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Abstract. The paper outlines a model-theoretic framework for investigating and compar-
ing a variety of mereotopological theories. In the first part we consider different ways of
characterizing a mereotopology with respect to (i) the intended interpretation of the con-
nection primitive, and (ii) the composition of the admissible domains of quantification
(e.g., whether or not they include boundary elements). The second part extends this study
by considering two further dimensions along which different patterns of topological con-
nection can be classified—the strength of the connection and its multiplicity.

1. Introduction

In recent years there has been an outgrowth of theories for representing
space and time in a qualitative way based on a primitive notion of topo-
logical connection. Applications include natural language semantics, formal
ontology, cognitive geography, and spatial and spatiotemporal reasoning in
artificial intelligence (see [12, 37, 43, 60, 64] for overviews). Most of this
work has been influenced directly by the seminal contributions of Clarke
[16, 17], which in turn were based on the theory of extensive connection
outlined by Whitehead in Process and Reality [67]. However, some theo-
ries have been developed on independent grounds and with different moti-
vations (for instance, as an attempt to overcome the intrinsic limits of
mereology in dealing with the notion of an integral whole, following in the
footsteps of Husserl’s Logical Investigations [45]), and it is interesting to
see how topology has itself become a point of connection among a number
of previously unrelated research areas.
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Unfortunately, this variety of outlooks corresponds to a variety of
theories that are not always in agreement on the basic terms. In some
cases, the disagreement is a sign of genuine philosophical dissension; in
other cases it simply reflects a difference in the intended application of the
theories. In other cases still, the disagreement is due to a different under-
standing of the connection primitive itself. This is not surprising, since the
ordinary set-theoretic account of the topological notion of connection rests
on the distinction between open and closed entities (sets) and since Bol-
zano [6] this distinction has been regarded as problematic when the enti-
ties in question are interpreted on a spatiotemporal domain (see [66, 68]
for discussion). Indeed, the difficulty in applying standard point-set to-
pology to ordinary space is one of the guiding reasons behind the devel-
opment of many connection-based theories. As mereology (the theory of
parthood or overlap) was initially developed as an alternative to set theory
in the constructional analysis of the world of spatiotemporal entities (at
least in the pioneering works of Leśniewski [47] and Leonard and Good-
man [48], the latter under the emblematic rubric of Calculus of Individu-
als), likewise the theory of connection is typically viewed as an alternative
to set theory in the analysis of those spatial and spatiotemporal phenom-
ena that exhibit topological structure. The resultant theories are sometimes
called, quite aptly, mereotopologies. And the lack of a unified framework
bear witness to the difficulty of the task, in spite of its practical signifi-
cance.

Our aim in this paper is to go some way in the direction of such a uni-
fied framework. Independently of any foundational or practical concerns,
in what follows we delineate a model-theoretic framework for investigating
the logical space of mereotopological theories and comparing the main op-
tions in light of their intended models. In the first part (Sections 2–6) we
introduce the basic notation and terminology and we consider different
ways of characterizing a mereotopology with respect to the intended in-
terpretation of the connection primitive(s). We also consider, albeit briefly,
the way theories may differ with regard to the composition of their in-
tended domains—e.g., whether or not they allow for any boundary ele-
ments. In the second part (Sections 7–9) we extend this study by consid-
ering two further dimensions along which different patterns of topologi-
cal connection can be classified—the strength of the connection and its
multiplicity.
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2. The Frame of Reference

Our approach is neutral with regard to whether mereotopology is meant to
apply to space, time, or space-time. Most of what follows holds true of
domains of arbitrary dimensions, of which space and time can be seen as
special cases. However, in our illustrations we shall focus primarily on the
spatial domain. This will hopefully be an aid to intuition, and will allow us
to exploit rather closely a terminology that has recently become rather
widespread precisely under the impact of recent work in the area of spatial
reasoning.

Let us also emphasize that our focus will be on the logical spectrum
of theories concerned with the topological structure of space, as opposed
to things located in space. This makes our study independent of questions
of location, which call for a different sort of theory (see [11, 12] for some
work in this direction). Thus, the domain of quantification of these theo-
ries consists exclusively of spatial items such as points, lines, regions.
Moreover, we are only interested in these theories insofar as their account
of the connection relation is concerned, ignoring other important topologi-
cal notions such as, for instance, compactness.

Within these limits, our purpose is taxonomic in the following sense.
Given theory X, the intended interpretation of the basic relation of topo-
logical connection in X can be described in terms of ordinary point-set
theoretic notions. That is, the semantics of X can be specified in set-
theoretic terms (though, of course, the purpose of X may be to provide
an independent account of topology, dispensing with set-theoretic no-
tions altogether)1. Our aim is to compare various theories on the basis of
such a common set-theoretic semantics. Given a topological space T, we
want to investigate how the basic predicates of different mereotopological
theories get interpreted when the variables are taken to range over elements
of T.

                                                
1 Thus, for instance, both Whitehead [67] and Clarke [16] present their systems as

formalizing the relation ‘x is connected with y’ as a rendering of ‘x and y share a common
point’, although points are not meant to be included in the domain of quantification of
their theories. Similarly, Randell et al. [53] suggest the renderings ‘there is no distance
between x and y’ as well as ‘the closures of x and y share a common point’; the former is
the favored interpretation, but the latter makes it possible to classify and compare their
system with others.
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Clearly, a lot depends on which elements of T are included in the do-
main of quantification. This is one major source of disagreement among
different theories in the literature. For instance, in certain theories the in-
tended interpretation of the connection predicate is explained (or can be
explained) in terms of the full make up of T even if the theories themselves
require that only some elements of T be included in their domain of quanti-
fication. In particular, we shall be interested in comparing theories with
regard to whether or not they include unextended boundary elements (ele-
ments with empty interiors, such as points, lines, and surfaces). Theories
that do include such elements in their domain of quantification will be
called boundary-based theories; the others will be called boundary-free. It
is clear that this opposition is reflected in the account of defined topologi-
cal relations and predicates—for instance, it crucially affects the way in
which the opposition between open and closed regions can be expressed in
the language of the theory. Our purpose is to investigate this and related
issues in abstract terms, and to illustrate in some detail the cases corre-
sponding to actual theories that play a prominent role in the literature.

Another important factor is the kind of topological space one consid-
ers. In particular, one may draw a line between theories that take space to
be dense (a normal space) and those that do not. Most accounts in the lit-
erature are of the first kind, but there are exceptions. In the following we
shall remain neutral on this issue and work with arbitrary topological
spaces, though eventually we shall also consider some questions that turn
out to relate to the density assumption.

3. Definition Schemas for Mereotopology

Topological spaces can be conveniently characterized in terms of closure
operators. A closure operator on a set A is a function c associating with
each subset x of A a subset c(x) satisfying the following four statements:

(A0) ∅ = c(∅)
(A1) x ⊆ c(x)
(A2) c(c(x)) ⊆ c(x)
(A3) c(x) ∪ c(y) = c(x ∪ y)

If c is a closure operator on A, the set of fixed points T (c)={x ⊆ A: c(x) = x}
is the topology on A associated with c. The pair (A, T (c)) is then called a
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topological space, and the elements of T (c) are called the closed sets of the
topological space. It is a fundamental fact of all topological spaces (due
essentially to Kuratowski [46]) that the set T (c) of closed sets contains
both A and ∅ and is closed under the formation of finite unions and arbi-
trary intersections. Moreover, one verifies that the closure of a set x is al-
ways the smallest closed set including x. Likewise, let us define the interior
of x, written i(x), to be the greatest open set included in x, where a subset
of A is called open if and only if (iff) it is the relative complement A–x of a
closed subset x. Then one verifies that the set O(c) of all open sets con-
tains both A and ∅ and is closed under the formation of finite intersections
and arbitrary unions. For convenience, let us also introduce the notion of a
boundary. Given any subset x of A, the boundary of x can be conveniently
defined as the set b(x) = c(x) – i(x), and a set z is called a boundary (or
boundary element) in A iff it is the boundary of a subset of A.

