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Discrete Mereotopology

Antony Galton

Abstract Whereas mereology, in the strict sense, is concerned solely with the part—
whole relation, mereotopology extends mereology by including also the notion of
connection, enabling one to distinguish, for example, between internal and periph-
eral parts, and between contact and separation. Mereotopology has been developed
particularly within the Qualitative Spatial Reasoning research community, where it
has been applied to, amongst other areas, geographical information science and im-
age analysis. Most research in mereotopology has assumed that the entities being
studied may be subdivided without limit, but a number of researchers have inves-
tigated mereotopological structures based on discrete spaces in which entities are
built up from atomic elements that are not themselves subdivisible. This chapter
presents an introductory treatment of mereotopology and its discrete variant, and
provides references for readers interested in pursuing this subject in further detail.

1 From Mereology to Mereotopology

Mereology, as the theory of parts and wholes, leads to a set of five jointly exhaustive
and pairwise disjoint (JEPD) relations that may hold between any pair of entities X
and Y that come under its purview, namely

X'is a proper part of Y PP(x,y)
X coincides with Y EQ(x,y)
X partially overlaps Y PO(x,y)
X contains Y as a proper paftPl(x,y)
Xis disjoint from Y DR(x,y)
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For the logical development, we first stipulate that the primitive relation of parthood
(P) is reflexive and transitivé:
P(x,x) , (A1)

P(x,y) AP(y,z) — P(x,2) . (A2)
We then define overlap as possession of a common part:
O(x,y) =def Fz(P(z,x) AP(z,y)) (D1)

and go on to define the five relations listed above as follows:

PP(x,y) =def P(x,y) A=P(y,x) , (D2)
EQ(x,y) =def P(x,y) AP(y,x) , (D3)
PO(x,y) =def O(x,y) A =P (x,y) A=P(y,x) (D4)
PPI(x,y) =def PP(y,x) , (D5)

DR(x,y) =det 7O(x,y) - (D6)

This system of relations is known in the Qualitative Spatial Reasoning (QSR) com-
munity as RCCS5, the five-element Region Connection Calctlus.

If the terms of the formal language are interpreted as referrirgpétial enti-
ties, which we here calegions it is generally felt that mereology alone does not
provide sufficient expressive power to be useful for QSR. In addition to parthood
and the relations derived from it, we need also to be able to distinguish between, on
the one handnternal andperipheralparts, and on the other, betweesntactand
separation To express these, a primitive relatiGn(for contact, orconnection is
introduced, and stipulated to be reflexive and symmetric:

C(x,x), (A3)

C(x,y) = C(y,x) . (A4)

The minimal relationship betwedhandC is that anything connected to an entity is
automatically connected to anything that entity is part of:

P(x,y) — Vz(C(z,x) — C(z,y)) . (A5)

UsingP andC as primitives, we can now define a number of important additional
relations as follows:

1 We adopt the usual convention in presenting first-order theories that free variables in formulae
presented as axioms or theorems are understood to be universally quantified, so tirdk, )9\,

P(y,z) — P(x,z) is to be read as if it were writteixVyVz(P(x,y) A P(y,z) — P(x,z)).

2 The Region Connection Calculus was introduced, though not under that name, in [16]. The ver-
sion there presented is RCC8, described below; explicit recognition of RCC5 in QSR came later.
Strictly speaking, this set of mereological relations should only be called a connection calculus if
they are defined in terms of connection rather than, as here, in terms of parthood.
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e Xis disconnectedrom Y:
DC(x,y) =def ~C(x,y) . (D7)
e X s externally connectetb VY:
EC(x,y) =def C(x,y) A—O(x,y) - (D8)
e Xis atangential partof Y:
TP(x,y) =def P(x,y) A 3z(C(x,2) A=O(z,y)) . (D9)

(i.e., X is a part of Y that is connected to something disjoint from Y).
e Xis anon-tangential parof Y:

NTP(x,y) =def P(x,y) AVz(C(x,2) — O(z,y)) . (D10)

(i.e., X is a part of Y that is only connected to things that overlap Y).

Note that any part of a region must be either a tangential part or a non-tangential
part of it, but not both. In particular, a region is a non-tangential part of itself if and
only if it is not connected to any region disjoint from it and is therefore a union of
one or more connected components of the whole space.

The system of eight JEPD relations known as RCC8 compii§e&C, PO, EQ,
TPP (defined as the conjunction 8P andTP), NTPP (the conjunction oPP and
NTP), and the inverses afPP andNTPP.

The logical language here is denotég ¢, and comprises all first-order formu-
lae in which the non-logical language is restricted to the two binary predi€ates
andC — all formulae containing the other RCC8 relations being reducible to for-
mulae containing jug® andC, via the definitions given above. Systems of this kind,
which combine the mereological notion of parthood with the topological notion of
connection, are calleshereotopologies

Mereotopologies are normally interpreted as referring to regions which can be
indefinitely subdivided. This is expressed by positing the formula

JyPP(y,x) (N1)

as an axiom. The domain of such an interpretation is usually taken to be some col-
lection of non-empty subsets Bf' for some positive integer (typically either 2 or

3). In order to ensure infinite subdivisibility, only infinite subsets should be consid-
ered as possible domain elements, but this still leaves open many different possible
such collections, for example

all infinite subsets oR"
all non-empty open subsets&f
all non-empty regular opérsubsets oR"

3 A regular open set is a set that is equal to the interior of its closure; a regular closed set is equal
to the closure of its interior.
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e all non-empty regular closed subsetsRf[6]
e all open polygonal (polyhedral, etc) subset®R3f[13, 14, 15]

In these interpretations, it is usual to interpret the predidai@sdC as standing for
the following relations:

e XispartofYifandonlyif X CY.
e X is connected t if and only if XNY £ 0, i.e., the topological closures Xf
andY have at least one point in common.

The interpretation of parthood in terms of the subset relation explains why the do-
main has to be restricted to non-empty sets: if the empty set were allowed, then any
pair of regions would overlap, since they would have the empty set as a common
part.

It should be noted that under any of these interpretations, parthood is necessarily
antisymmetrigcsatisfying the formula

P(x,y) AP(y,x) = x=vy, (A6)

and thusextensionglmeaning that two distinct entities cannot have exactly the same
parts:
Vz(P(z,x) = P(z,y)) = x=y. (T1)

From now on we shall assume tHatdenotes an antisymmetric relation; a conse-
quence of this is thdQ(x,y) becomes equivalent to=y, meaning that the symbol
EQ can be dropped.

