., an atom structure of an integral NA, it is possible to remove the cycle including 

the identity since property (b) determines them uniquely in this case. Therefore, we 

will normally only list the diversity cycles, i.e., those cycles that do not contain the 

identity. 

Splitting Atoms in Relation Algebra 

The method of splitting is well known in cylindric algebra theory, originating with L. 

Henkin et al. [28]. His work was used to obtain nonrepresentable cylindric algebras 

from representable ones. The very concept was adopted by H. Andn§ka et al. [2] 
to devise splitting atoms in relation algebras. In the following section we recall the 

theory presented in [2] . J 

Definition 19. Let 2l and 113 be atomic NA's. We say that 2l is obtained from 113 by 

splitting if the following conditions are satisfied: 

S1 2l:2 113. 

S2 Every atom x E 2l is contained in an atom c( x) E 113, called the cover of x. 

S3 For all x, y E At2l, if x, y ::; 0', then 

x; Y = { c(x); c(y) ·0' 
c(x); c(y) 

iff x 1= y~, 
iff x = y~. 

Given an atomic NA 113 one might identify one or more atoms, specify the number 

of atoms that these identified atoms way be split into symmetric or non-symmetric .. 
atoms. This information can summarized by two furictions TJ and e mapping Atl13 

to cardinals. We say that 2l is obtained from 113 by splitting along TJ and e if 2l is 

obtained from 113 by splitting and for all x E Atl13 

TJ(x) I{y E At2l: y::; X,Y 1= Y~}I, 

B(x) I{y E At2l: Y::; x,y = Y~}I· 

In [2] the following two theorems about the existence and uniqueness of a splitting 

along two functions were shown. 
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Theorem 3.0.7. Let Qt, Qt', and ~ be complete atomic NA's. Let'T1 and e be functions 

mapping At~ to cardinals. If Qt and Qt' are obtained from ~ by splitting along 'T1 and 

e, then Qt and Qt' are isomorphic by an isomorphism that leaves ~ fixed. 

Theorem 3.0.8. Let ~ be an atomic NA. Let 'T1, e be functions mapping At~ to 

cardinals, and let a( x) = 'T1( x) + e( x). Then we have: 

1. There is an atomic NA Qt obtained from ~ by splitting along 'T1 and e iff the 

following conditions hold for all x E At~: 

(a) a(x) ~ 1. 

(b) 'T1(x) = 'T1(x~). 

(c) x ::; l' implies 'T1(x) = o. 
(d) x = x~ implies'T1(x) is even. 

(e) x i x~ implies e(x) = o. 

2. Suppose Qt is an atomic NA and obtained from ~ by splitting along 'T1 and e. 

Then Qt is a RA iff ~ is a RA and for all x, y E At~ we have; if a(x) > 1 and 

y; xi 0 and y ::; 0' , then y ::; y ; (x; x~ . 0'). 

The situation where a relation algebra and one atom that we want to split into 

two atoms is given is of particular interest. Therefore, we say that x is splitt able in 

an atomic relation algebra ~ if the following three conditions are satisfied: 

Al x::; 0' . 

A2 If 0' ~ Y E At~ and x; y i 0, then y ::; (x~; x . 0'); y. 

A3 If 0' ~ y E At~ aria y; xi 0, the"n y ::; y; (x; x~ . 0'). 

~ is called splitt able iff ~ has a splitt able .atom. 

By Theorem 3.0.8 x is splitt able in ~ iff there is a relation algebra Qt obtained 

from ~ by splitting such that x r:J. AtQt. Note that if ~ contains a functional element 

y below 0' , i.e., y~; y ::; l ' and y ::; 0', then ~ is not splitt able. 

Suppose Qt is a relation algebra, Qt is atomic and x is an atom of Qt. Then x is 

called symmetric iff x = x~ where x~ denotes converse of x. Let n be the total 

number of atoms and s be the number of symmetric atoms in Qt. Then n - s denotes 

the number of non-symmetric atoms in Qt. To represent these atoms we shall use 

natural number sequence 1 ... n. The first atom denoted by 1 is always an identity 
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since we consider integral relation algebras which implies that the identity is an atom. 

The Boolean part of complex algebra of an atom structure is defined as usual, and the 

converse operation on sets is defined componentwise. The atoms 1 ... s are symmetric 

and the atoms s+ 1 ... n are non-symmetric with m ~ = m - 1 if m - s is even and 

m~ = m + 1 if m - s is odd. Consequently, n - s must be even. Using these notions 

we represent integral relation algebras for computation of different splitting methods 

on the computer. 

The next example demonstrates a case where the above mentioned theory of split

ting is successful in our program. 

Example 6. Let 21. be a RCC-8 algebra with At21. = {1', DC, EC, PO, TPP, TPP~, 

NT P P, NT P P~ }. We have n = 8 and s = 4 since 1', DC, EC, PO are symmetric 

and rest are non-symmetric atoms respectively. Suppose C is a list of diversity cycles, 
J 

then any cycle is in fact a representation of upto siX triples. Therefore the RCC-8 

composition table from Table 2.1 condenses to a cycleset C given by, 

C(2I.) = [(DC,DC,DC),(DC,DC,EC),(DC,DC,PO),(DC,DC,TPP), 

(DC, EC, EC), (DC, EC, PO), (DC,EC, TPP), (DC, EC,NTPP), (DC, PO, PO), 

(DC, PO, TPP) , (DC, PO, NTPP), (DC, TPP, TPP),(DC, TPP,NTPP) , 

(DC, NTPP, NTPP) , (EC,EC,EC), (EC,EC,PO), (EC,EC, TPP),(EC,P 0, PO), 

(EC,PO, TPP) , (EC, PO, NTPP) , (EC, TPP, TPP),(EC, TPP,NTPP), 

(EC,NTPP,NTPP), (PO, PO, PO), (PO, PO, TPP), (PO,PO,NTPP), 

(PO,TPP,TPP),(PO,TPP,NTPP),(PO,TPP'-',TPP~),(PO,TPP~,NTPP~), 

(PO,NTPP,NTPP),(PO,NTPP~,NTPP~), (TPP,TPP,TPP), 

(TPP,TPP,NTPP),(TPP,NTPP,NTPP),(TPP,NTPP~,NTPP~ ), 

(DC, DC, NTPP), (NTPP, NTPP, NTPP)} 

Atoms of QI. 

Atoms of ~ 

Table 3.2: Ats.B vs At21. 

It is interesting to note that this particular algebra does not contain any functional 

elements besides the identity atom. Therefore the splitting method from Theorem 3. O. 8 

is applicable. We may split the Atom PO into two new atoms. Now we rename the 

same atom as POA and POB in accordance with the convention of symmetric atoms 

followed by non-symmetric atoms in pairs, we get a new algebra s.B with n = 9, s = 5 

and the correlation between atoms in s.B and 21. given by Table 3.2 

The diversity cycles of the new algebra s.B are as follows: 
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C(~j = [ (DC,DC,DC),(DC,DC,ECj,(DC,DC,POAj,(DC,DC,POBj, 

(DC,DC, TPPj, (DC, DC,NTPPj, (DC,EC,ECj, (DC,EC,POAj, 

(DC,EC, TPPj, (DC,EC,NTPPj, (DC,POA,POAj, (DG,POA,POB j, 

(DG,POB,POBj, (DG,POA, TPPj,(DC,POB, TPPj, (DG,POA,NTPPj, 

(DG,POB,NTPPj, (DC, TPP, TPPj, (DC, TPP,NTPPj, (DC,NTPP,NTPPj, 

(EC,EC,ECj, (EG,EC,POAj, (EC,EC,POBj, (EG,EC, TPPj, (EC,POA,POAj, 

(EC,POA,POBj, (EC,POB,POBj, (EG,POA, TPPj, (EC,POB, TPP j, 

(EC, POA, NTPPj,(EC, POB, NTPPj, (EC, TPP, TPPj, (EG, TPP,NTPPj, 

(EC,NTPP,NTPPj,(POA,POA,POAj,(POA,POA,POBj,(POA,POB,POBj, 

(POB,POB,POBj,(POA,POA, TPPj,(POA,POB, TPPj,(POB,POA, TPPj, 

(POB,POB, TPPj,(POA,POA,NTPPj,(POA,POB,NTPPj, 

(POB,POB,NTPPj,(POA, TPP, TPPj, (POB, TPP, TPPj, (POA, TPP,NTPPj, 

(POB,TPP,NTPPj,(POA,TPP~,TPP~j,(POB,'1!PP~,TPP~ j, 
-. 