Now let T =  (A, T (c)) be any topological space. We shall initially fo-
cus on the following three ways of characterizing a relation of connection
between subsets of A (see Figure 1):

C1(x, y) ⇔ x ∩ y ≠∅
C2(x, y) ⇔ x ∩ c(y) ≠∅ or c(x) ∩ y ≠∅
C3(x, y) ⇔ c(x) ∩ c(y) ≠∅

With ‘Cn’ understood as the connection predicate in the object language of
a theory, the double arrow is to be construed as a semantic relation speci-
fying the relevant intended interpretation. (We postpone the details to Sec-
tion 4.) Thus, intuitively, on the first account the connection relation holds
between any two sets that share an element; on the second it holds iff one
of the sets shares an element with the closure of the other; and on the third
it holds iff it is the closures of both sets that share an element.

x yx y

C 2 C 3C1

x y

Figure 1: The three C relations (limit cases); a solid line indicates closure.

As we shall see, these notions correspond—or can be made to corre-
spond, under suitable conditions—to the main variants found in the litera-
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ture.2 However, to get a proper picture of the alternatives offered by these
options, two more parameters must be considered, corresponding to the
ways in which the relation of parthood and the operation of fusion can be
characterized in terms of connection:

Pn(x, y) =df ∀z(Cn(z, x) → Cn(z, y)) (1 ≤ n ≤ 3)
σnx φ =df ιz∀y(Cn(y, z) ↔ ∃x(φ ∧ Cn(y, x))) (1 ≤ n ≤ 3)

Intuitively: x is partn of y iff whatever is connectedn to x is also connectedn
to y, and the fusionn of all φ-ers is that thing (if it exists at all) that con-
nectsn precisely to those things that φ.3 Most theories define these notions
in terms of the same connection relation that is assumed as a topological
primitive, in which case the above reduce to ordinary definitions in the
object language of the theory. However, this need not be the case, and in
fact we shall see that an important family of theories stem precisely from
the intuition that parthood and connection cannot be defined in terms of
each other. This effectively amounts to using two distinct primitives—two
notions of connection (one of which is used in defining parthood), or a no-
tion of connection and an independent notion of parthood. Accordingly,
and more generally, we shall consider the entire space of mereotopological
theories that result from the options determined by the above definitions
when 1  ≤ n ≤ 3. That is to say, we shall work with an object language in
which all three connection predicates are available as primitives, and we

                                                
2 Other relations of connection could be defined using the interior operator instead

of the closure operator—for instance:

C4(x, y) ⇔ x ∩ i(y) ≠ ∅ or i(x) ∩ y ≠ ∅
C5(x, y) ⇔ i(x) ∩ i(y) ≠ ∅

Such relations do not correspond to any notion of connection found in the literature, so
we shall not consider them here. We shall come back to them indirectly in Section 8.

3 Here and below we assume the definite descriptor ‘ι’ to be contextually defined in
Russellian fashion:

ψ(ιxφ)  = df  ∃x(∀y(φy
/x ↔ y = x) ∧ ψ).

where ‘φ’ and ‘ψ’ stand for any well-formed expressions of the object language in which
‘x’ occurs free and ‘φy/x’ denotes the expression obtained from ‘φ’ by properly substitut-
ing every free occurrence of ‘x’ by an occurrence of ‘y’. It would be interesting, but too
complex for our present purposes, to consider the possibility of treating ‘ι’ as a genuine
term-forming operator against the background of a free quantification theory. See [55] for
a first step in this direction.
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shall model theories in which some such predicates are defined in term of
others by adding suitable axioms in place of the corresponding definitions.
(The case of σn is particularly complicated, also in view of the fact that
σnxφ will not be uniquely defined unless Cn is assumed to be extensional,
i.e., unless it is assumed that distinct sets must have different connec-
tionsn; we shall come back to this in the next section.)

To do so in a systematic manner, let us call a triple τ=〈i,j,k〉 (where
1 ≤ i,j,k ≤ 3) a type. The first coordinate of a type is meant to indicate a cor-
responding relation of connection; the second coordinate indicates a corre-
sponding choice for the definition of parthood; and the third coordinate
indicates which connection relation is used in the definition of the fusion
operator. For instance, 〈2,1,3〉 is the type associated with C2 as a primitive
for topological connection, P1 as a parthood predicate (defined in terms of
a different connection primitive C1), and σ3 as a fusion operator (defined
in terms of C3). If the three coordinates of a type are all equal, then the
type is uniform and corresponds to the case in which the primitive for
topological connection is the only primitive used in defining all other
mereotopological notions. (The other primitives do not enter in the theory,
or can be shown to be equivalent to open formulas involving only the cho-
sen primitive.) However, a type need not be uniform, and this is meant to
reflect the possibility of relative independence among the three notions of
connection, parthood, and fusion.

Using the notion of a type, the following notation provides a conven-
ient generalization of the notation introduced above:

C〈 i,j,k 〉(x, y) =df Ci(x, y)
P〈 i,j,k 〉(x, y) =df Pj(x, y)
σ〈 i,j,k 〉x φ =df σkx φ

We can then define a number of customary mereotopological relations by
relativizing them to our types τ. To simplify notation, we shall assume
bound variables to range exclusively over non-empty sets.

Oτ(x, y) =df ∃z(Pτ(z, x) ∧ Pτ(z, y)) x τ-overlaps y

Aτ(x, y) =df Cτ(x, y) ∧ ¬Oτ(x, y) x τ-abuts y

Eτ(x, y) =df Pτ(x, y) ∧ Pτ(y, x) x τ-equals y

PPτ(x, y) =df Pτ(x, y) ∧ ¬Pτ(y, x) x is a proper τ-part of y

TPτ(x, y) =df Pτ(x, y) ∧ ∃z(Aτ(z, x) ∧ Aτ(z, y)) x is a tangential τ-part of y
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IPτ(x, y) =df Pτ(x, y) ∧ ¬TPτ(x, y) x is an interior τ-part of y

BPτ(x, y) =df ∀z(Pτ(z, x) → TPτ(z, y)) x is a boundary τ-part of y

POτ(x, y) =df Oτ(x, y) ∧ ¬Pτ(x, y) ∧ ¬Pτ(y, x) x properly τ-overlaps y

TOτ(x, y) =df ∃z(TPτ(z, x) ∧ TPτ(z, y)) x tangentially τ-overlaps y

IOτ(x, y) =df ∃z(IPτ(z, x) ∧ IPτ(z, y)) x internally τ-overlaps y

BOτ(x, y) =df Oτ(x, y) ∧ ¬IOτ(x, y) x boundary τ-overlaps y

πτx φ =df στz ∀x (φ → Pτ(z, x)) τ-product of φers

x+τy =df στz (Pτ(z, x) ∨ Pτ(z, y)) τ-sum of x and y

x×τy =df στz (Pτ(z, x) ∧ Pτ(z, y)) τ-product of x and y

x–τy =df στz (Pτ(z, x) ∧ ¬Oτ(z, y)) τ-difference of x and y

kτ(x) =df στz ¬Oτ(z, x) τ-complement of x

iτ(x) =df στz IPτ(z, x) τ-interior of x

eτ(x) =df iτ(kτ(x)) τ-exterior of x

cτ(x) =df kτ(eτ(x)) τ-closure of x

bτ(x) =df cτ(x) –τ iτ(x) τ-boundary of x

Uτ =df στz Oτ(z, z) τ-universe

Bdτ(x) =df ∃yBPτ(x, y) x is a τ-boundary

Rgτ(x) =df ∃yIPτ(y, x) x is a τ-region

Opτ(x) =df Eτ(x, iτ(x)) x is τ-open

Clτ(x) =df Eτ(x, cτ(x)) x is τ-closed

Reτ(x) =df Eτ(iτ(x), iτ(cτ(x))) x is τ-regular

Cnτ(x) =df ∀y∀z(Eτ(x, y+τz) → Cτ(y, z)) x is τ-connected

CPτ(x, y) =df Pτ(x, y) ∧ Cnτ(x) x is a τ-connected part of y

Depending on the structure of τ, the notions thus defined may receive
different interpretations, hence the gloss on the right should not be taken
too strictly. One intended interpretation of the binary relations relative to
the Euclidean plane R2—an interpretation that justifies the gloss—is illus-
trated in Figures 2 and 3. We shall call this the standard interpretation.
However, the exact semantic import of these definitions may change radi-
cally from one framework to another, depending on the type τ and on the
constraints in the model theory. Our aim is precisely to investigate this
variety of interpretations. We shall do so by considering boundary-based
accounts first, and then boundary-free accounts. This effectively corre-
sponds to interpreting the quantifiers in the above definitions as ranging
over two different sorts of subsets of the underlying topological space.
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Boundary-based theories include in the domain of quantification all
boundaries (sets of points that have no interior). Boundary-free theories,
by contrast, do not include such elements in their domain of quantification.