Connection, on the other hand, need not be extensional: that is, it does not neces-
sarily follow that two entities are identical if they are connected to exactly the same
things. In the first two models above, connection is not extensional; for example,
if the domain of discourse consists of all infinite subset®&%fan open set and its
closure are connected to exactly the same sets, yet they are not identical. In the last
three models listed above, connectisextensional, that is, they satisfy

Vz(C(x,z) < C(y,z)) = x=y. (N2)

In such models, iX is connected to everything is connected to, theX is part
of Y, which means that the converse of (A5) holds. In this case, parthood can be
characterised exactly in terms of connection, as follows:

P(x,y) < Vvz(C(x,2) — C(y,2)) . (N3)

It is easy to see that (N2) and (N3) together imply (A6) and hence (T1). If we have
(N3), we can use it taefineP, leaving just the one primitive predicae In this
case the logical language can be reducedto

It should be noted that although individual terms.ip c refer to regions, by
interpreting them as denoting subset®8fwe are implicitly postulating a universe
of points, even though these cannot be referred to in the language. To avoid this un-
satisfactory situation, Stell [24] showed that the terms of RCC could be interpreted
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as referring to elements of structures called Boolean Connection Algebras (BCAS),
which do not presuppose that regions are collections of points. This notion was gen-
eralised by Li and Ying [12] to Generalized Boolean Connection Algebras, which
as well as subsuming Stell's BCAs can provide models for the discrete versions of
RCC which we turn to next.

2 Discrete Mereotopology and Adjacency Spaces

If we wish to interpret the mereotopological predicates aliscretedomains, in
which entities arenot indefinitely subdivisible, it is no longer possible to define
parthood in terms of connection. In a discrete domain, every entity decomposes into
atoms which have no proper parts. We define

Atom(x) =gef ~IyPP(y,x) (D11)

Then it can be seen that (N1) is equivalenttéxAtom(x).

If Ais an atom which is connected to its complem&fthen anything connected
to Amust either bé\ itself or overlapA®, and hence in either case must be connected
to A%; but on the other hand is obviouslynot part of its complemertt,so we have

vz(C(a,z) — C(b,z)) A—P(a,b)

(wherea andb denoteA andA° respectively), contradicting (N3).

For discretemereotopology, then, both andC are needed as primitive predi-
cates in the logical language. How should they be interpreted? The sub&its of
listed above are no longer appropriate, and an obvious substitute here would be to
use subsets &", i.e., sets of points with integer coordinates. How shdlilak in-
terpreted in this case? Since overlap is a form of conneétiwaneed only concern
ourselves with the interpretation of non-overlapping connectionE.,

An example is illustrated in Fig. 1, where the atomic regions are shown as unit
squares, which can be mapped in the obvious way to elemef& dhe external
connection between the two differently shaded regions depends on the fact that the
squares labelled ‘a’ and ‘b’, one from each region,a@centto each other, and it
is this notion of adjacency which forms the basis for a general way of interpreting
the connection predicate in discrete mereotopologies. We do not confine ourselves
to subsets ofZ" but rather to regions defined over a more general class which we
define as follows:

4 At least, this is obvious so long as “part” and “complement” are understood in the usual sense;
however, Roy and Stell [21] showed that by replacing the ordinary set-theoretical complement
operation by a weaker operation, the dual pseudo-complement, defined over a class of structures
called dual p-algebras, one obtains a model of discrete space in which (N3) holds.

5 |t follows from (A5) thatVxVy(O(x,y) — C(x,y)).
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Fig. 1 External connection in discrete space

Definition: An adjacency spacis a non-empty sdil of entities calleccellstogether with
a reflexive, symmetric relation C U x U, calledadjacency

An adjacency space can be regarded as a graph; but this does not mean that the
theory of adjacency spaces is identical to graph theory. An important difference
emerges when we consider substructures. A graph is specified by abeértices
and a seE of edges, where each edge joins an elemeit tuf an element of/. A
subgraph is specified by a sub¥etC V of the vertices and a subsgt C E of the
edges, with the proviso that each edgé&iroins an element 0¥’ to an element of
V’. There is no requirement that an edgeEinvhich happens to join an element of
V'’ to an element of/’ must be inE’. Thus there can be many different subgraphs
of (V,E) all of which have the vertex-s#t'. In adjacency spaces, the adjacency or
otherwise of two cells is fixed by thgpaceand is automatically inherited by the
substructures. Thus a substructure of an adjacency space can be specified by giving
its cells alone, without reference to adjacency.

These substructures, which may be thought of as aggregates of cells, are called
regions and it is these entities that discrete mereotopology is primarily concerned
with, not the cells themselves. A cell might, indeed, be considered to be the aggre-
gate which is composed of precisely that cell and nothing else; but for theoretical
purposes it is convenient to specify a region in terms of the (non-eraptyj cells
which make it up, and in that case a one-cell region is conceptually distinct from its
only cell, the former being, in fact, the singleton set of the latter. Therefore an inter-
pretationl of the logical language/s ¢ over an adjacency spagd, ~) is specified
as follows:

e Eachindividual ternt of the logical language denotes a non-empty suthset).

e AformulaP(ty,tp) is interpreted to mean thet C t).

e A formula C(t,t) is interpreted to mean that there are cealls t'l andy € t'2
such tha ~y.

Thus two regions are regarded as connected so long as some cell in one is adjacent
to some cell in the othér.

6 These ideas were presented, without explicit use of the term “adjacency space”, in [4]. The term
“adjacency space” was used in [5].
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The theory of Discrete Mereotopology (DM), as we shall understand it in this
paper, comprises all and only those formulae of the langu#&ge which are sat-
isfied by every adjacency space under the scheme of interpretation just specified.
It is easy to see that DM includes all the formulae thus far introduced with labels
beginning with either A or T: the formulae (Al), (A2), (A6), and (T1) characterising
parthood, (A3) and (A4) characterising connection, and (A5) relating parthood and
connection? 8

DM doesnot include the converse of (A5), meaning that the definitional reduc-
tion of P to C given by (N3) is not available here. The other important non-theorem
is (N1), which expresses the infinite subdivisibility of regions that is characteristic
of non-discrete (dense or continuous) models; instead, DM includes the formula

Vx3y(P(y,x) A Atom(y)) , (A7)

which says that every region has an atomic region as part. The predigateis
clearly satisfied by just the singleton subsets of the univdrsandeverysubset of
U has at least one singleton subset; under the interpretation, these two sets count as
a region and an atomic part of that region.

It will be convenient to introduce a predica#d® to say that one region is an
atomic part of another; this is straightforwardly defined as follows:

AP(x,y) =def Atom(x) AP(x,y) , (D12)

enabling us to rewrite (A7) asx3yAP(y,x).