(POA,TPP~,NTPP~j,(POB,TPP~,NTPP~j,(POA,NTPP,NTPPj, 

(POB,NTPP,NTPPj,(POA,NTPP~,NTPP~j,(POB,NTPP~,NTPP~ j, 

(TPP, TPP, TPPj, (TPP, TPP,NTPPj, (TPP,NTPP,NTPPj, 

(TPP,NTPP~,NTPP~j,(DG,EG,POBj,(POB,POA,NTPPj, 

(NTPP,NTPP,NTPPj) 
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The resulting computation described in Example 6 took a split second to be ex

ecuted using our implementation. The same task is laborious if computed manually. 

Incidentally the above methodology cannot be deployed for splitting atoms in alge

bras containing functional elements like bijections, for example RCC -11 algebra due 

to the presence of bijective relation namely ECD. 

3.0.9 The Extension of a I!elation Algebra 
." 

In this section we will make use of ordinal arithmetics. Therefore, we want to re-

call some of their basic properties needed throughout this thesis. The definition of 

addition can be given inductively: 

a+O = a, 

a + (,8 + 1) = (a + ,8) + 1, 

and if 8 is a limit ordinal, then a + 8 = U{ a + ,8 : ,8 < 8}. 

Zero is an additive identity a + 0 = 0 + a = a, addition is associative (a + ,8) + ry = 
a + (,8 + ry). Furthermore, ordinal addition is left-cancellative, i.e., if a +,8 = a + ry, 
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then /3 = "f. This property allows to define a left subtraction for ordinals. However, 

right cancellation is not valid. Similar properties are shared by ordinal multiplication 

recursively defined by: 

a * 0 = 0, 

a * (/3 + 1) = (a * (3) + a, 

and if 0 is a limit ordinal, then a * 0 = U{ a * /3 : /3 < O}. 

We have a * 0 = 0 * a = 0, multiplication is associative, 1 is an identity (or unit) 

a * 1 = 1 * a = a, and satisfies a cancellation law, namely if a > 0 and a * /3 = a * " 
then /3 = ,. As for addition right cancellation is not valid. 

The notion of a splitting is too restrictive for our purposes because it does not 

allow the splitting of algebras that contain bijections.,different from the identity. The 

super algebra property together with the cover property seems to be sufficient. This 

guarantees that the composition of elements in the sub algebra can be computed by 

the elements of the super algebra. 

Definition 20. Let m. and ~ be atomic integral RA 'so We say that m. is an extension 

of ~ if the following conditions are satisfied: 

S2 Every atom x Em. is contained in an atom c(x) E ~, called the cover of x. 

Notice that S2 is redundant if m. and ~ are finite, but it is needed in the infinite 

case. 

If the atoms in m. satisfy the condition imposed by to function 'T} and e, then 

we say that m. is an extension of ~ along 'T} and e. Notice that such an extension 

does not have to be unique up to isomorphism. The next theorem provides necessary 

conditions for the existence of an extension. Notice that the proof also provides an 

explicit construction. 

Theorem 3.0.9. Let ~ be a complete atomic integral RA. Let 'T}, e be functions map

ping At~ to cardinals, and let a(x) = e(x) + 'T}(x). Then there is a complete atomic 

integral RA m. that is an extension of ~ along T} and e if the following conditions hold 

for all x , y E At~: 

(a) a(x) ~ l. 

(b) 'T}(x) = 'T}(x). 
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(c) x E Bij~ implies a(x) = 1. 

(d) x = x implies 7]( x) = even, i. e., 7]( x) = 2 * (3 for some ordinal (3. 

(e) x =1= x implies O(x ) = O. 

(f) y E Bij~ implies a(x; y) = a(x). 

(g) Y E Bij~, x = x and 7](x) > 0 implies x; y = (x; yt and O(x) = O(x; y). 

(h) a(x) > 1, y; x =1= 0 and y tJ. Bij~ implies y ::; y; (x; x nO'). 

33 

Proof. First we want to show that a(x) = a(x) since we will use this property 

frequently without mentioning. If x = x the assertion is triviaL If x =1= x, then 

a(x) = 7](x) follows from (e), which shows together with (b) that a(x) = a(x). 

We are going to construct a relational structure ·15 = (U, C, f, I) so that Itm6 is 

a RA and ~ can be embedded into Itm6. Therefore, notice that O(x), 7](x) as well as 

a(x) = O(x ) + 7](x) are ordinals so that we can assume a(x) = {(3 : (3 < a(x)}, O(x) = 
{(3 : (3 < O(x)} and 7](x) = {(3 : O(x) ::; (3 < a(x)}. Let be U = {(x, (3) : (3 E a(x)}, 

and define f : U -+ U by 

{ 

(x,(3) 

f(x, (3) = (x , (3 + 1) 
(x,(3-1) 

if x =1= x or (3 E O(x), 

if x = x and (3 E 7](x) and (3 = O(x) + 2 * (3', 

if x = x and (3 E 7](x) and (3 = O(x) + 2 * (3' + 1. 

Obviously, we have f(f(u)) = u for all u E U, and f(u) = u iff u = (x,(3) with 

x = x and (3 E O(x) . We will denote the second component of f(x, (3) by h(x, (3) 

so that f(x, (3) = (x, 12 (x, (3)) and (3 = 12 (x, h(x, (3)) follows . Also notice that 

h(x, (3) = 12 (x, (3). 
-, 

We want to show tli~ following property: 

(*) If y E Bij~ , then h(x, (3) = h(x; y, (3) for all (3 E a(x) = a(x; y). 

First, suppose h(x, (3) =1= (3. Then x = x and (3 E 7](x), and, hence, 7](x ) > 0, by 

the definition of f. From (g) we get (x; y) = (x; yt and O( x) = O(x; y). This also 

implies that 7]( x) = 7]( x; y) because of (f) and the left-cancellation property of ordinal 

addition. Consequently, we have (3 E 7](x; y), and, hence, h(x, (3) = 12 (x; y , (3) follows. 

Now, assume 12 (x, (3) = (3. If h(x; y, (3) =1= (3, then we conclude analogously to the 

previous case that h(x, (3) =1= (3 using that y is a bijection and that x; y; brevey = x. 

This is a contradiction so that h(x; y, (3) = (3 follows. 
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Notice that we also have that y E Bij~ implies hex, /3) = hey; x, /3) for all /3 E 

a(x) = a(y; x). This follows immediately from a(x) = a(x) and hex, /3) = hex, /3) 
for all x and /3. 

Now let 1:= {(1' , 0)} and define 

C = U{[(x, /3), (y, ,), (z, 8)] : z ~ x; y and x, y, z tj. Bij~} 

U U{[(x, /3), (y, 0), (z , /3)] : z ~ x; y and y E Bij~}. 

In order to show that Q:m6 is aNA it is sufficient to show Property (b) of Theorem 

3.0.6(1)(iii) since C is defined as a union of cycles. 

Suppose (x,/3) E U. Then we have [(x,/3), (1' , 0) , (x ,/3)] S;;; C. For the converse 

implication suppose ((x, /3), (1 ', 0), (z, 8)) E C. We obtain [(x, /3), (1 ', 0) , (z, 8)] = 
fe z, 8), (i\ 0), (x, /3)] S;;; C so that the definition of C ~mplies that x = z and /3 = 8 . .. 

In order to prove that C!::m6 is a RA suppose ((v,/3), (w,,),(x,8)) E C and 

((x, 8), (y , E), (z, p)) E C. We distinguish several cases: 

1. v E Bij~: We want to show that (v; z, 0") with 0" = h(v; z, h(z, p)) is the 

required element , i.e., that 

((v, 0) , (v; z, 0"), (z, p)) E C and ((w, ,), (y , E), (v; z, 0")) E C. 

First, we have p E a(z) which implies h(z, p) E a(z) = a(z; v) using (f) so 

that 0" E a(v; z), and, hence, (v; z, 0") E U follows. Furthermore, we have 

v; v; z = z and w; y = v; v; w; y ~ v; x; y ~ v; z so that the property in 

the definition of C on the first components of each triple is satisfied. From 

fez, h(z, p)), (v , 0), (z; v, f2(Z, p))] s;;; C by definition we conclude that the first 

triple is clearly in,C. In order tQ show that the second triple is also in C we 

distinguish four cases: 

(a) w,y,v;z tj. Bij~: In this case we have [(w,,),(y,E),(V;Z,O")] S;;; C and we 

are done. 

(b) w E Bij~ : Then x is a bijection too because x ~ v; wand v and w 

are bijections. We conclude from ((x , 0), (y, E), (z, p)) E C that we have 

[(iJ , hey, E)), (x, 0), (z, h(z, p))] = fe z, h(z, p)), (x , 0), (1) , hey, E))] S;;; C , and, 

hence, that hey, E) = h(z, p). This implies fe z; v, h(z, p)), (w , 0), (iJ, hey, E))] 
S;;; C which shows ((w, 0), (y, E), (v; z, 0")) E C. 

