15,503 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Intelligent intrusion detection in low power IoTs

    Get PDF
    Security and privacy of data are one of the prime concerns in today’s Internet of Things (IoT). Conventional security techniques like signature-based detection of malware and regular updates of a signature database are not feasible solutions as they cannot secure such systems effectively, having limited resources. Programming languages permitting immediate memory accesses through pointers often result in applications having memory-related errors, which may lead to unpredictable failures and security vulnerabilities. Furthermore, energy efficient IoT devices running on batteries cannot afford the implementation of cryptography algorithms as such techniques have significant impact on the system power consumption. Therefore, in order to operate IoT in a secure manner, the system must be able to detect and prevent any kind of intrusions before the network (i.e., sensor nodes and base station) is destabilised by the attackers. In this article, we have presented an intrusion detection and prevention mechanism by implementing an intelligent security architecture using random neural networks (RNNs). The application’s source code is also instrumented at compile time in order to detect out-of-bound memory accesses. It is based on creating tags, to be coupled with each memory allocation and then placing additional tag checking instructions for each access made to the memory. To validate the feasibility of the proposed security solution, it is implemented for an existing IoT system and its functionality is practically demonstrated by successfully detecting the presence of any suspicious sensor node within the system operating range and anomalous activity in the base station with an accuracy of 97.23%. Overall, the proposed security solution has presented a minimal performance overhead.</jats:p

    Deep Predictive Coding Neural Network for RF Anomaly Detection in Wireless Networks

    Full text link
    Intrusion detection has become one of the most critical tasks in a wireless network to prevent service outages that can take long to fix. The sheer variety of anomalous events necessitates adopting cognitive anomaly detection methods instead of the traditional signature-based detection techniques. This paper proposes an anomaly detection methodology for wireless systems that is based on monitoring and analyzing radio frequency (RF) spectrum activities. Our detection technique leverages an existing solution for the video prediction problem, and uses it on image sequences generated from monitoring the wireless spectrum. The deep predictive coding network is trained with images corresponding to the normal behavior of the system, and whenever there is an anomaly, its detection is triggered by the deviation between the actual and predicted behavior. For our analysis, we use the images generated from the time-frequency spectrograms and spectral correlation functions of the received RF signal. We test our technique on a dataset which contains anomalies such as jamming, chirping of transmitters, spectrum hijacking, and node failure, and evaluate its performance using standard classifier metrics: detection ratio, and false alarm rate. Simulation results demonstrate that the proposed methodology effectively detects many unforeseen anomalous events in real time. We discuss the applications, which encompass industrial IoT, autonomous vehicle control and mission-critical communications services.Comment: 7 pages, 7 figures, Communications Workshop ICC'1

    Statistics in the Big Data era

    Get PDF
    It is estimated that about 90% of the currently available data have been produced over the last two years. Of these, only 0.5% is effectively analysed and used. However, this data can be a great wealth, the oil of 21st century, when analysed with the right approach. In this article, we illustrate some specificities of these data and the great interest that they can represent in many fields. Then we consider some challenges to statistical analysis that emerge from their analysis, suggesting some strategies

    Online disturbance prediction for enhanced availability in smart grids

    Get PDF
    A gradual move in the electric power industry towards Smart Grids brings new challenges to the system's efficiency and dependability. With a growing complexity and massive introduction of renewable generation, particularly at the distribution level, the number of faults and, consequently, disturbances (errors and failures) is expected to increase significantly. This threatens to compromise grid's availability as traditional, reactive management approaches may soon become insufficient. On the other hand, with grids' digitalization, real-time status data are becoming available. These data may be used to develop advanced management and control methods for a sustainable, more efficient and more dependable grid. A proactive management approach, based on the use of real-time data for predicting near-future disturbances and acting in their anticipation, has already been identified by the Smart Grid community as one of the main pillars of dependability of the future grid. The work presented in this dissertation focuses on predicting disturbances in Active Distributions Networks (ADNs) that are a part of the Smart Grid that evolves the most. These are distribution networks with high share of (renewable) distributed generation and with systems in place for real-time monitoring and control. Our main goal is to develop a methodology for proactive network management, in a sense of proactive mitigation of disturbances, and to design and implement a method for their prediction. We focus on predicting voltage sags as they are identified as one of the most frequent and severe disturbances in distribution networks. We address Smart Grid dependability in a holistic manner by considering its cyber and physical aspects. As a result, we identify Smart Grid dependability properties and develop a taxonomy of faults that contribute to better understanding of the overall dependability of the future grid. As the process of grid's digitization is still ongoing there is a general problem of a lack of data on the grid's status and especially disturbance-related data. These data are necessary to design an accurate disturbance predictor. To overcome this obstacle we introduce a concept of fault injection to simulation of power systems. We develop a framework to simulate a behavior of distribution networks in the presence of faults, and fluctuating generation and load that, alone or combined, may cause disturbances. With the framework we generate a large set of data that we use to develop and evaluate a voltage-sag disturbance predictor. To quantify how prediction and proactive mitigation of disturbances enhance availability we create an availability model of a proactive management. The model is generic and may be applied to evaluate the effect of proactive management on availability in other types of systems, and adapted for quantifying other types of properties as well. Also, we design a metric and a method for optimizing failure prediction to maximize availability with proactive approach. In our conclusion, the level of availability improvement with proactive approach is comparable to the one when using high-reliability and costly components. Following the results of the case study conducted for a 14-bus ADN, grid's availability may be improved by up to an order of magnitude if disturbances are managed proactively instead of reactively. The main results and contributions may be summarized as follows: (i) Taxonomy of faults in Smart Grid has been developed; (ii) Methodology and methods for proactive management of disturbances have been proposed; (iii) Model to quantify availability with proactive management has been developed; (iv) Simulation and fault-injection framework has been designed and implemented to generate disturbance-related data; (v) In the scope of a case study, a voltage-sag predictor, based on machine- learning classification algorithms, has been designed and the effect of proactive disturbance management on downtime and availability has been quantified
    • …
    corecore