  

y x y x yx y

O, PO, TO, BO O, PO, IO O, TO, P, PP, TP O, IO, P, PP, IP

x y y x yx y

O, PO, IO O, IO, P, PP O, IO, P, PP, IP

y x y yx y

A O, PO, IO O, IO, P, PP, IP O, IO, P, PP, IP

x

x y y x yy

A O, PO, IO O, PO, IO O, IO, P, PP, IP

x

x

x

x

x

Figure 2: Standard interpretation of the mereotopological relations on the Eucli-
dean plane R2. (The labels under each diagram indicate relations that hold be-
tween x and y, in this order.)

PPTP

BP

IP

C

P

O

TO

BO

PO IO

A

Figure 3: Partial ordering by implication of the mereotopological relations of Figure 2.
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Moreover, in both cases further constraints may derive from specific con-
ditions on the relevant topology. For instance, boundary-based theories
typically assume that all boundary elements qualify as closed; boundary-
free theories typically assume all open sets to be regular, i.e., to coincide
with the interior of their own closure (this rules out, for instance, sets ob-
tained by removing an interior point from an open set).

Incidentally, one could also draw a line here between theories that in-
clude the empty set in their domain of quantification and theories that do
not. Classical topology does, of course. However, mereotopologies typi-
cally do not follow this course: virtually every account in the literature,
whether boundary-based or boundary-free, agrees on restricting the domain
of quantification by leaving out the empty set. Intuitively this corresponds
to the idea that nothing can occupy an empty region of space (along with
the thought that an empty region of space can hardly be associated with
clear identity criteria: where would it be located?). In the following, we
shall focus on this course, which is why the above list of definitions is
given on the understanding that variables only range over non-empty sets.
We shall therefore confine ourselves to a comparison between boundary-
based and boundary-free mereotopologies without the null element. An
extension of our results to mereotopologies with the null element is rather
trivial and we leave it to the reader.

One final remark is in order. It concerns the possibility of extending
our set of defined mereotopological predicates and operators by relying on
higher-order notions of connection. For instance, using parthood and fu-
sion one can define overlap (the mereological counterpart of set intersec-
tion) and closure; but then one could use these notions to introduce a cor-
responding variety of connection predicates, which in turn can be used to
define corresponding notions of parthood and fusion, and so on.

It is not difficult to include this possibility into our general picture.
Let us simply amend our notion of type by including a fourth coordinate,
indicating the order at which the predicate is defined. This can be done by
recursive definition:

if 1≤i,j,k≤3, then 〈i,j,k,0〉 is a type;
if τ is a type and 1≤i,j,k≤3, then 〈i,j,k,τ〉 is a type;
nothing else is a type.

The basic types give us the same as above:
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C〈 i,j,k,0〉(x, y) =df Ci(x, y)
P〈 i,j,k,0〉(x, y) =df Pj(x, y)
σ〈 i,j,k,0〉  φ =df σkx φ

But the inductive types allow us to introduce higher-order connection rela-
tions:

C〈1,j,k,τ〉(x, y) =df Oτ(x, y)
C〈2,j,k,τ〉(x, y) =df Oτ(x, cτ(y)) ∨ Oτ(cτ(x), y)
C〈3,j,k,τ〉(x, y) =df Oτ(cτ(x), cτ(y))

Using these notions, the long list of definitions given above can be iterated,
yielding further mereotopological predicates and operators. Some of these
will of course collapse, but not necessarily all. The question of whether
and when the distinctions between basic and higher-order notions can be
dismissed is itself an interesting subject to be explored, but we shall not
include it in our agenda here. (Actually one can have many more relations
by allowing the entries in our list of definitions to involve relations of dif-
ferent types in the definienda—for instance, one could define hybrid forms
of overlap:

Oτ1τ2
(x, y) =df ∃z(Pτ1

(z, x) ∧ Pτ2
(z, y))

However, this way of generating new relations is probably not interesting
and will also be ignored in the following.)

4. General Facts

Before proceeding to a comparative analysis of mereotopological theories,
we note here some general facts.

First of all, let us be more explicit about the model-theoretic appara-
tus. We assume a first-order language with identity L={C1, C2, C3} whose
non-logical vocabulary consists of the three connection predicates. The
semantics follows a standard first-order account. Only notice that we are
interested in models that are based on some topological space T =(A, T(c)),
i.e., models M =(U, ƒ) whose domain U is a non-empty subset of ℘(A)–∅
and whose interpretation function ƒ treats each connection predicate ‘Cn’
as indicated at the beginning of Section 3 (relative to T). Such models are
called canonical.
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Given a model M =(U, ƒ), the notion of an L -formula φ being satisfied
by a model M relative to a finite sequence of elements a1,..., an∈U (nota-
tion M = φ[a1,..., a]) is defined as usual, and so are all the other semantic
notions. In particular, M satisfies a formula φ simpliciter iff φ is satisfied
by M relative to every finite sequence of elements, in which case we also
say that φ is true in M . We shall also use the notation φM to indicate the
relation defined by φ in M :

φM =df {〈a1,..., an〉∈Un: M = φ[a1,..., an]},

where n is the number of distinct variables occurring free in φ. And, for
convenience, the same notation will be extended to defined predicates, so
that, for instance, PM

n  is a name for the relation Pn(x1, x2)
M, where x1 and x2

are the first two variables in the alphabetic order. (CM
n  is another name for

ƒ(Cn).)
Now, it is easy to see that the following formulas are true in every ca-

nonical model for all types τ:

(C1τ) Cτ(x, x)
(C2τ) Cτ(x, y) → Cτ(y, x).

In other words, each connection relation CM
τ  is reflexive and symmetric.

(When τ is a basic type, reflexivity follows from the assumption that the
universe contain only non-empty sets, and symmetry follows from the
commutativity of ∩; when τ is inductive, these properties follow by defi-
nition.) Also, the following are always logically true in view of the defini-
tion of Pτ:

(P1τ) Pτ(x, x)
(P2τ) Pτ(x, y) ∧ Pτ(y, z) → Pτ(x, z).

Thus, each parthood relation PM
τ  is reflexive and transitive in every canoni-

cal model M.
Another important property that is often associated with parthood

is antisymmetry. There are two formulations of this property, depending
on whether we use τ-equality (Eτ) or plain equality (=). The first formula-
tion

(P3τ) Pτ(x, y) ∧ Pτ(y, x) → Eτ(x, y).

is obviously true by definition. However, the second formulation,
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(P3τ=) Pτ(x, y) ∧ Pτ(y, x) → x = y,

is stronger and may fail in some models. For instance, if the universe in-
cludes only two sets with a non-empty intersection (but does not include
the intersection itself), then (P3τ=) is false for each basic type τ. Indeed,
the requirement that PM

τ  be antisymmetric in the sense of (P3τ=) is logi-
cally equivalent to the requirement that PM

τ  be extensional in the following
sense:

(P4τ=) ∀z(Pτ(z, x) ↔ Pτ(z, y)) → x = y,

which in turn is equivalent to the requirement that CM
τ  be likewise exten-

sional:

(C3τ=) ∀z(Cτ(z, x) ↔ Cτ(z, y)) → x = y.

(The first equivalence follows by (P1τ) and (P2τ), while the second follows
directly from the definition of Pτ.) These requirements are stronger than
the corresponding versions for Eτ:

(C3τ) ∀z(Cτ(z, x) ↔ Cτ(z, y)) → Eτ(x, y).
(P4τ) ∀z(Pτ(z, x) ↔ Pτ(z, y)) → Eτ(x, y).