(c) Y E Bij~: Then we conclude from ((x , 8), (y, 0), (z, p)) E C, and, hence, 



CHAPTER 3. SPLITTING & REFINEMENT OF ATOMS 35 

[(x, 5) , (y , 0) , (z, p)J = [( z, p) , (y , 0) , (x, 5)J ~ C, that 5 = p. Similarly, 

from ((v ,0),(w,,),(x,5)) E C, i. e., [(w,h(w, , )),(v,0),(x, h(x,5))J = 
[( x, h (x, 5) ), (v , 0), (w, h ( w, , ) ) J ~ C, we get h ( w, , ) = h (x) 5) since v is 

a bijection. We conclude 

(J = h(v; z, h(z, p)) 

= h(v; x; y, h(x; y, 5)) 

= h(w; y, h(x; y, 5)) 

= h(w, h(x, 5)) 

= h(w, h(w, , )) 

=" 

5 = p and z = x; y 

v; w = x and v bij~ction 

(*) twice 

h(w,,) = h(x,5) 

J 
so that ((w ,,),(y,O),(v;z ,p)) E C follows. 

(d) v; z E BijQ3: This implies (J = ° and that z = v; v; z is also a bijec

tion, and , hence, p = 0. From ((v, 0), (w , , ), (x, 5)) E C, and, hence, 

[(x, h(x, 5)), (v, 0), (w, h( w, ,))] = [(w, h(w, ,)), (v, 0), (x, h(x, 5))J ~ C, 

we get h(w, , ) = h(x,5) . In addition ((x,5) , (y ,E) , (z,0)) E C , and, 

hence, [(x, h(x, 5)), (z, 0) , (y , E)J = [(y , E), (z, 0) , (x, h(x, 5))J ~ C, implies 

h(x,5) = E. Together we obtain h(w,,) = h(x, 5) = E so that 

[(w, h(w, ,)) , (v; z, 0), (y, E)] ~ C, i.e., ((w, ,), (y , E), (v; z, 0)) E C, follows. 

2. The cases w or y E BijQ3 can be shown analogously by using the elements 

(w; y, h( w; y, h(y, E))), and (w; y, , ), respectively. 

3. v, w , y 1:. BijQ3: Since x ~ v ; w , z ~ x; y and Q3 is a RA there is an element 

u E AtQ3 with z .• ~ v ; u and 'lL. ~ w ; y . If u 1:. BijQ3 , then we choose (J = 
h (v, (3) if z E BijQ3 and an arbitrary (J E a ( u r otherwise. This choice gives 

[(v, h(v, (3)), (z, p) , (u, (J)] ~ C which immediately implies 

((v , (3) , (u, (J)) , (z, p)) E C and ((w , , ), (y, E), (u, (J)) E C. 

Now, suppose u E BijQ3. If (3 = p and h(w,,) = E, then [(v,(3), (u,O), (z,p)] ~ 

C and [f(w , , ), (u, 0) , (y , E)] ~ C implies the assertion. The remaining two cases 

are shown as follows: 

(a) (3 =J p: Then (3 E a(v) = a(v; u) = a(z) :3 p because of (f) and z = v; u. 

Consequently a(z) = a(z) > 1. In addition x ~ w; v = w; u; u; v = y; z 
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shows 

w=w;u;u 

= y; u y = w; u since u :::; w; y and u bijection 

:::; y; (z; z . 0'); u (h) since y tt Bij~, a(z) > 1 and y; z > x 

= w; u; (u; v; v; u . 0') ; u y = w; u; z = v; u 

= w; (v; v· u; 0'; u) Lemma 2.3.2 

= w; (v; v . 0') Lemma 2.3.2. 

This implies that there is an atom u' E Q3 with w :::; w; u' and u' :::; v; v· 0' 

since otherwise w = 0 would follow. In particular, u' ·tt Bij~ because 

otherwise w; u' = W, and, hence, u' = 1; would follow, a contradiction to 
i J 

U' :::; 0'. Therefore, u'; u is an atom and n6t a bijection. Furthermore, we 

have y = w·u < w·u'·u = w· (u'·u) and u'·u < (v·v· O')·u < V·v·u = V· z , - " " , -, , -" , 
so that u'; u :::; w; y and z :::; v; (u'; u) follows. Consequently, we can use 

u'; u instead of the bijection u. 

(b) h( w, 'Y) = E: This case is shown analogously to the previous case. 

The algebra ~ can be embedded into Itm6 using the function h(b) = ((x ,,8) I x E 

At~, x :::; b,,8 E a( x)} which is easy to verify. The obvious definition c : Atltm6 ---+ 
Ath(~) by c(x,,8) = h(x), i.e., c(x,,8) = ((x,,8) : /3 E a(x)}, shows that Itm6 is an 

extension of the image h(~) along TJ and e. Finally, we obtain 2l by replacing the 

image h(~) of ~ in Itm6 by ~ itself. 0 0 

We follow-up with different cases exemplifying situations whether the splitting 

mechanism based on Th~orem 3.0.9 is .!1Pplicable or not. 

Example 7. Let 2l be a relation algebra with At2l = {I', a, b}. We have n = 3, 

s = 3 as all the atoms are symmetric and the following diversity cycles, 

C(2l) = [(a, a, b), (a , b, b)]. 

Atoms of 2l l ' a b 
Atoms of ~ l ' al J a2 b 

Table 3.3: At~ vs At2l 
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The relation algebra above is the so-called pentagonal relation algebra [32j. By the 

application of splitting algorithm induced by Theorem 3.0.9 on Atom a, we obtain the 

following new structure ~ with n = 4, s = 4 with correlation Table 3.3 between the 

atoms in ~ and Ql and its full composition Table 3.4. 

I ; II a1 I a2 I b 

a1 b b a1,a2,b 
a2 b b a:1,a2,b 
b a1,a2,b a2,b a1,a2 

Table 3.4: Composition table for ~ 

This structure is not a relation algebra since ({ a1}; {a2}); {b} = {b}; {b} = {a1, a2} =1= 

{a1,a2,b} = {a1};{a1,a2,b} = {a1};({a2};{b}). !f fact, Property (h) of Theo

rem 3.0.9 is violated since 

a; (b; b· (a + b)) = a; ((1' + a) . (a + b)) = a; a = l' + b i a. 

We did some further investigation on this very interesting example. Actually there 

is no integral extension of the relation algebra Q( along any possible pair of functions 

so that Atom a or Atom b (or both) splits into two atoms. However, the algebra is 

representable on a set of five elements. All three atoms are represented by non-atomic 

relations which shows that all atoms can be split resulting in a simple (but not integral) 

relation algebra. Notice that in [25} it was shown that there are even algebras that 

cannot be properly embedded in any simple relation algebra. 

The next example illustrates a case where extensional splitting mechanism from 

Theorem 3.0.9 succeeds while the regular method using Theorem 3.0.8 is futile . .. .. 
Example 8. Let Ql be a RCC-11 algebra with AtQl = {1', DC, ECN, ECD, PON, 

PODY, PODZ, TPP, TPP~, NTPP, NTPP~}. We have n = 11 and s = 7 

since 1', DC, ECN, ECD, PON, PODY, PODZ are symmetric and rest are non

symmetric atoms respectively. Suppose C is a list of diversity cycles, then RCC-11 

composition table from Table 2.4 condenses to a cycleset C given by, 

C(Ql) = [(TPP,TPP,TPP),(TPP,TPP,NTPP)..(TPP,TPP~,DC), 
(TPP,T P P~ ,PON), (TPP,T P P~ ,ECN), (TPP;NTPP,NTPP), 

(TPP,NTPP~,NTPP~)..(TPP,NTPP~,PON),(TPP,NTPP~,DC), 

(TPP,NT P P~,ECN), (TPP,PON, TPP), (TPP, PON, NTPP) , (TPP,PON,PON), 
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(TPP,PON,ECN),(TPP,PON,DC),(TPP,PODY, TPP),(TPP,PODY,PO N), 

