8,734 research outputs found

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft

    Scaling non-regular shared-memory codes by reusing custom loop schedules

    Get PDF
    In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors. The paper presents practical examples from real applications and experiments showing the efficiency of the approach.Peer ReviewedPostprint (author's final draft

    Automatically Optimizing Tree Traversal Algorithms

    Get PDF
    Many domains in computer science, from data-mining to graphics to computational astrophysics, focus heavily on irregular applications. In contrast to regular applications, which operate over dense matrices and arrays, irregular programs manipulate and traverse complex data structures like trees and graphs. As irregular applications operate on ever larger datasets, their performance suffers from poor locality and parallelism. Programmers are burdened with the arduous task of manually tuning such applications for better performance. Generally applicable techniques to optimize irregular applications are highly desired, yet scarce. In this dissertation, we argue that, for an important subset of irregular programs which arises in many domains, namely, tree traversal algorithms like Barnes-Hut, nearest neighbor and ray tracing, there exist general techniques to enhance performance. We investigate two sources of performance improvement: locality enhancement and vectorization. Furthermore we demonstrate that these techniques can be automatically applied by an optimizing compiler, relieving programmers of manual, error-prone, application-specific effort. Achieving high performance in many applications requires achieving good locality of reference. We propose two novel transformations called point blocking and traversal splicing, inspired by the classic tiling loop transformation, and show that it can substantially enhance temporal locality in tree traversals. We then present a transformation framework called TreeSplicer, that automatically applies these transformations, and uses autotuning techniques to determine appropriate parameters for the transformations. For six benchmark algorithms, we show that a combination of point blocking and traversal splicing can deliver single-thread speedups of up to 8.71 (geometric mean: 2.48), just from better locality. Modern commodity processors support SIMD instructions, and using these instructions to process multiple traversals at once has the potential to provide substantial performance improvements. Unfortunately tree algorithms often feature highly diverging traversals which inhibit efficient SIMD utilization, to the point that other, less profitable sources of vectorization must be exploited instead. We propose a dynamic reordering of traversals based on previous behavior, based on the insight that traversals which have behaved similarly so far are likely to behave similarly in the future, and show that this reordering can dramatically improve the SIMD utilization of diverging traversals, close to ideal utilization. We present a transformation framework, SIMTree, which facilitates vectorization of tree algorithms, and demonstrate speedups of up to 6.59 (geometric mean: 2.78). Furthermore our techniques can effectively SIMDize algorithms that prior, manual vectorization attempts could not

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe

    Devito: Towards a generic Finite Difference DSL using Symbolic Python

    Full text link
    Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerful mechanism to speed up scientific Python computation that goes beyond traditional vectorization and pre-compilation approaches, while allowing domain scientists to build applications within the comforts of the Python software ecosystem. In this paper we present Devito, a new finite difference DSL that provides optimized stencil computation from high-level problem specifications based on symbolic Python expressions. We demonstrate Devito's symbolic API and performance advantages over traditional Python acceleration methods before highlighting its use in the scientific context of seismic inversion problems.Comment: pyHPC 2016 conference submissio

    Matching non-uniformity for program optimizations on heterogeneous many-core systems

    Get PDF
    As computing enters an era of heterogeneity and massive parallelism, it exhibits a distinct feature: the deepening non-uniform relations among the computing elements in both hardware and software. Besides traditional non-uniform memory accesses, much deeper non-uniformity shows in a processor, runtime, and application, exemplified by the asymmetric cache sharing, memory coalescing, and thread divergences on multicore and many-core processors. Being oblivious to the non-uniformity, current applications fail to tap into the full potential of modern computing devices.;My research presents a systematic exploration into the emerging property. It examines the existence of such a property in modern computing, its influence on computing efficiency, and the challenges for establishing a non-uniformity--aware paradigm. I propose several techniques to translate the property into efficiency, including data reorganization to eliminate non-coalesced accesses, asynchronous data transformations for locality enhancement and a controllable scheduling for exploiting non-uniformity among thread blocks. The experiments show much promise of these techniques in maximizing computing throughput, especially for programs with complex data access patterns
    • …
    corecore