These latter are logically true. But whether a model satisfies (P4τ=) and
(C3τ=) depends crucially on the relevant closure operator c and on which
sets are included in the universe U. Figures 4 and 5 show that there are
models satisfying or falsifying any combination of the first three basic in-
stances of (C3τ=) (i.e., the three instances obtained by taking τ to be a basic
type), thus showing the relative independence of the three sorts of exten-
sionality. This represents a significant parameter in comparing competing
theories. In the following, we shall call a model M τ-extensional iff it satis-
fies the extensionality axioms for CM

τ  and PM
τ  and, consequently, the anti-

symmetry axiom for PM
τ .

Let us now see how the various notions of connection, parthood, and
fusion are related. For the basic case where τ = 〈i,j,k,0〉, the relationships
between the three Cτ’s is easily stated: they are ordered by increasing
strength. In other words, every canonical model satisfies the following
conditionals:

(C412) C1(x, y) → C2(x, y)
(C423) C2(x, y) → C3(x, y).
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This follows immediately from (A1), as illustrated in Figure 1. More gen-
erally, for any pair of types τ1=〈i1,j,k,τ〉 and τ2=〈i2,j,k,τ〉, the following
holds whenever i1 ≤ i2:

(C4i1i2
) Cτ1

(x, y) → Cτ2
(x, y).

(This can be shown by induction on τ.)

y

z

- - 3

x

1 - -

y

z

x

1 2 -

y

z

x

- 2 3

z

y

x

1 2 3

y

z

x

1 - 3

y

z

x

y

z

- - -

x

- 2 -

z

y

x

Figure 4. Relative independence of extensionality. Each diagram illustrates a model
with universe U = {x,  y,  z}; the inclusion/exclusion of ‘i’ in the label under a dia-
gram indicates whether the corresponding model is or is not 〈i,j,k,0〉-extensional.

i=1 i=2 i=3

x y z x y z x y z

123 x y z x y z x y z

12- x y z x y z x, y x, y z

-23 x, y x, y z x, y, z x, y x, z x, y, z x, y x, z

1-3 x y z x, y x, y z x, y, z x, y x, z

1-- x y z x, y x, y z x, y x, y z

-2- x, y x, y z x, y, z x, y x, z x, y, z x, y, z x, y, z

--3 x, y x, y z x, y x, y z x, y, z x, y x, z

--- x, y x, y z x, y x, y z x, y x, y z

Figure 5. Tabulation of the connection patterns depicted in Figure 4. Each row cor-
responds to a model. For each value of i, the column under x lists the items in the
universe to which x is connected, and likewise for y and z. A model is 〈i,j,k,0〉-
extensional iff the corresponding three cells are pairwise distinct (shaded areas).
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The three parthood predicates are not, in general, related in a similar
fashion. In fact, no instance of the following inclusion schema is generally
true when τ1 ≠ τ2:

(P5i1i2
) Pτ1

(x, y) → Pτ2
(x, y).

A glimpse at Figures 4 and 5 is sufficient to see that there are models satis-
fying or falsifying any combination of the first three parthood relations,
thereby showing their relative independence. (Each pattern in the diagram
illustrates a model that satisfies Pτ(x, y) iff it is not τ-extensional.) How-
ever, all of these models are, in a sense, non-intended, and one might want
to rule them out precisely by assuming one or more instances of (P5i1i2

),
along with some form of extensionality (which some authors regard as an
essential feature of all connection relations [26]). For instance, every model
in which PM

1  is the relation of set inclusion satisfies extensionality as well
as (P532). This follows immediately from the fact that x ⊆ y always im-
plies c(x) ⊆ c(y).

With the fusion operator the situation is more complex. Let us extend
our notation to this case by setting:

(στx φ)M =df (z = στx φ)M,

where z is, say, the first variable foreign to φ. If στx φ is uniquely defined,
this yields an n-ary operation, where n is the number of free variables in φ.
(In particular, 0-ary operations are just singletons in U.) But στx φ need
not be uniquely defined. For one thing, there is no guarantee that U be
closed under fusions unless one requires so. In the most general case, such
a requirement amounts to assuming the principle of unrestricted fusion:

(C4τ) ∃x φ → ∃z (z = στx φ).

Let us say that a model satisfying (C4τ) for a given formula φ is τ-fused
for φ.4 Then the point is that unless M is τ-fused for φ, there is no guaran-
tee that the existence condition for στx φ be satisfied. Hence one may get
(στx φ)M=∅, which is not an element of U. On the other hand, if M is not

                                                
4 One could distinguish many variants of this principle, depending on what addi-

tional requirements one may want to impose on φ  besides satisfiability. For instance,
one may want to rule out disconnected fusions (see [14] for a classical discussion of this
view.) On this and related aspects of the idea behind (C4τ) we refer to [12].
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τ-extensional, then there is no guarantee that the uniqueness condition be
satisfied. Hence (στx φ)M may fail to be a function. As an example, take
τ=〈1,j,k,0〉 and let φ be the formula P3(x, z). Then (στx φ)M should map
every u∈U to the unique set a∈U such that, for all b∈U, c(a) ∩ c(b) ≠  ∅ iff
c(b) ∩ c(c) ≠  ∅ for some c ⊆  u. But there may not be such a unique set a
unless M is τ-extensional. For instance, if both the interior and the closure
of a are included in U, then both would satisfy the required conditions.

In view of the above, it is not possible to establish general relation-
ships between the operations defined by the various στ. In general, the de-
termination of the necessary and sufficient conditions that a model must
satisfy in order for it to be τ-fused for a formula φ is, as far as we can see, a
difficult open problem.

5. Boundary-based Theories

We now proceed to examine in some detail the logical space of the theories
that result from the options discussed above.

Let τ=〈i,j,k,τ'〉 be a type. A theory which formalizes topological con-
nection by Cτ, parthood by Pτ, and fusion by στ we call a τ-theory. There
are of course many distinct τ-theories, depending on how the basic predi-
cates are axiomatized. Here we consider some indicative examples, confin-
ing ourselves to the case τ'=0 (zero-order theories). We begin in this sec-
tion with boundary-based τ-theories, i.e., theories whose models include
boundary elements; in the next section we shall move on to boundary-free
theories.

Consider first the case where τ is uniform (i=j=k). In this case a τ-
theory could be formulated within a proper fragment of the language L,
namely the fragment Li={Ci}, and with τ'=0 one can in principle distin-
guish three main options (1 ≤  i ≤  3). As it turns out, however, we may note
immediately that none of these options is viable.

(a) The option i=1 yields implausible topologies in which the bound-
ary of a region is never connected to the region’s interior (since the bound-
ary and the interior never share any points).

(b) The option i=2 yields implausible mereologies in which every
boundary is part of its own complement (since anything connected to the
former is connected to the latter).
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(c) The option i=3 yields implausible mereotopologies in which the
interior of a region is always connected to its exterior (so that boundaries
make no difference) and in which the closure of a region is always part of
the region’s interior.

There is also a sense in which these theories trivialize all mereotopo-
logical distinctions in the presence of boundaries. For (a)–(c) imply that if
τ is uniform, any canonical model that includes the boundaries of its ele-
ments satisfies the conditional:

Cτ(x, y) → Oτ(x, y).

(This is obvious for i=1. For i=2 or 3, it follows from (b) and (c), which
imply that every object overlaps its complement.) Hence, in every such
model the τ-abut predicate Aτ defines the empty relation, and so do the
predicates of tangential and boundary parthood (TPτ, BPτ) and tangential
and boundary overlap (TOτ, BOτ). We take these results to show that if
boundaries are admitted in the domain, uniformly typed theories are inade-
quate. In fact, this applies not only to uniform types, but to all types
where i=j. (See [4, 38] for related material.)