The mereotopological relations of atoms are much simpler than those of general
regions. In particular, i overlapsB, whereA is an atom, then the common part of
A andB cannot be a proper part 8fand must therefore b&itself. We thus have

Atom(x) — (O(x,y) — P(x,y)). (T2)

An important mereological principle, which forms part of General Extensional
Mereology, is théstrong Supplementation Princid22, p.29], which states that any
region that isnot part of a given region must have a part that does not overlap that
region:

=P(y,x) — Jz(P(z,y) A=0(z,x)) (A8)

7 Of course, as written, not all of these até ¢ formulae; they become so when the predicates
other tharP andC are expanded in accordance with their definitions, given by the formulae whose
labels begin with D.

8 Formulae whose labels beginning with T logically follow from those with labels beginning with
A; thus the latter can be regardedaasomsand the former atheoremsHowever, the distinction

is somewhat arbitrary (since there are in principle many different ways of assigning “A” and “T”
labels) and only comes into its own when we wish to consider to what extent reasoning about ad-
jacency spaces can be accomplished purely by means of symbolic manipulafipr: dbrmulae,
without reference to any interpretation. In that case it becomes of interest whether or not there
is a finitely-specifiable set of% ¢ formulae whose logical consequences comprise all and only
the true formulae of discrete mereotopology — in short, whether this theory can be completely
axiomatised.
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In combination with (A7), this leads to a powerful extensionality principle for DM,
namely
Vz(AP(z,x) < AP(z,y))) = x=Yy. (T3)

Whereas, in order to show that two regions are the same, (T1) requires us check that
they agree irall their parts, with (T3) it suffices to check that they agree in just their
atomic parts.

To see how this follows from (A8), suppose we have

Vz(AP(z,x) < AP(z,y)). (%)

We must show that = y. Suppose not; then by (A6), eithelP(x,y) or —=P(y,x).
Without loss of generality we may assume the former. By (A8), this means there is
a regionu such that

P(u,x) A=O(u,y) . ()

By (A7), there is a region such thatAP (v, u), and by transitivity therefor&P (v, x).
By (x) this means thafP(v,y). We now haveP(v,u) A P(v,y), sS0O(u,y), which
contradicts £x).

It is clear that the Strong Supplementation Principle is satisfied when regions
are interpreted as subsets of an adjacency space, so both (A8) and (T3) belong to
DM. The upshot of this is that we can define a region uniquely by characterising its
atomic parts. We will use this in the following fashion: if a predicatie defined by
a rule of the form

¢ (x) =def Vz(Atom(z) — (P(z,x) <= y(z,x)))

then it follows that any two regions with the propettyare identical.

The formulae (Al), (A2), (A6), and (A8) together constitute the axiomatic basis
for the system designat&M (for Extensional Mereology) in [26]. The addition of
(A7) yields Atomic Extensional MereologfEM .

The study of discrete mereotopology can be pursued on two levels, which we may
loosely characterise as “set-theoretical” and “logical”. At the set-theoretical level,
the class of adjacency spaces are treated as mathematical objects in their own right,
independently of any particular logical language chosen for describing them. At the
logical level, on the other hand, one focusses on the particular first-order language
Zp ¢, which is the common language in which to express mereotopological theses,
regardless of whether discrete or continuous spaces are intended. The set-theoretical
level provides a metalanguage within which one can specify interpretations of the
logical level. While much of what is said at one level can be transposed easily to
the other, it is important to maintain a clear conceptual distinction between them.
This is supported here by a typographical distinction: formulae at the logical level
are always printed in sanserif font.

Moving back and forth between the levels we can investigate what formulae of
Zp ¢ are satisfied in adjacency spaces (these formulae constituting the theory of
DM), and conversely which properties of adjacency spaces can be expressed in the
language. We can then ask whether the theory of adjacency spaces, insofar as it can
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be expressed it¥p ¢, is axiomatisable, i.e,., whether there is a finitely specifiable
set of £ ¢ formulae from which all and only the true theorems of DM follow as
logical consequences.

In the remainder of this paper we present a few of the most important features of
DM, briefly discuss its relation to some other approaches, and describe an area in
which it is being applied.

3 Examples of Adjacency Spaces

The adjacency space in Fig. 1 is underdetermined, in that we did not specify how
the relation~ was to be defined. It was assumed that the reader would naturally
understand that the cells labelled ‘a’ and ‘b’ were to count as adjacent. In fact there
are (at least) two different, and equally natural, ways of understanding adjacency in
7. Underorthogonal adjacengyonly cells which share an edge count as adjacent;
thus each cell is adjacent to four cells other than itself. We denote this retajion
Orthodiagonal adjacencis where cells count as adjacent so long as they share at
least one boundary point — either along an edge or at a corner; each cell is adjacent
to eight others, and hence we denote this relatignThese two adjacency relations

are defined as follows:

o (XY)~a (X,Y)iff [x=X|+]y—y|<1.
o (xy)~g((X,y)iff [x—X|<1landly—y|<1.

Both of these spaces an@mogeneous the sense that all cells “look the same”;
more formally, for anyx,y € U there is a bijective adjacency-preserving function
fromU toU which mapsx ontoy.

The adjacency spacé?,~4) and (Z?,~g) have played a prominent part in
work on discrete spaces, mainly because they are the most natural spaces within
which to modeMigital pictures as seen, for example, on a computer screen in which
the display is produced by assigning colour values to each element in a rectangular
array of pixels (see, e.g., [20, 8]).

Other homogeneous adjacency spaces correspond to tessellations of triangles or
hexagons. In the triangular case, there are two possible adjacency relAtiop¥:
if trianglesX andY share an edge, al~1, Y if they share at least one boundary
point. With the hexagonal lattice there is only one natural adjacency relatign,
which holds between hexagons that share an edge. All these cases are illustrated in
Fig. 2.

Homogeneous adjacency spaces do not need to be infinite. Familiar examples of
finite spaces are provided by the five platonic solids. The faces of a dodecahedron,
for example, can be thought of as a 12-element adjacency space, where adjacency
is interpreted as edge-sharing between the pentagonal faces.

Beyond these examples, adjacency spaces do not have to be homogeneous. Non-
homogeneous tessellations include the triangulated irregular networks (TIN) used in
Geographical Information Science. An example is shown in Fig. 3(a). As with the
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Fig. 2 Adjacency relations in regular planar tessellations

homogeneous tessellation of squares, two kinds of adjacency can be defined on a
TIN: either adjacency along edges only, or adjacency at edges and vertices. The ad-
vantage of a hexagonal tessellation is that this ambiguity does not arise, and for this
reason we will use such tessellations for our illustrative examples in what follows
— though for practical convenience, the hexagonal tessellation will be represented
in the form of an isomorphic “staggered squares” grid, as shown in Fig. 3(b).