(TPP,PODY,NTPP),(TPP,PODY,PODY),(TPP,PODY,ECN), 

(TPP,PODY,ECD), (TPP,PODZ, TPP), (TPP,PODZ, NTPP) , 

(TPP,PODZ,PON),(TPP,PODZ,PODY),(TPP,PODZ,PODZ), 

(TPP,ECN,ECN),(TPP,ECN,DC),(TPP,ECD;ECN), 

(TPP,DC,DC), (NTPP,NTPP,NTPP), (NTPP,NT P P~ ,PON), 

(NTPP,NTPP~,ECN),(NTPP,NTPP~,DC». (NTPP,PON,NTPP), 

(NTPP, PON, PON), (NTPP, PON, ECN), (NTPP, PON, DC), 

(NTPP,PODY,NTPP),(NTPP,PODY,PON) ,(NTPP,PODY,ECN), 

(NTPP,PODY,DC),(NTPP,PODZ,NTPP),(NTPP,PODZ,PON), 

(NTPP,PODZ,PODY),(NTPP,PODZ,PODZ),(NTPP,PODZ,ECN), 

(NTPP,PODZ,ECD),(NTPP,PODZ,DC),(NTPP,ECN,DC), 

(NTPP,ECD,DC),(NTPP,DC,DC),(PON,PON,P.;ON),(PON,PON,PODY), 

(PON,PON,PODZ), (PON,PON,DC), (PON,PON,ECN), (PON,PON,ECD), 

(PON,PODY,PODY), (PON,PODY,PODZ),(PON,PODZ,PODZ), 

(PON,ECN,ECN), (PON,ECN,DC), (PON,DC)pC), (PODY,PODY,PODY), 

(PODY,PODY,PODZ),(PODY,PODZ,PODZ),(PODZ,PODZ,PODZ), 

(ECN,ECN,ECN) , (ECN,ECN,DC), (ECN,DC,DC), (DC,DC,DC), 

] 

I Atoms of !2( I Atoms of ~ I -, 

DC DC 
ECN BONA 

,"" - ,'¥! ECNB 
,~, •• ,7 

ECD ECD 
PON PON 
PODY PODYA 

PQDYB 
PODZ PODZ 
TPP TpPA 

TPPB 
TPP~ T:PPA~ 

TPPB~ 
NTPP NTPP 
NTPP~ NTPP~ 

Table 3.5: At~ vs At!2( 
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As mentioned before, apart from the ubiquito;us identity relation, RCC-ii algebra 
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contains an additional bijection -the relation EOD. None of the atoms of this par

ticular algebra can be split using the mechanism based on Theorem 3. O. 8. However 

Theorem 3.0.9 can be aptly applied to RCC-11 and we can split the relation TPP 

into two new atoms called TPPA and TPPB. As TPP is a non-symmetric atom, we 

must split its converse too i. e., T P P~ into two new relations namely T P P A ~ and 

T P P B~. Also, given that the algebra contains the bijection atom ECD, we need to 

split atoms ECN and PODY as well, each into two new relations ECNA, ECNB and 

PODYA, PODYB respectively (see properties (b) & (f) - Theorem 3.0.9). This results 

in an algebra RCC-15 denoted by ~ with n = 15, s = 9. The correlation between the 

old and new atoms is as shown in Table 3.5. 

The diversity cycles of the new algebra ~ ate as follows: 

C(~) =! (TPPA, TPPA, TPPA),(TPPA, TPPA, TPPB),(TPPA, TPPB, TPPA), 

(TPPA, TPPB, TPPB) , (TPPB, TPPA, TPPA)JTP'!B, TPPA, TPPB), 

(TPPB, TPPB, TPPA), (TPPB, TPPB, TPPB), (TPPA, TPPA,NTPP), 

(TPPA,TPPB,NTPP),(TPPB,TPPA,NTPP),(TPPB,TPPB,NTPP), 

(TPPA,T P P A~ ,DC), (TPPA,T P P B~ ,DC), (TPPB,T P P B~ ,DC), 

(TPPA,TPPA~,PON),(TPPA,TPPB~,PON),(TPPB,TPPB~,PON), 

(TPPA,TPPA~,ECNA),(TPPA,TPPA~,ECNB),(TPPA,TPPB~,ECNA), 

(TPPA,T P P B~ ,ECNB), (TPP B,T P P B~ ,EONA), (TP P B,T P P B~ ,ECNB), 

(TPPA,NTPP,NTPP),(TPPB,NTPP,NTPP); (TPPA,NTPP~,NTPP~), 

(TPPB,NTPP~,NTPP~),(TPPA,NTPP~,PON),(TPPB,NTPP~,PON), 

(TPPA,NTPP~,DC),(TPPB,NTPP~,DC),(TPPA,NTPP~,ECNA), 

(TPPA,NT P P~ ,ECNB), (TPPB,NT P P~ ,EONA), (TPPB,NT P P~ ,ECNB), 

(TPPA,PON, TPPA) , (TPPA,PON, TPPB), (TPPB,PON, TPPB), 

(TPPA,PON,NTPP),(TPPB,PON,NTPP),(TPPA,PON,PON), 

(TPPB,PON,PON),(.TPPA,PON,ECNA),(TPPA,PON,ECNB), 

(TPPB,PON,ECNA),(TPPB,PON,ECNB),(TPPA ,'PON,DC), 

(TPPB, PON, DC), (TPPA,PODYA, TPPA)JTPPA,PODYA, TPPB), 

(TPPA,PODYB, TPPA)JTPPA,PODYB, TPPB), (TPPB,PODYA, TPPB), 

(TPPB,PODYB, TPPB), (TPPA,PODYA,PON), (TPPA,PODYB,PON), 

(TPPB,PODYA,PON), (TPPB,PODYB,PON), (TPPA,PODYA,NTPP), 

(TPPA, POD YB,NTPP), (TPPB,PODYA,NTPP),(TPPB,PODYB,NTPP), 

(TPPA,PODYA,PODYA),(TPPA,PODYA,PODYB),(TPPA,PODYB,PODYA), 

(TPPA,PODYB,PODYB), (TPPB,PODYA,PODYA), (TPPB,PODYA,PODY B), 

(TPPB,PODYB,PODYA),(TPPB,PODYB,PODYB),(TPPA,PODYA,ECNA), 

(TPPA,PODYA,ECNB),(TPPA,PODYB,ECNA),(TPPA,PODYB,ECNB), 
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(TPPB,PODYA,ECNA),(TPPB,PODYA,ECNB),(TPPB,PODYB,ECNA), 

(TPPB, POD YB, ECNB), (TPPA,PODZ, TPPA);{TPPA,PODZ, TPPB), 

(TPPB,PODZ, TPPB), (TPPA, PODZ, NTPP),(TPPB, PODZ, NTPP) , 

(TPPA,PODZ,PON),(TPPB,PODZ,PON),(TPPA,PODZ,PODYA), 

(TPPA ,PODZ,PODYB),(TPPB,PODZ,PODYA),(TPPB,PODZ,PODYB), 

(TPPA, PODZ, PODZ), (TPPB, PODZ, PODZ), (TPPA , ECNA, ECNA) , 

(TPPA ,ECNA,ECNB) ,(TPPA ,ECNB,ECNA);(TPPA ,ECNB,ECNB), 

(TPPB, ECNA, ECNA) , (TPPB, ECNA, ECNB}; (TPPB, ECNB, ECNA), 

(TPPB,ECNB,ECNB),(TPPA,ECNA,DC),(TPPA,ECNB,DC) , 

(TPPB, ECNA, DC), (TPPB,ECNB,DC) ,(TPPA,DC,DC),(TPPB,DC,DC ), 

(NTPP,NTPP,NTPP), (NTPP,NT P P~ ,PONY, (NTPP,NT P P~ ,ECNA), 
; 