Moving on to non-uniform types, we may note that some theories
have been explicitly proposed in the literature, specifically for the case
τ=〈2,1,1,0〉. An early example is to be found in [9], though the topological
primitive there is Opτ rather than Cτ. (One gets a definitionally equivalent
characterization of Cτ via the definitions of Section 2. A similar warning
applies to some other theories discussed below.) Other examples may be
found in [49, 50, 57, 63, 64]. Since parthood Pτ is not defined in terms of
the connection primitive Cτ, these theories need at least two distinct primi-
tives (corresponding to the parameters 1 and 2 in the type); but since fu-
sion στ is typically understood using the same primitive as parthood, a
third primitive is not needed (whence the equality of the second and third
coordinates in the type).

These theories typically represent an attempt to reconstruct ordinary
topological intuitions on top of a mereological basis. In fact, it is immediate
from the definition that in this case Cτ corresponds to the notion of con-
nection of ordinary point-set topology: two regions are connected if the
closure of one intersects the other, or vice versa. Moreover, Pτ is typically
assumed to satisfy the relevant extensionality and inclusion principles.
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Thus, a minimal theory of this kind is typically axiomatized using (C12),
(C22), (P11), (P21), (P31), (P512). If we also add the fusion principle
(C41), the result is a mereotopology subsuming what is known as classical
extensional mereology [12, 54], in which Pτ defines a complete Boolean
algebra with the null element deleted. And if we add the following:

(A1') Pτ(x, cτ(x))
(A2') Pτ(cτ(cτ(x)), cτ(x))
(A3') Eτ(cτ(x) +τ cτ(y), cτ(x +τ y))

the result is what may be called a full mereotopology, in which cτ behaves
like the standard Kuratowski closure operator. (A0 has no analogue due to
the lack of a null element.)  

All of these theories, of course, must account in some way for the in-
tuitive difficulties that arise out of the notion of a boundary, and corre-
spondingly of the distinction between open and closed entities. For in-
stance, Smith [57] considers various ways of supplementing a full mereo-
topology with a rendering of the intuition that boundaries are ontologically
dependent entities [13], i.e., can only exist as boundaries of some open en-
tity (contrary to the ordinary set-theoretic conception). In our notation the
simplest formulation of this intuition is given by the axiom:

(B1) BPτ(x, y) → ∃z(Opτ(z) ∧ BPτ(x, cτ(z))).

(A more general formulation can be given using a primitive predicate to ex-
press the dependence relation; see [32] for a study of the relevant axio-
matics.) Other proposals exploit a distinction between “bona fide”
boundaries, corresponding to natural discontinuities (the edge of an island),
and the “fiat” boundaries induced by our cognitive and/or social practices
(the borders of Wyoming). See [59] for a discussion of these options.

It is also noteworthy that all theories of this sort have type 〈2,1,1,0〉.
We conjecture that this is indeed the only viable option. For instance, it is
easy to see that any 〈1,2,k,0〉-theory would immediately run into the trou-
bles mentioned in (a)–(b) above.

6. Boundary-free Theories

Though the idea of a uniform type appears to founder in the case of
boundary-based theories, it has been taken very seriously in the context of
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boundary-free theories, i.e., theories that leave out boundaries from the
universe of discourse in the intended models. Theories of this sort are
rooted in [25, 67] and have recently become popular under the impact of
Clarke’s formulation in [16, 17] (see also [38]). Clarke’s own is a 〈1,1,1,0〉-
theory, and some later authors followed this account (e.g. [1, 2, 52]).
However, one also finds examples of theories of type 〈2,2,2,0〉 (e.g. in [42,
51]) as well as of type 〈3,3,3,0〉 (especially in the work of Cohn et al. [20,
22, 41, 53], which has led to an extended body of results and applications
in the area of spatial reasoning; see [33] for an independent example of a
type 〈3,3,3,0〉 theory.) Indeed, to our knowledge all boundary-free theories
in the literature are uniformly typed: this is remarkable but not surprising,
since the main difficulties in reducing mereology to topology lies precisely
in the presence of boundaries.

Now, by definition, a boundary-free τ-theory admits of no boundary
elements. In axiomatic terms, this is typically accomplished by adding a
further postulate to the effect that everything is a region (i.e., has interior
parts):

(R) ∀xRgτ(x),

which implies the emptiness of the relations BPτ and BOτ, hence of Bdτ.
So bτ(x) is never defined in this case. However, let us emphasize that even
in a boundary-free theory boundaries may be included, not in a model’s
domain, but in the topological space relative to which the model is defined.
Moreover, it is worth noting that such theories typically afford some indi-
rect way of modeling boundary talk, e.g., as talk about infinite series of
extended regions. (Cf. [5, 17, 31].) In this sense, these theories do have
room for boundary elements, albeit only as higher-order entities.

Note also that an axiom such as (R) gives us a way of studying the
spectrum of boundary-free theories in terms of their boundary-tolerant
counterparts. To this end, define the τ-region relativization of a formula
φ, written  φRg τ:

Cτ(y, x)Rg τ =df Cτ(y, x)
(¬φ)Rg τ =df ¬(φRg τ)
(φ ∗ ψ)Rg τ =df ψRg τ ∗ φRg τ

(∃xφ)Rg τ =df ∃x(Rgτ(x) ∧ φRg τ)
(∀xφ)Rg τ =df ∀x(Rgτ(x) → φRg τ)
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By ordinary induction on φ, one immediately verifies that the following
holds in every (canonical) model:

∀xRgτ(x) → (φ ↔ φRg τ).

It follows that in general a formula φ is a theorem of a boundary-free τ-
theory iff its relativization φRg τ is a theorem of the boundary-tolerant the-
ory obtained by dropping (R).

More specifically, consider now the three main options mentioned in
the previous section, where τ is a basic uniform type of the form 〈i,i,i,0〉.
Unlike their boundary-based counterparts, none of these options yields a
collapse of the distinction between tangential and interior parthood (TPτ,
IPτ) or between tangential and interior overlap (TOτ, IOτ). However, the
three options diverge noticeably with regard to the distinction between
open and closed regions (Opτ, Clτ). The general picture is as follows.

(a) The case i=1 allows for the open/closed distinction, yielding theo-
ries in which the relation of abutting (Aτ) is a prerogative of closed regions
(open regions abut nothing). As a corollary, such theories determine non-
standard mereologies that violate the supplementation principle:

(S) ∀z(Pτ(z, x) → Oτ(z, y)) → Pτ(x, y)

(It is enough to take y open and x equal to the closure of y.) This is so even
if the theory includes the extensionality axioms (P31=), (C31=), or (P41=).
For although extensionality guarantees that a closed region x is never part
of its own interior y, this is due to a mereological difference (a boundary)
that cannot be found in the domain of regions. This is a feature that some
authors have found unpalatable: as Simons [54] put it, one can discriminate
regions that differ by as little as a point, but one cannot discriminate the
point. There are also some topological peculiarities that follow from the
choice of C1 as a connection relation. For instance, it follows immediately
that no region is connected to its complement, hence that the universe is
bound to be disconnected. This was noted in [1, 17], where the suggestion
is made that self-connectedness should be redefined accordingly:

Cn'τ(x) =df ∀y∀z(Eτ(x, y+τz) → Cτ(cτ (y), cτ (z))).

This, however, is just a way of saying that self-connectedness must be de-
fined with reference to a different notion of connection (namely, the notion
obtained by taking i=3.)
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(b) The case i=2 also allows for the open/closed distinction, but yields
theories in which the relation of abutting may only hold between two re-
gions one of which is open and the other closed in the relevant contact
area. This results in a rather standard topological apparatus, modulo the
absence of boundary elements. However, also in this case the mereology
is bound to violate (S). (Again, just take y open and x equal to the closure
of y.)

(c) The case i=3 is the only one where the open/closed distinction dis-
solves: in this case every region turns out to be τ-equal to its interior as
well as to its closure. This follows from (P3τ), i.e., equivalently, from
(C3τ) or (P4τ). This means that τ-theories of this sort cannot be exten-
sional—in fact, they yield highly non-standard mereologies. However, this
is coherent with the fundamental idea of a boundary-free approach. For
one of the main motivations for going boundary-free is precisely to avoid
the many conundrums that seem to arise from the distinction between
open and closed regions [41]. In addition, and for this very same reason,
such theories can validate (S), thereby eschewing the problem mentioned in
(a) and (b).