A“‘é’%ﬁ?ﬂ%" [TTTITTTTTT]

AR
é&‘%“’ \‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘
(a) (b)

Fig. 3 (a) A triangular irregular network (TIN). (b) A grid of staggered squares, isomorphic to the
regular hexagonal tessellation.

4 Mereotopological Relations on Adjacency Spaces

Given the interpretation of the relatioRsandC over an adjacency space, the inter-
pretations of all the relations defined in termsFoéind C, such as the RCC8 rela-
tions, become fixed. Following the standard convention in model theory, we write
(U,~) E RX,Y] to mean that the relation denoted by a predidat@efined in
Zp c) holds between the elemer{sY € U. Thus for example we have, for regions
X,Y:

(U,~) = DC[X,Y] iff there are no cellx € X andy € Y such thax ~ y.

(U,~) E ECIX,Y] iff XNY = 0 and there are cellsc X andy € Y such that
X~y

(U,~) ETPIX,Y]iff X CY and there are cellse X andy ¢ Y such tha ~ y.
(U,~) =ENTP[X,Y]iff for all cells x e X, if x~ythenye Y.

(U,~) E EQ[X,Y]iff X =Y.
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Examples of all the RCCS8 relations are illustrated in Fig. 4, using regions defined
on the “staggered squares” grid.

Fig. 4 RCC8 relations in an adjacency space

It should be noted thaveryregion is a non-tangential part 0fsince the conse-
quent of the defining conditiory,e Y, is always true whelf = U.

The set of subsets & forms a Boolean algebra under the usual set-theoretic
operations of union, intersection, and complement, Withself acting as the top
element (generally notated 1 @r) and 0 as the bottom element (notated QLr
Since 0 is not a region, the regions just fall short of being a Boolean algebra: they
form aquasi-Boolean algebrdn mereotopology, therefore, the Boolean operations
are appropriately restricted so that neither their range nor their domain contains the
empty set, as we show below.

The universeJ can be characterised i ¢ as the region which every other
region is part of. This can be expressed by the predidatefined by

U(x) =def VyP(y,x) (D13)
That such a region exists is stated by the formula
IxU(x), (A9)

which is generally accepted as an axiom in RCC, whether in a discrete or continuous
setting. By antisymmetry d?, it straightforwardly follows from this that there can
be at most one universal region; in terms of adjacency structures we have

(U,~) EU[X]ifand only if X =U.
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We can therefore introduce a constant symbadio denote the unique universal
region, defined contextually as follows:

#(U) =der Vx(U(x) — 9(x)) , (D14)

where¢ stands for any open formula with one free variable.

Since not all pairs of regions have a Boolean product (intersection), we cannot
represent it by a function symbol i ¢; instead we define a relational predicate
Prod, the intended meaning &frod(x,y,z) being thatz is the intersection of and
y, defined as follows:

Prod(x,y,z) =get W(P(v,2) <> P(v,x) AP(v,y)) . (D15)
Similarly, the Boolean sum (union) is defined by

Sum(x,y,2) =det W(O(v,2) < O(v,x) VO(v,y)) , (D16)
and the Boolean difference by

Diff(x,y,z) =def VW(P(v,z) < P(v,x) A=O(v,y)) . (D17)

The existence of regions playing the roleoin these formulae is stated by the
following formulae, which also specify the conditions wrandy for such az to
exist:

O(x,y) — JzProd(x,y,z) , (A10)
IzSum(x,y,z) , (A11)
—P(x,y) — JzDiff(x,y,z) . (A12)

As with (D13), it follows from (D15), (D16), and (D17) that products, sums, and
differences, where they exist, are unique. Note that (A12), in conjunction with (A1),
logically implies (A8), meaning that the latter could be relegated to the status of
a theorem (with a ‘T’ label) rather than an axiom; however, we shall retain the
designation (A8) to avoid confusion.

The complement of a non-universal region can be defined as its difference from
u,i.e.,

Compl(x,y) =def Diff (U, x,y) .

Since we always hav(v,U), this may be expanded as
Compl(x,y) =def V(P (v,y) < =O(v,x)) . (D18)

It is easy to show that, for non-empty sé&sy C U, (U,~) = Compl[X,Y] if and

only if X =Y¢, thus ensuring that th&% c-definable predicat€ompl captures the
set-theoretic relation of complementation insofar as it applies to regions in adja-
cency spaces. It does notmediatelyfollow from this, of course, tha€ompl be-
haves like complementation in arbitrary models of DM, but that this is so is shown
by the following theorem:
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Compl(x,y) < =O(x,y) ASum(x,y,U), (T4)

which says that one region is the complement of another if and only if they are dis-
joint regions whose sum is the universe. A corollary of this is that complementarity
is mutual:

Compl(x,y) — Compl(y,x) (T5)

The proofs of these theorems are given in Appendix 1.

With the addition of (A9), (A10), (A11), and (A12) tBM we obtain the system
of Closed Extensional Mereology designa@BM by Varzi [26]. Li and Ying [12]
show that every model &EM is isomorphic to a complete quasi-Boolean algebra,
and therefore thaACEM, the atomic variant o€CEM with the additional axiom
(A7) is isomorphic to an atomic complete quasi-Boolean algebra,

In standard mereotopology, where there are no atomic regions, and parthood is
defined in terms of connection, the definition of these Boolean operatio&#$ in
has proved somewhat problematic, it being difficult to demonstrate that the required
interrelationships hold when connection is taken into account. In particular, (D18)
does not suffice to captured the desired behaviour and needs to be supplemented by
an additional axiom, represented here by the formula

Compl(x,y) — Vz(C(z,y) < -NTP(z,x)) (T6)

In DM, however, it can be proved that (T6) follows from (D18) and the existing
axioms, as demonstrated in Appendix 2.

5 Quasi-Topological Operators

The relationNTP picks out those subregions of a given region which are discon-
nected from the complement of the region: the neighbours of each cell in the subre-
gion are all in the region itself. The union of all the non-tangential parts of a region
thus consists ddill the cells in the region whose neighbours are also all in the region:

UX 1 (U,~) ENTPIX.R)} = {x€U | vy(x~y -y € R)}

This set is called thédiscrete) interiorof regionR and is denoteéhtp (R). So long
as it is non-empty, it is of course a region itself.