(NTPP,NTPP~,ECNB), (NTPP,NTPP~,DG), (NTPP,PON,NTPP), 

(NTPP,PON,PON),(NTPP,PON,ECNA),(NTPP:;,PON,ECNB), 

(NTPP,PON,DC), (NTPP,PODYA,NTPP), (NTPP,PODYB,NTPP), 

(NTPP,PODYA ,PON),(NTPP,PODYB,PON)I(NTPP,PODYA,ECNA), 

(NTPP,PODYA ,ECNB), (NTPP, POD YB, EGNA), (NTPP, POD YB, ECNB), 

(NTPP,PODYA ,DC),(NTPP,PODYB,DC),(NTPP,PODZ,NTPP), 

(NTPP, PODZ, PON), (NTPP,PODZ,PODYA), (NTPP,PODZ,PODYB), 

(NTPP, PODZ, PODZ), (NTPP,PODZ,ECNAj,(NTPP,PODZ,ECNB), 

(NTPP,PODZ,DC),(NTPP,ECNA,DC),(NTP,P,ECNB,DC), 

(NTPP,DC,DC), (PON,PON,PON), (PON,PON,PODYA), 

(PON,PON,PODYB), (PON,PON,PODZ), (PON,PON,DC), 

(PON, PON, ECNA), (PON, PON, ECNB), (PONjPODYA ,PODYA), 

(PON,PODYA ,PODYB),(PON,PODYB,PODYB),(PON,PODYA,PODZ), 

(PON,PODYB,PODZ),(PON,PODZ,PODZ),(PON,ECNA,ECNA), 

(PON, ECNA , ECNB 1, (PON,ECNB,ECNB), (PON,ECNA,DC), 

(PON, ECNB, DC), (PON,DC,DC),(PODYA ,PODYA,PODYA), 

(PODYA ,PODYA,PODYB), (PODYA ,PODYB,PODYB), 

(POD YB, POD YB, PODYB), (PODYA , POD YA, PODZ), 

(PODYA,PODYB,PODZ), (PODYB,PODYB,PODZ), (POD YA, PODZ, PODZ), 

(PODYB,PODZ,PODZ),(PODZ,PODZ,PODZ),(ECNA,ECNA,ECNA), 

(ECNA,ECNA ,ECNB), (ECNA ,ECNB,ECNB), (ECNB,ECNB,ECNB), 

(ECNA , ECNA, DC), (ECNA,ECNB,DC), (EGNB,ECNB,DC), (ECNA, DC, DC), 

(ECNB,DC,DC), (DC, DC,DC), (TPPA~,EGDjPODYA), 

(TPPA~,ECD,PODYB),(TPPB~,ECD,PODYA), (TPPB~,ECD,PODYB), 

(TPPA ,ECD,ECNA),(TPPA ,ECD,ECNB),(TFPB,ECD,ECNA), 

40 
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(TPPB,ECD,ECNB),(NTPP~,ECD,PODZ),(NTPP,ECD,DC), 

(PON,ECD,PON) j 

41 

The splitting (and some further splittings) underlined in Example 8 was already 

accomplished in [15]. The distinction being that in the aforementioned paper, the 

resulting algebra was computed manually whereas the result in Example 8 was arrived 

using a Haskell based system implementing the approach of Theorem 3.0.9. Further 

details on the system functioning will be discussed in Chapter 4. 

Refinement of Algebras 

In the previous section we discussed ways of formulating extensional relation alge

bras. The deduction of cycles from such algebras foVns another important process 

in generating new algebras from old ones. This is usually termed as the refinement 

of algebras. Such a refinement is achieved in a two-step manner. The first step in

volves procurement of further extensions of an algebra via Theorem 3.0.9 application 

followed by the removal of specific cycles. If Them'em 3.0.9 is in effect the net result 

of a maximal extension, all possible extensions can be obtained using this process 

and similar approaches. Incidentally this process plays a predominant role in appli

cations of mereotopological domain. The refinemeht process can be explained using 

Example 9 and Example 10 as follows. 

Figure 3.1: EON 0 TPP n TPP =I- 0 Figure 3.2: EON 0 TPP n TPP =I- 0 

Example 9. Referring the composition Table 2.4 of RCC-11 consider the composition 

of relations ECN and TPP. We have weak compositional property EON; TPP n 
T P P =I- 0 i. e. , whenever one region is inside another region but their borders in

tersect, then there is a region that is externally connected to the first and itself a 
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tangential proper part of the second. This is depicted in Figure 3.1 whereby xTPPz 

implies the existence of a y with xECNy and yTPPz. But this condition may not 

always hold true as depicted in Figure 3.2 where xT P pz does not necessarily imply 

the existence of such a y. As such we construct examples as well as counterexamples 

for this particular statement by splitting atom T P P in RCC-li. This is the starting 

point for splitting TPP in RCC-ll (see Example 8 about splitting TPP in RCC-ll). 

This process not only involves splitting T P P but also warrants removal of the triple 

(ECN, TPP, TPP) for one of the two copies ofTPP in the new algebra RCC-IS. 

In addition such a removal requires discarding all related triples from the newly split 

algebra. These related triples are the product of relative multiplication by isomor

phism of a given algebra. For example in case oj cycle (ECN, TPP, TPP), copies of 

related triples such as (TPP, TPP~, ECN), (TPP~, ECN, TPP~), (ECN, ECN, 

ECN), (TPP~, TPP, PODY), (TPP, PODY, TRiP), (PODY, TPP~, TPP~), 
-. 

(PODY, PODY, PODY) must be discarded from the new algebra RCC-15. These 

related triples were obtained multiplying (EC N, T P P, T P P) by isomorphisms [I D, 

ECD] in RCC-ll algebra. Furthermore when we remove a triple from a cycle, we 

may also have to remove other triples in a step by step manner to satisfy the asso

ciative property (see Theorem 3.0.6 (c)). This removal process continues until the 

associative property is satisfied and we get a valid integral relation algebra. 

Example 10. Let Q( be a three atom algebra with AtQ( = {I', a, b}. We have n = 3 

and s = 3 since all atoms are symmetric in Q( and has the following diversity cycles, 

C(Q() = [(a, a, b), (a , b, b)]. 

Atoms of Q( l' a b . Atoms of ~ - l' al Ja2 b 

Table 3.6: At~ VB AtQ( 

The composition table for AtQ( is given by Table 3.7. By the application of splitting 

algorithm induced by Theorem 3. O. g on Atom a, we obtain the following new structure 

~ with n = 4, s = 4 with correlation Table 3.6 between the atoms in ~ and Q( and 

its full composition Table 3.B. 

Splitting Atom a in the algebra Q( gives rise to atoms { aI, a2 } in the newer 

algebra ~. Suppose our motivation is to remove the cycle (a2, b, b) from ~ since its 

clone (al, b, b) is already existing in the newer algebra. The resulting algebra after 

this deduction process has the diversity cycles: [(aI, aI, al), (aI, aI, a2), (aI, a2, 
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I ; II a I b I I ; II a1 a2 b 

I ~ II: I ~ I a1 aI, a2 aI, a2 b 
a2 aI, a2 aI, a2 b 

Table 3.7: Com
position table for 
~ 

b b b aI, a2 

Table 3.8: Composition table 
for ~ 

a2), (a2, a2, a2), (aI, b, b)] which are not associative and therefore not a relation 

algebra. We deploy the refinement process of cycle elimination until the property of 

associativity is satisfied i. e., in the above case the resultant diversity cycleset is, [(aI, 

aI, al),(a2, a2, a2), (aI, b, b)]. This was deduced by eliminating the cycles (aI, aI, 

a2) and (aI, a2, a2) as illustrated in Tables 3.9 to 3.11. 

I ;11 a1 I a2 I b .. 'W . , 'n.", ' ,0: 

ai~ aI, a2 aI, a2 b 
a2 aI, a2 aI, a2 b 

b S'\ b b aI, a2 

Table 3.9: Refinement step 1 
in ~ 

,II a1 I a2 1 b ,~ 

at' al b 
a2. a2 
b ,~ b al 

deduct cycle 

(a2,b,b) 

Table 3.11: Final composition table of ~ 

) 

a2 b 
~ 

!.a1 aI, a2 al, a2 b 
a2 al, a2 al , a2 
b b al 

Table 3.10: Refinement step 2 
in: ~ 

Figure. The transitions of refinement process in algebra ~ 

The previous two examples consolidates the concept of refinement in relation 

algebras and thereby concludes this chapter. 



Chapter 4 

The System 

This chapter deals with implementation aspect of the concepts and techniques dis

cussed in the previous chapter. It will be accompli~ed with the aid of functional 

structures. 

4.1 Overview 

The general design features of the system can be broadly outlined as follows, 

I The algebras will be computed with a total of n atoms of which s atoms are 

symmetric. The data pertaining to such algebras will be organized and stored in 

a pre-formatted data structure. Each element of this data structure will hold all 

the information such as name of the algebra, n, s, atom names and its diversity 

cycles. 

II The widgets used in the design of the user-interface are specifically selected to 

support the necessmy actions of manipulating th~ stored algebras. In addition 

the core functionality and the user-interface are fully decoupled to ensure testa

bility and maintainability of the system. 

III Parsers are designed to implicitly convert the data in storable format and also 

retrieve them for display purposes and data manipulation. Storage of data is 

possible for individual algebras or the entire Jist of algebras. 

The system is developed using Haskell, a functional programming language. Haskell 

is based on lambda calculus, a mathematical theory of functions, and not on the Tur

ing machine like imperative programming languages do. Shortly described, Haskell 

is a strongly typed, lazy, pure functional programming language. Haskell has a static 

44 
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type system so that all type errors are detected at compile time. This makes Haskell 

programs very type safe. Its type class system is complex but powerful. Haskell's 

evaluation model is called lazy or non-strict, because arguments of functions are only 

evaluated if they are needed for computations. This leads to demand-driven eval

uation. As such expressions are minimally evaluated to get the impending result 

so parts of them may not be evaluated at all. In contrast to imperative languages, 

program order is not needed in Haskell. A Haskell program can be viewed as a col

lection of module components and each module defines its own set of values, data 

types, type synonyms, classes, etc. The implementation of this system constitutes a 

collection of such modules. Figure 4.1 portrays dependencies among various modules 

of the system. GTK+ toolkit along with Haskell library Gtk2Hs has been adopted to 

design user interface for this system. The knowledge of Haskell language and GTK+ 

libraries are key requisites for good understanding oft this chapter and therefore it is .. 
imperative that the reader be familiar with them. 