We are not aware of any non-uniformly typed boundary-free theories.
However, one may imagine that such theories could also alleviate some of
the unpalatable properties of the uniformly typed mereotopologies men-
tioned in (a) and (b). For example, a type of the form 〈1,3,k,0〉 would cor-
respond to a mereotopology in which a type-1 notion of connection is
combined with a type-3 parthood relation that satisfies the supplementa-
tion principle (S). Similarly with a type of the form 〈2,3,k,0〉. It would cer-
tainly be interesting to pursue abstract studies in this direction. We hope
our framework may constitute a first step towards this possibility.

7. An Orthogonal Dimension of Variety

So far, we have only been concerned with the different ways of interpret-
ing the connection relation vis-à-vis the options made available by the
open/closed distinction. In each case, we have followed the familiar course
of explaining connection in terms of boundary sharing, irrespective of the
size (dimension) of the relevant boundary. This means that two regions
qualify as connected even if they share a single boundary point, as illus-
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trated in Figure 6. For many purposes, however, this may be considered
too weak a form of connection. For example, a worm cannot pass from the
interior of one apple to another, which touch just at a point, without be-
coming visible to the exterior—so from the worm’s point of view we might
as well say that the apples are not “sufficiently” connected. In the remain-
der of the paper we extend our study by taking a closer look at the options
that are available in this respect: two regions may share a single boundary
point or a boundary section of increasing extent. This gives us a second,
orthogonal dimension along which varieties of topological connection can
be classified—the strength of the connection. Indeed, one can find mereo-
topologies (e.g. [12, 39]) in which a predicate is defined to distinguish
simple point connection from a stronger form of connection (where a
worm could travel from one body to another without becoming visible to
the exterior). There are also whole mereotopological theories that have
been built taking the stronger notion of connection as primitive (see e.g.
[7]). So the general question arises as to what varieties of strength there
might be. Further dimensions may then be obtained by taking into consid-
eration the topological structure of the regions allowed in the domain of
quantification—for instance, the distinction between one-piece and multi-
piece regions.

x

y

Figure 6. A very weak kind of connection.

Examining the limiting cases, it would appear that there are four main
degrees of strength whereby two regions x and y may be said to be con-
nected, depending on whether their common boundary is (a) a single point
(or, more generally, a boundary of dimension ≤ d – 2 if x and y are of di-
mension d), (b) an extended boundary portion (of dimension d – 1), (c) a
maximal boundary, or (d) a complete, all-encompassing boundary. These
four cases are illustrated in Figure 7. There are twelve patterns overall,
since each case can be construed differently depending on which connec-
tion relation Cn is used to cash out the concept of a “common boundary”.
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Figure 7. Connection relations of increasing strength (limit cases): four main pat-
terns for each basic type of connection illustrated in Section 3.

Before proceeding to a more precise characterization, however, a few
remarks are in order. First, here as elsewhere our illustrative examples are
two-dimensional, but this is simply for ease of drawing; the relevant dis-
tinctions are applicable to higher dimensions as well (though obviously not
to lower dimensions). For instance, in 3D space the patterns in the first
row of Figure 7 correspond to the case where two bodies touch at a point,
but we also want to include here the case where two cubes (for example)
touch along an edge. The two cases are distinct and could be further or-
dered in terms of increasing strength, but from the present perspective we
shall treat them as equally weak: in both cases a worm cannot travel from
one region to the other without becoming visible to the exterior. Our defini-
tions below will implement this intuition.

Second, the patterns in the two bottom rows of Figure 7 may suggest
that the corresponding connection relations are asymmetric; it appears as
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though one of the two regions surrounds the other. However it is not
our intention to model this closely related concept. Clearly if y surrounds
x then the two regions share a “maximal” boundary as in the figure—a
boundary that is maximally connected relative to x. Yet this need not be
the only way that this sort of connection can be achieved. For example,
suppose x and y are defined by splitting of 2D Euclidean space into two
half planes: then neither region surrounds the other, but they nonetheless
share a boundary that is maximal in this sense. Other examples of maximal
connection without surrounding will become apparent as soon as we con-
sider multi-piece regions (see Section 9).

Third, it is worth pointing out that connections of type c need not
have just a single point of “imperfection” where the exterior touches both
boundaries. Consider, for instance, the configuration depicted in Figure 8a.
By contrast, notice that the configuration in Figure 8b is a case of connec-
tion of type b rather than type c: the shared boundary is not maximal in
the relevant sense, as it connects to other portions of the boundaries of
both regions. And notice that two regions may be connected in more than
one way, as in Figure 8c; in such cases we want to say that the weaker
pattern of connection (here: of type a) holds along with the stronger ones
(here: a connection of type b).  

c

x

y

x

y

a b

yy

x

Figure 8. Some examples of imperfect connections.

Finally, it is important to stress that the informal characterizations
given above—based on the concept of a boundary—involve several com-
plications, including the emphasis on external connection rather than con-
nection in general. We will by contrast give a set of definitions that do not
depend on boundaries but rather rely on the intuition afforded by the ex-
ample of the worm and the apple mentioned above. These definitions will
try to capture the notion of a path connecting the interiors of two regions
without touching their common exterior.
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Rather than using the term “path”, which already has a specific mean-
ing in topology, let us speak of “conduits”. Intuitively, a conduit between
two regions x and y is a self-connected region z that overlaps the interiors
of both x and y, and we may say that a conduit z is direct or indirect de-
pending on whether or not the difference between z and x and the differ-
ence between z and y are also self-connected (i.e., intuitively, whether or
not conduit z crosses the boundaries of x and y only once, which effec-
tively forces z to “start” in x and “end” into the interior of y). Moreover,
let us say that a direct conduit z is ideal iff, for every internally self-
connected region w which is part of z, the difference of z and w is not a di-
rect conduit between x and y—where a region is internally self-connected
iff its interior is self-connected. Thus, intuitively, a conduit may be
“pinched” to a point, but an ideal direct conduit is a direct conduit that is
minimal with respect to the number of “pinchings”. Formally, where τ is
any type, we can express these three notions of conduit as follows.5

Cdτ (z, x, y) =df Cnτ(z) ∧ IOτ(z, x) ∧ IOτ(z, y) τ-conduit

DrCdτ(z, x, y)=df Cdτ(z, x, y) ∧ Cnτ(z –τ x) ∧ Cnτ(z –τ y) direct τ-conduit

IdCdτ(z, x, y) =df DrCdτ(z, x, y) ∧ ∀w((Cnτ(iτ(w)) ∧ ideal τ-conduit

Pτ(w, z)) → ¬DrCdτ(z–τw, x, y))

We can now use these concepts to define four new kinds of connec-
tion relations, i.e., more precisely, to distinguish the four degrees of
strength for each connection relation of type τ:

Ca,τ(x, y) =df ∃z(DrCd τ(z, x, y) ∧ ¬Oτ(z, k τ(x+τy)))
Cb,τ(x, y) =df ∃z(DrCd τ(z, x, y) ∧ ¬Cτ(z, k τ(x+τy)))
Cc,τ(x, y) =df Cτ(x, y) ∧ ¬∃z(IdCd τ(z, x, y) ∧ Oτ(z, k τ(x+τy)))
Cd,τ(x, y) =df Cτ(x, y) ∧ ¬∃z(IdCd τ(z, x, y) ∧ Cτ(z, k τ(x+τy)))

                                                
5 Here, as elsewhere, our definitions are given against the general set-theoretic back-

ground of Section 3. It is understood that some of these definitions may not be signifi-
cant for some mereotopological theories. For example, a theory that does not assume the
existence of an interior iτ(x) for every region x in the domain may not rely on the given
definition of ideal τ-conduit. An alternative definition that does not rest on this assump-
tion (but rather on the existence of a closure) can be obtained by replacing the clause
‘Cnτ(iτ(w))’ by the following conditional:

∀x∀y∀z((Eτ(w,  x+τy) ∧ IPτ(cτ(z),x)) →
∃v(Cnτ(v) ∧ Pτ(z,  v) ∧ Oτ(y, v) ∧ IPτ(cτ(v),cτ(w)))).
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It is easy to verify that these four kinds of relations are ordered in terms of
increasing strength for each type τ. Also, in the domain of extended regions
each relation is both reflexive and symmetric, exactly as the generic connec-
tion relations discussed in Section 3.