While intp, considered as an operator on sets of cells, is a total function, when
considered as an operator on regions it is only a partial function, sirog {R)
is empty,R does not have an interior region. In the languagec, therefore, the
notion of interior is expressed by means of a relational predicate,y), meaning
thaty is aninterior of x, defined by:

Int(x,y) =get Vz(P(z,y) <> NTP(z,x)) (D19)
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Thus a region is an interior @R if and only if its parts are all and only the non-
tangential parts dR. As discussed earlier, it suffices, in fact, to consider just atomic
parts, so we have

Int(x,y) < Vz(Atom(z) — (P(z,y) <> NTP(z,x))). (D19)

It now follows that a region cannot have two distinct interiors, sindetifx,y;) A
Int(x,y2) then from (D19) we havez(P(z,y1) < P(z,y2)) so in particulaP (y2, y1)
andP(y1,y»), whencey; = y, by antisymmetry oP (A6). The appropriateness of
D19 follows from the easily demonstrated fact thaly g 0, (U, ~) & Int[X,Y] if
and only ifY = intp (X). ThusiInt does capture itt%p ¢ the relationship between a
region and its discrete interior, so long as the latter is non-empty.

Any connected component &f, and any union of such connected components
(includingU itself), is its own interior, since it is a non-tangential part of itself. If a
region has no non-tangential parts, and hence no interior, we describe it as “thin”.
In Fig. 5(a), the left-hand region has its interior shaded a darker grey; the right-hand
region is thin, since all of its cells have at least one neighbour outside the region.
Note thatU. and any of its connected components, cannot be thin since it is its
own interior; in particular, therefore, a single cell is a thin region so long as it is
connected to at least one other cell, but if it is a connected componéht(and
thus an isolated cell, disconnected from the rest of the space), it is not thin.

(a) Interior (b) Closure

Fig. 5 Discrete interiors and closures. In (a), a two-part regédisbading and its discrete interior
(dark grey; in (b), a region fnid-grey and its discrete closural{ shading

We refer to thediscreteinterior in order to distinguistnty from the topologi-
cal interior operatoint, which does not apply to adjacency spaces since they are
not defined as topologies. The two operators share a number of common features,
notably:

° int(D) (U) =U,
o VX(intp)(X) CX) ,
e XVY(XCY — int(D)(X) - int(D) Y)).
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The most importandifferencebetween the discrete and topological interior opera-
tors is that whereas the latter is idempotent, i.e.,

o VX(int(int(X)) =int(X)),

this is not, in general true for the former, since, in an adjacency space, the only
regions for whichintp (X) = X are unions of connected components of the space.
In view of both the similarities and the differences, we @alh a quasi-topological
operator.

In topology, theclosureof a set is defined as the complement of the interior of
its complementcl(X) = (int(X®))¢. The analogous operation in adjacency spaces
gives us another quasi-topological operator,diserete closurg

clp(R) = (intp (R%))° = {x | Jy(x~yAy e R} = ({X | (U,~) = NTP[X,R]}.

Thus the discrete closure of a regiBrtonsists of all those cells which are adjacent
to an element oR; it is the intersection of all regions whidR is a non-tangential
part of.
As with the interiors, the discrete closure shares some properties with the topo-
logical closure, namely

. Cl(D) (0) = 0,
. VX(X - C|(D)(X)> ,
. VXW(X CY — C|<D)(X) - CI(D) (Y)) R

but not:
o VX(cl(cl(X)) =cl(X)) .

As with interiors, the only regions in adjacency space for witigliX) = X are the
unions of connected components of the space.
Analogously to discrete interior, we can define the discrete closure relation in
Zpc by
Cl(x,y) =def Vz(P(y,z) < NTP(x,2)) , (D20)

which says thay is the closure ok if and only if x is a non-tangential part of any
regiony is part of.

Our decision to develop mereology with a universal element but no null element
leads to a certain asymmetry. In set-theoretical interpretations the asymmetry shows
up as the fact that the universal set is recognised as determining a region but the
empty set is not. A consequence of this is that, unlike the discrete interior, discrete
closure is a total function on regions: not every region has a discrete interior, but
every region has a discrete closure. This means that we can also define the closure
functioncl by

¢ (cl(x)) =det Vy(Cl(x,y) — 0(y)), (D21)

where¢ stands for any open formula with one free variable. Fig. 5(b) shows a region

(dark grey cells) and its discrete closure (the region plus the lighter grey cells).
Within .%p ¢, in order to characterise the relationship between discrete closure

and interior, we need to use the predic@tampl already defined in (D18). The
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relationship between discrete interior and discrete closure is then expresggd in
by the formula

Compl(x,y) Alnt(y,z) A Compl(z,w) — Cl(x,w), (T7)

a proof of which is given in Appendix 3.

From now on, we shall use the words ‘closure’ and ‘interior’ on their own to
mean thediscreteclosure and interior; if we need to refer to the topological opera-
tors, we shall do so explicitly. A useful way of characterising the closure and interior
in an adjacency space is to use the idea ofrtbighbourhoodf a cell, defined as
follows:

N(x)={yeU |x~y}

Thus neighbourhoods are in fact the closures of atoms, and the closure of any region
R C U is the union of the neighbourhoods of its constituent cells:

clo(R) = J{N(X) | xe R}.
The interior comprises those cells whose neighbourhoods are parts of the region:
intp(R) = {xe U | N(x) CR}.

Useful operations result from combining closure and interior, in either order. If
a setX includes some thin spikelike parts, these will disappear when the interior
is taken, and will not be restored if closure is then applied. Tdlg&ntp (X)) is
essentially likeX but with any thin parts removed (Fig. 6, left). On the other hand,
if the region has any thin holes or fissures, these will be filled in by the closure
operation and not be opened out again when interior is applied. ilty(€lp (X))
is like X but with any thin holes or fissures filled in (Fig. 6, right). Regions which
lack spikes or fissures, i.e., for which = clp(intp (X)) = intp(clp(X)), may be
calledregular.

Referring back to the earlier discussion of the distinction between adjacency
spaces and graphs, it should be noted that Stell [25] has reformulated these quasi-
topological operators in terms of two kinds of complementation definable on graphs.
Recall that a subgraph is specified by giving both its vertices and its edges. The
negation—G of a subgraphG consists of all the vertices & that are not inG,
and all the edges df joining vertices in—G. The supplement-G consists of all
the edges ob) that are not inG, and all the vertices df that are incident with an
edge in—G. Then the subgraphs~G and~—G correspond tintp (G) andclp (G)
respectively. It is worth noting that Stell definegegionin a graph to be subgraph
G such that-—G = G; thus a region, in this sense, includes all the edges tifat
join vertices ofG to a vertices of5; it can therefore can be specified just by giving
its vertices, and thus corresponds to a region in adjacency space.
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Fig. 6 Left: A region (mid grey with its interior dark grey and the closure of the interionéavy
outling). Right: The same region, with its closuglshading and the interior of the closuréé¢avy
outlineg)

6 Measures of Size and Distance

From now on we assume that the universe is connected, meaning that every region
(other than the universe itself) is connected to its complement:

VX CU((U,~) = CX, X))

This means that the universe consists of a single connected component, itself, and
is therefore the only region which is its own closure and interior (the empty set also
has this property, but it is not a regioh).