In the following sections we will be discussing only research relevant functions of 

the modules RAGenerator, RAParser, SplitWindow, CropCycle, SplitnCrop, CompT

able and FileInterface. The rest of the functions including those in the module App

Methods are helper functions which are self explanatory. We will only mention their 

type signature wherever necessary. Also the functions of module TreeController is 

just an extension of the standard GTK+ TreeView library incorporating additional 

graphical features such as colored columns and checkbox widgets. It will not be 

discussed in this chapter as it out of scope of our research. 

4.2 RAGenerator 

Recall from Chapter 3 that every atomic relation algebra induces a particular struc

ture on its atoms, its Atom Structure. In particular, composition is represented by a 

set of triples of atoms, i.e., by a ternary relation. Conversely, given an atom structure 

one may form the complex algebra thereof. This module defines the atom structure 

for an algebra and packages its core set of operations . Some of these operations and 

the atom structure are exported for the use of other modules. The module treats 

atoms as integers ranging from 1 to N, where 1 is the identity. The atoms 1 ... S are 

symmetric, the rest of the atoms S + 1 ... N being non-symmetric. For more details 

regarding the conventions used here we refer to Section 2 of Chapter 3. 

The data types are defined as follows: 

type Ternary = (Int,Int,Int) 
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type Cycle = [ Ternary ] 

data RelAlg = RelAlg { name String, n :: Int, 

s .. Int, absTable:: Cycle, atomNames 

[String] } deriving (Eq, Show) 

Ternary is a triple of Int since we use integer numbers as a representation of 

atoms. In Chapter 3 we define the cycle which is actually an array of such triples, 

therefore we use the list of Ternary to represent such a Cycle. The atom structure 

denoted by RelAlg may be better explained by means of Haskell-pseudocode using a 

record constructor as follows, 

Definition 21. The structure RelAlg(name,n,s,absTable,atomNames) is an atomic 
J 

relational structure where -; 

• n is the number of atoms, 

• s is the number of symmetric atoms, i. e. s S n, 

• absTable is the ternary relation for composition given by cycles, 

• atomNames is list of names of the atoms in the given order. 

The whole concept can be illustrated by taking RCC-11 algebra as an example. 

Its atomic structure will be displayed by the application as follows: The left side 

of Figure 4.2 represents all the respective attributes of a RelAlg structure for RCC-

11, i.e., RelAlg (Name, N, S, Cycles, Atoms) with Name = RCC11, N=11, S=7, Cycles 

represent all the diversity cycles and Atoms indicate list of names of the atoms for 

RCC-1l. -. 
Given a converse operation f and the type Cycle, the cycle structure of Equation 

3.1 from Chapter 3 can be defined as, 

cycleSet Eq a => (a->a) -> (a,a,a) -> [(a,a,a)] 

cycleSet f (x,y,z) = nub [(x,y,z),(f x,z,y),(y,f z,f x), 

(f y,f x,f z),(f z,x,f y),(z,f y,x)] 

Observe that the control panel layout of Figure 4.2 has button widgets IsRA and 

IsIntegral which determine whether the given atom structure leads to a relation 

algebra and if it is integral respectively. To determine this we make use of the two 

properties mentioned in Chapter 3 as follows. 
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Cycles : 

CTPP,TPP,TPP),CTpP,TPP,NTPP),CTPP,TPP' ,OC),CTPP,TPP',PON), 
CTPP,TPP',ECN),CTPP,NTPP,NTPP),CTPP,NTPP' ,NTPP' ),CTPP,NTPP',PON), 
CTPP,NTPP',OC),CTPP,NTPP' ,ECN),CTPP,PON,TPP),CTPP,PON,NTPP), 
CTPP,PON,PON),CTPP,PON,ECN),CTPP,PON,DC),CTPP,PODY,TPP), 
CTPP,POOY,PON),CTPP,POOY,NTPPl.CTPP,POOY,PODV),CTPP,POOY,ECN), 
CTPP,POOY,ECD),CTPP, POOl. TPP),CTPP,POOZ,NTPP), CTPP,PODZ,PON), 
CTPP,POOz,POOV), CTPP,POOZ,POOZ),CTPP,ECN,ECN),CTPP,ECN,DC), 
CTPP,ECD,ECN),CTP P,DC,DC),(NTPP,NTPP,NTPP),(NTPP,NTPP',PON), 
(NTPP,NTPP ' ,ECN),(NTPP,NTPP',OC),(NTPP,PON,NTPP),(NTPP,PON,PON), 
(NTPP,PON,ECN),(NTPP,PON,DC),(NTPP,POOY,NTPP),(NTPP,PODY,PON), 
(NTPP,PODV,ECN),(NTPP,PODY,OC),(NTPP,PODz,NTPP),(NTPP,PODZ,PON), 
(NTPP,POOZ,PODV),(NTPP,PODZ, POOZ),(NTPP,PODz,ECN), 
(NTPP,POOZ,ECD),(NTPP,POOz,DC),(NTPP,ECN,OC).(NTPP,ECD,OC), 
(NTPP,OC,DC),(pON,PON,PON),(PON,PON,POOV),(PON,PON,PODZ), 
(PON,PON,OC),(PON,PON,ECN),(PON,PON,ECO),(PON,PODY,PODV). 
(PON,PODV,PODZ),(PON,PODZ,PODZ),(PON,ECN,ECN),(PON,ECN,DC), 
(PON,DC,OC),(PODY,POOV,PODV),(pOOY,PODY, PODZ),(PODV,PODz,PODZ), 
(POOl.PODl.PODZ).(ECN.ECN.ECNJ.(ECN.ECN.DC).(ECN,OC.OCJ.(OC.DC.OC) T 

Figure 4.2: Structure for RCC-ll 

isRA (Num a, Enum a) =} (a->a) -> a -> [(a,a,a)] -> Bool 

isRA f n na (is Integral f n na) && ( and [ all (existU f 

n na ) (match f tl t2) I tl <- na, t2 <- na ] 

The existU call in the above function implements the property (c) of Theorem 3.0.6. 

existU :: (Num a, Enum a) =} (a->a) ~> a -> [(a,a,a)] 

-> (a,a,a,a,a) -> Bool 

existU f n c (v,w,x,y,z) = any ( \u -> (isIn (w,y,u) c) 

&& (isIn (v,u,z) c)) [2 .. n] 

where isIn = cycElem f 

The IsIntegral button widget validates the property from Definition 12 of Chapter 

2. 

isIntegral (Num a, Enum a) =} (a- >a) -> a -> [(a,a,a)] -> Bool 

isIntegral f n c = and [ any (\w -> cycElem f (x,w,y) c) 

[2 .. n] I x <- [2 . . n], y <- [2 .. n], x/=y] 
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". • 
\: ..... "-.." Yes, the given alg~roll is a Reation Algebra. 
',.f 

-!l o No, the given algebra is not a valid R~ation Algebra ! 

Figure 4.3: Typical response from IsRA button action . 

• 
('\ Yes, the given algebra is Integrat No, the given algebra· is not Integral! 

\ ,,i 

" 
[::·~:::::g{::::::1 [:.::g~::::.::·:::1 

Figure 4.4: Typical response from IsIhte~fal button action. 
-. 

The corresponding outputs for IsRA and IsIntegral button actions are depicted by 

Figures 4.3 and 4.4 respectively. 

