4,590 research outputs found

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    Handwritten OCR for Indic Scripts: A Comprehensive Overview of Machine Learning and Deep Learning Techniques

    Get PDF
    The potential uses of cursive optical character recognition, commonly known as OCR, in a number of industries, particularly document digitization, archiving, even language preservation, have attracted a lot of interest lately. In the framework of optical character recognition (OCR), the goal of this research is to provide a thorough understanding of both cutting-edge methods and the unique difficulties presented by Indic scripts. A thorough literature search was conducted in order to conduct this study, during which time relevant publications, conference proceedings, and scientific files were looked for up to the year 2023. As a consequence of the inclusion criteria that were developed to concentrate on studies only addressing Handwritten OCR on Indic scripts, 53 research publications were chosen as the process's outcome. The review provides a thorough analysis of the methodology and approaches employed in the chosen study. Deep neural networks, conventional feature-based methods, machine learning techniques, and hybrid systems have all been investigated as viable answers to the problem of effectively deciphering Indian scripts, because they are famously challenging to write. To operate, these systems require pre-processing techniques, segmentation schemes, and language models. The outcomes of this methodical examination demonstrate that despite the fact that Hand Scanning for Indic script has advanced significantly, room still exists for advancement. Future research could focus on developing trustworthy models that can handle a range of writing styles and enhance accuracy using less-studied Indic scripts. This profession may advance with the creation of collected datasets and defined standards

    Computer analysis of composite documents with non-uniform background.

    Get PDF
    The motivation behind most of the applications of off-line text recognition is to convert data from conventional media into electronic media. Such applications are bank cheques, security documents and form processing. In this dissertation a document analysis system is presented to transfer gray level composite documents with complex backgrounds and poor illumination into electronic format that is suitable for efficient storage, retrieval and interpretation. The preprocessing stage for the document analysis system requires the conversion of a paper-based document to a digital bit-map representation after optical scanning followed by techniques of thresholding, skew detection, page segmentation and Optical Character Recognition (OCR). The system as a whole operates in a pipeline fashion where each stage or process passes its output to the next stage. The success of each stage guarantees that the operation of the system as a whole with no failures that may reduce the character recognition rate. By designing this document analysis system a new local bi-level threshold selection technique was developed for gray level composite document images with non-uniform background. The algorithm uses statistical and textural feature measures to obtain a feature vector for each pixel from a window of size (2 n + 1) x (2n + 1), where n ≥ 1. These features provide a local understanding of pixels from their neighbourhoods making it easier to classify each pixel into its proper class. A Multi-Layer Perceptron Neural Network is then used to classify each pixel value in the image. The results of thresholding are then passed to the block segmentation stage. The block segmentation technique developed is a feature-based method that uses a Neural Network classifier to automatically segment and classify the image contents into text and halftone images. Finally, the text blocks are passed into a Character Recognition (CR) system to transfer characters into an editable text format and the recognition results were compared to those obtained from a commercial OCR. The OCR system implemented uses pixel distribution as features extracted from different zones of the characters. A correlation classifier is used to recognize the characters. For the application of cheque processing, this system was used to read the special numerals of the optical barcode found in bank cheques. The OCR system uses a fuzzy descriptive feature extraction method with a correlation classifier to recognize these special numerals, which identify the bank institute and provides personal information about the account holder. The new local thresholding scheme was tested on a variety of composite document images with complex backgrounds. The results were very good compared to the results from commercial OCR software. This proposed thresholding technique is not limited to a specific application. It can be used on a variety of document images with complex backgrounds and can be implemented in any document analysis system provided that sufficient training is performed.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A445. Source: Dissertation Abstracts International, Volume: 66-02, Section: B, page: 1061. Advisers: Maher Sid-Ahmed; Majid Ahmadi. Thesis (Ph.D.)--University of Windsor (Canada), 2004

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    End-to-End Neural Optical Music Recognition of Monophonic Scores

    Get PDF
    [EN] Optical Music Recognition is a field of research that investigates how to computationally decode music notation from images. Despite the efforts made so far, there are hardly any complete solutions to the problem. In this work, we study the use of neural networks that work in an end-to-end manner. This is achieved by using a neural model that combines the capabilities of convolutional neural networks, which work on the input image, and recurrent neural networks, which deal with the sequential nature of the problem. Thanks to the use of the the so-called Connectionist Temporal Classification loss function, these models can be directly trained from input images accompanied by their corresponding transcripts into music symbol sequences. We also present the Printed Images of Music Staves (PrIMuS) dataset, containing more than 80,000 monodic single-staff real scores in common western notation, that is used to train and evaluate the neural approach. In our experiments, it is demonstrated that this formulation can be carried out successfully. Additionally, we study several considerations about the codification of the output musical sequences, the convergence and scalability of the neural models, as well as the ability of this approach to locate symbols in the input score.This work was supported by the Social Sciences and Humanities Research Council of Canada, and the Spanish Ministerio de Economia y Competitividad through Project HISPAMUS Ref. No. TIN2017-86576-R (supported by UE FEDER funds).Calvo-Zaragoza, J.; Rizo, D. (2018). End-to-End Neural Optical Music Recognition of Monophonic Scores. Applied Sciences. 8(4). https://doi.org/10.3390/app8040606S8

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information
    corecore