We have already characterisedhan region as one with empty interior. More
generally we can define thiicknes®f a region as the number of successive interior
operations required to reduce the region to nothing. For a rdgiohthicknessn
we have the sequence

R,intp(R),intp (intp(R)), ...,int3(R) = 0.

Thus forX C U we define

0 (fX=0)
ThickneséX) =qef ¢ N+ 1 (if X # 0 andT hickneséntp (X)) = n)
o (Otherwisg

The thin regions are then those with thickness 1. The univétsajnce it is its
own interior, can never be reduced to nothing in this way, so its thickness is infinite

9 In standard treatments of mereotopology this is posited as an agiempl(x,y) — C(x,y).
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— even if it is finite in the sense of containing only finitely many céfifkegions
other than the universe can only have infinite thickness if the universe is infinite.
Thickness provides a measure of how ‘substantial’ a region is.

A region of thicknes# is the union of a sequence pf- 1 shellssurrounding a
centralcoreof thickness 1. IfT hicknes&R) = n, then the shells of regioR are

R\ intp(R),intp(R) \intp (intp (R)), ..., inty 2(R) \ inty (R),int3 (R) ,

where the final term in the sequence is the core, whose interior is empty.
We can perform an analogous construction, starting from a rdgemd repeat-
edly forming the closure, thus building up a sequence of regions:

R, C|D(R), C|D(C|D(R)),C|D(C|D(C|D(R))), e

If the universe is infinite, this process may go on for ever, depending on the starting
pointR, otherwise, given that the universe is connected, we will reach a point where
cl3(R) = U. Give the complementarity of closure and interior, this occurs when
T hicknes&R®) = n. We can think of the sequence of closures being built up by the
successive addition of outer shells,

clb(R)\R clp(clp(R)) \ clp(R),...,clB(R) \ cl3(R),... .

The notion ofdistanceis usually defined in terms of shortest paths; but as we
shall see, in adjacency spaces it can also be defined in terms of closures.

A pathof lengthn from cellxto cellyis a sequencey, X1, . . . , X, Such thaky = X,
Xh =Y, andfori=1,...,n, x_1 ~ X. We can prove that there is a path of length
fromxtoyif and only ify € cI§({x}). We use induction on:

Base case (a= 0). A path of length 0 fronk to y consists of a single poing
which must be equal to bothandy. Clearly this exists if and only it =y. Since
cld({x}) = {x} this means that € cI$({x}) as required.

Induction step (from A1 to n). Assume the result holds for- 1. If Xg, X1, ..., Xn
is a path of lengtim from xtoy, thenxg, Xz, . .. , X1 is @ path of lengtim— 1 from
X to x—1. By hypothesis such a path exists if and onlyif; € clgfl({x}). Since
Xn_1 ~ % =Y, this means that € clp(cl31({x})) = cI3({x}), as required.

This gives us a natural measure of the distance between two cells:
d(x,y) =min(y € clp({x})) .
neN

From the above, this is the length of a shortest path fxaowy, and it is easy to see
that it is a true metric, i.e.,

e d(x,y)=0Iifand only ifx=Yy,

10 An alternative definition of thickness, which would allow the thickness of the universe to
be finite, would be to restrict the definition given in the text to mbrregions, and define
ThicknesfJ) =gef maxkcu T hicknesgX) + 1, it being understoond that this expression evaluates
to o if there is no upper bound to the thickness of non-universal regions.
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d d(X,y) = d(y,X)
e d(x,2) <d(xy)+d(y,2z) (triangle inequality).

Note that there will not, in general, be a unigue shortest path between two cells. A
familiar example is the adjacency spa@#, ~4). The points'm,n) and(m+1,n+

1) are linked by two minimal paths, of length 2, one going ¢ n+ 1) and the
other via(m+ 1,n); in general, between the points\, n) and (m+ h,n+ k) there
are"*C, minimal paths, of lengtih + k. This is the “Manhattan” or “city-block”
distance.

An obvious generalisation of distance to regions gives uptbgimal distance
between two regions, defined as the smallest number of closure operations that can
be applied toX to produce a region that overlajgs as before, this is equivalent to
the more familiar definition as the shortest distance between a cell in one region and
a cell in the other:

pd(X,Y) = min(cl3 (X) NY # 0) = min d(x,y).
neN xe X
yeyY

Unfortunately proximal distance is not a true metric since (1) the proximal distance
between distinct but overlapping regions is zero, and (2) the triangle inequality does
not hold, i.e., we can have regioKsY, Z such thaipd(X,Z) > pd(X,Y) + pd(Y, Z).

A more satisfactory measure of distance for regions isHhasdorff distance
defined as the greatest distance between any point in one of the regions and the
nearest point in the other:

hd(X,Y) = max(r)lgxr)g@d(x,y),ry&xr)(ry)rgd(xy))) .

If maxxex minyey d(Xx,y) = n, then for anyx € X,y € Y we havey € clj({x}) C
cIf(X), soY C cIf(X), and likewise withX andY reversed. Thus an equivalent
formulation in terms of closures is

hd(X,Y) =min{ne N | X CcI§(Y)AY Ccl3(X)}.

The Hausdorff distance between two regions in adjacency space is thus the small-
estn such that each region is within timth closure of the other. Unlike proximal
distance, Hausdorff distance is a true metric.

It should be noticed that while the Hausdorff distance between a region and its
closure is always 1, i.ehd(X,clp(X)) = 1, this is not necessarily the case for a
region and its interior. In fact

hd(X,intp(X)) = 1 if and only ifclp (intp (X)) = X.

Such anX is called aregular closure sein [23].
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7 Relation to Mathematical Morphology

Mathematical Morphology (MM) comprises a set of mathematical tools for manip-
ulating images. Readers familiar with MM will recognise a clear similarity between
our discrete interior and closure operations and the erosion and dilation operators of
that theory. Here we make this relationship explicit. While the theory of MM may
be developed both for continuous and discrete images, for our purposes we will con-
sider only the discrete case: in this case we are working #4thAn imageis any
subset of this set.