The getBij ections function retrieves all bijective atoms except the identity for 

a given relation algebra. Bijections follow the properties mentioned in Lemma 2.3.2 

of Chapter 2. 

getBijections RelAlg -> [Int] 

getBijections RelAlg {n, s, absTable} == [ x I x <- [2 .. n], 

all (\y -> not $ cycElem (converse n s) 

(x,y,x) absTable) [2 .. n]] 

The compTable function .generates indiv.idual cells of the composition table for a given 

relation algebra. For more details we refer to Defihition 14 of Chapter 2. 

compTable RelAlg -> Int -> Int -> [tnt] 

compTable ra@RelAlg { n } x y = [c I Ca, b, c) <-

(genAIICycles ra),x==a && y==b] 

Given an atom structure RelAlg and the atom to be split, the canAtomSpli t function 

checks the property (h) of Theorem 3.0.9 from Chapter 3 and outputs a corresponding 

Boolean value. 

canAtomSplit RelAlg -> Int -> Bool 
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canAtomSplit ra@RelAlg { n,absTable } atom 

let f = converseRA ra 

y = [2 .. n] 

tableTriples = getAllCycles f absTable 

compVal first second = [c I (a,b,c) 

<- tableTriples,a==first&&b==second] 

cmpX [] _ = True 

cmpX (y':ys') xs = elem y' (concat [(compVal y' 

,f 

x')lx'<-xs]) && cmpX y~' xs 

in cmpX y (compVal atom (f atom)) 
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The function relatedTriples follows up with one of the steps in the refinement 

process of relation algebras as mentioned in last section of Chapter 3. Suppose the 

intention is to remove the triple (R, S, T) from an algebra then it also warrants 

the elimination of triples (J ; R, S ; g, f ; T ; g), (J; R; f, f~ ; S ; g, f ; T ; g), (

f; R; f~, f; S; g, f; T; g), (J; R; g, g~; S; g, f; T; g), (J; R; g~, g; S; g, 

f ; T ; g) for every pair of isomorphisms inclusive of the identity relation ( id). For 

example we consider the pairs (id,id), (id,h), (h,id), (id,k), (k,id), (h,h), (h,k),(k,h

),(k,k) where (id, h, k) are isomorphisms in the given algebra. 

relatedTriples Ternary -) RelAlg -) Cycle 

-. 
relatedTriples (r, s', t) ra = let bj = getBij ections ra 

isoPairs = [(x,y)lx<-(1:bj),y<-(1:bj)] 

conv = converseRA ra 

makeTriples f g = let bcomp x y = head $ compTable ra x y 

f~ param = bcomp (bcomp f r) param 

s_g param = (bcomp param (bcomp s g)) 
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in nub [((Lr 1),(s_g 1),Lt_g),((Lr f), 

in let allTriples = concatMap 

( \(x' ,y')-> makeTriples x' y') isoPairs 

in nub $ getAllCycles conv allTriples 

J 
The function triples2Remove also contributes tb the refinement process of re-

lation algebras. It generates a list of triples that have to be removed in the newly 

split algebra. It takes the following input parameters: newAtomList - contains the 

mapping of the old list of atoms to the newly created atom list, RelAlg - atom 

structure of the old relation algebra, a triple (r', s', t') - where r' ; s' represents the 

spatial condition and t' is the atom to be split using the spatial condition. Recall 

from Example 9 of Chapter 3, suppose our motivation is to split the relation T P P of 

RCC -11 using the spatial relation ECN; TPP. In this case we have the input triple 

as (ECN, T P P, T P P) and since T P P is non symmetric relation we have to remove 

its converse as well i.e., (ECN,TPP,TPP)~ =} (TPP~, ECN~, TPP~) =} (TPP~ , 

ECN, TPP~) needs to be removed. The newAtomList will be generated by apply

ing splitting mechanism of Theorem 3.0.9 in Chapter 3 for atom TPP in RCC -II. 

Also the process needs to be repeated for a combination of triples in the new algebra 

RCC -15 i.e., (ECNA, TPPA, TPPE),(ECNA, TPPB, TPPB), (ECNB, TPPA, 

TPPB) and (ECNB, TPPB, TPPB). Notice that only the greater atom TPPB 

of the split pair ( T P P A,T P P B ) is being removed in the given triples. This is 

done in conjunction with the sub-function largerAtom of triples2Remove. For the 

mentioned input parameters the function triples2Remove generates a list of triples 

as given in Example 9 of Chapter 3 that needs to be eliminated from RCC -15. 

triples2Remove [[lnt]] -> RelAlg -> Ternary -> Cycle 

triples2Remove newAtomList oldRa@RelAlg{s} (r',s' ,t') = 

let relTriples = relatedTriples (r',s',t') oldRa 



Attributes of Relation Algebra 

Name: 

Atoms: 

(TPPA, TPPA, TPPA),(TPPA, TPPA, TPPB),(TPPA, TPPB,TPPA),(TPPA, TPPB,TPPB),(TPPB,TPPA, TPPA),(TPPB,TPPA, TPPB), 
(TPPB,TPPB,TPPA),(TPPB,TPPB,TPPB),(TPPA, TPPA,NTPP),(TPPA, TPPB,NTPP),(TPPB,TPPA,NTPP),(TPPB,TPPB,NTPP), 
(TPPA, TPPA '\DC),(TPP A, TPPB", Dc)'(TPPB, TPPB",DC),(TPP A, TPPA" ,PON),(TPPA, TPPB" ,PON),(TPPB, TPPB",PON), 
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(TPPA,PODYB,TPPB),(TPPB,PODYA, TPPB),(TPPB,PODYB,TPPB),(TPPA,PODYA,PON),(TPPA,PODYB,PON), 
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Log: 

(TPPA,ECNA,ECNB),(TPPA,ECNB,ECNA),(TPPA,ECNB,ECNB),(TPPB,ECNA,ECNA),(TPPB,ECNA,ECNB),(TPPB,ECNB,ECNA), 
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(NTPP,PODl,PODYB),(NTPP,PODl,PODZ),(NTPP,PObl,ECNA),(NTPP,PODl,ECNB),(NTPP,PODl,DC),(NTPP~ECNA,DC), 
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newList oldAtom = (newAtomList !! (oldAtom-1)) 

largerAtom index = last $ newList index 

conv = converseRA oldRa 

isSymm atom = if atom > s then False else True 

combinations (x,y,z) = [(x',y',(largerAtom z)) 

Ix'<-(newList x),y'<-(newList y)] 

combinations' (x,y,z) = if isSymm z then [] 

else combinations ((conv y),(conv x),(conv z)) 

. J 
in concatMap (\t-> (combinations t) ++: 

(combinations' t)) relTripleS 

4.3 CropCycle 

This module provides a graphical interface to enact the refinement process of relation 

algebras as mentioned in last section of Chapter 3. The module functions will be 

invoked when the user activates the button "Remove Triple" on the control panel. 

In particular this module defines the following user interface functions: input the 

number of triples to be removed including the triples themselves for a given algebra, 

number of key atoms to be considered for refinement and its corresponding key list for 

inputting the refinable atoms and a name for the hewly refined algebra. Furthermore 

when we remove the triple from a cyole, we may also have to remove other triples 

in a step by step manner to satisfy the associative property (c) of Theorem 3.0.6. If 

there are multiple candidates for removal, the user will be prompted to choose an 

appropriate triple for removal as evident from Figirre 4.6(e). This process continues 

until it reaches a point where the associative property is satisfied and we get a valid 

integral relation algebra. These series of steps for a RCC -15 algebra (see Figure 4.5) 

can be visualized using the snapshots as depicted in Figure 4.6. In effect it carries out 

tasks that are similar to the description of function triples2Remove, the difference 

being that the latter function is used for automating the entire operation of related 

triple removal in Spli tnRemove module. 



CHAPTER 4. THE SYSTEM 

~-~~~~-~ 

'1)f; Cycle removal from cycI«s of a~ ----Enter the numbtr of triples to boo roomovood. 
~ 

Enter all 3 elements of a cycle to be removed. 

I r-:-----·· I ~ , I ECNA =r!PPA I TPPBj 
~------ . 

m 

< I. .el. '" I ~ ~ 

I Okay II Cane"" I I Okay 

-
(a) Number of triples. (b) Entet triple names for removal. 

,. 
.')[ Key Count ~( Key atom names .~' 

Enter the number of keys fo. removal. Enter th~ key atom nam .. to boo roomoved. 

... 
TPPB .. 

I'~I~ 
~ II 

TPPB" 

~ 

. I ECNB 

I' 
PODYB ] ~ I ~ 
< 1- _ .. __ .I!!e:. .. .. -I ~ I' 

[::~~:] I Cancel I 
.. 

(c) Number of key atoms. ( d) Enter the names for key 
atoms. 

~ Choicefor triple.......... iiQi' 
The bijective product of key element is pr~ in both the cycles. Enter the niilmeforthe newly created algebr •. 

() (TPPAA.TPP"POD.A) I:) (POD." TPPB" ECD) @ I~ 

(e) Choice of triple removal to satisfy as
sociativity. 

«-15.-. @ • T... ,." "I ~ 

I Okoy II Caned . 

(f) Prompt for name of 
refined algebra . 

. . ' . The algebra RCC-15-REFlNED wi< 
\ _; / successfully created and added to the existing 
III. algebra list 

QK ] 

(g) Newly created algebra added 
to the list. 

54 

~ 

II 

,=:J 
II 

II Cancel I . 