These definitions capture the intended notion of a worm’s path. Since
every direct conduit is self-connected, the notion of minimal connection
Ca,τ is just Cτ:

Ca,τ(x, y) ↔ Cτ(x, y)

(Compare Figure 9a.) Next, since a direct conduit cannot connect with the
common complement, the extended notion of connection Cb,τ(x, y) forces
the contact area to be wider (Figure 9b). For the maximal notion of connec-
tion, Cc,τ(x, y), the intuition is that rather than just requiring some direct
conduit not to intersect the complement, this must be true for every direct
conduit. Thus every “path” that starts in x, crosses x’s boundary, and en-
ters y must do so directly without intersecting the complement. The ideal-
ity restriction is necessary because otherwise there could be an additional
component of the direct conduit which overlapped the complement (Figure
9c): one direct conduit is ideal, and illustrates a direct conduit that is not
connected to the complement; the other direct conduit connects with the
complement, but it is not ideal, since a component could be removed
whilst it remained a direct conduit between x and y. Notice that this latter
direct conduit with the outer component removed is still connected to the
complement; the definition of Cd,τ(x, y) ensures that the non-existence of
such a conduit results in a case of perfect connection.

y
x

y
x

y
x

a b c

Figure 9. Characterizing the strength of a connection pattern in terms of conduits.

8. Discussion

It is worth taking a second look at Figure 7. The intended interpretation is
that the differently shaded areas represent distinct, non-overlapping re-
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gions (x and y). Thus, although y starts as a rectangle on the top row, it
changes shape in each successive row, ending up with a hole inside it. No-
tice, however, that if we reinterpreted the figure so that y remained a rec-
tangle, then in the bottom three rows the two regions would overlap mere-
ologically. More precisely, in the limit case where the strength of the con-
nection is due exclusively to external contact (without overlap), x would
partially overlap, be a tangential part, and be an interior part of y, respec-
tively. This fact deserves consideration. For it shows that there exists a
natural homomorphism between the vertical variety of the connection rela-
tions of Figure 7 and the horizontal variety (known in the literature as a
“conceptual neighborhood diagram” [21, 34] or a “continuity network”
[21]) of the basic mereotopological relations of Figure 2.

It also bears emphasis that although one can imagine treating the new
dimension of variety as determining a corresponding set of primitive con-
nection relations, the relations introduced in the first part of the paper are
analytically more primitive as the definitions of Section 7 rely on those of
Section 3. Moreover, in certain circumstances one can move from one de-
gree of strength to the next by progressive movement of one region, as the
simple patterns of Figure 7 illustrate, whilst it is always necessary for a
region to undergo topological change to move between the basic patterns of
Figure 1—specifically, at least one region needs to grow or lose its bound-
ary. This may explain why the relations most familiar in the literature are
of the weakest sort: as we have already seen, Ca,〈1,1,1,0〉  = C1 is connection
à la Clarke [16, 17]; Ca,〈2,1,1,0〉  = C2 is the analogue of standard topological
connection [57, 61]; and Ca,〈3,3,3,0〉  = C3 is “RCC” connection [20, 41, 53].
Occasionally, however, stronger relations have also been considered. For
example:

(a) Cb,〈3,3,3,0〉  is the relation of connection in the sense of Borgo et al.
[7],6 which is also essentially Bennett’s [3] “firm” connection. (Strictly
speaking, this latter notion is defined as a kind of external connection
rather connection more generally; see also [44]);

(b) Cc,〈2,1,1,0〉  is “niche” connection as described by Smith and Varzi
[58], which is in turn is closely related to the notion of tangential surround
defined in [57];

                                                
6 This relation is essentially equivalent to the relation C5 of footnote 2.
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(c) Cd,〈2,1,1,0〉  is closely related to the notion of non-tangential sur-
round defined by Smith [57] (except that this notion is asymmetric).

The significance of the distinctions we have been making can also be
illustrated with reference to specific domain examples. We have already
mentioned the case of a worm travelling from one body to another, and this
is illustrative of a familiar pattern in 3D space. For another example, con-
sider a chunk of Swiss cheese. A hole hidden in the interior—an internal
cavity—is Cd-connected to the piece of cheese (more precisely, it is Cd,τ-
connected for some τ—but we shall omit the second index when it is of no
relevance): a worm cannot leave the hole without going through the cheese.
If the worm starts digging, eventually the hole will “open up”—then it will
be merely Cb-connected to the cheese. And at the “magical moment” when
the worm sees the light for the first time—when the worm breaks through
the last layer of cheese—the hole is Cc-connected to the cheese, though
only for an instant. (See [10, ch. 6].)

Further interesting examples arise in the geographic domain. For in-
stance, consider the portion of the USA illustrated in Figure 10a. Utah and
New Mexico are only Ca-connected (as are Colorado and Arizona). Utah
and Colorado are Cb-connected (as are many other states, e.g. Arizona and
Nevada). Utah is Cc-connected with the sum of all the states except for
New Mexico and Utah itself. Finally, Utah is Cd-connected with the sum
of all the other states. One might wonder what motivates taking the sum of
a set of States and treating it as a uniform region, but one can easily imag-
ine that there might be some property (e.g., social, economic, meteorologi-
cal, political) which only some set of States might share. Another, essen-
tially identical example exists in France, where four departments all meet at
a single point—see Figure 10b. There are many other geographic examples
of these relationships. For example, Vatican City and Italy are Cd-
connected, since the former is a separate country surrounded by the latter.
The same relationship holds between the state of San Marino and Italy
as also between the former countries of East and West Germany (because
West Berlin was completely surrounded by East German territory).

Finally, it is worth pointing out that the patterns of interaction dis-
played in Figure 7 become considerably more complex as soon as other
shapes are contemplated. For example, consider replacing the circular
shape x with a simple concave shape, as in Figure 11. If we visualize the
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Figure 10. Geographic examples of connections of various strengths.

Figure 11. Connection relations involving a concave, boomerang-shaped region.

sequence of pictures as the “boomerang” sinks into the “water”, a variety
of topological configurations ensue, with single and multiple connections.

It is tempting to conjecture that the number of connections between
two regions might also count as an indicator of the strength of their con-
nection. However, this is not entirely straightforward. There is, for in-
stance, no reason to think that a number of single points of connection are
“as good as” a single extended connection. Moreover, we have already
noted that two regions may be connected in more than one way (see again
Figure 8c) and there is no obvious limit to the patterns of interaction be-
tween regions of different shapes and topological genus (e.g., regions with
holes). Thus, this line of investigation is bound to be of considerable com-
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plexity. (See [36] for a thorough study of C1-connections in boundary-
based theories—i.e., where C1 amounts to mereological overlap.)

9. Multi-piece Regions—A Third Dimension?

The intuitive, boundary-based characterization of the four kinds of connec-
tion relations introduced in section 7 was meant to apply for one-piece or
multi-piece regions alike. However, the formal, conduit-based definitions
of these relations may fail for multi-piece regions. Specifically, it is the
definitions of the relations Cc,τ and Cd,τ that may fail, because these rela-
tions are defined by demanding that no ideal direct conduit exists satisfying
a particular condition; adding a new, separate piece to a region will mean
that many new ideal direct conduits exist (from the new piece to the other
region) and some of these may fail the condition. For example, consider the
configuration depicted in Figure 12; there is certainly an ideal direct con-
duit that connects x to the exterior of y.

yy

x x

Figure 12. A peculiar connection pattern involving a connected and a disconnected
(multi-piece) region.