In Mathematical Morphology, there is no pre-defined adjacency relation. Instead,
erosion and dilation may be performed with respect to an arbistangturing ele-
mentwhich in effect determines which points are to count as adjacent. A structuring
element is itself an image, typically small. Given an imagand a structuring ele-
mentB, we define

e Thedilation of X by B is the image
X®B={x+b|xeX,beB}.
e Theerosionof X by B is the image
XoB={yeZ?|vbeB(y+beX)}.

Addition here is coordinate-wise, i.e., treating points as vectors. The dilation of a
region byB expandsB by replacing each of its points by a copyBifthe location

of the copy depends on wheReitself is with respect to the origin. It is usual to
assume that the origin is one of the pointsByfotherwise dilation will result in

a displacement of the image as well as an expansion. If the structuring element is
taken to be a 83 square centered on the origin, then the dilation of any image
will be exactly its closure with respect to the adjacency relatignlf instead we

take a cross-shaped structuring element consisting of the origin and the four points
orthogonally adjacent to it (like the leftmost image in Fig. 2), dilation then gives
closure with respect to the relation.

Erosion removes the outer part of the image, retaining a point only if a copy of
the structuring element anchored on that point would lie entirely within the image.
So long as the structuring element has central symmetryHi-e.--B), erosion and
dilation are related exactly as interior and closure. More generally we have

X®&B=(X‘c(-B))°,

where—B = {—x | x € B}.
MM makes much use of operations callepgeningandclosing defined as fol-
lows:

OpeningXoB= (X&B)®B,
Closing:XeB = (X&B)©B.
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These correspond to the DM operatiais(intp (X)) andintp (clp (X)) illustrated
in Fig. 6.

Mathematical Morphology may appear to be in some ways more general, and
in other ways less so, than Discrete Mereotopology, but both these appearances are
misleading.

The sense in which MM may appear to be more general than DM is that it
allows arbitrary structuring elements; but this generality could be recovered in
DM by defining a different adjacency relation &t for each possible structur-
ing element. For example, if the structuring element consists of just the points
{(0,0),(1,0),(0,1)}, then the corresponding adjacency relation would relate any
point (x,y) to (x,y), (x+1,y), (X,y+ 1) and nothing else.

On the other hand, as usually presented in terms of structuring elements, MM
would appear to presuppose spaces which are homogeneous in the sense that they
allow a copy of the same structuring element to be located at each point in the
space. As we have seen, however, DM is equally happy in non-homogeneous spaces
where such arbitrary translation of structuring elements does not make sense; the
discrete closure and interior operations of DM work just as well in this setting as
with homogeneous spaces, but the most familiar forms of MM gain no purchase in
this context.

This is not, however, the full story, since a number of researchers have inves-
tigated forms of MM which allow variable structuring elements—see for example
[19, 27]. And it is certainly true more generally that the study of MM is a much
more mature research area than that of DM, and as a result has been developed to
a considerably greater degree of mathematical sophistication and generality — see
for example [1].

8 Relation to Digital Topology

Adjacency spaces are examples of a general class of mathematical structures called
closure spaceR2]. A closure space is a pajt),cl), whereU is any set, andl is a
function mapping each s&t C U to a setcl(X) C U such that

1. cl(0) =0,
2. X Ccl(X),
3. cl(XUY) =cl(X)ucl(Y).

This notion generalises topological closure, which in addition to satisfying condi-
tions 1-3 also satisfies the idempotency rule

4. cl(cl(X)) = cl(X),

which as we have noted iot, in general, satisfied by sets in an adjacency space.

Although the discrete closure operation in an adjacency space is not a topolog-
ical closure (since it is not idempotent), one can define topological spaces associ-
ated with any adjacency space. A trivial way of doing this is to specifyiberete
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topologyonU, that is, the topology under whidah(X) = X for everyX C U. Much
more interesting is to exterld by including in the universe not just the original
elements ofJ (conceived of as atomic regions) but also boundary elements where
these atomic regions adjoin one another, and boundaries of those, etc, depending
on the dimensionality one wishes to confer on the space. This is illustrated in Fig.
7, where, on the left is shown part of an adjacency space in the form of a regular
hexagonal lattice, and on the right is shown a space which includes, in addition to
the hexagons of the original lattice, a set of line segments representing the bound-
aries of the hexagons and a set of points representing the ends of the line segments.
This space can be made into a topology by specifying that the closure of any set con-
sists of the elements of that set together with all their bounding elements. Thus the
closure of one hexagonal tile consists of the hexagon together with its six bounding
lines and its six bounding points, and the closure of a line element is the line together
with its two bounding points. It is easy to see that this closure operation satisfies the
conditions (1)—(4) above, and therefore defines a topological space. Such topologi-
cal spaces, if finite, are callexllular complexesand these are investigated in the
context of applications to image analysis in [11].

The topological spaces obtained in this way from rectangular grids of theZbrm
are calledKhalimsky spacef, 10]. See also [9] for a discussion of the relationship
between these topological approaches and graph-based approaches such as DM.

Fig. 7 An adjacency space in the form of a hexagonal gett); and the topological space obtained
by the addition of bounding lines and pointgyht)

9 An Application

Discrete Mereotopology has been applied to the analysis of histological images
[17, 18]. Real-world images invariably have imperfections which means that when
standard segmentation algorithms are applied to them in order to extract informa-
tion about the entities pictured, the resulting structures are not always in conformity
with theoretical models — e.g., one might find cell nuclei overlapping the bound-

aries of their cytoplasm, or distinct tissue types wrongly labelled. DM can be used
to identify maximally parsimonious ways of repairing such ill-formed images, us-

ing “conceptual neighbourhood diagrams” [3] to identify sequences of operations
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that can transform an existing inappropriate structure to one that is in conformity
with expectation. This method works at the level of individual image pixels, and
can therefore harness the power of mathematical morphology alongside DM; but by
considering a coarser segmentation of the image one can exploit the ability of DM
to allow reasoning about arbitrary adjacency spaces.