Figure 4.6: In progress - Various stages of the Remove Triple operation. 
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4.4 SplitWindow 

This module provides a graphical interface to implement the splitting mechanism of 

Theorem 3.0.9 from Chapter 2. The module functions will be instigated when the 

user activates the button "Split Atom" on the control panel. The conditions (a)-(f) 

as well as the secondary condition in (h) of Theorem 3.0.9 are pre-determined before 

the actual splitting action is initiated. Thereafter the condition (g) and part of the 

condition (h) are evaluated for the data entered by the user. This is done by clicking 

the button "Split" in the split window as shown in Figure no. 4.7. 

For example we may split the atom T P P into two new atoms T P P A and T P P B 

using RCC-11 example from Figure 4.2 by setting its corresponding TJ value to 2. We 

obtain a new algebra RelAlg(Name ,N ,S ,Cycles ,Atoms) with Name = RCC15, N=15, 

S=9, Cycles representing diversity cycles and Atoms,)ndicating list of names of the 

atoms for RCC-15 as shown in Figure 4.5. Notice thai the atoms ECN, PODY and 

T P P~ also have to be split into 2 atoms following Theorem 3.0.9. 

4.5 SplitnRemove 

This module provides a graphical interface to implement the splitting mechanism of 

Theorem 3.0.9 from Chapter 2 followed by the refinement steps mentioned in Chapter 

3. In effect this module imports functionalities from the previous two modules and 

performs a unified operation on given algebra (see module dependency Figure 4.1). 

The module functions will be instigated when the user activates the button "Split

nRemove" on the control panel. 

Specifically this module provides the following user interface functions: input the 

atom to be split includ~~g the spatial.. relation used for its splitting; as a triple, a 

name for the newly created algebra and the names for newly formed atoms due to 

splitting. Furthermore when we remove the triple from a cycle, we may also have to 

remove other triples in a step by step manner to satisfy the associative property (c) of 

Theorem 3.0.6. If there are multiple candidates for removal, the user will be prompted 

to choose an appropriate triple for removal as evident from Figure 4.6(e). This process 

continues until it reaches a point where the associative property is satisfied and we 

get a valid integral relation algebra. These series of steps for a RCC -11 algebra (see 

Figure 4.2) can be visualized using the snapshots as depicted in Figure 4.8 whose 

final outcome is a refined RCC -15 algebra. Internally this module makes use of the 

function triples2Remove for automating the entire operation of related triple removal 
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Figure 4.7: Splitting atom TPP in RCC-ll 

unlike the manual input of the triples (for removal) in the operation of CropCycle 

module. 

4.6 RAParser 

This module provides the background parser functions to display the Atom Structure 

of an algebra in human-readable format i.e. , it displays the types Ternary, Cycle and 

absTable of an algebra in terms of its atom names rather than just machine-storable 

integers. It caters to back and forth internal conversions of algebras from the tree 

controller listing all algebras and algebraic attributes display (refer to Figure 4.5) . 

The module functions are more commonly invoked when the user activates the button 

"Display Selected Algebra" on the control panel and also when the user instigates 

an operation on the currently viewed algebra. The latter part is done to ensure 

manipulation of machine-readable data by other module operations which is infeasible 
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using the displayed text format. Apart from a host of other helper functions, the crux 

of this conversion is impl~mellted by the-functions convertCycles, tripleAsNames, 

parseTernary, parseCycle, parseRelAlg. 

We begin with functions tripleAsNames and convertCycles which convert in

ternally stored algebras to text format for display purpose. 

tripleAsNames [String] -> Ternary -> String 

tripleAsNames atms (ai,a2,a3) = 

let trans t = fromJust $ intToNamei atms t 

(ti,t2,t3) = (trans ai , trans a2,trans a3) 

in II (II ++ t i ++ II II ++ t2 ++ II II ++ t3 ++ 11)11 

. I 
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convert Cycles [String] -> Cycle -> String 

convertCycles atms cyc=let allTriples = map (tripleAsNames atms) cyc 

withCommas = intersperse 

in concat withCommas 

" " , allTriples 

The functions parseTernary, parseCycle and parseRelAlg convert the dis

played algebras to machine-readable data for use by other modules. 

parseTernary Parser RAGenerator.Ternary 

parseTernary = do 

char '(' 

a <- number 

commaspace 

b <- number 

commaspace 

C <- number 

char ')' 

return (a,b,c) 

<?> "ternary parse fail" 

Diipl.yingt.blefcf algebra: Rca 

Figure 4.9: Composition Table for RCC-8 displayed by the System. 
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parseCycle Parser RAGenerator.Cycle 

parseCycle = do 

char' [' 

a <- number 

list <I>(char 'J' » return [J) 

<?> "cycle" 

where list = do 

triple <- parseTernary 

J 
rest <- (commaspace <» list) <I> (char 'J' 

» return [J); 

return (triple:rest) 

<?> "ternary list parse fail" 

Using the above two parser functions we will be able to reconstruct the Atom Structure 

for an algebra that is displayed in the text format. 

parseRelAlg Parser RAGenerator.RelAlg 

parseRelAlg = do 

string "RelAlg { name = " 

name' <- RAParser.name 

string ", n = " 

n' <- number 

string ", s = II 

S' <- number 

string ", absTable = II 

absTable' <- parseCycle 
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string ", atomNames = II 

atomNames' <- namelist 

char c } , 

return (RAGenerator.RelAlg {RAGenerator.name 

= name', RAGenerator.n = n', 

RAGenerator.s = s', 

RAGenerator.absTable = absTable', 

RAGenerator. at omNames = atorilNames' } ) 

,{ 
<7> "Error in RelAlg parsingll; 

4.7 FileInterface 
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The module Filelnterface encapsulates useful file routines such as loading a file 

containing formatted algebras, saving all the algebras appearing in the tree controller 

list and also an option to save an individual algebra in a data file. The routines in the 

module utilize standard file manipulation libraries of Haskell language to implement 

these operations. The user activation of the buttons "Load Algs from File", "Save 

Alg List" and "Save Algebra" shown in the control panel layout of Figure 4.5 results 

in the invokation of these routines. 

4.8 CompTable 

This module has functions that display the composition table (refer to Definition 14 

of Chapter 2.) for the currently viewed algebra. The functions in this module get 

invoked when the user instigates the button "Display Table" on the control panel of 

the system resulting in graphic tabular interpretation of composition for the given 

algebra. Figure 4.9 shows a typical output of this operation for RCC -8 algebra. 
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Conclusions 

This chapter rehashes the main line of argument of the thesis. We begin with the 

summarization of the research work described in pfevious chapters leading to its 

eventual resolution. We conclude by having an insight into related areas that require 

further investigation and has potential for advancing our research work. 

5.1 Synopsis 

The agenda of the thesis is to focus chiefly in developing a mechanism of generating 

new atom structures of relation algebras from old ones. This task was achieved by 

devising a new splitting mechanism in Chapter 3. Although the impetus for such a 

splitting was primarily given in [15], this thesis presents a comprehensive framework 

for automating this process. The splitting strategy stipulated in this thesis acts as a 

starting point of a variety of methods for splitting atoms in relation algebras. The 

very general definition of an extension provides the opportunity for this study. It 

will be interesting to ch~racterize the aifferent methods by additional properties. For 

example, Theorem 3.0.8 along with the definition of splitting succinctly characterizes 

this construction. But we have not provided such a full characterization of our method 

yet. 

As described in the previous chapter the background functionality of the entire sys

tem is based on Haskell platform whilst the front end interface libraries are provided 

by GTK + toolkit . This front end user interface caters to the creation, visualization 

and archival of atom structures for reusing data. 

61 
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5.2 Future Work 

One of the drawbacks of the system is its inability to perform faster operations on 

relation algebras with large N values especially in cases where N > 15. This could 

be overcome by introducing the concept of concurrency in our system whereby many 

of the subtasks may be designated as multiple threads. However this concurrency 

field is still in its nascent stage in Haskell platform. Moreover it warranted a lot 

more investment of time than the critical timelines permitted for our research. As 

a result the conversion process could not be persisted and it leaves scope for future 

incorporation. 

There are a host of other tools developed at Brock University on the similar lines of 

research for managing relation algebras. For example, the tool developed by Si Zhang 

in [52]. These tools can be integrated with our system for better manageability and 
J 

eliminate potential redundancies. -; . 

We may also look into development of certain core functions using a multithreaded 

approach in different languages like C or C++. This is due to the fact that efficiency 

of these tasks is better in C or C++ in comparison to concurrency in Haskell. The 

functionality of these external functions may then be tapped by Haskell based system 

using the foreign function interfaces. 
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