If we wish to handle multi-piece regions, then the remedy is fairly
straightforward: we must add a further condition selecting a particular
component from x and y for the condition to hold over. To this end, let us
first define the notion of a maximal self-connected part, or constituent:

MCPτ(x, y) =df CPτ(x, y) ∧ ∀z(CPτ(z, y) ∧ Pτ(x, z) → Eτ(x, z))

Then we can revise the definitions of Cc,τ (maximal connection) and
Cd,τ (perfect connection) accordingly:

Cc,τ(x, y) =df Cτ(x, y) ∧ ∃x'∃y'(MCPτ(x', x) ∧ MCPτ(y', y) ∧
¬∃z(IdCd τ(z, x', y') ∧ Oτ(z, k τ(x+ τy))))

Cd,τ(x, y) =df Cτ(x, y) ∧ ∃x'∃y'(MCPτ(x', x) ∧ MCPτ(y', y) ∧
¬∃z(IdCd τ(z, x', y') ∧ Cτ(z, k τ(x+ τy))))
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Considering the notion of multi-piece regions now leads to the idea
that the degree of connection between the various constituents of a multi-
piece region is a third dimension of variation of the connection relation.
Consider two multi-piece regions x and y. The weakest form of connection
is that each has a single constituent, x' and y' respectively, which is con-
nected to the other by one of the twelve connection relations. A stronger
form of multi-piece connection is that every constituent of one region con-
nects to some constituent of the other. And by quantifying appropriately,
we can come up with a new variety of connection relations.

Let us add a third subscript, chosen from the initial portion of the
Greek alphabet to indicate this variety. Where τ=〈i,j,k,τ'〉 is any type and
κ∈{a, b, c, d}, we can define the following four relations, indexed by α, β,
γ, and δ:

Cα,κ,τ(x, y) =df ∃x' ∃y'(MCPτ(x', x) ∧ MCPτ(y', y) ∧ Cκ,τ(x, y))

Cβ,κ,τ(x, y) =df ∀x'(MCPτ(x', x) → ∃y'(MCPτ(y', y) ∧ Cκ,τ(x, y))) ∧
∀y'(MCPτ(y', y) → ∃x'(MCPτ(x', x) ∧ Cκ,τ(x, y))))

Cγ,κ,τ(x, y) =df ∃x'(MCPτ(x', x) ∧ ∀y'(MCPτ(y', y) → Cκ,τ(x, y))) ∧
∃y'(MCPτ(y', y) ∧ ∀x'(MCPτ(x', x) → Cκ,τ(x, y))))

Cδ,κ,τ(x, y) =df ∀x'∀y'(MCPτ(x', x) ∧ MCPτ(y', y) → Cκ,τ(x, y))

These relations are illustrated in Figure 13 for the case i  = 1. The first row
illustrates four distinguishing cases of Cα,a,1, Cβ,a,1, Cγ,a,1, and Cδ,a,1-
connection, in order from left to right. The next rows illustrate the corre-
sponding patterns for κ = b, c, d, respectively. Notice that for γ and δ only
one of the two regions can have multiple constituents. For Cδ,d,1 we show
two alternative ways of achieving the relationship, but note that the left-
hand configuration is not extendible further, while the right-hand configura-
tion can be extended by adding further lighter-shaded constituents. Also
notice that, in the figure, all individual connections are of the same kind;
multiple connections of varying types are of course possible, though it
would take us too long to analyze them here.

As with the relations of section 7, it is not difficult to think of con-
crete examples in which these relations are instantiated—for instance in the
geographic domain. Consider a typical city in the United States in which
all the avenues and streets are orthogonal and each street crosses each ave-
nue and vice versa: in this case we can assert that Cδ,κ,τ(x, y), where x is the
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Figure 13. Varieties of multiple connection.

τ-fusion of the avenues and y the τ-fusion of the streets. In the case of a
city like Manhattan only the weaker relationship Cγ,κ,τ(x, y) holds, because
only Broadway extends all the way to the southernmost street of the is-
land. The τ-fusions of all American rivers and all American states stand in
a Cβ,κ,τ-relationship, since every river is connected to some state and vice
versa. Finally, an example of Cα,κ,τ is afforded by the relationship between
the τ-fusion of all airplanes and the τ-fusion of all airports. At any time,
some airplane is connected to (at) an airport, though there is no guarantee
that this holds for all airplanes.

Two final remarks are in order. First, we have been careful to define
these relations so that they are symmetric: the first and last definitions
have quantifiers of the same type, which naturally commute, whereas the
other definitions contain a “vice versa” conjunct. On the other hand, the
first two definitions yield reflexive relations but the third and fourth do
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not. This is obvious in view of the fact that a multi-piece region x cannot,
by definition, have each of its constituents connected to the others. There
appears to be no natural way to make these definitions reflexive. We in-
clude them nonetheless as examples of interesting connection relations that
violate this familiar postulate on the concept of mereotopological connec-
tion. (In certain domains it would also be natural to consider connection
relations which are not symmetric; for example one way streets, valves,
and hyperlinks.)

Second, it is appropriate to point out that two further relations can
be defined which relate in a natural way to Cβ,κ,τ and Cγ,κ,τ, where the
quantifiers are different (hence non-commutative). This can be done by
weakening the “vice versa” clause to a disjunction rather than a conjunc-
tion:

Cβ',κ,τ(x, y) =df ∀x'(MCPτ(x', x) → ∃y'(MCPτ(y', y) ∧ Cκ,τ(x, y))) ∨
∀y'(MCPτ(y', y) → ∃x'(MCPτ(x', x) ∧ Cκ,τ(x, y))))

Cγ',κ,τ(x, y) =df ∃x'(MCPτ(x', x) ∧ ∀y'(MCPτ(y', y) → Cκ,τ(x, y))) ∨
∃y'(MCPτ(y', y) ∧ ∀x'(MCPτ(x', x) → Cκ,τ(x, y))))

The resulting relations (see Figure 14) are weaker than Cβ,κ,τ and Cγ,κ,τ,
respectively, but stronger than Cα,κ,τ and Cβ,κ,τ. Thus, overall the rela-
tions are ordered in terms of increasing strength according to the pattern α,
β', β, γ', γ, δ.

10. Final Comments

The analysis of connection and connection-based theories presented here
certainly does not exhaust all possibilities. For example, we have not ex-
plicitly investigated irregular regions or regions of higher-order topological
genus (i.e., regions with holes) and this may bear explicit investigation.
Equally, the analysis could be extended to connection relations between
spatial entities of differing dimensions (cf. [19, 30, 35, 40]).

Another possibility is to extend the analysis to cover for instance the
notion of “weak connection” defined in [1], the Brentanian notion of con-
nection [8, 15, 56], or the notion of connection through “fiat” boundaries
[59]. Yet another notion of connection is given by a pair of linked (inter-
locked) tori [27, 65].
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Figure 14. Further connection relations with multi-piece regions.

It is also worth pointing to the work of Egenhofer and Franzosa [28,
29], who present a calculus that allows, at the cost of arbitrary complex-
ity, the possibility of classifying any topological distinct situation. (Com-
pare [18] for a related proposal.)

The variety of mereotopological connection relations is very rich in-
deed. We hope to have gone some way in the direction of a unified frame-
work that allows one to see the forest besides the many trees.
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Pierwszkego Polskiego Zjazdu Matematycznego, suppl. to Annales de la Société
Polonaise de Mathématique 7, 29–33.

[62] Tarski A., 1935, ‘Zur Grundlegung der Booleschen Algebra. I’, Fundamenta
Mathematicae, 24, 177–198.

[63] Tiles J. E., 1981, Things That Happen, Aberdeen: Aberdeen University Press.
[64] Varzi A. C., 1996a, ‘Parts, Wholes, and Part-Whole Relations: The Prospects of

Mereotopology,’ Data and Knowledge Engineering  20, 259–286.
[65] Varzi A. C., 1996b, ‘Reasoning about Space: The Hole Story’, Logic and Logical

Philosophy 4, 3–39.



39

[66] Varzi A. C., 1997, ‘Boundaries, Continuity, and Contact’, Noûs 31, 26–58.
[67] Whitehead A. N., 1929, Process and Reality. An Essay in Cosmology, New York:

Macmillan.
[68] Zimmerman D. W., 1996, ‘Indivisible Parts and Extended Objects: Some Philoso-

phical Episodes from Topology’s Prehistory’, The Monist 79, 148–180.