To illustrate, Fig. 8(a) shows a Haemotoxylin and Eosin stained section of an
odontogenic keratocyst lining. Image-processing techniques are used to extract the-
oretical cell boundaries from this image, defining “virtual cells” or “v-cells” in the
epithelial compartment separating the background free space at the top of the image
from the connective tissue at the bottom. The segmentation into v-cells is shown in
Fig. 8(b). Individual v-cells, as well as the whole block of connective tissue and the
background space, can be regarded as atomic regions of an adjacency space. The v-
cells adjacent to the connective tissue form what is calletvéisal layer If V is the
region in the image consisting of the v-cells, @ds the region corresponding to
the connective tissue, then the basal I&§ean be identified 8¢ Nclp (C). By tak-
ing successive closures of the basal layer we can segment the epithelium into layers
as shown in Fig. 8(c). This operation allows one to derive a more meaningful mea-
sure of tissue thickness, for example, than crude measures involving pixel counts
or Euclidean distance. Such measures can provide important diagnostic criteria for
histopathology. By taking a single target cell within the segmented image, one can
similarly use the closure operation to generate nested rings of v-cells, as shown in
Fig. 8(d), which can again provide useful information, at the cellular level, on local
tissue architecture.
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(a) Stained epithelium section (b) Segmentation into “virtual cells” (v-cells)

(c) Layering of epithelial v-cells (d) Nested shells of v-cells around a target cell

Fig. 8 Application of discrete closure operation to a histological image (images courtesy of Prof.
Gabriel Landini and Dr D. Randell)
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Appendix 1: Proof of (T4) and (T5)

The first theorem to be proved is
Vx¥y(Compl(x,y) < =O(x,y) ASum(x,y,U)) (T4)
First, suppos€ompl(x,y), so sinceP(y,y) we have-O(y,x) by (D18) and therefore
=0(x,y). (1)

Letv be any region; if~O(v,x), thenP(v,y) (sinceComp(x,y)), soO(v,y). Hence
O(v,x) V O(v,y). Sincev is arbitrary, we always hav®(v,U), and hence we have
O(v,U) < O(v,x) VO(v,y), i.e.,

Sum(x,y,U) (2)

Conversely, suppose we hav®(x,y) A Sum(x,y,U).

Let P(u,y), so that wheneveP(w,u) we have alsoP(w,y). Therefore from
=0(x,y), i.e.m3Iw(P(w,y) AP(w,x)), we infer—3w(P(w,u) AP(w,x)), i.e.,mO(u,x).
Hence we have showru(P(u,y) — =0(u,x)).
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Now suppose-O(u,x). We must showP (u,y). Suppose not; then fromP(u,y),
by (A8), there is a regiofw such thatP(w,u) A =O(w,y). From =O(w,y), since
Sum(x,y,U) we haveO(w,x) (sinceO(w, U) in any case). Fror (w, u) andO(w, x)
it is an easy deduction th&i(u,x), contradicting our assumption. Hence we have
shownVu(—0(u,x) — P(u,y)).

We now have/u(P(u,y) <> =0(u,x)), i.e.,Compl(x,y). d

The proof of (T5) is now straightforward:

Compl(x,y) & =O(x,y) ASum(x,y,U) < =0O(y,x) A Sum(y,x,U) < Compl(y,x).

Appendix 2: Proof of (T6)

The theorem to be proved is
YxVy(Compl(x,y) — Vz(C(z,y) <> =NTP(z,x))) (T6)
Assuming
Compl(a,b), (1)

suppose, first, that(c, b). From (1), sincé(b,b), we have-O(b,a), hence we have
C(c,b) A=0O(b,a) and thereforesNTP(c,a) by (D10). Hence we havéz(C(z,b) —
-NTP(z,a)).

Next, suppose we haveNTP(c,a). Then from (D10), either we have

—P(c,a) (2a)
or there is a regiod such that
C(c,d) A—=0(d,a). (2b)
In the former case, from (1) and (T5) we haWempl(b,a), so (2a) implie$(c,b),
which impliesC(c,b). In the latter case (2b), from (1) an®(d, a) we haveP(d,b).
Then fromC(c,d) andP(d, b) we haveC(c,b) by (A5). Thus in either case we have

C(c,b) and we have provedz(—NTP(z,a) — C(z,b)).
Combining the results and generalising give us (T6). O

Appendix 3: Proof of (T7): Relationship of discrete interior and
closure

The theorem to be proved is
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Compl(x,y) Alnt(y,z) A Compl(z,w) — Cl(x,w) (T7)

Using the definitions (D19, D20, D18), this means that from

VX(P(Xa b) - _‘O(Xva)) (1)

Yx(P(x,c) «» NTP(x,b)) (2)

Yx(P(x,d) < —0(x,c))) 3)
we must derive

Wx(P(d,x) <> NTP(a,x)) 4)

From (T5) we can rewrite (1) and (3) as

Wx(P(x,a) < —0(x,b)) (5)
Yx(P(x,c) < —0(x,d)) (6)

so from (2) and (6) we have

¥x(—0(x,d) < NTP(x,b)) @)
Then from (1) and (7) (sincRTP(x,b) impliesP(x,b)) we have

Vx(=0(x,d) — —0(x,a)) (8)

Suppose-P(a,d). Then by (A8) there must be a regiensuch thatP(e,a) A
—=0(e,d). By (8) this would implyP(e,a) A —=O(e, a), a contradiction. Therefore we
haveP(a,d), and therefore

Wx(P(d,x) — P(a,x)) 9)

SupposeP(d,g). and letf be any region connected tg i.e., C(a,f). Suppose
—0(f,d). Then by (6) we havB(f,c) and so by (2NTP(f,b). Therefore any region
connected td must overlapb. Since we havé(a,f) this means tha®(a,b). But
from (1) we know that-O(a, b) and we have a contradiction. Theref@#¢f,d), and
therefore, sinc®(d, g), we haveO(f,g).

Thus we have

Vx(P(d,x) — Vy(C(a,y) — O(y,x))) (10)

Combining (9) and (10) (and using (D10)) we get
Vx(P(d,x) — NTP(a,x)) (11)

which is one half of (4).
For the converse, I TP(a,e); we must show tha(d,e). Assume on the con-
trary that
-P(d,e) (12)

By (A8), there is a regioffi such thaP (f,d) and—-O(f,e).
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FromP(f,d) we have, by (3);70(f,c), and therefore
=-P(f,c) (13)
From—-0(f,e), i.e.,—O(f,e), we have, sinctl TP (a,e),
-C(a,f) (14)

Also from —O(f,e), givenNTP(a,e), and thereford®(a,e), we have-0(f,a),
and therefore, by (1R (f,b).

We will show that in facNTP(f, b).

To this end we must show that anything connected twverlapsb. Suppose
—0(z,b), i.e., =O(z,b). By (5) this impliesP(z,a), and therefore, from (14),
-C(z,f) (here we are using a theoref(x,y) A P(x,z) — C(y,z) — we've al-
ready asserted this, as (5)). Henc&€{f,f) it follows that O(z,b). Thus we have
NTP(f,b).

By (2) this givesP(f,c), contradicting (13). Hence assumption (12) is false, and
we conclude, as required, thHatd, e).

We have now shown thatx(NTP(a,x) — P(d,x)), which, in combination with
(11), gives us (4). O



